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DYNAMICS OF A DIFFUSIVE
NUTRIENT-PHYTOPLANKTON-ZOOPLANKTON MODEL WITH

SPATIO-TEMPORAL DELAY\ast 

YIWEN TAO\dagger , SUE ANN CAMPBELL\ddagger , AND FRANCIS J. POULIN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study a diffusive nutrient-phytoplankton-zooplankton (NPZ) model with spatio-
temporal delay. The closed nature of the system allows the formulation of a conservation law of
biomass that governs the ecosystem. We advance the understanding of the local stability for equi-
librium solutions of the NPZ model by proposing a new local stability theorem for generalized
three-dimensional systems. Using a specific delay kernel, we perform a qualitative analysis of the
solutions, including existence, uniqueness, and boundedness of the solutions, global stability of the
trivial equilibrium, and Hopf bifurcation of the nontrivial equilibrium. Numerical simulations are also
performed to verify and supplement our analytical results. We show that diffusion predominantly
has a stabilizing effect; however, if sufficient nutrient is present, complex spatio-temporal dynamics
may occur.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . plankton, diffusion, spatio-temporal delay, stability, bifurcation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn . 35K57

\bfD \bfO \bfI . 10.1137/20M1378065

1. Introduction. Plankton are drifting organisms that live in the oceans, lakes,
and rivers, and play a fundamental role in the global carbon cycle and marine food
webs. Three important trophic compartments in virtually all acquatic ecosystems are
nutrients, phytoplankton, and zooplankton. In a closed ecosystem, the total biomass
is conserved. This is why it is of interest to investigate nutrient-phytoplankton-
zooplankton (NPZ) models that are conservative, that is, where no mass is added
to or subtracted from the system [7, 17, 18, 19]. Sources and sinks can be easily
added afterwards, but it is of interest to first better understand how the closed sys-
tem behaves.

It is known that nutrient recycling takes time, which has been studied in several
papers [1, 13, 14, 17, 18, 24]. Beretta, Bischi, and Solimano used a distributed delay
term to describe the dynamics of the nutrient recycling [1]. This type of delay has
been studied frequently in chemostat-type models [13, 14, 24]. In [17], Kloosterman,
Campbell, and Poulin considered a closed NPZ model with a delay in the nutrient
recycling to investigate how a planktonic ecosystem is affected by the quantity of
biomass it contains and by the properties of the delay distribution. Further, the au-
thors incorporated a size structure in the juvenile zooplankton with the NPZ model
and showed the key roles of the total biomass in the system and the maturity level
of zooplankton [18]. The pioneering works above [1, 13, 14, 17, 18, 24] mainly fo-
cused on spatially homogeneous models with time delay. This is beneficial in that
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one can obtain analytical results relatively easily, but this approach completely ne-
glects spatial effects. Since nutrients, phytoplankton, and zooplankton are generally
inhomogeneously distributed in space it is important to better understand the effect
of spatial effects, such as advection, diffusion, and turbulence. Therefore, it is more
complicated, but also more realistic, to consider an NPZ model with diffusion and
time delay. Moreover, to account for the drift of individuals to their present position
from all possible positions at previous times, a weighted spatial-average delay term
was first introduced in [10] and then developed in [3, 12, 25, 26, 28].

The plan for this paper is as follows. In section 2 we present the model with diffu-
sion and spatio-temporal delay, obtain the conservation law for the closed ecosystem,
and describe the spatially uniform equilibria. In section 3 we formulate conditions
for the local stability of a uniform equilibrium for a generalized three-dimensional
diffusion-reaction model and then give the local stability analysis for the equilibria of
the NPZ model. In section 4 we discuss existence, uniqueness, the global stability of
solutions, and the Hopf bifurcation of the NPZ model with a weak delay kernel. In
section 5 we use numerical simulations to verify and supplement our analytical results
and to investigate the influence of certain perturbations. In section 6 we summarize
and conclude our findings and discuss their implications.

2. Modeling and equilibrium solutions. The model consists of an NPZ
model based on that of [17] that includes a spatio-temporal delay and Laplacian
diffusion. In this model the components are nutrient N(x, t), phytoplankton P (x, t),
and zooplankon Z(x, t) at location x and time t. For simplicity, we only consider the
one space dimension. We take x \in [0, l\pi ] as the depth within the water column, where
0 is the top of the column and l\pi is the bottom. A simplified schematic of the model
is shown in Figure 1, which shows the flow of biomass between the components.

Diffusion in NPZ models can arise from various mechanisms. One is due to the
physics and arises of the motion of the water around the organisms. Another is due
to the biology, as species tend to spread out to lower their gradients of concentration.
The former would yield diffusion rates that are similar for each species, whereas the
latter would yield rather different diffusion rates. In this work we choose the diffusion
rates to be equal to model the effects of the physics only. Also, this is the simplest
choice as it reduces the number of parameters that must be set.

Our model then takes the form\left\{         
Nt(x, t) = dNxx  - \mu P (x, t)f(N(x, t)) + \delta (M2 \ast Z)(x, t) + \lambda (M1 \ast P )(x, t)

+ (1 - r)g(M3 \ast Zh(P ))(x, t),

Pt(x, t) = dPxx + \mu P (x, t)f(N(x, t)) - gZ(x, t)h(P (x, t)) - \lambda P (x, t),

Zt(x, t) = dZxx + rgZ(x, t)h(P (x, t)) - \delta Z(x, t)

(2.1)

Fig. 1. Simplified schematic of model.
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for t > 0 and x \in (0, l\pi ). The spatio-temporal delay terms are defined by

(Mi \ast u)(x, t) =
\int t

 - \infty 

\int l\pi 

0

Mi(x, y, t - s)u(y, s)dyds(2.2)

=

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)mi(t - s)u(y, s)dyds.

This type of delay term calculates the probability of an individual having been
at point y at the earlier time s, given that it is at point x at the current time t.
The function mi : [0,\infty ) \rightarrow R+ is the delay kernel, which weights the population
t time units in the past and satisfies mi(t) \geq 0 for all t \geq 0. The function G :
(0, l\pi )\times (0, l\pi )\times (0,\infty ) \rightarrow R+ is a probability density function, which is chosen from
the appropriately normalized solution of the heat equation,\left\{     

Gt = dGyy, y \in (0, l\pi ),

Gy = 0, y = 0, l\pi ,

G(x, y, 0) = \delta (x - y), x, y \in [0, l\pi ].

(2.3)

These functions satisfy the normalization conditions\int \infty 

0

mi(t)dt = 1 and

\int l\pi 

0

G(x, y, t)dx = 1, y \in (0, l\pi ), t \geq 0.(2.4)

Since the domain is closed, we impose no flux (Neumann) boundary conditions,

\partial N

\partial x
=

\partial P

\partial x
=

\partial Z

\partial x
= 0, t > 0, x = 0, l\pi .(2.5)

For biological plausibility, the system should be positive, which is to say that all
the state variables take nonnegative values for t \geq 0, x \in (0, l\pi ). Thus the initial
conditions are chosen so that each component is nonnegative:

N(x, t) = N0(x, t) \geq 0, P (x, t) = P0(x, t) \geq 0,(2.6)

Z(x, t) = Z0(x, t) \geq 0, t \in ( - \infty , 0], x \in (0, l\pi ).

The model parameters are defined in Table 1. All parameters in the model are
assumed to be positive, and we further restrict r \in (0, 1]. For the computations the
parameters will take the values given in Table 1.

Table 1
Parameter meanings and values used for all computations. The biological parameters values

are from [22].

Parameter Meaning Value
d diffusion constant varies
l domain size factor 2
\mu phytoplankton maximum birth rate 5.9 day - 1

\lambda phytoplankton death rate 0.017 day - 1

g zooplankton maximum grazing rate 7 day - 1

r zooplankton assimilation efficiency 0.7
\delta zooplankton death rate 0.17 day - 1

\tau the mean delay 7 day
Function Meaning Value

f(N) phytoplankton nutrient uptake function N
N+1

h(P ) zooplankton grazing function P
P+1
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The functions f(N) and h(P ) are related to the uptake of nutrient by phyto-
plankton and the grazing of zooplankton on phytoplankton, respectively. Since these
functions are related to the growth of the phytoplankton and zooplankton, the func-
tions should be zero at zero and positive otherwise. Further, modeling studies have
indicated that these should be increasing functions, indicating that there is more
growth when more nutrient is present, and bounded above, representing satiation of
the organisms [8, 17, 22]. Finally, the phytoplankton uptake function is typically taken
to be concave down [8, 17, 22]. Thus we assume f, g \in C2 and have the following
properties:

f(0) = 0, f \prime (N) > 0, f \prime \prime (N) < 0, lim
N\rightarrow \infty 

f(N) = 1,

h(0) = 0, h\prime (P ) > 0, lim
P\rightarrow \infty 

h(P ) = 1.

To our knowledge, the proof of existence, uniqueness, and positivity of solutions
of the model (2.1)--(5.1) with general delay kernels, mi(t), is an open problem. In
section 4 we will prove this for the specific case where mi(t) are gamma distribu-
tions. Our results in section 3.2 will apply to any delay kernel for which existence,
uniqueness, and positivity hold.

