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Abstract 

      Nowadays, Non-Destructive Testing (NDT) techniques are an essential foundation of 

infrastructure retrofit and rehabilitation plans, mainly due to the huge amount of construction, as well 

as the high cost of demolition and reconstruction. Modern NDT methods are moving toward 

automated detection methods to increase the speed and probability of detection, which enlarges the 

size of inspection data and raises the demand for new data analysis methods.  

      NDT methods are divided into two main groups; active and passive. The external potentials are 

discharged into an object in an active method, and then the reflection wave is recorded. However, the 

passive methods use the self-created magnetic field of the object. Therefore, the magnetic value of 

ferromagnetic material in a passive method is less than the magnetic value of an active method, and 

defects and anomalies detection needs more variety of functional signal processing methods. The 

Passive Magnetic Inspection (PMI) method, as an NDT-passive technology, is used in this thesis for 

ferromagnetic materials quantitative assessment. The success of the PMI depends on the detection of 

anomalies of the passive magnetic signals, which is different for every single test. This research aims 

to develop appropriate signal processing methods to enhance the PMI quality of defect detection in 

ferromagnetic materials.   

      This thesis has two main parts and presents two computer-based inspection data analysis methods 

based on the Haar wavelet and the Asymmetric Gaussian Chriplet Model (AGCM). The Passive 

Magnetic Inspection method (PMI) is used to scan ferromagnetic materials and produce the raw 

magnetic data analyzed by the Haar wavelet and AGCM.  

      The first part of this study describes the Haar wavelet method for rebar defect detection. The Haar 

wavelet is used to analyze the PMI magnetic data of the embedded reinforcement steel rebar. The 
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corrugated surface of reinforcing steel makes the detection of defects harder than in flat plates. The up 

and down shape of the Haar wavelet function can filter the repeating corrugations effect of steel 

rebars on the PMI signal and thereby better identify the defects. Toogood Pond Dam piersô rebar 

defects, as a case study, were detected using the Haar wavelet analysis and verified by the Absolute 

Gradient (AG) method using visual comparison of the resultant signals and the correlation coefficient. 

The predicted number of points with a rebar area loss higher than 4% is generally the same with the 

AG and the Haar wavelet methods. The mean correlation coefficient between the signals analyzed 

using the AG and the Haar wavelet for all rebars is 0.8. 

            In the second part of this study the use of the AGCM to simulate PMI signals is investigated. 

Three rail samples were scanned to extract a three-dimensional magnetic field along specific PMI 

transit lines of each sample for the AGCM simulations. Errors, defined as the absolute value of the 

difference between signal and simulation, were considered as a measure of simulation accuracy in 

each direction. The samplesô lengths differed, therefore error values were normalized with respect to 

the length to scale data for the three samples. The Simulation Error Factor (SEF) was used to measure 

the error and sample 3 showed the lower value. Finally, statistical properties of the samples' SEF, 

such as standard deviation and covariance, were evaluated, and the best distribution was fitted to each 

of the data sets based on the Probability Paper Plot (PPP) method. The Log-Normal probability 

distribution demonstrated the best compatibility with SEF values. These distributions and statistical 

properties help to detect outlier data for future data sets and to identify defects. 
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PART ONE 

The Haar Wavelet Decomposition Method for Concrete Reinforcement 

Assessment 

 

 

Literature Review 

Using signal processing methods to detect various types of defects or anomalies has been discussed 

extensively by researchers over the last two decades. The Wavelet Transform (WT) approach with 

different basic wavelet forms such as Symlet, Haar, etc., comprises one of the signal processing 

methods with a wide range of application.  

Saadatmorad et al. (2021) used the wavelet transform (WT) with a Neural Network to detect 

damage in Rectangular Laminated Composite Plates (RLCPs). In this approach, the location of the 

defects was detected using a two-dimensional wavelet and convolutional neural networks. An FEM 

model of damaged elements was developed to gather two-dimensional wavelet feed signals. They 

stated that the proposed method was able to detect defects in RLCPs with high accuracy.  

