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Abstract

Nowadays, NofDestructive Testing (NDT)Yechniquesrean essential foundation of
infrastructure retrofit and rehabilitation pmainly due to th@uge amount of constructipas well
asthehigh cost of demolition and reconstructidviodern NDT methods are moving toward
automated detection methods to increase the speed and probability of detection, which enlarges the

size of inspection data andiseshe demand for new data analysis methods.

NDT methods are divided into two magroups; active and passive. The external potentials are
discharged into an object in an active method, and then the reflection wave is recorded. However, the
passive methods use the saitated magnetic field of the object. Therefore, the magnetic ohlue
ferromagnetic material in a passive method is less than the magnetic value of an active method, and
defects and anomalies detection needs more variety of functional signal processing methods. The
Passive Magnetic Inspection (PMI) method, as an fpB3$ve technology, is used in this thesis for
ferromagnetic materials quantitative assessment. The success of the PMI depends on the detection of
anomalies of the passive magnetic signals, which is different for every single test. This research aims
to devele appropriate signal processing methods to enhance the PMI quality of defect detection in

ferromagnetic materials.

This thesishas two main parts amqtesents two computdérased inspection data analysis methods
based on the Haar wavelet and themsyetric Gaussian Chriplet Model (AGCM). The Passive
Magnetic Inspection method (PMI) is used to scan ferromagnetic materials and produce the raw

magnetic data analyzed by the Haar wavelet and AGCM.

The first part of this study describes the Haareletvmethod for rebar defect detectidhe Haar

wavelet is used to analyze the PMI magnetic data of the embedded reinforcement steel rebar. The
iii



corrugated surface of reinforgjrsteel makes the detectiondgfects harder than flat plates. The up

and awn shape of the Haar wavelet function can filter the repeating corrugations effect of steel

rebars on the PMI signal atitereby better identifthe defects. Toogoddondam pi er sd r ebar
defects as a case studyere detected using the Haar wavelet ysialand verified by the Absolute

Gradient (AG)methodusing visual comparison tifieresulantsignals and the correlation coefficient.

The predicted number of points wiltebar area loss higher than 4% is generally the same with the

AG and the Haar waletmethods The mean correlation coefficient betweendigmals analyzed

using theAG and the Haar wavelétr all rebars is 0.8.

In the second part of this studyetuse of thé\GCM to simulate PMI signals is investigated.
Three rail sampkewere scanned to extracthreedimensioml magnetic field along specifieMl
transitlines of each sample for the AGCM simulations. Errdegined aghe absolute value of the
difference between signal and simulation, were considered as a measure of simulation accuracy in
each direction. The samplesd | engths differed,
thelength to scale data fdné three samples. Tlsmulation Error Factor (SEF) was used to measure
the errorandsample 3 shoaedthe lower value. Finally, statistical properties of the samples' SEF,
such as standard deviation and covariance, were evaluated, and the best distrdsufitbted to each
of the data sets based on the Probability Paper Plot (PPP) method. FiNerbma probability
distribution demonstrated the best compatibility with SEF values. These distributions and statistical

properties help to detect outlier data future data sets and to identify defects.
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PART ONE

The HaaWaveletDecompositiorMethod forConcreteReinforcement

Assessment

Chapter 1

Literature Revi ew

Using signal processing meitis to detect various types of defects or anomalies has been discussed
extensively by researchavser the last two decadékhe WaveletTransform (WT)approactwith
different basiovaveletformssuch asSymlet, Haar, etccomprisene of the signal processing

methods with a wide range of application.

Saadatmoradt al.(2021) used thevavelet transform (WTyvith a Neural Network to detect
damage irRectangulat. aminatedCompositePlates(RLCPSs) In thisapproachthe location oftie
defects was detected usiatyo-dimensional wavelet ancbnvolutional neural networkén FEM
model of damaged elements was developed to gatheditmensional wavelet feed signals. They

stated that the proposed method was able to detect def@&it€Rswith high accuracy.

Elefante et al. (2019) gathered photodiode signals by monitoringiadged butt joints and
analyzed them with a continuous wavelet transform. In this method, thevealsierd butt joints are

assessed by a photodiode system thaluates the offset between the laser beam and the joint.
1



Abdulkareenet al.(2019) worked on defect detectionsteel platesising wavelet transform
approachesThe mairtechnicalpart of their research was eliminating edge distortion prablesimg
atwo-dimensional continuous wavelet transform. The mode shape signal of undatsgedas
subtracted fronthe damageglatemode shape signand the resultedifferential signalwas
decomposed using wavelet transfamathods. The results showed that the edge distortion problem

was resolved using this proposed method.

