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Abstract

Under difficult viewing conditions, the brain’s visual system uses a variety of modula-
tory techniques to supplement its core feedforward signal. One such technique is contour
integration, whereby contextual stimuli from outside the classically defined receptive fields
of neurons can affect their responses. It manifests in the primary visual (V1) cortex, a low
layer of the visual cortex, and can selectively enhance smooth contours. Several mecha-
nistic models, that can account for many of its neurophysiological properties, have been
proposed in the literature. However, there has been limited exploration of the learning of
biologically realistic contour integration circuits or of the role of contour integration in the
processing of natural images.

In this thesis, I present a biologically-inspired model of contour integration embedded
in a task-driven artificial neural network. The model can relate the low-level neural phe-
nomenon of contour integration to the high-level goals of its encompassing system. It uses
intra-area lateral connections and an internal architecture inspired by the V1 cortex. Its
parameters are learnt from optimizing performance on high-level tasks rather than being
fixed at initialization. When trained to detect contours in a background of random edges,
a task commonly used to examine contour integration in the brain, the model learns to
integrate contours in a manner consistent with the brain. This is validated by comparing
the model with observed data at the behavioral, neurophysiological and neuroanatomical
levels.

The model is also used to explore the role of contour integration in the perception of
natural scenes. I investigate which natural image tasks benefit from contour integration,
how it affects their performances and the consistency of trained models with properties
of contour integration from more extensively studied artificial stimuli. Specifically, the
model was trained on two natural image tasks: detection of all edges and the ability to
distinguish if two points lie on the same or different contours. In natural images, the model
was found to enhance weaker contours and demonstrated many properties that were similar
to when it was trained on synthetic stimuli. Moreover, the features it learnt were robust
and generalized well to test data from outside the distribution of training data. The results
provide new evidence that contour integration can improve visual perception and complex
scene understanding.

vi



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors, Bryan
Tripp and Alexander Wong. There invaluable guidance, insightful questions and contin-
uous support over the years have helped me develop as a researcher and complete this
dissertation.

I would also like to thank all current and past members of the the Bio-Robotics, Artifi-
cial Intelligence and Neuroscience (BRAIN) Lab at the University of Waterloo. Thank you
all for the invaluable discussions and for providing a great atmosphere for doing research.

I would also like to thank my parents for their unwavering support during this whole
process. Finally, I would like to thank my wife, Sadia Sabieh, and our children, Zahra,
Zayd and Noor, for putting up with my late hours and for their unconditional love, support
and patience during this journey.

vii



Dedication

This is dedicated to Sadia Sabieh, Zahra Salman, Zayd Salman and Noor Salman. Without
their love and support this would not have been possible.

Viil



Table of Contents

List of Tables xiii
List of Figures Xiv
List of Abbreviations Xvi
1 Introduction 1
1.1 Outline. . . . . . . . e 3

2 Computational neuroscience of vision 5
2.1 Neurons . . . . . . . 6
2.1.1 Receptive field. . . . .. ... 7

2.2 Thevisual system . . . . . . . ... 8
2.2.1 Pre-cortical processing . . . . . . .. ... L. 8

2.2.2 Thevisual cortex . . . . . . . . . ... 9

2.2.3 The ventral visual pathway . . . .. ... ... ... ... .. ... 11

2.2.4  Primary visual cortex . . . . . . ... oL 14

2.3 V1 contour integration . . . . . .. .. ..o 20
2.3.1 Extra-classical receptive field . . . . . ... ... ... ... ... 21

2.3.2 Properties of contour integration . . . . .. .. ... ... ... .. 21

2.3.3 The Association Field Model . . . . . . . ... ... ... .. .... 26

X



2.3.4 Mechanistic theories of contour integration . . . . . . . . . ... .. 27

2.3.5  Other forms of V1 contextual influences . . . . . .. ... ... .. 27

2.4 Computational models of contour integration . . . . . . . . ... ... ... 29
24.1 Li-1998 Model . . . . . . ..o 29
2.4.2 Ursino and La Cara - 2004 Model . . . . . . . ... ... ... ... 33
2.4.3 Piechet. al. - 2013 -Model . . . .. ... ... 0L 37
2.4.4 Hu and Niebur - 2017 - Model . . . . . . ... ... ... ... ... 40
245 Discussion . . . . ..o 44

3 Artificial visual systems 45
3.1 Artificial Neural Networks . . . . . . . . . ... .. ... .. ... ... .. 46
3.2 Convolutional Neural Networks . . . . ... ... ... ... ... .... 47
3.21 Training . . . . . . Lo 49

3.2.2 More advanced CNNs . . . . . .. ... ... 0 50

3.3 Recurrent Neural Networks . . . . . .. . .. .. ... ... ... ... 52
3.3.1 Training . . . . . ..o L 54

3.3.2 More advanced RNNs . . . . . .. ... ... . oL 55

3.4 Biologically plausible ANNs . . . . . ... ... ... ... ... ... ... 57
3.4.1 Recurrent convolutional neural networks . . . . .. . ... ... .. 59
342 CORnet-S . . . . .. 60
3.4.3 Horizontal Gated Recurrent Unit and Gamma-Net . . . . . . . . .. 61

3.5 Precautions when comparing biological systems and DNNs . . . . . .. .. 63
4 Contour Integration in Artificial Neural Networks 65
4.1 Contour integration block . . . . . ... ... o000 66
4.2 The complete model . . . . .. ..o 68
4.3 Synthetic contour fragments task . . . . . ... .. ... 70
4.4 Results . . . . . . o 74



4.4.1 Behavioural (task level) performance . . . .. ... ... ... ... 74

4.4.2 Effects of contour length and fragment spacing . . . . . . . .. ... 75
4.4.3 Learnt lateral kernels . . . . . . . .. ..o 78
4.5 Sensitivity analysis . . . . ... oL 86
4.5.1 Model parameters . . . . . . ... 86
4.5.2 Training parameters . . . . . . . .. ... oo 87
4.6 CI block variations . . . . . . . .. ..o 91
4.6.1 Relaxed lateral connections positivity constraint . . . . . . . . . .. 91
4.6.2 Divisive E-I interactions . . . . . .. . ... 0oL 94
4.6.3 Recurrence with no E-I organization . . . .. ... ... ... ... 96
4.7 Comparison with existing models . . . . . . ... ... 0000 99
4.8 DIScussion . . . . ... 101
Tasks on natural images 105
5.1 Edge detection . . . . ... 105
5.1.1 BIPED Dataset . . . . . . .. . ... 106
51.2 Task . . . . . 107
5.1.3 Training . . . . . . ... 107
5.1.4 Results. . . . . . oo 108
5.2 Contour tracing in natural images . . . . . . . . . . ... L. 112
5.2.1 Dataset . . . .. 112
522 Task . . ..o 115
5.2.3 Training . . . . . . Lo 116
5.2.4  Effects of fragment spacing . . . . . . .. ... 116
525 Results. . . . . oo 118
5.3 Discussion . . . . ... 121

X1



6 Conclusion 123

6.1 Summary of contributions . . . . . ... ... L 123
6.2 Future work . . . . ... 125
References 129
APPENDICES 148
A Contour Integration Layer Derivation 149

xii



List of Tables

4.1
4.2
4.3

5.1

Parameters of the contour integration block. . . . . . ... ... ... ... 70
Peak ToU scores on the contour fragments dataset. . . . . . . . . . ... .. 74
Peak ToU scores of model variants on the contour fragments dataset. . . . . 93
Peak classification accuracies on the contour tracing in natural images task. 119

xlil



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3

4.1
4.2

Ventral visual stream . . . . . . . ... oo 12
Cross section of V1 Cortex . . . . . . .. ... ... o 14
2D Gabor Filter . . . . . . . ..o 17
Contour pop out effect . . . . . . . .. ... L 20
Contextual effects of nearby co-linear fragments . . . . . . .. .. .. ... 22
Timescale of Contour Enhancement . . . . . . . . ... ... ... ... .. 23
Association Field Model . . . . . .. ... ... 26
Contour integration model of Li [1998] . . . . . . .. ... ... ... ... 30
Example lateral connections of Li [1998] model . . . . . . ... .. ... .. 32
Contour integration model of of Ursino and La Cara [2004a] . . . . . . .. 33
Sample lateral connections of Ursino and La Cara [2004a] model . . . . . . 36
Contour integration model of of Piéch et al. [2013] . . . . . .. . ... ... 37
Sample lateral connections of Piéch et al. [2013] model . . . . . . ... .. 39
Contour integration model of Hu and Niebur [2017] . . . . .. .. ... .. 42
Feedforward artificial neural network . . . . . ... ... ... ... .. .. 46
AlexNet CNN model [Krizhevsky et al., 2012] . . . .. .. ... ... ... 49
Simple Recurrent Neural Network . . . . . . . ... ... ... ... .... 53
Internal connections of the contour integration block . . . . . . . ... .. 66
Model Architectures . . . . . . . . ..o 69

X1v



4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15
4.16

5.1
5.2
2.3
5.4

2.5
2.6

Contour fragments stimuli . . . . . . . ... ... ... .. ... 71

Loss and IoU scores vs. training time on the contour fragments dataset . . 75
Synthetic contour fragments results . . . . . .. .. ... 7
Feedforward edge extraction kernels and their preferred orientations . . . . 82
Learnt lateral excitatory kernels . . . . . . . ... ... 000 83
Learnt lateral inhibitory kernels . . . . . . ... ... ... ... 0. 84
Feedforward kernel orientations and lateral kernels axis of elongation. . . . 85
Updated Association Field Model. . . . . . . . ... ... ... ... .... 85
Effects of CI block parameters on performance. . . . . ... .. ... ... 89
Effects of training parameters on performance. . . . . . . . . .. ... ... 90
[oU scores of the RPCM variant over the time course of training on the

contours fragments dataset. . . . . ... ... 92
RPCM variant results on the contour fragments task. . . . . .. ... ... 94
CurrDi variant results on the contour fragments task. . . . . . . .. .. .. 95
RCNNM variant results on the contour fragments task. . . . . . . . .. .. 97
Edge detection in natural images stimuli. . . . . . . .. ... ... ... .. 106
Edge detection in natural images results. . . . . . . .. .. ... L. 108
Contour tracing in natural images stimuli. . . . . ... ... .. ... ... 113

Distribution of marker distances in the task of contour tracing in natural

IMAZES .« .« v v v v e e e e e e e 115
Network accuracy vs. time on the contour tracing in natural images task. . 118
Contour tracing in natural images results. . . . . . . . .. ... ... ... 120

XV



List of Abbreviations

Al
ANNSs
BCE
BIPED
BN

BP
BPTT
CI
CNNs
cRF
CurrDI
DNNs
e-cRF
FWHM
GRU
hGRU
IGM
IoU

IT
LGN
LSTM
M-cells
ML
MT
P-cells
RCD
RCNNM
rCNNs

Artificial intelligence

Artificial neural networks

Binary cross entropy loss function

Barcelona images for perceptual edge detection dataset
Batch normalization layer

Back propagation learning algorithm

Back propagation through time learning algorithm
Contour integration block

Convolutional neural networks

classical receptive field

current based divisive inhibition model variant
Deep neural networks

extra-classical receptive field
Full-width-half-maximum

Gated recurrent unit network

Horizontal gated recurrent unit network

Inverted Gaussian masked sparsity constraint
Intersection over union

Inferior temporal cortex

Lateral Geniculate Nucleus

Long short term memory network

Magnocellular retinal ganglion cells

Machine Learning

Medial temporal cortex

Parvocellular retinal ganglion cells

Relative co-linear distance

Recurrent convolutional neural network model variant
Recurrent convolutional neural networks

Xvi

45
46
88
106
48
20
o4
66
47
21
94
45
21
114
o6
61
90
72
11

25

45
13

76, 117
96
29



ReLU
RF
RNNs
RPCM
SD
SOTA
V1

V2

V4

Rectified linear unit activation function
Receptive field

Recurrent neural networks

relaxed positivity constraint model variant
Standard deviation

state of the art

Primary visual cortex

Secondary visual cortex

Visual area 4

xXvil

47

52
92
73
o8
14
11
12



Chapter 1

Introduction

In the brain, the ventral visual system is responsible for detecting objects in our complex
natural environments. It is a deep hierarchical system that processes input in multiple
stages. In lower layers, simple features, such as edges, bars and gratings, are extracted
over spatially confined areas. Next, as the signal propagates through a series of linear-
nonlinear transformations [Poirazi et al., 2003], these features are grouped together into
more and more complex features. Finally, in the culminating layer of the ventral visual
stream, the Inferior Temporal Cortex, inputs are rendered in a format from which object
identity can be consistently decoded across a variety of input variations [DiCarlo et al.,
2012]. This deep feedforward stream of information has inspired many recent successes
in artificial visual systems. In particular, Deep Neural Networks (DNNs) have recently
surpassed human level performances in a variety of complex visual tasks including object
classification [He et al., 2016, Huang et al., 2017, Xie et al., 2017, Tan and Le, 2019] and
object detection and segmentation [He et al., 2017, Redmon and Farhadi, 2018, Liu et al.,
2016, Ronneberger et al., 2015].