Since (2.1) is closed, there is no biomass lost or gained in the ecosystem. Con-
sequently, there is a conservation law, which is obtained by adding the equations in
(2.1), integrating x on the interval (0, l\pi ), and applying the boundary conditions (2.5)
to yield \int l\pi 

0

(Pt(x, t) +Nt(x, t) + Zt(x, t))dx

=
d

dt

\Biggl[ 
\lambda 

\int l\pi 

0

\int \infty 

0

\int t - \eta 

t

M1(x, y, \eta )P (x, \nu )d\nu d\eta dx

+ \delta 

\int l\pi 

0

\int \infty 

0

\int t - \eta 

t

M2(x, y, \eta )Z(x, \nu )d\nu d\eta dx

+ (1 - r)g

\int l\pi 

0

\int \infty 

0

\int t - \eta 

t

M3(x, y, \eta )Z(x, \nu )h(P (x, \nu ))d\nu d\eta dx

\Biggr] 
.

(2.7)

Thus we obtain the following expression for the total biomass in the system:

\~NT =

\int l\pi 

0

(P (x, t) +N(x, t) + Z(x, t))dx+ \lambda 

\int l\pi 

0

\int \infty 

0

\int t

t - \eta 

M1(x, y, \eta )P (y, \nu )d\nu d\eta dx

+ \delta 

\int l\pi 

0

\int \infty 

0

\int t

t - \eta 

M2(x, y, \eta )Z(x, \nu )d\nu d\eta dx

+ (1 - r)g

\int l\pi 

0

\int \infty 

0

\int t

t - \eta 

M3(x, y, \eta )Z(x, \nu )h(P (x, \nu ))d\nu d\eta dx,

(2.8)

which remains constant in time. In particular, \~NT will be determined by the initial
data (2.6); thus we assume that initial data is such that the integrals in (2.8) are finite.
Further, if the model admits a spatially uniform equilibrium solution (N \ast , P \ast , Z\ast ),
the conservation law (2.8) simplifies to the following:

NT = \lambda P \ast T1 + \delta Z\ast T2 + (1 - r)gZ\ast h(P \ast )T3 + P \ast +N\ast + Z\ast ,(2.9)

where Ti is the mean delay, defined by Ti =
\int \infty 
0

\eta mi(\eta )d\eta , i = 1, 2, 3.
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We begin by studying the equilibrium solutions of model (2.1). The equations
(2.4) imply that the nonlocal delay terms have no effect on the spatially uniform
steady state solutions. Since the state variables represent concentrations, only non-
negative solutions are meaningful; therefore, we will say an equilibrium solution does
not exist if any of the components are negative.

There are three types of spatially uniform equilibrium solutions. The first is the
trivial equilibrium. We set P = Z = 0; then from the conservation law, we find N =
NT . This equilibrium solution will be referred to as E1 = (N1, P1, Z1) = (NT , 0, 0).
This solution exists if NT \geq 0. Biologically this represents the states where there is
no life in the ecosystem and all the biomass is in the nutrient. The second type of
equilibrium is in the form E2 = (N2, P2, 0) with N2 > 0 and P2 > 0. A necessary
condition for this equilibrium to exist is

\mu > \lambda ,(2.10)

since f is an increasing function with 0 \leq f(N) < 1. Biologically this means the
maximum growth rate of phytoplankton must be greater than its death rate. If this
is true, N2 = f - 1(\lambda \mu ), and, from the conservation law, P2 = NT - N2

1+\lambda T1
. It is clear that

this equilibrium point exists if and only if

NT > f - 1

\biggl( 
\lambda 

\mu 

\biggr) 
.(2.11)

The third type of equilibrium is in the form (N3, P3, Z3) with N3 > 0, P3 > 0, Z3 > 0.
A necessary condition for this equilibrium solution to exist is

rg > \delta ,(2.12)

which means that the product of the maximum growth rate of the zooplankton and
the assimilation efficiency must be greater than its death rate. If (2.12) is satisfied,

then P3 = h - 1( \delta 
rg ), Z3 = (\mu f(N3) - \lambda )P3r

\delta . From the conservation law, N3 satisfies the
following implicit expression:

N3 = NT  - (\lambda T1 + 1)P3 + (\delta T2 + 1)Z3 + (1 - r)Z3
\delta 

r
T3.(2.13)

Note that this equilibrium point only exists if Z3 > 0, that is,

\mu f(N3) - \lambda > 0.(2.14)

In summary, the spatially homogeneous equilibria are given by

E1 = (NT , 0, 0) , E2 =

\Biggl( 
f - 1

\biggl( 
\lambda 

\mu 

\biggr) 
,
NT  - f - 1(\lambda \mu )

1 + \lambda T1
, 0

\Biggr) 
,

E3 =

\biggl( 
N3, h

 - 1

\biggl( 
\delta 

rg

\biggr) 
,
(\mu f(N3) - \lambda )P3r

\delta 

\biggr) 
,

where N3 satisfies (2.13). Note that, due to the monotonicity of f and h, there is a
unique equilibrium of each type for any value of NT such that the equilibrium exists.

3. Local stability of uniform equilibria. This section first derives a local
stability result for a general reaction-diffusion problem with a spatio-temporal delay
and then specializes the result to the particular NPZ model of interest.
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3.1. Local stability of the general reaction-diffusion model. In this sub-
section, we study the local asymptotic stability of the following general reaction-
diffusion model with spatio-temporal delays in a bounded domain under Neumann
boundary condition:

\left\{                                 

\partial u1

\partial t
= d

\partial 2u1

\partial x2
+ F1(x, t, u1, u2, u3, q,M \ast \=\bff (u2, u3)), t > 0, x \in (0, l\pi ),

\partial u2

\partial t
= d

\partial 2u2

\partial x2
+ F2(x, t, u1, u2, u3, q), t > 0, x \in (0, l\pi ),

\partial u3

\partial t
= d

\partial 2u3

\partial x2
+ F3(x, t, u1, u2, u3, q), t > 0, x \in (0, l\pi ),

\partial u1

\partial x
=

\partial u2

\partial x
=

\partial u3

\partial x
= 0, t > 0, x = 0, l\pi ,

u1(x, t) = u1(x)\geq 0, u2(x, t) = u2(x)\geq 0, u3(x, t) = u3(x) \geq 0, t \in ( - \infty , 0], x \in [0, l\pi ],

(3.1)

where q is simply a list of all the parameters. Fi : U \rightarrow R is continuously differentiable,
where U is an open interval, and there exists \theta \in U such that F (\theta ) = 0. F1,2,3 are,
in general, nonlinear functions of u1,2,3 and M \ast \=f(u2, u3). Here, M \ast \=f(u2, u3) =
(M1 \ast \=f1(u2, u3), . . . ,Mk \ast \=fk(u2, u3)) represents the spatio-temporal delays, as defined
in (2.2). The components of \=f : R2 \rightarrow Rk may be a linear or nonlinear functions of
u2, u3.

Assume that system (3.1) has a spatially homogeneous, nonnegative equilibrium
(u\ast 

1, u
\ast 
2, u

\ast 
3), which satisfies

F1(u
\ast 
1, u

\ast 
2, u

\ast 
3, q,M \ast \=f(u\ast 

2, u
\ast 
3)) = 0, F2(u

\ast 
1, u

\ast 
2, u

\ast 
3, q) = 0, F3(u

\ast 
1, u

\ast 
2, u

\ast 
3, q) = 0.

The linearization about this equilibrium solution is\left\{               

\partial u1

\partial t
= d

\partial 2u1

\partial x2
+A11(q)u1 +A12(q,M) \ast u2 +A13(q,M) \ast u3,

\partial u2

\partial t
= d

\partial 2u2

\partial x2
+A21(q)u1 +A22(q)u2 +A23(q)u3,

\partial u3

\partial t
= d

\partial 2u3

\partial x2
+A31(q)u1 +A32(q)u2 +A33(q)u3,

(3.2)

where M = (M1, . . . ,Mk), and A12(3) are linear functions of the Mi.
Solving the model (2.3) in a similar manner to [9] we find

G(x, y, t) =
1

l\pi 
+

2

l\pi 

\infty \sum 
n=1

e - dn2

l2
t cos

n

l
x cos

n

l
y.

Under the homogeneous Neumann boundary conditions, the appropriate trial solution
is

(u1, u2, u3) = (c1, c2, c3)e
\phi t cos

n

l
x, n = 0, 1, 2, . . .(3.3)

Using this trial solution, the term (2.2) can be written as

(Mi \ast u)(x, t) =
\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)mi(t - s)e\phi s cos
n

l
ydyds.

After some algebra [11], we find that
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(Mi \ast u)(x, t) = \scrM i

\biggl( 
\phi +

dn2

l2

\biggr) 
e\phi t cosnx.

Here, \scrM i denotes the Laplace transform of mi. For later use, we note that, for any
kernel mi,

\scrM i

\biggl( 
iR+

dn2

l2

\biggr) 
=

\int \infty 

0

mi(t)e
 - 
\Bigl( 
iR+ dn2

l2

\Bigr) 
t
dt = \scrC i(R,n) - i\scrS i(R,n),(3.4)

where \scrC i(R,n) =
\int \infty 
0

mi(t)e
 - dn2

l2
t cosRtdt, \scrS i(R,n) =

\int \infty 
0

mi(t)e
 - dn2

l2
t sinRtdt.

