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Abstract 

This dissertation describes the development of advanced in-situ defect detection algorithms using 

analytical and machine learning methods, followed by intermittent control systems to minimize the 

number of defects in parts fabricated by a commercial laser powder bed fusion (LPBF) system. To 

detect pores initiated from the lack-of-fusion phenomenon, light intensity emitted from the melt pool is 

measured by in-situ photodiode-based monitoring systems and then analyzed by multiple analytical 

methods, including Absolute Limits (AL), Signal Dynamics (SD), and Short-Term Fluctuations (STF). 

In addition, a customized Self-Organizing Map (SOM) algorithm, an unsupervised machine learning 

method, is developed for the same purpose. To calibrate and validate the detection methods, two sets 

of experiments are devised. The first set includes parts with embedded micro-voids to purposefully 

mimic the lack-of-fusion in parts composed of Hastelloy-X to assess the sensor response and customize 

algorithms in terms of required thresholds, data size, etc. The second set includes parts with 

stochastic/randomized pores, induced normally due to the process disturbances, to evaluate the 

effectiveness of the detection algorithms in the regular print. The printed samples are CT-scanned, and 

the data from both sets of experiments are analyzed by the segmentation method to examine the 

correlation. The results of the intentionally seeded defects demonstrate that voids larger than 120 μm 

are detectable by the AL algorithm, while the 100 μm void size is detectable by the SOM algorithm. 

The evaluation matrices are further used to validate stochastic/randomized distributions of pores at 

different process parameters, including relatively low laser powers of 175, 150, 125, and 100 W, high 

hatching distances of 110, 130, and 150 µm, and process speeds of 1100, 1300, and 1500 mm/sec. The 

results reveal that the pores created by low laser power are predicted with the True Positive (TP) rate 

of >75% by SOM and <30% by AL.  However, the SOM exhibits TP rate results similar to those of AL 

in identifying pores induced due to high hatching distances and high speeds, whereas the SOM 

improves the True Negative (TN) rates up to 31% and 20% for such samples, respectively. Additionally, 

the SOM demonstrates the improvement in computational speed when it computes the defects per layer 

86% faster than AL.  

The SOM algorithm is integrated with a close-loop control system in an intermittent fashion when the 

laser power is intelligently increased in the successive layer and on top of the defective zone to heal the 

induced defects. To this end, the defects predicted by the SOM are clustered in a specific area of each 

layer using the K-means algorithm. The optimized area around the center of defects is the position at 

which the laser power should be changed in the following deposition layer. To identify the optimum 
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laser power value, various artificial voids are designed and embedded in the coupon samples. Then, a 

capping layer on the artificial voids is manufactured by increasing the laser power from the nominal 

value. Based on the optimum power and defect size, knowledge-based rules are defined to increase the 

laser power in the successive layer to consequently heal the defects created during the process. The new 

laser power value is calculated in a Laser Correction File (LCF) after the deposition of each layer. This 

closed-loop approach needs a Message Queuing Telemetry Transport (MQTT) broker to connect data 

acquisition, data correction, defect detection algorithm, LCF calculation, and the actuator (e.g., laser in 

this case). The controller is applied to two new sets of experiments to evaluate its performance. Its 

performance shows that the part density can substantially be increased when the controller is on 

compared to the printed parts when the controller is off.  
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Chapter 1. Introduction 

1.1 Research Motivation 

Additive Manufacturing (AM) has changed the entire manufacturing field by offering unique features 

for fabricating complex shapes with superior mechanical properties. In the last decades, through 

exponential advancement, AM has been promoted from a prototyping to a mass production platform. 

One of the advanced AM technologies is Laser Powder-Bed Fusion (LPBF). During the LPBF process, 

a moving laser beam fuses thin layers of powder particles that have been spread on the build plate by a 

recoater. The feed container is raised, and a layer of powder material is deposited on the build platform. 

After a layer is deposited, the laser selectively scans and melts powder based on the Computer-Aided 

Design (CAD) model. The process is repeated until the build of the whole part is completed [1].  

Although the LPBF process has numerous benefits, many LPBF challenges remain unaddressed, such 

as dimensional errors, undesired porosity, delamination of layers, and undesired material properties. 

The high sensitivity of LPBF processes to disturbances is one of the main challenges. For example, a 

small change in the laser power can cause a large change in the melt pool size. Additionally, the LPBF 

process is governed by many process parameters, such as laser power, scan strategy, hatch spacing, 

scan speed, gas flow, and recoater speed. These factors profoundly affect the process, causing defects 

[1], [2]. To make the process more stable and less susceptible to disturbances, it is important to 

understand how the parameters affect the process and product quality. Typically, the AM process 

parameters can be categorized into two groups: 1- intrinsic and 2- extrinsic. Intrinsic parameters are 

those related to the substrate and powder properties. On the other hand, extrinsic parameters are related 

to the hardware used in the process, such as the laser, powder feeder, recoater, positioning system, etc. 

In general, there is no direct control of intrinsic parameters; however, the effects of changes in intrinsic 

parameters can be compensated for by controlling the extrinsic parameters. The control of extrinsic 

parameters is relatively easy with most of the parameters mentioned above. Commercial systems are 

equipped with built-in controllers that allow users to set the desired values. This is the approach that is 

used in many applications. Much trial and error are needed to obtain parameters that result in good 

quality for a specific application. These parameters are then used in open-loop process control. The 

controllable parameters are set to predefined values, and there is no feedback from the process output 

to adjust the parameters. Additionally, open-loop control of AM processes is useful when the 

application is fixed and must be repeated. Finding the right parameters is very time-consuming; 

however, as long as there is no change in the application, this control method is effective and efficient. 
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However, the need for quality assurance has pushed industries and academies to look at closed-loop 

control of the process. By applying a closed-loop controller, process parameters (e.g., laser power) can 

be monitored in real-time and changed during the process to tune one or more process parameters by 

sending an order to an actuator(s) for fabricating desired parts, as demonstrated in Figure 1-1.     

 

Figure 1-1: Concept of closed-loop control for a typical LPBF process 

1.2 Research Objectives 

The main objective of this thesis is the development of customized in-situ defect detection methods 

using analytical and machine learning algorithms, as well as the development of intermittent control 

systems for the commercial LPBF machine to minimize the number and size of lack-of-fusion defects 

created in parts during the fabrication. To achieve this goal, the following research tasks were 

undertaken: 

• Analyzing the light intensity signal captured by on-axial and off-axial photodiodes and then 

correlating signal disturbances to artificial and randomized lack-of-fusion defects. 

• Investigating the effectiveness of three analytical algorithms to identify defects formed due to 

the lack-of-fusion (LoF) phenomenon by comparing the results of these algorithms with the 

results of a Computed Tomography scan (CT- scan) through the volumetric approach.  

• Customizing the Self-Organizing Map (SOM) algorithm by applying it on the light intensity 

signal for clustering the intensity signal, mapping each cluster to the geometry, and identifying 

the corresponding cluster to the lack-of-fusion defects by comparing the result with the CT- scan 

through the volumetric approach.  
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• Clustering the identified indicators using the K-means algorithm in each 1×1 (mm2) and 

optimizing the targeted area around the center of clusters as the position at which the laser power 

should be changed. 

• Designing and analyzing various sizes of artificial defects when their capping layer was 

fabricated by increasing the laser power in order to identify the optimum laser power for 

healing/minimizing lack-of-fusion defects.  

• Using Data Acquisition system (DAQ) to collect real-time data from the process, including laser 

X-Y geometry, laser power, laser modulation, and off-axial and on-axial intensity signals.   

• Connecting the data acquisition system, defect detection method, and the actuator via a Message 

Queuing Telemetry Transport (MQTT) broker for providing communication among different 

components of the control system.       

• Testing the intermittent control system by means of two sets of experiments and validating the 

effectiveness of the controller by comparing the results with CT-scan results.  
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Figure 1-2: Graphical flowchart of the research conducted in the current thesis 
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1.3 Thesis Outline 

This thesis includes six chapters. Chapter 1 outlines the problem definition, motivation, and objectives 

of the present research. The related literature on the lack-of-fusion defects, in-situ monitoring devices, 

and monitoring algorithms applied to the LPBF studies is reviewed in Chapter 2. Three analytical defect 

detection algorithms, such as Absolute Limits (AL), Signal Dynamics (SD), and Short-Term 

Fluctuations (STF), are analyzed and customized in Chapter 3 to identify the defects created in the 

fabricated part. To improve the detection rate and increase the speed of detection, the Self-Organizing 

Map (SOM) algorithm is used to detect lack-of-fusion defects in Chapter 4. In both Chapter 3 and 

Chapter 4, defect detection algorithms are validated using CT-scan through a volumetric approach. 

Chapter 5 discusses the development of the intermittent control system in which knowledge-based rules 

are defined for increasing the laser power during the process to minimize lack-of-fusion defects in the 

part fabricated by a commercial LPBF system. Finally, conclusions and future work are outlined in 

Chapter 6. 

Chapter 2 to Chapter 5 are adapted from the author's published work and manuscripts submitted or 

will be submitted for publication, as follows: 

• Chapter 2 is some sections of the book published in John Wiley and Sons and some sections of 

the review article which will be submitted in the following year: 

➢ E. Toyserkani, D. Sarker, O. O. Ibhadode, F. Liravi, P. Russo, K. Taherkhani, Metal Additive 

Manufacturing, 1st ed. John Wiley, 2021, doi: 10.1002/9781119210801. [3] 

➢ K. Taherkhani and E. Toyserkani, “A critical review of in-situ sensors and machine learning 

monitoring algorithms in laser powder-bed fusion”. 

• Chapter 3 is a journal article published in the Journal of Additive Manufacturing 

➢ K. Taherkhani, E. Sheydaeian, C. Eischer, M. Otto, and E. Toyserkani, “Development of a 

defect-detection platform using photodiode signals collected from the melt pool of laser 

powder-bed fusion,” Addit. Manuf., vol. 46, p. 102152, Oct. 2021, doi: 

10.1016/J.ADDMA.2021.102152. [4] 

• Chapter 4 is a journal article submitted to the Journal of Manufacturing Processes  
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➢ K. Taherkhani, C. Eischer, and E. Toyserkani, “An unsupervised machine learning algorithm 

for in-situ defect-detection in laser powder-bed fusion”. 

• Chapter 5 is an article that will be filed a patent and then submitted to the Journal. 

The content of these publications has been slightly modified to fit within the scope of this thesis. The 

license agreements are provided in the Letter of Copyright Permission section.  
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Chapter 2. Background and Literature Review 

2.1 Abstract 

Laser Powder Bed Fusion (LPBF) is one type of Additive Manufacturing (AM) process to fabricate 

high-density and high-quality complex parts. However, the lack of uniform quantities that affect serial 

production is critical in LPBF. Therefore, in-situ sensing devices and monitoring techniques are 

introduced to obtain in-situ data and analyze them to enhance the knowledge of the process. In this 

chapter, the fundamental challenges of LPBF are discussed. To address LPBF challenges, quality 

assurance method is defined. Also, in-situ sensors that are implemented in LPBF-AM are reviewed. 

Additionally, this study enlightens the latest statistical and machine learning applications (ML) to detect 

porosities created during LPBF.  

2.2 Additive Manufacturing (AM) and Laser Powder-Bed Fusion (LPBF) 

The advent of Additive Manufacturing (AM) technology played a transformational role in industrial 

application domains. AM is a layer-by-layer fabrication technology by which three-dimensional parts 

are directly developed from CAD models [3]. Through intensive research over the past three decades, 

significant progress has been made in the development and commercialization of the AM process in 

aerospace, automotive, biomedical, energy, and other industrial fields [5], [6].  

One of the advanced AM technologies is Laser Powder-Bed Fusion (LPBF). During the LPBF process, 

a layer of material with a specific thickness is spread over the build platform. Then, a laser selectively 

scans the powder layer and melts powder particles according to the CAD model. The process is repeated 

until the desired part is completed [3]. LPBF is one of the most used AM techniques due to its capability 

to select a variety of materials, including titanium alloy [7], [8], nickel-based super-alloys [9], [10], 

aluminum alloys, and stainless steels [11]. Also, due to the ability of the process to produce high-density 

and high-quality complex parts, LPBF is widely used in manufactured Companies. 

2.3 Fundamental Challenges of LPBF 

 While the LPBF technique has significantly progressed, many fundamental challenges remain 

unaddressed, such as dimensional errors, undesired porosity, delamination of layers, and poor or 

undefined material properties. Part quality is more than just the shape of the final part. The quality is 

fundamentally a part's ability to perform the task for which it was designed while maintaining its 
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structural integrity. Contributing factors are usually included in a part's specifications and typically 

include geometry, surface finish, and mechanical properties. Extensive research and various approaches 

were studied to improve the quality of fabricated parts through material characterization; however, 

many issues have not been solved, such as predicting and controlling defects inside the products. Since 

inner defects have one of the most adverse effects on mechanical properties, experimental advances 

rely on trial and error methods, which are costly and inefficient.  

Another challenge that could affect the form and structure of a part is the number of parameters involved 

in LPBF. Some parameters are not controllable, but they could also influence the quality of the process, 

such as gas flow pressure and powder uniformity. These parameters can adversely influence the quality, 

resulting in low repeatability. On the other hand, the controllable parameters should also be optimized 

by experimental trial and error.  

2.4 Formation of Defect in LPBF 

As defects are one of the challenges of LPBF, detecting defects is an essential step towards increasing 

process confidence. Understanding the defects and conditions in which they are created can lead to 

better processing strategies. Two classifications of defects are keyhole and lack-of-fusion, and they are 

defined as below: 

1- Key-hole: If the powder has a low packing density, the gas between the powder particles 

dissolves in the molten pool. The dissolved gas cannot exit the molten pool, forming a keyhole 

in the manufactured component. Also, when the energy input is high, more powders are over-

melted, and the entrapped gas is generated in the fabricated part.  

2- Lack-of-fusion: If the energy input is insufficient, the powder is not melted completely, and a 

new layer cannot be deposited on the previous layer efficiently. So, the un-melted powder 

remains inside the manufactured part, known as lack-of-fusion. 

Many experts have conducted research to identify the optimum value of process signature to reduce 

porosity in the manufactured part [12]–[14]. However, the best way to reduce the defect would be 

quality assurance. 

2.5  Quality Assurance  

Quality assurance (QA) could be one solution to achieve enhanced quality AM products. The first step 

moving towards QA is enhancing the knowledge of the process. As a result, in-situ sensors are installed 
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to provide valuable information. Thus, real-time monitoring will help shed insight into the process and 

understand deviations through data collected by sensors. However, gathering millions of data per layer 

creates a big data set that requires data mining algorithms to analyze. Thus, sensing, documenting, and 

analyzing the dataset during the real-time process are crucial. 

On the other hand, the quality assurance process must be automatically applied in a minimum amount 

of time. In this way, serial AM productions would be feasible in less time and at lower costs. Thus, in 

this thesis, some types of in-situ sensors installed in LPBF will be reviewed in Section 2.5.1, 

emphasizing the photodiode. Then, the monitoring techniques to analyze the in-situ data to identify 

porosity will be discussed in Section 2.5.2.  

2.5.1  In-situ sensors 

Since quality assurance and repeatability are critical problems in LPBF, many experts and commercial 

vendors have installed in-situ sensing equipment to capture information from the process, leading to 

understanding and controlling it. Types and set-up strategies of in-situ sensors are discussed in the 

following sections: 

 Types 

There are several classifications of sensors suggested by different authors [3], [15]. In-situ sensors can 

be categorized into two major groups: radiative and non-radiative.  

• Radiative sensors sense and measure radiative information. This type of sensor is widely used 

in manufacturing because of its satisfactory features. The radiative sensors can be classified 

based on their principles and outputs. 

• Non-radiative sensors could measure and then convert the physical behavior of the process to 

the electrical signal.  

Each of these categories includes sub-categories, as demonstrated in Figure 2-1. 
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Figure 2-1: Sub-categories of radiative and non-radiative sensors used in LPBF 

Figure 2-2 illustrates the volume of published papers using in-situ sensors until mid-2021. According 

to Figure 2-2, most studies have used radiative sensors (220 papers) followed by non-radiative sensors 

(31 papers). In the literature among radiative sensors, most of the papers associated with the use of the 

visible to near-infrared (NIR) camera (101 papers) followed by the NIR to long-wavelength infrared 

(LWIR) camera (37 papers), X-ray imaging (30 papers), the photodiode (21 papers), the pyrometer (16 

papers), the fringe projection (7 papers), the ICI (5 papers), and the scanner sensor (3 papers). 

According to Figure 2-2, the use of non-radiative sensors is limited to the acoustic sensor (22 papers), 

the thermocouple (4 papers), strain gauge (3 papers), and the displacement sensor (2 papers).  

 

Figure 2-2: Relative emphasis of in-situ sensors reported in the literature using LPBF 
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For the purpose of this study, the commercial photodiode is used. Thus, the photodiode characteristics 

will be discussed in the following section.   

• Photodiode  

A photodiode is a semiconductor device with a P-N junction that converts photons into an electrical 

current. The P-layer junction has positive charges, and the N junction contains electrons or negative 

charges. Semiconductor materials (e.g., Silicon and Germanium) have a band-gap (energy gap) between 

their conduction and depletion bands. Enough energy (more than the energy gap) is required to 

stimulate electrons to move and transfer from the conduction band to the depletion band [16], [17]. 

When the light intensity with greater than the gap energy hits the photodiode, resulting in electrons' 

movement. The electrons' movement towards the cathode and holes’ movement towards the anode 

create the electrical current, as shown in Figure 2-3. The generated electrical current is a function of 

applied voltage, electron charge, Boltzmann constant, and absolute temperature. 

 

Figure 2-3: Schematic cross-section of P-N photodiode (Republished with permission of John Wiley and 

Sons, from [3]) 

For instance, silicon has an average of 1.12 electron volt energy gap between its bands [18]. It means 

silicon requires more than 1.12 electron volt energy to transfer the electrons. 1.12 eV energy 

corresponds to a wavelength shorter than 1100 nm based on Planks’ law. 
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Although Photodiodes are commonly used in optical communication [19], [20], medical devices 

[21][22], and photography [23], [24], it also has applications in the LPBF process to sense thermal 

radiation and light emission. The thermal information is analyzed to detect dimension accuracy [25], 

[26], [27], [28], overheating [29]–[31], balling effect [31], abnormal process [32], [33], and porosity 

[4], [33]–[35].  