Elefante et al. (2019) gathered photodiode signals by monitoring laser-welded butt joints and 

analyzed them with a continuous wavelet transform. In this method, the laser-welded butt joints are 

assessed by a photodiode system that evaluates the offset between the laser beam and the joint. 
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Abdulkareem et al. (2019) worked on defect detection in steel plates using wavelet transform 

approaches. The main technical part of their research was eliminating edge distortion problems using 

a two-dimensional continuous wavelet transform. The mode shape signal of undamaged plates was 

subtracted from the damaged plate mode shape signal, and the resulted differential signal was 

decomposed using wavelet transform methods.  The results showed that the edge distortion problem 

was resolved using this proposed method.  

A new method to detect delamination in composites using wavelet transform methods was 

presented by Feng et al. (2018). They worked on CFRP (Carbon-Fibre-Reinforced Polymer) plates 

delamination length assessment and stated that the lowest frequency of the delamination-impacted 

signal increases when the length of the delamination increases; thereby, delamination length could be 

estimated.  

Zheng et al. (2012) showed the drawbacks of averaging, moving averaging, second-order 

difference, oblique cumulative curve, and short-time Fourier transform data processing methods in 

traffic engineering.  They assessed different WT capabilities for traffic engineering data processing 

and proved the capability of WT approaches for assessment of such types of data.  

Lilong et al. (2012) presented a method based on the ñdenoisingò capability of WT for eliminating 

noises in gyroscope output signals, and they showed that WT analysis led to higher accuracy in the 

north-seeking function of the gyroscope.  

Logistic regression and WT were used by Agarwal (2016) for detecting vehicle incidents. Because 

of the binary nature of incidents (the presence or absence), the binary logistics function regression 

model was used in their study. The results demonstrated that using the regression model together with 
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wavelet feature extraction effectively detects incidents by the equilibrium between the ratio of the 

incident detection and the false alarm rate.  

  

Sahoo et al. (2017) analyzed the discriminative features of electrocardiogram (ECG) signals with 

WT. They classified cardiac abnormalities into four categories and stated that the error in this 

abnormalities detection exercise was less than 0.42%.  

Li  et al. (2012) presented a new wavelet decomposition method, Adaptive Morphological Gradient 

Lifting Wavelet (AMGLW), for identification and assessment of bearing defects. The simulated and 

measured vibration signals from bearings were used for comparing the proposed AMGLW with a 

more ñtraditionalò wavelet transform, and the results revealed that the accuracy for detecting bearing 

defects in AMGLW was obviously higher than in LW and ALW methods alone.  

Detection of alcoholism using EGG (Electrogastrography) signals and wavelet transform analysis 

was the research subject of an article by Anuragi and Sisodia (2020). They used a wavelet transform 

and a machine learning framework for categorizing EGG signals in normal and alcoholic clients and 

concluded that the statistical approach referred to as LS-SVM (Least-Squares Support-Vector 

Machine) was the best classifier for these kinds of data.  

Li et al. (2012) proposed a method that detected cracked eggshells using wavelet transform 

methods. They studied the pulse time signals gathered using a microphone when knocking the egg 

and showed that the energy parameter value between intact and cracked eggs is different.  

Albaqami et al. (2021) presented an automated method based on Wavelet Packet Decomposition 

(WPD) method for EGG signals interpretation and extracting of statistical features. Their proposed 

classification method accuracy was reported to be 87.68%.  
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Zhang et al. (2014) presented a novel application for using wavelet transform approaches. The 

continuous wavelet analysis (CWA) was compared with some traditional yellow dust disease 

detection methods, and the results showed the power of the continuous wavelet analysis method for 

detecting the disease.  (Yellow dust is the term for wind-borne dust generated in north-central China 

and Mongolia, moving toward the south east - eastern China, Korea, Japan) 

Kerut et al. (2017) presented a Morlet continuous wavelet transform (CWT) algorithm for Heart 

Rate Variability (HRV) analysis. The electrocardiogram and respiratory data were recorded and 

analyzed with the Morlet CWT and a sharp increase in wavelet frequency band of the sympathetic 

nervous system and the parasympathetic nervous system was observed.  