Despite these many successes, many functional limitations of DNNs have also been
discovered, such as being easily fooled by adversarial stimuli [Goodfellow et al., 2014,
Nguyen et al., 2015], poor generalization outside training data distribution [Geirhos et al.,
2018, Hendrycks and Dietterich, 2019, Serre, 2019], and poor data sample efficiency [Lake
et al., 2015]. The ventral visual stream is much more robust and does not suffer from these
limitations. One possible explanation for this robustness may be additional mechanisms
that exist in the brain but not yet in DNNs.

In addition to feedforward connections, there exists a plethora of long range intra-area
lateral and inter-area feedback connections in every cortical area of the brain. This suggests



that the flow of information may not be strictly feedforward and might involve some form
of recurrence, especially when dealing with complex stimuli [Lamme and Roelfsema, 2000,
Gilbert and Li, 2013, van Bergen and Kriegeskorte, 2020]. The existence of these additional
connections have been known about for a long time [Kravitz et al., 2013, Felleman and
Van Essen, 1991, Markov et al., 2014]. However, due to their complex modulatory nature
(as opposed to the external input driven nature of feedforward connections), multiple
parallel routes and the diverse functionality they are thought to perform, their precise
roles are not completely understood. Moreover, as they typically involve simultaneous
activity in multiple brain areas and limitations in our ability to measure brain activity,
analyzing them in the brain is challenging.

In contrast, the internals of DNNs are much more accessible. Isolating and modeling
these connections within DNNs could potentially shed more light on their roles and mecha-
nisms. Recent work along this line has shown some successes. In particular, incorporating
recurrence, especially biologically inspired forms, into convolutional neural networks has
been shown to outperform parameter-matched feedforward models in some classification
tasks with occluded or additive white noise corrupted objects [Spoerer et al., 2017, Rajaei
et al., 2019]. Moreover, compared to feedforward models, these types of model show bet-
ter alignment between their internal representations and those of multiple brain cortices
[Nayebi et al., 2018, Kar et al., 2019] and have better sample efficiency when trained with
limited data [Linsley et al., 2020b]. Despite these early successes, further exploration is
needed to better understand how specific types of neurophysiological recurrent connections
affect representation and robust behaviour.

In this thesis, I expand on this approach by focusing on the role of recurrent lateral
connections in V1 cortex and how it relates to contour integration. Contour integration
[Field et al., 1993, Li et al., 2006, Hess et al., 2014, Roelfsema, 2006] is a phenomenon
that occurs in V1 cortex, the lowest layer of the ventral visual stream, where stimuli from
outside a neuron’s classical receptive field (cRF) modulate its feedforward responses. In
particular, responses are enhanced if a preferred stimulus within the cRF is part of a
larger contour. Under difficult viewing conditions, the ventral visual stream uses contour
integration to pop out smooth natural contours from the background.

Contour integration is thought to be mediated by intra-area lateral and higher-layer
feedback connections. However, the exact mechanism employed by the brain remains
unknown. Past computational models, [Li, 1998, Piéch et al., 2013, Ursino and La Cara,
2004a, Hu and Niebur, 2017], have tested potential mechanisms using targeted synthetic
stimuli and have replicated many of its neurophysiological properties. However, apart from
some recent work, [Linsley et al., 2018, 2020b], there has been little exploration of the role
of contour integration in the perception of natural scenes. Moreover, most of these models



use fixed pre-determined lateral connection patterns between component neurons and do
not address how they may be learnt.

The aim of this work is two-fold, to see if brain-like contour integration can be learned
in DNNs and whether modeling contour integration inside these models can further our
understanding of the neural phenomenon. In particular, the role it plays in the perception
of natural scenes, the over-arching goal of the ventral visual stream.

1.1 Outline

Chapter 2 is a background chapter that focuses on aspects of neuroscience that are relevant
to contour integration. First, the brain’s visual cortex, its ventral visual pathway and the
primary visual (V1) cortex are reviewed. V1 elements and connections that are pertinent
to contour integration are described. Next, several observed behavioural and neurophysi-
ological properties of contour integration as well as the mechanistic theories of how it may
be realized by the brain are described. Finally, several existing computational models of
contour integration are discussed and compared.

Chapter 3 is another background chapter that focuses on artificial neural networks.
Two types of networks, convolutional neural networks and recurrent neural networks are
described. Next, combinations of these two types of networks that have recently been
proposed as biologically plausible models are presented. Finally, precautions that should
be taken into account when equating ANN models to biological systems are highlighted.

In Chapter 4, first, the proposed contour integration model is detailed. Second, the
model is trained on a dataset consisting of synthetic stimuli, similar to those that have
been used to explore the properties of contour integration in the brain. Its performance is
compared with a feedforward convolutional neural network with matching capacity. Third,
trained networks are tested for consistency with several observed properties of contour inte-
gration at the behavioural and neurophysiological levels. Fourth, learnt lateral connections
of the trained model are analyzed and compared with lateral connections in the V1 cortex
as well as with those used in existing computational models. Fifth, a detailed sensitivity
analysis of the model’s parameters is conducted. Sixth, different permutations of the model
are compared with the proposed model. Finally, differences between the model and an-
other recently proposed ANN model based on lateral connections in the V1 cortex [Linsley
et al., 2018] are highlighted.

In Chapter 5 the model is used to explore the role of contour integration in the percep-
tion of natural images. First, the model is evaluated on its ability to detect contours in



an image. Second, trained models are analyzed to see if they are better at detecting weak
edges, as has been hypothesized as one of the potential advantages of contour integration
[Li, 1998, Piéch et al., 2013]. Third, the model is tested on a novel task that involves
tracing smooth contours to determine if two points in an image are connected by the same
contour. Fourth, trained models are analyzed for consistency with properties of contour
integration observed when trained with synthetic stimuli.

Chapter 6 concludes this thesis with a summary of the main contributions and highlights
some potential future directions.



Chapter 2

Computational neuroscience of vision

Our ability to unconsciously and effortlessly recognize objects in our visual environment
and perform multiple tasks with them belies the enormity of this task. As a testament to
this, the visual processing system occupies ~ 55% of the cerebral cortex of the macaque
monkey brain [Felleman and Van Essen, 1991, Kruger et al., 2012], one of our closest living
relatives whose brain have been extensively studied [Kandel et al., 2013]'. Computational
neuroscience is a field that tries to understand how the brain works by building models
of systems and processes in the brain. Building replica models is a proven technique to
develop a deeper understanding compared to just passively observing them. The approach
can highlight intricate details that are important for correct functionality and can also
be used to quantitatively compare alternative hypotheses. Finally, it can even be used to
explore and develop new insights into the workings of complex, seemingly opaque systems
[Cichy and Kaiser, 2019]. Tt is the approach I use in investigating the role of low-level
contour integration in the high-level functions of the visual system.

This background chapter is divided into three main sections. In the first section, I
describe the visual cortex, the computational system of the brain that is responsible for
processing visual signals from our eyes. Next, I describe the ventral visual stream, a
subsystem within the visual cortex which is responsible for deciphering what objects are
in our visual environment. I describe its architecture as well as its processing of object
shape. Object shape and form are one of the main visual attributes that neurons in the
brain are specialized in handling. Next, I describe the primary visual cortex, a region of
the visual cortex where effects of the neural phenomena of contour integration have been

In humans this number is closer to ~ 33% [Kupers and Ptito, 2014]. However, this number is arguable;
it is hard to prescribe fixed numbers as many cortices are thought to be multi-modal.



well studied?. I review its architecture, connections and its components neurons, especially
those that are involved with contour integration.

In the second section, I focus on contour integration, the main focus of this thesis. I
describe many of the behavioural and neurophysiological properties that have been discov-
ered about it. Next, I review the different mechanistic theories that have been proposed
on how the brain actually performs contour integration.

In the third and final section of this chapter, I describe and compare some of the existing
computational models of contour integration.

2.1 Neurons

Neurons are the information processing cells of the brain. All large systems of the brain
as well as transmission lines to and from them are composed of neurons. The morphology
and biophysical processes of neurons specialize them for the rapid conduction of electrical
signals. Many types of neurons exist in the brain and in the peripheral nervous system.
However, neurons generally have three main parts: dendrites, a cell body and an axon.
Dendrites form tree-like branching structures that collect signals from many upstream
neurons. These signals accumulate in the cell body and if they cross a certain threshold,
a short electrical pulse or action potential is generated on the axon. Axons are the main
transmission conduits by which information is conveyed over large distances. As such their
lengths range from 0.1mm to 1m [Kandel et al., 2013]. Very long axons are coated with
insulating myelin sheaths to improve their conduction speeds. Along axons, myelin sheaths
are regularly interrupted by nodes of Ranvier where action potentials are regenerated to
help them propagate over large distances [Kandel et al., 2013].

Neurons communicate with each other using action potentials. All neurons are sur-
rounded by an insulating cell membrane. These cell membranes contain many ion chan-
nels and pumps that regulate the flow of charged ions in to and out of neurons. At rest,
neurons maintain excessive negative charge inside the cell compared to the surrounding
extracellular fluid. The difference in charge on the inside and outside of a cell membrane
is referred to as the membrane potential of the cell. At rest, there is a balance of charges

2The effects of contour integration have also been observed in other cortices of the ventral visual stream,
including V2 [Chen et al., 2014] and V4 [Chen et al., 2017]. The exact mechanism of contour integration
is not yet fully understood. There is an on-going debate on whether V1 lateral connections or feedback
from higher layers are the main conduit. However, it is clear that responses of V1 neurons are affected by
contours that extend outside their small, individual receptive fields [Li et al., 2006].



flowing into and out of the cell and the resultant membrane potential is referred to as the
resting membrane potential. Changes in the membrane potential causes ion channels to
open and close. During signaling, the membrane potential of a neuron changes drastically
and rapidly. As the potential on the inside increases above a certain threshold, voltage
gated channels in the cell membrane flood the inside of the neuron with positive charge.
This generates a large positive potential on the inside of the cell. This action potential
propagates through the axon of a cell. After the action potential is transmitted the neuron
is quickly repolarized to its resting potential by ion channels.

Neurons communicate with each other at specialized sites known as synapses. At these
sites, information from a sending or presynaptic neuron is chemically conducted over a
gap or synaptic cleft to a receiving or postsynaptic neuron. Synapses are typically located
on specialized terminals on the axons of presynaptic neurons and can connect with the
dendrites, soma or axons of postsynaptic neurons. An action potential sent down an
axon releases chemical neurotransmitters into the synaptic cleft. These neurotransmitters
bind to receptor molecules in the postsynaptic neuron which control its ion channels and
changes their permeability. A synapse can have either a depolarizing excitatory or shunting
inhibitory influence on the postsynaptic neuron based on the type of neurotransmitter and
the postsynaptic receptor molecules.

Generated action potentials can vary in their durations, amplitudes and shapes. These
variations can occur between action potentials generated by different neurons as well as
those generated by the same neuron. However, action potentials are commonly stereotyped
as identical events [Dayan and Abbott, 2001]. A neuron can generate multiple spikes to
a given stimulus. These spike trains vary over time and also different trials. There are
many ways to characterize the spike trains of neurons. For a review, see Dayan and Abbott
[2001]. A frequently used description is the time-dependent trial-averaged firing rates of
neurons. The higher the firing rate (up to a maximum firing rate) of a neuron the more
the input stimuli matches the features the neuron is selective for.

2.1.1 Receptive field

The region of the sensory field that generates responses from a neuron is referred to as its
receptive field (RF). For a neuron in the visual system, the RF is defined as the area of
visual field that elicits a response from it. Not all stimuli in the RF of a neuron causes it to
fire action potentials. Neurons are selective for particular signals in their RFs as described
in the following sections.