For the first time, Kruth et al. [26] and Berumen et al. [27] installed the photodiode to monitor reflected 

intensity signals. A photodiode was implemented with a wavelength of 400-1000 nm and a sampling 

frequency of 10 kHz to measure the mean radiation emitted from the melt pool. The combination of 

photodiode and camera provided information to study the dimensional accuracy. Clijsters et al. [29], 

Craeghs et al. [30], and Gestel et al. [31] also placed the photodiode and the camera to monitor 

overheating. Gestel et al. showed the use of Thorlabs PDA36A photodiode (wavelength range of 350-

1100 nm) to sense light intensity signals. In the study, two CMOS cameras (wavelength range of 700-

1000 nm) were also used to capture images from the melt pool. The data was then analyzed to determine 

melt pool size, intensity, and shape to detect overheating and balling [31]. The Photodiode was also set 

up to discuss the plasma behavior of the melt pool. Okaro et al. [32] and Jayasinghe et al. [35] showed 

how three photodiodes' complex arrangements could monitor thermal radiation and plasma emission. 

The module was comprised of three photodiodes with 100 kHz sampling time. The first photodiode 

(700-1050 nm) was installed to detect plasma emission, the second photodiode (1080-1700 nm) was 

used to detect thermal radiation, and the third photodiode was placed to measure the intensity of the 

laser beam. Table 2-1 lists the wavelength and sampling time of photodiodes used in the literature. 

Also, Table 2-1 specifies any additional filters/lenses added to the in-situ monitoring system.    

This thesis uses the data of two commercial photodiodes placed in EOS M290 to identify lack-of-fusion 

pores. The integrated sensors' sampling frequency and wavelength ranges were 60 kHz and 750-900 

nm, respectively.  

Table 2-1: The sampling frequency and wavelength of photodiodes used in the LPBF studies, as well as 

any additional filters/lens   

References 
Wavelength 

(nm) 

Sampling 

time (kHz) 
Additional equipment Machine 

Kruth et al. [26] 

Berumen et al. [27] 
400-1000 10 - In-house 

Gestel et al. [31] 350-1100 100 Amplifier 0-70 (dB) In-house 

Okaro et al. [32] 

Jayasinghe et al. [35] 

700-1050 

1080-1700 
100 Focusing lens 

Renishaw 

500M 



 

 13 

Egan et al. [33] 

Clijsters [29] 780–950 10 MHz Optical filters In-house 

Craeghs et al. [30] 400-900 20 Optical filters In-house 

Demir et al. [11] 800-1700 1 MHz Optical filters In-house 

Nadipalli [28] 
400-1100 

1200 - 1800 
100 

- 

Low-pass filters 
In-house 

Yadav [36] NIR 100 Focus lens SLM 280 

Dunbar [37], [38] 520-530 100 
520 and 530 band-pass 

filters 
ProX 200 

Bisht [25] 1150-1800 Unspecified A 1150 nm high-pass filter In-house 

Artzt [39] NIR 100 - SLM 280 

 Mounting strategy 

During the part qualification process, AM monitoring systems must document the build process and 

capture information. Two types of mounting strategies are used to set up sensors: “on-axial” and “off-

axial” [40]. The on-axial sensor is placed in the optical path direction of the power source (laser), and 

data is transferred through the f-Ɵ lens, mirror, and beam splitter to the sensor. Figure 2-4 represents 

two set-up arrangements of the on-axial sensor.  

 

Figure 2-4: The on-axial position of (a) pyrometer (Source: Republished with permission of Elsevier, 

from [41]) and (b) ICI (Source: Republished with permission of Elsevier, from [42]) 

The off-axial sensor is installed outside the optical path with a given angle of view. Two different off-

axial sensor mounting strategies are depicted in Figure 2-5.  
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Figure 2-5: The off-axial position of (a) camera (Source: Republished with permission of Elsevier, from 

[43]) and (b) DLSR camera (Source: Republished with permission of Elsevier, from [44]) 

Figure 2-6 demonstrates the volume of papers associated with on-axial and off-axial sensor setup based 

on their type implemented in the LPBF system. According to Figure 2-6, the camera (visible to NIR 

and NIR to LWIR), pyrometer, and photodiode sensors have been installed both on-axially and off-

axially. Based on the fundamental, optical inline coherence imaging was on-axially implemented, 

whereas X-ray imaging, fringe projection, scanner, acoustic, thermocouple, strain gauge, and 

displacement sensors were installed off-axially.  

 

Figure 2-6: Relative emphasis of in-situ sensors arrangement based on their types reported in the 

literature using LPBF 
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 Table 2-2 specifically categorizes different on-axial and off-axial photodiode arrangements to monitor 

the process signature used in the LPBF process.   

Table 2-2: Mapping of the literature on in-situ photodiode of LPBF to monitor the process signature 

On-axial sensor arrangement  Off-axial sensor arrangement  

Abnormal process [32], [33] 

Geometry/Dimension accuracy 

[26], [27], [28] 

Overheating [29]–[31] 

Drift layer [36] 

Balling [31] 

Porosity [33], [34], [4] 

Density [35] 

Emissivity [37] 

Geometry/Dimension accuracy [25], 

[28] 

Porosity [38] 

 Commercially available sensors 

Although many vendors have installed sensor(s) on the LPBF machines, most of them are mainly 

designed to gather in-situ data that needs offline processing. As a result, to automatically generate an 

alarm or control the process, further developments are needed. Different developers of LPBF systems 

have offered process monitoring toolkits. Table 2-3 summarizes information on some of the commercial 

sensors mounted on the LPBF machine.  

• EOS 

 EOS offers two modules to capture and analyze the data:  

1) EOSTATE Meltpool Monitoring, which includes on-axial and off-axial photodiodes. Both 

sensors measure the light intensity emitted from the melt pool with a 60 kHz sampling 

frequency. After the process, the data can be analyzed using the EOSTATE monitoring 

software to find the intensity signal disturbance. Melt pool monitoring data is very sensitive 

to deviations resulting from power fluctuations. This software is used to analyze the light 

intensity signal in this study (0).  

2) EOSTATE Exposure Optical Tomography includes an integrated camera to capture 

powder beds' images. The camera uniformly captures images in the near-infrared spectral 

range and with a resolution of 2560×2160 pixels. Then, the images are correlated with 

thermal radiation. Analyzing the correlated data is provided in the EOSTATE Exposure 

OT software to identify any thermal deviation. Exposure OT is more sensitive to scanning 

speed and hatching distance deviations [45].  
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• SLM Solution 

SLM solution offers two toolkits to monitor the melt pool and laser power: 

1) Melt pool monitoring (MPM) includes an on-axial pyrometer to measure thermal 

radiation from the melt pool at a rate of up to 100,000 times per second [46].  

2) Laser power monitoring (LPM) is recorded as the actual emitted laser output at a rate of 

100,000 times per second. The laser output is measured by uncoupling the laser beam in 

the optical path and reflecting it to a sensor [47]. 

• GE Additive (Concept Laser) 

 The Company offers two separate modules to collect data from the melt pool: 

1) QM melt pool 3D module is a monitoring tool with an on-axial monitoring setup of the 

photodiode to estimate the melt pool area and intensity. This system provides two kinds 

of data. The first data set is the average intensity of the component after completing the 

print, and another one generates a 3D dataset of the part and its structure. This 

information is accessible after the process, and there is not currently used for defect 

correction and feedback control [48].  

2) QM coating focus on the dose factor. That is the control amount of the powder released 

by the powder hopper before the recoating system. This factor depends on the sufficient 

powder released before the recoating operation [49]. 

• Renishaw 

 InfiniAM has been offered by Renishaw to monitor the energy input and melt pool emission. This 

module provides information about melt pool characteristics in high temporal resolution to provide a 

2D and 3D view of the build [50].  

• Trumpf 

Truprint consists of a high-resolution camera to monitor melt pool, powder bed, and part geometry. 

The integrated camera captures powder bed images layer-by-layer. Image analysis modules are also 

provided, and comprehensive analysis of each layer can be performed and compared with the CAD 

model.    
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• B6 Sigma, Inc. 

 B6 Sigma has developed the PrintRite3D that includes Sensorpak, a set of on-axial and off-axial 

sensors.  A software called “Inspect” to determine quality metrics and identify suspicious patterns layer-

by-layer. A software called “Contour” for real-time monitoring and reconstruction of the part geometry 

and a module to compare the result with the CAD model. 

Table 2-3: Some commercial sensors mounted on the LPBF machines 

Developer Module Name In-situ sensor Monitored items 

EOS 
EOSTATE Meltpool Two photodiodes Melt pool 

EOSTATE Exposure OT Camera Powder bed thermal map 

SLM solution 
Melt pool monitoring Pyrometer Melt pool 

Layer control system Camera Powder bed 

GE Additive 

(Concept Laser) 
QM melt pool 3D Photodiode Melt pool (area and intensity) 

Renishaw InfiniAM Photodiode Melt pool 

Trumpf Truprint Monitoring Camera Powder bed and part geometry 

B6 Sigma PrintRite3D 
photodiode 

pyrometer 

Different monitoring 

possibilities 

2.5.2 Monitoring techniques 

Achieving the excellent quality of metallic AM parts is a challenging task due to the high complexity 

of the physical phenomena and the lack of high fidelity and high-speed mathematical and statistical 

models. To address some of these challenges, much emphasis has been recently placed on the 

monitoring of AM processes to shed some light on the process dynamics and signatures [26], [27], [29], 

[51]–[54]. The monitoring techniques will be categorized into statistical and machine learning 

techniques. However, those methods that have been used to detect porosity will be discussed here in 

Sections 2.5.2.1 and 2.5.2.2.  

 Statistical techniques for the detection of porosity 

After collecting in-situ data, the sensor's data should be processed/conditioned and analyzed to extract 

the desired information. Different signal conditioning and statistical methods are discussed in the 

literature to monitor the AM processes effectively. However, those methods used to detect porosity will 

be discussed in this section.  

Image grabbing from the process and image segmentation method was used to detect 

porosity in LPBF. Foster et al. [55] and Abdelrahman et al. [56] showed how the image 

segmentation method could help to detect porosity. They mounted the DSLR camera and 
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several flash modules inside the EOS M280 build chamber to provide high image contrast. 

The camera was captured images from the manufacturing of samples printed with a 

variation of print parameters to create a lack-of-fusion. Foster applied Image processing 

and 3D X-ray scan to correlate the results with the CT-scan data. [55]. Although the detail 

of the image segmentation method was not disclosed, the study showed the potential of the 

technique to detect defects. Abdelrahman et al. has another approach in which images were 

cut and normalized to compare harmonized ones, and the level set segment method was 

applied as represented in Figure 2-7 [56]. The identification of 28 artificial defects was 

correlated by a CT scan using a confusion matrix. Although the accuracy of the matrix 

showed a high level of the true positive rate, the false-positive rate was also too high.  

 

Figure 2-7: The procedure of segmentation method from initialization (first row) to the final map (second 

row) (Source: Republished with permission of Elsevier, from [56]) 

One of the emerging technology for pore detection in LPBF is a commercialized system developed by 

the MTU Aero Engines team [57]–[59]. They used an sCMOS camera system with a 5 Megapixels 

detector. The integrated sensor captures 10 frames per second. Then, all 10 capture images are 

combined into one single image. In the next step, the final image is correlated with the light emitted 

from the process. However, the emitted light is a combination of three sources (laser radiation, thermal 

emission, and plasma emission), as shown in Figure 2-8, so a band-pass filter was also used to filter out 

the laser reflection and plasma emissions from thermal radiation. Then the derived thermal signal can 

be used to identify its deviation. Any thermal deviation is interpreted as a potential defect in the final 

printed part. The final data is a layer-by-layer exposure image in which cold and hot spots correspond 



 

 19 

to the nominal and abnormal areas with a resolution of 0.1 mm × 0.1 mm [59], as shown in Figure 2-8. 

This technique is used in the EOS Exposure OT [45].   

 

Figure 2-8: Three Layer-wise Optical Tomography (OT) images used in LPBF (Source: Republished with 

permission of AIP Publishing, from [57]) 

This technique is correlated to micro-computed tomography [58] and digital radiography [59] to 

identify a lack-of-fusion. Signal/data conditioning and methodologies for detection of crack and 

delamination.   

 Machine learning technique to detect porosity 

Machine learning is an application of artificial intelligence (AI), providing the opportunity to learn 

from processes and then predict the processes through data patterns. The learning process is included 

in data acquisition and pattern recognition. The machine learning methods can predict the formation of 

flaws in real-time from LPBF due to their fast processing. Machine learning algorithms can be classified 

into three main groups: 1) supervised learning, 2) unsupervised learning, and 3) reinforcement learning. 

These methods include several sub-techniques, and some of them are used in AM quality assurance 

platforms. Although unsupervised and reinforcement learnings were applied on many metal AM 

processes to detect pores, only supervised learning has been applied to identify porosity in LPBF. The 

supervised learning algorithm is trained with a labeled dataset in which each input feature X is labeled 

with an output Y. By knowing the input and output datasets, the model is trained to identify the 

relationship between input and output variables. Supervised learning can solve two types of problems: 

classification and regression. Classification maps the function from the input to discrete output; 

however, the regression model is a predictive model to estimate continuous output. In the following 

sections, the applications of classification and regression models to detect porosity generated during 

the LPBF process are listed in Table 2-4. 
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Table 2-4: Machine learning techniques applied in LPBF to detect porosity  

 Method References 

Classification 

SVM [44], [25], [62], [63], [61] 

MLP [60], [61], [64], [65] 

CNN [66], [67], [68], [64], [69] 

SNN [67] 

Conditional Autoencoder [69] 

DSCNN [66] 

KNN [61], [63] 

Regression 
GP [70] 

NN [71] 

 

• Classification  

In the classification method, the ultimate goal is to predict output labels based on the dataset's previous 

observation. Various classification methods are proposed to evaluate prediction performance; however, 

the most common way is to calculate the accuracy. The accuracy is the percentage of correct 

classification out of all predictions. Table 2-4 lists the recent classification applications in metal AM. 

According to Table 2-4, support vector machine (SVM), neural network (NN), and K-nearest neighbors 

(KNN) were applied in LPBF to detect porosity.  

Scime et al. [62], Gobert et al. [44],  Nadipalli et al. [25],  Mahmoudi et al. [63], and Imani et al. [61] 

applied SVM to identify defects by analyzing in-situ images. For example, Scime et al. [62] analyzed 

the images from the melt pool of In718 fabricating by EOS M290. A SIFT feature technique was 

calculated to extract the input images based on the 36 process parameter combinations to produce one 

of the desirable, balling, severe keyholing, keyholing porosity, or under-melting using qualitative and 

quantitative measures. The images were then converted into a standard vector format or HoG under 

three different contrast adjustments. The images were scaled using gamma values 7 of 1 (no change), 

0.75 (decreased contrast), and 10 (increased contrast) since each feature is more visible in specific 

contrast. The final fingerprint consisted of nine different segments to describe the gradient fields under 

different contrast adjustments and different melt pool regions. In the next step, t-distributed Stochastic 

Neighbor Embedding was used to reduce data dimension, and multi-class SVM was applied to classify 

input. 85.1% was reported for 10-fold cross-validation to support the feasibility of the SVM algorithm 

[62].  

In the study of Kwon et al. [72], Zhang et al. [73], Caggiano et al. [68], and Shevchik et al. [67], the 

CNN was used to predict porosity created by changing print parameters. For instance, Kwon et al. [72] 

created randomized defects by changing laser power during the fabrication of seven SUS316L 

specimens using WINFORSYS. Under six conditions of laser power 50, 100, 150, 200, 250, 300, and 
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350 W, images were captured with the framerate of 2.5 kHz. After clipping and de-noising, the images 

were randomly used to train, validate, and test the CNN for classifying melt pool images. By dropping 

the number of nodes and increasing the layer number, even the images with blurred edges were achieved 

satisfactory results. The model had a weak performance on the Leave-one-out evaluation; however, the 

algorithm can find abnormal processes by simultaneous classification of various shapes.  Ertay et al. 

[69] and Shevchik et al. [67] compared the result of CNN with other types of DNN, whereas Snow et 

al. [64] used a hybrid neural network. Ertay et al. [69] compared CNN and CVAE (Conditional 

Variational AutoEncoder) that were trained based on melt pool physics and CT-scan data. Thus, in 

Ertay’s study in-situ sensor was not used. Shevchik et al. [67] compared CNN with SCNN. A fiber 

Bragg grating (FBG) sensor was used to capture acoustic data. The sensor was on-axially installed on 

Concept M2 at a distance of 20 cm away from the melt pool. In addition, the cubical sample with 

CL20ES stainless steel powder was printed by changing scan speed (50, 79, and 132 J/mm3) to provide 

three levels of energy input. In the Snow’s study [64], NN and CNN models were used to identify lack-

of-fusion defect. First, a 36.3-megapixel DSLR camera (Nikon D800E) and various lightening 

conditions were placed on a commercial 3DSystems ProX 320 from virgin Ti-6Al-4V to capture six 

images M1-M6 (three images after post-recoat and three images after post-scan) from 81 cylindrical 

coupons. The captured images from 20 coupon samples (individually and in the form of dimensional 

tiles) were selected and labeled by XCT using a custom automated defect recognition (ADR) algorithm 

[44], [60] as nominal and anomaly and fed into series of NN and CNNs models. In the beginning, each 

model was trained separately, and results were compared through a confusion matrix demonstrating 

that the CNN accuracies ranged from 69–78%, and the NN accuracies ranged from 56–66%. Then, to 

increase the accuracy, another technique was proposed by feeding the SoftMax outputs from CNNs and 

NNs to train data into another shallow neural network with five neurons in one hidden layer. The new 

approach resulted in an accuracy of 93.5%. Another build was fabricated to test the model, which 

showed an accuracy of 87.3% [64]. 

 Another classification algorithm that was applied in LPBF is KNN. Although the KNN algorithm is 

easy to implement, finding the optimum k is one challenge. Besides, the accuracy of the algorithm 

depends on the scale, dimension, and quality of data. KNN classification method is not commonly used 

in the AM process. Imani et al. [61] applied KNN to compare its result with other ML methods. The 

result of KNN prediction was compared with the result of SVM and FFNN, which showed that KNN 

had poor performance.    
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• Regression 

The regression model predicts the mathematical equation to map the input (x) variable to the output (y) 

variable. The regression model can solve many problems with discrete input, multi-input, and time-

series input variables. The performance of the regression model is mostly evaluated by Mean Squared 

Error (MSE) and Root Mean Square Error (RMSE). Many types of regression models are proposed 

according to the number of input data, the shape of the regression line, and the input variable type. 

According to Table 2-4, the Gaussian process (GP) and neural network (NN) are regression models 

applied in LPBF. 

The Gaussian process (GP)  is used to detect porosity in the study of Tapia et al. [70]. Tapia et al. 

applied the GP model on experimental data to predict melt pool depth in single-track experiments [74] 

and porosity [70]. A simulation model was developed using a 26 training dataset, creating a variation 

on the process parameters (laser power, scan speed, and laser beam size combination). The GP 

prediction was made over processing parameters, as depicted in Figure 2-9, which showed the mean 

value and standard deviation of the prediction. The standard deviation value indicated less than 20 μm 

for most of the points; however, areas with higher STD are attributed to extrapolation. Then, the model 

was validated using a low mean absolute predictive error MAPE ≈ 6 μm. 