The wavelet transform was used to detect cracks in beams in a study published recently by Kumar 

et al. (2022). The wavelet transform analysis detected operational deflection shape (ODS) 

discontinuities as crack sites in the beams. The finite element model was employed for quantifying 

the displacement values, and their results showed an appropriate level of crack detection accuracy in 

the beams.  

A new concept for wavelet transform application detection was introduced by Bhavsar et al. 

(2020). They worked on 3D online printing quality by analyzing the vibroacoustic signals of the 

printing area and the differences in these signals for strong (intact) and failed first layer filament 

deposition. The wavelet categorized the signalsô energy into different levels, and a clear difference 

between the energy levels between poor and acceptable bond formation was observed. 

The PMI is two-dimension signal of magnetic flux density against time (location). However, the 

previous rebar defect detection methods, e.g., Absolute Gradient (AG), do not use time-frequency 

functions to find the defects in steel rebar. Therefore, that methods cannot detect the frequency of 
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defects and their location at the same time. This part of this research aims to represent a new time-

frequency signal processing method based on wavelet for defect detection in reinforced concrete steel 

rebar using the PMI magnetic signals. 

In summary, WT methods have become widely employed in many domains ranging from defect 

detection to classification methods applied to health data (diagnostic analysis).  In this work, the WL 

based on the Haar wavelet is used for analysis of passive magnetic data collected over ferromagnetic 

materials with corrosion and cracks. 
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Theoretical Background 

The central physical concept of magnetic inspection methods is the ferromagnetic materials' 

magnetic properties.  The magnetic properties of ferromagnetic materials can reflect their structural 

and mechanical properties and be impacted by alterations in stress, the presence of anomalies (cracks, 

corrosion), and other factors.  Defects like general corrosion, corrosion centers such as pitting, and 

cracks lead to anomalies.  Massive (plastic) strains and high stress levels in ferromagnetic materials 

can lead to changes in metal crystal structure and alteration of structural properties of these materials; 

these may be detected by magnetic methods (Blitz, 1997).   

Internal inhomogeneity of ferromagnetic materials arising from various sources can be assessed by 

measuring their inductive magnetic field. The magnetic field of an intact, non-damaged ferromagnetic 

material under a uniform value of induced magnetization is constant. However, any physical change 

in the specimen (shape changes, cracks, corrosion, plastic strains, etc.) alters the magnetic response 

and generates a change in the magnetic flux lines ï either from active or passive magnetic fields. This 

is because of the magnetic leakage that is associated with cracks, pitting, corrosion, or any other types 

of discontinuities and associated crystal changes (ASME, Vol. 17).  Active magnetic methods 

employing strong external magnetic field application include magnetic flux measurements, magnetic 

particle inspection, and electromagnetic microwave testing. Passive methods do not use an externally 

applied magnetic field, but rely on detecting anomalies (distortions) in the natural ambient magnetic 

field created by the presence of the ferromagnetic material. 

Non-destructive inspection methods are divided into two main groups: active and passive. A 

specificied external magnetic field is applied to the ferromagnetic material in the active inspection 
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method, and a receiver records its response. In contrast, a passive method has no actively managed 

external magnetic source; the residual magnetism of the specimen affects the earth's natural magnetic 

field, and anomalies in this field are associated with inhomogeneities and discontinuities in the 

ferromagnetic material (Gontarz et al., 2009). 

The natural residual magnetic property in ferromagnetic materials results from the earth's magnetic 

field or the production process, and its intensity is much less than the inductive artificial magnetic 

property. Moreover, magnetic anomalies can reflect the stress changes in ferromagnetic materials, 

which are not directly related to material defects. Therefore, passive magnetic inspection method 

results are more complicated to analyze than active method results, and more sophisticated and 

sensitive devices are needed (Gontarz et al., 2012). 

