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Stability of Connected Autonomous Vehicle Networks with
Commensurate Time Delays
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Abstract—In this paper, we study the stability of Connected
Autonomous Vehicle Networks (CAVN) with commensurate
time delays under the assumption that communication time
delays increase as the distance between the vehicles increases.
Two delays are said to be commensurate if their ratio is a
rational number. We characterize the maximum range of delay
where the system becomes plant stable and carry out string
stability analysis. We provide numerical simulation and observe
that the stability region in the control gains plane decreases as
when commensurate time delays increase.

I. INTRODUCTION

Connected Autonomous Vehicle Network (CAVN) is new
technology that communicates and controls the speed and
position of autonomous vehicles through a wireless exchange
of information between these vehicles within a network [1].
This new technology represents an emerging cyber-physical
system (networking, computation, and physical processes)
with significant potential to enhance vehicle safety, ease traf-
fic congestion and positively impact the environment through
autonomous platoon control. The cyber component of such
a system incorporates a vehicle-to-vehicle communication
network, while the physical element includes physical ve-
hicle dynamics and human-driver responses. Within CAVN,
communication networks enable opportunities for greater
situational awareness, collaborative decision making, and
improved control.

CAVNs have attracted considerable attention. From the
cyber perspective, one significant challenge is the pres-
ence of inter-vehicular communication delay that limits the
accessibility to timely and accurate information necessary
for real-time control and accurate decision-making, see for
example [2]. In general, one may classify the communi-
cation delays into two categories: naturally occurring, or
adversarially induced. Naturally occurring communication
delays are inherent to the cyber or physical components of
the system. They could be random delays (latency) in the
vehicle to vehicle (V2V) infrastructure or they could even
model processing delays in the technology stack incurred
from synchronizing data from multiple sensors, or physical
latency in the CAN bus.

The wireless information communication of V2V uses
short-to-medium range communication. CAVN platoons can
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use the Dedicated Short Range Communications for Wireless
Access in Vehicular Environments (DSRC-WAVE) as in [3],
[4]. Wireless access communication in vehicular environ-
ments covers up to 1 km in range with a rate of data
transmission that is up to 27 Mbps, 5.9 GHz frequency, and
a 75 MHz channel bandwidth. If the distance between two
consecutive vehicles is less than 1 km then these vehicles are
considered to be in the same platoon. That is, all vehicles
within the same V2V wireless communications range are
considered to be in the same platoon.

Recent studies consider non-ideal V2V communication
time delays within the CAVN. It has been shown that these
time lags in communication affect the system dynamics and
degrade the performance of the CAVN, see, e.g., [S]. This
includes the case of increasing communication time delay as
the distance between the vehicles increases, and this issue
can be considered as one of the worst scenarios in V2V
communication delays [6]. In [6] a leader following control
architecture is proposed to obtain string stability considering
broadcast delays. In [5], a robust control of heterogeneous
vehicular platoon with non-ideal communication is presented
to compensate for the effect of the information delay. In
[7], an adaptive control approach is proposed to solve the
collaborative driving problem in the presence of non-ideal
V2V communication. In [8], the authors study the stability
of the equilibrium flow dynamics of CAVN with sensing,
communication and human reaction delays. The study con-
siders the number of vehicles as well as penetration rates of
sensors and communication lines. In [9], a linear quadratic
regulation is used to obtain an optimal design of connected
cruise control with communication delay and driver reaction
time.

In this work, we study the dynamics of CAVN with time
delays under the assumption that communication time delays
among vehicles increase as the distance between the vehicles
increases. The paper is organized as follows. Section II
provides a regular car platoon with commensurate delays
between the communication links. In Section III, we provide
plant stability analysis and characterize the maximum range
of delay where the system becomes plant stable. In IV, we
carry out string stability analysis. Section V presents the
simulation results. Section VI concludes the paper.