A new method to detect delamination in composites using wavahsform methodwas
presented b¥eng et al(2018). They worked on CFREarbonFibre-Reinforeed Polymerplates
delamination length assessmant stated that the lowest frequency of the delaminatipacted
signal increases when the length of the delamination increhsedy, delaminationengthcould be

estimated.

Zhenget al.(2012) showedhe drawbacks dadiveraging, moving averaging, secamder
difference, oblique cumulative curve, and sHorte Fourier transforrdata processing methods in
traffic engineering.Theyassessed different WT capabilities for traffic engineering data pingess

and proved the capability of Wapproachefor assessment of such types of data.

Lilong et al.(2012) presented a method basedh&tidenoising capability of WT for eliminating
noises in gyroscope output signaad they showed th&¥T analysidedto higher accuracy in the

north-seeking function of thgyroscope.

Logistic regression and WTexeused byAgarwal (2016) for detecting vehicle incidents. Because
of the binary nature of incidemthe presence or absehdebinary logistics functiomegression

model was used in ¢ir study. The results demonstrated that using the regression model together with



wavelet feature extraction effectively deticicidents bythe equilibrium between the ratio tfe

incident detection and the false alamte

Sahocet al.(2017) analyzel the discriminative featuresf electrocardiogram (ECG) sigisalith
WT. They classified cardiac abnormalitiesoifour categories and statdthtthe error in this

abnormalities detectioexercisenas less than 0.42%.

Li et al.(2012 presented a hew wavelet decomposition metAadaptiveMorphologicalGradient
Lifting Wavelet (AMGLW), for identification and assessmenth&faring defects. The simulated and
measuredibration signaldrom bearingsvereused for comparing theroposed AMGLWwith a
mo r teaditibnab wavelet transform, and the results revealed that the accuracy for detecting bearing

defects inAMGLW was obviously higher than LW and ALW methodsalone

Detection of alcoholism using EG&lectrogastrographysignals and wavelet transformalysis
was theresearch subject of an article Aguragi and Sisodia (2020). They usedavelet transform
andamachine learning framework for categorizing EGG sigmafsormal and alcoholiclients and
concluded thathe statistical approach referred td&SVM (LeastSquares Suppekector

Machine)was the best classifier for these Ismd data.

Li et al.(2012) proposed methodthatdetected cracked eggshelsing waveletransform
methods They studied the pulse time signals gathered using a microphone when knocking the egg

andshowed thathe energy parameter value between intact and crackedsatifferent.

Albagamiet al.(2021) presented an automatedimoel based okVavelet Packet Decomposition
(WPD) method for EGG signals interpretation and extraatigfatistical features. Tireproposed

classification method accuramas reported to b&7.68%.
3



Zhanget al.(2014) presented a novel application femng wavelet transforrapproachesrhe
continuous wavelet analysis (CW#Ras compared with some traditional yellow dust disease
detection methods, and the results shothedhower of theontinuous wavelet analysisethod for
detectinghedisease.(Yellow dust is the term for winborne dust generated in nogtantral China

and Mongolia, moving toward the south easastern China, Korea, Japan)

Kerut et al.(2017) presented Morlet continuous wavelet transform (CWT) algorithm for Heart
RateVariability (HRV) analysis The dectrocardiogram and respiratatgita were recorded and
analyzed with the Morlet CWT aralsharp increase in wavelet frequency band ofythgpathetic

nervous systerand the prasympathetic nervous systeras observed.

The waelet transform was used to detect cracks in beamsindy published recently b§umar
et al.(2022) The wavelet transforranalysisdetected operational deflection shape (ODS)
discontinuities as cradditesin the beams. The finite element model wagdoyedfor quantifying
the displacement valugand theiresults showednappropriatdevel of crack detection accuracy in

the beams.

A new concepfor wavelet transform application detection was introduced by Bhavsdr
(2020). They worked on 3D dnk printing qualityby analyzing thevibroacoustic signalsf the
printing area anthedifferences in these signafer strong(intact)and failed first layer filament
deposition. The wavelet categorizech e s éngrgyiatd différent levelsand a tear difference

between the energy lewsbetweemoor and acceptable bond formation was observed.

