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Abstract

In many real-world applications of multi-armed bandit problems, both rewards and ob-
served contexts are often influenced by confounding latent variables which evolve stochas-
tically over time. While the observed contexts and rewards are nonlinearly related, prior
knowledge of latent graphical structure can be leveraged to reduce the problem to the lin-
ear bandit setting. We develop a linearized latent Thompson sampling algorithm (L2TS),
which exploits prior knowledge of the dependence of observed contexts on the hidden state
to build a least-squares estimator of the latent transition matrix, and uses the resulting
approximate posterior beliefs over the latent space as context features in a linear ban-
dit problem. We upper bound the error in reward parameter estimates in our method,
demonstrating the role of the latent dynamics and evolution of posterior beliefs. We also
demonstrate through experiments the superiority of our approach over related bandit al-
gorithms. Lastly, we derive a theoretical bound which demonstrates the influence of the
latent dynamics and information theoretic structure of the problem on Bayesian inference
over the latent space. Overall, our approach uses prior knowledge to reduce a complex
decision-making problem to a simpler problem for which existing solutions and methods
can be applied.
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Chapter 1

Introduction

Many real-world sequential decision-making problems involve the following two challenges:

• Partial observability. Real-world data are in general influenced by unobserved latent
variables. Often, latent variables correspond to higher levels of abstraction which
must be modeled (at least implicitly) in order to generate accurate predictions of
future observations.

• Non-stationarity. Real-world sequential data are in general not independent and
identically distributed (i.i.d.). For time-series data, the i.i.d. assumption is generally
violated due to underlying temporal dynamics which introduce correlations between
data at di↵erent times as well as non-stationarity in the distribution of observed data
over time. Often, this is due to dynamical evolution of unobserved latent variables.

Sequential decision-making methods which e↵ectively optimize a target performance metric
must model these components of the data-generating process in order to more accurately
predict the consequences of decisions.

In this thesis, we address these challenges in the multi-armed bandit setting. Multi-
armed bandits have been successfully applied in domains such as healthcare [22, 65], fi-
nance [53], and recommender systems [64]. While limited by the constraint that actions do
not influence any underlying state variables, the bandit setting allows for more tractable
theoretical analysis of algorithms (especially when dynamics and partial observability al-
ready lead to a nontrivial level of complexity), and is a stepping stone towards under-
standing of reinforcement learning [55] algorithms in the more general setting of partially
observable Markov decision processes (POMDPs) [54].
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We focus on a contextual multi-armed bandit problem with the graphical structure
shown in Figure 3.1 (see Chapter 3 below). In this problem, an unobserved latent state
(denoted zt) evolves over time according to an (unknown) state transition model. At each
timestep t, a context (denoted xt) is generated conditional on the current latent state,
the agent selects an action at after observing xt, and a reward rt is generated conditional
on the agent’s action and the current latent state. This problem may be viewed as a
subset of partially observable Markov decision processes (POMDPs), to which the graphical
model can be generalized by adding an additional edge from the agent’s action at to the
next state zt+1, allowing control of the latent state. In this light, our problem is the
mildest possible simplification of a POMDP to the bandit framework (in which the agent
cannot influence state transitions), and as such, is an important bridge problem connecting
the space of bandit decision problems and algorithms to more general decision-making
problems. It is also worth noting that this problem setting is a slight generalization of
hidden Markov models, which can be obtained by reducing the action space to a single
action, and considering contexts and rewards to constitute a joint observation variable
which is emitted by a hidden Markov state.

In this problem, the observed context is correlated with subsequent rewards via the
latent state (conditional on which they are independent), and thus, selecting actions which
maximize the expected reward generically requires inference of the current latent state.
Our approach to the problem will combine a particular method of inference with existing
multi-armed bandit methods for learning how the latent variable influences rewards.

Our setting applies generally to situations where explicitly modeling a latent variable is
natural and beneficial, possibly due to a causal mechanism where the context is ‘caused’ by
the latent variable. This often implies that the observed context contains useful information
about the underlying latent variable, beyond what one could infer from rewards alone,
making it possible to better predict rewards by inferring latent states from observations.
Consider the following illustrative real-world applications:

• An interactive AI agent for personalized education chooses material to help a stu-
dent’s evolving state of knowledge, using observations such as the time taken to
answer questions.

• A rover on a mission explores blocks of land, taking samples that provide information
about the ore grade and choosing mining strategies for each block in real time.

• A recommender system selects items for users with evolving latent preferences or
values, potentially using observable signals such as behavior patterns.
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In cases such as these, the latent graphical structure of the problem is often known in
advance. Modeling the causal mechanism enables one to use domain expertise or pre-
existing data to estimate the probability distribution of the context conditioned on the
latent variable, p(x|z), in order to accelerate inference of the latent state. For instance, a
medical professional may provide estimates of likelihoods of a patient’s underlying disease
condition z generating di↵erent possible observed symptoms x. Alternatively, in settings
where high-dimensional context data is already available, estimates for p(x|z) can be pre-
trained o✏ine and transferred to novel online settings in which latent dynamics or rewards
may be altered but the same causal mechanism p(x|z) is at play. (Another potential way
to obtain this knowledge is by using data when latent variables can be inferred after a
delay, e.g. retrospective analysis of latent financial conditions.) At the same time, while
the particular algorithm which we introduce for this problem makes use of assumed prior
knowledge of this kind in order to accelerate learning, our high-level approach is more
general, and can be extended straightforwardly to settings where less prior knowledge is
available.

1.1 Overview of Thesis Contributions

In Chapter 2, we describe the multi-armed bandit framework, review relevant literature,
including the linear bandit setting and linear Thompson sampling algorithm of Agrawal
and Goyal [4], upon which we will build.

In Chapter 3, we introduce our problem setting, a contextual multi-armed bandit prob-
lem involving a dynamical latent state which influences reward variables and additional
context observations, show that prior knowledge of the graphical structure of the prob-
lem (along with partial knowledge of environment parameters) can be used to reduce the
problem to the linear bandit setting, and derive an upper bound on the error of a linear
regression estimator for unknown reward parameters, constructed from posterior probabil-
ities for current and past latent states.

In Chapter 4 we build on the results of Chapter 3 and develop a novel Thompson
sampling algorithm, Latent Linear Thompson Sampling (L2TS), which performs Bayesian
inference over the unobserved latent state and uses the reward estimator introduced in
Chapter 3 as part of the linear bandit algorithm of Agrawal and Goyal [4]. We present
results from experiments in low-dimensional synthetic environments which show that our
algorithm is able to outperform baseline algorithms designed for contextual multi-armed
bandit algorithms with non-stationarity.
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In Chapter 5, we study the influence of the conditional distributions p(x|z) on inference
of the latent state. We derive an upper bound on regret relative to an oracle algorithm
which observes the latent state, for a related Thompson sampling algorithm, which captures
the e↵ects of dynamical and information theoretic structure of the environment on task
di�culty.

We conclude in Chapter 6, summarizing our contributions and outlining several direc-
tions for future research.
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Chapter 2

Background

In this chapter, we first describe in Section 2.1 the basic setup for multi-armed bandit
problems, and subsequently (in Sections 2.2 and 2.3) review existing work in two classes of
multi-armed bandit problems (latent and non-stationary bandits) which extend this basic
setup by modifying the graphical structure and time-dependence of the data generating
process, respectively. (In Chapter 3 below, we will define our problem setting at the
intersection of these two problem settings.) Lastly, in Section 2.4, we introduce the linear
bandit problem setting and review a particular algorithm for this setting which we will
adapt for the more general setting of latent and non-stationary multi-armed bandits.

2.1 Multi-Armed Bandits

In multi-armed bandit (MAB) problems [36, 7, 38], an agent makes a sequence of decisions
with the goal of optimizing a reward signal. At each timestep t = 1, 2, ..., the agent selects
an action at 2 {1, ..., K} among K possible discrete-valued actions (bandit arms), and
subsequently receives a reward rt 2 R generated from an action-dependent distribution,
rt ⇠ p(r|a = at). The goal of the agent is to maximize its return, the sum of rewardsP

T

t=1 rt, up to a time horizon T . We will focus on the limit of an infinitely long time
horizon, T !1.

In the more general class of contextual multi-armed bandit problems, the agent receives
an observation or context xt at each round, prior to selecting an action, and the subsequent
reward is generated from a context-dependent distribution, r ⇠ p(r|x = xt, a = at).

5



Any particular bandit algorithm maintains a policy in the form of a probability distri-
bution for selecting actions, depending on rewards and contexts observed thus far. Defining

Ht := (x1, a1, r1, ..., xt�1, at�1, rt�1, xt) (2.1)

as the history of observations, actions, and rewards up to time t (including the most recent
context xt), actions are sampled from a distribution,

at ⇠ ⇡(·|Ht). (2.2)

The optimal policy ⇡
? is commonly defined as the policy which selects the action with

highest expected reward,

⇡
?(a|Ht) = 1(a = argmax

a0
E[rt|at = a

0;Ht]), (2.3)

where the expectation is taken with respect to the true reward distribution.

The performance of bandit algorithms is typically described in terms of regret, the
di↵erence in returns earned by a given policy ⇡ relative to the optimal policy up to time
T ,

R⇡(T ) :=
X

tT

(E⇡? [rt]� E⇡[rt]) . (2.4)

Unless otherwise noted, when referring to regret we will always have in mind the cumulative
expected regret as defined in Eq. (2.4).

Regret bounds and problem dependence. Theoretical support for bandit algorithms is
often sought in the form of upper bounds on the regret R⇡(T ) incurred by the algorithm
within time horizon T , or, relatedly, on the expected number of suboptimal actions selected.
The bulk of theoretical upper bounds on expected regret are problem-independent, mean-
ing that they do not depend on the particular reward distributions p(r|a) – or p(r|x, a) in
contextual settings – of a particular problem instance, aside from constraints (e.g. on the
tails or domain of support of distributions) which apply to a wide range of reward distri-
butions. In contrast, problem-dependent or instance-dependent bounds leverage structure
or features of the reward distribution of a particular problem which influence the problem
di�culty or performance of a given algorithm. In particular, gap-dependent bounds make
use of the di↵erences (gaps) in expected rewards between optimal and suboptimal actions,
�a = E[r|a?] � E[r|a] where a

? = argmax
a
E[r|a] in the non-contextual case. In the con-

textual case, (i) the gaps become functions of the context, and (ii) the structure of the
context distribution as well as reward distributions can a↵ect problem di�culty, leading
to additional dependencies in problem-dependent bounds.
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Exploration and information gain. A key challenge faced by multi-armed bandit al-
gorithms (and sequential decision making algorithms in general) is that of exploration.
Suboptimal actions must be explored enough times to be ruled out, but should not be cho-
sen more than necessary. Selecting suboptimal actions will, in expectation, yield valuable
information about the corresponding reward distributions which will eventually be used to
rule those actions out with higher confidence. The challenge of exploration is the challenge
of trading o↵ this information gain (and resulting long term expected rewards) with the
cost of lower expected rewards in the short term.

2.1.1 Bandit Algorithms

Two of the most common approaches to exploration are upper confidence bound methods
and Thompson sampling.

Upper confidence bound (UCB) approaches maintain estimates µ̂(a) of the expected
reward for each action a, along with corresponding estimates û(a) � 0 of uncertainty of
the expected reward, and select at each timestep the action which maximizes µ̂(a) + û(a),
acting optimistically with respect to more uncertain actions.

Thompson sampling (TS) [56, 17, 48], the approach we will follow in this thesis, is a
Bayesian approach to exploration which samples actions according to the posterior proba-
bility of their being optimal. Thompson sampling maintains a posterior distribution over
possible environments (i.e. reward distributions, or a subset of parameters or features
thereof). At each timestep, Thompson sampling (i) samples the current posterior dis-
tribution over possible models of the environment, (ii) selects the action at which yields
highest expected reward under the sampled model, and (iii) performs a Bayes update on
the posterior using the reward rt received from action at.

In this thesis, we focus on Thompson sampling instead of UCB-type algorithms. In
particular, we build on the linear Thompson sampling algorithm of Agrawal and Goyal
[4, 3], discussed in greater detail in Section 2.5.

2.2 Latent Bandits

The present work establishes a connection between linear bandit problems and latent bandit
problems, in which rewards are influenced by one or more latent variables. In contextual
latent bandit settings, latent variables may or may not also influence observed contexts.
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In our particular latent bandit setting, described in Section 3.1, both rewards and ob-
served contexts are influenced by a discrete, categorical latent variable, which introduces
correlations between rewards and contexts.

Here, we note two recent works which study related but distinct latent bandit settings.
Maillard and Mannor [44] consider a specific case of our setting in which a categorical latent
variable indexes di↵erent clusters, observed contexts are discrete types, and the set of types
is partitioned into disjoint subsets corresponding to distinct clusters. In comparison, we
consider more general latent-conditioned context distributions (for which observed contexts
may be generated from various latent states), focusing on the case where prior knowledge of
these distributions is available. Zhou and Brunskill [63] consider a related setting in which
rewards are linearly related to observed contexts (as in Section 2.4), with the parameters
of the linear relationship influenced by a latent state. In their setting, the reward depends
directly on the observed context, as well as the latent state. In contrast, in our setting
(which may be viewed as a subset of partially observable Markov decision processes, or
POMDPs) the reward depends only on the latent state, and the information value of
observed contexts is only for inference of the latent state. While our setting also reduces
to a linear bandit problem under certain conditions, the relationship between rewards and
observed contexts can remain arbitrarily nonlinear.

Also worth noting is Hong et al. [31], which studies a related but non-contextual latent
bandit problem, and (like the present work) applies Thompson sampling. In Section 2.3
below, we discuss the relationship of our work to the non-stationary extension [32] of [31].

2.2.1 Recommender Systems

The graphical structure of our problem, with a latent confounder influencing observation
and reward, is shared in some literature of bandit algorithms for recommender systems.
In particular, [50] obtain a regret bound for an ✏-greedy algorithm which leverages the low
dimensionality of the latent space. Relatedly, [35] obtain a regret bound for a Thompson
sampling algorithm in a similar setting with unknown model parameters and Gaussian
reward likelihoods. In comparison, our work considers more general likelihoods which
are partially known in advance, and generalizes to non-stationarity in the latent state,
which introduces a complexity which precludes straightforward extension of regret bounds
from the i.i.d. (stationary) setting. At the same time, our analyses in the non-stationary
setting demonstrate that knowledge of a low-dimensional latent space can be leveraged for
improved performance, similar to results for recommender systems in i.i.d. settings.

8



2.3 Non-stationary Bandits

The problem we introduce in Section 3.1 is also a non-stationary multi-armed bandit prob-
lem. In stationary settings, which we’ve implicitly assumed above, the reward distribution
p(r|x, a) is constant in time, and does not depend on contexts, rewards, or actions prior to
the current round (timestep). That is, when conditioning on a particular action, rewards
are independent and identically distributed (i.i.d.) across time. In non-stationary settings,
on the other hand, the reward distribution may become time-dependent, and may also
introduce correlations between rewards (or contexts) at di↵erent times.