 

 

Figure 2-9: (a) Mean value and (b) standard deviation of the GP prediction over the processing 

parameters; black dots represent the locations of the training data points showing very low values of the 

standard deviation. (Source: Republished with permission of Springer Nature, from [74]) 

The result represented promising performance in a noisy environment. In another study, Tapia et al. 

discussed the use of GP to calibrate a convenient criterion to avoid keyhole porous [70].  
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The neural network also can use as a regression model to estimate continuous output. The NN 

regression model can be used to predict the flaws happening in the LPBF process. Williams et al. [71] 

applied the image-modality-to-image modality regression model to predict the flaws happening in the 

process. In the study, Spatially Resolved Acoustic Spectroscopy (SRAS) [75] was used to monitor 

acoustic frequency from the building of ten samples. These samples were printed by: 

i.  Titanium (Ti-6Al-4V) using Renishaw AM250 machine, 

ii.  Nickel alloys (CM247-LC) using ReaLizer SLM50 machine, and  

iii. Titanium alloy contaminated by tungsten using ReaLizer SLM50 machine. 

 The SRAS characteristics were then extracted using the Fourier transform. SRAS information (input) 

and optical micrograph (output) were fed into a DCB-MIR network, which is a type of fully 

convolutional block densely connected network and builds upon ResNet [76] and (DenseNet) [77] 

models. The similarity between the proposed model and optical micrograph was evaluated using cosine 

similarity. This criterion notified the progress in detecting the size and location of defects, especially 

lack-of-fusion and scratches; however, some of the prominent pores were not identified because of the 

limited number of input samples.  

2.6 Summary 

In this chapter, the laser powder-bed fusion (LPBF) process was explained, and the importance of 

quality assurance was discussed. Also, in-situ sensors installed in the LPBF system were discussed, 

which are categorized into two groups: (i) radiative and (ii) non-radiative. Besides, two types of 

installation to mount sensors in the LPBF system were reviewed. In-situ sensors are installed to capture 

information during the fabrication of parts. Afterward, the sensor's data is analyzed to identify the 

formation of defects. Thus, the statistical and machine learning algorithms were explained to detect 

porosities created in printed parts.  
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Chapter 3. Development of a defect-detection platform using photodiodes 

signals collected from the melt pool of laser powder-bed fusion 

3.1 Abstract 

The focus of this chapter is to highlight the systematic implementation of three analytical methods, 

including Absolute Limits (AL), Signal Dynamics (SD), and Short-Term Fluctuation (STF) algorithms 

on the datasets collected from a photodiode-based monitoring setup for in-process identification of 

porosity formed due to the lack-of-fusion (LoF) phenomenon. In this systematic approach, the defects 

are artificially designed and embedded in the coupon samples to resemble the formation of LoF pores 

in parts composed of Hastelloy-X. Then, the effectiveness of algorithms (AL, SD, and STF) is 

investigated. These algorithms are applied to understand the impact of artificial defects on the light 

intensity collected by on-axial and off-axial photodiodes to detect the LoF pores. The image processing 

algorithm is then applied to analyze the output of the software. Then, through the model developed for 

detecting artificial defects, randomized defects are detected to explore the impact of variation in print 

parameters on the detection of defects. On the other hand, the actual geometrical feature and position 

of defects are identified through post-processing computed tomography (CT) scanning. Then, the 

segmentation method and volumetric approach are used to examine the correlation between the results 

of the defect detection algorithm and CT-scan. 

3.2 Methodologies and Experimental Setups  

3.2.1 Design of experiments and process parameters 

Two sets of design of experiments (DoE), including cubical samples with a size of 8×8×10 (W×L×H) 

mm, were devised and labeled as R-series (Figure 3-1. a) and T-series (Figure 3-1. b). In the design of 

the R-series, the effect of LoF was mimicked by embedding artificial voids in the samples, as shown in 

Figure 3-2. Two different void geometries of cylindrical (R2, R3, and R5) and spherical (R4) shapes 

with different sizes were fabricated using the EOS-M290 LPBF machine. One control sample (R1) 

without any artificial void was also printed. To study the pores’ distribution, voids were distributed at 

different vertical positions with respect to the build plate and different print layers location (R5, shown 

in Figure 3-2.d). Additionally, three samples (R6, R7, and R8) with a similar design to R2 were included 

in the first set of DoEs, but they were printed with different process parameters, as highlighted in Table 
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3-1. This arrangement will combine artificial voids and process parameter deviation on the signal 

intensity and stability. The print parameters listed in Table 3-1 were selected according to the print 

parameters used to obtain high-quality Hastelloy-X [EOS Nickel Alloy HX, Krailling, Germany] parts 

[78]. Each sample was printed eight times at different locations of the build plate with respect to the 

direction of the gas flow and the re-coater (Figure 3-3. a). In the design of each sample, vertical and 

horizontal grooves were added for registering the location of porosities in the CT scan datasets (Figure 

3-1).  

 

Figure 3-1: CAD model of reference samples: a) series R b) series T.   
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Figure 3-2: 2D cross-sections of samples showing the distribution of the artificial voids in samples: a) R2 

which includes 6 similar sets of three sizes of defects (Ø, H=200 µm, Ø, H=150 µm, and Ø, H=100 µm), b) 

R3 which is including 3 similar sets of six sizes of defects (the diameter: Ø =320 µm, Ø=280 µm, Ø=240 

µm, Ø =200 µm, Ø=160 µm, and Ø=120 µm and the height: H=200 µm), c) R4 which is including 6 similar 

sets of three sizes of defects (Ø=300 µm, Ø=250 µm, and Ø=200 µm), and d) R5 which is including 5 

similar sets of one size of the defect (Ø, H=200 µm) printed in 3 scenarios of distribution (5×5, 9×9, and 

8×8). Ø is diameter and H is height, both in µm.  
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Table 3-1: Types and print parameters in print 1: 8 samples printed in 6 locations.  

Sample 

# 
Type of artificial voids 

Power 

(watt) 

Hatching 

Distance (µm) 

Speed 

(mm/sec) 

R1 Standard (no artificial voids) 200 90 1000 

R2 Cylindrical voids 200 90 1000 

R3 Cylindrical voids 200 90 1000 

R4 Spherical voids 200 90 1000 

R5 Cylindrical voids 200 90 1000 

R6 Cylindrical voids at the different laser power 100 90 1000 

R7 Cylindrical voids with the different hatching distance 200 150 1000 

R8 Cylindrical voids with the different scanning speed 200 90 1500 

In T-series, the samples were designed and printed by only varying print parameters to create 

randomized and stochastic voids produced by LoF. The geometry of these samples was similar to R1, 

and the print parameters for each one are listed in Table 3-2. Six samples from each design were labeled 

and arranged on the build plate (Figure 3-3. b). Additionally, in all samples (R-series and T-series), the 

stripe scan strategy with 67⁰ rotation after each layer was used; but, the down-skin scan strategy 

(process parameters are similar to the core) was used around voids embedded in samples R2- R8. It 

should be noted that the data collected for this study only entails the layer that cap the defect, and for 

these “capping layers”, no down-skin strategy is used. Also, the 4𝜎 spot diameter of the laser beam was 

100 μm (0.004 in), where the laser used was a 400 W Yb-fiber setup. 

Table 3-2: Types and print parameters in print 2: 4x6 samples.  

Sample # Type of variation 
Power 

(watt) 

Hatching 

distance (µm) 

Speed 

(mm/sec) 

T1 Standard 200 90 1000 

T2 Power 100 90 1000 

T3 Hatching distance 200 150 1000 

T4 Speed 200 90 1500 
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Figure 3-3: Samples layout on the build plate: a) R series; b) T series.  

3.2.2 In-situ monitoring devices 

The integrated sensors in the used EOS M290 setup are two photodiodes with a 60 kHz sampling 

frequency. On-axial and off-axial photo-diodes capture light intensity signals from the melt pool in the 

wavelength range of 750-900 nm. The on-axial photodiode is aligned with the laser beam path through 

a beam splitter, and the off-axial is fixed and mounted on the roof of the building chamber. The 

photodiodes collect light intensity in the visible and near-infrared ranges emitted from the melt pool 

[29]–[31], [79], as shown in Figure 3-4. In addition to the light intensity data, laser modulation and X/Y 

scanner position are recorded and stored in the associated PC.   
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Figure 3-4: Schematic of LPBF equipped with on-axis and off-axis photodiodes.  

Intensity and geometry corrections of both on-axis and off-axis photodiodes datasets are required. The 

intensity correction for the on-axis data should be implemented due to the chromatic aberration 

phenomenon. It is initiated because the wavelength of light intensity recorded by the photodiode is not 

the same as the wavelength optimized for the scanner mirror and f-theta lens. In contrast, because the 

off-axis photodiode is not on the platform's center, it gathers intensity signals from different angles and 

distances. The geometric correction is needed to be calculated before the print to find the platform's 

absolute position due to the image distortion caused by the F-theta lens and scanner mirror [45]. It 

should be noted that the monitoring process is designed and provided by the vendor. Additionally, 

intensity and geometry corrections are also implemented by the OEM's monitoring system. 

3.2.3 Analysis of the data collected by in-situ monitoring  

In-situ data is analyzed by two phases: 1) EOSTATE software 2) image processing and statistical 

analysis. The EOSTATE software is designed to analyze the photodiode signal to identify the location 

of fluctuation in the final part. By the software, the in-situ data is analyzed, and the result of the analysis 

is exported as a greyscale TIFF image per layer. TIFF images show the nominal (greyscale) and 

abnormal (yellow pixel which is the default of software) points of the printed part. Each pixel in the 

TIFF image is representing the average value of the intensity signal in the area of 5.55×5.55 µ𝑚2. In 
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the second phase, TIFF images are then analyzed through the segmentation method and correlated with 

CT-scan analysis. In the following paragraphs, each step is explained in detail. 

The schematic of signals and detection method is shown in Figure 3-5. Figure 3-5.a demonstrates the 

data collection process. After the print, data is accessible for analysis using commercial EOSTATE 

Meltpool Monitoring software [EOS GmbH, Krailling, Germany]. The collected data are imported to 

EOSTATE software. 

 

Figure 3-5: Schematic of a) photodiode data collection, b) applying one of the algorithms and tuning 

threshold ranges, c) magnifying part of the signal to show signal perturbation, and d) one layer of the 

sample included yellow pixels which are corresponding to the location of signal perturbation.     

In the next step (Figure 3-5.b), data processing algorithms are applied. Three algorithms are 

incorporated into the software: Absolute Limits (AL), Signal Dynamics (SD), and Short Term 

Fluctuations (STF) [45]. These algorithms are designed to detect specific process phenomena that might 

affect the quality of the printed part such as sudden laser power variation, gas flow issues, and short 

instabilities. The central feature of all of the algorithms is the moving average [45]. Specifically, the 

Absolute Limits algorithm is developed to apply the moving average on the light intensity signal. The 

Signal Dynamics algorithm can calculate the signal disturbance in which each measured point will be 

compared to the mean value. This characteristic is also filtered by the moving average. The Short-Term 

Fluctuations is a moving average with a longer filter length. To analyze the dataset a threshold range 
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should be defined for each algorithm. The threshold range of Absolute Limits and Signal Dynamics 

algorithms are defined directly by users; however, the threshold bands of Short-Term Fluctuations 

algorithm are calculated based on the given upper and lower level of moving average signal (e.g. 80% 

to 120% of moving average signal). The schematic of each algorithm is presented in Figure 3-6. 

Additionally, the window size/length of moving average should be chosen for each algorithm by a user.   

 

Figure 3-6: Schematic of a) Absolute Limits (AL), b) Signal Dynamics (SD), and c) Short Term 

Fluctuations (STF) after applying the threshold.  

 By applying the algorithm and threshold ranges (Figure 3-5. b), some parts of the signals might exist 

outside the threshold ranges. Any signal higher than the up-level threshold and lower than the down-

level threshold is defined as a signal perturbation (Figure 3-5. c). Signal perturbation is visualized as a 

yellow pixel in a TIFF image which is corresponding to one layer of the printed part. The yellow pixel 

may be corresponding to the location of defects in the last TIFF images (Figure 3-5.d). As a result, the 

output of the software is one TIFF image per layer which could be exported for offline analysis.  

The results of deploying the three algorithms were investigated on the on-axial and off-axial 

photodiodes data. A data screening procedure was pursued when the following ranges of threshold and 

the different number of window lengths for the moving average window were selected: 

1) Absolute Limits: Threshold 10000-22000 and window length 5-30 

2) Signal Dynamics: Threshold of 20-1000 and window length 5-30, and,  
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3) Short Term Fluctuations: Threshold 65-140 and window length 5-20.  

It should be noted that the threshold range is normalized values based on the light intensity. From 

observing the results of this step, each threshold was narrowed down to a smaller band to highlight the 

effect of the artificial defect. The range of window length (5-30) was optimized by observing results 

after applying them and by matching the location of indications/yellow pixels and artificial defects. 

After the screening phase, the following narrower ranges were chosen for the analysis step:  

1) Absolute Limits with the threshold range of 12000-20000 and window length of 10,  

2) Signal Dynamics with the threshold range of 50-800 and window length of 15, and  

3) Short Term Fluctuations with the threshold range of 75-135 and window length of 16.  

The analysis was performed on the layers that include the artificial defects followed by five successive 

layers (200 µm) printed on the top of that, as demonstrated in Figure 3-7b, Figure 3-7c, and Figure 3-7d 

for three sizes of cubical voids in sample R2. The result of sample R2 (defect radius= 200µm and defect 

height=200µm) is shown in Table 3-3 to show the example of comparison among algorithms on on-

axial and off-axial signals. 

 

Figure 3-7: Schematic of a) sample R2 included artificial voids and five successive layers on top of the 

artificial voids with radius and height of b) 100 µm, c) 150 µm, and d) 200 µm.   
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 Table 3-3: Applying the detection algorithms on the five consecutive layers after the defect (Layer 0: last 

layer of the international defect) (sample R2, defect radius= 200µm and defect height=200µm).  

 

The results demonstrate a high signal fluctuation in layer 1 and layer 2 in the artificial defect zones (see 

yellow pixels corresponding to the artificial defects in Table 3-3). The matching result between the 

location of artificial defects and yellow pixels indicates that the AL algorithm, applied to both 

photodiodes' datasets, can effectively identify the location of defects. Furthermore, the STF algorithm 

applied to the on-axial photodiode dataset may identify the location of defects; however less amount of 

yellow pixels are found in the artificial defect zone. Besides, the STF algorithm could not identify all 

of the artificial defect (demonstrated in Table 3-3 column: layer1 and row On-axial STF). In addition, 
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yellow pixels after applying SD are not relevant to defect position. According to the results shown in 

Table 3-3, the AL seems to be a more suitable approach for detecting the location and size of artificial 

defects added to the part. Additionally, AL could minimize the irrelevant yellow pixels to defect 

positions which are shown after applying SD on the on-axial and off-axial signal and STF on the off-

axial signal. However, by applying AL on the on-axial and off-axial signals, the on-axial signal 

highlights more fluctuation on the signal and better defect detection, as shown in Table 3-4. Table 3-4 

shows layer 1 (printed on top of the artificial voids) for sample R2 in different positions of the build 

plate. Analyzing the results confirms that the application of the AL algorithm on the off-axial 

photodiode signal results in a fewer yellow indicators than the on-axial photodiode signal. Also, in 

some locations like R2-7, all defects are not identified through the off-axial photodiode signal. As a 

result, the on-axial photodiode datasets were selected for further analysis in this study.  

Table 3-4: Applying the AL algorithm to the datasets collected by on-axial and off-axial photodiodes on 

layer 1 based on the explanation in Table 3-3 (sample R2, defect radius= 200µm and defect 

height=200µm) 

 

In the next phase, an image processing algorithm should be conducted to evaluate the performance of 

the algorithm. 

3.2.4 Image processing algorithm  

 After applying the AL algorithm on the on-axial signal, the generated images were analyzed. In the 

first step, less than three adjacent yellow pixels were considered as noise, and more than three adjacent 

yellow pixels were taken into account in the next step of the analysis. In the next step, the images were 

segmented into areas of interest around each artificial defect using MATLAB (Figure 3-8b). The center 

of each circular area is located in the center of each defect. Besides, in the samples with cylindrical 

defects (R2, R3, R5, R6, R7, and R8), the radius of area of interest (AOI) around the artificial defect is 
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chosen the same as the radius of artificial defects proposed in the design file. In the sample with the 

spherical defects (R4), the radius of AOI is equal to the radius of the spherical defect. The following 

pixel numbers were considered in Table 3-5: 

Table 3-5: Number of pixels per radius of each circular area for each sample with different defect size 

(each pixel is representing the average value of intensity signal in the area of 5.55×5.55 (µm×µm).  

Sample 
Defect 

radius (µm) 

Number of Pixel per 

radius of the circular area 

R2, R6, R7, 

and R8 

100 28 

150 31 

200 36 

R3 200 36 

R4 

200 36 

250 40 

300 45 

R5 200 36 

 

Figure 3-8: a) An example of an image generated by the software for one layer of the print, b) Selection of 

49 regions of interest around each defect in sample R2 at Location 1.   

In the following sections, the AL algorithm results with the selected threshold range will be presented.  
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3.2.5 Statistical analysis  

The experiments' results are compared through the determination of the average and standard deviation 

of 'indicators' (yellow pixels) percentage in each cluster. Besides, to investigate the statistical 

significance of each input, a single factor (size and distribution separately) analysis of variance 

(ANOVA) with a significance level (α) of 0.05 is performed. The ANOVA is conducted on the number 

of indicators to study if the size/distribution of artificial defects and their location on the build plate 

affect the light intensity signal (p−value<α).  

3.2.6 Computed tomography (CT-Scanning)  

All samples were analyzed for micro- CT scan (μCT) to validate the actual pores' positions and 

distribution. The coupon samples were subjected to the X-ray μCT on Zeiss Xradia Versa 520 system 

[Carl Zeiss Microscopy GmbH, Germany] with 10 W source power, 160 KV source voltage, 14 µm 

voxel size, and 14 mm field of view. A HE6 filter was used, where the X-ray optics was 0.4× lens. 

Exposure time was set to 3.0 s, and the number of projections was 1601. 

The analysis of the coupon samples was then performed using the Dragonfly Pro v4.0 (Object Research 

Systems Inc., Montréal, QC) software package to find the positions of defects (x, y, and z-direction) as 

well as the density of samples. It should be noted that Dragonfly provides the alignment feature to re-

orient and redefine coordinates based on the STL CAD file. To this end, vertical and horizontal grooves 

considered in the coupon design were used to correctly register the CT data versus STL models. 

Consequently, the CT-Scan results were compared with the analyzed data from the photodiodes, as 

explained in the following sections.   