II. THE MODEL

Consider n + 1 vehicles in single-lane road and let 7 =
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consider a control system model for a regular car platoon
with commensurate delays of the form

o= e ] e o
where the states s; and v; are the corresponding vehicle
position and velocity, respectively, and wu; is control input
that drives the vehicle i. The control signal can be written
as [10]

i—1

ui(t) = [aWV(hij(t = (i) = vilt = Gij))

j=0

+B(v(t = Cij) —vilt — Gij))ls 2

where o € R and 3 € R are control gains, and (; ;
represents the communication time delay for data transferred
from vehicle j € {0,...,i — 1} to ¢ such that

Gii—1 < ...Gi,1 < Go- (3)

Here the index j = 0,1,...,7 — 1 enumerates the vehicles
in front of vehicle i. The time delays (;; indicate that
communication time delays increase as the distance between
the vehicles increases. The function ¥V : R — R is a range
policy function that maps a distance to a velocity, and h; ;(t)
represents the distance between the vehicles accounting for
the length [;, of the k-th vehicle

1—1
hii(t) = —— (s, —s:i(t) =3 h). @
k=3

t—J

The continuous and smooth range policy function can be
expressed as

0 h < hst
Ymas [1 — cos( M)y p < b < Ry, . (5)

V(h) = hgo_hst
h> hg,

Umax

where hgt, hgo and vmax are positive constants. The param-
eter m € ZT and has the default value m = 1. The function
V implies that the vehicle tends to stop for small distances
h < hg and aims to maintain the preset maximum speed
Umax for large distances h > hg,. In the middle range,
hst < h < hgo, the desired velocity is determined by the
specific function given by cosine.

In the literature, platooning cars are said to be in uniform
flow equilibrium when each car moves at a constant velocity
of v* with constant headway h*. In this scenario, it follows
from (1) that

i—1
sp=v't—ih* = Iy and V(h*)=v".  (6)
k=0
Notice that flow equilibrium is independent of time delays,
the platoon size and control gains.

III. STABILITY ANALYSIS

In this section, we study the plant stability of the lin-
ear system about the flow equilibrium in the presence of
commensurate delays. We also characterize the maximal
admissible delay region such that the time-delayed system
remains stable. A vehicle network is said to be plant stable
when the leading vehicle moves with a constant speed, and
perturbations in the states of following vehicles approach to
zero [11]. Two delays are said to be commensurate if their
ratio is a rational number. Otherwise, they are incommensu-
rate [12]. In the rest of the manuscript, we approximate the
time delays as commensurate time delays of the form

Gij=(i—j)e
for some constant € > 0, see Fig. 1.

_Define the perturbations about the flow equilibrium as
Xi = [§i(t),’(~)¢(t)]T = [si(t),vi(t)]T — [S;’U*]T. Then,

substituting X; in (1) leads to

X;(t) = AoX,(t) @)

h

Here V' is the first derivative of the range policy V with
respect to h.

3€

2€ 2€

Fig. 1. Schematic representation of vehicles in the model (1) with n = 3
when (; ; = (i — j)e for some € > 0. Here the car in red is the lead
car (index 0). The blue arrows represent the flow of information which is
subjected to delays ke, k = 1,2, 3.

For the plant stability, we take 99 = 0 and seek 0;(t) — 0
ast —oofort =1,...,n[11]. This is equivalent to proving
that the zero solution of (7) is stable, that is, the real part of
all eigenvalues of the characteristic equation is negative. Let
X(t) = [Xi(t), -, Xn(t)]T. Then, (7) can be written as

n—1
In this work, we study the plant stability and string X(t) =HoX(t) + ZHkX(t—k€)7 (10)
stability of the linear system corresponding to the flow k=1
equilibrium in a special case of time delays when (; ; is  where
the ¢ — j multiple of a positive constant e. H, = diag (Ao, Ao, ..., Ay),
3309
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and
Hj, = diag (0,...,0, A i n, A1 ki1,
+ Block(B; )|,

) An,nfk) |i>k:
—j=k"
The stability of (10) is determined by the eigenvalues

of its corresponding characteristic equation. To find the
characteristic equation, let

X(t) =ce®, s€R, ccR" (11)

Then, the characteristic equation associated with (10) has the
form
n—1
A (s;€) := det (slgn —Hy - Z er’“s> =0. (12)
k=1

The zero solution of (10) is stable if and only if
§:=max{Re(s) : A(s;e) =0} < 0.