2.2 The visual system

2.2.1 Pre-cortical processing

The processing of visual inputs starts in the retina of the eye. The retina contains photo-
receptive cells that transduce light into electrical signals. There are two main types of
photo-receptive cells: rods and cones. Rods are sensitive to low light intensity but cannot
detect colours. Cones, on the other hand, are sensitive to different bands of light wave-
lengths (colours) but require higher light intensity to respond. There are three different
types of cones: red cones respond to long wavelengths of light, green cones respond to
low-to-medium wavelengths and blue cones respond to short wavelengths. Visual space
is not equally covered by rods and cones. The fovea, a small region in the retina that is
responsible for central vision, is densely populated with cones. The distribution of cones
drops with distance away from the fovea. Rods on the other hand, are almost entirely
absent from the fovea, but densely cover other parts of the retina.

Outputs of photo-receptive cells are mostly received by bipolar cells. These bipolar
cells link the inner and outer layers of the retina. Many types of bipolar cells (> 10) have
been discovered [Euler et al., 2014]. Different types of bipolar cells collect and transform
information from photo-receptive cells in different ways. Moreover, their responses are
modulated by a variety of horizontal and amacrine cells, predominately through inhibitory
lateral connections.

Outputs of bipolar and amacrine calls are received by ganglion cells. There are two
main types of ganglion cells: magnocellular (M-cells) and parvocellular (P-cells). P-cells
are sensitive to colours and represent mainly foveal vision, while M-cells can detect changes
in low light intensities. P-cells have higher spatial resolution compared to M-cells. M-cells
on the other hand, are more sensitive to temporal changes in light patterns and have faster
response times [Maunsell et al., 1999]. Hence, they are responsible for detecting movement
in the visual environment.

Ganglion cells are sensitive to light in a small region of visual space. Their RFs have
two distinct regions; a central area that responds to a certain light intensity or colour and
a surrounding area that is sensitive to light of the opposite intensity or colour. Their RFs
are often described as center-surround RFs. This makes ganglion cells sensitive to spatial
contrast changes, such as dots and edges. The different sizes of the central parts of their
RF gives them different spatial selectivities and makes them sensitive to edges of varying
thickness. Ganglion neurons are the only information carrying cells that project out of the
eyes. Most of them send their outputs to the Lateral Geniculate Nucleus (LGN) of the



Thalamus in the mid-brain region.?

The LGN is the first region of the brain to receive extracted visual information. LGN
neurons have similar selectivities as Ganglion cells. The majority of LGN cells send their
outputs to the visual cortex where most of the processing of visual information takes place.

2.2.2 The visual cortex

The visual cortex, the brain’s vision processing center, is the largest sensory system in the
brain. Anatomically, it is located on the cerebral cortex, a thick folded sheet of neural tissue
that forms the outer layer of the brain. Starting in the lower back of the brain (occipital
lobe), it extends anterolaterally into the inferior temporal lobe (behind the ear) and also
anterosuperiorly into the parietal lobe (upper back of the brain)?. Visual information
enters the visual cortex principally through the primary visual (V1) cortex. From here, it
proceeds along two processing pathways in parallel [Goodale et al., 1994, Mishkin et al.,
1983]; the ventral and dorsal pathways. The ventral (“What”) pathway, is in charge of
perceiving objects in the environment while the dorsal (“Where”) pathway is responsible
for localizing objects in space and in extracting information relevant to interacting with

them.

Each pathway is a highly structured hierarchical system composed of many functionally
distinct cortical areas [Kruger et al., 2012, Kandel et al., 2013]. Component areas form
one or more internal representations of the outside world from which properties they are
interested in can be easily extracted. In lower areas, neurons extract simple features over
small spatially confined visual regions. Neurons in these areas tend to be retinotopically
arranged; neighboring neurons respond to stimuli in nearby visual space. Higher in the
hierarchy, the complexity of features as well as the size and degree of overlap of spatial
regions of interest of neurons increases. Internal representation becomes less spatially
defined and more aligned with pathway functions.

Each cortical area is highly structured. A prominent organizing motif of cortical areas
is functional proximity; neurons that respond to similar stimuli over overlapping spatial

3There are also other pathways from the retina into the brain, including from the retinas to the superior
colliculus which controls eye movement and from the retina to the Pretectum, which control the pupils
and the amount of light let into the eyes. However, these other pathways mostly send control signals that
do not take part in the deciphering of visual information.

4The brain in split into two hemispheres. Visual cortical areas are duplicated in both hemispheres.
Each hemisphere processes slightly more than half the contralateral (opposite side) visual field from both
eyes. In the descriptions above and what follows, I describe only the parts on a single hemisphere, but the
description is valid for both.



areas are grouped together in cortical columns [Mountcastle et al., 1957]. These vertical
columns run perpendicular to the cortical surface. Each cortical area contains columns
relevant to its functionality. Hence, cortical columns are sometimes considered the basic
functional units of cortical areas. Neurons in a cortical column generally receive inputs
from a common source in lower areas and send outputs to a common target in higher areas.

Another prominent organizing principle of cortical areas is their division into distinct
horizontal layers®. Layers are numbered from 1 to 6. Starting at the outer surface of
the cortex, these layers run parallel to the surface and their index increases with depth.
Layers are differentiated based on the types of neurons they contain and their dominant
connectivity patterns. Typically, afferent axons from neurons in lower areas terminate in
layer 4. Consequently, layer 4 is referred to as the feedforward input layer. Layers above
are collectively referred to as superficial or supra-granular layers while layers below are
referred to as deep or infra-granular layers. Layers 2 and 3 are often combined together
and are collectively referred to as layer 2/3. The complex internal circuitry of a visual area
includes many inter- and intra-layer excitatory and inhibitory connections Kandel et al.
[2013].

Cortical areas communicate with each other using feedforward and feedback connec-
tions. The densest connections tend to be between adjacent areas [Felleman and Van Essen,
1991]. However, cortical areas also directly connect with far away cortical areas that do
not follow sequentially in the hierarchy. Moreover, cortical areas also connect to other
sub-cortical areas. In turn, these sub-cortical areas connect back to the visual cortex at
different levels of the hierarchy. In general, feedforward inputs tend to be visual input
driven and feedback inputs tend to modulate the feedforward information flow. Inter-area
connections are mostly excitatory [Chalupa and Werner, 2004]. However, their net ef-
fect is not always excitatory as some of these connections target inhibitory inter-neurons.
Inhibitory neurons modulate feedforward neurons and reduce their activity.

The visual cortex also purportedly processes different attributes of visual information
separately [Livingstone and Hubel, 1988]. Cortical areas V1 and V2 have identifiable
sub-divisions that contain clusters of neurons specialized in shape (typically referring to
edges and contours of objects), colour, direction of motion and disparity processing. These
specialized sub-divisions preferentially connect with sub-divisions in other cortical areas
that also specialize in the same visual aspects [Kandel et al., 2013]. Deeper in the hier-
archy, visual pathways diverge and cortical areas specialize in features relevant to their

SLayers of visual cortical areas are different from layers in artificial neural networks (see Chapter 3).
Layers in artificial neural networks typically correspond to a single feed-forward step whereas layers of a
cortical area refer to partitions within it. Multiple feedforward and local recurrent steps occur in each
cortical area, both across and within layers.
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encompassing pathways. These information streams get routed to pathways they are most
useful for; colour and form to the ventral pathway while motion and disparity to the dorsal
pathway [Kandel et al., 2013, Kruger et al., 2012].

Although these information streams are generally considered separate from each other,
there are many areas where they may potentially interact. In lower areas, neurons in spe-
cialized sub-regions connect with other neurons in neighboring sub-regions. While deeper
in the hierarchy, areas that are considered exclusively to be part of one visual pathway
send secondary connections to cortical areas that are part of the opposite pathway. Fi-
nally, neurons that jointly encode multiple visual attributes, such as colour and form [Garg
et al., 2019] and motion and disparity [Grunewald and Skoumbourdis, 2004] have also been
discovered.

2.2.3 The ventral visual pathway

The ventral visual pathway of a macaque monkey brain is shown in Figure 2.1A°. The cen-
tral feedforward path traverses the V1, V2, V4 cortices and finally the inferior temporal
(IT) cortex (see Figure 2.1B). Below, I briefly discuss the processing of edges and object
shapes as it relates to first-pass ‘core’ object recognition [DiCarlo et al., 2012]. Contour
integration, the focus of this research, is a neural phenomenon associated with edge pro-
cessing. The ventral pathway also uses other visual attributes, such as colour, depth, and
texture to detect objects. For a more detailed description see Kandel et al. [2013], Kruger
et al. [2012], Orban [2008].

Visual signals from the LGN enter the visual cortex through the V1 cortex. As it is
part of both the ventral and dorsal pathways, V1 neurons respond to a variety of features
including edges, bars, gratings, colours, motion, disparity and line-endings. Edges appear
to be one of the main features that V1 neurons are sensitive to. There are neurons that are
selective for many of their properties including orientations, spatial frequencies, movements,
and disparities between signals from both eyes.

The outputs of V1 neurons are predominately sent to the V2 cortex [Markov et al.,
2014]. V2 neurons are selective for similar features as V1 neurons but over slightly larger
RFs. In addition, some V2 neurons can detect more complex non-luminance defined con-
tours such as illusory and texture defined contours. Illusory contours may result from one
object occluding another, or a perceived shape that does not actually exist in the visual

6Tt is common to describe non-human primate brain areas and discuss human brain homologs. Many
behavioural, anatomical and physiological studies have been done on monkey brains and several similar
cortical areas and processing stages have been found in humans.
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Figure 2.1: Ventral visual stream. The feedforward path though the ventral stream. A,
Macaque monkey brain. LGN is the Lateral Geniculate Nucleus. PIT, CIT, AIT are the
posterior, central and anterior parts of the inferior temporal cortex respectively. B, Block
diagram of the ventral stream (coloured blocks only). The approximate population size of
each area is given in the bottom of each box (M=million). Right side column specifies the
average response latency of each cortex when a stimulus is presented at time 0. Reprinted
from DiCarlo et al. [2012] with permission from Elsevier.

environment. Texture boundaries may result from breaks or changes in texture patterns
on surfaces which are not defined by a luminance boundary. V2 neurons are also known to
encode additional attributes to already detected contours. For example, border ownership
neurons respond differently to detected contours based on where the object they belong to
lies with respect to their RF [Zhou et al., 2000].

Beyond V2, the two visual pathways split. On the ventral pathway, V2 outputs are sent
to the V4 cortex. V4 neurons have larger RFs and build upon the features extracted by V2
neurons. In particular, many V4 neurons are selective for curved contours. These neurons
are sensitive to the relative position of contour fragments rather than their precise positions.
They respond to specific contour arrangements anywhere in their RFs. Moreover, some
V4 neurons are selective for the relative position of the contour with respect to the center
of the shape they belong too. This represents a shift away from absolute representation
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to a more object centric one. Other V4 neurons detect simple shapes formed from specific
combinations and positions of contours. The process of combining component contours
to form object shapes is one of the famous neural binding problems [Kruger et al., 2012,
Feldman, 2013, Treisman, 1996]. Unfortunately, the actual process is not fully understood.
Finally, some V4 neurons are selective for even more complex contours such as kinetic and
disparity defined contours. Kinetic contours arise from differences in motion or speed of
objects in one area compared to another. These separation boundaries may be stationary
or moving, but are separate from the movement of component objects.

Outputs of V4 are mostly sent to the IT cortex [Markov et al., 2014]. The IT cortex
is the final brain area that processes visual information exclusively. Neurons in the IT
cortex have large RF's that typically include the Fovea. They respond to object shapes and
specific combinations of shapes. These shapes can be formed from combining any of the
different types of contours and simple shapes detected by lower areas, i.e. I'T neurons are
cue tolerant. Moreover, they respond similarly to the same shape anywhere within their
large RFs, i.e they are position tolerant. The IT cortex is typically further divided into
sub-regions (see Figure 2.1) through which information mainly flows sequentially. Along
this trajectory, the complexity of features I'T neurons are selective for increases and they
develop further tolerances to other transformations [Rust and DiCarlo, 2010]. Finally,
even in the deepest levels of the I'T cortex, neurons respond to object parts. There are
no ‘grandmother’ cells that singularly represent complete objects in the I'T cortex. The
identity of what objects are in visual space have to be read from the population responses
of groups of IT neurons [Hung et al., 2005].