In the non-stationary latent bandit setting we introduce in Section 3.1, non-stationarity
arises from Markovian transitions in a discrete latent state. We will occasionally refer to
this case as dynamical, a term which we use interchangeably with non-stationarity. (We
will assume the transition probabilities of the latent state, along with other parameters, to
be constant in time, and thus use “non-stationary” in reference to the latent state itself,
rather than to its transition parameters.)

In piecewise stationary bandits problems [29, 24, 59], reward distributions for one or
more arms change in a discrete, discontinuous manner at certain timesteps, but remain
fixed between these change points. Our latent bandit problem may be viewed as a piece-
wise stationary bandit problem in which change points correspond to state changes of an
underlying latent state. As such, we assume that additional structure (a fixed number
of latent states z, and corresponding context distributions p(x|z)) is known by the agent,
allowing for faster detection of change points relative to other piecewise stationary bandit
methods.

Hong et al. (2020).

The recent work which is most closely related to this thesis is that of Hong et al. [32]
(see also [31]), who study Thompson sampling for a related non-stationary latent bandit
problem. In their case, an approximate posterior over discrete latent state histories and
unknown parameters is updated using rewards rather than context observations, which are
assumed una↵ected by the latent state. The graphical model of our setting di↵ers slightly,
in that the latent state influences context data as well as rewards. More significantly, the
method of [32] maintains a particle-based posterior over possible latent transition matrices
and context distributions, whereas our approach uses point estimates of these parameters.
The former approach naturally has an advantage when uncertainty in the latent transition
function can be leveraged to explore actions more e↵ectively. However, maintaining a good
approximate posterior over both latent histories and parameters is challenging. In partic-
ular, we find that the particle filtering method of [32], which updates particle weights but
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not particle positions, does not perform well empirically. Our approach is more computa-
tionally lightweight, algorithmically simpler, and makes use of a task-relevant (albeit more
limited) measure of uncertainty in the form of marginal posterior beliefs over the current
latent state and reward parameters (see Section 6.1 for more discussion).

In addition to algorithmic work, Hong et al. [32] derive problem-independent regret
bounds for their Thompson sampling algorithms. These bounds assume sub-Gaussian
rewards but do not otherwise make use of the structure of the reward distribution or
other problem parameters. The resulting bounds on cumulative regret are sublinear at
small t before the latent state evolves significantly, but scale as t

7/6 log t as t ! 1 (a
consequence of the assumption that the number of latent state changes grows linearly with
t). In comparison, in chapter 5 we derive a problem-dependent bound for an equivalent
definition of regret, which leverages the information theoretic structure of the conditional
distributions p(x|z), and scales linearly with t (an inevitable consequence of the definition of
regret with respect to an oracle policy which access the true latent state), an improvement
over the asymptotic behavior of the bounds in [32]. Empirically, we found (see Chapter 4)
that the algorithm of [32] struggles in practice, likely because it uses a naive particle
filtering method which only updates weights assigned to a fixed, non-adaptive set of possible
parameter vectors.

Lastly, we also note another recent work of Hong et al. [30], which considers a slightly
generalized version of our non-stationary latent bandit setting, with an additional direct
influence of observed contexts on rewards, and an unknown number of latent states. In
contrast to our approach, [30] focuses on o↵-policy learning, and assumes that context
distribution parameters and latent transition probabilities are estimated o✏ine. While our
setting is slightly less general, our focus on online learning is complementary to [30].

2.4 Linear Bandits

Linear stochastic bandit problems form a much-studied subset of contextual MAB prob-
lems. In these cases, an observed context feature vector is assumed to be linearly related
to the expected reward (conditional on the context). We focus on the linear stochas-
tic K-armed bandit problem, in which K discrete actions are available, in contrast to
more general problems in which continuous-valued actions are available. In Chapters 3
and 4 below, we will identify a connection between linear bandit problems and the latent
non-stationary bandit setting introduced in Section 3.1 below, and will apply algorithmic
methods and theoretical analysis of the former to the latter.

10



We will work with a multi-armed linear bandit setting which is a slight modification of
the typical setting in the literature [4], as follows. At each timestep t, a context feature
vector ct 2 C ⇢ Rd is observed, an action at = a 2 {1, ..., K} is selected, and a reward

rt = c
>
t
µ
(a)
?

+ c
>
t
⌘
(a)
t (2.5)

is observed. The reward is generated from a fixed distribution p(r|c, a) with a mean value

Er⇠p(·|c,a)[r] = c
>
µ
(a)
?

(2.6)

that is linear in both the context c and the unknown, action-dependent parameters µ(a)
? 2

Rd. (Note that in other variations of the linear bandit setting, the same parameters µ may

be shared across actions, while a separate per-action context c(a)t may be observed.) The

random noise vector ⌘
(a)
t 2 Rd has mean zero by definition, E[⌘(a)t ] = 0, and is assumed

to be generated independently at each timestep by a fixed, time-independent distribution.
However, the noise term c

>
t
⌘
(a)
t in Eq. (2.5) is assumed to depend linearly on the context

ct, which is time-dependent and may be correlated across time.

In order to maximize returns, the agent must use the sequential context data c1:t to
learn the unknown mean reward parameters µ(a)

? 2 Rd for each action a.1 Given a context
c, the corresponding optimal action is

a
?(c) := argmax

a

E[r|c, a] = argmax
a

(c>µ(a)
?
). (2.7)

We will refer to the optimal action at timestep t as a?
t
:= a

?(ct).

2.5 Thompson Sampling

In the linear bandit setting, Thompson sampling methods maintain and sample a posterior
over the unknown parameters µ

? := {µ(a)
? }K

a=1. In Chapter 4, we will introduce a novel
algorithm which uses the linear Thompson sampling (LinTS) algorithm of [4] as a sub-
routine. The LinTS algorithm, reproduced here as Algorithm 1, maintains for each action
a multivariate normal posterior with mean µ̂

(a) and covariance (B(a)
µ )�1 (defined below).

After observing a context vector ct at timestep t, LinTS samples reward parameters

µ
(a) ⇠ N (µ̂(a)

, (B(a)
µ

)�1) (2.8)

1In other variations of the linear bandit setting, the same parameters µ may be shared across actions,

while a separate per-action context c(a)
t

may be observed.
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for each action a, and selects the corresponding optimal action, a?
t
= argmax

a
c
>
t
µ
(a).

The mean vector µ̂(a) of the posterior used for Thompson sampling in Eq. (2.8) at time
T is the least-squares estimator,

µ̂
(a) := (B(a)

µ
)�1

f
(a)
µ

(2.9)

where

f
(a)
µ

:=
TX

t=1

1(at = a)ctrt, (2.10)

B
(a)
µ

:= �µ1 +
TX

t=1

1(at = a)ctc
>
t
, (2.11)

where the hyperparameter �µ � 0 can be used to ensure that B
(a)
µ is positive definite at

small T . (We will often suppress the implicit T -dependence of these quantities.)

Eqs. (2.10)-(2.11) (and Eq. (2.9)) can equivalently be written recursively. After ob-
serving context ct, selecting action at, and receiving reward rt, the mean and covariance
for a = at are updated,

B
(a)
µ
 B

(a)
µ

+ ctc
>
t

(2.12)

f
(a)
µ
 f

(a)
µ

+ ctrt (2.13)

µ̂
(a)  (B(a)

µ
)�1

f
(a)
µ

(2.14)

This update rule can be recovered as a Bayes update under the assumption of a Gaussian
reward likelihood,

P (r|c, a;µ) / exp
⇥
�(r � c

>
µ
(a))2/2(�̃(a)

r
)2
⇤
.

Given the Gaussian prior distribution,

P (µ(a)) / exp

"
� 1

2(�̃(a)
r )2

(µ(a) � µ̂
(a))>B(a)

µ
(µ(a) � µ̂

(a))

#
, (2.15)

and noting that

(µ� µ̂)>Bµ(µ� µ̂) = µ
>
Bµµ� µ

>
fµ � f

>
µ
µ+ const.,

where we’ve suppressed action-dependence for simplicity, we see that making the update in
Eqs. (2.12)-(2.14) is equivalent to multiplication by the likelihood, Eq. (2.15), for observing
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reward r = rt conditional on c = ct and action a, up to µ-independent normalization terms
in the exponent.

Algorithm 1: Linear Thompson Sampling
Input:

�µ > 0, �̃
(a)
r > 0 for a 2 A

µ̂
(a) = 0d, f

(a)
µ = 0d, B

(a)
µ = �µ1d, for a 2 A

for t 1, 2, ... do
Observe context ct
Sample µ

(a) ⇠ N (µ̂(a)
, (�̃(a)

r )2(B(a)
µ )�1) for a 2 A

Select action a = argmax
a0 c

>
t
µ
(a0)

Observe reward rt

Update mean reward estimates:
B

(a)
µ  B

(a)
µ + ctc

>
t
, f

(a)
µ  f

(a)
µ + ctrt

µ̂
(a) = (B(a)

µ )�1
f
(a)
µ

13



Chapter 3

Linearizing Latent Bandits

In this chapter, we describe our problem setting with a dynamical latent state which
influences context observations and rewards, identify conditions under which this problem
setting can be partially reduced to the linear bandit setting of Section 2.4, and derive a
high-probability bound, Theorem 1, on the error in linear regression reward estimation
when applied in the latent bandit setting.

3.1 Problem Setting

We consider the non-stationary bandit environment of Figure 3.1 in which a dynamical
latent state z acts as a confounder of observations (or contexts) x and rewards r. The
figure is represented as an influence diagram, which is a graphical model for decision
making under uncertainty [33]. At any epoch, context x is observed before selecting action
a, and reward r depends on a and z.

While the context and reward may be either discrete or real-valued1, the latent state
z 2 Z = {1, ..., Z} and action a 2 A = {1, ..., K} are assumed to be discrete. The latent
state z evolves stochastically according to a transition matrix �? (assumed to be ergodic)

with elements, p(zt = z
0|zt�1 = z;�?) = �

?

z,z0 . The equilibrium distribution ⇢
(�)
eq (z) is the

stationary distribution, �⇢(�)eq = ⇢
(�)
eq . (For any categorical distribution p(z), we will denote

by p 2 RZ the vector whose elements are the probabilities p(z).) Given z, an observed

1We denote context as a scalar for simplicity but our work is equally applicable to settings with high-
dimensional observations.
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Figure 3.1: An influence diagram representation of the non-stationary version of our latent
bandit setting. The latent state z changes dynamically while context x is observed at the
time of choosing action a (rectangle), represented by the informational arc from x to a.
Reward r (diamond) is a function of a and z. Black and red conditional edges denote
known and unknown (or learned) conditional distributions respectively.

context x is generated from a conditional distribution p(x|z; ✓?) with parameters ✓
?. We

assume access to a good but possibly imperfect approximation ✓ to ✓
?, which may be

available via domain expertise, or via o✏ine samples xi ⇠ p(x|z) and accompanying labels
z of the generating distribution. The reward-generating conditional distributions p(r|z, a),
on the other hand, are unknown. We define the expected reward conditional on latent
state z as

(µ(a)
?
)z := Er⇠p(·|z,a)[r], (3.1)

and use µ(a)
? to denote the action-wise latent-space vectors of mean rewards. We will denote

the variance of r ⇠ p(·|z, a) as Var[r|z, a].
Our algorithmic methods and theoretical analysis make use of the information theoretic

structure of the context distributions p(x|z). In particular, in Section 4.1 we will use the
cross-entropies of the context distributions,

Hz?,z(✓) := Ex⇠p(·|z?;✓) [� log p(x|z; ✓)] (3.2)

to construct a model estimate of the transition matrix given prior knowledge of ✓?.

3.1.1 Bayesian Inference of the Latent State

Our algorithm relies on the approximation and use of a posterior belief, pt(z|x1:t) := p(zt =
z|x1:t) over the current latent state, which is a categorical distribution represented as a Z-
dimensional vector. Given transition model p(z0|z; �̂) and observation model p(x|z; ✓), it
can be updated every epoch:

p̂t(z|x1:t) /
X

z0

p̂t�1(z
0|x1:t�1)�̂z,z0p(xt|z; ✓) (3.3)
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where p̂, �̂ denote model estimates. We will distinguish the model posterior p̂ from the
“true” posterior

p
?

t
(z) := p(zt = z|x1:t;�

?
, ✓

?
, ⇢0), (3.4)

which uses ground truth parameters and the true prior, p?0(z) := ⇢0(z).

The optimal policy ⇡
? is then defined as the policy which selects, at every timestep, the

action with highest expected reward, given the true parameters, a?
t
:= argmax

a
(p?

t
)>µ(a)

? .
We will quantify performance with expected cumulative regret, defined – for any policy ⇡ –
as the loss in expected rewards after T timesteps relative to the optimal policy: R⇡(T ) :=P

tT
(E⇡? [rt]� E⇡[rt]).

3.2 Reduction to the Linear Bandit Setting

We now exploit the linear relationship between rewards and probabilities over the latent
space to show that the latent bandit problem of Section 3.1 can be reduced to the linear
bandit setting of Section 2.4. We show this in the case where the transition probabilities
p(z0|z;�) and context likelihoods p(x|z; ✓) are known in advance, and comment below on
the more general case where they are unknown.

Lemma 1. When the true model parameters (✓?,�?) and initial latent state probabilities
⇢0(z) = p(z0 = z) in the model from Figure 3.1 are known, the latent bandit setting of
Section 3.1 reduces to the linear bandit setting of Section 2.4.

Proof. Conditional on a sequence of observations x1:t in the latent bandit setting and action
at = a, the reward rt is generated from the mixture distribution

p(rt = r|at = a, x1:t; ✓
?
,�

?) =
X

z

(ct)zp(r|z, a), (3.5)

where we have defined ct 2 RZ as the vector with elements equal to the posterior proba-
bilities

(ct)z := p(zt = z|x1:t; ✓
?
,�

?). (3.6)

A sample from this distribution can be obtained as a mixture of samples from p(r|z, a),

rt =
X

z

(ct)z
�
(µ(a)

?
)z + (⌘(a)t )z

�
= c

>
t
(µ(a)

?
+ ⌘

(a)
t ), (3.7)

where (⌘(a)t )z ⇠ p(r � (µ(a)
? )z|z, a) has mean zero. Thus, the reward takes the form of Eq.

(2.5), with d = Z being the number of latent states, ct defined in Eq. (3.6), µ(a)
? 2 RZ being
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the vector of mean rewards (µ(a)
? )z, and ⌘

(a)
t being a vector of zero-mean noise generated

from element-wise distributions p(r � (µ(a)
? )z|z, a).

Lemma 1 shows that the posterior belief over the current latent state zt can be viewed as
a compression of the context history x1:t into a (nonlinearly) transformed context variable
which is related linearly to rewards. Since Lemma 1 assumes access to the true parameters
(✓?,�?), in general it will only apply in the asymptotic limit (t!1) in which (✓?,�?) have
been learned. Prior to this asymptotic regime, error in model estimates of these parameters
will corrupt the context features ct in the corresponding linear bandit problem with noise
and/or systematic bias.

