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Abstract— This paper extends the results in [1] considering
time delays in Standard Car Following models (CFMs). In [1],
connected vehicles are characterized with CFMs models and
controlled using linear string analysis to stabilize single-lane
car following of human-driven vehicles (HDVs). In this paper,
we revisit stability and safety conditions for traffic considering
time delays due to lags in the input signals. We perform plant
stability and string stability analysis to derive these conditions.
Then we obtain the optimal number of HDVs that can be
stabilized using one autonomous vehicle. Numerical simulations
are provided to implement a case study on Intelligent Driver
Model to discuss the influence of time delays that arise on HDVs
and the autonomous vehicle on optimal number of HDVs that
can be stabilized using one autonomous vehicle.

I. INTRODUCTION

Traffic jams are growing in metropolitan areas and it is
expected to increase in the future. Usually, traffic congestion
leads to stop-and-go waves within human-driven vehicles
(HDVs), which increase fuel consumption, and affect traffic
safety and flow [2]. This is related to the concept of string
instability, where a perturbation of the flow equilibrium
causes amplifies the spacing errors downstream of the traffic
flow [3]. Different Car Following Models (CFMs) have been
used to simulate road traffic. For example, the Intelligent
Driver Model (IDM) is used to evaluate human behavior and
to implement adaptive cruise control [4].

In order to reduce traffic jams, a number of techniques
have been used to optimize driving efficiency and safety
for the individual controlled vehicles. In [1], a single au-
tonomous vehicle is proposed to dampen the stop and go
waves and to mitigate traffic jams of HDVs. The study
shows that a single autonomous vehicle can manage future
transportation to have traffic flow without traffic jams. In
[5], experimental results show that an autonomous vehicle
with intelligent control techniques can dampen stop-and-go
waves of of twenty HDVs on a ring road and decrease fuel
consumption. In [6], traffic flow on a ring with a single
autonomous Vehicle is studied. Other studies propose deep
learning approaches to enhance the dissipation of the stop-
and-go waves, see, e.g., [7].

Time delays can change the dynamics of vehicle network
and lead to faulty control signals. There are different sources
for time delays. For instance, in [8], the authors study CFM
with a time delay to represent the driver’s reaction time. In
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[9], the authors incorporate time delays in communication-
based controller design in connected vehicle networks, which
arise due to digital implementation and intermittent vehicle-
to-vehicle communication. In [10], the authors propose a ve-
hicle model and design a controller based on the information
received via wireless connection with stochastic delay subject
to stochastic packet drops.

The goal of this work is to extend the results in [1],
considering time delays that arise from lags in the input
signals. More precisely, we use one autonomous vehicle
to prevent string instability of the system of human-driven
vehicles and make the system string stable, which prevents
the formation of traffic jams. The contributions of this paper
are (i) Provide plant stability and string stability analyses for
a linear system corresponding to a time-delayed Standard
Car Following model, (ii) Obtain the maximal admissible
delay region such that the time-delayed system remains plant
stable, (iii) Derive stability and safety conditions and obtain
the optimal number of HDVs that can be stabilized using one
autonomous vehicle, and (iv) Conduct numerical simulation
to apply the results to Intelligent Driver Model.

The rest of the paper is organized as follows: First,
we introduce a general nonlinear time-delayed CFM and
its corresponding linear system at the flow equilibrium in
Section II. Then, in Section III, we carry out plant stability
analysis and provide a range of time delay in which the
system is plant stable. In Section IV, we provide stability and
safety conditions through a string stability analysis. Then,
we use these conditions to characterize the optimal number
of HDVs that can be stabilized by one autonomous vehicle.
Section Section V presents the numerical simulation using
an intelligent Driver Model. We discuss the effects of time
delays that arise in HDVs and the autonomous vehicle on
the optimal number of HDVs that can be stabilized using
one autonomous vehicle. Section VI concludes the paper.