The PMI is twedimension signal of magnetic flux density against time (location). However, the
previous rebar defect detection methods, e.g., Absolute @tddi€), do not use timérequency

functions to find the defects in steel rebar. Therefore, that methods cannot detect the frequency of

4



defects and their location at the same time. This part of this research aims to represent anew time
frequency signal prressing method based on wavelet for defect detection in reinforced concrete steel

rebar using the PMI magnetic signals.

In summary, WT methods have become widely employed in many domains ranging from defect
detection to classification methods applied ¢éalth data (diagnostic analysis). In this wahe WL
based on the Haar wavelet is used for analysis of passive magnetic data collected over ferromagnetic

materials with corrosion and cracks.



Chapter 2

Theor eBaickglr ound

The central physical concept of magnetic inspection methods is the ferromagnetic materials'
magnetic propertiesThe magnetic properties of ferromagnetic materialsefiecttheir structural
and mechanical propertiasnd be impacted by alterations inests, the presence of anomalies (cracks,
corrosion), and other factor®efects likegeneral corrosiorgorrosioncenterssuch as pittingand
craclkslead to anomalies. &&sive(plastic) straingnd high stress leveils ferromagnetic materials
can leado changes in metal crystsiructure and alteration efructural properties of these materjals

these maye detected by magnetic meth@Béitz, 1997).

Internalinhomogeneity of ferromagnetic material$sing from various sourcesin be assessed by
measuring their inductive magnetic field. The magnetic field of an intactdaoraged ferromagnetic
material under a uniformalue of induced magnetizatiés constant. However, any physical change
in the specimelshape changes, cracks, corrosion, plastains, etc.plters the magnetic response
and generates a change in the magnetic flux Tirether from active or passive magnetic fiel@ikis
is because of the magnetic leak#uat is associated wittracks, pitting, corrosion, or any ottigpes
of discontinuitiesandassociate@rystal changefASME, Vol. 17) Active magnetic methods
employing strong external magnetic field applicaifiociude nagnetic flux measurements, magnetic
particle inspectiorandelectromagnetic microwave testirigassivanethods do not use an externally
applied magnetic field, but rely on detecting anomalies (distortions) in the natural ambient magnetic

field created by the presence of the ferromagnetic material.

Non-destructive inspection methods are divided into tw&n groups: active and passive. A

specifided external magnetic field igppliedto the ferromagnetic material in the active inspection
6



method, and a receiver records its response. In corgqassive method has aeativdy managed
external magnetic soce theresidual magnetismof thespecimeraffects he earth's natural magnetic
field, and anomalies in this field are associated with inhomogeneities and discontinuities in the

ferromagnetic materiglGontarzet al, 2009).

The natural residual magnepeoperty in ferromagnetic materials results from the earth's magnetic
field or the production process, and its intensity is much less than the inductive artificial magnetic
property. Moreover, magnetic anomal@sreflect the stress changes in ferromgtgmmaterials,
which are not glectly related to materiaefects. Therefore, passive magnetic inspection method
resultsare more complicateid analyzehan active methorksults and more sophisticated and

sensitive devices are need&bntarzet al, 2012).

Reinforcement corrosion & majorissue inmany types ofeinforced concrete structures. The
penetration ofmoisture andhloride ions ito the reinforced concrete aswdnsequenthemical
reactiors with the reinforcement rebar leads to deteriorafioss of crossection)and defect¢deep
point corrosion)n the rebafZhouet al, 2015. This process maglsoincrease the corroded rebar
volume(oxidation and swelling)generatingracksin the concretendfurtherdecreamg the service

life of the reinforced concrete structung facilitating water and oxygen penetration

Developing arobligatory structual repair work scheduleequires quantification dhe corrosion
percentage and the distribution and location of the tifathievedby using nondestructive or
destructivanspection method$eliable mn-destructive test methods are more desirable because of

they are nosinvasive,cheaper and fastar application than destructive ones.

There are limitationto each spefic non-destructiveassessmemhethod. For instance,

applications of electrical, electromechanical, and acoustic probing methods are limited by gariation
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in the moisture, salinity conditions, amhomogeneity of concrete. These limitations even may put

halt against reinforcement assessment by such mefiasieioet al, 2004 Qianet al, 2001)

Steel reinforcement is a ferromagnetic material, and magnetic corrosion detection methods like
Magnetic FluxLeakage (MFL) can be used to defdetections. MFL method uses iaductive
magnetic field, and so is an active raestructive testing methqéernandest al, 2012 Gaydecki

et al, 2007).