Along this central core vision path, each cortex sends just as many feedback connections
to downstream cortices as feedforward connections to upstream areas. Direct shortcuts
between shallow and deep stages have also been found. For example, V1 directly connects
to V4 [Markov et al., 2014]. V1 also directly connects with visual cortices outside the
ventral stream which in turn connect back to the ventral stream at deeper stages; V1
directly connects with the medial temporal (MT) cortex which also sends projections to
the IT cortex [Kravitz et al., 2013]. Similar to these feedforward shortcuts many feedback
shortcuts have also been found. For example, V4 directly feeds back into the V1 cortex
[Markov et al., 2014]. Moreover, V1 also receives feedback from outside the ventral visual
stream, from V3 and MT cortices [Angelucci et al., 2002]. This suggests recurrent highly
interconnected processing of information by the ventral visual stream [Kravitz et al., 2013].
Recently, it has also been suggested that these recurrent connections are necessary for core
object recognition in some cases [Kar et al., 2019].
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2.2.4 Primary visual cortex
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Figure 2.2: Cross section of V1 Cortex. Reproduced from Kandel et al. [2013] with
permission. See text for description.

The primary visual (V1) cortex is the largest visual area. Like the rest of the brain, it is
highly structured. The entire visual field is topographically represented across V1; there is
a smooth transition of visual space coverage across its surface. However, not all visual areas
are equally represented. The central 3° of eccentricity” around the fovea is represented by
30% of the V1 cortex [Schira et al., 2007]. With distance away from the fovea and towards
peripheral visual areas, the amount of cortical surface dedicated to visual areas decays
logarithmically [Schira et al., 2007]. RF sizes of V1 neurons also increase linearly with
eccentricity [Freeman and Simoncelli, 2011]. Neurons responding to areas near the fovea

"Eccentricity, the distance from the fovea, and RF sizes of neurons are usually expressed in units of
visual angle. Visual angle is the size a stimulus subtends on the retina.
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have small cRFs < 0.5° while those close to 30° of eccentricity can have RF sizes of up
to 5°. Due to this variability, RF measurements are usually accompanied by the degree of
eccentricity where they have been measured.

There is also functional specificity within V1; neurons representing similar stimuli are
grouped together into cortical columns. Many studies have found V1 neurons that strongly
respond to edges, bars and gratings. As orientation is a primary feature of edges, bars and
gratings, many orientation columns are found in the V1 cortex. Within a orientation
column, neurons respond to stimuli with similar orientations over overlapping visual ar-
eas. Moreover, there is an ordered transition of orientation preferences between adjacent
columns; orientation preferences of nearby columns gradually change. The visual areas
covered by adjacent columns also overlap [Gilbert, 1992]. The set of orientation columns
that respond to similar stimuli at the same visual area covering all possible orientations,
form pinwheel structures. In the V1 cortex of a macaque, these orientation hypercolumns
have average widths of 0.75mm [Kandel et al., 2013, Stettler et al., 2002]. A typical cross
section of the V1 cortex is shown in Figure 2.2.

Most orientation columns also show strong preference for signals from a particular eye
(ocular dominance). These ocular preferences form alternating stripes across V1’s cortical
surface and have widths between 0.75 to lmm [Kandel et al., 2013]. Interspersed between
orientation columns are short blob-like structures. These blob structures contain clusters of
neurons that are very sensitive to colour but show little orientation selectivity. Orientation
columns span all 6 layers while blobs exists mainly in layer 2/3. Blobs repeat frequently
across orientation columns with an average separation 0.75 mm. Occasionally, especially
in studies focusing on colour processing, regions surrounding blob structures, that contain
orientation columns, are referred to as inter-blobs regions.

V1 Neurons

The majority of V1 neurons are sensitive to edge locations, orientations, spatial frequencies
and phases. Two types are commonly found: simple and complex cells. Simple cells have
defined areas in their RFs where they prefer light (ON) and dark (OFF) signals and respond
maximally when inputs align with them. These RFs are formed from summing activity
of specific spatial arrangements of center-surround RFs of LGN cells [Kandel et al., 2013].
Similarly, complex cells sum the output of multiple simple cells to form their RFs. By doing
so, complex cells develop tolerances to some properties of simple cells, such as phase and
position, while retaining sensitivities to other properties, such as orientation and spatial
frequency.
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Many edge detecting V1 neurons have RFs that evolve over time; the ON and OFF
regions of their RF's shift over time [Dayan and Abbott, 2001]. These neurons are concerned
with motion detection and are more relevant to the dorsal stream. Some edge detecting
neurons have excitatory and inhibitory regions in their cRFs. These neurons respond only
when edges of particular configurations activate only the excitatory regions. These end-
stopping or hyper-complex cells are used to signal the ends or corners of bars and gratings.
Additionally, they also play a role in determining the direction of motion of moving parts
and gratings.

V1 also contains neurons that are sensitive to colours, disparity and motion. As they
are not thought to be involved in contour integration, they are outside the scope of this
review. For more details see Kandel et al. [2013].

Mathematical model of V1 neurons
A widely used model of the receptive fields of simple cells is the 2D Gabor function [Dayan
and Abbott, 2001, Kruger et al., 2012, Movellan, 2002],

g(x,y) =exp (M) Ccos (27?% + ¢> , (2.1)

202

' = (x — x.)cosb + (y — y.)sinb,
y' = —(x — x.)sinf + (y — y.)cosb.

It is composed of a Gaussian envelope that defines its spatial extent and a sinusoidal
wave that defines ON and OFF regions within the cRF. Parameters for the Gaussian
envelope include: (x.,y.), the center of the Gaussian, o, the spatial spread, and =, a
scaling factor that defines elongation in the y axis compared with the x axis. Parameters
for the sinusoid include: A, the wavelength of the sinusoid which determines the number of
ON and OFF regions, v, the spatial phase which determines the relative positions of ON
and OFF regions in the cRF and 6 the orientation of the sinusoid (See Figure 2.3).

The response of a model neuron is found by multiplying input signals with the neuron’s
2D Gabor profile. Outputs are then passed through a nonlinear activation function (typ-
ically a Sigmoid function) to model the nonlinear responses of neurons. Occasionally, the
output is additionally passed through a inhomogenous Poisson process to generate spikes.
This is known as the linear-nonlinear model of spiking neurons.
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Figure 2.3: 2D Gabor Filter. 2D Gabor Filters are commonly used to model V1 edge
detecting simple cells.

Neuronal connections in V1

Feedforward connections

LGN neurons that project to V1, send most of their axons to layer 4C of V1. Recipient
neurons in L4 have short axons that project mainly to more superficial layers. Neurons in
layer 2/3 mostly project out of V1 and into the V2 cortex. Hence, the feedforward path
through V1 is described as a 2 step process [Callaway, 2004].

Lateral intra-area connections

Lateral connections run parallel to the cortical surface and exist in all layers of V1. They
are most prominent in layers 2/3 and 5 and fewest in layer 4 [Bijanzadeh et al., 2018].
Most neurophysiological studies have focused on lateral connections in layer 2/3. Neurons
in these layers predominately project externally to deeper cortical areas. However, the
axons of some of these neurons branch out (axon collaterals) and connect to neighboring
neurons in the same layer. Other neurons project directly to far away locations also within
the same layer.

The source of these lateral connections are excitatory pyramidal neurons [Gilbert and
Wiesel, 1983]. Approximately 80% terminate at other excitatory cells while 20% terminate
at inhibitory interneurons [McGuire et al., 1991]. Lateral connection are known to be
modulatory; direct stimulation does not make neurons fire, but their activation does make
it easier when presented with stimuli in their RFs [Hirsch and Gilbert, 1991].

Stettler et al. [2002] measured the spatial extent of V1 horizontal connections in macaque
monkeys. First, axon labeling dye was injected into a single orientation column. Next,
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highlighted horizontal axons were mapped onto a columnar orientation map of the corre-
sponding V1 region. At injection sites, the average RF of V1 neurons was measured to be
0.5°. It was found that lateral connections extended up to 4°, approximately 8 times the
RF of V1 neurons.

Moreover, lateral axons consistently formed patchy structures with many branching
out in small separable clusters. This was attributed to the functional specificity of lateral
connections where neurons with similar functionality (edge, colour, etc.) are linked [Malach
et al., 1993, Gilbert, 1992]. Strong spatial correlations were seen in axon collaterals at
intervals of 0.75mm. As this is similar to the average width of V1 orientation hypercolumns,
it was suggested that horizontal connections were connecting V1 columns.

Stettler et al. [2002] also analyzed orientation preferences of neurons near lateral axon
terminals and compared them with the orientation preferences of injected orientation
columns. At short distances (< 0.5mm), lateral axons connected to columns of all ori-
entation preferences. In contrast, at larger distances, horizontal connections showed a
preference for columns with the same orientation as the source location’s orientation. The
distributions of orientation preferences were quite wide (60° bandwidth), indicating that
horizontal cells were connecting cells with similar orientations and may explain the clus-
tering observed at axon collaterals. This orientation selectivity of long range horizontal
connections has also been reported by others and in different animal species [Bosking et al.,
1997, Rockland and Lund, 1983, Malach et al., 1993, Sincich and Blasdel, 2001].

Sincich and Blasdel [2001] traced V1 lateral connections in new world monkeys. The
V1 cortices of these animals lack ocular dominance columns and have a less interrupted
retinotopic layout. Similar to Stettler et al. [2002], it was found that lateral connections
were connecting orientation columns with similar orientations. However, connections were
not targeting all orientation columns with similar orientations. Lateral connections were
more dense and elongated in the direction of the preferred orientation of source V1 neurons.

Many other properties of lateral connections have also been discovered. The character-
istic view of lateral connections is that they connect columns at far away locations with
similar orientations, however, the densest connections are with local columns. Moreover,
connections drop off sharply with distance [Chisum et al., 2003]. Lateral connections also
tend to be reciprocal [Kisvarday and Eysel, 1992]. Furthermore, lateral connections are
slow. Girard et al. [2001] measured conduction speeds of V1 connections. Feedforward
and feedback connections were found to have similar conduction speeds (average 3.5m/s).
Lateral connections, on the other hand, were an order of magnitude slower (average 0.1
m/s). For this reason, they are thought to affect the late or sustained parts of V1 neural
responses.
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Layer 2/3 also contains many inhibitory interneurons. At least 10 different types of
inhibitory neurons have been discovered [Kubota, 2014]. Their different innervation targets
(axons, dendrites, soma), different inhibitory functions they subserve, and their relatively
fewer numbers compared to excitatory neurons has made it difficult to identify the patterns
and trends of inhibitory neurons. Relatively few studies have been been conducted on the
properties of inhibitory neurons in the macaque visual cortex [Vanni et al., 2020]. However,
it is known that horizontal spread of inhibitory neurons is much shorter than excitatory
neurons [Lund and Wu, 1997, Kritzer et al., 1992] and they connect homogeneously (are
non-patchy) [Kritzer et al., 1992, Vanni et al., 2020]. Moreover, in other species, inhibitory
neurons have been found to be less orientation selective compared to excitatory neurons
[Bosking et al., 1997, Kerlin et al., 2010].

Feedback connections from higher layers

Feedback from higher layers can be excitatory or inhibitory. Conduction velocities over
feedback connections are as fast as feedforward connections [Girard et al., 2001]. However,
feedback is received from multiple sources which may affect the timescales of its influence.

Stettler et al. [2002] measured the spatial extent and orientations of V2 feedback con-
nections. Axon highlighting dye was injected into V2 columns and highlighted axons in
V1 were analyzed. The spatial extent of V2 feedback connections was found to be similar
to that of V1 horizontal connections. However, unlike lateral connections, their axons con-
nected with orientation columns of all orientation preferences. Moreover, different injection
sites displayed different degrees of spatial clustering. Finally, it was found that the density
of feedback connections was an order of magnitude less then that of lateral connections.
However, only feedback from V2 was measured. As feedback is received from multiple
other sources, this is not a complete picture of their relative densities.

Contrasting this study, Angelucci et al. [2002] found the spatial extent of V2 feedback
connections to be larger than that of lateral V1 connections. Moreover, the spatial extent
of feedback connections from several deeper cortices (V3 and MT) were also analyzed. As
the depth of the feedback source increased, the spatial extent of their feedback connections
also increased. It was claimed that spatial extent of lateral connections was not sufficient
to explain the full range of V1 contextual interactions and that feedback connections were
necessary to explain some contextual interactions.
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2.3 V1 contour integration

Natural images contain a plethora of edges of all shapes and sizes. The task of identifying
what objects are present includes identifying object edges and linking them together into
holistic perceptions. To a large extent this is handled in deep parts of the ventral stream
(see Section 2.2.3). However, components of this processing, or mechanisms to assist later
area grouping, reside in lower cortices [Gilbert, 1992, Li et al., 2006, Kapadia et al., 1995,
Hess et al., 2014]. In the V1 cortex, this mechanism is referred to as contour integration.