II. TIME-DELAYED CAR FOLLOWING MODEL

Consider n + 1 vehicles in single-lane road. We assume
that each vehicle i obeys a time-delayed car following model
(CFM) of the form

ai(t) = v̇i(t) = f
(
hi(t− εi), ḣi(t− εi), vi(t− εi)

)
,

i = 0, 1, . . . , n, (1)

where ai is acceleration, hi the headway distance, ḣi the
headway relative velocity, and vi is the velocity.The time
delay εi represents the delay of the input signals hi, ḣi, vi
to the resulting output acceleration ai. The CFMs include
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the Optimal Velocity Model (OVM) [11] and the Intelligent
Driver Model (IDM) [12].

In the literature, platooning cars are said to be in uniform
flow equilibrium when each car moves at a constant velocity
of v∗ with constant headway h∗. Then the uniform flow
equilibrium satisfies

ai = f
(
h∗, 0, v∗

)
= 0. (2)

To characterize the dynamics of system (1), we study the
linear system corresponding to the flow equilibrium. The
linearization of (1) about the flow equilibrium is

ai(t) = kp (hi(t− εi)− h∗) + kdḣi(t− εi)
+ kv (vi(t− εi)− v∗) (3)

where kp, kd and kv are constants and can be obtained as

kp = f1(h∗, 0, v∗), kd = f2(h∗, 0, v∗),

kv = f3(h∗, 0, v∗), (4)

where fj , j = 1, 2, 3, is the derivative of f with respect to
its j-th argument. Denote x̂i(t) to be the absolute position
of vehicle i at time t and xi(t) to be the position of vehicle
i relative to its flow equilibrium at time t. Now we write
system (3) in terms of xi and transform it into a suitable
form. For i ∈ {1, . . . , n}, let

ĥi(t) := x̂i−1(t)− x̂i(t), (5)
xi(t) := x̂i(t) + ih∗ − tv∗. (6)

Then, (3) can be written as

ẍi(t) =kp (xi−1(t− εi)− xi(t− εi)) (7)
+ kd (ẋi−1(t− εi)− ẋi(t− εi))− kvẋi(t− εi).

In this work, we obtain the plant stability and string stability
of (7).

III. STABILITY ANALYSIS

A vehicle network is said to be plant stable when the
leading vehicle moves with a constant speed, perturbations in
the states of following vehicles approach zero, that is, when
ẋ0(t) ≡ 0, then ẋi(t)→ 0 as t→∞ for i = 1, . . . , n [13].
This is equivalent to the zero solution of (7) being stable,
that is, the real part of all eigenvalues of the characteristic
equation is negative.

The stability of (7) is determined by the sign of the real
part of the eigenvalues of its corresponding characteristic
equation. Let

x(t) = Ceλt, λ ∈ R, C ∈ Rn. (8)

Then, the characteristic equation associated with (7) has the
form

∆(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 0 0 0 · · · 0
B2 A2 0 0 · · · 0
0 B3 A3 0 · · · 0

0 0 B4 A4 0
...

...
...

. . .
. . .

. . . 0
0 0 · · · 0 Bn An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (9)

where

Ai =

[
λ −1

kpe
−λεi λ+ (kd + kv) e−λεi

]
and

Bi =

[
0 0

−kpe−λεi −kde−λεi

]
.

By [14, Proposition 2.7.1], we obtain that

∆(λ) =
n∏
i=1

det (Ai) = 0, (10)

with

det (Ai) = λ2 + (kd + kv) e−λεiλ+ kpe
−λεi . (11)

Thus, for some i ∈ {1, 2, . . . , n}

∆(λ) = 0⇔ det (Ai) = 0.

For i = 1, . . . , n, if det (Ai) = 0 has a root with a positive
real part, then so does (9). Consequently, we have:

Lemma 3.1: If kp < 0, then the zero solution of (7) is
unstable.

Proof: In (11), it is clear that det (Ai)|λ=0 = kp and
lim
λ→∞

det (Ai) → ∞. Thus, the equation (9) has a positive
real root when kp < 0. Thus, x(t) → ∞ as t → ∞, and
hence, the zero solution is unstable.