In chapter 4, we will build on Lemma 1 to develop a latent bandit algorithm which
estimates rewards at time T , Eq. (2.9), with contexts ct ! p

?

t
as in Eq. (3.6), that is,

µ̂
(a) = (B(a))�1

f
(a)
µ

, (3.8)

with

f
(a)
µ

=
TX

t=1

1(at = a)p?
t
rt, (3.9)

B
(a) =

TX

t=1

1(at = a)p?
t
(p?

t
)>. (3.10)

In sections 3.3-3.4 below, we state and derive a high-probability bound on the error in
the least-squares estimator, Eq. (3.8), thus showing that linear bandit methods can be
e↵ectively applied in the latent bandit setting.

We end this section by noting that the space of context vectors ct, or equivalently
posterior beliefs p?

t
(see Eq. (3.6)), is partitioned into subspaces – denoted Pa? – for which

action a
? is optimal, i.e. a

? = argmax
a
c
>
t
µ
(a)
? . This context-dependence of the optimal

action will play a role in our derivation of Theorem 1 below.

3.3 Bound on Estimator Error

In this section, we demonstrate that linear bandit reward estimation can be e↵ectively
applied to the non-stationary latent bandit setting from Figure 3.1. Due to the time-
dependence of the latent state, the reduction to the linear bandit setting described in
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Section 3.2 results in contexts c1:t and rewards r1:t which are not i.i.d. across time. Here,
we state a result which shows that reward estimation via reduction to the linear bandit
setting, as defined in Eq. (3.8), will converge to the true reward parameters {µ(a)

? } given a
su�ciently long time horizon:

Theorem 1. Assuming that (i) the latent state Markov chain is ergodic and z1 ⇠ ⇢
(�)
eq (·),

and when (ii) the true parameters (✓?, �?) and initial state distribution ⇢
(�)
eq are known and

are used to compute µ̂
(a), Eq. (3.8), the error in µ̂

(a) at time t = T for any algorithm which
selects the optimal action given x1:T with probability at least ⇡min, is upper bounded,2

|µ̂(a)
z
� (µ(a)

?
)z| (3.11)

<
2Z2

⇡
2
min�

(a)
min

s
1

� · T

⇣
�2
eq + ||µ(a)

? ||21
4

��?

�
1 + log c�?

�⌘

for any z with probability at least

1� � � 8Z3

⇡
2
min�

(a)
min

1

T��?
(c+ log log(1/⇢min)) (3.12)

for any � 2 (0, 1). Here, c ⇡ 6.8, c�? is a �?-dependent numerical constant (see Ap-

pendix 3.4.2), ⇢min := minz ⇢
(�)
eq (z) is the equilibrium probability of the least probable latent

state, �2
eq := maxa

P
z
⇢
(�)
eq (z)Var[r|z, a] is a measure of reward noise when the latent state

is in equilibrium, �(a)
min = �

(a)
min(T ) is the minimal eigenvalue of the action-wise asymptotic

expected inverse covariance matrix3

⌃(a)(T ) :=
1

T

TX

t=1

E
x1:t⇠⇢

(�)
eq
[1(p?

t
2 Pa)p

?

t
(p?

t
)>], (3.13)

averaged over histories generated from the equilibrium distribution, and

�� := min
z1,z2

X

z

min(�z,z1 ,�z,z2)

is the minimal mixing rate of a transition matrix � [15].
2Here, ||µ||` denotes the `-norm of a vector µ.
3Recall that 1(pt 2 Pa) is the binary truth value of the statement that a = argmax

a0 p
>
t
µ
(a0)
? is the

optimal action given the posterior belief pt.
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Proof (Outline). Section 3.4 has the complete proof. The derivation relies primarily on a
KL divergence contraction theorem for stochastic Markov processes from [15] to show that
posterior probabilities used to compute the estimators µ̂(a) are approximately uncorrelated,
E[p?

t
(z)p?

t0(z
0)] ⇡ E[p?

t
(z)]E[p?

t0(z
0)], over time separations |t� t

0| greater than the minimal

mixing time 1/��? . Thus, the quantities f
(a)
µ and B

(a) in Eqs. (3.9)-(3.10) are sums of
approximately independent random variables over blocks of at least 1/��? timesteps. We

quantify this with upper bounds on the variances Var[f (a)
µ ] and Var[B(a)] across context and

reward histories, apply Chebyshev’s inequality to obtain high-probability bounds on the
deviation of f (a)

µ and B
(a) from their expected values at large T , and derive an eigenvalue

bound for the inverse matrix (B(a))�1 in order to upper bound the deviation of the product

µ̂
(a) = (B(a))�1

f
(a)
µ from µ

(a)
? .

Theorem 1 describes the e↵ect of the latent dynamics and resulting posterior beliefs
p
?

t
on reward parameter estimation. At times T su�ciently large compared to the mixing

time t�? := 1/��? , correlations between posterior beliefs (i.e. the dependent variables in

linear regression estimation of µ(a)
? ) at di↵erent times are small, and reward data are close

to i.i.d., allowing for a 1/
p
T error reduction. The dependence on �

(a)
min in Eq. (3.11),

which approaches a fixed asymptotic value in the t ! 1 limit where posterior vectors pt
are generated from a fixed asymptotic distribution, captures the benefit of more diverse
posterior beliefs p

?

t
. When observations xt ⇠ p(·|z?

t
) contain little information about the

true state z
?

t
, posterior beliefs will be more uncertain, decreasing �

(a)
min, which falls to zero

in the limit where posteriors p?
t
fail to span the space of possible beliefs (e.g. if some latent

states are indistinguishable), making B
(a)
eq no longer full rank, and hence singular.4 Lastly,

the Z-dependence in Eq. (3.11) indicates that reward estimation is easier when the latent
space is lower dimensional, in which case prior knowledge of the latent structure is more
valuable.

3.4 Derivation of Theorem 1

We would like to bound the error in the action-wise, vector-valued mean reward estimators
µ̂
(a), defined in Eq. (3.8), and (as discussed in Section 3.2), used by Algorithm 2 with the

linear bandit context vector ct set equal to the vector of posterior probabilities over the
latent state, p̂t. As stated in Theorem 1, we set (✓,�) = (✓?,�?) throughout this section,

4Furthermore, if an action a is rarely or never optimal, B(a)
eq will approach the zero matrix, and again

�
(a)
min ! 0 and the bound becomes weak due to less data for action a.
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and thus replace the model posterior p̂t with the “true” posterior p
?

t
as defined in Eq.

(3.4). We will occasionally denote the T -dependence of some quantities explicitly as an
argument, when it is helpful to remember, but will in general leave it suppressed in the
interest of simplicity.

It will be useful to express the di↵erence between the estimated (Eq. (3.8)) and true
mean reward parameters as

µ̂
(a) � µ

(a)
?

= (B(a))�1
g
(a)
, (3.14)

where

g
(a) := f

(a)
µ
� B

(a)
µ
(a)
?

=
TX

t=1

1(at = a)p?
t

�
rt � (p?

t
)>µ(a)

?

�
. (3.15)

For reference, it is also useful to write down the element-wise definitions of the vector g(a)

and matrix B
(a):

g
(a)
z

=
TX

t=1

1(at = a)p?(zt = z|x1:t)
⇣
rt �

X

z0

p
?(zt = z

0|x1:t)(µ
(a)
?
)z0
⌘
. (3.16)

B
(a)
zz0 =

TX

t=1

1(at = a)p?(zt = z|x1:t)p
?(zt = z

0|x1:t). (3.17)

We will drop the ? superscript on pt in the following sections, to avoid notational clutter,
but emphasize that throughout this section, all quantities are conditioned on the true
parameters (✓?,�?). We will also occasionally use the shorthand notation

pt:t0(z) := p(zt0 = z|xt:t0) (3.18)

to simplify expressions. For simplicity, we will remove the ? when denoting the transition
matrix; we restore it in Theorem 1.

The derivation of Theorem 1 proceeds as follows. In Appendix 3.4.1 we derive several
intermediate results using a contraction property [15] of the Kullback-Leibler divergence
between two posterior beliefs over the state of a hidden Markov process, which implies
that the KL distance between two beliefs about the current latent state zt contracts expo-
nentially in time as the beliefs are updated over time with additional context observations
xt. We use this result to upper bound the dependence of posterior beliefs of the form
pt(z) := p(zt = z|x1:t) on data xt�⌧ observed in the distant past (large ⌧), such that prob-
abilities pt(z) and pt0(z) may be treated as approximately i.i.d. random variables when
|t0 � t| is large. Since the estimators µ̂(a) are constructed via linear regression with prob-
abilities pt(z) being dependent variables, the approximate i.i.d. nature of time-separated
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posteriors leads to a reduction (and asymptotic convergence to zero) in estimator vari-
ance. We demonstrate this explicitly as follows: In Appendix 3.4.2 and Appendix 3.4.3,
we use the results of Appendix 3.4.1 to obtain element-wise upper bounds on the variance
of, respectively, the error vector g(a) and the empirical inverse covariance matrix B

(a). In
Appendix 3.4.4 we convert the element-wise bound on B

(a) into a bound on the largest
eigenvalue of (B(a))�1, which we use in Appendix 3.4.5 along with the bound on g

(a) to

obtain the final high-probability bound on the estimator error µ̂(a) � µ
(a)
? .

3.4.1 Mixing rate bounds on conditional posterior probabilities

In this section we will derive an upper bound on the expected total variation distance,
E[
P

z
|pt(z)� qt(z)|] and KL divergence DKL[pt(z)||qt(z)], between two distinct posteriors

(pt, qt) obtained by updating corresponding priors (p1, q1) with the same sequence of con-
text observations x1:t, and using the same likelihood function and transition matrix. The
contraction of these distribution distances indicates that the posterior probabilities at a
given time depend predominantly on recent observations, with dependence on distant past
observations, xt�⌧ , being exponentially suppressed (with respect to ⌧).

As stated in Theorem 1, we assume that the latent Markov process is ergodic, and
thus has a unique equilibrium distribution (or stationary distribution) ⇢

(�)
eq (z) defined by

�⇢(�)eq = ⇢
(�)
eq .

Our analysis will make use of the minimal mixing rate [15] of a transition matrix,

�� := min
z1,z2

X

z

min(�z,z1 ,�z,z2). (3.19)

Given two initial distributions p1(z) = 1(z = z1) and p2(z) = 1(z = z2), with all
of their probability mass concentrated respectively on states z1 and z2, the quantityP

z
min(�z,z1 ,�z,z2) is the minimal probability mass which is moved to shared successor

states z by applying the transition matrix to p1 and p2. Thus, �� quantifies the minimal
probability mass that is moved from di↵erent states to a shared state, for any initial dis-
tributions p1 and p2. The minimal mixing rate was used by [15] to prove a contraction
theorem for the KL divergence between two di↵erent distributions:

Theorem 1 (Theorem 3 in [15]). For any two prior distributions p0 and q0 over states
z 2 {1, ..., Z}, the distributions p = �p0, q = �q0 induced by a transition matrix � satisfy

DKL[p||q]  (1� ��)DKL[p0||q0], (3.20)

with the minimal mixing rate �� defined in Eq. (3.19).
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We will also make use of the fact [15] that conditioning on additional data reduces the
KL divergence between di↵erent distributions, in expectation:

Lemma 1.1. Given two distinct priors p(z) and q(z), and corresponding posteriors ob-
tained by conditioning on a real-valued observation x generated from a known likelihood
distribution `(x|z),

p(z|x) = p(z)`(x|z)/p(x), q(z|x) = q(z)`(x|z)/q(x), (3.21)

where p(x) :=
P

z
p(z)`(x|z) and q(x) :=

P
z
q(z)`(x|z), the KL divergence between the

posteriors p(z|x) and q(z|x) satisfies

Ex⇠p(x)[DKL[p(z|x)||q(z|x)]]  DKL[p(z)||q(z)]. (3.22)

Proof. Using Eq. (3.21), we have

Ex⇠p(x)[DKL[p(z|x)||q(z|x)]] = Ex⇠p(x)

"
X

z

p(z)`(x|z)
p(x)

log

✓
p(z)`(x|z)

p(x)

q(x)

q(z)`(x|z)

◆#

= Ex⇠p(x)

"
X

z

p(z)`(x|z)
p(x)

✓
log

p(z)

q(z)
� log

p(x)

q(x)

◆#

=
X

z

p(z) log
p(z)

q(z)
Ex⇠p(x)[`(x|z)/p(x)]� Ex⇠p(x)

P
z
p(z)`(x|z)
p(x)

log
p(x)

q(x)

�

= DKL[p(z)||q(z)]�DKL[p(x)||q(x)]. (3.23)

In the last line, we have used the fact that
P

z p(z)`(x|z)
p(x) = 1 by definition, and Ex⇠p(x)[`(x|z)/p(x)] =

Ex⇠`(·|z)[1] = 1. Since DKL[p(x)||q(x)] � 0, we recover Eq. (3.22).

Eq. (3.20) and Eq. (3.22) can be combined to show that the KL divergence between
two prior beliefs over the hidden state contracts in expectation during a single transition
and subsequent observation:

Lemma 1.2. Given two prior probability distributions q0(z) and q̃0(z) over the hidden
state z, the posterior distributions over the successor state z

0, conditional on observing
x ⇠ p(·|z0; ✓), that is

q(z0) /
X

z

�z0,zq0(z)p(x|z0; ✓), q̃(z0) /
X

z

�z0,z q̃0(z)p(x|z0; ✓),
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where the sequence x1:t is generated via a sequence of latent states using the transition
matrix �, satisfy

Ex⇠p(·|z0;✓),z0⇠�q̃0 [DKL[q̃||q]]  (1� ��)DKL[q̃0||q0], (3.24)

where the expectation is taken over x ⇠ p(x) =
P

z,z0 �z0,z q̃0(z)p(x|z0; ✓).

Proof. Applying Eq. (3.22) with prior probability vectors �q̃ and �q over zt, we have

Ex⇠p(x)[DKL[q̃||q]]  DKL[�q̃0||�q0].

where p(x) =
P

z0(�q̃0)z0p(x|z0; ✓). Applying Eq. (3.20), we recover Eq. (3.24).

Note that Eq. (3.24) – and consequently also Eqs. (3.27) and (3.30) below – is asym-
metric with respect to q and q̃, since the expectation is over data x generated with the first
argument, q̃0.

Eq. (3.24) can be applied recursively to show that the KL divergence contracts expo-
nentially as the two distributions are propagated forward in time:

Lemma 1.3. Given two prior probability distributions q0(z) and q̃0(z) over the initial latent
state z0, the resulting posterior distributions over the state zt at time t, that is

qt(z
0) :=

X

z

q0(z)p(zt = z
0|x1:t, z0 = z), (3.25)

q̃t(z
0) :=

X

z

q̃0(z)p(zt = z
0|x1:t, z0 = z), (3.26)

satisfy
Ex1:t|z0⇠q̃0 [DKL[q̃t||qt]]  e

���tDKL[q̃0||q0], (3.27)

where the expectation is over histories x1:t which are generated from initial latent states
z0 ⇠ q̃0(·).