Contour integration was first observed psychophysically as the popping out of patterns
of small line segments that followed smooth trajectories in the presence of distractors (see
Figure 2.4 for an example). Test subjects were able to detect large contours amongst a
sea of similar but randomly oriented segments with high accuracy. Kapadia et al. [1995],
Li et al. [2006] found that V1 neurons whose RF overlapped aligned segments showed
elevated responses, even though the full contour extended well outside their individual RF's.
Moreover, concurrent behavioural tests showed that empirically measured enhancement
gains were highly correlated with the detection accuracy of test subjects. This showed
that contour integration or at least part of it, occurs in the V1 cortex.
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Figure 2.4: Contour pop out effect. (Left) a 45° contour formed from co-linear line
segments. All line segments are identical except for their orientations. Each segment
is slightly smaller than the RF such that only one fragment can completely lie within
it. (Middle) As fragment spacing increases, the ability to detect the contour decreases.
(Right) As fragment spacing decreases, contour detectability increases. Reprinted from Li
et al. [2006] with permission from Elsevier.

In the following section, I discuss some of the known properties of contour integration.
The actual mechanism the brain used for contour integration is not fully understood. I
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describe the two main mechanistic theories of contour integration. The section concludes
with a brief description of other forms of context influences used by the brain, especially
those that also occur in the V1 cortex.

2.3.1 Extra-classical receptive field

Given that stimuli from outside the RF of a neuron can influence its within RF responses,
many researchers expand the definition of the receptive field of a neuron to include a
surrounding region where these influences can occur. To distinguish this surround region
from the classically defined RF (cRF), where direct stimulation generates responses, this
surround region is referred to as the extra-classical receptive field (e-cRF).

2.3.2 Properties of contour integration

Contour integration has been known for a long time and many behavioural and neuro-
physiological properties have been discovered. Initially, it was considered a fundamental
mechanism by which edges are bound together in our perception of complete objects. More
recently, and given its relative late time of occurrence, compared with the time frame of
fast core object recognition, it is considered to play a role in more complicated visual sce-
narios and thought to contribute to robust vision. In this section, I highlight some of the
well known properties of contour integration.

1. Contour integration is mostly modulatory: Enhancement gains from stimuli
in the e-cRF are typically observed only when a within cRF stimulus is concurrently
present [Kapadia et al., 1995]. In rare occasions, optimally placed e-cRF stimuli
can trigger a neuron with no within cRF stimulus [Kapadia et al., 2000]. This may
be a possible mechanism of how illusory contours of occluded objects are completed
[Albright and Stoner, 2002]. Although filling in of illusory contours is generally
associated with the V2 cortex.

2. Facilitation from nearby co-linear fragments: Kapadia et al. [1995] analyzed
the influence of a flanking bar placed in the e-cRF on the responses of V1 neurons.
First a bar was placed inside the cRF of a target neuron. The bar was tuned to
the preferred orientation of the target neuron and its response was noted. Next, a
second identical bar was placed in the e-cRF. Third, the target neurons firing rate
was measured as the flanking bar was moved and reoriented. The procedure was
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Figure 2.5: Contextual effects of nearby co-linear fragments. Li et al. [2006] mea-
sured the behavioural and neuronal responses of multiple V1 neurons of two monkeys
(MA, MB) when co-linear identical fragments were placed outside the cRF of optimally
stimulated neurons. As the length of the contour increased, both the behavioural (C1) per-
formance and V1 enhancement gains (C3) increased. As the spacing between fragments
increased, both the behavioural performance (C2) and enhancement gains (C4) decreased.
Mean relative response is defined as the ratio of average response to co-linear neighbor con-
ditions to the average response when randomly oriented neighbors were configured. In all
conditions, an identical fragment, tuned to the preferred orientation of the target neuron,
is present in the cRF of monitored neurons. Relative co-linear spacing is defined as the
ratio of the distance between two fragments to fragment length. In C3, dotted and dashed
vertical lines are the average and maximum receptive field size of measured V1 neurons
(top axis). Reprinted from Li et al. [2006] with permission from Elsevier.

repeated for many V1 neurons. For most neurons, peak responses were observed
when the flanking bar was positioned on the preferred orientation axis of the target
neuron, oriented similar to the within cRF bar and separated by small distances.

Li et al. [2006] extended these results in two ways. First, the effect of multiple co-
aligned fragments was analyzed. It was found that enhancement gain monotonically
increased with the number of co-aligned fragments (Figure 2.5C3). The longest con-
sidered contour was composed of 9 co-aligned fragments and extended 5.6 times the
average cRF length of measured neurons. An average gain of 2.5 was seen over the
case when all neighbors were randomly oriented. Even at this length, gain saturation
was not seen. Second, the effect of spacing between fragments was analyzed. It was
found that enhancement gains decreased with separation distance (Figure 2.5C4).
Moreover, these enhancement gains also showed strong correlation with behavioural
performance; longer contours were easier to detect (Figure 2.5C1) and contours be-
came less salient as the spacing between fragments increased (Figure 2.5C2).
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3. Time scale of contour enhancement: The time course of neuronal responses
generally consist of two phases. An initial high amplitude but short lived phase and
a second lower amplitude but sustained phase. Responses during the initial phase are
thought to correspond to the fast feedforward core object recognition path through
the ventral visual stream. Late phase responses are thought to involve recurrent
and feedback connections and correspond to more selective processing. Li et al.
[2006] analyzed the time course of contour enhancement. It was found that contour
enhancement did not affect initial transient responses. On the other hand, firing rates
during the sustained phase were enhanced (Figure 2.6). Interestingly, the length of
the contour only affect the amount of gain and not the response latency; responses
were enhanced at the same time for all contour lengths.
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Figure 2.6: Timescale of Contour Enhancement. Li et al. [2006] measured the spike
rates of two monkeys (MA and MB) to analyze when the effects of contour integration
affected responses. Spikes were binned into time bins of 5ms each. Results were aver-
aged over multiple cells in each animal separately. Contour enhancement affects the late
sustained phase of neural responses. Gains increased monotonically with contour length.
Reprinted from Li et al. [2006] with permission from Elsevier.

4. Suppression from nearby orthogonal fragments: Kapadia et al. [1995] also
analyzed the effect of moving a flanking bar lateral to the co-linear direction of
optimally triggered V1 neurons. First, a flanking bar was placed in the co-linear axis
of a V1 neuron that was optimally stimulated. Next, the flanking bar was moved in
the orthogonal to the co-linear direction and the responses of the V1 neuron were
monitored. Enhancement gains for most cells decreased with movement away from
the co-linear axis. In fact, at large displacements, most cells were inhibited to levels
below the case when the stimulus in the cRF was presented in isolation.

Kapadia et al. [2000] constructed 2D maps of regions of contextual influences by
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sliding two symmetric flankers in the surround of a bar that was optimally activating
a target neuron. A four loop structure was found (see Figure 2C of Kapadia et al.
[2000]). Excitation was highest in the co-linear direction. Moreover, two forms
of inhibitions were seen. First, directional inhibition which was strongest in the
orthogonal to co-linear direction. Second, a weak omni-directional inhibition existed
in the surround. Excitation was stronger than all forms of inhibition. However,
this result was contrast dependent. As the contrast between the stimuli and the
background increased, excitatory regions decreased and surround stimuli became
mostly inhibitory. Directed inhibition was still the strongest form of inhibition.

5. Discontinuities between fragments eliminate enhancement: Kapadia et al.
[1995] found that if the flanking bar was replaced with a T-shaped stimulus such that
there was an interruption between the two bars, contextual facilitation was eliminated
in most cells.

6. Enhancement gain decreases with contour curvature: Kapadia et al. [1995]
analyzed the effects of rotating a flanking bar away from the preferred orientation
axis. Along their preferred orientation, most neurons preferred co-linear flankers and
their enhancement gains decreased as the flanking bar rotated away.

In a series of behavioural experiments, Field et al. [1993] tested detection accuracy
of curved contours. Curved contours were constructed by inserting a fixed rotational
offset between component fragments. Component fragments were randomly assigned
a negative or positive offset with respect to the previous fragment. The same rota-
tional offset (apart for the direction) was used for all fragments of the contour, and
the constructed curve was said to have a curvature value defined by this rotational
angle. It was found that detectability monotonically decreases as degree of curvature
of the contour increased. However, even with very high contour curvature (as +60°)
test subjects were able to detect contours above chance.

7. Jitter in contour fragments reduces contour detectability: Contours are
much easier to detect if the orientations of component fragments are aligned with
the overall curvature of the contour. In addition to fixed rotational offsets between
successive fragments, Field et al. [1993] analyzed the effect of adding random rotation
offsets between fragments. These random offsets moved the orientation of component
fragments away from the direction of the contour. Random rotation offsets away from
the contour direction were found to strongly influence detectability; small jitter offsets
of £30° made contours undetectable.

8. Present only in cluttered environments: V1 neurons respond strongly when
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10.

11.

contours are presented in isolation. Contrastingly, the same stimuli presented with
complex backgrounds, evoke relatively smaller responses. Li et al. [2006] found that
contour integration enhancement gains were also different in the two scenarios. En-
hancement gains are only observed when background clutter was present. Surpris-
ingly, for isolated contours, as the number of co-linear segments increased, most V1
cells were slightly inhibited.

Concurrent development of V1 and V4 responses: Chen et al. [2014] in-
vestigated the role of higher layer feedback in contour integration by simultaneously
recording responses of V1 and V4 neurons. First, V4 neurons that responded to large
linear contours were found. Second, V1 neurons with the same preferred orientation
and that lay within the large cRF of V4 neurons were isolated. Third, test con-
tours, composed of fragments smaller than the cRF of V1 neurons were constructed.
These test contours were embedded in a sea of similar but randomly oriented frag-
ments. Fourth, V1 neurons were grouped into those whose cRF overlapped co-linear
fragments (V1 contour sites) and those that were 1° degree away from the contour
(V1 background site). A detailed time course of events was established: V1 feed-
forward response, V4 feedforward response, V1 contour enhancement and finally V1
background suppression. Furthermore, the authors also noted that both V1 and V4
responses continued to develop even though feedforward input remained stationary.
They suggested that contour integration involves multiple bidirectional interactions
between V1 and V4 neurons.

Top down attention can selectively strengthen enhancement gains: Li et al.
[2006] recorded V1 responses when monkeys were presented with contour stimuli but
were engaged in unrelated tasks. In the absence of attention, neural responses still
increased monotonically with contour length. However, the amount of gain was
significantly less compared with the case when monkeys were attending the contour
task. Moreover, not all V1 neurons responding to smooth contours are enhanced. In
Roelfsema et al. [1998], monkeys were engaged in a task that involved tracing smooth
contours while avoiding similar distractor contours. The firing rates of neurons whose
cRF overlapped target and distractor contours were monitored. Enhancement of V1
neurons whose cRFs overlapped with that target contour were enhanced more than
those whose cRFs overlapped distractor contours.

Contour closure enhances detectability: Even though curvature reduces contour
detectability, if the ends of contours close in onto themselves or appear as they will,
contour detectability is improved [Kovacs and Julesz, 1993].
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2.3.3 The Association Field Model

Based on a series of psychophysical experiments on curved contour enhancement, Field
et al. [1993] suggested a linking structure between V1 neurons that could be responsible
for contour integration. This association field does not spread equally in all directions and
is elongated in the direction of the preferred orientation axis of neurons. Moreover, it is
more spread out than just the co-linear path (see Figure 2.7 Left). Within this association
field, individual fragments must align with the direction of the contour at each point (see
Figure 2.7 Right).

Figure 2.7: Association Field Model. (Left) The association field model specifies regions
outside the classical receptive fields of V1 neurons where curve-linear (including co-linear)
contours are enhanced. Contour fragments within this regions are allowed to have different
orientations than the source V1 neuron. However, they must follow smooth trajectories and
individual fragments need to be in the same direction as the contour. (Right) Fragments
on the left side of the central fragment enhance responses, while those on the right do not.
Reprinted from Field et al. [1993] with permission from Elsevier.

The association field model has become commonly associated with lateral connections
in V1. In fact, most computational models of contour integration (see Section 2.4) use this
model to define lateral connections between component units. It has also been extended
to model directed inhibitory connections in these models. More recently, in deep neural
network based models where connections are learnt rather than predefined, learnt lateral
connection structures are often compared with the association field model [Linsley et al.,
2018, Spoerer et al., 2020].
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2.3.4 Mechanistic theories of contour integration

The mechanism that the brain uses to perform contour integration is not yet known. Two
main theories exist. The first hypothesizes that V1 horizontal connections are principally
responsible [Stettler et al., 2002, Li et al., 2006, Liang et al., 2017]. Proponents of this
theory cite the anatomy of lateral connections [Bosking et al., 1997, Malach et al., 1993,
Stettler et al., 2002]. Horizontal connections preferentially target cells with similar orien-
tation in nearby spatial locations - a requirement for identifying smooth contours. Natural
objects have mostly smooth contours with only abrupt sharp changes [Geisler et al., 2001].
Hence lateral connections can potentially enhance object contours. Moreover, existing
computational models have shown lateral connections on their own are sufficient to boost
smooth contours [Li, 1998, Ursino and La Cara, 2004a, Piéch et al., 2013]. Feedback from
higher layers may still be involved but is not necessary for contour enhancement.