 Correlation between CT- scan and analyzed data  

Based on the knowledge gained from detecting the artificial defects (samples R2, R3, R4, and R5), the 

rest of the samples in R-series (R6, R7, and R8) and T-series are investigated through a new image 

segmentation approach. In the first step, all collected images are stacked to create one model. In the 

second step, each model is segmented into 82 batches (Figure 3-9. a). Each batch includes three layers 

of the print (120 µ𝑚). In the next step, each is subdivided into 4356 voxels (Figure 3-9. b). The size of 

each voxel is 120 (µ𝑚) × 120 (µ𝑚) × 120 (µ𝑚) selected based on the smallest size of the artificial 

defects detected by analyzing the data from Section 3.2.3.  
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Figure 3-9: The schematic of a) a sample that is segmented in 82 batches, b) a batch, which is divided into 

4356 voxels (which includes three layers).   

Also, to avoid missing any partial pores or any pores located on the edge of voxels, both current and 

adjacent voxels are analyzed in two different area sizes: 60 µ𝑚 (30 µ𝑚 inside the current voxel and 30 

µ𝑚 inside the adjacent voxel, as demonstrated in Figure 3-10a) and 120 µ𝑚 (60 µ𝑚 inside the current 

voxel and 60 µ𝑚 inside the adjacent voxel, as demonstrated in Figure 3-10b). 

 

Figure 3-10: Two adjacent voxels with considering area of a) 30 µm and b) 60 µm from each edge.   

 This analysis could help when there are less than three yellow pixels located in the voxel. With less 

than three adjacent yellow pixels, a voxel is labeled as nominal (Section 3.2.4); however, when there is 

one more yellow pixel located at the edge of the voxel, then the following possibilities could be 

discussed: 

1- Both adjacent voxels (voxel 1 and voxel 2 in Figure 3-11a) had zero yellow pixel in the distance 

of 30 µ𝑚 from the edge → both voxels 1 and 2 were labeled as nominal.  
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2- Voxel 1 had two yellow pixels and voxel 2 had zero yellow pixel in the distance of 30 µ𝑚 from 

the edge (Figure 3-11b) → voxel 1 was labeled as an anomaly and voxel 2 was labeled as 

nominal. 

3- Voxel 2 had two yellow pixels and voxel 1 had zero yellow pixel in the distance of 30 µ𝑚 from 

the edge (Figure 3-11c) → voxel 1 was labeled as an anomaly and voxel 2 was labeled as 

nominal. 

4- Both adjacent voxels had two yellow pixels in the distance of 30 µ𝑚 from the edge (Figure 

3-11d)→ both voxels 1 and 2 were labeled as an anomaly.  

 

Figure 3-11: The schematic of when one yellow pixel located at the edge of voxel and a) no yellow pixels 

identified in the adjacent voxel, b and c) two yellow pixels identified in one of the voxels, and d) two 

yellow pixels identified in both voxels (please check Figure 3-9c for the size of voxels).  

At the end, the result of 357192 voxels for each sample is compared with the corresponding CT data to 

establish the matching matrix [80]. The matching matrix is used the ground truth table in which each 

voxel is labeled based on the presence of porosity detected by the CT-Scan and AL algorithm. Then, 

each 3D neighbourhood is labeled as either pore or nominal (Table 3-6) [60][44].  

Table 3-6: Confusion matrix to compare the prediction of the algorithm (AL) and the actual defect (CT-

scan).   

 
Prediction (AL algorithm) 

Anomaly Nominal 

Actual defect 

(CT-scan) 

Anomaly TP FN 

Nominal FP TN 

The matching matrix can evaluate the algorithm by four criteria:  

• TP (true positive): Actual anomaly voxel that is correctly predicted,  

• FP (false positive): Actual anomaly voxel that is wrongly predicted, 



 

 39 

• FN (false negative): Actual nominal voxel that is wrongly predicted, and 

• TN (true negative): Actual nominal voxel that is correctly predicted [81]. 

 Besides, the accuracy of the prediction are considered given by [81]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                  (Eq 3.1) 

 A high-level schematic of the overall process is represented in Figure 3-12. 

 

Figure 3-12: Schematic to compare the CT-Scan and EOSTATE software results to establish a matching 

matrix.   



 

 40 

3.3  Results and Discussion 

3.3.1 Analysis of the data collected by Absolute Limits algorithm   

The results of deploying the AL algorithm and the effect of threshold ranges on Sample R1- R8 will be 

presented based on samples' location on the build plate. The following ranges of the threshold were 

chosen for the analysis of R-series samples:  

1) Samples R1- R5: the threshold range of 12000-20000 and a window length of 10, 

2) Sample R6: threshold 5500-11000 and window length 10, 

3) Sample R7: threshold 12000-18000 and window length 5, and 

4) Sample R8: threshold 10600-17000 and window length 10. 

The results are presented in two sections: examples of the population and spatial distribution of the 

yellow pixels/indicators for each sample of R-series on selected layers (Figure 3-13) and the average 

number of yellow pixels/indicators and their standard deviations in the regions of interest (Figure 3-14 

and Figure 3-15). The effect of artificial defect size, incorporated into the design of Samples R2, R3, 

R4, R6, R7, and R8, is shown in Figure 3-14 by the pink, teal, purple, orange, green, and blue colour, 

respectively. Moreover, the influence of artificial defect distribution is represented in Figure 3-15. The 

effect of underneath layers of the powder on the successive layer is discussed to identify the defect 

detection performance range.  

 Examples of the population and spatial distribution 

As demonstrated in Figure 3-13, layer 1, printed in the successive layer of artificial voids, shows major 

yellow indicators in Samples R2, R3, R4, and R5, printed with the print parameters listed in Table 3-1. 

Three samples (R6, R7, and R8) were designed to mimic the artificial and randomized voids initiated 

due to the lack-of-fusion. Artificial defects are detectable in Samples R7 and R8. However, in Sample 

R6, the power was kept constant at 100 Watt, which resulted in low energy density. As a result, the 

ripples in the signal are not dominant adequately to be detectable or separated from the rest of the signal. 

In fact, the noise to signal ratio is very high in Sample R6. 
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Figure 3-13: The population and distribution of indications for AL algorithm – R-series (Figure 3-3a).  

 Statistical analysis of artificial and randomized defects 

For the confidence level, a statistical analysis is conducted on the detection datasets. Four Samples R2 

to R5 are designed with a combination of artificial pore size, shape, and distribution to investigate the 

nature of light intensity signal at these combining circumstances. Sample R2 incorporated the variation 

of cylindrical height and radius of the un-melted powder layer. Sample R3 included various cylindrical 

void heights (120 µm- 320 µm) to mimic the un-melted powder layer; however, the radius of the 

cylindrical voids was kept constant (200 µm). The larger spherical defects with different spatial 

distributions throughout the coupons were studied in Samples R4 and R5, respectively. The average 

and standard deviation of the yellow pixels/indicators are shown in Figure 3-14 and Figure 3-15, 

shedding some light on the effect of defects' size (R2, R3, R4, R6, R7, and R8) and distribution (R5). 

These figures represent a deviation in the light intensity signal based on each sample's location in the 

build plate (Figure 3-3a). Each sample was printed multiple times to assess the repeatability factor. Six 

sets of R2, R4, R5, R6, R7, and R8 and three sets of R3 were printed. The figures demonstrate the 

average and standard deviation of all similar sizes/distribution associated with the number of sets per 

each sample. In Figure 3-14, nine tags (S1, S2, S3, S4, S5, S6, D1, D2, and D3) are defined which 

showed void sizes of each sample as demonstrated in Table 3-7. For example, sample R2- location 1 

(Figure 3-14) shows three void sizes tagged as S1, S2, and S3. These tags represent all voids in R2 with 

the size of H, Ø= 200 µm, H, Ø= 150 µm, and H, Ø= 100 µm, respectively (see Figure 3-2a).  
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Table 3-7: The Reference of Figure 3-14 and Figure 3-15.   

Sample Defect type Defect size (µm) Tag name 

R2, R6, R7, 

and R8 

Cylindrical 

artificial defect 

Ø, H=200 S1 

Ø, H=150 S2 

Ø, H=100 S3 

R3 
Cylindrical 

artificial defect 

Ø=200, H=320 S1 

Ø=200, H=280 S2 

Ø=200, H=240 S3 

Ø=200, H=200 S4 

Ø=200, H=160 S5 

Ø=200, H=120 S6 

R4 
Spherical 

artificial defect 

Ø=300 S1 

Ø=250 S2 

Ø=200 S3 

R5 
Cylindrical 

artificial defect 

Distribution: 5×5 D1 

Distribution: 9×9 D2 

Distribution: 8×8 D3 



 

 43 

 

Figure 3-14: The percentage of average and standard deviation of yellow indicators in the region of 

interests for the selected layers based on the output of the AL algorithm (Samples R2, R3, R4, R6, R7, 

and R8 are shown by pink, teal, purple, orange, green, and blue, respectively.   
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Figure 3-15: The percentage of average and standard deviation of yellow indicators in the region of 

interest for the selected layers and after applying the AL algorithm (Sample R5). D1, D2, and D3 mean 

three different void distribution embedded in sample R5 (D1= 5×5, D2= 8×8, and D3= 9×9).  

 It should be noted that each size of defects embedded in sample R2 (100 µm, 150 µm, and 200 µm) 

was created 1764 times in the build (number of defects in one set=49, number of sets in one sample= 

6, so the number of defects in one sample= 49×6=294, additionally numbers of locations of each 

sample=6. As a result, each defect was created 294×6=1764 times). Analyzing the average of the yellow 

pixels/indicators in the area of interest in Sample R2 (Figure 3-8) demonstrates the 5.21±5.9%, 

19.93±5.48%, and 23.71±5.39% of selected areas are filled by indicators for 100 µm, 150 µm, and 200 

µm cylindrical void sizes, respectively (Figure 3-14. Pink colour). The counterpart results in Sample 

R3 demonstrate approximately 17.69±5.55%, 20.70±5.31%, 26.45±5.77%, 28.09±6.3%, 

29.15±6.21%, and 30.63±6.64% of the selected area covered by the indicators for 120 µm, 160 µm, 

200 µm, 240 µm, 280 µm, and 320 µm height, respectively (Figure 3-14. Teal colour). Each size of 

defects in sample R3 was created 882 times in the build. The results suggest that an increase in artificial 

defects height yields a higher number of yellow indicators in interest areas. It may be attributed to the 

exceeded disturbance in the intensity signal when the un-melted powder layer's thickness increases. 

Additionally, the results for Samples R2 and R3 suggest that 120 µm is the smallest detection by the 

software. The average number of indicators in 100 µm defects for Sample R2 is half of the average 

number of indicators in 120 µm defects (see Sample R3). For the defects larger than 120 µm, the 

numbers of yellow pixels are in the same range. 



 

 45 

The result of Sample R4 represents the average and deviation of 37.17±12.99%, 40.15±13.25%, and 

38.30±10.97% for the artificial defects with 200 µm, 250 µm, and 300 µm diameter (Figure 3-14. 

Purple colour). Also, each defect size was embedded 1764 times in sample R4. Studying the result of 

larger size defects in R4 indicates that the hardware and algorithm are less sensitive to defects larger 

than 200 µm. It may be attributed to the stability of temperature in the process when the size of defects 

is larger, causing less variation in signal perturbation in the emitted light according to Plank's law. The 

void distribution effect in Sample R5 suggests that the indicators cover approximately 17.44±6.5%, 

16.24±6.33%, and 15.09±4.17% of the selected areas (D1:5×5, D2: 9×9, and D3: 8×8 of defects were 

created 750, 2430, and 1920 times). The counterpart result inspection proves that the void spatial 

distribution may not significantly affect the light intensity signal (Figure 3-15. yellow colour).  

In Sample R6, the number of indicators is the same for different sizes of designed defects (Figure 3-14. 

orange colour), meaning that the detection is not successful, as discussed in Section 3.3.1.1. However, 

the artificial defects are identified in Samples R7 and R8, printed with a high hatching distance of 150 

µm and a high-speed of 1500 mm/sec, respectively. The defect size also plays a role in the percentage 

of indicators in Sample R7 (Figure 3-14. green colour) and Sample R8 (Figure 3-14. blue colour); 

however, the effect of size in these samples is less than in samples printed with standard print 

parameters (R1).  

As observed in Figure 3-14, the number of indicators in different positions is not uniform in the build 

plate. Therefore, the samples' location in the build plate confirms that the direction of gas flow and 

recoater affects the formation of LoF porosity, as also discussed in the literature [82]. The gas flow 

distribution is normally not uniform in the build plate [83], resulting in different numbers of yellow 

pixels/indicators while printing one identical sample at different build plate positions.  

After evaluating the data for all samples, the ANOVA is conducted for exploring the effect of sample 

positions in the build plate, the size (samples R2, R3, R4, R6, R7, and R8), and distribution (sample 

R5) of artificial defects on p-value to shed some light on repeatability and confidence variance (Table 

3-8).  
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 Table 3-8: The range of p-value from ANOVA single factor analysis of the variance.   

Sample Defect type Defect size (µm) 
Effect of 

locations 

Size of 

defects 

Distribution 

of defects 

 

R2 

Cylindrical 

artificial defect 

Ø, H=200 < 0.05 

< 0.05 - Ø, H=150 < 0.05 

Ø, H=100 < 0.05 

 

 

R3 

Cylindrical 

artificial defect 

Ø=200, H=320 < 0.05 

< 0.05 - 

Ø=200, H=280 < 0.05 

Ø=200, H=240 < 0.05 

Ø=200, H=200 < 0.05 

Ø=200, H=160 < 0.05 

Ø=200, H=120 < 0.05 

 

R4 

Spherical artificial 

defect 

Ø=300 < 0.05 
 

< 0.05 

 

- 
Ø=250 < 0.05 

Ø=200 < 0.05 

 

R5 

Cylindrical 

artificial defect 

Distribution: 5×5 < 0.05 
 

- 

 

> 0.05 
Distribution: 9×9 < 0.05 

Distribution: 8×8 < 0.05 

R6 

Cylindrical 

artificial defect and 

randomized defect 

Ø, H=200 < 0.05 
 

< 0.05 
- Ø, H=150 < 0.05 

Ø, H=100 < 0.05 

R7 

Cylindrical 

artificial defect and 

randomized defect 

Ø, H=200 < 0.05 
 

> 0.05 
- Ø, H=150 < 0.05 

Ø, H=100 > 0.05 

R8 

Cylindrical 

artificial defect and 

randomized defect 

Ø, H=200 < 0.05 
 

< 0.05 
- Ø, H=150   < 0.05 

Ø, H=100 < 0.05 

The ANOVA analysis confirms that the effect of samples' positions on the number and distribution of 

yellow pixels/indicators in which most of the samples show a p-value< 0.05 (Table 3-8). Additionally, 

the effect of artificial defects' size was discussed in the previous section (Figure 3-14), and a similar 

conclusion is drawn when the ANOVA is conducted (Table 3-8). The ANOVA analysis supports a 

significant statistical difference between different sizes of defects on the light intensity signal and 

consequently on the number of yellow pixels/indicators. Moreover, the ANOVA analysis demonstrates 

an insignificant difference between the scenarios of distribution (Sample R5). As a result, the 

distribution of defects embedded in the sample may not be a significant factor in the light intensity 

signal variation.  

3.3.2 Computed tomography (CT-Scanning)  

The diameter and location of the pores and density of the coupon sample were calculated through the 

CT datasets. The front and top views of samples with the artificial defects (sample R4-4), artificial and 

randomized defects (sample R7-1), and the randomized defects (sample T4-4) are shown in Figure 
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3-16.  The front and top views of samples R4-4, R7-1, and T4-4 are shown in Figure 3-16 (a, d), Figure 

3-16 (b, e), and Figure 3-16 (c, f), respectively. It should be noted that the CT software enlarges the 

size of defects for better visualization.  

 

Figure 3-16:  CT data of front view of a) R4- location 4, b) R7- location 1, and c) T4- location 4 and top 

view of d) R4- location 4, e) R7- location 1, and f) T4- location 4.  

 Correlation between CT- scan and Absolute Limits results for samples with artificial defects 

(R2, R3, R4, and R5) 

Samples R2, R3, R4, and R5 from location 4 are selected to analyze by the CT-scan. In the consecutive 

layer of artificial defects (Layer 1), the percentage of the identified defect, with respect to the number 

of defects in the design, is calculated; also, the density of each part is measured (Table 3-9). It should 

be noted that the dimension of designed voids is shrunk in real parts, and as a result, the size of the 

identified defects by the CT is not the same as the designed size (Figure 3-17). 
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Table 3-9: The percentage of identification for each size of the defect and density of each sample.  

Sample Defect Type (µm) 
Percentage of Identification 

by Absolute Limits (%) 
Density 

 

R2- location 4 
Ø, H=200  100 

99.89 Ø, H=150  100 

Ø, H=100  100 

 

 

R3- location 4 

Ø=200, H=320 99.31 

99.28 

Ø=200, H=280 100 

Ø=200, H=240 100 

Ø=200, H=200 100 

Ø=200, H=160 100 

Ø=200, H=120 100 

 

R4- location 4 

Ø=300 100 

99.69 Ø=250  100 

Ø=200  100 

 

R5- location 4 

Distribution: 5×5 76 

98.08 Distribution: 9×9 77.78 

Distribution: 8×8 72.5 

 

Figure 3-17: The amount of shrinkage in the sample a) R2- location 4 b) R3- location 4 c) R4- location 4 

d) R5- location 4 for each type of defects.  
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The CT-scan analysis of Samples R1-R5 was conducted for location 4 on the build plate. It should be 

noted that some pores were healed in the process based on the CT-scan results. By removing those 

pores, the detection of MPM analysis shows most of the defects are identified (Table 3-9).  

The CT-scan analysis of Samples R2, R3, R4, and R5 demonstrates the dimension deviation of defects 

(Figure 3-17). The deviation is limited to 150 μm in Samples R2 and R3 (Figure 3-17.a and Figure 

3-17.b). However, analyzing the CT-scan of Sample R5 (Figure 3-17.d) results in only a 50 μm 

dimension deviation. Less dimension deviation than Sample R2 and R3 could also suggest the stability 

of temperature and, as a result, intensity signal in the process when encountered defects larger than 200 

μm, as discussed in Section 3.3.1.2. Moreover, less deviation of R5 defects could also happen due to 

the shape of defects, which is cylindrical in this sample. The sample R4 defects have more deviation in 

the final shrunk size, and it could be due to the spherical shape of artificial defects (Figure 3-17.c). The 

comparison results between Sample R4 and R5 shows that all defects are larger than 200 μm, resulting 

in a stable intensity signal. At the same time, the defect shape embedded in Sample R4 is spherical. As 

a result, more deviation in Sample R4 is happened only because of the defect's shape.  Also, the CT- 

Scan result for R5- 4 (Figure 3-17.d) confirms that defects in the gas flow direction were partially 

detectable.  

Another important note is that although the designed voids smaller than 120 microns is not detectable, 

the resultant void size turned out to be around 60 to 70-micron size after shrinkage. This may suggest 

that the proposed methodology may detect pores that are eventually in the range of 60 to 70 microns.  