For i \in N and n \geq 0, it follows from (2.4) that

| \scrC i(R,n)| \leq 1 and | \scrS i(R,n)| \leq 1

with \scrC i(0, 0) = 1 and \scrS i(0, 0) = 0. Further,

| \scrS i(R,n)| \leq 
\int \infty 

0

mi(t)e
 - dn2

l2
t| sinRt| dt \leq 

\int \infty 

0

mi(t)e
 - dn2

l2
tRtdt(3.5)

\leq R

\int \infty 

0

mi(t)tdt = RTi

and

d\scrS i(R,n)

dR

\bigm| \bigm| \bigm| \bigm| 
R=0

=

\int \infty 

0

mi(t)te
 - dn2

l2
tdt \leq Ti.(3.6)

Substituting (3.3) into (3.2), we obtain the characteristic equation

\Phi (\phi , n2, q) =  - \phi 3 +B2(n
2, q)\phi 2 +B1(\phi , n

2, q)\phi +B0(\phi , n
2, q) = 0(3.7)

with

B2(n
2, q) = A11 +A22 +A33  - 3

dn2

l2
,

B1(\phi , n
2, q) = A12(\scrM )A21 +A13(\scrM )A31 +A23A32 + 2

dn2

l2
(A11 +A22 +A33)

 - A22A33  - A11(A22 +A33) - 3
d2n4

l4
,

B0(\phi , n
2, q) = A12(\scrM )

\biggl( 
A23A31  - A21A33 +A21

dn2

l2

\biggr) 
+A13(\scrM )

\biggl( 
A21A32 +A31

dn2

l2
 - A22A31

\biggr) 
+

\biggl( 
A11  - 

dn2

l2

\biggr) \biggl( \biggl( 
A22  - 

dn2

l2

\biggr) \biggl( 
A33  - 

dn2

l2

\biggr) 
 - A32A23

\biggr) 
,

where B0,1 depend on \phi through \scrM .
Any given equilibrium of (3.1) will be locally stable if for every wave number

n \geq 0 the roots of the characteristic equation (3.7) are all in the left half complex
plane. With the above theorem established, we can present the following lemma. This
idea follows from Gourley and Bartuccelli [9].
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Lemma 3.1. For any given equilibrium of (3.1), the number of roots of the char-
acteristic equation (3.7) in the right half complex plane equals

lim
R\rightarrow \infty 

\biggl( 
3

2
 - 1

\pi 
arg\Phi (iR, n2, q)

\biggr) 
.(3.8)

The proof is shown in the appendix. With the above lemma, we can now establish
the following theorem.

Theorem 3.2. All roots of the characteristic equation (3.7) have negative real
part if \Phi (0, n2, q) < 0, Im\Phi \prime (0, n2, q) < 0, and there exists an x0 \in (0,\infty ) such that
Re\Phi \prime (x0, n

2, q) = 0 and Re\Phi (x0, n
2, q) > 0, where the prime is the derivative with

respect to R.

Proof. To get the local stability for the system (3.1), we need to prove that

lim
R\rightarrow \infty 

arg\Phi (iR, n2, q) =
3\pi 

2
.(3.9)

In view of (3.7), we have

\Phi (iR, n2, q) = R3i - B2(n
2, q)R2 +B1(iR, n2, q)iR+B0(iR, n2, q) = 0.

For large value of R,

Re\Phi (iR, n2, q) ∼  - B2(n
2, q)R2, Im\Phi (iR, n2, q) ∼ R3.

Also, when R = 0,

\Phi (0, n2, q) = B0(0, n
2, q).

The sign of \Phi (0, n2, q) determines whether the complex number \Phi (iR, n2, q) starts
on the positive or the negative real axis when R = 0. The sign of B2(n

2, q) determines
whether \Phi (iR, n2, q) ends up in the first or the second quadrant as R \rightarrow \infty . From the
assumption that \Phi (0, n2, q) < 0, the complex number \Phi (iR, n2, q) has the following
two cases. (I) When B2(n

2, q) < 0, \Phi (iR, n2, q) starts on the negative real axis and
ends up in the first quadrant. (II) When B2(n

2, q) > 0, the existence of x0 guarantees
that Re(iR, n2, q) changes its monotonicity at x0, which implies that \Phi (iR, n2, q)
starts on the negative real axis and ends up in the second quadrant.

For the above two cases we show in Figure 2 some qualitative sketches of graphs
that correspond to three different values of limR\rightarrow \infty arg\Phi (iR, n2, q). Only the green
curve is consistent with all the assumptions, which leads to (3.9).

If \Phi (0, n2, q) = 0, then Theorem 3.2 above does not apply, and 0 is a root of (3.7).
We can determine the signs of the rest of the roots as follows. Suppose that 0 is root
of order 1 of (3.7). Then we can write (3.7) as

\Phi (\phi , n2, q) =  - \phi \^\Phi (\phi , n2, q) =  - \phi (\phi 2  - B2(n
2, q)\phi  - \^B1(\phi , n

2, q)),

where \^B1(\phi , n
2, q) = B1(\phi , n

2, q) - B0(\phi , n
2, q)/\phi . Notice that \^B1(\phi , n

2, q) is analytic
at 0 and \^B1(0, n

2, q) \not = 0. Thus the rest of the roots of (3.7) satisfy

\^\Phi (\phi , n2, q) = \phi 2  - B2(n
2, q)\phi  - \^B1(\phi , n

2, q) = 0.(3.10)

From Gourley and Bartuccelli [9] we have the following lemma.
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(b)

Fig. 2. Possible qualitative sketches for case (I) and case (II). Green: 3\pi 
2
, blue: - \pi 

2
, red: - 5\pi 

2
.

Lemma 3.3. The number of roots of the characteristic equation (3.10) in the right
half complex plane equals

lim
R\rightarrow \infty 

\biggl( 
1 - 1

\pi 
arg\^\Phi (iR, n2, q)

\biggr) 
.(3.11)

Theorem 3.4. All the roots of (3.10) have negative real parts if

\^\Phi (0, n2, q) > 0, Im(\^\Phi (iR, n2, q)) \rightarrow \infty as R \rightarrow \infty , Im(\^\Phi \prime (0, n2, q) > 0

or

\^\Phi (0, n2, q) < 0, Im(\^\Phi (iR, n2, q)) \rightarrow  - \infty as R \rightarrow \infty , Im(\^\Phi \prime (0, n2, q) < 0.

Proof. Note that Re(\^\Phi (iR, n2, q)) \rightarrow  - \infty as R \rightarrow \infty and Im(\^\Phi (iR, n2, q)) \sim 
B2(n

2, q)R as R \rightarrow \infty . Hence arg(\^\Phi (iR, n2, q)) tends to either \pi or  - \pi as R \rightarrow \infty .
The rest of the proof, which is similar to that of Theorem 3.2, shows that the given
conditions guarantee

lim
R\rightarrow \infty 

arg\^\Phi (iR, n2, q) = \pi .

3.2. Local stability of the diffusive NPZ model. In this subsection, we
study the local stability of the uniform equilibria of (2.1). To investigate the linearized
stability of (2.1), we set N = N\ast + u, P = P \ast + v, Z = Z\ast + w, substitute into (2.1),
and retain only linear terms in u, v, and w, giving

\left\{                                         

ut(x, t) = duxx  - \mu P \ast f \prime (N\ast )u - \mu f(N\ast )v

+ \delta 

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)m2(t - s)w(y, s)dyds

+ \lambda 

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)m1(t - s)v(y, s)dyds

+ (1 - r)gZ\ast h\prime (P \ast )

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)m3(t - s)v(y, s)dyds

+ (1 - r)gh(P \ast )

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)m3(t - s)w(y, s)dyds,

vt(x, t) = dvxx + \mu P \ast f \prime (N\ast )u+ (\mu f(N\ast ) - gZ\ast h\prime (P \ast ) - \lambda )v  - gh(P \ast )w,

wt(x, t) = dwxx + rgZ\ast h\prime (P \ast )v + (rgh(P \ast ) - \delta )w

(3.12)
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for all x \in (0, l\pi ). The Jacobian matrix of (2.1) at the equilibrium (N\ast , P \ast , Z\ast ) is

J =

\left[      
 - \mu P \ast f \prime (N\ast ) - 

dn2

l2
 - \mu f(N\ast ) + \lambda \scrM 1 + (1 - r)gh\prime (P \ast )Z\ast \scrM 3 \delta \scrM 2 + (1 - r)gh(P \ast )\scrM 3

\mu P \ast f \prime (N\ast ) \mu f(N\ast ) - \lambda  - gh\prime (P \ast )Z\ast  - 
dn2

l2
 - gh(P \ast )

0 rgh\prime (P \ast )Z\ast rgh(P \ast ) - \delta  - 
dn2

l2

\right]      .

The characteristic equation is

\Phi (\phi , n2, q) :=  - \phi 3 + \beta 2(n
2, q)\phi 2 + \beta 1(\phi , n

2, q)\phi + \beta 0(\phi , n
2, q) = 0,(3.13)

where \beta 1,0 depend on \scrM 1,2,3.
To compare with local stability in the closed NPZ model with no diffusion, we

first recall two results from [17].

Lemma 3.5. Consider the model (2.1) with d = 0, and assume (2.10) and (2.11).
Then

\bullet E1 is stable if NT < f - 1(\lambda \mu ),

\bullet E2 is stable if f - 1(\lambda \mu ) +
2\lambda (1+T1\lambda )
\mu f \prime (N\ast ) \leq NT < f - 1(\lambda \mu ) + (1 + T1\lambda )h

 - 1( \delta 
rg ).

In addition, [17] showed that the local stability of E3 under a specific delay kernel.
To make the results more complete, we study the local stability with delay (2.2) and
no diffusion.

Lemma 3.6. Consider the model (2.1) with d = 0, and assume (2.12) and (2.14).
E3 is locally stable if

h\prime (P3) \geq h(P3)/P3.(3.14)

Proof. When d = 0, for the nontrivial equilibrium (N3, P3, Z3), the Jacobian
matrix is

J0 =

\left[   - G11 G12 + \lambda \scrM 1(\phi ) +G13\scrM 3(\phi ) \delta \scrM 2(\phi ) +G14\scrM 3(\phi )
G11 G21 G22

0 G31 0

\right]  
with

G11 = \mu P3f
\prime (N3), G12 =  - \mu f(N3), G13 = (1 - r)gh\prime (P3)Z3, G14 = (1 - r)gh(P3),

G21 = \mu f(N3) - \lambda  - gh\prime (P3)Z3, G22 =  - gh(P3), G31 = rgh\prime (P3)Z3.