Proof. Applying Eq. (3.24) to the transition at time t, with priors (q̃0, q0) ! (q̃t�1, qt�1)
in Eq. (3.24) determined by a fixed sequence x1:t�1 of preceding data, we have

Ext|x1:t�1,z0⇠q̃0 [DKL[q̃t||qt]]  (1� ��)DKL[q̃t�1||qt�1], (3.28)

where we have denoted that the expectation is taken only over xt ⇠ p(x) =
P

z
(�q̃t�1)zp(x|z; ✓).

Taking the remaining expectations recursively over xt�1, ..., x1, backwards in time, we have

Ex1:t|z0⇠q̃0 [DKL[q̃t||qt]]  (1� ��)
t
DKL[q̃0||q0], (3.29)

Since (1� ��)t = (elog(1���))t = e
t log(1���) < e

���t for �� 2 (0, 1) and t > 0, we recover Eq.
(3.27).
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Note that Eq. (3.27) is a conservative bound, for two reasons: (1) If there exist pairs
of states (z1, z2) in Eq. (3.19) – e.g. spatially distant states – which cannot transition to
any common state z, we have �� = 0. However, mixing may still occur e�ciently over
several timesteps – e.g. allowing for several transitions between spatially connected states
– leading to a similar exponential contraction with respect to a more general mixing rate.
(2) Eq. (3.22) is a weaker bound than Eq. (3.23), which may be substantially tighter when
the marginal context distributions p(x) and q(x) are separated by a large KL distance.
This can occur when the conditional context distributions p(x|z; ✓) – denoted `(x|z) in
Lemma 1.1 – are very di↵erent, making observations x highly informative about z.

Eq. (3.27) can be converted into a bound on the expected total variation distance, or
1-norm, between two posteriors:

Corollary 1.1. The 1-norm di↵erence between two distributions (q̃t, qt) over the state zt,
as defined in Eqs. (3.25)-(3.26), satisfies the upper bound

Ex1:t|z0⇠q̃0

"
X

z

|q̃t(z)� qt(z)|
#
 e

� 1
2��t
p

2DKL[q̃0||q0]. (3.30)

Proof. Pinsker’s inequality states that for any two probability distributions q̃ and q, the
1-norm and KL divergence satisfy ||q̃�q||1 

p
2DKL[q̃||q].5 Setting ||q̃�q||1 =

P
z
|q̃t(z)�

qt(z)|, and taking the expectation, we have

Ex1:t|z0⇠q̃0

"
X

z

|q̃t(z)� qt(z)|
#
 Ex1:t|z0⇠q̃0

hp
2DKL[q̃t||qt]

i
.

Applying Jensen’s inequality to bring the expectation under the square root, we have

Ex1:t|z0⇠q̃0

"
X

z

|q̃t(z)� qt(z)|
#

q

2 · Ex1:t|z0⇠q̃0 [DKL[q̃t||qt]].

Applying Eq. (3.27), we arrive at Eq. (3.30).

3.4.2 Partial bound on the estimator error

In this section, we compute the variance of the vector g
(a) defined in Eq. (3.15), across

di↵erent reward and observation histories. We show that the variance converges to zero

5The symmetry of the left hand side under exchange of q̃ and q implies the same relation holds with
respect to the reverse KL divergence DKL[q||q̃].
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as T ! 1, and then show that |g(a)| converges to zero asymptotically. In the following

sections, we will use this result to bound the estimator error µ̂(a) � µ
(a)
? = (B(a))�1

g
(a).

Lemma 1.4. When the ground truth parameters (✓,�) are known, each element of g(a),
Eq. (3.15), satisfies the upper bound

(g(a)
z

/T )2  1

� · T

⇣
�
2
eq + ||µ(a)

?
||21

4

��

�
1 + log c�

�⌘
(3.31)

with probability at least 1� �, for any � 2 (0, 1), where

�
2
eq := max

a

X

z

⇢
(�)
eq (z)Var[r|z, a] (3.32)

is the maximal variance in rewards when the latent state has reached equilibrium, and
�
�1
�

log c� := ⌧
? is the integer number of timesteps satisfying

⌧
? := min

⌧2N
| logD�(⌧)� ��⌧ |, (3.33)

where

D�(⌧) := max
z

max
t�1

Ex1:t+⌧ [DKL[p(zt+⌧ |x1:t+⌧ )||p(zt+⌧ |zt = z; x1:t+⌧ )]] (3.34)

is a measure of how much information the latent state zt at any time t can possibly contain
about a future latent state zt+⌧ .

Proof. We will use the shorthand notation �
(a)
t := 1(at = a) for the indicator function

which picks out times t for a given action a. First, we observe that the expectation of g(a)
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(conditional on any action sequence a1:T ) is zero:

E[g(a)
z

|a1:T ] = Ex1:T [g
(a)
z

|x1:T , a1:T ]

= Ex1:T

h TX

t=1

�
(a)
t p(zt = z|x1:t)E[rt|x1:T , at = a]

�
TX

t=1

�
(a)
t p(zt = z|x1:t)

X

z0

p(zt = z
0|x1:t)(µ

(a)
?
)rz0
i

=
TX

t=1

�
(a)
t Ex1:T

"
p(zt = z|x1:t)

X

z0

(p(zt = z
0|x1:T )� p(zt = z

0|x1:t))(µ
(a)
?
)z0

#

=
TX

t=1

�
(a)
t

X

z0

(µ(a)
?
)z0 · Ex1:t

⇥
p(zt = z|x1:t)(Ext+1:T [p(zt = z

0|x1:T )]� p(zt = z
0|x1:t))

⇤

=
TX

t=1

�
(a)
t

X

z0

(µ(a)
?
)z0 · Ex1:t [p(zt = z|x1:t)(p(zt = z|x1:t)� p(zt = z|x1:t))] = 0.

(3.35)

Here, we have used the fact that E[rt|x1:T , at = a] =
P

z0 p(zt = z
0|x1:T )(µ

(a)
? )z0 to take the

expectation over reward data, followed by the partial expectation over context data xt+1:T .

Since E[g(a)z ] = 0, we compute the variance to obtain an upper bound on |g(a)z |. To

compute the variance of the vector element g(a)z , we first take the expectation over rewards,
conditional on a specific context history x1:T . Defining the reward noise

⌘
(a)
t := rt �

X

z0

p(zt = z
0|x1:t)(µ

(a)
?
)z0 = rt � p

>
t
µ
(a)
?
, (3.36)

so that for brevity we can write g
(a) =

P
t
�
(a)
t pt⌘

(a)
t , or equivalently

g
(a)
z

=
TX

t=1

�
(a)
t p(zt = z|x1:t)⌘

(a)
t ,

we have (for any (z1, z2))

E[g(a)
z1

g
(a)
z2

|x1:T , a1:T ] =
X

t,t0

�
(a)
t �

(a)
t0 p(zt = z1|x1:t)p(zt0 = z2|x1:t0) · E[⌘(a)t ⌘

(a)
t0 |x1:T , at = at0 = a].

(3.37)
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Since E[rt|x1:T , at = a] =
P

z
p(zt = z|x1:T )(µ

(a)
? )z and E[rtrt0 |x1:T , at = at0 = a] =P

z,z0 p(zt = z, zt0 = z
0|x1:T )(µ

(a)
? )z(µ

(a)
? )z0 , the correlation between reward noise at times t

and t
0 6= t is

(for t 6= t
0)

E[⌘t⌘t0 |x1:T , at = at0 = a] =
X

z,z0

(µ(a)
?
)z(µ

(a)
?
)z0
⇥
p(zt = z, zt0 = z

0|x1:T )� p(zt = z|x1:t)p(zt0 = z
0|x1:T )

� p(zt = z|x1:T )p(zt0 = z
0|x1:t0) + p(zt = z|x1:t)p(zt0 = z

0|x1:t0)
⇤
. (3.38)

When t = t
0 we have

E[⌘2
t
|x1:T , at = a] =

X

z

p(zt = z|x1:T )((�
(a)
z

)2 + [(µ(a)
?
)z]

2)

� 2
⇣X

z

p(zt = z|x1:t)(µ
(a)
?
)z
⌘⇣X

z0

p(zt = z
0|x1:T )(µ

(a)
?
)z0
⌘

+
⇣X

z

p(zt = z|x1:t)(µ
(a)
?
)z
⌘2
, (3.39)

where
�
(a)
z

:= Er⇠p(·|z,a)[r
2]� Er⇠p(·|z,a)[r]

2 = Er⇠p(·|z,a)[r
2]� [(µ(a)

?
)z]

2
. (3.40)

We now take the expectation over x1:T . Because Eq. (3.37) only depends on xt0+1:T via
the conditional expectation of reward noise E[⌘t⌘t0 |x1:T ], we can take the partial expectation
over xt0+1:T as follows:

E[g(a)
z1

g
(a)
z2

|a1:T ] = Ex1:T

⇥
E[g(a)

z1
g
(a)
z2

|x1:T , a1:T ]
⇤

= 2
X

t,t0>t

�
(a)
t �

(a)
t0 Ex1:t0

⇥
p(zt = z1|x1:t)p(zt0 = z2|x1:t0) · Ext0+1:T

[E[⌘t⌘t0 |x1:T , at = at0 = a]]
⇤

+
X

t

�
(a)
t Ex1:t

⇥
p(zt = z1|x1:t)p(zt = z2|x1:t) · Ext+1:T [E[⌘2t |x1:T , at = a]]

⇤
(3.41)

where we have decomposed the double sum over time as
P

t,t0 =
P

t=t0 +2
P

t,t0>t
. Using
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Eq. (3.38) for the t < t
0 terms, we have

(for t < t
0) Ext0+1:T

[E[⌘t⌘t0 |x1:T , at = at0 = a]]

=
X

z,z0

(µ(a)
?
)z(µ

(a)
?
)z0
⇥
Ext0+1:T

[p(zt = z, zt0 = z
0|x1:T )]

� p(zt = z|x1:t)Ext0+1:T
[p(zt0 = z

0|x1:T )]

� Ext0+1:T
[p(zt = z|x1:T )]p(zt0 = z

0|x1:t0)

+ p(zt = z|x1:t)p(zt0 = z
0|x1:t0)

⇤

=
X

z,z0

(µ(a)
?
)z(µ

(a)
?
)z0
⇥
p(zt = z, zt0 = z

0|x1:t0)� p(zt = z|x1:t)p(zt0 = z
0|x1:t0)

� p(zt = z|x1:t0)p(zt0 = z
0|x1:t0) + p(zt = z|x1:t)p(zt0 = z

0|x1:t0)
⇤

=
X

z,z0

(µ(a)
?
)z(µ

(a)
?
)z0p(zt = z|x1:t0)

�
p(zt0 = z

0|zt = z, x1:t0)� p(zt0 = z
0|x1:t0)

�

(3.42)

In the second equality we have cancelled two equivalent terms, and in the last line we have
factored the joint distribution over (z, z0) into a marginal and conditional. Similarly, using
Eq. (3.39) for the t

0 = t terms, we have

E[⌘2
t
|x1:t, at = a] = Ext+1:T [E[⌘2t |x1:T , at = a]]

=
X

z

p(zt = z|x1:t)((�
(a)
z

)2 + [(µ(a)
?
)z]

2)�
⇣X

z

p(zt = z|x1:t)(µ
(a)
?
)z
⌘2


X

z

p(zt = z|x1:t)((�
(a)
z

)2 + [(µ(a)
?
)z]

2). (3.43)

Substituting Eqs. (3.42) and (3.43) into Eq. (3.41), taking the absolute value to obtain an
upper bound, using p(zt = z1|x1:t)p(zt0 = z2|x1:t0)  1 and p(zt = z|x1:t0)  1 to simplify

the expression, using the fact that Ex1:t [p(zt = z|x1:t)] = ⇢
(�)
eq (z) in the t = t

0 contribution,
and setting z1 = z2 for simplicity, we have

Var[g(a)
z1

]  T

X

z

⇢
(�)
eq (z)((�

(a)
z

)2 + [(µ(a)
?
)z]

2)

+
X

z,z0

|(µ(a)
?
)z(µ

(a)
?
)z0 |⇥ 2

X

t,t0>t

Ex1:t0 [|p(zt0 = z
0|zt = z, x1:t0)� p(zt0 = z

0|x1:t0)|]

(3.44)
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We have also used �
(a)
t �

(a)
t0  1 and have removed the action-conditioning on Var[g(a)], since

after setting �
(a)
t �

(a)
t0  1 the right-hand side no longer depends on the action sequence,

and thus the inequality holds for any action sequence. Introducing a free parameter ⌧1

satisfying 1  ⌧1  t
0 � t, we take the partial expectation over xt+⌧1:t0 of the di↵erence

in conditional probabilities by applying Corollary 1.1 to bound the expectation value over
xt+⌧1+1:t0 :

Ex1:t0 [|p(zt0 = z
0|zt = z, x1:t0)� p(zt0 = z

0|x1:t0)|]
= Ex1:t+⌧1

Ext+⌧1+1:t0 [|p(zt0 = z
0|zt = z, x1:t0)� p(zt0 = z

0|x1:t0)|]

 e
� 1

2��(t
0�(t+⌧1)) Ex1:t+⌧1

hp
2DKL[p(zt+⌧1 |x1:t+⌧1)||p(zt+⌧1 |zt = z; x1:t+⌧1)]

i

 e
� 1

2��(t
0�(t+⌧1))

q
2 · Ex1:t+⌧1

[DKL[p(zt+⌧1 |x1:t+⌧1)||p(zt+⌧1 |zt = z; x1:t+⌧1)]]

 e
� 1

2��(t
0�(t+⌧1))

q
2D�(⌧1).

In the second inequality, we have applied Jensen’s inequality to bring the expectation inside
the square root. In the last line, we have recalled the definition of D�(⌧1) in Eq. (3.34).
For ⌧1 � 1/��, the latent state will have evolved through multiple mixing times, so we
expect D�(⌧1) to become small, decreasing to zero as ⌧1 !1.

We now introduce a second free parameter ⌧0 2 N (which we will optimize below), and
use it to decompose the sum over t0 � t into a contribution from widely separated times,
t
0 � t > ⌧0, where the exponential suppression is strong, and a contribution from nearby
times, t0 � t  ⌧0, over which the posterior probabilities may be more strongly correlated
and there is not significant exponential suppression:

Var[g(a)
z1

]  T

X

z

⇢
(�)
eq (z)((�

(a)
z

)2 + [(µ(a)
?
)z]

2) (3.45)

+ 2||µ(a)
?
||21
X

t,t0>t

h
1(t0 � t  ⌧0) + 1(t0 � t > ⌧0)e

� 1
2��(t

0�(t+⌧1))
q
2D�(⌧1)

i
.