 Correlation between CT- scan and Absolute Limits results for samples incorporated artificial 

defects and randomized defect (R6, R7, and R8) 

The analysis of sample R6 in previous sections showed ripples in the signal are not dominant adequately 

to be separated from the rest of the signal. In fact, the noise to signal ratio is high in sample R6 which 

leads to the distribution of yellow pixels all over the sample. So, sample R6 showed an accuracy of 

around 30% to detect artificial defects. The number of identified defects in the consecutive layer of the 

artificial defect is calculated for Samples R7 and R8. For Samples R7 and R8, the average percentage 

of six sets of defects is determined for H, Ø=200 µm, H, Ø=150 µm, H, Ø=100 µm with respect to their 

position in the build (Table 3-10 and Table 3-11). Also, the amount of dimension deviation of R7 and 

R8 is shown in Figure 3-18 and Figure 3-19.  
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Table 3-10: The percentage of identification for each size of the defect and density of sample R7.  

Sample 

Defect 

radius and 

height (µm) 

Percentage of 

Identification by 

Absolute Limits (%) 

Density  

R7- location 1 

200 100 

97.83 150  100 

100  100 

R7- location 2 

200 98.94 

97.68 150  97.61 

100  100 

R7- location 3 

200 100 

98.96 150  100 

100  100 

R7- location 4 

200 100 

97.88 150  100 

100  100 

R7- location 5 

200 100 

92.63 150  100 

100  100 

R7- location 6 

200 100 

98.36 150  100 

100  100 

R7- location 7 

200 100 

96.78 150  100 

100  100 

R7- location 8 

200 100 

98.1 150 100 

100 100 
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Table 3-11: The percentage of identification for each size of the defect and density of sample R8.  

Sample 

Defect 

radius and 

height (µm) 

Percentage of 

Identification by 

Absolute Limits (%) 

Density  

R8- location 1 

200 100 

98.83 150  100 

100  100 

R8- location 2 

200 100 

98.61 150  100 

100  100 

R8- location 3 

200 100 

98.12 150  100 

100  97.52 

R8- location 4 

200 100 

99.4 150  100 

100  100 

R8- location 5 

200 100 

98.94 150  100 

100  100 

R8- location 6 

200 100 

99.07 150  100 

100  100 

R8- location 7 

200 100 

99.12 150  100 

100  100 

R8- location 8 

200 100 

98.8 150  100 

100  100 
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Figure 3-18: The amount of shrinkage in the sample R7 a) Location 1, b) Location 2, c) Location 3, d) 

Location 4, e) Location 5, f) Location 6, g) Location 7, and h) Location 8.  

 

Figure 3-19: The amount of shrinkage in the sample R8 a) Location 1, b) Location 2, c) Location 3, d) 

Location 4, e) Location 5, f) Location 6, g) Location 7, and h) Location 8.  
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The CT-scan analysis for R7 and R8 is conducted for all of the positions on the build plate. By removing 

the healed pores, firstly two approaches which were discussed in Section 3.2.6.1 for voxels with yellow 

pixels on the edge demonstrate that 30 µm distance from the edge shows higher accuracy to identify 

defects as shown in Table 3-12 and Table 3-13 for samples R7 and R8.   

Table 3-12: Accuracy (%) of AL algorithm to predict pores based on the CT-Scan result for sample R7 

with two different sizes of distance (30 µm and 60 µm) from each voxel to avoid missing any partial pores 

or pores located on the edge of the voxel.   

Distance from 

the edge 

Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

Location 

7 

Location 

8 

30 µm  76.76 73.81 69.89 71.6 73.66 75.71 77.51 76.94 

60 µm 61.28 58.23 54.12 63.5 64.12 59.87 61.45 62.4 

Table 3-13: Accuracy (%) of AL algorithm to predict pores based on the CT-Scan result for sample R8 

with two different sizes of distance (30 µm and 60 µm) from each voxel to avoid missing any partial pores 

or pores located on the edge of the voxel.   

Distance from 

the edge 

Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

Location 

7 

Location 

8 

 30 µm  67.58 72.99 81.89 76.72 79.82 70.87 65.15 49.78 

60 µm 59.25 62.78 68.53 67.24 68.45 61.78 57.47 40.12 

When considering 60 µm from each edge, the accuracy for samples R7 is approximately between 54% 

to 64% and for sample R8 is approximately between 40% to 68%; however, considering 30 µm from 

each edge results in higher accuracy. Lower accuracy of 60 µm distance from each edge could be 

because most of the voxels have labeled as an anomaly which is not correct, resulting in a low number 

of TN rates when comparing the results with CT-Scan. As a result, 30 µm distance from each edge for 

voxels with less than three yellow pixels and with yellow pixel at the edge is considered for the 

following analysis. 

 By comparing the CT-scan analysis and AL algorithm result for R7 and R8, the detection of MPM 

analysis demonstrates most of the defects are identified in the samples printed with high hatching 

distance (Table 3-10) and high speed (Table 3-11). The dimension deviation of defects results in 

approximately 150.03±27.57 µm, 101.74±23.63 µm, and 40.97±21.23 µm for sample R7 and 

155.69±20.40 µm, 104.37±25.36 µm, and 20.84± 31.10 µm for sample R8, thus leading to the direct 

effect of defect size in deviation.  
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Additionally, the output results for the randomized defects are correlated with the computed 

tomography (Micro CT) to validate the AL algorithm accuracy in real scenarios. The voxel cell is 

considered the same size as the smallest pore detection size (120 µm×120 µm×120 µm) to establish the 

correlation between CT-Scan and MPM results. The matching result of the samples with a high hatching 

distance and a high speed is evaluated using the matching matrix (Table 3-14 and Table 3-15), when 

true positive, true negative, and accuracy percentage of the AL algorithm are calculated. 

Table 3-14: Evaluation metrics of AL algorithm based on the CT-Scan result for sample R7.  

Performance Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

Location 

7 

Location 

8 

TP (%) 74.08 74.94 74.85 75.31 75.74 74.16 75.15 75.10 

TN (%) 60.32 60.30 66.82 61.27 63.10 60.47 66.49 65.22 

Accuracy (%) 76.76 73.81 69.89 71.60 73.66 75.71 77.51 76.94 

Table 3-15: Evaluation metrics of AL algorithm based on the CT-Scan result for sample R8.  

Performance Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

Location 

7 

Location 

8 

TP (%) 74.73 76.19 75.76 73.18 76.57 75.72 74.57 79.13 

TN (%) 60.29 61.17 68.03 68.19 67.11 68.53 61.20 48.86 

Accuracy (%) 67.58 72.99 81.89 76.72 79.82 70.87 65.15 49.78 

The results of Sample R7 show the approximately 74.91±0.56% correct prediction compared to the 

actual porosity (TP) and 62.99±2.81% correct prediction of voxels without any porosity (TN). Also, 

the accuracy of Sample R7 guarantees more than 74.48±2.73% to identify correct nominal and 

abnormal voxels. Moreover, the TP rate results indicate a few numbers of FP voxels, meaning a high 

accuracy of porosity prediction. The result of Sample R8 shows a similar conclusion. In addition, the 

result of Sample R8 also indicates the effect of the sample's position on the light intensity signal. The 

accuracy of Sample R8 demonstrates that location 8 has the lowest rate of correct prediction among 

other samples, which indicates the effect of gas flow and recoater on the defect detection platform. 

Although there is a challenge to guarantee the repeatability of prediction for all build plate locations, 

the algorithm could identify the Lack-of-fusion porosity with high accuracy for most samples 

incorporating both artificial and randomized defects. 
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 Correlation between CT- scan and Absolute Limits results for samples with only randomized 

defect (T2, T3, and T4) 

In this step, the method of segmentation is the same as in Section 3.3.2.1. The evaluation metrics for 

samples T3 and T4 are represented in Table 3-16 and Table 3-17. Sample T2 shows around 30% 

accuracy and defect detection was not successful as also discussed for sample R6 in Section 3.3.2.2.  

Table 3-16: Evaluation metrics of AL algorithm based on the CT-Scan result for sample T3.  

Performance Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

TP (%) 73.83 74.42 73.52 74.26 74.47 74.05 

TN (%) 51.56 57.46 50.78 51.76 54.42 53.81 

Accuracy (%) 70.28 73.15 71.97 66.79 68.94 69.74 

Table 3-17: Evaluation metrics of AL algorithm based on the CT-Scan result for sample T4.  

Performance Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

TP (%) 75.18 75.30 76.37 75.20 75.15 75.47 

TN (%) 70.44 73.38 70.41 63.82 64.28 65.19 

Accuracy (%) 72.21 74.71 71.78 73.41 73.84 71.01 

The result represents that the algorithm's sensitivity to finding the true positive rate for T3 (high 

hatching distance) and T4 (high speed) is more than 74.09±0.37% and 75.44±0.46%, respectively, 

which confirm that the algorithm could detect the pore's location. Still, a true negative rate limits the 

performance of the algorithm. The accuracy of the AL Algorithm shows more than 70.14±2.24% and 

72.82±1.39% correct detection; however, it can improve by reducing the number of false-positive (FP) 

voxels, which may be provided by changing the pixel resolution and threshold method. Although some 

studies were conducted to correlate sensors' data and quality of parts with better prediction [60], [84], 

[85], all of them used in-house developed systems where in-situ sensors were incorporated into the 

setup, exposing a challenge for users to replicate their results due to the accessibility issue to the in-

house developed setups. In contrast, this study lays down the analysis of commercially available in-situ 

sensory data that users can replicate for industrial applications and academic research. In addition, a 

new machine learning detection algorithm to identify smaller defects is a part of an on-going effort to 

find smaller size defects rapidly and precisely. 
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3.4 Summary 

In this study, the effect of a lack-of-fusion porosity was investigated on the light intensity signal emitted 

from the melt pool and collected by an in-situ photodiode(s). The collected intensity signal was 

analyzed by the Absolute Limits, Signal Dynamics, and Short-Term Fluctuation algorithms, followed 

by an image processing method. Artificial and randomized defects were designed and analyzed to 

evaluate the performance of hardware and algorithms. The predicted results were evaluated by the CT-

scan through volumetric approach.  
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Chapter 4. An unsupervised machine learning algorithm for in-situ defect-

detection in laser powder-bed fusion 

4.1 Abstract 

This chapter studies the development of a machine-learning algorithm to detect lack-of-fusion (LoF) 

porosity induced during laser powder bed fusion (LPBF). The detection algorithm is based on analyzing 

in-situ light intensity emitted from the melt pool during LPBF to not only predict the defect formation 

at a higher prediction rate more precisely but also analyze the real-time data stream faster than analytical 

methods. The integrated sensor used in this chapter is a commercial on-axial in-situ photodiode which 

was completely explained in Section 3.2.2. To this end, a Self-Organizing Map (SOM), an unsupervised 

machine learning algorithm, is thoroughly customized to classify disturbances in the light intensity 

signal, where the clustered disturbances are mapped with the geometrical feature and position of 

defects. To evaluate the proposed SOM algorithm, two sets of samples are designed: 1- samples with 

artificial micro-voids to mock the lack-of-fusion in the printed parts for assessing the sensor response 

and calibrating/optimizing the SOM algorithm and 2- samples with randomized pores induced normally 

during the process at different process parameters. The defects' position and size are correlated with the 

actual geometrical feature and position of defects identified through a post-processing computed 

tomography (CT) scanning. Thus, a volumetric segmentation method and confusion matrix are 

incorporated into the SOM-based algorithm to examine the true positive (TP) and true negative (TN) 

rates of defect prediction, as discussed in Section 3.2.6.1.  

4.2 Methodologies and Experimental Setups  

4.2.1 Design of experiments  

Two sets of cubical-shape coupons with artificial and randomized pores were 3D printed. In the first 

set (R-series), artificial defects were embedded into the coupon samples, and in the second set (P-

series), randomized pores induced from the lack-of-fusion (LoF) phenomenon were created when the 

energy density was decreased. All samples were fabricated with a stripe scan strategy of 67⁰ rotation 

after each layer. Also, the laser spot size on the powder was 100 μm. Additionally, vertical and 

horizontal grooves were added to the geometry of samples for registering the pores' location in CT scan 

datasets, as demonstrated in Figure 3-1(a) (R-series) and Figure 4-1 (P-series). 
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Figure 4-1: CAD model of a) R1-1 [40] () and b) P1-1   

 For each set, different process conditions were considered, as explained below.   

 Artificial defects 

 Four coupon samples of R-series (R2, R3, R4, and R5) were made with embedded micro-voids to 

mimic the LoF, as discussed previously (Section 3.2.1). These four samples from location 4 were 

selected to validate the SOM algorithm.  

 Randomized defects 

This set of samples (P-series) was designed to create randomized LoF pores by decreasing the energy 

density. Firstly, cubical samples were designed with a size of 5 × 5 × 10 (W × L × H) mm3. Then, 

samples were fabricated with different sets of print parameters, listed in Table 4-1. Four repetitions of 

each design were printed at different locations of the build plate (Figure 4-2). Sample P1 was fabricated 

with the standard print parameters used to obtain high-quality Hastelloy-X parts [48], thus considering 

as a control sample (Power= 200 W, hatching distance= 90 µm, and speed= 1000 mm/sec). Samples 

P2, P3, and P4 were printed with three different laser powers (175, 150, and 125 W). Samples P5, P6, 

and P7 were fabricated with the variation of hatching distances (110, 130, and 150 µm). Finally, 

samples P8, P9, and P10 were manufactured with different scanning speeds (1100, 1300, and 1500 

mm/sec). As demonstrated in Table 4-1, the standard energy density (P1) is approximately 55.55 

J/ 𝑚𝑚3 . As a result, other samples were fabricated with low energy density to ensure that the 

randomized LoF pores are induced in the printed samples. 
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Table 4-1: Types and print parameters in P-series sample 

Sample Type 
Power 

(Watt) 

Hatching 

distance 

(µm) 

Speed 

(mm/sec) 

Layer 

thickness 

(µm) 

The energy 

density 

(J/𝑚𝑚3) 
P1 Standard 200 90 1000 40 55.55 
P2 

Low 

power 

175 90 1000 40 48.61 
P3 150 90 1000 40 41.66 
P4 125 90 1000 40 34.72 
P5 High 

hatching 

distance 

200 110 1000 40 45.45 
P6 200 130 1000 40 38.46 
P7 200 150 1000 40 33.33 
P8 

High 

Speed 

200 90 1100 40 50.50 
P9 200 90 1300 40 42.73 

P10 200 90 1500 40 37.03 

 

 

Figure 4-2: P-series sample layout on the build plate 

The data collected from the printed samples with randomized defects were analyzed through the 

segmentation method, which was discussed previously (Section 3.2.6.1). After segmenting the data into 

the cubical voxels, the ground truth table was used to evaluate the detection algorithm.  



 

 60 

In addition, three samples (T2, T3, and T4) with randomized defects were analyzed by the Absolute 

Limits (AL) algorithm in the EOSTATE MeltPool Monitoring software in Chapter 3. These three 

samples were also analyzed by the TP and TN rates to validate the performance of the AL algorithm. 

In this chapter, these samples were again analyzed by the proposed SOM algorithm to make a rational 

comparison between the performance of AL and SOM algorithms.  

4.2.2 The clustering algorithm  

In this study, the light intensity signal collected from the on-axial photodiode is analyzed to map its 

disturbance to the geometry to identify the pore position induced due to the lack-of-fusion. In Chapter 

3, a threshold method was applied to predict the lack of fusion defects. Applying threshold algorithm 

resulted in the prediction of defects created by relative high hatching distance (150 µm) and high speed 

(1500 mm/sec) with the accuracy of approximately 70% and 72%, respectively, while the algorithm 

was not successful in predicting defects created with relatively low laser power (100 W). Unsuccessful 

prediction of defects could be due to the high sensitivity of the signal to print parameters, especially 

laser power. Hence, a more powerful algorithm should be customized to identify defects to increase the 

prediction rate of defects created by low power. On the other hand, parameters of threshold algorithms 

(e.g., threshold ranges and window length) need to be tuned/adjusted by users. Thus, the new algorithm 

should also be adaptive to remove the dependency of the algorithm on users’ selection. For mentioned 

purpose, one of the potential methods is un-supervised clustering algorithms. Clustering analysis is a 

task to group the dataset based on their similarity. According to literature, K-means and agglomerative 

were applied to cluster in-situ data in LPBF; however, SOM (Self-Organized Map) has not been applied 

to data of LPBF. In this study, K-means and SOM were applied to in-situ photodiode data; however, 

since the result of SOM was more promising than K-means, only the SOM application will be reported 

here. The SOM generally is used to map the n-dimensional data into 2D/1D space and reduce the 

dimensions while the topological interrelationship between data is preserved [86], [87]. However, in 

this chapter, the SOM model is used to cluster the 1D intensity signal into different clusters. Then, each 

cluster is mapped with the geometry to identify the location of pores induced via the lack of fusion 

phenomenon. Additionally, since the in-situ photodiode data with the sampling frequency of 60 kHz 

would include more than five million data points in each layer for a regular small-size envelope of 25 

× 25 cm2 when 80% of envelop area is solidified in each slice and process speed is in range of 1 m/s, 

thus, the customized SOM is ideally a proper platform to convert the big data into the smaller dataset. 



 

 61 

The SOM works based on a neighborhood function where it maps the dataset by multiple steps [86], as 

demonstrated in Figure 4-3. In summary, the following steps are carried out in the SOM. 

1- The initialization step: weights and biases are chosen randomly from uniform distribution.  

2- The competition step: discriminant function is calculated given by [87]:  

𝑑𝑗(𝑥) = ∑ (𝑥𝑖 − 𝑤𝑗𝑖)2𝐷
𝑖=1              (Eq 3.1)  

where 𝑥 is a D-dimensional input space and 𝑤𝑗𝑖 is the connection weight between neurons 𝑖 

and 𝑗. At the end of the competition step, input space is mapped to the discrete output space by 

a simple competition process between neurons.  

3- The cooperative step: winner neurons affect their neighboring neurons, similar to the human 

brain's neural network. So, lateral interaction or topological neighborhood effect is defined by 

[87]: 

𝑇𝑗,𝐼(𝑥) = 𝑒𝑥𝑝(−𝑆𝑗,𝐼(𝑥)
2 /2𝜎2)                                                                              (Eq 3.2) 

where  𝑆𝑖𝑗 is the lateral distance between the winner neuron and its neighbor (𝑗), and 𝐼(𝑥) is 

the index of the winner neuron. The topological neighborhood (𝑇𝑗,𝐼(𝑥) ) exponentially shrinks 

with time by 𝜎. 

4- The adaption step: weights are updated by [87]: 

 

∆𝑤𝑗𝑖 = 𝜂. 𝑇𝑗,𝐼(𝑥) (t). (𝑥𝑖 − 𝑤𝑗𝑖)                                                                            (Eq 3.3) 

where 𝑡 is the iteration number and 𝜂 is a learning rate and is not time-variant in this study. 