The second theory postulates that feedback from higher layers is more heavily involved
[Roelfsema, 2006, Angelucci et al., 2002, Chen et al., 2014, Hu and Niebur, 2017]. Object
templates learnt by higher layers may be upsampled and sent down to V1, thereby providing
V1 neurons with an alternative source of smooth contours to enhance. Proponents of
this theory cite the need to selectively enhance object contours as opposed to all smooth
contours [Roelfsema et al., 1998]. Moreover, constant response latencies were measured
for different contour lengths [Li et al., 2006, Chen et al., 2014]. If lateral connections were
responsible, latencies for large contours should be longer. Lateral connections may still be
involved but play a secondary role of enhancing all smooth contours [Hu and Niebur, 2017],
enhancing weak feedforward responses in low-contrast visual inputs [Angelucci et al., 2002]
or texture and shading continuation [Ben-Shahar and Zucker, 2004].

2.3.5 Other forms of V1 contextual influences

The majority of contextual influences are inhibitory; multiple stimuli in nearby areas sup-
press neural responses. Enhancements due to e-cRF stimuli are only observed when within-
cRF stimuli have low contrast (weak feedforward input) or when stimuli are present in
highly cluttered environments. Surround modulation (SM) [Angelucci et al., 2017, 2002] is
a neuronal phenomenon that focuses more on the suppressive impacts of e-cRF. Typically,
SM experiments stimulate the whole e-cRF rather than selective parts of it (as normally
done in contour integration experiments). Suppression is strongest when within-cRF and
e-cRF stimuli are similarly oriented and weakest when they are orthogonal. It is thought
that this mechanism highlights dissimilarities in images such as corners and reduces redun-
dancies in neural responses (by suppressing neurons responding to similar stimuli).
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Another major suggestion of SM is the existence of two distinct regions of the e-cRF:
a near e-cRF and a far e-cRF. These two regions have different tuning properties and may
be generated by different circuits. The near e-cRF is more suppressive and depends on
the orientation difference between within-cRF and e-cRF stimuli. While stimuli in the far
e-cRF suppress within-cRF responses regardless of their orientation. Similar to contour
integration, there is an ongoing debate regarding whether lateral or feedback connections
are chiefly responsible. However, the spatial extent of horizontal connections was found to
be congruent with the near e-cRF only and higher layer feedback connections are thought
to be responsible for far e-cRF effects [Shushruth et al., 2013].

Another closely related phenomenon is contrast normalization [Carandini and Heeger,
2012]. The linear-nonlinear model of neurons does not account for population influences.
To address this, mechanistic models of contrast normalization, whereby the responses of
individual neurons are divisively normalized with the responses of a pool of nearby neurons,
were developed. Two types of V1 inhibitory influences, cross-oriented and omni-directional
suppression, have been accounted for using these models [Carandini et al., 1997]. Contrast
normalization has also been used to explain nonlinear responses in other cortices (reviewed
in Carandini and Heeger [2012]). Similar to SM, the emphasis of contrast normalization is
on the inhibitory effects of surrounding stimuli.

Many other forms of contextual modulation, from outside the cRF, exist in the ventral
stream including: filling in of occluded and illusory contours, filling in of homogeneous
surfaces, filling in of contours and surfaces in the blind spot and retinal lesions, and border
ownership cells which respond differently if foreground objects lie to the left or right of
their cRF. For a review, see Albright and Stoner [2002]. As these are associated with
cortices deeper than V1, they are outside the scope of the current work.
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2.4 Computational models of contour integration

Several computational models of contour integration exist in the literature. In this section,
I select four models for a more detailed description. Each selected model is compared
according to the following criteria: (1) the architecture of the model, (2) how lateral
connections are modelled, (3) how feedback connections are modelled if included, and (4)
which neurophysiological properties of contour integration are incorporated.

2.4.1 Li-1998 Model

The contour integration model of Li [1998] is heavily cited. Specifically targeting the hy-
pothesis that contour integration is possible in V1 alone, the model is built using common
V1 elements and connections: localized excitatory edge detectors, inhibitory interneurons,
feedforward, horizontal and recurrent connections. The model replicates many neural prop-
erties, including response amplification of neurons representing the contour, suppression of
neurons responding to spurious edges, and synchronized oscillations of responses of neu-
rons responding to contours. Furthermore, it was qualitatively shown that enhancement
gains and oscillation synchrony increased with contour length [Eckhorn et al., 1988] and
if component fragments formed a closed shape, while both decreased as contour curvature
increased. Finally, with her model, Li [1998] demonstrated how lateral connections can be
used to fill in missing parts of a contour provided sufficient feedforward input is present.

The architecture of the model is shown in Figure 2.8. It consists of a hexagonal grid of
hypercolumns at discrete nonoverlapping spatial locations (Figure 2.8B). Each spatial loca-
tion, 7, contains a hypercolumn that is composed of K neuron pairs. A neuron pair consists
of an excitatory (z) and an inhibitory (y) neuron. Component neurons are edge detectors
and prefer edges of the same orientation, 8. Within a hypercolumn, orientation preferences
of neuron pairs change gradually covering all orientations, 6, = %, k=12.K.

Visual inputs I (i8), consisting of fragmented oriented edges, enter the model only at
discrete nonoverlapping spatial locations. At each location, ¢, only the strongest edge, with
orientation [, is passed through. The feedforward input to neuron pair, 6, is this visual

]

input processed by its tuning profile, [;y = I (18) exp |:7r_/8] Only excitatory neurons

receive feedforward input.

V1 activity is modeled down to the dynamics of membrane potentials of individual
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Figure 2.8: Contour integration model of Li [1998]. (A) Model components and the
connections between them. A vertical set of excitatory (4) and inhibitory (-) neurons
defines a neuron pair (neural edge segment), the fundamental building block of the model.
Black lines denote connections between neurons. See text for parameter descriptions. (B)
Hexagonal grid layout of hypercolumns. At each spatial location i there are K=12 neuron
pairs that uniformly cover all orientations.

neuron pairs. For a single neuron pair, it was defined as,

xz@ = —0;:Tip — Zd} Ae gy(yz 9+A9) + Jog:p xz@ Z Jz@ ]9’9:p<x]0’) + Iz ,0 + Io; (22)
YA j#i,0’

yi@ = —0yY;p + g:c xz@ Z Wz@ 70’ 9z (xJG’) + ] (23)
j#1,0'
where, @9, y;or are first order time derivatives, and ai, ai are time constants of the excita-
z Oy
tory (x) and inhibitory neurons (y) at location i and with an orientation preference of 6,
respectively.

Each excitatory neuron sums its membrane potential, x; 4, before passing it through
a non-linear activation function, g¢,(z;). An excitatory neuron sends its output to its
inhibitory counterpart, back to itself with synaptic strength, J, and to hypothetical feed-
forward neurons in higher layers.

Each excitatory neuron is suppressed by all inhibitory neurons within its hypercol-
umn, » ., Y(A0) gy (Yigrne). The term p(Af) models the effect that as the orientation
preference of the neighboring inhibitory neuron diverges, the suppression it causes also
decreases.
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Excitatory neurons also receive excitation from nearby excitatory neurons at other
spatial locations, > il Jio.jor gz (xjor). Here, Jig jor is the strength of the connection with
its excitatory neighbor at spatial location j and orientation preference 6.

Finally, I, is the background inputs to the excitatory neurons. It includes an activity
normalization term,

Zjes > gz(%ﬂ’)] ’ (2.4)

Zjes 1

where S defines the spatial extent of activity normalization. These short omni-directional
connections connect all excitatory neurons within a small region. These connections nor-
malize the output of a neuron with the responses of a pool of nearby neurons. The primary
purpose of these connections is to suppress background neurons once contours have been
enhanced.

]0 = Ie,back‘ground -2 [

Inhibitory neurons only send their outputs to the excitatory neuron in their same
neuron pair. Nearby excitatory neurons can also suppress the neuron pair by stimulating
the inhibitory neuron, > i Wie jor gz (o), where Wig ;o is the strength of the connection
between excitatory neuron at 70’ and the inhibitory neuron at if. All these connections
are shown in Figure 2.8A. [, is the background activity of the inhibitory node.

Jio jor and Wig jor represent oriented lateral connections between neighbors. Both of
these matrices are fixed and model many properties including: (1) only neighbors with
similar orientations are connected, (2) connection strengths decrease with orientation dif-
ferences, (3) neighbors that are co/curve-linearly aligned with the neuron pair’s orientation
are enhancing (have positive Jig jo- values) while neighbors orthogonal to this direction are
suppressing (have positive W jo components) and (4) that the contribution from neigh-
bors decreases with distance. Laterally connected neighbors for an example neuron pair
with a horizontal orientation preference are shown in Figure 2.9.

Not discounting the fact that top down signals can influence V1 contour integration, a
feedback mechanism is also included. A simple model of feedback is used where oriented
edge signals (similar to visual inputs) are fed into inhibitory neurons (via the background
activity, I.). However, feedback is modeled as a separate external input without specifying
how higher layers could generate such a precise signal and how specific neuron pairs may
be targeted.
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Figure 2.9: Example lateral connections of Li [1998] model for a neuron pair

with a horizontal orientation preference.

Each visible edge represents a nonzero

connection weight with its neighbor. The left figure shows an excitatory association field,
[Field et al., 1993], while the right figure shows that a similar suppressive association field
is also included. Mathematical descriptions of J;p jo and Wi jor can be found in Li [1998].
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2.4.2 Ursino and La Cara - 2004 Model

The model of Ursino and La Cara [2004a] is also based on the hypothesis that contour
integration is possible in V1 alone. Compared with the model of Li [1998], where visual
inputs need to be pre-processed to extract the highest amplitude oriented edge segments at
each spatial location, edge extracting neurons are incorporated into the model, as thalamic
inputs. This allows the model to operate on any visual input. The model consists of a grid
of 50x50 orientation hypercolumns defined over discrete nonoverlapping spatial locations
(Figure 2.10 right). Each hypercolumn is composed of 16 excitatory and 4 inhibitory
interneurons. Within each column, neurons have similar stimulus preferences except for
orientation. Orientation preferences change gradually and uniformly cover all orientations
(AG = 11.25° for excitatory and A@ = 45° for inhibitory neurons).
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Figure 2.10: Contour integration model of Ursino and La Cara [2004a]. (1) Intra-
cortical connections of the model. Feedforward responses from the Thalamus are sent to
both excitatory ¢ and inhibitory ¢ neurons. (A) Short-range inhibitory connections. i
neurons send directed inhibition to ¢ neurons. (B) Mid-range excitatory connections. ¢
neurons send directed excitation to other ¢ neurons, (C) Long-range inhibitory connections.
¢ neurons also send omnidirectional inhibition to normalize the activity of other ¢ neurons
over a large area. (2) The full model is constructed using a spatial grid of 50x50 hyper-
columns. At each spatial location (x,y) there is a hypercolumn of 16 excitatory neurons
and 4 inhibitory neurons. Reprinted from Ursino and La Cara [2004a] with permission
from Elsevier.

33



The cRF's of thalamic neurons are modeled as 2D Gabor functions,

2 2

Rz — e,y — y.) = Roexp (_—vl) exp (_—1}2> cos(2m fus), (2.5)

2 2
207 205

vi1(@ = 26,y — Yo, 0c) = (x — z)cos(be) + (y — ye)sin(6.),
Ug(l’ —Zey Y — Yo, 00) = —(ZL‘ - mc)Sin(ec) + (y - yc)COS(Qc)a

where (z.,y., 0.) indexes a neuron centered at (z.,y.) and with an orientation preference
of 0., o1 and o9 represents the spatial extent of the cRF in its preferred orientation (6.)
and the orthogonal-to-preferred (6. + 7) directions respectively, f specifies the neuron’s
spatial frequency preference, and R, is a fixed constant. Feedforward input to V1 cells is
defined as the dot product of the image with the cRFs of Thalamic neurons followed by a
non-linear activation function.