The characteristic equation of the linearization around (N3, P3, Z3) is then

\Phi 0(\phi , 0, q) :=  - \phi 3 + \^Y2(0, q)\phi 
2 + \^Y1(\phi , 0, q)\phi + \^Y0(\phi , 0, q) = 0,(3.15)

where

\^Y2(0, q) = G21  - G11,

\^Y1(\phi , 0, q) = G11(\lambda \scrM 1(\phi , 0) +G13\scrM 3(\phi , 0) +G12 +G21) +G22G31 < 0,

\^Y0(\phi , 0, q) = G11G31(G22 + \delta \scrM 2(\phi , 0) +G14\scrM 3(\phi , 0)).

Since \Phi 0(0, 0, q) = \^Y0(0, 0, q) = G11G31(G22 + \delta + G14) = 0, 0 is a root of (3.15).
Therefore, (3.15) can be written as
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\Phi 0(\phi , 0, q) = \phi \^\Phi 0(\phi , 0, q) = 0.

Notice that \^\Phi 0(0, 0, q) = \^Y1(0, 0, q) < 0.
When \phi = iR, we have

\^\Phi 0(iR, 0, q) = R2 + \^Y2(0, q)Ri+ \=Y1(iR, 0, q),(3.16)

where \=Y1(iR, n2, q)) = \^Y1(iR, n2, q)  - \^Y0(iR, n2, q)/iR. Then, under the assumption
(3.14), we have

\^Y2(0, q) =
\delta Z3

rP3

\biggl( 
1 - h\prime (P3)

h(P3)
P3

\biggr) 
 - \mu P3f

\prime (N3) < 0,

which implies that limR\rightarrow \infty Im(\^\Phi 0(iR, n2, q)) =  - \infty . Besides, it's clear that Im\Phi \prime 
0(0,

0, q) < 0. The result then follows from Theorem 3.4.

In the following, we study the local stability of the equilibria of model (2.1) when
d > 0.

Theorem 3.7. Assume that \mu f(NT ) - \lambda < 0; then the trivial equilibrium (NT , 0, 0)
of (2.1) is locally stable.

Proof. For the trivial solution (NT , 0, 0), the Jacobian matrix is

J1 =

\left[       
 - dn2

l2
 - \mu f(NT ) + \lambda \scrM 1(\phi ) \delta \scrM 2(\phi )

0 \mu f(NT ) - \lambda  - dn2

l2
0

0 0  - \delta  - dn2

l2

\right]       .

The characteristic equation of the linearization around (NT , 0, 0) is then

\Phi 1(\phi , n
2, q) :=

\biggl( 
 - dn2

l2
 - \phi 

\biggr) \biggl( 
 - \delta  - dn2

l2
 - \phi 

\biggr) \biggl( 
\mu f(NT ) - \lambda  - dn2

l2
 - \phi 

\biggr) 
= 0.

(3.17)

It is clear that the roots of (3.17) are

 - dn2

l2
,  - \delta  - dn2

l2
, \mu f(NT ) - \lambda  - dn2

l2
.

Thus, under the conditions of the theorem all roots are negative if n > 0. If n = 0
there is one zero root and the rest are negative.

Theorem 3.8. Assume that (2.10) and (2.11) are satisfied and

rgh(P2) - \delta < 0;(3.18)

then the trivial equilibrium (N2, P2, 0) of (2.1) is locally stable.

Proof. For the trivial equilibrium (N2, P2, 0), the Jacobian matrix is

J2 =

\left[       
 - \mu P2f

\prime (N2) - 
dn2

l2
 - \lambda + \lambda \scrM 1(\phi ) \delta \scrM 2(\phi ) + (1 - r)gh(P2)\scrM 3(\phi )

\mu P2f
\prime (N2)  - dn2

l2
 - gh(P2)

0 0 rgh(P2) - \delta  - dn2

l2

\right]       .

(3.19)
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The characteristic equation of the linearization around (N2, P2, 0) is then

\Phi 2(\phi , n
2, q) :=  - \phi 3 + C2(n

2, q)\phi 2 + C1(\phi , n
2, q)\phi + C0(\phi , n

2, q) = 0,(3.20)

where

C2(n
2, q) = D33  - D11  - 

3dn2

l2
,

C0(\phi , n
2, q) =

\biggl( 
D33  - 

dn2

l2

\biggr) \biggl[ 
\lambda D11 (1 - \scrM 1) +

dn2

l2

\biggl( 
D11 +

dn2

l2

\biggr) \biggr] 
,

C1(\phi , n
2, q) = \lambda D11(\scrM 1  - 1) +D11D33 + 2(D33  - D11)

dn2

l2
 - 3d2n4

l4

with

D11 = \mu P2f
\prime (N2), D13 = (1 - r)gh(P2), D23 =  - gh(P2), D33 = rgh(P2) - \delta .

For n = 0, the roots of (3.20) are as described in Lemma 3.5. Now consider n > 0.
By (3.4), we have \scrM 1 = \scrC 1(R) - \scrS 1(R)i, and

\Phi 2(iR, n2, q) = Re\Phi 2(iR, n2, q) + Im\Phi 2(iR, n2, q)i,(3.21)

where

Re\Phi 2(iR, n2, q) =  - 
\biggl( 
D33  - D11  - 

3dn2

l2

\biggr) 
R2 + \lambda D11\scrS 1(R)R+ o(1),

Im\Phi 2(iR, n2, q) = R3 +

\biggl( 
D11(\lambda \scrC 1(R) - \lambda +D33) + 2(D33  - D11)

dn2

l2
 - 3d2n4

l4

\biggr) 
R

+ \lambda D11

\biggl( 
D33  - 

dn2

l2

\biggr) 
\scrS 1(R).

One easily concludes from (3.21) that, for large values of R,

Re\Phi 2(iR, n2, q) ∼ constant R2, Im\Phi 2(iR, n2, q) ∼ R3.

Also, when R = 0,

\Phi 2(0, n
2, q) =

\biggl( 
rgh(P2) - \delta  - dn2

l2

\biggr) \biggl( 
\mu P2f

\prime (N2)

\biggl( 
\lambda  - \lambda \scrC (0) +

dn2

l2

\biggr) 
+

d2n4

l4

\biggr) 
.

Since \lambda  - \lambda \scrC (0) \geq 0, it is obvious that under the assumption (3.18),

\Phi 2(0, n
2, q) \leq dn2

l2

\biggl( 
rgh(P2) - \delta  - dn2

l2

\biggr) \biggl( 
\mu P2f

\prime (N2) +
dn2

l2

\biggr) 
< 0.

In the view of (3.21),

Im\Phi \prime 
2(iR, n2, q) = 3R2 +W20\scrC 

\prime 
1(R)R+W21\scrS 

\prime 
1(R) +W22,

where

W20 = \lambda D11, W21 = \lambda D11

\biggl( 
D33  - 

dn2

l2

\biggr) 
,

W22 = D11(\lambda \scrC 1(R) - \lambda +D33) + 2(D33  - D11)
dn2

l2
 - 3d2n4

l4
.
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Note that D11 > 0 and, under the assumption (3.18), D33 < 0. Thus we have W20 > 0
and W22 < 0,W21 < 0. Then, for every wave number n=1,2. . . ,

Im\Phi \prime 
2(0, n

2, q) = W22 +W21\scrS 
\prime 
1(0) < W22 +W21Tf1 < 0.

Further, limR\rightarrow \infty Im\Phi \prime 
2(iR, n2, q) \rightarrow \infty and limR\rightarrow \infty Re\Phi 2(iR, n2, q) \rightarrow \infty . Therefore,

the result follows from Theorem 3.2 and Lemma 3.5.

Theorem 3.9. Assume that (2.12) is satisfied and that Z3 > 0 and assume
(3.14); then the nontrivial equilibrium (N3, P3, Z3) of system (2.1) is locally stable.

Proof. For the nontrivial equilibrium (N3, P3, Z3), the Jacobian matrix is

J3 =

\left[       
 - G11  - 

dn2

l2
G12 + \lambda \scrM 1(\phi ) +G13\scrM 3(\phi ) \delta \scrM 2(\phi ) +G14\scrM 3(\phi )

G11 G21  - 
dn2

l2
G22

0 G31  - dn2

l2

\right]       .

The characteristic equation of the linearization around (N3, P3, Z3) is then

\Phi 3(\phi , n
2, q) :=  - \phi 3 + Y2(n

2, q)\phi 2 + Y1(\phi , n
2, q)\phi + Y0(\phi , n

2, q) = 0,(3.22)

where

Y2(n
2, q) = \^Y2(0, q) - 3

dn2

l2
, Y1(\phi , n

2, q) = \^Y1(\phi , 0, q) +
2dn2

l2
\^Y2(0, q) - 

3d2n4

l4
,

Y0(\phi , n
2, q) = \^Y0(\phi , 0, q) +

dn2

l2
(G22G31 +G11(G12 +G21 + \lambda \scrM 1 +G13\scrM 3))

+
d2n4

l4
\^Y2(0, q) - 

d3n6

l6
.