5-  The continuation step: the mapping process keeps returning to step 2 until the map stops 

changing.  
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Figure 4-3: SOM concept and iterations to map nodes to the input space (redraw and adapted from [88]) 

Before applying the SOM, the number of clusters should be defined (s × s clusters), dictating the 

algorithm's output as s2 clusters. For example, Figure 4-4(a) shows the neighbor weight distances 

among nine (1 × 9) clusters in which there is a spectrum of light to dark colors. Lighter and darker 

colors show cluster similarity and dissimilarity, respectively. Figure 4-4 (b) represents the population 

size of each cluster.  
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Figure 4-4: a) Neighbour weight distances and b) the population size of each cluster after applying the 

SOM with 1 × 9 clusters 

The clustering using the SOM network adopts both 1-D and 2-D datasets. However, in this study, the 

SOM input is one dimension. The light intensity signal is a 1-D time series. As a result, applying SOM 

to 1-D data means clustering the signal into 1×N clusters. To assess the effect of the number of clusters 

on the prediction rate, a different number of dimensions/ clusters (5 to 10) is chosen and applied to the 

light intensity signal, where the results will be compared and discussed in 4.3.1. 

4.2.3 Computed tomography (CT-Scanning) 

Four R-series (R2, R3, R4, and R5), all T-series (T2, T3, and T4), and all P-series samples were micro- 

CT scanned (μCT) to identify the position and distribution of actual pores. To compare the result with 

the result of Chapter 3, similar hardware (X-ray μCT on Zeiss Xradia Versa 520 system) and software 

(Dragonfly Pro v4.0) were used for CT-Scanning the parts. The CT-Scan results of artificial and 

randomized defects are discussed in the following sections:   
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 Artificial defects 

The pores' diameter and location as well as the density of samples were identified through the μCT 

imaging. The CT-scan analysis was carried out on samples R2- R5 in location 4 in the build plate. The 

front and top views of samples R2-4, R3-4, R4-4, and R5-4 are depicted in Figure 4-5 (a, e), Figure 4-5 

(b, f), Figure 4-5 (c, g), and Figure 4-5 (d, h), respectively. It should be recognized that some pores 

were healed to the undetectable level during the fabrication according to the CT-scan analysis. 

 

Figure 4-5: μCT scan result of front view of a) R2, b) R3, c) R4, and d) R5 samples, and top view of e) R2, 

f) R3, g) R4, and h) R5 samples 

 Randomized defects 

The pores' diameter, pores' location, and density of all samples were analyzed using the CT data. For 

instance, the CT results of P1- P10 samples printed in location 1 are presented in Figure 4-6 in which 

the front and top views of P-series samples are shown. Besides, the density of samples was measured, 

as demonstrated in Table 4-2. 
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Figure 4-6: CT scan result of P-series sample 

Table 4-2: Density of P-series sample 

Sample # P2 P3 P4 

Location 1 2 3 4 1 2 3 4 1 2 3 4 

Density (%) 99.95 99.97 99.98 99.93 99.81 99.95 99.77 99.90 98.35 98.25 99.08 98.49 

Sample # P5 P6 P7 

Location 1 2 3 4 1 2 3 4 1 2 3 4 

Density (%) 99.99 99.94 99.99 99.92 99.65 99.29 99.17 99.17 97.17 97.55 96.43 94.93 

Sample # P8 P9 P10 

Location 1 2 3 4 1 2 3 4 1 2 3 4 

Density (%) 99.92 99.94 99.93 99.92 99.90 99.94 99.80 99.91 99.42 99.46 98.78 99.27 

4.3 Results and discussion 

4.3.1 Predicting porosity using SOM and comparing the result with CT-scanning 

 Artificial defects 

• Clustering analysis  

The goal of making artificial defects is to create voids with loosening powder particles that mimic LoF. 

Thus, the main analysis is carried out on the capping layer n+1 to identify the existence of defects in 

layer n. For example, Figure 4-7 (a) shows the geometrical position of artificial defects in layer n of 

sample R3 with a defect height of 160 µm and defect radius of 200 µm. The capping layer and the 

corresponding light intensity signal of layer n+1 are shown in Figure 4-7 (b and c), respectively. The 

SOM method (9 clusters) is applied to the light intensity signal of layer n+1 (Figure 4-7 (d)). After 

mapping each cluster to the geometry of the sample, the geometrical position of each cluster is shown 
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in Figure 4-7 (e). Figure 4-7 (e) indicates that the lower cluster (red color) corresponds to the pores' 

position (see the cluster shown on the right side of Figure 4-7 (e)). Thus, for the following analysis, the 

lower cluster is chosen as the main pore identifying cluster. 

 

Figure 4-7: Defect detection procedure which demonstrated a) sample geometry with artificial defects in 

layer n, b) capping layer geometry of layer n+1, c) light intensity signal of capping layer on the layer n+1, 

d) light intensity signal of layer n+1 after applying the SOM with 1×9 dimensions, and e) capping layer 

geometry of layer n+1 after applying the SOM with 1×9 dimensions 

The 1×N SOM, when N=5, 6, 7, 8, 9, 10, was applied to samples R2-R5. Table 4-3 shows the example 

of a comparison among different cluster dimensions. Additionally, iterations were first ranged in 100: 

50: 500, then optimized and set to 200. The training was conducted in MATLAB R2020a. 
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Table 4-3: Applying SOM algorithms with 5, 6, 7, 8, 9 and 10 clusters to the on-axial photodiode signal to 

layer n+1 (sample R2: defect radius= 150 µm and defect height= 150µm, sample R3: defect radius= 200 

µm and defect height= 160µm, sample R4: defect radius= 250 µm, and sample R5: defect radius= 200 µm, 

defect height= 200 µm, and defect distribution=5×5) 

 

As seen in Table 4-3, six SOM cluster dimensions were applied to layer n+1 to assess the effect of the 

SOM dimensionality on the defect prediction rate. The 1×5, 1×6, and 1×7 SOMs applied to the dataset 

resulted in a large number of undesired/unmatched red points compared to the 1×8, 1×9, and 1×10 

SOMs. Besides, in some samples (e.g., R3), the size of identified defects was obviously larger than the 

actual defects predicted by the 1×5, 1×6, and 1×7 SOM. While the application of 1×10 clusters results 

in fewer points mapped against the geometrical features of actual pores, several valuable points were 

not identified (see Table 4-3, sample R2). However, the 1×8 and 1×9 clusters result in better detection 

performance in terms of accuracy and effectiveness. Thus, the result of 1×8 and 1×9 SOMs are analyzed 

in which radius of each identified defect (red indicators in Table 4-3) is compared with the actual defect 

size in layer n. Table 4-4 represents the average radius of defects in layer n for all defects embedded in 

samples R2, R3, R4, and R5 and the average radius of identified defects in layer n+1 after applying 

1×8 and 1×9 SOMs.   
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Table 4-4: Comparison between the average radius of identified defects after applying 1×8 and 1×9 

SOMs in layer n+1 with the average radius of defects in layer n 

Sample Defect type 

Designed 

defect size 

(µm) 

Defect size 

in layer n 

(µm) 

Identified indicator 

size in layer n+1 

after applying 1×8 

SOM (µm) 

Identified indicator 

size in layer n+1 

after applying 1×9 

SOM (µm) 

 

R2 
Cylindrical 

Ø, H=200 188±14 244±96 166±33 

Ø, H=150 135±32 168±44 138±10 

Ø, H=100 84±26 95±30 80±8 

 

 

R3 

Cylindrical 

 

Ø=200, H=320 198±5 259±16 201±29 

Ø=200, H=280 178±14 231±13 181±6 
Ø=200, H=240 180±32 245±5 189±16 
Ø=200, H=200 170±24 230±23 172±17 
Ø=200, H=160 186±8 251±5 169±22 
Ø=200, H=120 177±17 237±9 183±12 

 

R4 
Spherical 

Ø=300 199±11 252±13 173±6 

Ø=250 145±21 184±8 151±3 

Ø=200 132±7 153±12 125±9 

 

R5 
Cylindrical 

Ø, H=200 183±3 242±17 192±4 

Ø, H=200 179±12 237±16 182±11 

Ø, H=200 187±8 250±4 175±21 

As listed in Table 4-4, the defect radius in layer n had an approximately similar size to its design by 

considering the standard deviation. However, a comparison between the radius of identified defects in 

layer n+1 after applying 1×8 and 1×9 SOMs showed that the size of defects identified by 1×8 SOM 

was larger than the actual size of the defects and its corresponding number after applying 1×9 SOM. 

For example, in sample R2 for cylindrical defects with the designed size of Ø, H=200 (µm), the size of 

the actual defect in layer n was 188±14 (µm), whereas the size of identified defects by 1×8 SOM in 

layer n+1 was 244±96 (µm), which was larger than its underneath pore. On the other hand, the result 

of 1×9 SOM resulted in the size of 166±33 (µm), which was more compatible with the size of its 

underneath pore. A similar conclusion was drawn by comparing all sizes of defects listed in Table 4-4. 

As a result, 1×9 SOM was selected for the next step of the study. 

It should be added that similar to the previous study of authors [4], after applying 1×9 SOM on the light 

intensity signal, less than three adjacent indicators were considered as noise, and more or equal than 

three adjacent indicators were considered as a defective area in the next step of the analysis. 

• Comparison between CT-scan and SOM algorithm  

After removing the healed pores from the analysis discussed in Section 4.2.3.1, SOM defect detection 

results are listed in Table 4-5. 



 

 69 

Table 4-5: The percentage of identification for each size of the defect in samples R2-R5 

Sample Defect type Defect size (µm) 

Distribution of 

defects in one layer 

of sample 

Percentage of artificial 

pore identified by the 1×9 

SOM model  

 

R2 Cylindrical  

Ø, H=200 7×7 100 

Ø, H=150 7×7 100 

Ø, H=100 7×7 100 

 

 

R3 Cylindrical  

 

Ø=200, H=320 7×7 100 

Ø=200, H=280 7×7 100 

Ø=200, H=240 7×7 100 

Ø=200, H=200 7×7 100 

Ø=200, H=160 7×7 100 

Ø=200, H=120 7×7 100 

 

R4 Spherical  

Ø=300 7×7 100 

Ø=250 7×7 100 

Ø=200 7×7 100 

 

R5 Cylindrical  

Ø, H=200 5×5 100 

Ø, H=200 9×9 100 

Ø, H=200 8×8 100 

 

Table 4-5 revealed that all artificial pores were predicted by the 1×9 SOM algorithm. In Section 3.3, 

the AL could not identify such defects. AL was applied with the fixed upper and lower threshold ranges 

for all parts printed at different positions of the build platform, resulting in poor detection of pores in 

some locations. However, since the SOM can cluster the datasets adaptively, the datasets were not 

clustered equally, leading to 100% identification of artificial pores. For example, in sample R5 (Figure 

4-8), all artificial defects were detected by the SOM (Figure 4-8(b)), whereas most artificial pores could 

not be detected by the AL (Figure 4-8(a)) based on the result of CT-scan (Figure 4-8(c)).  

 

Figure 4-8: Defect position identified by a) AL-EOSTATE, b) SOM, and c) CT-scan in sample R5 with 

the distribution of 8×8  
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 Randomized defects 

The datasets of samples with randomized defects (P-series) were analyzed by the 1×9 SOM, where the 

corresponding parts were CT-scanned. The results of both steps were compared by the confusion matrix 

to obtain the TP and TN rates. The following sections disclose the TP and TN rates for the samples 

printed with different laser powers, hatching distances, and process speeds. 

• Effect of laser power 

Samples P2, P3, and P4 were printed with low energy density provided by low laser powers (175, 150, 

and 125 W). Table 4-6 compares the results of defect detection by the 1×9 SOM and the actual position 

of pores based on the TP and TN rates.  

Table 4-6: Averaged TP and TN raters by comparing 1×9 SOM algorithm and CT-Scan for samples P2, 

P3, and P4 

P2 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 82 71 73 78 61 77 85 86 

P3 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 86 71 84 78 80 78 92 71 

P4 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 94 72 86 78 84 79 91 74 

Table 4-6 lists TN and TP values at each location of the built plate. The overall average values and the 

corresponding standard deviation for four printed locations are as follows: 

• Sample P2 at four locations: TP rate: 75±9% and TN rate: 78±5% 

• Sample P3 at four locations: TP rate: 85±4.3% and TN rate: 75±3% 

• Sample P4 at four locations: TP rate: 89±3% and TN rate: 76±3% 

The results showed that the TP rate increases by decreasing the laser power (from samples P2 to P4). 

Additionally, Table 4-2 indicated that the density drops when the laser power decreases, implying that 

the number of pores increases. On the other hand, TN rates of these three samples showed that the 1×9 

SOM performed more and less the same when it comes to the TN identification. Therefore, the 1×9 

SOM algorithm is able to predict the randomized defects induced due to variation in laser power with 

the TP rate of more than %75. However, in Section 3.3.2.3, analyzing sample T2, printed with a low 
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power (P= 100 W) using the AL algorithm, resulted in a very low prediction (TP rate< 30%); however, 

sample T2 was again analyzed in this study by 1×9 SOM algorithm, and the results were compared 

with the CT-Scan, as shown in Table 4-7.  

Table 4-7: TP and TN raters by comparing the 1×9 SOM algorithm and CT-Scan for sample T2  

Performance Location 1 
Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

TP (%) 90 91 91 88 92 91 

TN (%) 78 80 88 89 87 89 

According to Table 4-7, pores induced in sample T2 could identify with the TP rate of approximately 

90±1% and TN rates of 85±4%, which indicated the higher accuracy of the SOM algorithm compared 

to the AL for identifying pores induced by the deviation in the low power (Section 3.3.2.3). 

• Effect of hatching distance 

Samples P5, P6, and P7 were printed with low energy density provided by a high hatching distance 

(110, 130, and 150 µm). After applying the 1×9 SOM, the results of defect detection were compared 

with the CT-scan data. Then, the TP and TN rates were calculated, as listed in Table 4-8.    

Table 4-8: TP and TN raters by comparing SOM algorithm and CT-Scan for samples P5, P6, and P7 

P5 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 82 72 80 75 61 86 79 73 

P6 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 76 73 62 85 65 79 79 84 

P7 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 72 88 75 86 67 86 75 82 

The overall average values and the corresponding standard deviation for four printed locations are as 

follows: 

• Sample P5 at four locations: TP rate: 76±8 %and TN rate: 76±6% 

• Sample P6 at four locations: TP rate: 70±7% and TN rate: 80±4% 

• Sample P7 at four locations: TP rate: 72±3% and TN rate: 86±2% 
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TP and TN rates showed more than approximately 70% and 80% true predictions for samples P5, P6, 

and P7, respectively; however, the TP rates of these samples were 1%-15% less than the TP rates in 

samples fabricated with low laser powers. Additionally, sample P7 was printed with similar parameters 

to sample T3 in Section 3.3.2.3. Sample T3 was also analyzed by the SOM. Then, the identified defects 

were compared with the CT-Scan result through a confusion matrix. The TP and TN rates are 

demonstrated in Table 4-9. 

Table 4-9: TP and TN raters by comparing SOM algorithm and CT-Scan for sample T3  

Performance Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

TP (%) 78 74 71 74 72 72 

TN (%) 87 86 80 87 84 88 

The average and standard deviation for 6 different locations for sample T3 resulted in:  

1- SOM: TP rate=74±2% and TN rate= 85±3%, and 

2- AL: TP rate= 74±1% and TN rates=53±2% 

By comparing the outcomes of the AL-EOSTATE and SOM, the TP rate was not changed significantly; 

however, the SOM exhibited a better performance to identify true negative cells by which the TN rate 

has increased up to 31%, indicating a higher precision for the SOM algorithm compared to the AL-

EOSTATE. 

• Effect of process speed 

Samples P8, P9, and P10 were printed with low energy densities carried by high process speeds (1100, 

1300, and 1500 mm/sec). After applying the SOM algorithm, TP and TN rates were calculated based 

on the CT-scan results, as demonstrated in Table 4-10.    

Table 4-10: TP and TN raters by comparing SOM algorithm and CT-Scan for samples P8, P9, and P10 

P8 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 64 69 64 73 66 78 90 93 

P9 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 73 82 61 85 75 85 73 82 

P10 

Location 1 2 3 4 

Classification TP TN TP TN TP TN TP TN 

Averaged Detection Rate (%) 75 87 76 90 78 89 76 86 
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By analyzing the average and standard deviation of TP and TN rates on four printed locations, the 

following results are calculated: 

• Sample P8 at four locations: TP rate: 71±11% and TN rate: 78±9% 

• Sample P9 at four locations: TP rate: 71±6% and TN rate: 84±2% 

• Sample P10 at four locations: TP rate: 76±1% and TN rate: 88±2% 

The results confirmed that the TP and TN rates increased when more pores were induced due to the 

high process speed (i.e., sample P10). Additionally, Table 4-10 indicated that the randomized lack-of-

fusion pores created by increasing the speed could be identified by applying the SOM algorithm with 

the TP rate of ~71% and the TN rate of ~ 78%. 

In addition to samples P8, P9, and P10, sample T4 was analyzed by the SOM algorithm. Performance 

of the SOM was evaluated by the CT-scan through the confusion matrix, as represented in Table 4-11.      

Table 4-11: TP and TN raters by comparing SOM algorithm and CT-Scan for sample T4  

Performance Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

TP (%) 78 75 76 79 79 78 

TN (%) 86 90 89 86 86 86 

The average and standard deviation of sample T4 averaged at all six locations result in:  

1- SOM: TP rate=78±1% and TN rate= 87±2%, and 

2- AL: TP rate= 75±1% and TN rates=68±4% 

The result indicates that the TP is almost similar for both the SOM and AL-EOSTATE. On the other 

hand, the TN increases from 67% in the AL-EOSTATE to 87% in the SOM. 

The comparison of the AL-EOSTATE (Chapter 3) and SOM asserted that the SOM exhibits better 

performance when identifying randomized defects induced in parts printed by LPBF. On the other hand, 

these two algorithms could compare based on their computational time. These two algorithms were 

compared in terms of the computational elapsed time required for one individual layer of a part with a 

cross-section area of 5 × 5 mm2. For example, Table 4-12 represents the analysis time of sample P2-1 

in layers 1, 30, 60, 90, 120, 150, 180, 210, and 240 by applying the AL and SOM algorithms. According 

to Table 4-12, one layer of sample P2-1 was analyzed in less than 1 second by the SOM and in 

approximately 5 seconds by the AL, which showed ~ 86% improvement in the computational time. It 

should be noted that the SOM computational script was run in a PC with Intel(R) Core (TM) i7-7700 

CPU @ 3.60 GHz, whereas the AL computational procedure was run in PC with Intel(R) Xeon(R) CPU 
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E5-2680 v4 @ 2.40 GHz (2 processors). As a result, with the current hardware, the SOM algorithm is 

more appropriate for dealing with the process in real-time.  