  Reinforcement corrosion is a major issue in many types of reinforced concrete structures. The 

penetration of moisture and chloride ions into the reinforced concrete and consequent chemical 

reactions with the reinforcement rebar leads to deterioration (loss of cross-section) and defects (deep 

point corrosion) in the rebar (Zhou et al., 2015). This process may also increase the corroded rebar 

volume (oxidation and swelling), generating cracks in the concrete and further decreasing the service 

life of the reinforced concrete structure by facilitating water and oxygen penetration. 

Developing an obligatory structural repair work schedule requires quantification of the corrosion 

percentage and the distribution and location of the defects, achieved by using non-destructive or 

destructive inspection methods. Reliable non-destructive test methods are more desirable because of 

they are non-invasive, cheaper and faster in application than destructive ones.  

There are limitations to each specific non-destructive assessment method. For instance, 

applications of electrical, electromechanical, and acoustic probing methods are limited by variations 
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in the moisture, salinity conditions, and inhomogeneity of concrete. These limitations even may put a 

halt against reinforcement assessment by such methods (Mancio et al., 2004; Qian et al., 2001).    

Steel reinforcement is a ferromagnetic material, and magnetic corrosion detection methods like 

Magnetic Flux Leakage (MFL) can be used to defect detections. MFL method uses an inductive 

magnetic field, and so is an active non-destructive testing method (Fernandes et al., 2012; Gaydecki 

et al., 2007). 

The Passive Magnetic Inspection (PMI) method is used in this thesis to gather raw magnetic data of 

ferromagnetic steel reinforcement (Mahbaz, S.B., 2016). The basis of the PMI method is the natural 

magnetic field around the steel rebar. During steel rebar manufacturing, the earthôs magnetic field 

modifies the natural magnetic field of the steel rebar. This process is called Self Magnetic Flux 

Leakage (SMFL) (Wilson et al., 2007), (Doubov et al., 2000), (Doubov et al., 1998).  

A steel rebar has a unique magnetic signature arising from the stress and strain during the 

manufacturing process under the earthôs natural magnetic field. Therefore, any reinforcement has its 

specific magnetic field characteristics based on the stress-strain history and manufacturing condition 

(Hubert et al., 1998).    

The magnetization process defines the anisotropic self-magnetization field of a ferromagnetic 

material (Vlasov et al., 2004). The ambient magnetic field around any ferromagnetic material is 

distorted by the self-magnetized aligned electron dipoles in the iron crystallite. The ambient magnetic 

field is affected by crystal anisotropy (microstructure) and induced magnetization. The crystal 

anisotropy of ferromagnetic materials depends on their crystal structure and the induced anisotropy 

depends on the deviation (orientation) of electron dipoles from an initial random state. 
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The magnetic fields are classified into two general types: stray magnetic fields and external 

magnetic fields (Döring et al., 1966), (Brown et al., 1962), (Aharoni et al., 2000). There is a relation 

between an external magnetic field (H) with the vacuum magnetic permeability (‘), magnetic flux 

density (B), and the magnetic polarization (J), written in Eq.2-1.  

ὨὭὺὄὨὭὺ‘Ὄ ὐ π                                                     (2-1)                                        

Hubert et al. (1998) presented the following equation for stray field gradient, in which Ὄ  is 

referred to as the stray magnetic field (Eq.2-2): 

ὨὭὺὌ ὨὭὺὐ‘ϳ                                                          (2-2) 

The stray magnetic field Ὄ  and the energy of stray magnetic field Ὁ  are related as follows  

                                 % ʈ᷿ (Ä6
 

ᴼ% ʈ᷿ (*Ä6                                  (2-3) 

In this equation ὠ is the volume of the element. According to potential theory, there is a solution 

for the stray field equation which relates magnetization (M), the value of surface charge density 

(„ί=ὓ·ὲ) and the volume charge density (‗ὺ).  