For n = 0, the roots of (3.22) are as described in Lemma 3.6. Now consider n > 0.
When \phi = iR, we have

\Phi 3(iR, n2, q) = Re\Phi 3(iR, n2, q) + Im\Phi 3(iR, n2, q)i,(3.23)

where

Re\Phi 3(iR, n2, q) =  - Y2(n
2, q)R2 + o(1)R+ o(1),

Im\Phi 3(iR, n2, q) = R3 +W31R+W30

with

W31 = G22G31 +
2dn2

l2
\^Y2(0, q) - 

3d2n4

l4
+G11(G12 +G21 +G13\scrC 3(R) + \lambda \scrC 1(R)),

W30 =  - G11

\biggl( 
dn2

l2
(\lambda \scrS 1(R) +G13\scrS 3(R)) +G31(\lambda \scrS 2(R) +G14\scrS 3(R))

\biggr) 
.

One easily concludes from (3.21) that, for large values of R,

Re\Phi 3(iR, n2, q) ∼ constant R2, Im\Phi 3(iR, n2, q) ∼ R3.
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Also, when R = 0,

\Phi 3(0, n
2, q) = G11G31(G22 + \delta \scrC 2(R) +G14\scrC 3(R)) +

dn2

l2
(G22G31 +G11(G12 +G21

+ \lambda \scrC 1(R) +G13\scrC 3)(R)) +
d2n4

l4
\^Y2(0, q) - 

d3n6

l6
.

By calculation, we have

G12 +G21 + \lambda \scrC 1(R) +G13\scrC 3(R) < 0, G22 + \delta \scrC 2(R) +G14\scrC 3(R) \leq 0.(3.24)

According to (3.24) and (3.14), \Phi 3(0, n
2, q) < 0. Besides, in the view of (3.23),

Im\Phi \prime 
3(iR, n2, q) = 3R2 +W40R+W41 +W42,

where

W40 = G11(\lambda \scrC \prime 
1(R) +G13\scrC 

\prime 
3(R)) > 0,

W41 =  - G11

\biggl( 
dn2

l2
(\lambda \scrS \prime 

1(R) +G13\scrS 
\prime 
3(R)) +G31(\lambda \scrS \prime 

2(R) +G14\scrS 
\prime 
3(R))

\biggr) 
< 0,

W42 = G22G31 +
2dn2

l2
\^Y2(0, q) - 

3d2n4

l4
+G11(G12 +G21 +G13\scrC 3(R) + \lambda \scrC 1(R)) < 0.

Then, for every wave number n = 1, 2, . . ., Im\Phi \prime 
3(0, n

2, q) = W42 + W41 < 0, and
limR\rightarrow \infty Im\Phi \prime 

3(iR, n2, q) = \infty . Besides, limR\rightarrow \infty Re\Phi 3(iR, n2, q) = \infty . The result then
follows from Theorem 3.2 and Lemma 3.6.

Remark 3.10. If h\prime (P3) < h(P3)/P3, we see that if Z3 is sufficiently small, the
term G21  - G11 also is negative and (N3, P3, Z3) is therefore locally stable.

Remark 3.11. The conditions of Theorem 3.9 only guarantee stability of the equi-
librium E3 = (N3, P3, Z3) as the characteristic equation has a zero root of multiplicity
one. This root is due to the fact that the equilibrium E3 is not isolated but comes
in a set parameterized by NT . The zero root corresponds to perturbations along this
set. Given any appropriate initial data for the model, NT will be fixed and so will
the corresponding unique value of E3. Thus under the conditions of Theorem 3.9
any solution will asymptotically limit on the value of E3 determined by NT for the
solution. A similar remark applies to Theorems 3.7 and 3.8.

4. Global behavior of the uniform equilibria. In this section, the global
stability of the uniform equilibria of the system (2.1) is studied. The results are
carried out for the case when mi(t) =

1
\tau e

 - t
\tau , i = 1, 2, 3. The use of this particular

delay kernel enables us to reformulate system (2.1) as a reaction-diffusion system
without delay terms (the delay parameter appears as a coefficient in the reformulated
system). This is particularly useful for the purposes of numerical simulation.

It is useful to define the following component, which can be thought of the detritus
in the system:

Q(x, t) =

\int t

 - \infty 

\int l\pi 

0

G(x, y, t - s)e - 
t - s
\tau (\lambda P (y, s) + \delta Z(y, s)

+ (1 - r)gZ(y, s)h(P (y, s)))dyds.

It is then easy to see that system (2.1) is equivalent to the following system for
t > 0, x \in (0, l\pi ):
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\left\{             
Nt(x, t) = dNxx(x, t) - \mu P (x, t)f(N(x, t)) +

1

\tau 
Q(x, t),

Pt(x, t) = dPxx(x, t) + \mu P (x, t)f(N(x, t)) - gZ(x, t)h(P (x, t)) - \lambda P (x, t),

Zt(x, t) = dZxx(x, t) + rgZ(x, t)h(P (x, t)) - \delta Z(x, t),

Qt(x, t) = dQxx(x, t) + \lambda P (x, t) + \delta Z(x, t) + (1 - r)gZ(x, t)h(P (x, t) - 1

\tau 
Q(x, t)

(4.1)

with homogeneous Neumann boundary conditions and the initial conditions for t \in 
[ - \infty , 0], x \in [0, l\pi ],

N(x, 0) = N0(x) \geq 0, P (x, 0) = P0(x) \geq 0, Z(x, 0) = Z0(x) > 0,

Q(x, 0) =

\int 0

 - \infty 

\int l\pi 

0

G(x, y, - s)e
s
\tau (\lambda P (y, s) + \delta Z(y, s)

+ (1 - r)gZ(y, s)h(P (y, s)))dyds \geq 0.

Adding the equations in (4.1) and integrating x on the interval (0, l\pi ) yields\int l\pi 

0

(Pt(x, t) +Nt(x, t) + Zt(x, t) +Qt(x, t))dx

=
\partial 

\partial t

\int l\pi 

0

(P (x, t) +N(x, t) + Z(x, t) +Q(x, t))dx = 0,

which leads to the conservation law\int l\pi 

0

(P (x, t)+N(x, t) + Z(x, t) +Q(x, t))dx = \~NT .(4.2)

Thus, for a spatially homogeneous equilibrium solution, (N \ast , P \ast , Z\ast , Q\ast ), the conser-
vation law (4.2) can be written as

NT =
\~NT

l\pi 
= P \ast +N\ast + Z\ast +Q\ast .(4.3)

Then, using the conservation law (4.3), the equilibria of (4.1) are given by

E\ast 
1 (N

\ast 
1 , P

\ast 
1 , Z

\ast 
1 , Q

\ast 
1) = (NT , 0, 0, 0),

E\ast 
2 (N

\ast 
2 , P

\ast 
2 , Z

\ast 
2 , Q

\ast 
2) =

\biggl( 
f - 1

\biggl( 
\lambda 

\mu 

\biggr) 
,
NT  - N\ast 

2

1 + \lambda \tau 
, 0, \lambda \tau P \ast 

2

\biggr) 
, and

E\ast 
3 (N

\ast 
3 , P

\ast 
3 , Z

\ast 
3 , Q

\ast 
3) =

\biggl( 
N\ast 

3 , h
 - 1

\biggl( 
\delta 

rg

\biggr) 
,
(\mu f(N\ast 

3 ) - \lambda )P \ast 
3 r

\delta 
, \tau \mu P \ast 

3 f(N
\ast 
3 )

\biggr) 
,

where N\ast 
3 satisfies the following implicit expression:

NT = N\ast 
3 + P \ast 

3 + Z\ast 
3 + \tau \mu P \ast 

3 f(N
\ast 
3 ).

Here, E\ast 
2 exists if and only if (2.10) and (2.11) hold, and E\ast 

3 exists if and only if (2.12)
holds.

Next, we use the method of upper and lower solutions for mixed quasi-monotone
functions ([21, Definition 2.1]) to show the existence of a classical solution to (4.1).

Theorem 4.1. System (4.1) has a unique solution (N(x, t), P (x, t), Z(x, t),
Q(x, t)) such that 0 < N(x, t) < \~NT , 0 < P (x, t) < \~NT , 0 < Z(x, t) < \~NT ,
0 < Q(x, t) < \~NT for t \in (0,\infty ) and x \in [0, l\pi ].
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Proof. We begin by defining

g1(x, t) =
1

\tau 
Q - \mu Pf(N), g2(x, t) = \mu Pf(N) - gZh(P ) - \lambda P,

g3(x, t) = rgZh(P ) - \delta Z, g4(x, t) = \lambda P + \delta Z + (1 - r)gZh(P ) - 1

\tau 
Q.

Since, in R4
+ = \{ N \geq 0, P \geq 0, Z \geq 0, Q \geq 0\} ,

\partial g1
\partial P

=  - \mu f(N) < 0,
\partial g1
\partial Z

= 0,
\partial g1
\partial Q

=
1

\tau 
> 0,

\partial g2
\partial N

= \mu Pf \prime (N) > 0,
\partial g2
\partial Z

=  - gh(P ) < 0,
\partial g2
\partial Q

= 0,

\partial g3
\partial N

= 0
\partial g3
\partial P

= rgZh\prime (P ) > 0,
\partial g3
\partial Q

= 0,

\partial g4
\partial N

= 0,
\partial g4
\partial P

= \lambda + (1 - r)gZh\prime (P ) > 0,
\partial g4
\partial Z

= \delta + (1 - r)gh(P ) > 0,

and then (4.1) is a mixed quasi-monotone system. Let ( \^N(x, t), \^P (x, t), \^Z(x, t),
\^Q(x, t)) = (0, 0, 0, 0) and ( \~N(x, t), \~P (x, t), \~Z(x, t), \~Q(x, t)) = ( \~N\ast (t), \~P \ast (t), \~Z\ast (t),
\~Q\ast (t)), where ( \~N\ast (t), \~P \ast (t), \~Z\ast (t), \~Q\ast (t)) is the unique solution of

\left\{                             

dN

dt
=

1

\tau 
Q,

dP

dt
= (\mu f(N) - \lambda )P,

dZ

dt
= (rgh(P ) - \delta )Z,

dQ

dt
= \delta Z + \lambda P + (1 - r)gZh(P ) - 1

\tau 
Q,

N(0) = sup
[0,l\pi ]

N0(x), P (0) = sup
[0,l\pi ]

P0(x), Z(0) = sup
[0,l\pi ]

Z0(x), Q(0) = sup
[0,l\pi ]

Q0(x).