Table 4-12: Computational time of AL and SOM for sample P2- 1 for layers 1, 30, 60, 90, 120, 150, 180, 

210, and 240 

Sample 
Layer 

# 

Sample cross 

section area (mm2) 

AL computational 

time (seconds) 

SOM computational 

time (seconds) 

Improvement 

percentage (%) 

P2-1 1 5 × 5 5.49 0.792 85.57 

P2-1 30 5 × 5 5.31 0.764 85.61 

P2-1 60 5 × 5 5.36 0.754 85.93 

P2-1 90 5 × 5 5.29 0.772 85.41 

P2-1 120 5 × 5 5.40 0.752 86.07 

P2-1 150 5 × 5 5.26 0.751 85.72 

P2-1 180 5 × 5 5.25 0.797 84.82 

P2-1 210 5 × 5 5.16 0.785 84.79 

P2-1 240 5 × 5 5.25 0.882 83.20 

Nevertheless, the SOM has shown promising outcomes in terms of computational speed and also 

predication rates; however, the SOM has not been able to fully provide a remedy for the detection 

dependency on the parts’ location in the build plate. For example, the TP rates in sample P8 in Locations 

1, 2, and 3 were not as high as the TP rate in Location 4 (see Table 4-10), which was drawn a similar 

conclusion that the position of samples in the build plate could affect the accuracy and precision of 

detection [4], [82], [83]. One suggestion to tackle this challenge would be developing a new intensity 

correction factor which will be discussed in the future study.  

4.4 Summary 

In this chapter, the commercial on-axial photodiode installed in the LPBF machine was used to collect 

light intensity signals from the melt pool. The collected intensity signal was analyzed by the Self-

Organizing Map (SOM) algorithm to predict the porosity induced due to the lack-of-fusion during the 

LPBF process. Two sets of studies that included artificial and randomized defects were then designed 

and embedded in the coupon samples. Artificial defects were used to customize the SOM algorithm to 

predict the actual defects by comparing the prediction with the design and CT-scan. Randomized 

defects were used to evaluate the customized algorithm's performance. The randomized defects 

predicted by the SOM algorithm were compared with the actual defects identified by the CT-scan 

through the segmentation approach and confusion matrix. Also, the SOM results were compared with 

the Absolute Limits (AL) algorithm, which was discussed in Chapter 3.   
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Chapter 5. Development of an intermittent controller for LPBF  

5.1 Abstract 

This chapter explains the methodology and validation results of an intermittent close-loop control 

system in which the laser power is intelligently increased in segmental zones of the successive layer 

and on top of the defected zones for healing lack-of-fusion (LoF) defects in a part created during the 

LPBF process. To this end, defects identified by the Self-Organizing Map (SOM) algorithm (discussed 

in Chapter 4) are clustered in each area of 1 mm2 using the K-means algorithm. Then, the targeted zone 

around the center of each cluster is optimized as the position at which the laser power is increased in 

the successive layer to heal the induced defects. To identify the optimum laser power value, various 

artificial defects are embedded in the coupon samples, and their capping layer is manufactured by 

increasing the laser power in order to minimize the size and number of artificial defects. Then, based 

on the optimum power and defect size, knowledge-based rules are defined to calculate the new laser 

power. The new laser power value is calculated in a Laser Correction File (LCF), after the deposition 

of each layer and before starting the new layer. Additionally, a Message Queuing Telemetry Transport 

(MQTT) broker is used to connect the data acquisition system, the defect detection algorithm, the LCF 

calculation algorithm, and the actuator (e.g., laser in this case). Finally, two new sets of experiments 

are designed and manufactured to evaluate the performance of the control system.  

5.2 Methodologies and Experimental Setups  

5.2.1 The detrending algorithm  

 The number and coverage area of defect indicators based on their size 

After applying the Self-Organizing Map (SOM) algorithm to identify the locations of defects, the 

number of indicators on the capping zone (equal to defect size) on each defect is calculated. Figure 5-1 

demonstrates one example of the procedure. Figure 5-1 (a) shows the 2D image of the last layer (layer 

n) incorporating artificial cylindrical defects with the size of Ø, H=200 µm from the R2 sample (refer 

to Section 3.2.1). Figure 5-1 (b) represents the positions of indicators in layer n+1 after applying a 

defect detection algorithm on the successive layer of artificial defects (layer n+1). To identify the 

number of indicators on top of each defect, the capping zone on each defect is analyzed based on the 

actual size of the defects.  
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Figure 5-1: One example of the defect detection procedure in which a) a layer with artificial defects with 

the size of 200 µm×200 µm×200 µm and b) the positions of defects after applying the SOM algorithm on 

the capping layer on artificial defects in Sample R2 

The investigation is applied to the artificial defects of samples R2, R3, and R4 for all eight locations 

(Figure 3-3(a)) to shed some light on repeatability. Thus, the following numbers of defects are 

considered, as listed in Table 5-1: 

1-  2325 artificial defects for each size of defects embedded in sample R2 (Ø, H=200 µm, Ø, 

H=150 µm, and Ø, H=100 µm),  

2-  1176 artificial defects for each size of defects embedded in sample R3 (Ø=200×H=320, 

Ø=200×H=280, Ø=200×H=240, Ø=200×H=200, Ø=200×H=160, and Ø=200×H=120), and 

3- 2325 artificial defects for each size of defects embedded in sample R4 (Ø=400 µm, Ø=300 µm, 

and Ø=200 µm). 
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Table 5-1: Calculation of numbers of artificial defects in Samples R2, R3, and R4  

Sample 
Type of 

defects 

Size of defects 

(µm) 

Number of 

locations 

Numbers of 

defects in one 

location 

Total numbers 

of defects 

R2 Cylindrical 

Ø, H=200 

8 

294 2325 

Ø, H=150 294 2325 

Ø, H=100 294 2325 

R3 Cylindrical 

Ø=200, H=320 

8 

147 1176 

Ø=200, H=280 147 1176 

Ø=200, H=240 147 1176 

Ø=200, H=200 147 1176 

Ø=200, H=160 147 1176 

Ø=200, H=120 147 1176 

R4 Spherical 

Ø=300 

8 

294 2325 

Ø=250 294 2325 

Ø=200 294 2325 

By calculating the number of indicators on the capping zones on defects and applying average and 

standard deviation on the number of indicators, the results are summarized in Table 5-2. 

Table 5-2: Average and standard deviations of numbers of indicators in Samples R2, R3, and R4 in the 

capping layer and defect zones based on the size 

Sample 
Type of 

defects 

Size of defects 

(µm) 

Average and standard deviations of 

the number of indicators  

R2 Cylindrical 

Ø, H=200 30 ± 2 

Ø, H=150 26 ± 2 

Ø, H=100 23 ± 3 

R3 Cylindrical 

Ø=200, H=320 35 ± 1 

Ø=200, H=280 33 ± 1 

Ø=200, H=240 31 ± 2 

Ø=200, H=200 30 ± 1 

Ø=200, H=160 28 ± 2 

Ø=200, H=120 26 ± 2 

R4 Spherical 

Ø=300 33 ± 2 

Ø=250 29 ± 3 

Ø=200 25 ± 1 

Table 5-2 confirmed that the number of identified indicators increased by increasing the size of artificial 

defects. However, the number of indicators in sample R4 was less than its corresponding number in 

other samples, which could be due to its defect geometry. For example, indicators' number in sample 

R4 with the defect size of Ø=200 µm was approximately 25; however, in sample R2, the similar size 

of defects resulted in 30 indicators. Therefore, according to the shape of lack-of-fusion defects, which 

is more similar to a cylinder, the results of samples R2 and R3 are used for the next step of this study. 

It should also be noted that if the control system could heal cylindrical defects, it could definitely heal 

spherical defects with the same radius.  



 

 78 

 Based on Table 5-2, detecting any zone filled by more than 20 indicators (considering standard 

deviation) could be corresponding to the defect larger than 100 µm. According to Table 5-2, four groups 

are defined to correlate the number of indicators to the potential size of defects, as listed in Table 5-3.  

Table 5-3: The potential size of defects based on the identified indicators 

Number of 

indicators 

The potential size of 

defects (µm) 

>34 >300 

30-34 200- 300 

25-30 100- 200 

20-25 ~100 

After detecting the indicators in each 1 mm × 1 mm, they are clustered by the K-means algorithm as 

one defect. For instance, Figure 5-2 demonstrates one example of applying the SOM algorithm on layer 

n+1 for detecting defect positions (Figure 5-2. a) and applying the K-means algorithm (Figure 5-2. b). 

 

Figure 5-2: One example of a) applying the SOM algorithm on the capping layer on artificial defects to 

highlight the positions of defects shown by red colour and b) identifying the center of each cluster by K-

means algorithm (artificial defects size is 200 µm×200 µm embedded in Sample R2) 

After calculating the center of each cluster and finding the number of indicators in each cluster, two 

scenarios should be considered based on Table 5-3: 

1- A cluster includes less than 20 indicators → the cluster is identified as normal. 

2- A cluster includes more than 20 indicators → the cluster is identified as abnormal.     

In the abnormal case, the number of indicators within each cluster specifies the actual size of defects 

based on Table 5-3. 

Besides the number of indicators discussed above, the area covered by each cluster was another factor 

to analyze. As observed in Figure 5-2, the geometry of the cluster of indicators was not symmetric, 
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which might be due to the hatching direction. Thus, the maximum radius of each cluster from X (left 

to right) and Y (top to bottom) is measured. Then, the average and standard deviation of the maximum 

radius of all clusters are calculated and listed in Table 5-4 based on the size of defects. 

Table 5-4: Average and standard deviations of maximum radius of X and Y directions of clusters in 

Samples R2 and R3 in the capping area on defective zones based on defect size 

Sample 
Type of 

defects 

Size of defects 

(µm) 

Average and standard 

deviations of maximum radius 

of X direction (mm) 

Average and standard 

deviations of maximum 

radius of Y direction (mm) 

R2 Cylindrical 

Ø, H=200 0.29 ± 0.01 0.27 ± 0.02 

Ø, H=150 0.28 ± 0.06 0.22 ± 0.07 

Ø, H=100 0.22 ± 0.08 0.18 ± 0.09  

 R3 Cylindrical 

Ø=200, H=320 0.28 ± 0.03 0.20 ± 0.04 

Ø=200, H=280 0.27 ± 0.02 0.13 ± 0.03 

Ø=200, H=240 0.27 ± 0.03 0.24 ± 0.08 

Ø=200, H=200 0.25 ± 0.02 0.18 ± 0.02 

Ø=200, H=160 0.26 ± 0.02 0.16 ± 0.05 

Ø=200, H=120 0.25 ± 0.03 0.17± 0.04 

Table 5-4 indicated that even by changing the defect size, areas covered by the cluster of indicators had 

approximately similar radius. For example, in Sample R2 for defect size of Ø, H=200 µm and Ø, H=150 

µm, the maximum radius of clusters in X direction was approximately 0.29 mm. Thus, the maximum 

radius of indicators’ clusters was almost in the same range and between 0.21 (mm) to 0.31 (mm) in X-

direction and between 0.11 (mm) to 0.29 (mm) in Y-direction. Thus, the maximum radius of 0.3 mm 

was assumed for the next step in which a 0.6×0.6 (mm2) square (0.3 from the center to each direction) 

was considered around the center of each cluster. For instance, Figure 5-3 shows the 0.6×0.6 (mm2) 

square around the center of each cluster in layer n+1 printed on top of layer n with defect size of Ø, 

H=200 (µm). 

 

Figure 5-3: Considering a square with a size of 0.6×0.6 mm2 around the center of clusters in layer n+1 

printed on top of layer n with defect size of Ø, H=200 (µm)  
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Figure 5-3 visualized that a square with a side length of 0.6 (mm) around the cluster's center could 

cover a defective area. Thus, a 0.6×0.6 (mm2) square was chosen as an area where the laser power will 

be increased. However, the optimum laser power should be identified, which will be discussed in 

Sections 5.3.1 and 5.5.1. Next, to change the laser power in a square area of 0.6×0.6 (mm2), the 

following procedure is explained in Section 5.2.1.2. 

 Gridding the build plate into 2500× 2500 cells  

 As discussed in Chapter 4, the minimum size of identified defects was 100 µm. Thus, the build plate 

of 25×25 cm2 was gridded into 2500×2500 cells with a size of 100 µm×100 µm. These 2500×2500 

cells were considered in one table named Laser Correction File (LCF). The LCF was defined to contain 

information about the laser powers. As a result, each cell of LCF included the laser power value, which 

could vary from cell to cell.  

 Choosing a programming environment for collecting data, applying the defect detection 

algorithm, and calculating the LCF 

Two programming environments are tested to gather real-time data, apply data correction and defect 

detection algorithms, and calculate the LCF table. These environments are MATLAB 2020a and 

LabVIEW 2020, which are compared based on their processing speed. The computational time of each 

programming environment is listed in Table 5-5, which shows the time of data acquisition, data 

correction, defect detection, and LCF calculation for one layer of the print.     

Table 5-5: Comparing the computational time of MATLAB and LabVIEW  

Environment Computational time (seconds) 
MATLAB 0.913 

LabVIEW ~ 9 

According to Table 5-5, LabVIEW resulted in slow processing time which is due to the lack of the 

SOM built-in function in LabVIEW. Thus, the SOM algorithm was manually developed in LabVIEW 

that had not been optimized compared to built-in functions. On the other hand, since MATLAB 

processing time was good enough for analyzing data and creating the LCF, MATLAB was chosen for 

the next step of this study, instead of optimizing the code in the LabVIEW environment. 
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 Communicating between data acquisition, the defect detection algorithm, and the actuator 

As discussed in Section 5.2.1.3, to collect real-time data, apply the defect detection algorithm, and 

calculate the LCF, MATLAB 2020a was used. Thus, the new LCF is calculated in MATLAB and 

should be transferred to the actuator (laser), which is controlled by the PLC system of the LPBF 

machine (the name is confidential; it is so-called EOS-Controller). To connect MATLAB to the EOS-

Controller, the Message Queuing Telemetry Transport (MQTT) broker is used. The MQTT broker is a 

publish-subscribe network protocol that transports messages between devices [89]. The below 

procedure was used in this study: 

1-  EOS-Controller publishes the layer number, simultaneously MATLAB subscribes the 

message, and MATLAB starts collecting data from the current layer of the print,  

2-  As soon as EOS-Controller publishes another notification message which shows a layer of 

print is finished, MATLAB stops the data acquisition of the current layer and starts applying 

geometry and intensity corrections and defect detection algorithm on the collected data, then 

MATLAB calculates and publishes the LCF (a table with 2500×2500 cells) to the MQTT 

broker before exposure of the next layer, and   

3- EOS-Controller subscribes to the LCF and changes the laser power of the next layer based on 

the new LCF file.   

The LCF is transferred as a single-byte character encoding of the Latin alphabet (Windows-1252) to 

minimize communication speed. For example, the nominal laser power in this study is 200 W which 

corresponds to € in Windows-1252 format.   

5.3 Design of experiments  

5.3.1 Identifying the optimum amount of laser power to heal defects 

Four cubical-shaped coupon samples (N1, N2, N3, and N4) with seeded artificial defects were designed. 

Samples N1 and N2 with a size of 5×5×10 (W×L×H) mm3 and samples N3 and N4 with a size of 5×5×5 

(W×L×H) mm3 were fabricated, as shown in Figure 5-4. All of the samples were 3D-printed with a 

similar material (Hastelloy-X), scan strategy, and laser spot size as discussed in Sections 3.2.1 and 

4.2.1. Also, vertical and horizontal rectangle-shape grooves were added to the geometry of samples to 

ease identifying the location of pores in the CT scan analysis. 
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Figure 5-4: CAD model of Samples: a) N1, b) N2, c) N3, and d) N4 

Each sample was segmented into four parts (P1, P2, P3, and P4). In each part, three sizes of cylindrical 

defects were embedded, as demonstrated in Figure 5-5.   

 

Figure 5-5: 3D and 2D cross-sections of samples showing the distribution of the artificial defects in 

Samples: a) N1, b) N2, c) N3, and d) N4. 
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Four repetitions of each coupon were designed, labeled, and printed at different locations of the build 

plate, as shown in Figure 5-6. Figure 5-6(a) demonstrates the samples layout on the build plate, and 

Figure 5-6(b) displays the printed parts. All samples were fabricated with a hatching distance of 90 µm, 

a layer thickness of 40 µm, and a laser speed of 1000 mm/sec; however, the laser power varied during 

the part fabrication. The laser power of all layers of the print, except the capping layer on the artificial 

defects, was fixed to 200 W, while the laser power of the consecutive layer of artificial defects was 

changed during the print based on the values listed in Table 5-6. 

 

Figure 5-6: (a) Sample layout and (b) printed samples on the build plate 

Table 5-6: Laser power variation at capping layer in four parts of each sample based on their location 

 P1 P2 P3 P4 

Location 1 200 220 240 260 

Location 2 205 225 245 265 

Location 3 210 230 250 270 

Location 4 215 235 255 275 

5.3.2 Validating the controller by two different sets of experiments 

Two sets of experiments were designed with the size of 15×15×25 (W×L×H) mm3 and labeled as X-

series and Y-series. All of the X-series and Y-series were fabricated with Hastelloy-X. Also, vertical 

rectangle-shape grooves were added to the geometry of these samples to facilitate finding the location 

of pores in the analysis. 
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1- X-series included two cubical-shape coupon samples (X1 and X2) with similar distribution and 

size of artificial defects, as shown in Figure 5-7(a) and Figure 5-7(b). In the design of X-series, 

seven sizes of cylindrical artificial defects were considered ranging from Ø, H=100 µm to Ø, 

H=400 µm. Then, two repetitions of each size were randomly distributed inside the samples. 

Figure 5-7(c) and Figure 5-7(d) represented the locations, ids, and sizes of defects.  

Also, sample X1 was printed with the standard print parameters used to obtain high-quality 

Hastelloy-X parts (power= 200 W, layer thickness= 40 µm, hatching distance= 90 µm, and 

speed= 1000 mm/sec). As a result, the print parameters of sample X1 were fixed during the 

print. Sample X2 was also fabricated with a similar hatching distance, layer thickness, and scan 

speed to X1. Although its power initially was set to 200 W, it could change based on the 

methodology discussed in Section 5.2.1. 

 

Figure 5-7:  a) 3D view of X1, b) 3D view of X2, c) x-z coordinate of X-series samples, and d) x-y 

coordinate of X-series samples showing the distribution of the artificial defects 
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2- Y-series also included two cubical-shape coupon samples (Y1 and Y2) with randomized 

defects, as shown in Figure 5-8. To mimic the randomized defects and create a low, dense part, 

energy density was reduced in Y-series parts by decreasing the power to 150 W. Thus, the 

following parameters were considered: 

• Power= 150 W,  

• Layer thickness=40 µm, 

• Hatching distance= 90 µm, and 

• Speed= 1000 mm/sec.   