The number § is called the stability exponent (the maximum
of Lyapunov exponents) of the system (10).

To construct the maximal admissible delay region such
that the time-delayed system remains stable, first, we study
the stability when ¢ = 0. By [13, Proposition 2.7.1], we
obtain that

n S -1

AGO=111 Sy, svi-1y

i=1
n 1—1
=11 <32+(i 1)ys+2¢i_j>. (13)
i=1 §=0
For¢=1,...,n, denote

i—1
;= Z Vi -
=0

Then the Routh-Hurwitz stability criterion [14] implies that
the roots of (13) have negative real parts if and only if v > 0
and U; >0 forallt=1,...,n.

Lemma 3.1: When € = 0, the zero solution of (10) is
stable if and only if

4>0 and U; >0 (14)

forall:=1,...,n.

When € > 0, we use the frequency-sweeping tests to
obtain stability criteria [12]. Based on the continuity property
of the stability exponent with respect to delays [12], in the
following, we use the frequency-sweeping tests to to deter-
mine whether the stability exponent intersects the imaginary
axis (existences of s = Jw, I = +/—1, in (12)) for € > 0
provided the zero solution of (10) is stable when ¢ = 0. The
idea is to replace the eigenvalues of

n—1
A(w) := det <Iw12n —H, - Z er“wf> (15)
k=1
by the generalized eigenvalues of a matrix pair

(P(Iw), Q(Iw)) for some matrices P and Q.
Definition 3.1 ([15]): A .= A\(P,Q) € C is a gener-

alized eigenvalue of the matrix pair (P, Q) if and only if
det(P — AQ) = 0. The minimum || is denoted by

p(P,Q) = min {|A| : det(P — AQ) = 0} . (16)

Remark 3.1: The number of finite generalized eigenval-

ues for the matrix pair (P, Q) is at most equal to the rank of
Q. Also, A(P, Q) is continuous with respect to the elements

of P and Q when the rank of Q is constant [15].

First, we give the following matrix identity, which is a
consequence of Schur’s complement for determinants [16].
Lemma 3.2 ([12]): For any z € C and matrices W, €

Ccm>m k=0,1,...,n—1,
L, 0 -- 0
n—1 0
det (Z szk> =det 2
k=0 : o In, 0
0 0 -+ W,
0 L, - 0
0 0 I2n
-W, —-W; -W,_»

Now, let z = e—Iwe, Wy = Iwly, —Hy and W, = —H,,
in (15). Notice that the size of Hy is 2n. Then by Lemma
3.2, we have

A(w) _ (71)2(7171) det (P(Iw) _ effweQ)

— det (P(Iw) - e*MQ) (18)
where
0 I, - 0
P(s) := : : : (19)
0 O IQn
—(sI2, —Hp) H;y H, -
and
Q = diag (Ign,...,IQn,—anl) . (20)

The following result characterizes the maximum range of
delay where the system becomes plant stable.

Theorem 3.1: Let rank(H,_1) = r and assume that

condition (14) is satisfied, that is, the zero solution of (10)

is stable when € = 0. Furthermore, for i € {1,...,r+2n(n—
2)}, define
95 ey i _ 10}
1<k<n—1 %k if /\Z(P_Uw’f)’ Q) _e *
& = for some wj, € (0,00), ;. € [0, 2],
00 if p(P(Iw),Q) > 1,Vw € (0, 00).
2D
Then, the zero solution remains stable for € € (0, €*) where
e =min{g:1<i<r+2n(n—2)}. (22)