(4.4)

Then ( \^N(x, t), \^P (x, t), \^Z(x, t), \^Q(x, t)) and ( \~N(x, t), \~P (x, t), \~Z(x, t), \~Q(x, t)) are the
lower solution and upper solution to (4.1), since\left\{                         

\partial \~N(x, t)

\partial t
 - \~Nxx  - g1( \~N(x, t), \^P (x, t), \^Z(x, t), \~Q(x, t)) = \mu f(N\ast (t)) > 0,

\partial \~P (x, t)

\partial t
 - \~Pxx  - g2( \~N(x, t), \~P (x, t), \^Z(x, t), \^Q(x, t)) = gZ\ast (t)h(P \ast (t)) > 0,

\partial \~Z(x, t)

\partial t
 - \~Zxx  - g3( \^N(x, t), \~P (x, t), \~Z(x, t), \^Q(x, t)) = 0,

\partial \~Q(x, t)

\partial t
 - \~Qxx  - g4( \^N(x, t), \~P (x, t), \~Z(x, t), \~Q(x, t)) = 0,

and \left\{                       

\partial \^N(x, t)

\partial t
 - d \^Nxx  - g1( \^N(x, t), \~P (x, t), \~Z(x, t), \^Q(x, t)) = 0,

\partial \^P (x, t)

\partial t
 - d \^Pxx  - g2( \^N(x, t), \^P (x, t), \~Z(x, t), \~Q(x, t)) = 0,

\partial \^Z(x, t)

\partial t
 - d \^Zxx  - g3( \~N(x, t), \^P (x, t), \^Z(x, t), \~Q(x, t)) = 0,

\partial \^Q(x, t)

\partial t
 - d \^Qxx  - g4( \~N(x, t), \^P (x, t), \^Z(x, t), \^Q(x, t)) = 0.
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Also, the boundary conditions and the initial conditions are satisfied. For any (Na, Pa,
Za, Qa) and (Nb, Pb, Zb, Qb) in XT , it is clear that

| gi(Na, Pa, Za, Qa) - gi(Nb, Pb, Zb, Qb)| \leq K1(| Na  - Nb| + | Pa  - Pb| + | Za  - Zb| + | Qa  - Qb| ),

where Ki = Ki(x, t)(i = 1, 2, 3, 4). Therefore, Lemma 2.1 in [21] shows that (4.1) has
a unique globally defined solution (N (x, t), P (x, t), Z(x, t), Q(x, t)), which satisfies

0 \leq N(x, t) \leq \~N\ast (t), 0 \leq P (x, t) \leq \~P \ast (t), 0 \leq Z(x, t) \leq \~Z\ast (t),

0 \leq Q(x, t) \leq \~Q\ast (t), t \geq 0.

The strong maximum principle implies that N(x, t), P (x, t), Z(x, t), Q(x, t) > 0 when
t > 0 for all x \in [0, l\pi ]. Using the positivity of solutions, it follows from the conser-
vation law (4.2) that N(x, t), P (x, t), Z(x, t), Q(x, t) are bounded above by the total
biomass, \~NT .

Remark 4.2. Consider the case where the delay distributions in system (2.1) are

changed to higher order gamma distributions: mi(t) = tk - 1

(k - 1)!\tau k e
 - t

\tau with k > 1 an

integer. The model then becomes system (4.1) with the additional equations

Qj,t(x, t) = dQj,xx(x, t) +
1

\tau 
(Qj - 1(x, t) - Qj(x, t)), j = 1, . . . , k  - 1.

The proof of Theorem 4.1 can be easily extended to this case.

We now give conditions for the global stability of E\ast 
1 .

Theorem 4.3. E\ast 
1 = (NT , 0, 0, 0) is global stable if

\mu f(NT ) - \lambda < 0.(4.5)

Proof. First we show that under the assumption (4.5), rgh(P (x, t)) - \delta < 0. Using
the system (4.1) and Theorem 4.1, we observe that P (x, t) satisfies

\left\{   Pt(x, t) \leq dPxx + \mu Pf(N) - \lambda P < dPxx + P (\mu f(NT ) - \lambda ), t > 0, x \in (0, l\pi ),
\partial P

\partial x
= 0, t > 0, x = 0, l\pi .

(4.6)

Then from comparison principle of the parabolic equations, it is easy to verify that
P (x, t) < \v P (t), where \v P (t) is the (spatially homogeneous) solution of\left\{       

Pt(x, t) = dPxx + (\mu f(NT ) - \lambda )P, t > 0, x \in (0, l\pi ),
\partial P

\partial x
= 0, t > 0, x = 0, l\pi ,

P (0) = supP0(x) x \in [0, l\pi ],

(4.7)

that is, \v P (t) = P (0)e[\mu f(NT ) - \lambda ]t > 0. From Theorem 4.1, P (x, t) > 0 we then have
limt\rightarrow \infty P (x, t) = 0 for x \in [0, l\pi ]. It follows that there is a function, \omega 1(t) = rgh \v P (t),
such that limt\rightarrow \infty ,x\in [0,l\pi ]\omega 1(x, t) = 0 and\left\{   Zt(x, t) < dZxx + \omega 1  - \delta Z, t > 0, x \in (0, l\pi ),

\partial Z

\partial x
= 0, t > 0, x = 0, l\pi .

(4.8)
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Then from the comparison principle, Z(x, t) < \v Z(t), where \v Z(t) is the solution of\left\{       
Zt(x, t) = dZxx + \omega 1  - \delta Z, t > 0, x \in (0, l\pi ),
\partial Z

\partial x
= 0, t > 0, x = 0, l\pi ,

Z(0) = supZ0(x) x \in [0, l\pi ],

(4.9)

that is, \v Z(t) = e - \delta tZ(0) + e - \delta t
\int t

0
e\delta u\omega 1(u)du. In the case where

\int t

0
e\delta u\omega 1(u)du it

is obvious the final term approaches zero as t \rightarrow \infty . Since Z(x, t) > 0 we then
have limt\rightarrow \infty Z(x, t) = 0 for x \in [0, l\pi ]. Similarly, there exists a function \omega 2(x, t) =
\lambda \v P (t) + (\delta + (1 - r)g) \v Z(t) such that limt\rightarrow \infty ,x\in [0,l\pi ] \omega 2(x, t) = 0 and\left\{     

Qt(x, t) < dQxx + \omega 2  - 
1

\tau 
Q, t > 0, x \in (0, l\pi ),

\partial Q

\partial x
= 0, t > 0, x = 0, l\pi ;

(4.10)

then from the comparison principle, Q(x, t) < \v Q(t). Here, \v Q(t) is the solution of\left\{         
Qt(x, t) = dQxx + \omega 2  - 

1

\tau 
Q, t > 0, x \in (0, l\pi ),

\partial Q

\partial x
= 0, t > 0, x = 0, l\pi ,

Q(0) = supQ0(x) x \in [0, l\pi ],

(4.11)

where \v Q(t)= e - 
1
\tau tQ(0)+e - 

1
\tau t
\int t

0
e

1
\tau u\omega 2(u)du.As t \rightarrow \infty , the term e - 

1
\tau t
\int t

0
e

1
\tau u\omega 2(u)du

goes to 0. Since Q(x, t) > 0, we have limt\rightarrow \infty Q(x, t) = 0, x \in [0, l\pi ]. Then from the
conservation law (4.3), we have limt\rightarrow \infty N(x, t) = NT , x \in [0, l\pi ]. Therefore E\ast 

1 is
globally stable.

In the following, we discuss the Hopf bifurcation near E\ast 
3 , using the Hopf bifur-

cation theorem for PDEs [16, 29]. Here, we choose d as a bifurcation parameter.
For the nontrivial solution E\ast 

3 , the Jacobian matrix is

J\ast 
3 =

\left[          

 - I11  - 
dn2

l2
I12 0 1

\tau 

I11 I22  - 
dn2

l2
I23 0

0 I32  - dn2

l2
0

0 I42 I43  - 1
\tau  - dn2

l2

\right]          
,

where

I11 = \mu P \ast 
3 f

\prime (N\ast 
3 ) > 0, I12 =  - \mu f(N\ast 

3 ) < 0, I22 = \mu f(N\ast 
3 ) - \lambda  - gZ\ast 

3h
\prime (P \ast 

3 ),

I23 =  - \delta 

r
< 0, I32 = rgZ\ast 

3h
\prime (P \ast 

3 ) > 0, I42 = \lambda + (1 - r)gZ\ast 
3h

\prime (P \ast 
3 ) > 0, I43 =

\delta 

r
> 0.