Here, we have used the fact that
X

z,z0

|(µ(a)
?
)z(µ

(a)
?
)z0 | 

X

z

|(µ(a)
?
)z|⇥

X

z0

|(µ(a)
?
)z0 | = ||µ(a)

?
||21,

and (in the t
0 � t  ⌧0 term) the fact that the di↵erence of probabilities in Eq. (3.44) is

between 0 and 1. The t
0 � t > ⌧0 contribution can be upper bounded as follows:

X

t,t0>t

1(t0�t > ⌧0)e
� 1

2��(t
0�(t+⌧1))  T

TX

⌧=⌧0+1

e
� 1

2��(⌧�⌧1)  T

Z 1

⌧0

d⌧e
� 1

2��(⌧�⌧1) =
2T

��
e
� 1

2��(⌧0�⌧1).
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Here, we have used monotonicity with respect to ⌧ to bound the discrete sum with a
continuous integral. Using this in Eq. (3.45), we have

Var[g(a)
z1

]  T

X

z

⇢
(�)
eq (z)((�

(a)
z

)2 + [(µ(a)
?
)z]

2) + 2||µ(a)
?
||21
⇣
T ⌧0 +

2T

��
e
� 1

2��(⌧0�⌧1)
q
2D�(⌧1)

⌘
.

(3.46)
Setting to zero the derivative with respect to ⌧0, and solving for ⌧0, we find the optimal
value

⌧
?

0 := ⌧1 +
1

��
log(2D�(⌧1)),

for which the upper bound becomes

Var[g(a)
z1

]  T

X

z

⇢
(�)
eq (z)((�

(a)
z

)2 + [(µ(a)
?
)z]

2) + 2T ||µ(a)
?
||21
⇣
⌧1 +

1

��

�
2 + logD�(⌧1)

�⌘
.

We now approximately optimize ⌧1 by setting it equal to the value ⌧
?

1 at which ��⌧
?

1 =

logD�(⌧ ?1 ) := log c�. Furthermore, since
P

z
⇢
(�)
eq (z)((µ

(a)
? )z)2 <

P
z
((µ(a)

? )z)2 = ||µ(a)
? ||22 <

||µ(a)
? ||21 and 1/�� � 1, the expression for Var[g(a)z ] simplifies to:

Var[g(a)
z

]  T

⇣
�
2
eq + ||µ(a)

?
||21

4

��

�
1 + log c�

�⌘
, (3.47)

where
�
2
eq := max

a

X

z

⇢
(�)
eq (z)(�

(a)
z

)2. (3.48)

Finally, we apply Chebyshev’s inequality, which states that

|g(a)
z
� E[g(a)

z
]| <

s
Var[g(a)z ]

�
(3.49)

with probability at least 1�� for any � 2 (0, 1). Recalling from Eq. (3.35) that E[g(a)z ] = 0,
we recover Eq. (3.31) above.

3.4.3 Bound on the inverse covariance matrix

In this section we derive a theoretical bound on the action-wise inverse covariance matrix
B

(a) in the T !1 limit.
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We will (i) use a mild assumption on the frequency with which optimal actions are

selected in order to lower bound the expected elements E[B(a)
z,z0 ] of the action-wise inverse

covariance matrices, (ii) show that the variance around this expectation decreases as 1/��T ,
and (iii) combine these results to obtain a high-probability lower bound on the empirical
inverse covariance matrix B

(a).

Recalling that the context history x1:t determines (conditional on the true task param-
eters6) an optimal action

a
?

t
:= argmax

a

X

z

p
?(zt = z|x1:t)µ

(a)
?
, (3.50)

we state the lower bound of point (i) above:

Lemma 1.5. Assuming that at any t the optimal action given x1:t, Eq. (3.50), is selected
by a policy ⇡ with probability at least ⇡min > 0, the expectation over histories x1:T of the
empirical inverse covariance matrix, B(a), satisfies the lower bound

1

T
E[B(a)(T )] < ⇡min⌃

(a)(T ), (3.51)

where A < B indicates that A� B is positive semidefinite, and

⌃(a)
zz0(T ) :=

1

T

TX

t=1

Ex1:t [1(a = a
?

t
)p(zt = z|x1:t)p(zt = z

0|x1:t)] . (3.52)

Proof. We first express the expectation value of the matrix element B
(a)
zz0 as a sum over

expected values at each time,

E[B(a)
zz0 (T )] =

TX

t=1

Ex1:t

⇥
Er1:t�1,a1:t�1|x1:t [1(at = a)]p(zt = z|x1:t)p(zt = z

0|x1:t)
⇤

=
TX

t=1

Ex1:t [P⇡(at = a|x1:t)p(zt = z|x1:t)p(zt = z
0|x1:t)] . (3.53)

In the first line, we have decomposed the expectation into an inner context-conditioned
expectation over actions and rewards, and an outer expectation over contexts. The former
only involves the binary indicator 1(at = a), and is the probability

P⇡(at = a|x1:t) := Er1:t�1,a1:t�1|x1:t [1(at = a)] (3.54)

6We restore the ? notation in Eq. (3.50) to denote this.
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that a given policy ⇡ selects action at = a conditional on the context history x1:t. As stated
in Theorem 1, we make the mild assumption that the optimal action a

?

t
is selected with

a minimal nonzero probability ⇡min. (Any policy that learns the task should converge to
⇡min ! 1 as T !1.) That is,

P⇡(at = a|x1:t) � ⇡min · 1(a = a
?

t
), (3.55)

where we conservatively lower bound the probability at zero for a 6= a
?

t
. Since the rank

one matrix ptp
>
t
with elements

(ptp
>
t
)z,z0 = p(zt = z|x1:t)p(zt = z

0|x1:t)

is positive semidefinite7 for any x1:t, Eq. (3.55) implies that, for any pt,

P⇡(at = a|x1:t)ptp
>
t
< ⇡min · 1(a = a

?

t
)ptp

>
t

and hence
Ex1:t [P⇡(at = a|x1:t)ptp

>
t
] < ⇡min Ex1:t [1(a = a

?

t
)ptp

>
t
].

Applying this bound to each matrix term of E[B(a)
zz0 (T )] in Eq. (3.53) we see that

E[B(a)(T )] < ⇡min · T · ⌃(a)(T ), (3.56)

with ⌃(a)(T ) defined in Eq. (3.52). Hence we recover the matrix lower bound Eq. (3.51)
above.

We now show that the variance of the empirical matrix B around its asymptotic ex-
pected form can be upper bounded:

Lemma 1.6. When the ground truth parameters (✓,�) are known, the variance across
histories x1:T of the empirical inverse covariance matrix element Bzz0(T ), satisfies the
upper bound

Var


1

T
B

(a)
zz0 (T )

�
 2

��T
(c+ log log(1/⇢min)), (3.57)

where c ⇡ 6.78, and ⇢min := minz ⇢
(�)
eq (z) is the equilibrium probability of the least probable

latent state.
7This matrix has Z � 1 zero eigenvalues, and a nonzero eigenvalue

P
z
p(zt = z|x1:t)2.
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Proof. The variance over context histories x1:T of the matrix element Bzz0(T ), conditioned

on actions a1:T (and using the shorthand notation �
(a)
t = 1(at = a)), is

Var[B(a)
zz0 |a1:T ] = Ex1:T [(B

(a)
zz0 )

2|a1:T ]� Ex1:T [B
(a)
zz0 |a1:T ]

2

=
X

t,t0

�
(a)
t �

(a)
t0

⇣
Ex1:t0 [p1:t(z)p1:t(z

0)p1:t0(z)p1:t0(z
0)]� Ex1:t0 [p1:t(z)p1:t(z

0)]Ex1:t0 [p1:t0(z)p1:t0(z
0)]
⌘
.

(3.58)

Here, we have trivially taken the expectation over xt0+1:T . Using again the shorthand
notation pt:t0(z) := p(zt0 = z|xt:t0) (with pt:t0 2 RZ denoting the vector of probabilities),
and defining

�pt(z; ⌧) := p1:t(z)� pt�⌧+1:t(z), (3.59)

we can write, for t0 > t,

p1:t0(z)p1:t0(z
0) = (pt+1:t0(z

0) + �pt0(z; t
0 � t))(pt+1:t0(z

0) + �pt0(z
0; t0 � t)), (3.60)

Using Corollary 1.1 to bound the expectation over xt+1:t0 , and using the fact that

DKL[p1:t||⇢(�)eq ] =
X

z

p1:t(z) log

 
p1:t(z)

⇢
(�)
eq (z)

!

X

z

p1:t(z) log(1/⇢min) = log(1/⇢min),

we have

Ex1:t0

hX

z

|�pt0(z; ⌧)|
i
 e

� 1
2��⌧ Ex1:t [

q
2DKL[p1:t||⇢(�)eq ]  e

� 1
2��⌧

p
2 log(1/⇢min) := u(⌧).

(3.61)
Thus, for t0 > t,

|Ex1:t0 [p1:t0(z)p1:t0(z
0)]� Ext+1:t0 [pt+1:t0(z)pt+1:t0(z

0)]|  Ex1:t0 [|�pt0(z; t
0 � t)|] + Ex1:t0 [|�pt0(z

0; t0 � t)|]
+ Ex1:t0 [|�pt0(z; t

0 � t)| · |�pt0(z0; t0 � t)|]
 3u(t0 � t), (3.62)

where we have used pt+1:t0  1 and |�pt0 |  1 to conservatively bound the expectation.
Applying the decomposition in Eq. (3.60) again for the first term in Eq. (3.58), we have

Ex1:t0 [p1:t(z)p1:t(z
0)p1:t0(z)p1:t0(z

0)]  Ex1:t [p1:t(z)p1:t(z
0)] · Et+1:t0 [pt+1:t0(z)pt+1:t0(z

0)] + 3u(t0 � t).
(3.63)
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Here we have used the fact that p1:t(z)p1:t(z0)  1 to simplify the last term. Combining
Eq. (3.62) and (3.63), we have (for t0 > t)

|Ex1:t0 [p1:t(z)p1:t(z
0)p1:t0(z)p1:t0(z

0)]� Ex1:t [p1:t(z)p1:t(z
0)]Ex1:t0 [p1:t0(z)p1:t0(z

0)]|  6u(t0 � t).
(3.64)

As in Lemma 1.4, we now introduce a free parameter ⌧0, and break the sum in Eq. (3.58)
into a contributions from small |t0 � t| (where the di↵erence in Eq. (3.58) may be large
but cannot exceed one) and large |t0 � t| (where the upper bound on the di↵erence in Eq.
(3.58) is strong). The variance Var[Bz,z0 ], Eq. (3.58), can then be upper bounded:

Var[B(a)
zz0 |a1:T ] 

X

t,t0

�
(a)
t �

(a)
t0 [1(|t0 � t|  ⌧0) + 1(|t0 � t| > ⌧0)6u(|t0 � t|)]

Using �
(a)
t �

(a)
t0  1 to apply the inequality for any action sequence a1:T , and thus removing

the action conditioning, we have

Var[B(a)
zz0 ] 

X

t,t0

1(|t0 � t|  ⌧0) + 2
X

t,t0

1(t0 � t > ⌧0)6u(t
0 � t). (3.65)

Here, we have also used the symmetry of Eq. (3.58) under exchange of t and t
0 to sum

only over t0 > t. The bound on Var[Bz,z0 ] becomes

Var[B(a)
zz0 ]  T (2⌧0 + 1) + 12T

TX

⌧=⌧0+1

e
� 1

2��⌧
p

2 log(1/⇢min)

 T (2⌧0 + 1) + 12T
p
2 log(1/⇢min)

Z 1

⌧0

d⌧e
� 1

2��⌧

= T (2⌧0 + 1) + 12T
p
2 log(1/⇢min)

2

��
e
� 1

2��⌧0

where we have again used the monotonicity with respect to ⌧ to bound the discrete sum
with a continuous integral. We are now in a position to optimize the free parameter ⌧0 to
make the bound as tight as possible. Setting to zero the derivative with respect to ⌧0, and
solving for ⌧0, we find the optimal value

⌧
?

0 :=
1

��
log (72 log(1/⇢min)) , (3.66)

for which the upper bound becomes

Var[B(a)
zz0 ]  T + 2

T

��
[2 + log (72 log(1/⇢min))]

 2
T

��
(c+ log log(1/⇢min)),
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where we have used the fact that ��  1, and c = 5
2+log 72 = 5

2+3 log 2+2 log 3 ⇡ 6.78.

Note that the unusual log-log dependence in Eq. (3.57) originates in the exponential
contraction in Eq. 3.27, which suppresses an initial KL-distance that is already logarithmic
in probabilities.

Finally, we apply Chebyshev’s inequality to bound the deviation of the B
(a)
zz0 from its

asymptotic expected value:

Lemma 1.7. When the ground truth parameters (✓,�) are known, any matrix element of
the empirical inverse covariance matrix B

(a)(T ), for any particular history (x1:T , a1:T ) of
contexts and actions, satisfies the inequality

1

T
|B(a)

zz0 (T )� E[B(a)
zz0 (T )]| 

s
1

�

2

��T
(c+ log log(1/⇢min)) (3.67)

where c ⇡ 6.78, with probability at least 1� �, for any � 2 (0, 1).

Proof. Chebyshev’s inequality states that for any random variable X with variance Var[X],

|X � E[X]| 
p

Var[X]/� with probability at least 1 � �. Setting X = 1
T
B

(a)
zz0 and using

Eq. (3.57) to upper bound the variance, we recover Eq. (3.67) above.

3.4.4 Bound on covariance matrix eigenvalues

In Appendix 3.4.3 we derived a high-probability upper bound on the deviation of the
elements of the empirical inverse covariance matrix B

(a) from their asymptotic expected
values. We would like to convert this into a bound on the covariance matrix (B(a))�1, in
order to bound the estimator error (B(a))�1

g
(a), Eq. (3.14). In this section, we show that

an element-wise bound such as Eq. (3.67) can be converted to an eigenvalue bound which
can be applied to the inverse matrix.

Lemma 1.8. For symmetric matrices M̄ , M = M̄ + �M , with |�Mz,z0 |  U� for any
given (z, z0) with probability at least 1 � �, the minimal eigenvalue �1 of M satisfies the
lower bound

�1 � �̄1 � ZU� (3.68)

with probability at least 1� Z�, where �̄1 is the minimal eigenvalue of M̄ .
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Proof. Let �1 and �̄1 be, respectively, the minimal eigenvalues of M and M̄ . Since M and
M̄ are symmetric, �M is also symmetric. The Weyl inequality for symmetric, real-valued
square matrices states that if �̄1 and �

(�)
1 are the minimal eigenvalues of matrices M̄ and

�M , then the minimal eigenvalue �1 of the matrix sum M̄ +�M satisfies the lower bound

�1 � �̄1 + �
(�)
1 . (3.69)

The Gershgorin circle theorem can be used to bound the eigenvalue �
(�)
1 in terms of the

matrix elements �Mz,z0 . For a real square matrix A, the Gershgorin circle theorem states
that the i’th eigenvalue satisfies the inequality

|�i � Aii| 
X

j 6=i

|Aij|,

which implies that
|�i| 

X

j

|Aij| (3.70)

Applying Eq. (3.70) to any eigenvalue �
(�)
z of �M , we have

|�(�)
z

| 
X

z0

|�Mzz0 |  ZU�. (3.71)

Since Eq. (3.71) only holds if |�Mzz0 |  U� for all z0, the probability of the bound is at
least (1� �)Z > 1�Z�. Combining Eq. (3.71) with Eq. (3.69), we recover Eq. (3.68).