The Passive Magnetic Inspection (PMI) method is used in this thesis to gather raw magnetic data of
ferromagnetic teel reinforcement (Mahbaz, S.B., 201B)e basis of th®MI method is the natural
magnetic field around the steel rebar. During
modifies the natural magnetic field of the steel rebhis Process is called Self Magnetic Flux

Leakage (SMFLJWilsonet al, 2007), Doubovet al, 2000), Doubovet al, 1998).

A steel rebar has a unique magneiignaturearisingfrom the stress and strain during the
manufacturi ng prsonatea magnetic leidr Therefore, aeyaeinforbetent has its
specific magnetic fieldharacteristicbased on the stressrain history and manufacturing condition

(Hubertet al, 1998)

The magnetization process defines the anisotropiarsaifnetizéion field of a ferromagnetic
material (Vlasowet al, 2004). The ambient magnetic fieddoundany ferromagnetic material is
distorted by the selinagnetizealigned electron dipoles in th@n crystallite. The ambient magnetic
field is affected bycrystal anisotropy (microstructure) and induced magnetization. The crystal
anisotropy of ferromagnetic materials depends on their crystal stractdiiee induced anisotropy

depends on the deviatidarientation)of electron dipoles froraninitial randan state.
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The magnetic fieldareclassifed into two general types: stray magnetic fiedohd external
magnetic field (Doéring et al, 1966), Brownet al, 1962), Aharoniet al, 2000) There is a relation
betweeranexternal magnetic field (H) with theacuum magnetic permeability (), magnetic flux

density (B), ad the magnetic polarization (3jrittenin Eq2-1.
QQLQMQLO 0 ™ (2-1)

Hubertet al.(1998)presented the following equation for stray field gradienivhich™O is

referred to as thstray magnetic fieldEq2-2):
QW QY (2-2)
The gray magnetic fieldO and the energy of stray magnetic fi€darerelated as follows
% -t . ( AP % -t . ( *A6 (2-3)

In this equatiorwis the volume of the element. According to potential theory, there is a solution
for the stray field equation which relat@agnetization (M), the value of surface chadgasity

(» =0 -&) and the volume charge density §.
Qb (2-4)
01 0vijo (2-5)

Here L is the magnetization saturation anhdicates the vector of position. Two different materials

with differentd values { R ) develop an interface charge:

., 0 b ¢ (2-6)



Here € is the normal vector at the separation surface of the two materials. By condmniatipn-
3, 24, and 25 and integrdhg over the volume at theposition, the potential of the straglfi energy

would be:

B l — s—sm . S_SQY (2—7)

wherei NppNpnd™re the derivatives df, @, and Yrespectively. Usingq(2-7) the stray field can

be calculated as follows
(o Q@i (2-8)
The stray field energig calculated as follows:
O o0 _ik iQw_, ik iQY (2-9)
Any defects in ferromagnetic specimens lead to a change in the stray energgehheideet
al. (2001) stated that the arrangement of smaller domains, which altered the magnetic domain of walls
by denser aligned dipoles, is the basis for a change in stray field energy thesigghe changes in

the stray field energy as a relialmethod to assess the domain chamgessed to simulate the

relation between magnetic flux density and defects on ferromagnetic specimens.

2.1 Wavelet

The PMI method provides nestationary, two dimensional signals of magnetic flux density value
versusitme or location. The timé&equency functions provide information on the frequency and time
content of a signal simultaneously. Therefore, are suitable to transforstatmmary data like PMI.

Wavelets are a particular type of function, mainly a basistion, localized in both time and
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frequencyThe wavelet functionor fimotheo wavelet [ ), which defines the basic wavelet shape,

typically defines waveletS.here are different wavelet functions with different properties (Fugal,

..

2009) Figure2-1).

Haar Shannon or Sine Daubechics 4 Daubechics 20
Gaussian or Spline  Biorthogonal Mexican Hat Coifflet

Figure2-1: Some wavelet functian

The wavelet function creates an entire family of wavelets accordi&d.tb

[0 C¢T ¢O0 0Q @t Oy (2-10)

where [Qis dilation index or scale factor an@ s translation index or shift factor (Ogden, TRA
linear combination of these dilated and translated mother wavelet functions can represent a signal.