From Lemma 3.1, we assume that kp ≥ 0 in the rest of the
section. To construct the maximal admissible delay region
such that the time-delayed system remains stable, first, we
study the case When there is no delay (εi = 0) in the model
(7). In this case, we have

det (Ai) = λ2 + (kd + kv)λ+ kp. (12)

Then, by the Routh-Hurwitz stability criterion [15], we have

Lemma 3.2: When εi = 0 for all i ∈ {1, . . . , n}, the
zero solution of (7) is stable if and only if

kd + kv > 0 and kp > 0. (13)

The condition (13) is physically reasonable and reflects the
real driving behavior [16].

Now, let εi > 0, it is clear that, λ = 0 is an eigenvalue of
(9) if and only if kp = 0. Assume kp > 0 and suppose λ =
jη (η > 0 and j =

√
−1) is a purely imaginary eigenvalue

of det(Ai) = 0. By separating the real and imaginary parts,
we obtain:

η2 = (kd + kv)η sin(ηεi) + kp cos(ηεi), (14)
0 = (kd + kv)η cos(ηεi)− kp sin(ηεi). (15)

Squaring and adding the above equations lead to

Ξ (ξ) := ξ2 − (kd + kv)
2ξ − k2

p = 0, (16)

where ξ = η2. Notice that (kd + kv)
2 + 4k2

p > 0, −(kd +
kv)

2 < 0 and ξ (0) = −k2
p ≤ 0. Hence, Ξ has exactly one



positive root. Thus,

η0 =

 (kd + kv)
2 +

√
(kd + kv)4 + 4k2

p

2


1
2

. (17)

Plugging η = η0 into (14)-(15) and solving the resulting
equation for cos(η0εi) and sin(η0εi) leads to

cos(η0εi) =
kpη

2
0

(kd + kv)2η2
0 + k2

p

:= P0

and
sin(η0εi) =

(kd + kv)η
3
0

(kd + kv)2η2
0 + k2

p

:= Q0.

Since η0, P0 and Q0 are independent of car i, we obtain a
sequence of critical values for the delay parameter

ε̂k =
1

η0
arccos

(
kpη

2
0

(kd + kv)2η2
0 + k2

p

)
(18)

+
2kπ

η0
, k ∈ Z+

0 .

when Q0 > 0 and

ε̂k =
1

η0

[
2π − arccos

(
kpη

2
0

(kd + kv)2η2
0 + k2

p

)]
(19)

+
2kπ

η0
, k ∈ Z+

0

when Q0 < 0. Here, Z+
0 = {0, 1, . . .}. We now have the

following result.
Theorem 3.1: At each critical value ε̂k defined in (18),

sign

{
d(Re {λ(εi)})

dεi

∣∣∣∣
εi=ε̂k

}
> 0. (20)

Proof: Taking the derivative of det(Ai)|λ=λ(εi)
= 0

with respect to εi leads to(
dλ(εi)

dεi

)−1

=
2λ(εi)e

λ(εi)εi − (kd + kv)

λ(εi)((kd + kv)λ(εi) + kp)
− εi
λ(εi)

. (21)

Notice that when εi = ε̂k, (9) has a pure imaginary root
λ(εi) = jη. Hence, by using (14), we have

Re

(
dλ(εi)

dεi

)−1
∣∣∣∣∣
εi=ε̂k

=
(kd + kv)

2 + 2η2

(kd + kv)2η2 + k2
p

> 0. (22)

The result follows from

sign

{
d(Re {λ(εi)})

dεi

∣∣∣∣
εi=ε̂k

}

=sign

{
Re

(
dλ(εi)

dεi

)−1
∣∣∣∣∣
εi=ε̂k

}
> 0.

Theorem 3.1 implies that the eigenvalue λ(εi) crosses the
imaginary axis from left to right in a neighborhood of εi =
ε̂k, k ∈ Z+

0 . Indeed (20) is called “the transversality\crossing
condition" due to the positive speed of the eigenvalues
when they cross the imaginary axis. Hence, at these critical

time delay value, a stable solution becomes unstable. The
following result is straightforward from Theorem 3.1 and
Lemma 3.2.