We now use the element-wise bound on B
(a)
zz0 from Lemma 1.7 to apply Lemma 1.8 to

the minimal eigenvalue of the inverse covariance matrix B
(a), which immediately translates

into an upper bound on the maximal eigenvalue of (B(a))�1.

Lemma 1.9. Under the same conditions as Lemma 1.7, the minimal eigenvalue �
(a)
1 (T )

of the empirical inverse covariance matrix 1
T
B

(a)(T ) satisfies the lower bound

�
(a)
1 (T ) � �

(a)
min(T )/c̃, (3.72)

where �
(a)
min(T ) is the minimal eigenvalue of ⌃(a)(T ) defined in Eq. (3.52), with probability

at least 1� ��, where

�� :=
Z

3

(�(a)
min(T ))

2

�
⇡min � c̃

�1
��2 2

T��
(c+ log log(1/⇢min)), (3.73)
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for any c̃ 2 (1, c̃max), with

1

c̃max
= ⇡min �

Z

�
(a)
min(T )

s
2

T��
(c+ log log(1/⇢min)). (3.74)

Proof. Recalling Eq. (3.67), we apply Lemma 1.8 with

M̄ ! 1

T
E[B(a)(T )], M ! 1

T
B

(a)(T ), U� !

s
1

�

2

T��
(c+ log log(1/⇢min)),

and have
�
(a)
1 (T ) � �̄

(a)
1 (T )� ZU�, (3.75)

with probability at least 1�Z�, where �(a)
1 (T ) and �̄

(a)
1 (T ) are the minimal eigenvalues of

1
T
B

(a)(T ) and 1
T
E[B(a)(T )], respectively. Using the fact (Lemma 1.5) that 1

T
E[B(a)(T )] <

⇡min⌃(a)(T ), or equivalently 1
T
E[B(a)(T )] = ⇡min⌃(a)(T ) + PSD where PSD is a positive

semidefinite symmetric matrix with non-negative minimal eigenvalue, and applying the
Weyl inequality again (as in Lemma 1.8), we have �̄

(a)
1 (T ) � ⇡min�

(a)
min(T ), and thus,

�
(a)
1 (T ) � ⇡min�

(a)
min(T )� ZU�. (3.76)

Defining

c̃
�1 := ⇡min �

Z

�
(a)
min(T )

s
1

�

2

T��
(c+ log log(1/⇢min)), (3.77)

Eq. (3.76) takes the form of Eq. (3.72), with c̃ inheriting its range, as stated in Lemma 1.9
above, from the range of � 2 (0, 1). Inverting Eq. (3.77) to express the probability �� := Z�

in terms of other parameters, we recover Eq. (3.73).

3.4.5 Final Bound on Estimator Error

In the preceding sections, we derived high-probability bounds for the empirical covariance
matrix (B(a))�1 and the error vector g(a). In this section, we combine these results to derive

Theorem 1, a high-probability upper bound on the estimator error µ̂(a)�µ(a)
? = (B(a))�1

g
(a):

Proof of Theorem 1. From Lemma 1.4, we have (g(a)z /T )2  U
2
�
– using U

2
�
as a shorthand

for the right hand side of Eq. (3.31) – with probability at least 1 � � for any z, and thus
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with probability at least (1� �)Z > 1�Z� for all z. Thus, renaming � ! �/Z, the 1-norm
of the estimator error is upper bounded with probability at least 1� �:

|µ̂(a)
z
� (µ(a)

?
)z| 

X

z0

|((B(a))�1)zz0 | · |g(a)z0 |  T · U�/Z

X

z0

���((B(a))�1)zz0
���. (3.78)

The sum over elements |((B(a))�1)zz0 | can be upper bounded in terms of the Frobenius
norm ||(B(a))�1||F ,
X

z0

|((B(a))�1)zz0 |  Z ⇥max
z,z0

|((B(a))�1)zz0 |  Z

sX

z,z0

|((B(a))�1)zz0 |2 = Z||(B(a))�1||F .

The singular value decomposition of (B(a))�1, which is symmetric and positive semidefinite,
can be written (B(a))�1 = 1

T
Ua⇤�1

a
U

>
a

where Ua is an orthogonal matrix and ⇤a is the
diagonal matrix whose nonzero entries are the eigenvalues of 1

T
B

(a). (Recall that the
elements of the matrix B

(a) increase linearly with T , with 1
T
B

(a) approaching a constant
matrix at large T .) The Frobenius norm of a matrix is unchanged under a (left or right)
orthogonal transformation, so

T · ||(B(a))�1||F = ||⇤�1
a
||F =

sX

z

(�(a)
z )�2 

p
Z

�
(a)
1

,

where �
(a)
1 is the minimal eigenvalue (at time T ) of 1

T
B

(a). Thus, T ·
P

z0 |(B(a))�1)zz0 | 
Z

3/2
/�

(a)
1 . Substituting this into Eq. (3.78) above, and recalling Lemma 1.9, we have

|µ̂(a)
z
� (µ(a)

?
)z| 

Z
3/2

c̃

⇡min�
(a)
min(T )

U�/Z

with probability at least
(1� �)(1� ��) > 1� � � ��.

With the definition of �� in Eq. (3.73), recalling that U2
�
refers to the upper limit in Eq.

(3.31), and setting c̃ = 2/⇡min for simplicity, we recover Theorem 1 as stated above.

Note from Eq. (3.73) (with c̃ = 2) that in order for the probability of the bound
to become positive, the time T (measured in mixing times 1/��) must exceed a minimal
threshold value,

T�� >
8Z3

⇡min�
(a)
min

(c+ log log(1/⇢min)). (3.79)

Before this timescale, insu�cient data can be gathered to reliably reduce the variance of
the estimator. Once T�� exceeds this threshold value, which is parametrically large in the
number of latent states Z, the bound becomes nontrivial.
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Chapter 4

Latent Linear Thompson Sampling

In this section we describe our proposed algorithm, which (i) uses a prior model p(x|z; ✓)
to learn a least-squares estimator for the latent transition matrix, and (ii) uses the learned
transition model to build least-squares reward estimators in the linear bandit framework.

4.1 Least-Squares Transition Matrix Estimation

Given the current observation xt and true parameters ✓
?, we define the negative log-

likelihood of observing xt conditional on latent state z as

Yt,z := � log p(xt|z; ✓?), (4.1)

which will be the dependent (target) variables in least-squares estimation of �?. Given
prior knowledge of the context distributions p(x|z), the negative log-likelihoods Yt,z are
known, deterministic functions of xt and may thus be treated as observed quantities.

Given data x1:t�1, the expected negative log-likelihoods at time t are

E[Yt,z|x1:t�1] =
X

z0,z00

p
?(zt�1 = z

0|x1:t�1)�
?

z0,z00 · Ext⇠p(·|zt=z00)[� log p(xt|zt = z)]

=
X

z0,z00

p
?

t�1(z
0)�?

z0,z00 ·Hz00,z, (4.2)
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where the cross-entropy Hz00,z0 was defined in (3.2). Defining H 2 RZ⇥Z

+ as the (non-
negative) matrix1 of cross-entropies, Eq. (4.2) can be written in matrix form2

E[Y >] = P
>
?
�?

H, (4.3)

where Y, P? 2 RZ⇥T

+ are non-square matrices, and P
? is the matrix whose columns are

posterior probability vectors at preceding timesteps, that is (P?)z,t = p
?

t�1(z). Defining the
linear transformation

�?

H
:= �?

H (4.4)

of the transition matrix, we can express Y in the standard linear regression form

Y
> = P

>
?
�?

H
+ ✏

>
, (4.5)

where �?

H
contains the unknown parameters, Y is the dependent variable, P? plays the role

of the independent variable, and ✏ 2 RZ⇥T is a matrix of residuals, ✏t,z := Yt,z�E[Yt,z|x1:t�1]
with zero expectation value. Introducing a model estimate �̂H and defining predictions

Ŷz,t = (P>
?
�̂H)t,z, (4.6)

the quadratic loss X

t,z

(Yt,z � Ŷt,z)
2
, (4.7)

is minimized by the least-squares matrix3 estimator

�̂H := (P?P
>
?
+ ��1Z)

�1
P?Y

>
. (4.8)

where �� > 0 is a regularization parameter which ensures invertibility4, and 1Z is the Z-
dimensional identity matrix. We can now use Eq. (4.4) to define a corresponding estimator
for the transition matrix, �̂(P = P

?), where

�̂(P ) := (PP
> + ��1Z)

�1
PY

>
H

�1 (4.9)

1We will assume throughout that no two distributions p(x|z) and p(x|z0) are identical for z 6= z
0, and

consequently that the cross-entropy matrix H is full-rank and invertible.
2For any matrix A with latent-state z and timestep dimensions t, we index rows with z and columns

with t.
3Since the dependent variable Yt is vector-valued, with components corresponding to di↵erent states z

indexing the columns of Y > 2 RT⇥Z

+ , �̂H is a matrix of distinct least-squares estimators in each column.
4When �� = 0, we recover the ordinary least-squares (OLS) estimator, which is unbiased but may have

higher variance.
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for any P .

In practice, we lack oracle access to the true posteriors p?
t
(which depend on �?) and

must use the model posteriors p̂ instead, iteratively updating �̂(P̂ ) and p̂(�̂) with Eqs. (3.3)
and (4.9). This results in bias in both �̂ (due to p̂ 6= p

?) and p̂ (due to �̂ 6= �?). However,
we find empirically that (p̂, �̂) do converge jointly to (p?,�?) under certain conditions (see
Section 4.3).

Relatedly, we have assumed that H = H(✓ = ✓
?) is built from the true distributions

p(x|z). More generally, we allow a model estimate ✓ 6= ✓
? in Algorithm 2 below, and

empirically study robustness to ✓ 6= ✓
? in Section 4.3.

The estimator �̂t at time t can be updated sequentially as follows. Initializing B� =
��1Z and F� = 0Z⇥Z at t = 0 as matrices which will be used to sequentially update
(respectively) the matrices (PP

>+��1Z) and PY
> in Eq. (4.9), after each observation xt

we compute Yt,z = p(xt|z; ✓?) for each z, and update

B�  B� + p̂t�1p̂
>
t�1, F�  F� + p̂t�1Y

>
t

(4.10)

�̂t = B
�1
�
F�H

�1 (4.11)

where Yt, p̂t�1 2 RZ denote column vectors, and at each step we update p̂ with Bayes’ rule,

p̂t / e
�Yt � (�̂tp̂t�1), (4.12)

where e
Yt 2 RZ is the vector with elements eYt,z , and � indicates the element-wise vector

product. While �̂ is unconstrained, and thus may not represent a well-defined matrix of
transition probabilities (allowing elements of p̂ to likewise be negative), in our experiments
we found convergence to the ground truth probabilities.

4.1.1 Special Case: I.I.D. Latent Variables

The case in which the latent state is resampled i.i.d at each timestep can be recovered as
the special case in which �? is a rank-one matrix with identical columns �?. In this case,
at each timestep the random variable xt is generated from a fixed distribution, and hence
the random variables Yt,z are generated from fixed distributions. Eq. (4.2) simplifies to

E[Yt,z] =
X

z0

�
?

z0 ·Hz0,z = ((�?)>H)z, (4.13)
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and is independent of the prior history x1:t�1. Since each negative log-probability vector
Yt 2 RZ is an unbiased estimate for the same mean vector, the sample mean Ŷ

(t) :=
t
�1
P

t

t0=1 Yt will converge to the true mean vector (�?)>H. The estimator

�̂
>
t
:= Ŷ

(t)
H

�1 (4.14)

is unbiased, since E[�̂>
t
] = (�?)>HH

�1 = (�?)>.

Compared to the more general non-stationary case, �̂t no longer depends on the history
of past model posteriors p̂ 6= p

?, but only on the log-likelihoods Yt and cross-entropy
matrix H, quantities obtained from the known distributions p(x|z; ✓?). Of course, if the
true parameters ✓? are not perfectly known, the estimator of latent-state probabilities, Eq.
(4.14), will become biased and no longer be guaranteed to converge to �

? as t!1.

4.2 Latent Linear Thompson Sampling (L
2
TS)

As described in Section 3.2, we treat the model posterior over the current latent state p̂t, Eq.
(3.3) – which is updated jointly with the transition estimator �̂ – as a context feature vector
in the linear bandit setting, ct = p̂t. Our algorithm, L2TS, combines5 the latent posterior
(p̂) and transition matrix (�̂) estimation of Section 4.1 with the (p̂-conditioned) reward
estimation of LinTS into an end-to-end pipeline for the confounded and non-stationary

5The L2 refers to both “latent linear” and “double least squares”; the latter is in reference to the joint
least-squares estimation of the latent transition probabilities and reward parameters.
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latent bandit setting of Section 3.1.

Algorithm 2: Linearized Latent Thompson Sampling (L2TS)

Input:

Prior over latent state, p̂0 2 [0, 1]Z

Model distributions p(x|z; ✓)
F� = 0Z⇥Z , B� = ��1Z ; �� > 0

f
(a)
µ = 0Z , B(a) = �µ1Z , for a 2 A; �µ > 0

�̃
(a)
r > 0 for a 2 A

Precompute H(✓), from Eqs. (3.2).
for t 1, 2, ... do
Observe xt; set Yt,z = � log p(xt|z), for z 2 Z
Update transition matrix estimate,
B�  B� + p̂t�1p̂

>
t�1, F�  F� + p̂t�1Y

>
t

�̂ = B
�1
�
F�H

�1

Update posterior, p̂t / e
�Yt � (�̂p̂t�1)

Sample µ
(a) ⇠ N (µ̂(a)

, (�̃(a)
r )2(B(a))�1) for a 2 A

Select action a = argmax
a0
P

z
p̂t(z)µ

(a0)
z

Observe rt

Update mean reward estimates:
B

(a)  B
(a) + p̂tp̂

>
t
, f

(a)
µ  f

(a)
µ + p̂trt

µ̂
(a) = (B(a))�1

f
(a)
µ

In Algorithm 3 we show a variant of L2TS for stationary environments in which a non-
dynamical latent state is resampled i.i.d. at each round (Section 4.1.1). In this case, Eq.
(4.14) is used to estimate the prior probabilities of latent states, instead of the transition
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matrix estimate, Eq. (4.11), used by Algorithm 2 for non-stationary environments.