Wavelet function has a useful property calleavelet decompositigrdiscussed in the next section.
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2.1.1 Wavelet decomposition

Wavelet has useful propertyf separating low and higinequency content of a signal, called
decomposition of a signalVaveletdecompositiorbreaks up a signal inelow-frequency
approximation using scaling function%o.p ) and highfrequency signal content higewavelet
function(” ). Asignali 6 can be decomposed into an approximation component and a detail

component. The approximation component is defined by scaling fundimhshe rest of the signal

is described by wavelet functiofBurruset al, 1998)(Eq¢d p.

i o WF; %o, O Qpl 5 O % p

Therefore, a signalan be decomposed until a specific dadhiesolutionis achievedFor instance,
for levelj=3 of approximation © and signal detailO the signail 0 is defined according to

Eq2-12(

Figure2-2):

io 0O (0] ¢h ¢
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Figure2-2: Wavelet decomposition sequer(ddisiti et al 1997)

Considering asthelevel of resolution, the signal approximation 6 , and the signal detait® 6

are defined by scaling and wavelet functions (Buetiel., 1998) Ogdenet al, 1997):

0 0 Wy, %o, O ¢hp o

(O Qfl s O T

This decomposition property tiewavelet function is used ithis thesis to detect corrosionsteel

reinforcement.
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2.2 Steel rebar corrosion assessment using wavelet decomposition

Choosing the appropriate level of decomposi{ieq. 212) and selection of wavelet transfoptay
essential rolgin detecting rebar defects effectively this thesisthe Haar wavelet decomposition is
selected taletect corrosion in the steel reinforcemébre specifically, his thesigdevelops an
analysis ofembedded concrete steel reinforcement magnetic data with the wavelet decomposition

using MATLABE software.

2.2.1 Haar wavelet decomposition

The Haar wavelet function feod oo is defined in Eqgz § (Liu et al, 2021).

p Q¢ N , h
Qw p Q¢ N |, h ¢H v
T Od iwi Q
Where
- Q
, O W W=
a
. N ™
, O W WO—
a
. ko)
, W W W 'p
a

TheTbarameter represerttiew a v e | e t 0ds she naximuwem resolution level, affls the

translation parameter.
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The Haar wavelet is a mathematical function with a wide variety of applications, like the
approximation of the linear homogeneous lmelar nonRhomogeneouaspect®f Kleini Gordon
equations (Ikranet al, 2021), the free vibration analysis of combined functionally graded shells
(Kim et al, 2021), and finding a feature extraction method based on geometric featuties ldadr
wavelet

The Haar wavelet function, level three of signal deimilised to detect rebar defeictghis work
Data analysikased on absoluteradientValues (AG) (Mosharafj 2020)is used to verify thélaar
waveletdetection results. The SMFL samplgrsal Figure2-3) is gatheredusing the PMI devicby
scanningspecific embedded rebar the ToogoodPond Cam, Markham, Ontari@Figure2-4), and the

raw magnetic signas analyzed witlthe Haar wavelet and A@ethodfor verification

30
25
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-15
-20
0 200 400 600 800 1000 1200 1400 1600
Distance X direction (mm))

Magnetic flux density‘( Y

Figure2-3. Sample SMFL signal

15



Figure2-4. ToogoodDam sampleebar

The AGanalysisshows one major corrosiaiteat length 1150mm, and three minor corrosion

sitesat 1050mm, 1200mm, and 1580mm lengtlthe embedded rebéfigure2-5).

Absolute value of magnetic flux
densityodos( &Kea)i
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03
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Minor corrosion\A rd Minor corrosion
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Distance X direction (mm))

Figure2-5. AG corrosion analysis result
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MATLAB E software is used for the Haar wavelet analysis. The sample SMFL signal is
decomposed into one approximation signal and three egsiginals. Each level ghedetaied

signakis calculated by decompdisin of the previous level of approximation sigral

Figure2-2). The following image shows the approximation sigarad three detagdsignals ofthe

sample rebar of Toogood Pond Darhe addition of these signals constructs the sample signal (Eq.

@
2-12).
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Figure2-6. Haar wavelet level three decomposition results of Toogood Dam sample(eghavel three of
approximation signal. (b) Levelne of detagdsignal. (c) level two of detal signal. (d) level three of detai
signal.