Theorem 3.2: Assume kd + kv > 0 and kp > 0 such
that the zero solution of (7) is stable when εi = 0. Then,
it remains stable for εi ∈ (0, ε∗) and becomes unstable for
εi > ε∗ where

ε∗ = min
{
ε̂k : k ∈ Z+

0

}
. (23)

Theorem 3.2 implies that all eigenvalues of (10) are
negative when ε ∈ (0, ε∗), thus the exponential terms in (8)
will go to zero as t→∞. Hence, ẋ(t) in (7) goes to zero as
t→∞, that is, the system is plant stable. Furthermore, the
system is plant unstable when at least one delay exceeds ε∗.

Remark 3.1: It is clear that ε∗ is independent of car i,
and hence, it can be calculated from (17)-(19) with the values
in (4).

IV. STRING STABILITY ANALYSIS

In this section, we study the string stability of (7) in the
presence of time delays. This is critical in the dynamics of
the vehicle network to avoid amplifying the spacing errors
downstream of the traffic flow [17]. The string instability of a
platoon of vehicles can cause the emergence of a jam, such
as stop and go, in circuits and single-lane roads. Through
this section, we consider the following assumptions as in
[1]: (i) HDVs models are homogeneous and have the same
vehicle dynamics, (ii) HDVs models are string unstable in
some traffic conditions; and (iii) All vehicle models are plant
stable, that it, εi ∈ (0, ε∗).

Denote Ti(s) to be the transfer function of the linear
dynamics in (7) assuming zero initial condition. Then, for
vehicle i:

Ti(s) :=
Xi(s)

Xi−1(s)
=

(skd + kp)e
−sεi

s2 + (kd + kv)se−sεi + kpe−sεi
(24)

where X(s) is the Laplace transform of x(t).
Definition 4.1 (Vehicular string stability [1]): A vehi-

cle with transfer function T (·) is string stable if and only
if |T (jω)| ≤ 1 for all ω. Equivalently, ‖T (jω)‖∞ ≤ 1.

Let s = jω, ω ∈ R+, then for each vehicle i, the string
stability holds if |Ti(jω)| ≤ 1 for i = 1, . . . , n [18]. It
follows from (24) that

|Ti(jω)|2 =
p

p+ q

where p = k2
p + k2

dω
2 ≥ 0 and

q = ω4 + (2kdkv + k2
v)ω2

− 2(kd + kv)ω
3 sin(εiω)− 2kpω

2 cos(εiω).

Since p ≥ 0, it is clear that |Ti(jω)| ≤ 1 when q ≥ 0.
Assume

kd + kv > 0 and kp > 0. (25)

Notice that the condition (25) is similar to the one in Lemma
3.2 and it reflects the real driving behavior [16]. Then, it
follows from cos(εiω) ≤ 1 and sin(εiω) ≤ εiω that

q ≥ [1− 2εi(kd + kv)]ω
4 + (2kdkv + k2

v − 2kp)ω
2.



It is clear that q ≥ 0 if

ω ≥

√
2kp − 2kdkv − k2

v

1− 2εi(kd + kv)
:= ω̂(εi). (26)

provided 2kdkv + k2
v ≤ 2kp and

0 < εi <
1

2(kd + kv)
:= ε̂. (27)

In (26), notice that we omit condition 2εi(kd+kv) > 1 since
it does not hold at εi = 0. It is clear that

dω̂(εi)

dεi
=

kv + kd
1− 2εi(kd + kv)

ω̂(εi) > 0.

Consequently, we have the following result.
Theorem 4.1: Assume εi < ε̂ for all 1, . . . , n and let

εmax = max{εi : i = 1, . . . , n}. Then, the linear HDVs
model (kp, kd, kv) (3) is string stable if ω ≥ ω0 where ω0 =
ω̂(εmax).

It follows from Theorem 4.1 that the linear HDVs model
can be string unstable only if ω ∈ (0, ω0).

Lemma 4.1: For each car, the range of frequencies
(0, ω0) becomes bigger as the time delay εi increases.
In [1], the authors studied the sting stability of (1) without
time delays. In this case, ω0 =

√
2kp − 2kdkv − k2

v . Com-
paring (4.1) to the result in [1], we find that existence of
ω0 is affected by presence of the time delays. The region of
existence of ω0 in (kp, kv, kd)-space becomes smaller as ε
increases, see Fig. 1.