Three types of lateral connections are included in the model: (1) short-range oriented
inhibition, W;, mid-range oriented excitation, W,, and long-range omnidirectional inhibi-
tion, W;. The three types of connections model the three types of V1 contextual influences
identified by Kapadia et al. [2000]. All lateral connections follow the general form,

—(0, — 0),)? —d3 —dp
I/Vj = Wo,jexp ((TM}L)) exp (20_56) exp (20'29—*‘/2 . (26)

Oc+7/2

Here, j € (e, 4,1) indexes the type of connection, and W; specifies the connection strength
between a presynaptic neuron at (zp, yp, 05) and a target postsynaptic neuron at (z., ye, 0.)-
The first Gaussian term, exp (~(6c=0x)%/25,,), models the influence of preferred orientation
differences between the two neurons. Its impact is highest for two neurons with identical
orientations and drops monotonically as the difference between their preferred orienta-
tions diverge. The second two Gaussian terms exp (~4./203 ) and exp (~%.+x/2/202 )
model the impact of distance in the preferred and orthogonal-to-preferred directions of
the postsynaptic neuron. To get these two distances, first a vector from the postsynaptic
neuron to the presynaptic neuron is constructed. The magnitude of this vector is given by
d = /(zc — zn)? + (ye — yn)? while its orientation is defined by ¢ = arctan (¥e=¥n/z.—y,).
Next, the vector is projected onto the preferred orientation axis, dy, = dcos(v) — 6.) and
the orthogonal-to-preferred axis, dg, /2 = dsin(y —0.) of the target neuron. Wy ; is a con-
stant that represents the strength and direction of the connection (excitatory connections
have positive while inhibitory connections have negative values). ¢ parameters model the
extent of these component Gaussians in various dimensions. Finally, the net input from
a specific type of connection to a target cell is found by summing contributions from all
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other neurons in the model. The contribution of a presynaptic neuron is defined as its
feedforward input multiplied by its connection weight as defined above.

The intra-cortical connections of the model are shown in Figure 2.10 left. In contrast
with the model [Li, 1998], both excitatory and inhibitory neurons receive feedforward
input. Another notable difference is the use of short directed lateral inhibitory neurons,
W;. These connections are designed to model the contrast (feedforward input strength)
invariant responses of V1 neurons. Contrast invariant V1 neurons respond similarly to
edges regardless of input brightness; they preserve their orientation specificity across a
wide range of input contrast. On the other hand, simple Gabor filters respond similarly
to a bright nonoptimal edge and to a dim optimal edge. To model contrast invariant
edge detectors, inhibitory neurons respond to visual inputs and send regulatory signals to
nearby excitatory neurons [Ursino and La Cara, 2004b, Ferster and Miller, 2000]. These
interneurons are broadly tuned and are activated with any visual input. Consequently,
their dependence on orientation preference differences in Equation 2.6 is removed. W;
connections are also used to model suppression from neighbors that are unlikely to be
simultaneously involved in smooth contours. Accordingly, spatially they spread more in
the ¢; + 5 than in the 6; direction (04, 1z > 0y,), see Figure 2.11A.

A contour enhancing association field is modeled using mid-range excitatory connec-
tions, W,.. W, depends on both distance and the orientation difference between pre-/post-
synaptic neurons. They cover a larger area compared with W; and extend further in the 6,
direction (og, > op, +%), see Figure 2.11B. Lastly, W, connections model contrast normal-
ization after the large omnidirectional inhibition field found in [Kapadia et al., 2000]. As
the spatial extent of these connections is omnidirectional ((og, = 0y, +%)), the projections
in the preferred and orthogonal-to-preferred terms in Equation 2.6 are combined.

Finally, the dynamics of the excitatory neurons are modelled as,

w(Ze, Ye, 0c) = g(xe,yc, 0.) + i(ze, ye, 0.) + e(ze, ye, 0.) + Uz, ye, 0.), (2.7)

dr(@e, ye, be)
-
dt

where, g(x.,yc,0.) is the thalamic at (z.,y.,0.), i(x, yc,0.) is the summed contribution
of all short range inhibitory connections, e(z., yc, 0.) is the contribution of all mid-ranged
excitatory connections, I(x.,yc, 6,.) is the contribution of all long-range inhibitory connec-
tions, r(z., ¥, 0.) represents the firing rate (output) of the excitatory neuron, 7 is its time
constant and S is the sigmoid non-linearity.

= —1r(Te, Yo, 0c) + S 2u(ze, ye, 02)) (2.8)

Through a sensitivity analysis, the influence of each lateral connection and its parame-
ters was investigated. It was found that long-range omnidirectional inhibition was essential
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Figure 2.11: Sample lateral connections of Ursino and La Cara [2004a] model.
Short bold bar shows orientation preference of an excitatory neuron. Shaded regions show
lateral connections of various types. (A) Short range oriented inhibitory connections, W;.
These model suppression in the orthogonal to the preferred direction. (B) Mid-range
excitatory connections. These model enhancement of co-linearly located neighbors. The
dependence on orientation differences between pre and post synaptic neurons is not shown.
(C) Long range omnidirectional inhibitory connections. Reprinted from Ursino and La Cara
[2004a] with permission from Elsevier.

for noise reduction. However at high strengths, weak contour segments (those with higher
curvature) disappeared. Better noise reduction is possible with larger inhibition fields, but
too large values tend to interfere with nearby contours that may themselves not have re-
ceived similar enhancement. Increasing the strength of excitatory connections resulted in
broken contours; straight contour segments were boosted more which caused contrast nor-
malization to suppress weaker segments. Increasing the spread of excitatory connections
in the preferred direction cause contours to over run their boundaries especially at points
of large curvatures (corners). However at reasonable strengths these connections enabled
the fill-in of missing fragments. Increasing the spread of the excitatory connections in the
orthogonal to the preferred direction, had the effect of thickening contours. Unfortunately,
an analysis of oriented suppressive connections was not preformed.
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2.4.3 Piech et. al. - 2013 - Model

The model of Piéch et al. [2013] expands on the role of top-down feedback in V1 contour
integration. Lateral V1 interactions are still the dominant connections in realizing contour
integration, however, their efficacy is strongly influenced by top-down signals. Li et al.
[2006, 2008] found that V1 contour enhancement was stronger when monkeys performed a
contour integration task but much weaker when the monkey was involved in an unrelated
task. This was interpreted as variable lateral connection strengths that are steerable by
external top-down signals.

FBgain

\ fu(X) FBgain 1 Output
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Figure 2.12: Contour integration model of of Piéch et al. [2013]. (A) The basic unit
of the model is an pair of excitatory (4) and inhibitory nodes (—). Connections ending in
a circle are excitatory, while those ending with a bar are inhibitory. ¢.u, gzy, gy. are con-
ductances of the + — +, — — +,+ — — connections respectively. i, and i; are non-local
inputs and include lateral inputs from neighboring nodes, background activity and external
feedforward inputs. Piéch et al. [2013] considered three models. All models had identical
connection structures but differed in their parameters and how their neural dynamics were
set up. Only parameters of the conductance model with subtractive inhibition are shown.
For the other current based models, conductances are replaced by corresponding currents
parameters (g, — Jz. etc). (B) Lateral connections of the model. + nodes connect to
both 4+ and — nodes, while — nodes only connect with the local + node. F Bgaiy, is top down
external signal that increases the self excitation gain of 4+ nodes. F'Bgetpoint 15 an internal
self regulation term that adjusts — — + connections proportional to its inputs. (C) (best
viewed in colour) The full model consists of a hexagonal grid of hypercolumns defined over
non-overlapping spatial locations. Each hypercolumn contains 12 (+, —) pairs with gradu-
ally changing orientation preferences. Different colours correspond to different orientation
preferences. Green connections correspond to + while red connections correspond to —
connections. Figure reproduced from [Piéch et al., 2013].
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The architecture of their model is similar to the [Li, 1998] model. The basic unit of the
model is a pair of reciprocally connected excitatory (E) and inhibitory (I) nodes (Figure
2.12A). Each node pair represents the population activity of neurons in the superficial
layers of a V1 orientation column. E nodes selectively connect to other E and I nodes in
nearby orientation columns (Figure 2.12B). Slightly different from the [Li, 1998] model,
direct inhibition to E nodes is only received from the I node in the same node pair and
not from other I nodes in the hypercolumn. Furthermore, no omnidirectional inhibitory
normalization was considered.

At each spatial location (z,y) there exists a hypercolumn of node pairs whose orienta-
tion preferences () gradually change to cover all orientations. The full model consists of
a hexagonal grid of 220 x 220 hypercolumns (Figure 2.12C).

Oriented lateral connections are modeled as,

—(Lz? 4+ Ay?) ™ 01+ |62] = m
Lyy = Lpzexp <2d(27 COS fwhm <_92> 917 Z) COS fwhm #7 0, Z ) (29)

2 2
Ly, = Iyzexp <%§Ay)> COS fuwhm (—92, 01, %) COS frwhm <|01’_2H92‘, g, Z) . (2.10)
Here, L, is the connection strength between two neighboring E nodes, L,, is the strength
of the connection from an E to an I node, (Ax, Ay) is the separation distance between
the two considered neurons, d, is the spatial extent of the lateral association field, I.., Iy,
are the full strengths of these connections, 6, #, are the orientation preferences of the
pre/post-synaptic neurons and cos fuynm (6, Gopt, 0 fwnm) is & tuning curve given by,

1 7r(979opt)> 1 0—0 <0
Cosfwhm(eaeoptaefwhm) — { 5COs (—wahm + 3 | opt| S Ufwhm

, (2.11)
0 otherwise

where 0,,, is the preferred orientation and g, is the orientation at full-width-half-
maximum (FWHM) of the tuning profile. Equations 2.9 and 2.10 model excitation and
suppression association fields. Two orientation dependent tuning curves are included in
each of them. The first decreases the strength of neighbors as their orientation preference
diverges from the preferred orientation of the target postsynaptic neuron and the second
is a curvature penalty that enhances co-linear curves more than curve-linear ones. There
is also Gaussian decay of connections strengths with distance between the two nodes. An
example of these connections for a neuron with a horizontal orientation preference is shown
in Figure 2.13.

Although the architecture and connections were similar to [Li, 1998], the neural dy-
namics were constructed differently. Three different models were considered: (1) current
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Figure 2.13: Sample lateral connections of Piéch et al. [2013] model neuron with
a horizontal orientation preference. Best viewed in colour. Edge thickness represent
the strength of the connection. Green edges model the excitatory association field while red
edges form the suppression association field. Figure reproduced from Piéch et al. [2013].

based model with subtractive inhibition (CurrSI), (2) current based model with divisive in-
hibition (CurrDI) and (3) conductance based model with subtractive inhibition (CondSI).
The CurrSI model is the most similar to the [Li, 1998] model and involves inhibitory nodes
exerting a subtractive influence on excitatory nodes,

Tx

i= L (—a:  Toafo(@) = Ty £y () + Toe + T+ ZLm/fx(:v')) : (2.12)

fﬂ,

o
where x and y are membrane potentials of E and I nodes, J,,, J,,, and J,, are strengths
of the E — E,I — E, and E — I connections, respectively, f(.) are non-linear activa-
tion functions that transforms membrane potential to firing rates, 7. are membrane time
constants, Iy represents the background activity of a node, I is the external input from a
previous layer, L, is the connection strength from a neighboring E node 2’ to x, and L,
is the connection strength between E node 2’ to y.
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In the CurrDI model, I nodes interact divisively with E nodes,

. i . szfx(x)_'_[Oe—i_[—i_Zm’ Lxx'fr(‘rl>
v Tz ( o L+ Jay fyy(y) > 7 (214)

In the conductance based model (CondSI), feedforward and lateral inputs were config-
ured as conductances rather than constant currents terms. This was done by multiplying
inputs with the difference between a nodes activity and its equilibrium potential. As a
result of this, their effective strengths varied based on how close they were to a node’s
equilibrium potential,

= —
Tx

o+ <gmfx<x> 3 Loy fola) + Goe + G) (ve — ) + gy Fy () (s — x>] . (216)

. 1
Yy=—
Ty

-y + ((gyxfx($) + Z Lyx’ fﬂ&(xl) + GOZ)) (Ue - y)] ) (2‘17)

where, all current (I) parameters in the CurrSI model have been replaced by conductances
(g/G), and v are resting potentials of nodes.

Piéch et al. [2013] analyzed potential mechanisms higher layers feedback could use to
change the efficacy of lateral connections. In contrast with the Li [1998] model, feedback
modulated self-excitation, J,,, of E nodes rather than entering as an external input to I
nodes. Moreover, an internal mechanism was also used to adjust inhibitory to excitatory
connection strengths, J,,, in tandem. This approach allowed the effective strength of
lateral connections to be strengthened without affecting responses to feedforward inputs.
Unfortunately, feedback was considered a separate external input to the system, and it was
not specified how specific V1 neuron pairs could be targeted by higher layers.