The results show that the level three signal details gawdcompatibility with the AG corrosion
detection metho@Figure2-7). The AGmethodresultedn asignalmaximum valueof 0.53 and the
Haar wavelet analysis maximum valueli¢5.Using the scale factor 0.53/1,%6e Haar wavelet
analysissignal illustrats clearcompatibilitywith the AG analysis resultsThe Haar wavelet detail
signal is symmetriavith respect to Y axis. Therefore, the negative part is deleted for more clarity

(Figure2-8).
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Figure2-7. Haar waveletl3 analysis result
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——d3 Haar wavelet
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Figure2-8. Comparison between AG analysis and Haar wavelet analysis results

The correlation coefficient is used for quantifying gimilarity between the signals. In general,
the Haar detaéld signal has an upnddown shape in each cycleigure2-1). Therefore, the
maximum adjacent pointsf each cyclere connected to each other to reach a smooth curve and
allow the correlation coefficient calculatiohhe correlation coefficient betwe@&G and the Haar

waveletsignals is 0.98which shows high compatibility between the resdsignals It should be
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noted that although the correlation coefficient shtvas thetwo signals are very similar, detectioh
the corrosion pointlcation andamplitudeare the main goalsf thesetwo detection method3he
location of major corrosioand the amplitude of the pulses are the same in two AG and Haar wavelet

methodgFigure2-9).

The ToogoodPond Cam piers rebar corrosion is assessed using the Haar wavelet method the

results compared with the AG method results. The details are presented in the next chapter.

0.6
05 AG
d3 Haar wavelet
04
03
0.2

0.1

0 200 400 600 800 1000 1200 1400 1600 1800

Distance X direction (mm))

Figure2-9. Comparison between A@nalysis and Haar wavelet analysis regigtsoothed curve)
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Chapter 3

To o g oRodn da nbOTh eCa s 8t udy

3.1 Introduction

The PMI method concept is presentecimapter2, and the wavelet ability in the signal
decomposition is also explainedSection 2.2In this chapter, the corrosion of the concrete
reinforcement of a dam is assessed using the PMI method and wavelet analysis, and the results are
verified with the avdable reinforcing steel rebar corrosion assessment method. In this research, the
ToogoodDam reinforcement was assessed aase studylnspections focused on the lower half of
each section since these areas are subjected to higher environmental iegeacte bf moisture and
water flow and ar¢hereforeexpected to have a higher amount of corrosion. For the Todgawod
reinforcement assessment, releaation andrientation vere delineatedirst. Next, the SMFL values
of thedetected steel reinforcememére recorded using PMI technolo@ubsequently hie wavelet
decompositiowasused fortheinterpretation of recorded magnetic dataset values and rebar corrosion
detection Finally, resultsverecompared tadhe AG method as thather rebar reinforcemedetection

corrosion methods for verification.

3.2 Site description

Toogood Dam creates the Toogood Pond located in the Rouge River Watershed downstream of the

confluence of Bruce Creek and Berczy Creek. The watershed ameainsl7300 ha in total and
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coninuous northward to include Preston Lake in Whitchurch Township. The pond area is about 3 ha

(Figure3-1).

Figure3-1. ToogoodPond Camlocation

Reports indicate thdhe Toogood Pond was formed by a dam in 1960 (Toogood Correspondence,
1980). The presently visible concrete structure was built in 288ap of the existing structute
serve recreational purposd@$iedam is made up of a 23 m long, about 6 m high concrete spillway,
including fivestop logbays with earth embankments @ach sideThe dam includes four concrete
bearingpiersand two embankment$hed a m6é s e mbhawve &onceete tvakways fixed overtop
to provide a continuous walkway across the dam.efhieankments havaterconnected concrete
segments on the surfaaed thedamalsohasan excavated channel and culvert crossing through it to

give fish passag@-igure3-2).
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Reinforced cpncretpiers@

Figure3-2. ToogoodPond Cam structure South to North view

3.3 PMI data gathering

The wet dam environment makes tuacrete danprone to electrochemical corrosidrhe
corrosioncondition ofembedded reinforcement rebars of the Tooddadh was assessed usihg
PMI method. The two sides of the four bearing piers plus the expossdfttie concrete

embankmentgereinspectedTheteninspected aresare shown irFigure3-3.

The inspection startegith detecting the location and the orientatioriregfreinforcement in all
ten areas using an industrial rebar deteidBorsch DTect 150(Figure4 4 (a)). Then, the detected

rebar location was marked with a visible marker on each area (Higufie)). Threehorizontal rebars
23



and two vertical rebars wensarkedon each area to be scanned vaitPMI technologyscanner

(Figure3-4 (c)). The gart and the engoint®location of themarkedrebar lines weraccurately

documented
West End Walkway East End
) OO OO O O OO 0 O O
A A BN 2k N
| | HEBIRYER
Pier 1 Pier 2 Pier 3 Pier 4

Figure3-3. Inspected areas on the bearing piers sides and two embankments

(b)
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