Now we study the string stability of a lane traffic system
of m HDVs and a single autonomous vehicle. We denote the
transfer function of “human car following model" by TH(s)
and the transfer function of “autonomous vehicle controller"
by TR(s) where, for σ ∈ {H,R},

Tσ(s) :=
(skdσ + kpσ )e−sεσ

s2 + (kdσ + kvσ )se−sεσ + kpσe−sεσ
. (28)

kp

kd
kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

-10 -5 0 5 10
-10

-5

0

5

10

kd

kv

kp = −1 kp = 0 kp = 1 kp = −1 kp = 0 kp = 1 kp = −1 kp = 0 kp = 1

(a) ε = 0 (b) ε = 0.1 (c) ε = 0.5

Fig. 1. Illustration of the region of ω0 existence in (kp, kv , kd)-space
(kv , kd)-plane.

Definition 4.2 (System-level string stability [1]): Let
{Ti(·)}Ni=1 denote the transfer functions of the N vehicles
in a single lane traffic system. This system is string stable
if and only if ∥∥∥∥∥

N∏
i=1

Ti(jω)

∥∥∥∥∥
∞

≤ 1. (29)

Notice that the length of the string is omitted in Definition
4.2. The following result gives the maximum number of
HDVs that can be stabilized under any input disturbance by
a given autonomous car controller.

Theorem 4.2: Consider a string of an m string unstable
HDVs followed by a single autonomous vehicle. Then, the
maximum number of vehicles that can be string stabilized is
given by

m∗stable =

⌊
min

ω∈(0,ω0)
{Fstable(ω)}

⌋
(30)

with
Fstable(ω) = − log |TR (jω)|

log |TH (jω)|
(31)

where b·c is the floor function.
Proof: First, notice that the order of the vehicles does

not matter due to the linearity of the scalar systems. Let
xR(t) be the position of the autonomous vehicle (relative
to its flow equilibrium position) and XR(s) be its Laplace
transform. Now, assume that the behavior of the leading
HDV is governed by its reaction to some input (disturbance)
d(t). Then, from (24), we have

XR(s) = TR(s)
(
TH(s)

)m
D(s), (32)

where D(s) is the Laplace transform of d(t). By Definition
4.2, the system is string stable if it attenuates all unstable
disturbances, that is, for s = jω and ω ∈ (0, ω0):

|TR(jω)(TH(jω))
m| ≤ 1

⇔ log |TR(jω)|+m log |TH(jω)| ≤ 0

⇔ m ≤ − log |TR(jω)|
log |TH(jω)|

(33)

Since (33) holds for all ω ∈ (0, ω0). Then,

m ≤ min
ω∈(0,ω0)

{
− log |TR (jω)|

log |TH (jω)|

}
. (34)

It is clear that m is an integer, and hence, we have m∗stable

in (30).

Remark 4.1: Outside the range (0, ω0), the system de-
scribed in Theorem 4.2 is string stable due to ‖T (jω)‖∞ ≤ 1
for all cars and (29) is straightforward satisfied.

Since the string stability as defined in Definition 4.2 does
not prohibit collisions between vehicles or inefficient driving
behavior [1], we add headway bounds on h(t) to ensure
safety by maintaining separation between vehicles.

Definition 4.3 (Headway bounds [1]): The safety
bound Λ− > 0 is the minimum headway that a vehicle
is allowed to experience regardless of any given external
disturbance:

h(t) > Λ− ∀t > 0. (35)

On the other hand, the performance bound is the maximum
allowable headway Λ+ > 0 that a vehicle can permit:

h(t) < Λ+ ∀t > 0. (36)



The headway bound Λ ∈ (0, h∗) satisfies

h∗ − Λ < h(t) < h∗ + Λ ∀t > 0. (37)

For a given Λ ∈ (0, h∗) we can choose Λ− = h∗ − Λ and
Λ+ = h∗ + Λ. Notice Λ− guarantees safety by maintaining
separation between vehicles and Λ− guarantees that the
vehicle does not lag too far behind the rest of the traffic.