Proof: To show that the stability exponent is negative,
there are two cases for €*:
Case 1. ¢ < oo. Since rank(H,_;) = r, we have
rank(Q) = r + 2n(n — 1). Thus, there are at most r +
2n(n — 1) generalized eigenvalues A; for the matrix pair
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(P(Iw), Q), see Remark 3.1.
Let € € [0,€*) and w € (0,00). When w = w}, then by
(21), we get ew! # 6% and

det (P(Iw,i) — e 1% Q) =0. (23)

Hence, )
det (P(Iw,i.) - e’I“’i‘Q) £ 0. (24)
When w # wi, then by (21) we have \;(P(Iw), Q) # e 1%.
Thus, |A\;(P(Iw), Q)| # 1. Hence, by Definition 3.1, we
have
det (P(Iw) - e*MQ) £ 0. (25)
Thus, the equation A(w) = 0 does not have any eigenvalue
for € € [0, ¢*). Since the zero solution is stable at € = 0, the
continuity argument of the stability exponent implies that it
remains stable for all € € [0, €*).
At e = €, there exists a pair (w}, 0}) such that e*w}, = 6},
and \;(P(Iw}), Q) = e~ %, Thus,

det (P(Iw,i) - e*”’ZQ) = det (P(Iw,i,) - e*fe*w?éQ) = 0.

Thus, an eigenvalue of A(w) = 0 intersects the imaginary
axis at € = €*.
Case 2: For the case when ¢* = oo, first, we prove the
following claim.

Claim. For w > 0 and € > 0, we have

p(P,Q) = p(P,Qe ).

Let A € C. Then, there exists \ such that A = \e=/* and
A = ‘)\‘ Indeed, multiplying A by e~/“ will rotate it
around the origin in the complex plane without changing
its magnitude. Consequently, we have

p(P,Q) = min {|A| : det(P — AQ) = 0}

= min{’;\e’d“" :det(P — de™vQ) = 0}

(26)

= min{‘;\‘ s det(P — e~ v Q) = 0}
= p(P, Qe ).

Now, by (21) and (22), €* = 0o holds when p(P(Iw), Q) >
1, Yw € (0,00). Then by (26), we get

p(P(Iw), Qe_d“) >1

for any w > 0 and € > 0. Hence, for any ¢ > 0, we obtain

27

det (P(Iw) - e_I“’EQ) #0 Yw € (0,00). (28)
Hence, no eigenvalue satisfies A(w) = 0 for all € > 0. Since
the zero solution is stable at ¢ = 0 and due to the continuity
of the stability exponent, we have

det (P(s) - e*SEQ) £0 VseCy

for any € > 0. Here, C, in the closed right half plane. Hence,
the zero solution is stable for all € € [0,00). In this case,
the zero solution is stable independent of delay [12]. This
completes the proof. [ ]

(29)

Theorem 3.1 implies that all eigenvalues of (12) are
negative when € € (0, €*), thus the exponential term in (11)
will go to zero as t — oo. Hence, Xz converges toward zero,
that is, the system is plant stable.

When the matrix P(/w) is nonsingular, we have

1
P(I = —
p( ( w)aQ) U(P_1(1w>Q)
where o is the spectral radius of a matrix. The inverse of the
matrix P(I/w) is given by

(Iwly, —Ho) 'Hy

(30)

Iy,
P (Iw) = ?
0
(Iwly, —Ho) 'H,_y —(Jwly, —Hg) ™!
0 0
I2n 0

Hence, when P(Jw) is invertible, we obtain

Sign(p(P(Iw),Q)—l) - Sign(l—a(P’l(Iw)Q)). 31)

Consequently, we can use (31) to check whether or not the
zero solution is stable independent of delay.

IV. STRING STABILITY

In this section, we study the string stability of (7) in the
presence of time delays. This is critical in the dynamics
of the vehicle network to avoid amplifying spacing errors
downstream of the traffic flow [17]. The string instability of
a platoon can cause the emergence of a jam, such as stop and
go, in circuits and single-lane roads. Through this section,
we assume (7) is plant stable, that is, € € (0, €*).