Algorithm 3: Linearized Latent Thompson Sampling: stationary tasks
Input:

Model distributions p(x|z; ✓)
f
(a)
µ = 0Z , B(a) = �µ1Z , for a 2 A; �µ > 0

�̃
(a)
r > 0 for a 2 A

Precompute H(✓), from Eq. (3.2).
for t 1, 2, ... do
Observe xt; set Yt,z = � log p(xt|z), for z 2 Z
Update sample mean negative log-likelihoods,
Ŷ  t

�1
P

t

t0=1 Yt

Update estimate of latent-state prior probabilities,
�̂ Ŷ H

�1

Compute posterior, p̂t / e
�Yt � �̂

Sample µ
(a) ⇠ N (µ̂(a)

, (�̃(a)
r )2(B(a))�1) for a 2 A

Select action a = argmax
a0
P

z
p̂t(z)µ

(a0)
z

Observe rt

Update mean reward estimates:
B

(a)  B
(a) + p̂tp̂

>
t
, f

(a)
µ  f

(a)
µ + p̂trt

µ̂
(a) = (B(a))�1

f
(a)
µ

4.3 Experiments

In this section, we conduct experiments to compare L2TS (Algorithm 2) with (i) the the-
oretical regret bound in a setting with Gaussian data and a non-dynamical latent state,
and (ii) relevant baselines in a setting with discrete variables and non-stationarity from a
dynamical latent state. We describe the details of these experiments in Sections 4.3.1 and
4.3.2 before presenting results.

4.3.1 Stationary & Gaussian Task: Regret Scaling

Numerical Details: Environment We consider an environment with Z = 2 latent
states,K = 2 actions, and Gaussian context and reward distributions. At each timestep the
(non-dynamical) latent state is resampled i.i.d., with prior probabilities �?

z
set to (�?

0,�
?

1) =
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Figure 4.1: Left: Mean cumulative regret of L2TS (Algorithm 3) in the stationary Gaussian
environment of Section 4.3.1, compared to the optimal scaling log(t) + const., and to an
oracle policy which knows the true latent transition model. Right: Mean cumulative regret
of L2TS (Algorithm 2) and baseline algorithms in the non-stationary discrete-variable
setting of Section 4.3.2, with shaded regions indicating variance over 10 episodes (4 for
umTS). L2TS strongly outperforms baselines, approximates the oracle policy, and degrades
gracefully when limited by biased models p(x|z).

(0.3, 0.7). The ground truth context distributions p(x|z) are set to Gaussian distributions
with mean values (µz=0, µz=1) = (0, 1) and standard deviations (�z=0, �z=1) = (0.1, 0.2).

The reward distributions p(r|z, a) are also Gaussian distributions, with mean values µ
(a)
z

set to (µ(0)
0 , µ

(1)
0 , µ

(0)
1 , µ

(1)
1 ) = (1, 2, 2, 1), and a shared standard deviation �

(a)
z = 1 for all

(z, a).

Numerical Details: Algorithm We used Algorithm 3, the variant of L2TS for sta-
tionary settings, with covariance matrix hyperparameters �µ = �̃

(a)
r = 1. (We observed

comparable performance with the more general Algorithm 2, which handles both station-
ary and non-stationary settings.) We also compared to an oracle version of L2TS which
accessed the ground truth probability vector �?.

4.3.2 Non-Stationary Task with Discrete Variables

Numerical Details: Environment We consider an environment with Z = 3 latent
states, K = 2 actions, and integer-valued context x 2 {1, 2, 3, 4}. The ground-truth
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context distributions are set to

p(x|z) =

2

4
0.05 0.85 0.09 0.01
0.01 0.19 0.79 0.01
0.01 0.01 0.59 0.39

3

5 , (4.15)

such that x contains significant information about z. The ground-truth reward distribu-
tions,

p
|(r|a = 1, z) =

⇥
0.2 0.5 0.8

⇤
; p|(r|a = 2, z) =

⇥
0.3 0.4 0.5

⇤
, (4.16)

contain somewhat less information for distinguishing between latent states. We choose a
transition matrix over latent states that favors the diagonal, intended as a toy model of
real-world settings where latent state transitions are predominantly local in latent space:

p(zt|zt�1) =

2

4
0.7 0.25 0.05
0.25 0.5 0.25
0.05 0.25 0.7

3

5 . (4.17)

Numerical Details: Algorithm We used L2TS (Algorithm 2) with covariance matrix

hyperparameters �� = �µ = �̃
(a)
r = 1.

Baselines. We compare with two strong baselines: (1) Uncertain Model Thompson Sam-
pling (umTS) [32]: We adapt umTS, which uses particle filtering to maintain a posterior
over reward models and latent transition matrices, to our setting by using prior knowledge
of p(xt|z; ✓?) for posterior updates. (In the original graphical setting of [32], the latent
state only influences rewards, and not contexts.) As such, umTS accesses the same prior
knowledge as L2TS, and also uses reward data for latent state inference. In contrast, L2TS
does not assume a parameteric reward model, and relies exclusively on context data to
learn about the latent space. (2) Discounted Thompson Sampling (dTS) [47]: We extend
dTS to maintain success (r = 1) and failure (r = 0) counts for each context-action pair
(x, a), and allow dTS to use the true dynamics timescale to set the discount factor �. This
gives it the advantage of partial prior knowledge of the hidden Markov dynamics, but not
of the context likelihood as with L2TS or umTS.

In addition to baseline algorithms, we also consider (i) an oracle variant of L2TS which
uses the true posterior p

?

t
(z) := pt(z|x1:t;�?

, ✓
?) to learn reward parameters, and (ii) a

biased variant of L2TS which uses Nz = 10 o✏ine samples x ⇠ p(x|z) for each z to
construct an approximate model ✓ ⇡ ✓

? based on counts of sampled discrete values x.
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Baseline Details. We allowed the discounted Thompson Sampling (dTS) algorithm to
access the true transition matrix by setting its discount factor to � = Z

�1
P

z
�
?

z,z
. For

umTS [32], we used N = 1000 particles with a minimum e↵ective sample size ESSmin = 50
for particle resampling.

4.3.3 Results

In Figure 4.1 (Left), we show the asymptotic regret of L2TS in the stationary Gaussian
environment (Section 4.3.1), compared to (i) the optimal logarithmic scaling, and to (ii) an
oracle version of L2TS which uses the true latent probabilities �? and oracle access to the
true reward model p(r|z, a) to compute latent-state posteriors. L2TS performs well asymp-
totically, learning the true latent-state probabilities and approaching the performance of
the oracle.

Figure 4.1 (Right) shows the cumulative regret6, averaged over 10 episodes, for all al-
gorithms (except umTS, for which we average over 4 episodes). L2TS significantly outper-
forms the baseline algorithms. While umTS models the true latent structure and context
distributions p(x|z), it su↵ers from asymptotically linear regret as a result of failure of
its particle-based posterior to converge.7 (We found that umTS was able to learn the
true transition matrix with ' 10% accuracy, and mean rewards somewhat less accurately.)
Discounted TS performs most poorly due to its inability to model the latent space or to
transfer information gained across di↵erent discrete contexts. L2TS closely approximates
the oracle, indicating asymptotic convergence of the learned transition model. While the
biased variant su↵ers from linear regret, since ✓ is never improved, L2TS degrades grace-
fully in light of the limitation – in this case to only Nz = 10 samples x ⇠ p(·|z) for each
z.

6Regret is defined relative to the optimal policy conditioned on the true task parameters, which selects

at each timestep the action a maximising (p?
t
)>µ(a)

? .
7We expect this performance to improve with stronger particle resampling methods which resample by

interpolating between existing particles, or update particle positions as well as weights [18].
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Chapter 5

Slow Dynamics and Latent State

Distinguishability

As noted below Lemma 1.3, our derivation of Theorem 1 was conservative in that it did
not make use of the context distribution parameters ✓

? – which capture the amount of
information about the latent state contained in context observations – to strengthen the
bound. In this section, we derive for a simpler algorithm an instantaneous regret bound
which captures this e↵ect.

We introduce Algorithm 4 (mw-zTS), a naive and limited variation on Algorithm 2
(L2TS) which uses fixed estimate reward parameters and a memory window ⌧ as a rough
proxy for the latent dynamics timescale1, in order to make theoretical analysis more
tractable. Algorithm 4 Thompson samples latent states z instead of reward parameters.
When Algorithm 4 accesses the true reward parameters, µ̂(a) = µ

(a)
? , its performance is

limited exclusively by uncertainty or error in the model posterior p̂t. As such, it can be

1A memory window can be a useful alternative to a full transition model � when the latent state
changes rarely, and when learning � is di�cult, e.g. due to large Z.

48



used as a theoretical tool to study the influence of p(x|z) on inference of the latent state.

Algorithm 4: Memory Window Latent-State Sampling (mw-zTS)

Input: Memory window ⌧ 2 N
Model distributions p(x|z, ✓)
Reward estimates µ̂(a) 2 RZ , for a 2 A

for t 1, 2, ... do
Observe xt and update posterior:
p̂t(z) /

Q
t

t0=max(1,t�⌧) p(xt0 |z; ✓)
Sample z ⇠ p̂t(·); select action a = argmax

a0 µ̂
(a0)
z

Observe rt

Theorem 2 below uses an alternate definition of the instantaneous regret incurred at
time t,

�R(oracle)
⇡

(t) := Eoracle[rt]� E⇡[rt], (5.1)

relative to an oracle policy which accesses the true latent state z?
t
and earns a mean reward,

Eoracle[rt] = max
a

((µ(a)
?
)z?t ). (5.2)

Here, the oracle may be viewed as a version of Algorithm 4 which uses an oracle posterior,
p̂t(z) ! 1(z = z

?

t
), along with the true reward parameters. As such, this definition of

regret isolates the e↵ect of probability mass p̂t(z) placed on states z 6= z
?

t
.

Before stating our result, we also introduce the pair-wise KL divergences between con-
ditional context distributions,

Dz?,z(✓) := Ex⇠p(·|z?;✓) [log(p(x|z?; ✓)/p(x|z; ✓))] , (5.3)

which quantify the distinguishability of a given pair of latent states (z?, z) through obser-
vations x ⇠ p(·|z?), and will be used to bound the probabilities p̂t(z) assigned to z 6= z

?

t
.

With these definitions, the regret at a single timestep incurred by mw-zTS satisfies a
high-probability upper bound:

Theorem 2. Given maximal state change probability 1/L? = maxz(1� �
?

z,z
), reward gaps

�z?,z := µ
(a(z?))
z? �µ

(a(z))
z? where a(z) = argmax

a0 µ
(a0)
z with {µ(a)} = {µ(a)

? }, a measure ⇢t :=
(�?)t⇢0 over latent states, pairwise KL divergences Dz?,z(✓?), and log-likelihood variances

�
2
z?,z(✓) := Ex⇠p(·|z?,✓)[log

2(p(x|z?; ✓)/p(x|z; ✓))]�D
2
z?,z(✓), (5.4)
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the instantaneous regret of Algorithm 4 relative to the oracle policy which observes the
latent state satisfies

�R(oracle)
mw�zTS(t) 

⌧

L?
�max +

X

z?,z

⇢t(z
?)e�⌧Dz?,z+

p
⌧
� �z?,z�z?,z (5.5)

where �max := maxz,z0 �z,z0, with probability at least 1�Z
2
�, for any � such that ⌧Dz?,z �p

⌧/��z?,z > 0 for all (z?, z).

Proof (Outline). The complete proof (see Section 5.1) involves (i) bounding the probability
of histories in which the latent state has changed within the past memory window, which
scales as ⌧/L?, and (ii) following the method of [27] to upper bound the posterior probability
pt(z 6= z

?) assigned to latent states other than the true state, which is controlled by the
KL divergences Dz?,z(✓) of Eq. (5.3),

Ext�⌧ :t⇠p(·|z?) [pt(z|xt�⌧ :t)] / e
�⌧Dz?,z , (5.6)

up to a contribution from the sample variance of observations which can be bounded with
high probability for a large memory window ⌧ .

Theorem 2 expresses the joint influence of the timescale of non-stationarity L
? and the

distributional structure of the likelihoods p(x|z) on the agent’s knowledge of the evolving
latent state. The first term in Eq. (5.5) bounds the regret incurred when the latent state
has changed in the previous ⌧ timesteps, while the second term, obtained from an upper
bound on posterior probabilities for z 6= z

?

t
, Eq. (5.18), bounds the regret incurred due to

limited information about the latent state being available in the previous ⌧ timesteps. For
a ground-truth state z

?, the posterior probability of another state z decays exponentially
in time, with the KL divergence Dz?,z, acting as an average decay rate. (The additional
term in the exponent acts as a probabilistic lower bound on the actual decay rate due to
variance around the mean, with ✏ controlling the degree of tolerance of rare trajectories
for which z

? is unusually di�cult to distinguish from z.)

Since mw-zTS makes the naive assumption that the latent state has not changed in the
past ⌧ steps, it can err when ⌧ is too large relative to the dynamical timescale L? (the first
term in Eq. (5.5)), or when ⌧ is too small, and not enough data are used to distinguish z

(the second term). In Section 5.1.3, we show that – in a simplified setting where all states
are equally distinguishable – Dz?,z = D for all (z?, z 6= z

?) – the optimal window scales as
⌧ ⇠ log(L?

D)/D, with regret scaling as 1/L?
D, such that when the KL divergences Dz?,z

are large compared to the dynamics timescale, the latent state may be inferred before it
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changes. In this regime, the model posterior p̂t will assign high probability to the true
latent state z

?

t
, yielding low regret from sampling z 6= z

?

t
. We expect similar dependence

on Dz?,z in the estimator error, Eq. (3.11), via the covariance matrices, Eq. (3.13), whose
spectra describe the uncertainty in posterior beliefs p?

t
. Theorem 2 pedagogically illustrates

the e↵ect of context distributions p(x|z) on the simplified algorithm mw-zTS.

While we’ve assumed for simplicity that only the context data is used to update the
posterior p(zt = z|x1:t), it should be straightforward to extend Theorem 2 to the case of a
reward-conditioned posterior p(zt = z|x1:t, r1:t), which will introduce an analogous depen-
dence on KL divergences between reward distributions p(r|z, a) conditioned on di↵erent
latent states.

5.1 Derivation of Theorem 2

We will define the per-timestep regret as

�Rt = Eoracle[rt]� Emw�zTS[rt], (5.7)

where the expectation is over latent state histories z
?

1:t (conditioned on �
?), sequences of

observed contexts x1:t (conditioned on ✓
?), and actions generated by mw-zTS (Algorithm 4)

or by the oracle policy which uses the true latent state z
? to select a? = argmax

a
(µ(a)

? )z? .
For convenience, we also recall the reward gaps defined in Theorem 2,

�z?,z := µ
(a(z?))
z? � µ

(a(z))
z? ,

where a(z) := argmax
a0(µ

(a0)
? )z, and the measure ⇢t := (�?)t⇢0 over latent states at time t.