The characteristic equation is

\Phi \ast 
3(\phi , n

2, q) =:

\biggl( 
dn2

l2
+ \phi 

\biggr) 
(\phi 3 + \phi 2e2 + \phi e1 + e0) = 0,(4.12)
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where

c1 =
I32
r

(\delta + I11)+ I11\lambda +
e4
\tau 
, c0 =

I32
r

\biggl( 
\delta 

\biggl( 
I11 +

1

\tau 

\biggr) 
+ I11

r

\tau 

\biggr) 
, e2 =

3dn2

l2
+

1

\tau 
+ e4,

e1 = c1 +
3d2n4

l4
+

2dn2

l2

\biggl( 
1

\tau 
+ e4

\biggr) 
, e0 = c0 +

dn2

l2

\biggl( 
c1 +

dn2

l2

\biggl( 
dn2

l2
+

1

\tau 
+ e4

\biggr) \biggr) 
,

e4 = \mu P \ast 
3 f

\prime (N\ast 
3 ) - \mu f(N\ast 

3 ) + gZ\ast 
3h

\prime (P \ast 
3 ) + \lambda .

Therefore we have the following theorem.

Theorem 4.4. Assume the equilibrium point E\ast 
3 exists, that is, (2.12), (2.14) are

satisfied. If P \ast 
3 \geq f(N\ast 

3 )/f
\prime (N\ast 

3 ), E
\ast 
3 undergoes a Hopf bifurcation at each d > 0 and

n \geq 1 satisfying

8d3n6

l6
+

8d2n4

l4

\biggl( 
e4 +

1

\tau 

\biggr) 
+

2dn2

l2

\Biggl( 
c1 +

\biggl( 
e4 +

1

\tau 

\biggr) 2
\Biggr) 

+ c1

\biggl( 
e4 +

1

\tau 

\biggr) 
 - c0 = 0.

Proof. The inequality P \ast 
3 \geq f(N\ast 

3 )/f
\prime (N\ast 

3 ) guarantees that e2, e1 are positive.
If f is a Type II response f(N) = N

N+k , then this condition can be satisfied for

h - 1( \delta 
rg ) \geq 

N\ast 
3 (N

\ast 
3 +k)
k . Further, it can be shown that e2e1 = e0 when the bifurcation

parameter d satisfies

8d3n6

l6
+

8d2n4

l4

\biggl( 
e4 +

1

\tau 

\biggr) 
+

2dn2

l2

\Biggl( 
c1 +

\biggl( 
e4 +

1

\tau 

\biggr) 2
\Biggr) 

+ c1

\biggl( 
e4 +

1

\tau 

\biggr) 
 - c0 = 0.

(4.13)

Thus, if (4.13) is satisfied, (4.12) becomes

\Phi \ast 
3(\phi , n

2, q) =

\biggl( 
dn2

l2
+ \phi 

\biggr) 
(\phi 2 + e1)(\phi + e2).(4.14)

Then the roots of (4.14) are \phi 1,2 = \pm \surd 
e1i, \phi 3 =  - dn2

l2 < 0, \phi 4 =  - e2 < 0.

We now derive the transversality condition. Note that \Phi \ast 
3(\phi , d) = \Phi \ast 

3(\phi + dn2

l2 ).

If d = 0, let \phi \ast be a root of \Phi \ast 
3(\phi ) = 0. Then \Phi \ast 

3(\phi + dn2

l2 ) = 0 if \phi + dn2

l2 = \phi \ast ; that

actually is \phi = \phi \ast  - dn2

l2 . This means that Re(\phi ) = Re(\phi \ast ) - dn2

l2 . So dRe(\phi )
dd =  - n2

l2 < 0
for n = 1, 2 . . .

To make Theorem 4.4 clearer, we fixed the parameters as given in Table 1 and
calculated the bifurcation values of the diffusion rate di, the corresponding period
\rho i = \rho 1 = \cdot \cdot \cdot = \rho n = 2\pi /\phi i = 2\pi /

\surd 
e1n=1

, and frequency 1/\rho i. These are shown in
Table 2.

Table 2
Diffusion rate, period, and frequency of the Hopf bifurcation for NT = 2.

Wave number i Diffusion rate di Period \rho i Frequency 1/\rho i
1 0.032l2 8.0252 0.1246
2 0.008l2 8.0252 0.1246
... ... ... ...

n
0.032l2

n2
8.0252 0.1246
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Remark 4.5. As noted above, if \phi \ast is a root of the characteristic equation with
d = 0, then \phi \ast  - dn2, n = 0, 1, . . . are roots of (4.12). Thus the presence of diffusion is
stabilizing, at least in terms of local stability of equilibrium points. This means that
we can only expect diffusion-induced Hopf bifurcation of unstable equilibrium points.
Nevertheless, in the next section we will show that the presence of diffusion can affect
the behavior of the system.

5. Numerical simulations. In this section, we show numerical simulations us-
ing MATLAB [20] with the parameter values in Table 1 to illustrate the manifestation
of Hopf bifurcations in the nonlinear model (4.1). The initial conditions used for the
numerical simulations of (4.1) are primarily in the form

N(x, 0) = N0 + 0.1 cos(kx), P (x, 0) = P0, Z(x, 0) = Z0, Q(x, 0) = Q0, k = 1, 3,
(5.1)

where N0, P0, Z0, Q0 are constants. Thus the total biomass in the system is NT =
N0 + P0 + Z0 + Q0, and the different choices for k allow us to study the effect of
spatially inhomogenous perturbations on the solution. The numerical solutions are
found using the finite difference method [27].

We first discuss the case with no diffusion, that is, the model (4.1) with d = 0,
which was studied in [17]. Using the parameters in Table 1, the authors gave numerical
evidence that the equilibrium point E\ast 

3 loses stability via a Hopf for NT sufficiently
large. Using the program XPPAUT [6], we created a numerical bifurcation diagram
for (4.1) using NT as the bifurcation parameter; see Figure 3(a). This shows that the
equilibrium point E\ast 

3 undergoes a supercritical Hopf bifurcation at NT = NTH \approx 1.2.
Based on the analysis in the previous section, we expect that if NT < NTH

the equilibrium point E\ast 
3 will be stable and no diffusion-induced Hopf bifurcation is

possible. Numerical simulations of the model (4.1) with NT = 0.9 and NT = 1.1
confirm this, although for NT near NTH there can be long oscillatory transients; see
Figure 4. Also, the smaller the value of d, the longer the effect of the inhomogeneous
perturbation persists.

For NT > NTH we expect that a spatially homogenous periodic solution will
always exist, corresponding to the periodic solution of the ODE system. Numerical

(a) Bifurcation diagram (b) Time series

Fig. 3. (a) Bifurcation diagram for the ODE model of [17], which corresponds to (4.1) with
d = 0. (b) Numerical simulation showing stable periodic orbit corresponding to NT = 2. Parameter
values are as in Table 1.
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(a) cos(x), d = 0.002 (b) cos(3x), d = 0.002

(c) cos(x), d = 0.0036 (d) cos(3x), d = 0.0036

(e) cos(x), d = 0.007 (f) cos(3x), d = 0.007

Fig. 4. Solutions under different perturbations with NT = 1.1. The initial values are given by
(5.1) with N0 = 0.366855, P0 = 0.0359, Z0 = 0.2093, Q0 = 0.4879, and perturbation as shown.

simulations with spatially homogenous initial conditions confirm this (not shown).
Further, diffusion-induced Hopf bifurcation of the unstable equilibrium point E\ast 

3 is
possible; the bifurcation values are given in Table 2. Note that, as d decreases through
each critical Hopf value, the real part of a pair of complex conjugate eigenvalues of E\ast 

3

increases. Thus for d > d1 there is one pair with positive real part, for d2 < d < d1
there are two pairs, and so on. We explore the implications of this in the rest of this
section.

Figure 5 shows bistability for NT = 2. When d = 0.007, there exists an inho-
mogenous solution with regular oscillations both on the time t and space x in Figure
5(f), while for the case with k = 3 in the initial displacement of the nutrients, the
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(a) cosx,d=0.002 (b) cos3x,d=0.002

(c) cosx,d=0.0036 (d) cos3x,d=0.0036

(e) cosx,d=0.007 (f) cos3x,d=0.007

Fig. 5. Bistability under different perturbations for NT = 2. The initial values are N0 =
0.866855 + 0.1 cosx (cos 3x), P0 = 0.0359, Z0 = 0.4093, and Q0 = 0.6879.

solution is homogeneous (Figure 5(g)). When the value of d is decreased to 0.0036, we
can see a transient in the k = 1 initial condition; the solution changes from the inho-
mogeneous to homogeneous (Figure 5(c)), while for the k = 3 case, the inhomogeneity
disappears more quickly (Figure 5(d)). As the d decreases to 0.002, the solutions are
all significantly perturbed (Figure 5(a) and (b)). To make the above dynamics more
clear, we present the contour plot of each solution at the end time from 700 to 900 in
Figure 6.

Figure 7 shows the analysis of the spatial frequency and temporal frequency of the
solutions with d = 0.002, 0.0036, and 0.007 in the logarithmic scale. These plots were
obtained with the FFT function in MATLAB [20]. The first subplot shows that the
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(a) cosx,d=0.002 (b) cos3x,d=0.002

(c) cosx,d=0.0036 (d) cos3x,d=0.0036

(e) cosx,d=0.007 (f) cos3x,d=0.007

Fig. 6. The contour plot of N(x, t) for x \in [700, 900]. The initial values are N0 = 0.866855 +
0.1 cosx (cos 3x), P0 = 0.0359, Z0 = 0.4093, and Q0 = 0.6879.

two cases with stronger diffusion have essentially the same power spectrum versus the
spatial frequency, whereas the case with the weakest diffusion has much more power
at the small length scales. This is not surprising since diffusion is known to dissipate
the smaller length scales preferentially faster than the larger scales. In the second
subplot, we see that the cases with d = 0.02 and d = 0.07 each have peaks in the
power at the same temporal frequencies, but their profiles differ. The first frequency
is what is predicted by the theory for spatially inhomogeneous Hopf bifurcation and
its superharmonics. This is in contrast to the power for the case with d = 0.0036 that
has the first peak at the frequency predicted of the theory for spatially homogeneous
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(a) (b)

Fig. 7. (a) Power vs spatial frequency, (b) Power vs temporal frequency for d =
0.002, 0.0036, d = 0.007 at the end time for t \in [700, 900]. The initial values are N0 = 0.866855 +
0.1 cosx(cos 3x), P0 = 0.0359, Z0 = 0.4093, and Q0 = 0.6879.