‗ ὨὭὺ ὓ                                                               (2-4) 

ὓὶ ὐὶ ὐϳ                                                              (2-5) 

Here, ╙▼ is the magnetization saturation and ὶ indicates the vector of position. Two different materials 

with different ὓ values (ὓȟὓ ) develop an interface charge: 

„ ὓ ὓ ὲ                                                              (2-6) 
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Here, ὲ is the normal vector at the separation surface of the two materials. By combining equations 2-

3, 2-4, and 2-5 and integrating over the volume at the r position, the potential of the stray field energy 

would be: 

ɮ ὶ
ȿ᷿ ȿ

Ὠὠ
ȿ᷿ ȿ

ὨὛ                                          (2-7) 

where ὶǋ, ὠǋ, and Ὓǋ are the derivatives of ὶ, ὠ, and Ὓ respectively. Using Eq.(2-7) the stray field can 

be calculated as follows:   

Ὄ ὶ ὫὶὥὨɮ ὶ                                                   (2-8)  

The stray field energy is calculated as follows:   

Ὁ ὐ ‗᷿ ὶɮ ὶὨὠ „᷿ ὶɮ ὶὨὛ                             (2-9) 

Any defects in ferromagnetic specimens lead to a change in the stray energy value. Schneider et 

al. (2001) stated that the arrangement of smaller domains, which altered the magnetic domain of walls 

by denser aligned dipoles, is the basis for a change in stray field energy. In this thesis, the changes in 

the stray field energy as a reliable method to assess the domain changes are used to simulate the 

relation between magnetic flux density and defects on ferromagnetic specimens. 

 

2.1 Wavelet  

The PMI method provides non-stationary, two dimensional signals of magnetic flux density value 

versus time or location. The time-frequency functions provide information on the frequency and time 

content of a signal simultaneously. Therefore, are suitable to transform non-stationary data like PMI. 

Wavelets are a particular type of function, mainly a basis function, localized in both time and 
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frequency. The wavelet function, or ñmotherò wavelet (‪), which defines the basic wavelet shape, 

typically defines wavelets. There are different wavelet functions with different properties (Fugal, 

2009) (Figure 2-1).  

  

Figure 2-1: Some wavelet functions  

 

The wavelet function creates an entire family of wavelets according to 2-10:   

‪ȟ ὸ ς‪ςὸ Ὧ   Ὦ ὥὲὨ Ὧᶰᴚ                                         (2-10)                  

where (Ὦ) is dilation index or scale factor and (Ὧ) is translation index or shift factor (Ogden, 1997). A 

linear combination of these dilated and translated mother wavelet functions can represent a signal.  

Wavelet function has a useful property called wavelet decomposition, discussed in the next section.  

 

Haar Shannon or Sine Daubechics 4 Daubechics 20 

Gaussian or Spline Biorthogonal Mexican Hat Coifflet 
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2.1.1 Wavelet decomposition 

Wavelet has a useful property of separating low and high-frequency content of a signal, called 

decomposition of a signal. Wavelet decomposition breaks up a signal into a low-frequency 

approximation using a scaling function (‰ȟ) and high-frequency signal content by the wavelet 

function (‪ȟ). A signal ίὸ can be decomposed into an approximation component and a detail 

component. The approximation component is defined by scaling functions, and the rest of the signal 

is described by wavelet functions (Burrus et al., 1998) (Eq.ςȤρρ).  

  

ίὸ ὧȟ‰ȟ ὸ Ὠȟ‪ȟ ὸ                                         ςȤρρ 

 

Therefore, a signal can be decomposed until a specific detail of resolution is achieved. For instance, 

for level j=3 of approximation ὃ  and signal detail Ὀ  the signal ίὸ is defined according to 

Eq.2-12 ( 

Figure 2-2):  

ίὸ ὃ Ὀ                                                                      ςȤρς 
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Figure 2-2: Wavelet decomposition sequence (Misiti  et al. 1997) 

 

Considering j as the level of resolution, the signal approximation ὃ ὸ, and the signal details Ὀ ὸ 

are defined by scaling and wavelet functions (Burrus et al., 1998) (Ogden et al., 1997): 

   

ὃ ὸ ὧȟ‰ȟ ὸ                                                        ςȤρσ 

Ὀ ὸ Ὠȟ‪ȟ ὸ                                                       ςȤρτ 

   This decomposition property of the wavelet function is used in this thesis to detect corrosion in steel 

reinforcement.  