The Y1 print parameters were fixed during the print. In addition, the layer thickness, hatching distance, 

and speed of sample Y2 were set similar to corresponding parameters in sample Y1; however, its power 

could change based on the algorithm discussed in Section 5.2.1.  

 

Figure 5-8: a) 3D view of Y1 and b) 3D view of Y2 

Figure 5-9(a) and Figure 5-9(c) show the location of X-series and Y-series, respectively. As shown in 

Figure 5-9(a) and Figure 5-9(c), X2 and Y2 were fabricated in the center of the build plate. Additionally, 

samples X1 and Y1 were printed close to X2 and Y2 (2 mm distance) to reduce the effect of location 

on detection quality which was discussed in Chapter 3 and Chapter 4.   
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Figure 5-9: (a) Sample layout of X-series, (b) printed X-series samples on the build plate, c) Sample 

layout of Y-series, and (d) printed Y-series samples on the build plate 

5.4 Computed tomography (CT-Scanning) 

All samples (N-series, X-series, and Y-series) were CT-scanned to detect the position and size of actual 

defects with similar hardware and software to previous chapters. CT-Scan results of N-series, X-series, 

and Y-series samples are discussed in the following sections:   

5.4.1 N-series sample 

The pores' information (diameter and location) was measured through the μCT. The front view of 

samples (N1, N2, N3, and N4) are represented in Figure 5-10. It should be reminded that the laser 

power was changed during the fabrication to heal pores. 
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Figure 5-10: CT scan result of N-series sample 

5.4.2 X-series sample 

The pores' size and location were calculated through the μCT. The front view of samples (X1 and X2) 

are depicted in Figure 5-11, in which pores are labeled as shown in Figure 5-7(c). It should be 

recognized that CT-scan’s results were filtered to only highlight the artificial defects.  
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Figure 5-11: CT scan result of Samples a) X1 and b) X2 

5.4.3 Y-series sample 

Y-series samples also were CT-scanned. The identified pores through µCT were filtered out pores 

smaller than 100 µm since the defect detection algorithm is only cable to detect porosity larger than 

100 µm, discussed in Chapter 4. So, the front view of samples Y1 and Y2 are shown in Figure 5-12(a) 

and Figure 5-12(b), respectively. 

 

Figure 5-12: CT scan result of Samples a) Y1 and b) Y2 
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5.5 Results and discussion 

5.5.1 Identifying the optimum amount of laser power to heal defects 

As discussed in Section 5.3.1, N samples were designed and fabricated to enhance the knowledge about 

what amount of laser power could heal different sizes of defects. Thus, five sizes of cylindrical defects 

were embedded in N samples. To find more precise result, the total number of 89 defects for each size 

of Ø, H=100 μm, Ø, H=150 μm, Ø, H=300 μm, and Ø, H=400 μm and 178 defects for Ø, H=200 μm 

were embedded in N-series samples. The next consecutive layer of these defects was fabricated using 

sixteen various laser powers from 200 W to 275 W with a step size of 5. First, all samples were CT-

scanned, and then the percentage of healing of each size of artificial defects was analyzed and listed in 

Table 5-7 and visualized in Figure 5-13. 

Table 5-7: Percentage of healing of five sizes of artificial defects after applying sixteen amounts of laser 

power 

Defect Size  

  (μm) 

Power (W) 

Ø, H=100 Ø, H=150 Ø, H=200 Ø, H=300 Ø, H=400 

200 20.22 8.99 3.37 0.00 0.00 

205 78.65 85.39 10.11 0.00 0.00 

210 100.00 91.21 52.25 0.00 0.00 

215 100.00 95.51 49.44 0.00 0.00 

220 100.00 98.88 55.62 0.00 0.00 

225 100.00 100.00 57.30 0.00 0.00 

230 100.00 100.00 78.65 2.25 0.00 

235 100.00 100.00 71.35 4.49 0.00 

240 100.00 100.00 84.83 0.00 0.00 

245 100.00 100.00 78.65 0.00 0.00 

250 100.00 100.00 95.51 11.24 0.00 

255 100.00 100.00 93.82 13.48 0.00 

260 100.00 100.00 100.00 11.24 0.00 

265 100.00 100.00 100.00 11.24 0.00 

270 100.00 100.00 100.00 20.22 1.12 
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Figure 5-13: Percentage of healing of five sizes of artificial defects after applying sixteen amounts of laser 

power  

Based on Table 5-7 and Figure 5-13, defects with the size of Ø, H=100 μm, Ø, H=150 μm, and Ø, 

H=200 μm were completely disappeared with the laser power of 210 W, 225 W, 260 W, respectively. 

It should be noted that increasing the power to 260 W might result in the key-hole porosity and also 

change the desired microstructure. On the other hand, Ø, H=300 μm and Ø, H=400 μm defects were 

not healed even under the exposure of 270 W laser power. As a result, for defects with the size of Ø, 

H=100 μm and Ø, H=150 μm, 210 W and 225 W were set for the next step of this research, respectively; 

however, for other three sizes of defects (Ø, H=200 μm, Ø, H=300 μm, and Ø, H=400 μm), the size of 

remaining un-healed defects was calculated and averaged as demonstrated in Figure 5-14. 
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Figure 5-14: Percentage of sizes of um-healed defects after applying sixteen amounts of laser power on 

the consecutive layer of defects with the size of a) Ø, H=400 μm, b) Ø, H=300 μm, and c) Ø, H=200 μm  

Figure 5-14 indicated that the size of the remaining defects slightly decreased by increasing the laser 

power, although none of the defects in Figure 5-14 (a) and Figure 5-14 (b) were healed completely. As 

a result, instead of finding the laser power by which defects were healed completely, the laser power 

was selected when it could heal defects up to 50% of their original size to avoid creating any key-hole 

defects. Thus, 240 W and 250 W were selected for healing defects with the size of Ø, H=300 μm and 

Ø, H=400 μm, respectively. With a similar approach, 230 W was chosen for the defects size of Ø, 

H=200 μm. Also, for the defect size of (Ø, H=200 μm), there are limited numbers of un-healed defects 

when the laser power is more than 230 W. As shown in Figure 5-14 (c), only one defect was not healed 

under the exposure of 235 W, 240 W, 250 W, and 255 W where two defects were not healed by 245 

W, which their sizes were approximately 20% of its designed size (~40 μm). As a result, the following 

amount of laser power was selected:  

• 210 W for defect size of Ø, H=100 μm,  

• 225 W for defect size of Ø, H=150 μm, 
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• 230 W for defect size of Ø, H=200 μm, 

• 240 W for defect size of Ø, H=300 μm, and 

• 250 W for defect size of Ø, H=400 μm. 

5.5.2 Validating the controller by two different experimental sets  

After fabricating X-series and Y-series, LCF tables of both prints were checked, and all samples were 

analyzed by CT-scan. The results of applying the controller on samples X2 and Y2 will be presented 

and compared with the result of standard samples (X1 and Y1) and CT-scan in Sections 5.5.2.1 and 

5.5.2.2.  

 X-series sample (samples incorporating artificial defects) 

X-series samples (X1 and X2) were fabricated to evaluate the performance of the controller. Sample 

X1 was fabricated when the controller was inactive, and sample X2 was printed when the controller 

was active. In other words, sample X1 was printed with the standard print parameters, fixed during the 

print, while the power of sample X2 was changed during the fabrication based on the LCF table, which 

was transferred via the MQTT broker to the laser. The LCF tables created during the fabrication of X2 

are examined for the layer printed on top of artificial defects, and the result demonstrated that the 

control system worked properly and power was changed during the process; however, based on the 

analysis discussed in Section 5.5.1, the increase of laser power for each size of defect should be as 

follows: 

Table 5-8: Change of laser power in a capping zone on artificial defects based on their id based on 

analysis (Figure 5-7) 

Id Power (W) 

1 250 

2 240 

3 240 

4 230 

5 230 

6 225 

7 210 

Whereas LCF tables created during the process showed that the increase of laser power was less than 

expected, which is listed below in Table 5-9: 
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Table 5-9: Change of laser power in a capping zone on artificial defects based on their id in the real-time 

process 

Id Power (W) 

1 240 

2 230 

3 230 

4 225 

5 225 

6 210 

7 210 

The potential reason for this mismatch could be detecting fewer numbers of indicators in X2 than R-

series samples. Therefore, one level decrease in changing the laser power was observed. 

 Table 5-10 lists the actual radius of defects based on the CT-scan results, showing the comparison 

between sizes of porosities in samples X1 and X2.  

Table 5-10: The actual radius of defects embedded in X1 and X2 based on the CT-scan results  

Id Design size 

(μm3) 

Defect radius in  

X1 (μm) 

Defect radius in  

X2 (μm) 

1 Ø, H=400 μm 394.05 344.56 

Ø, H=400 μm 383.13 274.74 

2 Ø, H=350 μm 331.38 265.06 

Ø, H=350 μm 321.38 238.32 

3 Ø, H=300 μm 299.27 230.14 

Ø, H=300 μm 291.57 - 

4 Ø, H=250 μm 246.80 200.55 

Ø, H=250 μm 238.89 196.67 

5 Ø, H=200 μm 199.07 174.2 

Ø, H=200 μm - - 

6 Ø, H=150 μm - - 

Ø, H=150 μm - - 

7 Ø, H=100 μm - - 

Ø, H=100 μm - - 

As listed in Table 5-10, the following results are drawn: 

• Defects 6 and 7 were completely healed during the process for both X1 and X2. 

• One of the defects 5 was filled in both samples. In contrast, another one was filled 25 (μm) in 

X2 and less than 1 (μm) in X1.  

• The radius of defects 4 showed that their shrinkage was 3 (μm) and 11 (μm) in X1; however, 

the shrinkage of these defects embedded in sample X2 was approximately 50 (μm) and 53 

(μm).   
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• One of the defects 3 was completely healed in X2, whereas the shrinkage of the similar defect 

in sample X1 was only 8.5 (μm). Additionally, another position of defect 3 showed that its 

shrinkage was limited to 70 (μm) in X2, while the size of a similar one in X1 was unchanged 

(no shrinkage). 

• The radiuses of defects 2 showed that defects of X1 were filled 19 (μm) and 29 (μm), whereas 

defects of X2 was healed up to 112 (μm) and 120 (μm). 

• Finally, the shrinkage of defects 1 was approximately 6 (μm) and 17 (μm) in X1, and the 

corresponding ones in sample X2 showed the shrinkage of 56 (μm) and 126 (μm).   

The above results confirmed that the shrinkage of defects embedded in sample X2 was more than its 

corresponding defects in X1, which showed the controller's functionality. However, the laser power 

should increase to heal at least half size of defects (as discussed in Section 5.1). For example, for the 

defect with sizes of Ø, H=400 μm, it was supposed to the laser power would increase to 250 W (Table 

5-8) to shrink the defects to 200 μm, whereas the power was changed to 240 W (Table 5-9) and the 

shrinkage limited to 126 μm. Thus, the laser power should be increased one level to obtain better and 

more promising results.  

 Y-series sample (randomized defects) 

Samples Y1 and Y2 were manufactured by low energy density to create randomized defects. Therefore, 

these two samples were used to evaluate the performance of the developed controller. As observed in 

Figure 5-12, the identified porosities in sample Y1 were more than detected pores in sample Y2. To 

confirm this claim, the density of both samples is measured, which resulted in 97.56% and 98.50% for 

samples Y1 and Y2, respectively. Also, the histogram of pores revealed that the numbers and size of 

lack-of-fusion pores of sample Y2 is less than their corresponding amounts in sample Y1 (Figure 5-15). 

For instance, the largest size of defect identified in samples Y1 and Y2 was 487 (μm) and 280 (μm), 

respectively. The CT-scan analysis also revealed that 32380 and 26978 pores were detected in samples 

Y1 and Y2, respectively. Thus, all of the results mentioned above confirmed that using the controller 

increased the density of the part printed when the controller was active compared to the printed parts 

when the controller was inactive.  
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Figure 5-15: The histogram of pores identified in samples a) Y1 and b) Y2 

Although this methodology has not been able to heal porosities completely, it resulted in a 0.94% 

increase in the density of sample Y2 compared to sample Y1. Thus, it was a great achievement towards 

developing the intermittent closed-loop controller for the commercial EOS M290 LPBF-AM system. 

However, more experimental analyses are required to fully heal defects.  

5.6 Summary  

In this chapter, based on the result of the SOM algorithm (discussed in Chapter 4), the identified 

indicators were clustered by the K-means algorithm. Then, an optimized square area of 0.6 × 0.6 mm2 

was considered around the center of each cluster as a zone at which the laser power should be increased 

in the next deposition layer to heal/minimize the induced defects. To identify the optimum laser power 

value, a set of samples with seeded artificial voids was designed and printed with the fixed hatching 

distance, scanning speed, and layer thickness; however, its laser power was increased in the capping 

layer on the artificial voids to minimize their size and number. Then by analyzing the result of the CT-

scan, the optimum value of laser power was identified for healing each size of defects. By considering 

the defect size and optimum laser power, rules were defined to calculate the new laser power named as 

a Laser Correction File. Additionally, different components of the closed-loop approach were 

connected via the MQTT broker for collecting data, correcting data, detecting defects, calculating the 
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LCF, and sending the new LCF to the actuator. Lastly, the proposed controller was applied to two sets 

of experiments that included artificial and randomized defects to validate the performance of the 

controller.  
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

The focus of this dissertation was the development of in-situ defect detection algorithms and 

intermittent closed-loop control system for minimizing defects induced due to the lack of fusion during 

the part fabrication by the commercial LPBF system. To this end, light intensity emitted from the melt 

pool was collected by a commercial in-situ photodiode sensor during the fabrication of multiple 

Hastelloy-X coupons. Then, the collected dataset was analyzed by three analytical algorithms: 1) 

Absolute Limits (AL), 2) Signal Dynamics (SD), and 3) Short-Term Fluctuations (STF), as well as one 

unsupervised algorithm known as Self-Organizing Map (SOM). These algorithms were calibrated and 

customized based on the CT-scan analysis to detect artificial defects. Eventually, the SOM detection 

algorithm was integrated into an intermittent controller for healing the randomized defects.   

The following conclusions can be drawn from this thesis: 

• Among the analytical algorithms used in this study, the Absolute Limits (AL) algorithm resulted 

in better accuracy in detecting the location and size of artificial and randomized defects compared 

to the Signal Dynamics (SD) and Short-Term Fluctuations (STF) algorithms.  

• The smallest size of artificially seeded defects identified by the AL algorithm was 120 μm. On 

the other hand, the detection of randomized defects demonstrated that the TP rate of AL in 

detecting defects created by decreasing the laser power (i.e., 100 Watt) was <30%. However, the 

AL resulted in a better pore detection created by high speeds and high hatching distances, 

respectively showing accuracies of 70.14 ± 2.24% and 72.82 ± 1.39%.  

• Applying the SOM algorithm on artificial defects ranging from 100 to 320 µm with different 

geometries and distributions disclosed that the smallest size of defects detected was 100 μm. 

Additionally, analyzing the randomized defects by calculating true positive and true negative rates 

uncovered that the identification of porosity induced by the lack-of-fusion was successful for the 

samples printed with relatively low laser powers of 175, 150, and 125 W, high hatching distances 

of 110, 130, and 150 µm, and high process speeds of 1100, 1300, and 1500 mm/s. The results 

revealed that the pores created by low laser power were identified at the TP rate of ~ 75% by the 

SOM, which was not achievable through applying the AL when the TP rate was <30%. 

Additionally, the SOM exhibited similar detection rates to those of the AL in identifying pores 
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induced due to the high hatching distances and high speeds; however, the SOM improved the TN 

rates up to 31% and 20% for such samples, respectively. 

• The position of parts in the build plate affects the light intensity signal and the accuracy of defect 

detection. The AL and SOM algorithms did not provide a remedy for the detection dependency 

on the part’s location in the build plate. 

• The AL and SOM algorithms were also compared based on their computational speed. The SOM 

was found to detect defects per layer approximately 86% faster than the AL. 

•  Applying the intermittent controller during the LPBF process to heal lack-of-fusion defects 

revealed that the proposed control system worked properly. The CT-scan analysis of artificial 

defects in the part printed with the controller showed shrinkage of 25 (μm)- 120 (μm) more than 

the corresponding defects in the part printed when the controller was off. Additionally, CT- scan 

analysis of parts with randomized defects uncovered that the controller could increase the density 

of the part up to approximately 1% compared to the printed parts when the controller was inactive. 

This suggests a great improvement that is very welcome by the industry.    

6.2 Recommendations and Future Work 

The research described in this dissertation has focused on the development of advanced defect detection 

algorithms and an intermittent control system for the commercial LPBF machine. However, to achieve 

our intended vision of developing the commercially ready control system for the LPBF additive 

manufacturing machine, further research on hardware, algorithms, and materials should be conducted. 

1. This research has described the use of commercial on-axial photodiode to detect lack-of-fusion 

pores. The Photodiode’s resolution led to the identification of defects larger than 100 µm; 

however, using a higher-resolution photodiode with the combination of other available sensors is 

recommended. In addition, collecting data from multiple sensors could help achieve more 

accurate detection, leading to the detection of pores sized smaller than 100 µm.   

2. The applied intensity correction developed by the EOS company was not completely able to 

remove the position dependency of the dataset. Thus, the development of a new intensity 

correction is recommended to tackle this concern and increase the accuracy of defect detection 

algorithms.  

3. The targeted zone around the identified defects (discussed in Chapter 5) is currently fixed in terms 

of size and geometry. The size of the zone could be adaptively changed based on defect size. 
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Additionally, the geometry of the zone could also be changed. Based on the experimental analysis, 

the identified defects are usually circle/oval-shaped. As a result, circular/oval shapes could be 

considered instead of squares to avoid re-melting the corners and creating key-hole pores.     

4. In this study, only one experimental set was printed and analyzed to identify the optimum laser 

power, which resulted in defects not being healed completely. Thus, to fully heal defects, different 

sets of process parameters could be printed and analyzed to achieve optimum laser power.  

5. To remove any potential glitching issue in the communication via MQTT, the use of a buffer is 

highly recommended. Using the buffer could also help provide enough time to the PC hardware 

for writing and reading the dataset.   

6. To evaluate the controller's functionality, the density of printed samples was calculated in this 

study. Applying and analyzing other mechanical tests are suggested to determine the mechanical 

properties of the final parts. 

7. To increase the computational time of the communication between different components, 

converting the code in the C++ environment is suggested. Additionally, developing the whole 

package in one software is strongly recommended. 

8.  This study has focused on Hastelloy-X material. However, the proposed methodology could be 

applied to other materials (e.g., Titanium) to allow developing the adaptive algorithm for 

adjusting and changing the laser power based on the material type. 

9. It is recommended to apply the proposed methodology to other EOS M290 systems to increase 

the repeatability of evaluation and confidence of the algorithm for commercial use.  
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Figure 2-3(b): 
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Figure 2-4 (a): 
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