The velocity ©;(t) in (7) can be written ©;(t) = CX,(t)
with C = [0, 1]. Let V;(§) be the Laplace transform of v;(t)
and assume zero initial conditions. Then, from (7) we have

1—1
Vi(©) =) Gij(OVi(©) (32)
7=0
where
G (&) = e 07D¢Cx (33)
-1
1—1
Iy —Ag— > e DA, ;| B E(E).
7=0

Here I is the identity matrix of size 2 and E(¢) = [¢~1, 1]
that satisfies Y;(&) = E(£)V;(€) where Y;(€) is the Laplace
transform of the state Xi(t) in (7). The function G; ; is called
the link transfer function which acts as a dynamic weight
along the link between vehicles ¢ and j [18]. Consequently,
by substituting (8) in (33), we write G; ; as

(&* T 1/,1.7].) e—(i—j)e€

i—1
E2+ 30 (v + thyp) e~ (iRt
k=0

Gi (€)= (34)
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To describe the dynamic relationship between any two vehi-
cles 7 and j, we can obtain the transfer function T; ; from
(32) such that

Vi(€) = T;,;(§)V;(§) (35)

which contains the dynamics of all vehicles between vehicles
7 and j. Since we have the same connection topology as in
[19] for system (1), we know that the string stability can be
obtained by only considering T}, o(£), that is, the system is
string stable if and only if

sup |Tn,0({w)| < 1. (36)
w>0
To find T;, o(§), define the matrix
1=0,...,n
G(§) = {Gi+1,j+1(£)}j:07..‘7i_1 (37

Notice that G(¢) € C»+1D)x(n+1) Then, T), o(£) given by
the bottom-left elements of the matrix

(38)
k=1

For the details on the mathematical derivation, see [19].

V. NUMERICAL RESULTS

In this section, we use the range policy described in (5)
with : m = 1, hgy = 0.1m, hgo = 2.2m, and vpmax =
0.25m/s. When o« = 0.8, 8§ = 0.2 and h* = 1, then
V'(h*) = 0182, v = 1, ¥; = 0.146, ¥, = 0.218,
Vs = 0.267 and W3 = 0.303. Hence, system (7) is plant
stable (speed errors converge toward zero) when there is no
delay € = 0 as given in Lemma 3.1, see Fig. 2.

0.20

0.15

0.10} U3
—~~

005
~

S
0.00

-0.05

Fig. 2. Time series of ¥;(¢) of system (7) with e = 0 and n = 4. As
per Lemma 3.1, system (7) is plant stable when v > 0 and ¥; > O for
i1=1,2,3,4.

Next, we check whether the zero solution is stable inde-
pendent of delay or not. Fig. 3 shows the spectral radius o
of the matrix P~1(Iw)Q. We notice that & < 1 for some
w € (0,00). Hence, from (31), we have p(P(Iw),Q) > 1
does not hold for all w € (0, c0) in Theorem 3.1. Therefore,
it follows from Theorem 3.1 that the stability of the zero
solution depends on the time delay.

Now we calculate the critical frequency-angle pairs
(wi,0:) by finding w for which |\;(P(Iw), Q)| cross the
value of 1. In Fig. 4, we find 10 generalised eigenvalues and
observe that |\1], |A2|, | A\¢| and |Ag| cross the horizontal line

o(P7(1w)Q)
PP HIw)Q

IS

N CU N

Fig. 3. (a) o(P~1(Iw)Q): the spectral radius of matrix P~1(/w)Q. (b)
The value of p as defined in (16). As we can see the graphs of o and p are
consistent with (31). Both o and p cross the value of 1 at one point, hence,
the stability of the zero solution in (7) depends on the time delay.

of magnitude 1 at wi = 1.0103, w? = 1.7751, wy = 2.4675
and w} = 3.1338. Consequently , we have

A1 = 0.1429 — 0.9897] = ¢~ 142741

Ay = 0.5347 — 0.84501 = ¢~ 1:00667

Ao = 0.7194 — 0.6946] = ¢~0-76791

Mg = 0.8144 — 0.5803 = ¢~ 0-61921,

This yields the critical frequency-angle pairs (w?, 6%):

(1.0103,1.4274), (1.7751,1.0066),
(2.4675,0.7679), (3.1338,0.6192).