ίὸ 

ὃ Ὀ 

ὃ  Ὀ  

ὃ  Ὀ  
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2.2 Steel rebar corrosion assessment using wavelet decomposition 

Choosing the appropriate level of decomposition (Eq. 2-12) and selection of wavelet transform play 

essential roles in detecting rebar defects effectively. In this thesis, the Haar wavelet decomposition is 

selected to detect corrosion in the steel reinforcement. More specifically, this thesis develops an 

analysis of embedded concrete steel reinforcement magnetic data with the wavelet decomposition 

using MATLABÊ software.  

 

2.2.1 Haar wavelet decomposition 

      The Haar wavelet function for ὼɴ ὥȟὦ is defined in Eq.ςȤρυ) (Liu et al., 2021).  

Ὤὼ
ρ        Ὢέὶ   ὼɴ ‚ȟ‚

ρ    Ὢέὶ   ὼɴ ‚ȟ‚
π                      ὉὰίύὬὩὶὩ 

                                                  ςȤρυ 

      Where 

‚ ὥ ὦ ὥ
Ὧ

ά
 

‚ ὥ ὦ ὥ
Ὧ πȢυ

ά
 

‚ ὥ ὦ ὥ
Ὧ ρ

ά
 

ά ςȟὮ πȟρȟȣȟὐ 

Ὧ πȟρȟȣȟά ρ 

 

      The Ὦ parameter represents the waveletôs level, ὐ is the maximum resolution level, and Ὧ is the 

translation parameter.  
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      The Haar wavelet is a mathematical function with a wide variety of applications, like the 

approximation of the linear homogeneous and linear non-homogeneous aspects of KleinïGordon 

equations (Ikram et al., 2021), the free vibration analysis of combined functionally graded shells 

(Kim et al., 2021), and finding a feature extraction method based on geometric features and the Haar 

wavelet.   

       The Haar wavelet function, level three of signal detail, is used to detect rebar defects in this work. 

Data analysis based on absolute Gradient Values (AG) (Mosharafi, 2020) is used to verify the Haar 

wavelet detection results. The SMFL sample signal (Figure 2-3) is gathered using the PMI device by 

scanning specific embedded rebar in the Toogood Pond Dam, Markham, Ontario (Figure 2-4), and the 

raw magnetic signal is analyzed with the Haar wavelet and AG method for verification.  

 

  

Figure 2-3. Sample SMFL signal 
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Figure 2-4. Toogood Dam sample rebar 

 

       The AG analysis shows one major corrosion site at length 1150mm, and three minor corrosion 

sites at 1050mm, 1200mm, and 1580mm length of the embedded rebar (Figure 2-5).  

 

Figure 2-5. AG corrosion analysis result 
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      MATLABÊ software is used for the Haar wavelet analysis. The sample SMFL signal is 

decomposed into one approximation signal and three detailed signals. Each level of the detailed 

signals is calculated by decomposition of the previous level of approximation signal ( 

Figure 2-2). The following image shows the approximation signal and three detailed signals of the 

sample rebar of Toogood Pond Dam. The addition of these signals constructs the sample signal (Eq. 

2-12).  

 

 

 

 

Distance (X direction (mm)) 

Distance (X direction (mm)) 

a
3 

d
1 

(b) 

(a) 
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Figure 2-6. Haar wavelet level three decomposition results of Toogood Dam sample rebar. (a) Level three of 

approximation signal. (b) Level one of detailed signal. (c) level two of detailed signal. (d) level three of detailed 

signal. 

 

      The results show that the level three signal details have good compatibility with the AG corrosion 

detection method (Figure 2-7). The AG method resulted in a signal maximum value of 0.53, and the 

Haar wavelet analysis maximum value is 1.15. Using the scale factor 0.53/1.15, the Haar wavelet 

analysis signal illustrates clear compatibility with the AG analysis results. The Haar wavelet detailed 

signal is symmetric with respect to Y axis. Therefore, the negative part is deleted for more clarity 

(Figure 2-8).       
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Figure 2-7. Haar wavelet d3 analysis result 

 

  

Figure 2-8. Comparison between AG analysis and Haar wavelet analysis results 

 