5.1.1 Bound on non-stationarity in the environment

We assume, as stated in Theorem 2, that the true transition matrix satisfies a constraint
on the state change probabilities, 1� �

?

z,z
 1/L? for all z. Consequently, over a period of

⌧ < L
? timesteps, the probability of a change in the latent state is 1� (1� 1/L?)⌧ < ⌧/L

?.
That is, for t > ⌧ ,

X

z1:t

p(z1:t) =
X

z1:t

[1(zt�⌧ :t = zt) + (1� 1(zt�⌧ :t = zt))] p(z1:t)

 ⌧

L?
+
X

z1:t

1(zt�⌧ :t = zt)p(z1:t).
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This allows us to express the regret in terms of histories without a latent state change in
the most recent ⌧ steps.

�Rt 
⌧

L?
�max +

X

z?,z

pt,⌧ (z
?|z)�z?,z, (5.8)

where we’ve used the fact that �zt,z
0  �max := maxz,z0 �z,z0 , and the normalization,

X

x1:t

p(x1:t|z1:t)
X

z0

p(zt = z
0|x1:t) = 1,

to obtain the first term, and where

pt,⌧ (z|z?) /
X

z
?
1:t

1(z?
t�⌧ :t = z

?)
X

x1:t

p(x1:t|z?1:t)p(zt = z|x1:t) (5.9)

is the posterior over the latent state at time t, averaged over observed and ground-truth
latent sequences for which the true latent state z? has not changed in the past ⌧ timesteps.
Eq. (5.8) allows us to bound the regret in terms of an average over histories for which the
latent state has not changed recently, up to an error term that is small when ⌧ ⌧ L

?.

5.1.2 Bound on the posterior

We now derive a bound on the posterior probability assigned by Algorithm 4 to latent
states z 6= z

? di↵ering from the true state. To simplify notation, in this section we define

Ez[f(xt1:t2)] := Ext1 ,...,xt2⇠p(·|z)[f(xt1:t2)] (5.10)

as the expectation of any function of the sequence xt0:t, over sequences with xt ⇠ p(·|z) for
t1  t  t2.

We would like to bound the averaged posterior pt,⌧ (z0|z) in Eq. (5.8) in terms of L?

and the known observation likelihood p(x|z). Recalling that Algorithm 4 uses a posterior
proportional to the likelihood of the most recent ⌧ observations, we have

pt,⌧ (z|z?) := Ez?

" Q
t

t0=t�⌧
p(xt0 |z)P

z0
Q

t

t0=t�⌧
p(xt0 |z0)

#

= Ez?


e
`z

P
z0 e

`z0

�
, , (5.11)
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which is the expectation over partial sequences xt�⌧ :t of a softmax distribution with logits
given by sums of likelihoods

`z :=
tX

t0=t�⌧

log p(xt0 |z), (5.12)

which have expectation value

Ez? [`z] = ⌧ ⇥ Ex⇠p(·|z?)[log p(x|z)] = �⌧(Dz?,z +Hz?). (5.13)

Following [27], we will bound the posterior in terms of the KL divergences Dz?,z, which
control the posterior probabilities for states z when z

? is the true state, as well as the
variance of log-probabilities `z, which determines the variation of the posterior across
histories. The softmax probabilities can be upper bounded in terms of the di↵erence of
log-probabilities for z and z

?. For z 6= z
?,

e
`z

P
z0 e

`z0
=

e
`z

e`z? + e`z +
P

z0 6=z,z?
e`z0
 e

�(`z?�`z). (5.14)

The exponent is a random variable (determined by xt�⌧ :t) with mean �⌧Dz?,z and it is
straightforward to show that its variance is ⌧�2

z?,z, where

�
2
z?,z := Ex⇠p(·|z?)


log2

✓
p(x|z?)
p(x|z)

◆�
�D

2
z?,z (5.15)

We can bound its deviation from the mean with high probability using Chebyshev’s in-
equality, which states that for a random variable X with variance 0 < �

2
X
<1,

P (|X � E[X]| � �X/
p
✏)  ✏. (5.16)

In our case, this is
P (|`z? � `z � ⌧Dz?,z| � �z?,z

p
⌧/✏)  ✏. (5.17)

Thus, removing the expectation value over xt�⌧ :t in Eq. (5.11), we have

pt,⌧ (z|z?)  exp
h
�⌧Dz?,z +

p
⌧/✏�z?,z

i
(5.18)

with probability 1� ✏.

Using Eq. (5.18) to bound pt,⌧ (z0|z) in Eq. (5.8), we arrive at the final regret bound,
Eq. (5.5) in Theorem 2, which holds with reduced probability of at least 1� Z

2
✏ because

we conservatively require the Chebyshev bound for each of the Z(Z � 1) < Z
2 pairs

(z?, z 6= z
?).2

2It may be possible to improve this scaling by exploiting relationships between the distributions p(x|z)
for di↵erent z.

53



5.1.3 Optimized Regret Bound for Uniform Model

For generic values of Dz,z0 , �z,z0 , and �z,z0 , minimizing Eq. (5.5) with respect to ⌧ is
complicated. To better understand the bound with optimal ⌧ , we consider the simplified
case where the observation and reward parameters (✓, µ) are fixed to values such that
the matrices Dz,z0(✓?), �z,z0(✓?), and �z,z0(µ?) are uniform (except for being zero on the
diagonal):

Dz,z0 = D · �z 6=z0 , �z,z0 = � · �z 6=z0 , �z,z0 = � · �z 6=z0 . (5.19)

Although this is a simplified model, it su�ces to illustrate the roles of the parameters in
the more general case, via the following result.

Corollary 2.1. In the restricted case where model parameters satisfy the uniform matrix
condition, Eq. (5.19), the upper bound in Eq. (5.5) is minimized for

⌧opt(�) =
log(�L?

DZ)

�D
, (5.20)

and takes the form

�Rt  �
log(L?

DZ) + 1

�L?D
, (5.21)

holding with probability

1� pfail = 1� �

(1� �)2
�
2

D

Z
2

log(�L?DZ)
, (5.22)

for any � 2 (�min, �max), where �min = 1/L?
DZ and �max < 1 is determined by setting Eq.

(5.22) to zero.

Proof. For the simplified model of Eq. (5.19), Eq. (5.5) takes the form

�Rt  �
⇣
⌧

L?
+ Ze

�⌧D+
p

⌧/✏�

⌘
. (5.23)

The optimal window depends on the desired confidence parameter ✏ for the bound. Defining
� 2 (0, 1),

� := 1� �/D
p
✏⌧ , (5.24)

as a parameter controlling the decay rate in the exponent, ��⌧D, the upper bound can
be minimized with respect to ⌧ , leading to the optimal window parameter, Eq. (5.20),
for which Eq. (5.23) reduces to the optimal bound, Eq. (5.21), where we’ve discarded a
negative log term for simplicity. Finally, recalling that the bound holds with probability
1 � ✏Z

2, solving Eq. (5.24) for ✏ = �
2
/⌧D

2(1 � �)2, and fixing ⌧ to ⌧opt, we arrive at Eq.
(5.22).
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We see that the upper bound scales as 1
L?D

, becoming strong in the limit where latent
states can be easily distinguished within the timescale on which they change. Similarly, in
the limit of very large D, the probability of the bound, Eq. (5.22), can be chosen very close
to one while still allowing for a low regret, ⇠ �

�L?D
. The optimal window ⌧opt is controlled

predominantly by the distinguishability of latent states D, growing only logarithmically
with the timescale L

? of nonstationarity (an indication of the biasing of old data due to
possible latent state changes). Furthermore, ⌧opt increases as � is decreased, reflecting the
fact that higher confidence in the bound requires including more data to reduce sample
variance in the empirical log-probabilities.
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Chapter 6

Conclusion

In this thesis, we have studied a non-stationary contextual multi-armed bandit problem
in which a discrete latent state evolving under Markovian transition dynamics influences
observed contexts and rewards. We have:

1. Shown how the nonlinear relationship between observed contexts and rewards (arising
from their influence by the same latent state) can be reduced to a linear relationship
via Bayesian inference of the latent variable, reducing the problem to the linear bandit
setting.

2. Applied a linear bandit estimator for reward parameters, and derived a high-probability
upper bound on the error which applies (i) when accurate posterior beliefs over the
latent state can be obtained from observed contexts and (ii) after a time horizon
which is long compared to the minimal mixing rate of the latent state transition
matrix.

3. Introduced a linear regression method for online learning of the latent-space transition
matrix, which exploits prior knowledge of conditional distributions p(x|z) for context
observations x, such as relative entropies.1

4. Introduced a novel algorithm, motivated by the reduction to the linear bandit setting
(point 1 above), which (i) jointly learns a model transition matrix and posterior prob-

1Like expectation maximization (EM) [9], our method iterates between two steps (updating transition
matrix and latent posterior estimates). Unlike EM, our method does not maintain the history x1:t in
memory, and thus has an advantage of computational e�ciency (at the expense of sample e�ciency gained
by using the full history x1:t) and may be preferred in memory-restricted or compute-limited applications.
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abilities for the current latent state, and (ii) uses the latter as input for a Thompson
sampling algorithm for linear bandit problems.

5. Derived a regret bound for a related algorithm which reveals the influence on per-
formance of both the latent dynamics and the structure of the conditional context
distributions p(x|z) (which determine how informative contexts x ⇠ p(x|z) are about
the current latent state).

Results (1)-(4) above made use of linearity with respect to probabilities of an unobserved
latent variable in two ways:

• The linear relationship between latent state probabilities, latent state dependent
rewards, and unknown reward parameters.

• The linear relationship between latent state probabilities, latent state dependent
contexts, and unknown latent state transition probabilities.

In each case, we used least squares estimation to estimate the unknown parameters (�? or
µ
?), using posterior beliefs as dependent variables in the linear regression.

While Algorithm 2 uses a specific method to learn the latent transition matrix which
assumes prior knowledge of distributions p(x|z), the high-level approach of treating a pos-
terior belief over latent space as context information is much more general, and can be
applied with any method for learning a latent transition model, as well as other linear
bandit algorithms. In section 6.1 below, we outline several directions for extending this
approach to more general problem settings.

6.1 Directions for Future Research

We have relied on the graphical and functional simplicity of our problem setting, as well as
assumptions of prior knowledge, in order to render the theoretical analysis more tractable.
Many interesting directions exist for generalizing the problem setting, algorithmic methods,
and/or theoretical analysis:

Theoretical Guarantees.

Problem-Dependent Regret Bound. When used in a Thompson sampling algorithm such
as L2TS, the estimators µ̂(a) whose error is upper bounded in Theorem 1 are the mean values
of multivariate Gaussian posteriors. As the error in these estimates converges to zero, and
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the posteriors concentrate around their mean values, Thompson sampling will converge
towards sampling of the true parameters µ

(a)
? . We thus expect that a straightforward

extension of Theorem 1 for Thompson sampling will yield a high-probability problem-
dependent regret bound.

Transition Matrix Estimation. While Algorithm 3 is guaranteed to converge to the
true latent state probabilities, we have not proven that the more general transition matrix
estimation of Algorithm 2 is guaranteed to converge to the true transition probabilities.
Such a guarantee would make it possible to extend linear bandit estimation error bounds
such as Theorem 1, or any resulting regret bound, to the case where the parameters (✓?,�?)
are unknown. Alternatively, our method can be replaced with any method for online
learning of the parameters (✓?,�?) of a hidden Markov model, with the corresponding
posterior beliefs p̂t over the latent state again being used as linear bandit context vectors.
A convergence guarantee for such a method could be used to bound the error p

?

t
� p̂t in

the estimated posteriors, which could in turn be used to generalize Theorem 1 to the case
of fully unknown parameters.

Algorithmic Improvements.

Parameter Uncertainty. When the model posterior probabilities p̂t di↵er from the true
probabilities p

?

t
(see Section 3.1.1), the linear bandit Thompson sampler in Algorithm 2

is e↵ectively supplied with biased and/or noisy versions of the linear bandit context ct

(as in Algorithm 1). Some recent work [61] has developed linear bandit algorithms with
robustness to imperfect observation of context vectors, and could be applied to our case,
in which an imperfect estimate p

?

t
plays the role of a noisy or corrupted context vector. A

complementary approach to estimator error would be to use an uncertainty estimate for
the estimator �̂, such as the covariance matrix B�, to estimate the error or uncertainty in
the model posterior p̂t, and make a corresponding correction to increase the entropy of p̂t.
More generally, any online Bayesian learning method which maintains an approximate joint
posterior p(zt,�, ✓) could be applied, with the marginal posterior p(zt) =

R
�,✓

p(zt,�, ✓)
being used as a linear bandit context vector.

Inference with Reward Data. Our method uses only context data, and not reward data,
for inference of the latent state. It is therefore most useful in settings where context data
contain more information for inference of latent variables. One reason for expecting such
settings to be generic is that reward is a scalar variable, whereas context data may be a
high-dimensional vector, and may thus contain much more information for inference. Sim-
ilarly, in more complex graphical settings, latent variables may influence multiple observed
contexts, but only one reward node. Furthermore, in stationary bandit settings, the latent
state is reset after each reward, so information in reward data cannot be used to improve
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future actions. In non-stationary settings where rewards contain useful information for
latent state inference, L2TS could be easily extended to include a Bayes update of latent
state beliefs using reward data, under the assumption of a Gaussian reward likelihood
along with the multivariate normal posterior used for Thompson sampling. When mapped
to a linear bandit problem, this introduces a dependence of the current context ct on past
rewards rt0<t.

Learned Context Distributions. Arguably the most significant limitation of Algorithm 2
is its reliance on prior knowledge of the conditional context distributions p(x|z; ✓?). Our
method could be extended in various ways to handle cases where these distributions are
unknown, or are imperfectly estimated (e.g. from available o✏ine data). For example,
the method of Section 4.1 for iteratively updating estimates p̂ and �̂ for the latent state
probability vector and transition matrix could be extended to include an update to a model
estimate ✓̂, e.g. by gradient ascent on the marginal likelihood,

P
z
p̂(z)p(x|z; ✓̂). (Such a

method would again be complementary to expectation maximization, trading o↵ accuracy
or sample e�ciency to reduce requirements for compute and memory.)

Problem Setting Generalizations.

The graphical model of Figure 3.1 could be generalized in various ways:

• The observation xt could directly influence the reward rt, and/or an additional ob-
servation variable x̃t could influence reward, without any correlation with the latent
state zt (e.g. as in [32]). In this case a more general reward model would be needed,
but the same strategy of using linearity with respect to latent state probabilities
could be followed.

• More complex graphs could also be considered, as in causal bandits literature [37, 60].
In this case, posterior probabilities over any variables which are causal parent or
ancestor nodes of the reward node in a directed acyclic graph could be treated as
context features for a linear bandit algorithm. Any method for inference of latent
variables (including parent or ancestor nodes of the reward) could then be composed
with a linear bandit algorithm, following the general structure of L2TS.

• With an additional directed edge from the action at to latent state zt+1, Figure 3.1
describes a partially observable Markov decision process (POMDP). In this set-
ting, it would be interesting to explore Thompson sampling as well as more general
Bayesian model-based reinforcement learning approaches which use posterior proba-
bilities pt(z) over the latent state as inputs to a policy and/or value function, treating
the posterior as a belief state. Linearity with respect to posterior probabilities could
again be used to inform algorithms and theoretical analysis.
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