The following result gives a safety condition when there
is an oscillatory or impulse disturbance.

Theorem 4.3: For a given disturbance d(t) = βu(t) and
headway bound Λ, the maximum number of vehicles a single
autonomous vehicle can safely and efficiently follow is given
by

m∗safe =

⌊
min

ω∈(0,ω0)

{
log ζ − log |1− TR(jω)|

log |TH(jω)|

− log |U(jω)|+ log(jω)

log |TH(jω)|

}⌋
(38)

where ζ := Λ
β and U(s) is the Laplace transform of u(t).

Proof: Let xF (t) be the position of the final HDV in
the string. Then, its Laplace transform is

XF (s) =
(
TH(s)

)m
D(s), (39)

giving rise to the headway experienced by the autonomous
vehicle

hR(t)− h∗ = xN (t)− xR(t). (40)

From (32) and (39), we have

XN (s)−XR(s) = β(TH(s))m (1− TR(s))U(s). (41)

From 40 and Definition 4.3, we have

β |(TH(s))
m

(1− TR(s))U(s)| < Λ

s

Let ζ := Λ
β . Then,

m log |TH(s)|+ log |1− TR(s)|+ log |U(s)| < log
ζ

s
.

Thus,

m <
log ζ − log |1− TR(s)| − log |U(s)| − log s

log |TH(s)|
.

Notice that m is integer. Then, for s = jω and ω ∈ (0, ω0),
we have m∗safe in (38).

Lemma 4.2: When there is step disturbance d(t) = β
in Theorem 4.3. Then,

m∗safe =

⌊
min

ω∈(0,ω0)
{Fsafe(ω)}

⌋
(42)

with
Fsafe(ω) =

log ζ − log |1− TR (jω)|
log |TH (jω)|

. (43)

Combining Theorem 4.2 and Lemma 4.2 when d(t) = β,
we optimize a linear HDV model TH and safety parameter
ζ by taking

m∗ = max
TR

min{m∗stable,m
∗
safe}. (44)

as in [1] which represents the maximum number of HDVs
that can stabilize, safely and efficiently.

V. NUMERICAL RESULTS

In this section, we consider a human Intelligent Driver
Model (IDM) driver with parameters v0 = 33m/s, T = 1.5s,
s0 = 2m, a = 0.3m/s2, b = 3m/s2 and δ = 4 [19]. Then,
kp = 0.01, kd = 0.18 and kv = 0.04.

A. Plant Stability

From (17)-(19), we find that ε∗ = 6.10783. With n = 4,
when εi = 0, Fig. 2a shows that (7) is plant stable, that
is, the speed errors converge toward zero. By taking εi ∈
(0, ε∗), system (7) remains plant stable, see Figs. 2b-c. Then
it becomes plant unstable when at least one delay becomes
bigger than ε∗ as per Theorem 3.2, see Fig. 2d.

Fig. 2. Time series of speed errors x′i(t) in system (7) with n = 4.
(a) When there is no delay, the system is plant stable by Lemma 3.2. The
critical time delay value is ε∗ = 6.10783, in (b)-(c) system (7) is plant
stable for (εi < ε∗) and in (d) system (7) is plant unstable when (ε1 > ε∗)
as per Theorem 3.2.

B. String Stability

In Fig. 3, we plot |T (jω)|2 with different time delays.
We notice that the range of frequencies (0, ω0) becomes
bigger as the time delay increases as per Lemma 4.1 and the
system in string unstable for ω ∈ (0, ω0). Usually the largest
perturbation in the headway that a vehicle will experience
results from lane changing. Typical lane changes occur at
headways of 100m (in) or 70m (out) [1], hence we take a
perturbation ∆hmax to be approximately between 50−70m.
When approaching a stalled car or traffic accident from
free flow at vmax = 40m/s, the maximum rate of change
of headway at ḣmax ≈ vmax = 40m/s. Similarly, when
considering accelerating from a dead stop onto an empty
highway with free flow speed vmax = 40m/s, the maximum
velocity difference ∆vmax ≈ vmax = 40m/s. Human drivers
comfortably accelerate at up to amax ≈ 0.5 m/s2, with
slightly higher tolerance for braking than accelerating [20].
Consequently, we have the upper bounds:

kp ≈
amax

∆h
< 0.1, kd ≈

amax

ḣmax

< 0.2, kv ≈
amax

∆vmax
< 0.2.