      The correlation coefficient is used for quantifying the similarity between the signals. In general, 

the Haar detailed signal has an up-and-down shape in each cycle (Figure 2-1). Therefore, the 

maximum adjacent points of each cycle are connected to each other to reach a smooth curve and 

allow the correlation coefficient calculation. The correlation coefficient between AG and the Haar 

wavelet signals is 0.96, which shows high compatibility between the resulted signals. It should be 
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noted that although the correlation coefficient shows that the two signals are very similar, detection of 

the corrosion points location and amplitude are the main goals of these two detection methods. The 

location of major corrosion and the amplitude of the pulses are the same in two AG and Haar wavelet 

methods (Figure 2-9).  

      The Toogood Pond Dam piers rebar corrosion is assessed using the Haar wavelet method the 

results compared with the AG method results. The details are presented in the next chapter.  

 

 

Figure 2-9. Comparison between AG analysis and Haar wavelet analysis results (smoothed curve) 
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Toogood Pond Dam, The Case Study 

 

3.1 Introduction 

      The PMI method concept is presented in Chapter 2, and the wavelet ability in the signal 

decomposition is also explained in Section 2.2. In this chapter, the corrosion of the concrete 

reinforcement of a dam is assessed using the PMI method and wavelet analysis, and the results are 

verified with the available reinforcing steel rebar corrosion assessment method. In this research, the 

Toogood Dam reinforcement was assessed as a case study. Inspections focused on the lower half of 

each section since these areas are subjected to higher environmental impacts because of moisture and 

water flow and are therefore expected to have a higher amount of corrosion. For the Toogood Dam 

reinforcement assessment, rebar location and orientation were delineated first. Next, the SMFL values 

of the detected steel reinforcement were recorded using PMI technology. Subsequently, the wavelet 

decomposition was used for the interpretation of recorded magnetic dataset values and rebar corrosion 

detection. Finally, results were compared to the AG method as the other rebar reinforcement detection 

corrosion methods for verification.  

 

3.2 Site description 

Toogood Dam creates the Toogood Pond located in the Rouge River Watershed downstream of the 

confluence of Bruce Creek and Berczy Creek. The watershed area is around 7300 ha in total and 
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continuous northward to include Preston Lake in Whitchurch Township. The pond area is about 3 ha 

(Figure 3-1). 

 

 

Figure 3-1. Toogood Pond Dam location 

 

      Reports indicate that the Toogood Pond was formed by a dam in 1960 (Toogood Correspondence, 

1980). The presently visible concrete structure was built in 1981 on top of the existing structure to 

serve recreational purposes. The dam is made up of a 23 m long, about 6 m high concrete spillway, 

including five stop log bays with earth embankments on each side. The dam includes four concrete 

bearing piers and two embankments. The damôs embankments have concrete walkways fixed overtop 

to provide a continuous walkway across the dam. The embankments have interconnected concrete 

segments on the surface, and the dam also has an excavated channel and culvert crossing through it to 

give fish passage (Figure 3-2).  
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Figure 3-2. Toogood Pond Dam structure - South to North view 

 

3.3 PMI data gathering 

      The wet dam environment makes the concrete dam prone to electrochemical corrosion. The 

corrosion condition of embedded reinforcement rebars of the Toogood Dam was assessed using the 

PMI method. The two sides of the four bearing piers plus the exposed sides of the concrete 

embankments were inspected. The ten inspected areas are shown in Figure 3-3.  

      The inspection started with detecting the location and the orientation of the reinforcement in all 

ten areas using an industrial rebar detector ïBosch D-Tect 150 (Figure 4 4 (a)). Then, the detected 

rebar location was marked with a visible marker on each area (Figure 4 4 (b)). Three horizontal rebars 

Walkway 

Reinforced concrete piers 
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and two vertical rebars were marked on each area to be scanned with a PMI technology scanner 

(Figure 3-4 (c)). The start and the end pointsô location of the marked rebar lines were accurately 

documented.  

 

 

Figure 3-3. Inspected areas on the bearing piers sides and two embankments  
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