Thus, from Theorem 3.1, we have

*

€ = min

{01} = 0.1976.

i€{1,2,6,8} | wj

As per Theorem 3.1, system (7) is plant stable when € < €*
and plant unstable when € > €*, see Figs. 5-6. In Fig. 7, we
fix € and plot the stability region in («, 3) plane, we notice
that the stability region of the zero solution in (7) becomes
smaller as the time delay € increases. When e becomes larger,
there will be less choices for the control gains to stabilize
the system (7).

[Ad]

0 -l
2.5 = s
S 20 =
= = | = Pl
S - Il

=
& 1o = el
= s [As]
0.0 /“ = ol
0 1 2 3 4 5 s — Aol

w

Fig. 4. The magnitude of the generalized eigenvalue \; of the matrix pair
(P(Iw),Q),i=1,...,10. The curve of |A1], |A2], |\6| and |Ag| crosses
the horizontal line of magnitude 1.

For the string stability, we use (38) to find the transfer
function

T1,0(8§) = Gao(§) + Ga1(§)G1,0(€) + Ga2(8) (G2,1(§)

G1,0(§) + G2,0(8)) + Ga3(8) (G30(&) + G3,1(8)
G1,0(€) + G3,2(8) [G2,1(§)G1,0(§) + G2,0(6)])

3312
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Fig. 5. Time series of §;(¢) and 9;(¢) of system (7) with n = 4. The
solution ; (t) converges toward zero, that is, system (7) is plant stable when
€ < €* as per Theorem 3.1 (a) e = 0.12 (b) € = 0.19.

Fig. 6. Time series of §;(t) and ¥;(¢) of system (7) with n = 4. System
(7) is plant unstable when € = 0.21 > €* as per Theorem 3.1.

1.0] 1.0| 1.0]
0.5] 0.5] 0.5]
«Q
0.0 0.0] 0.0]
-0.5] -0.5] -0.5]
-1.01 -1.0t -1.01
-1.0 -05 0.0 05 1.0 -1.0 -05 00 05 1.0 -10 -05 00 05 1.0
a a a
(a) e = 0.12 (b) € =0.19 (c) e=0.21

Fig. 7. Stability charts in v and /3 plane for (e, 8) € [—1,1.5]x [—1,1.5].
The stability region is colored by blue. We notice that there will be more
choices for the control gains to stabilize the system (7) for smaller e.

where

(0.2¢ + 01426 ) o~ imi)ee

Gi;(€) = T
24y ((z—k)fj—li).1456) o—(i—k)e€
k=0

As shown in Fig. 5, system (7) is plant stable when € =
0.12,0.19. By studying the sup |74 o({w)]| for w > 1, we can
see in Fig. 8 that system (7) is string stable when ¢ = 0.12
and string unstable when ¢ = 0.19.

® ® 1

o8 ‘ o h

ERE \ ERE ‘\

~ ~ |

\5 0.4 \g{ 1 ‘H\

g 0.2 L o E 0.5 J L

% — T "'**f——;n 00 T 77211

w w

Fig. 8. The curve of |T4 o(Iw)| when (a) e = 0.12 (b) e = 0.19. System
(7) is string stable when € = 0.12 because the the maximum value of
|T4,0(Jw)]| is less than 1 for all w > 0 and it is string unstable when
€ = 0.19 since the curve of |T4,0(w)] is bigger than 1 for w € (0, c0).

VI. CONCLUSIONS

We studied Connected Autonomous Vehicle Networks
(CAVN) under the assumption that communication time de-
lays increase as the distance between the vehicles increases.
We assumed commensurate time delays in CAVN where the
ratio of any two delays is a rational number. We carried
out plant stability and string stability analysis and obtained
the maximum range of delay where the CAVN becomes
plant stable. We also observed that the stability region in
the control gains plane becomes smaller as the time delays
increase.
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