This gives an optimal autonomous vehicle controller as
kpR = 0, kdR = 0.103 and kvR = 0.2. Choosing ζ =
kvR/kdR [1], we plot m∗stable and m∗safe on (0, ω0) to find



m∗ in Fig. 4. We notice that the time delay has no noticeable
effects on m∗ when ω is small. However, with time delay,
m∗ becomes smaller as ω approaches ω0. Further, in Fig. 5,
we observe that when εH increases, m∗ decrease as ω → ω0.

To see the influence of the value of the parameter p ∈
{kpσ , kdσ , kvσ}, σ ∈ {R,H}, on the value of m∗, we take
10% deviation from the value of p in Fig. 4 and plot a
heatmap of the corresponding m∗ in Figs. 6 and 7. We
notice that a small perturbation in these parameters can
cause a noticeable change in the value of m∗. In Fig. 8,
we plot heatmap of the difference in m∗ when decreasing
the time delay εR and εH in Figs. 6 and 7. We have a similar
observation to Fig. 5 where εH affects the value of m∗ more
than εR.
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Fig. 3. The influence of time delay on the range of frequencies (0, ω0).
The time delay is ε = 0.2k, k = 0, . . . , 10. We notice the system in string
unstable for ω ∈ (0, ω0).
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Fig. 4. We vary ω within the unstable region of frequencies (for the
HDV) and present the number of vehicles that can be stabilized (◦) or
safely handled (2) by a single autonomous vehicle with ε := εR = εH .
The two curves of Fstable and Fsafe are nearly identical, demonstrating that
the optimization procedure successfully chose parameters that optimized for
both conditions. The value of m∗ is 84 when ε = 0, 83 when ε = 0.05,
80 when ε = 0.15 and 77 when ε = 0.25.

VI. CONCLUSIONS

We studied a Standard Car Following model with time
delays that arise from lags in the input signals to the resulting
output acceleration. We used the model to obtain the optimal
number of HDVs, denoted as m∗, that can be stabilized using
an autonomous vehicle within a single-lane. To this end,
we carried out plant stability and string stability analyses to
derive string stability and safety conditions. Then, we used
these conditions to characterize m∗. Through a numerical
study, we found that as the delay increases the value of
m∗ decreases. For instance, a 0.25 second delay reduced
the value of m∗ from 84 vehicles to 77 vehicles. We also
found that the effects of the time delay in the autonomous
vehicle was not as remarkable as the time delay in the
human-driven vehicles on m∗. Future research will consider
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Fig. 5. The effect of εR and εH on the number of human vehicles a single
autonomous vehicle can safely and efficiently stabilize. As ω approaches ω0,
we observe that εH affects the number of cars while εR has no noticeable
effects.

Fig. 6. Heatmap of the number m∗ with 10% deviation from the value of
{kpR , kdR , kvR} in Fig. 4. The parameters {kpH , kdH , kvH } are similar
to those in Fig. 4 with ε = 0.15 and ω = 0.0425. A small perturbation
in the autonomous vehicle parameters is sufficient to cause a change in the
value of m∗.

Fig. 7. Heatmap of the number m∗ with 10% deviation from the value of
{kpH , kdH , kvH } in Fig. 4. The parameters {kpR , kdR , kvR} are similar
to those in Fig. 4 with ε = 0.15 and ω = 0.0425. A small perturbation in
the HDVs parameters is sufficient to cause a change in the value of m∗.
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Fig. 8. Heatmap of the difference in m∗ when changing the time delay to
0 in Figs. 6 and 7. The simulation results of this figure show that the time
delay in HDVs εH affects m∗, while εR does not affect m∗.

the platoon (connected autonomous vehicles network) to
stabilize human-driven vehicles.
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