Hopf bifurcation. These observations are consistent our previous observation that the
midstrength diffusion case tended to a homogeneous state but the others did not. We
surmise that there is bistability in that the solutions can converge to ones that are
spatially homogeneous or inhomogeneous, but we have not been able to ascertain why
one appears in favor of the other in these simulations.

6. Discussion. We investigate the dynamics of a diffusion-reaction model with
spatio-temporal delays to offer insights into the plankton communities by studying
how the dynamics depend on the diffusion rates and the total biomass of the ecosys-
tem.

Inspired by [9], we begin with proposing a new local stability theorem of a gener-
alized three-dimensional system with diffusion and spatio-temporal delay. Our work
extends that of [9] from two to three dimensions and incorporates the general spatial
domain (0, l\pi ). We then study the local stability for the three types of equilibrium of
the NPZ model (2.1). The local stability of the equilibrium solutions depends on the
total biomass of the system, the mean delay, and the zooplankton grazing function
form of h(P ). By comparing the conditions of the ODEs and those of the PDEs, we
find that the diffusion has no impact on deducing the local instability of all three
equilibrium solutions. Further, from calculation of the Hopf bifurcation value, all the
real parts of eigenvalues when the diffusion constant satisfies d \not = 0 are less than the
corresponding one when d = 0. Also from the simulations we explored, solutions are
relatively ordered with a larger value of d. Both calculations and simulations show
that the presence of diffusion has a stabilizing effect.

While the ecosystem is more stable under the effect of diffusion, it does have some
complex dynamics. We verify that when a sufficient quantity of nutrients is provided,
the plankton communities could experience different types of bistability, including ho-
mogeneous and inhomogeneous solutions, persistent and transient oscillations, which
depend on the value of the diffusion constant d.

We note that throughout our analysis the diffusion constant always appears in the
ratio d/l2. This means that changing the size of the spatial domain has an equivalent
effect to changing the diffusion constant. Thus, for example, raising the level of a
lake due to either natural or artificial causes can have a destabilizing effect on the
ecosystem.

D
ow

nl
oa

de
d 

04
/1

4/
22

 to
 1

29
.9

7.
19

3.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 

 
 
 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 

 

 

 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DIFFUSIVE NPZ MODEL WITH SPATIO-TEMPORAL DELAY 2429

There are many ways that our model could be extended. We have focused on
diffusion dominated by the movement of the water, leading to equal diffusion constants
for all the species. In future work, it will be of interest to explore the impact of
different diffusion rates for each species. Further factors could be added to the model
by considering different size structures, biodiversity, and sinking rates of plankton, as
in [2, 4, 5, 15, 18, 22, 30]. It may be more realistic for the variables to have species
diversity, the parameters to have size-dependence and/or age-dependence, and the
ecosystem to have sinking rates. Thus, it would be intriguing to see how diffusion
affects such ecosystems.

7. Appendix: Proof of Lemma 3.1.

Proof. By a well known result in complex variable theory [23], when \Phi (\phi , n2, q) =
0 has no roots on the imaginary axis, the number of roots of this equation in the right
half complex plane is

lim
R\rightarrow \infty 

1

2\pi i

\int 
C(R)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi .

Here, prime denotes differentiation with respect to \phi , and C(R) is the contour C(R1)
\bigcup 

C(R2), traversed in the anticlockwise sense, where

C(R1) = \{ \phi = ik : k \in [ - R,R]\} , C(R2) =

\biggl\{ 
\phi = Rei\theta : \theta \in 

\biggl[ 
 - 1

2
\pi ,

1

2
\pi 

\biggr] \biggr\} 
.

This contour is completely contained in the right half plane Re\phi \geq 0. And the number
of roots of \Phi (\phi , n2, q) inside C(R) is

1

2\pi i

\int 
C(R)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi =

1

2\pi i

\Biggl( \int 
C(R1)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi +

\int 
C(R2)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi 

\Biggr) 
.

There are two steps to prove (3.8). The first step is to prove that

1

2\pi i

\int 
C(R1)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi =  - 1

\pi 
arg\Phi (iR, n2, q).(7.1)

The second one is to prove that

lim
R\rightarrow \infty 

1

2\pi i

\int 
C(R2)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi =

3

2
.(7.2)

For point \phi on contour C(R1), the complex conjugate of \=m is

\=m(ik + dn2) =

\int \infty 

0

e - iktedn
2tmi(t)dt = \=m( - ik + dn2).

Thus, we have

Bj(ik, n2, q) = Bj( - ik, n2, q), j = 0, 1, 2.(7.3)

It follows from (7.3) that we get

\Phi (ik, n2, q) = k3i - B2(ik, n
2, q)k2  - B1(ik, n

2, q)ki+B0(ik, n
2, q) = \Phi ( - ik, n2, q).

That is, \Phi (\phi , n2, q) = \Phi (\=\phi , n2, q) for any \phi \in C(R1). From these, we can obtain that
the roots of \Phi (\phi , n2, q) = 0 occur in complex conjugate pairs. We have, inside C(R1),
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\rho eiarg(\Phi ( - iR)) = \Phi ( - iR) = \Phi (iR) = \rho eiarg(\Phi (iR)) = \rho e - iarg(\Phi (iR)),

where \rho is the module of \Phi . Thus, iarg(\Phi ( - iR)) =  - iarg(\Phi (iR)). The contour C(R1)
is traced from \phi = iR to \phi =  - iR. Then using the argument principle of complex
number,

1

2\pi i

\int 
C(R1)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi =

arg\Phi ( - iR, n2, q) - arg\Phi (iR, n2, q)

2\pi 
=  - 1

\pi 
arg\Phi (iR, n2, q).

This completes the proof of (7.1). Next, we prove (7.2).
For any point \phi on the contour C(R2) we have

| \=m(\phi + dn2)| \leq 
\int \infty 

0

e - (\phi +dn2)tm(t)dt \leq 
\int \infty 

0

m(t)dt = 1.

Also, we have\bigm| \bigm| \bigm| \bigm| d \=m(\phi + dn2)

d\phi 

\bigm| \bigm| \bigm| \bigm| \leq \int \infty 

0

te - (\phi +dn2)tm(t)dt \leq 
\int \infty 

0

tm(t)dt = Tm.

Consequently, Bj(\phi , n
2, q) are bounded functions of \phi for Re\phi \geq 0, with bounds Kj ,

and
B\prime 

j(\phi , n
2, q) \leq Qj(n

2, q)Tf \triangleq K \prime 
j , j = 0, 1, 2,

where Qj(q) are the parameter polynomials. Note that

1

2\pi i

\int 
C(R2)

2

\phi 
d\phi =

1

2\pi i

\int \pi 
2

 - \pi 
2

2

Rei\theta 
iRei\theta d\theta = 1.

Then

1

2\pi i

\int 
C(R2)

\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi  - 3

2
=

1

2\pi i

\int 
C(R2)

\biggl( 
\Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
 - 3

\phi 

\biggr) 
d\phi ,

=
1

2\pi i

\int 
C(R2)

\biggl( 
 - B2\phi  - 2B1 +B\prime 

1\phi +B\prime 
0

\Phi 
 - 3B0

\phi \Phi 

\biggr) 
d\phi ,

where we abbreviate Bj(\phi , n
2, q) and B\prime 

j(\phi , n
2, q) to Bj and B\prime 

j . It follows from the

bounds of Bj and B\prime 
j that we have | \Phi (iR, n2, q)| \geq R3  - K2R

2  - K1R - K0. Then we
have

lim
R\rightarrow \infty 

1

2\pi i

\int 
C(R2)

\bigm| \bigm| \bigm| \bigm| \Phi \prime (\phi , n2, q)

\Phi (\phi , n2, q)
d\phi  - 3

2

\bigm| \bigm| \bigm| \bigm| 
= lim

R\rightarrow \infty 

1

2\pi i

\int \pi 
2

 - \pi 
2

\bigm| \bigm| \bigm| \bigm| \biggl(  - B2Rei\theta  - 2B1 +B\prime 
1Rei\theta +B\prime 

0

\Phi 
 - 3B0

Rei\theta \Phi 

\biggr) 
Rei\theta 

\bigm| \bigm| \bigm| \bigm| d\theta ,
\leq lim

R\rightarrow \infty 

1

2\pi i

\int \pi 
2

 - \pi 
2

\bigm| \bigm| \bigm| \bigm| \biggl( B2Rei\theta + 2B1 +B\prime 
1Rei\theta +B\prime 

0

\Phi 
+

3B0

Rei\theta \Phi 

\biggr) 
Rei\theta 

\bigm| \bigm| \bigm| \bigm| d\theta ,
\leq lim

R\rightarrow \infty 

K2R
2 + 2K1R+K \prime 

1R
2 +K \prime 

0R+ 3K0

2\pi (R3  - K2R2  - K1R - K0)

\int \pi 
2

 - \pi 
2

d\theta 

= lim
R\rightarrow \infty 

K2R
2 + 2K1R+K \prime 

1R
2 +K \prime 

0R+ 3K0

2(R3  - K2R2  - K1R - K0)
= 0.
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