2.4.4 Hu and Niebur - 2017 - Model

The model of Hu and Niebur [2017] is a hierarchical model that incorporates parts of
V1, V2 and V4 cortices. This multi-purpose model assimilates contour integration, figure
ground separation and external attentional influences into a single coherent model that
can replicate a range of neurophysiological results. The model postulates that contour
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integration results from a combination of V1 lateral connections and feedback from V4
neurons. Contrasting previous models, feedback is generated internally through the use of
proto-object V4 neurons that send modulatory signals back to V1 neurons. In the context
of contour integration, these V4 neurons respond to oriented linear contours. This addi-
tional connection replicates the interplay between V1 and V4 neurons and can account
for the simultaneous development of contour responses in both layers, [Chen et al., 2014].
Moreover, coarse top-down signals, such as object based attention, can utilize these same
connections to target spatially precise V1 neurons. Finally, Hu and Niebur [2017] demon-
strate how this accounts for larger enhancement gains when a contour is attended to but
are still present in the unattended state [Li et al., 2006, 2008].

The architecture of the model is shown in Figure 2.14. As can be seen, component
units are densely connected. The following brief description is restricted to components
involved in contour integration only. Input to the model consists of a binary map indicating
the presence of oriented edge fragments over a discrete grid of 64x64 locations. At each
spatial location, there exists a V1 hypercolumn that contains four edge detecting (E)
units. The orientation preferences of component edge units uniformly change to cover
the range (0,180°). As is the case for all units of the model, each edge detecting unit
represents a population of neurons with identical tuning profiles. E cells send their outputs
to inhibitory cells, IE, in their vicinity. These omni-directional connections are modeled as
2D Gaussians and depend only on the distance between neurons. Following Stettler et al.
[2002], the spatial extent of these connections was set to 8 times the cRF of E cells. IE cells
reciprocally connect to E cells in their proximity. These connections are modeled similar
to E — IE connections but with opposite polarity.

E cells also connect to other E cells,

.

—(1‘1—:(:2)2
exXp 2etoe?, if 01 = 02 = 07 N =Y = 0
S
—(z1—22)? N -
01 02 CXP \ T2etoe?, ifor=02=7, 11 =11, T2 =1>
pu— S
W(Ewl,yl)(EmZyQ) - Netoe * —(y1—y2)? ) - ,
exXp 2etoe?, if 01 =02 =75, T1 = T2~ 0
S
—(y1—y2)? : _ _ 3 _ _
L exp 2€t062d if 01 = 02 = 4 T1 = —Y1, T2 = —Y2
S

(2.18)
where E7} ; is a presynaptic edge detecting unit at (21, ;) with orientation preference oy,
E73 o is a similarly defined postsynaptic edge unit, Neye represents the strength of the
connection and etoeyy its spread. Compared with the lateral facilitation structures of pre-
viously described models, this is a simpler structure; it can only enhance co-linear contours
in the 4 considered orientations. The spatial extent of lateral facilitation was identical to
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contrast normalizing, IE — E connections. Oriented suppression in the orthogonal to the
preferred direction is not included.

Attention
(
FC N SRV
G, G G,

V2

V1

Figure 2.14: Contour integration model of Hu and Niebur [2017]. Best viewed in
colour. F cells respond to edges of a particular orientation. Border ownership (B) cells
similarly respond to edges but react differently if the foreground object they represent
lies to the left or right of their receptive field. Grouping (G) cells respond to configu-
rations of edges representing proto-objects, either simple objects (G,) or contours (G.).
IFE,IB and IG cells represent inhibitory cells. Magenta, blue and yellow lines represent
feedforward, inhibitory lateral and feedback connections respectively. Connections ending
in a circle are excitatory, while those ending with a bar are inhibitory. Lateral excitatory
connections are not shown. Reprinted from Hu and Niebur [2017] with permission from
Springer Nature.

E units sum their inputs before passing them through a nonlinear activation function.
E cells send their feedforward outputs to border ownership (B) cells in V2 [Zhou et al.,
2000]. B cells have similar properties to V1 edge detecting cells they are connected with,
but respond differently if the foreground shape they are representing is located to the left
or right of their cRF centers. Interestingly, lateral connections, similar to those in V1,
are included in V2 as well. These connections propagate border ownership information
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between neighbors and play an integral role in separating foreground objects from the
background [Zhaoping, 2005]. B cells send their feedforward outputs to contour grouping
cells in V4.

E cells receive modulatory feedback from V4 cells in two ways. Once V4 grouping
cells (G) cells are activated, they send direct feedback to V1 E cells. V4 G cells also send
feedback to V2 B cells which in turn send feedback to V1 E cells. Differential equations are
set up over the activities of all V1, V2 and V4 cells in the model to study their temporal
properties. Hu and Niebur [2017] also investigated the impact of the internal and external
feedback in their model. Removing the feedback from V4 to V1 decreased responses in both
cortices. However, degradation was greater in V1 than in V4. On the other hand, external
attentional signals, which were received by V4 G cells, boosted responses comparatively
more in V4 than in V1, consistent with the results of Chen et al. [2014].
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2.4.5 Discussion

Contour integration is a low-level neural phenomenon that assists the ventral visual stream
in identifying what objects are in the visual environment. While the differential equation
models described in this section can account for many neurophysiological properties, they
do not provide much insight on how contour integration assists the ventral visual stream.
With these models, it is not possible to see what specific tasks, under what conditions
and by how much does contour integration contribute to the high-level goals of the ventral
visual stream.

Another limitation of these models is that they do not address scalability. Typically,
they are designed using a single type of edge extractor (a single Gabor type with different
orientations) at non-overlapping spatial locations and expect as inputs, a single type of
edge at predetermined locations. However, in natural images, edges come in a variety
of shapes and forms and can occur anywhere. To handle natural images, similar to the
ventral visual stream, it is necessary to address scalability. Moreover, the ventral stream
uses many other cues, such as colour and textures, to detect objects. Simply scaling up
these models is not only computationally expensive but cannot account for these other
cues.

Even for the limited type of data these models are designed to handle, results are usually
presented with a few exemplar stimuli that showcase particular features of the model.
Different models focus on different sets of neurophysiological properties and therefore use
different stimuli. Typically, models are only compared on the basis of how many properties
they can account for. It is difficult to quantitatively compare models even over the range
of stimuli they support.

Finally, parameters and architectures of these models are fixed during the design phase.
The choice of their settings are based on neurophysiological and neuroanatomical studies.
Studying neurons in the brain is difficult and only offers a partial view of all the processing
involved [Olshausen and Field, 2006]. Moreover, techniques used to study the structure of
neurons also have limitations. For example, in axon labeling investigations of lateral V1
connections (see Section 2.2.4) it is not possible to get a clear picture of the distribution
of connections near injection sites [Stettler et al., 2002, Angelucci et al., 2002]. In these
models, the findings, biases and assumptions of these investigations are built into the
model.

In Chapter 4, I present a model that can address these limitations while retaining the
ability to replicate many neurophysiological properties of contour integration, similar to
these models. Moreover, many of the parameters in the model are learnt and can be used
to validate some of the assumptions made in these models.
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Chapter 3

Artificial visual systems

Artificial Intelligence (Al) is a field of computer science that is concerned with the theory
and development of machines capable of performing tasks that are normally associated
with intelligent beings. Machine Learning (ML) is a sub-field of Al that focuses on teach-
ing machines to perform input-to-output mapping tasks by extracting patterns from raw
data rather than using a hard coded set of decision rules [Goodfellow et al., 2016]. Rep-
resentation learning is an approach to ML where models can additionally learn different
representations of the input data to simplify the learning of input-to-output mappings
[Goodfellow et al., 2016, LeCun et al., 2015]. Artificial Neural Networks (ANNs) are a
special class of representation learning models that are inspired by networks of neurons
in the brain. Deep Neural Networks (DNNs) are hierarchical multi-stage ANNs that can
learn multiple levels of representation that build on each other.

In this chapter, I review ANNs, the other major focus of my research. I begin by
briefly describing the fundamentals of ANNs. Second, I discuss Convolutional Neural
Networks (CNNs), a type of ANN model that specializes in the processing of visual data.
Third, I describe Recurrent Neural Networks (RNNs). RNNs are another type of ANN
model that specialize in the processing of sequential data. However, they have also been
used to process static spatial data. As I am interested in modeling dynamic contour
integration in ANNSs, the combining of RNNs and CNNs is a good starting point. In fact,
many researchers actively working at the intersection of Al and computational neuroscience
consider recurrent convolutional neural networks as currently the best artificial models of
the ventral visual stream [Kubilius et al., 2019]. Fourth, I highlight the work that has been
done in comparing ANNs and the brain’s visual system. I describe both the similarities
as well as the differences. Finally, I conclude this chapter with precautions others have
suggested that must be considered when comparing DNNs with the visual system.
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3.1 Artificial Neural Networks

The goal of an Artificial Neural Network (ANNs) is to learn a mapping between its inputs
and outputs. A common task for ANNs is classification, where inputs need to be classified
into a smaller number of categories. In the context of classification, the function that
needs to be learnt is the conditional probability distribution, p(y|x); the probability of
label, y, given an input, x. For complicated tasks, this function does not have a closed
form mathematical expression. ANNs approximate this mapping using a combination of
many small well-defined functions or neurons.
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Figure 3.1: Feedforward artificial neural network. (A) An example network with 2
hidden layers. Each layer contains multiple nodes. Each node receives inputs from nodes
in a preceding layer. Each node sends its outputs to nodes in the succeeding layer. (B)
Single network node. The pre-activation of node j in layer L, the weighted sum of its
inputs, is given by z/ = 3~ whay™" + 0%, where wk is the weight of the connection from
node k in layer L — 1 to node j in layer L, aé’l is the output activation of node k in the
previous layer and b” is a bias term. The output activation of node j’ is its pre-activation
passed through a nonlinear activation function, a? = a(sz). For an entire layer, this can
be expressed compactly as, al’ = o(Wlal=t + bL). Here, al, W are the feature map and

connection matrix of layer L, respectively.
The architecture of a basic feedforward ANN is shown in Figure 3.1A. It consists of

several artificial neurons or nodes and the set of connections between them. These con-
nections are inspired from synapses between neurons in the brain. Each connection is
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associated with a weight whose value represents the strength of the connection between
attached units. Nodes are typically grouped into layers and the entire network is a layer-
wise arrangement of interconnected nodes. For example, the model shown in Figure 3.1A
is composed of 3 layers; 2 hidden layers and 1 output layer. Information flows from the
input to the output layer through a series of hidden layers in the forward direction only.
Nodes receive inputs only from nodes in the previous layer; there are no intra-layer lateral
connections nor any feedback connections from neurons in subsequent layers.

Each node computes a weighted sum of its inputs (input or presynaptic node’s activity
multiplied by its connection weight) and then uses an activation function to map its stim-
ulation to an output (see Figure 3.1B). Typically, a non-linear activation function is used.
Non-linear activation functions allow the network to detect complex non-trivial patterns
in inputs. Common types of non-linear activations functions include: the Rectified Linear
Unit (ReLU), the Sigmoid Function, and the Hyperbolic Tangent Function.

This simple operation is repeated at each location within a layer. Collectively this is

represented as,
al = o(Whal=! 4 b1), (3.1)

where a” is the outputs of all nodes in layer L and is commonly referred to as the activation
or feature map of a layer, W’ is a connection matrix that includes the weights of all
connections of all nodes in layer L with all their neighbors in the previous layer, b is a
constant output (bias), and o() is the nonlinear activation function.

In a basic ANN, each node is connected to all nodes in the previous layer. The parameter
space (connection weights) of ANNs increases exponentially as the number of nodes in a
layer increases. This large number of parameters increases the capacity of ANNs but also
makes them prone to over-fitting, especially when trained on limited data. The large
capacities of these models make them fit not only useful patterns in the data, but noise as
well.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of feedforward ANN that specialize in
the processing of visual images. CNNs address the problem of a large parameter space,
that needs to be learnt, by incorporating apriori knowledge of the pixel representation of
objects into their architecture. Specifically, two changes are made. First, each node is
only connected to a subset of nearby nodes in the previous layer. The justification for this
assumption is that object features are local structures; it is likely that far away nodes view
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different features that do not contain much information about the current feature. Second,
within a layer, connection weights are tied across multiple locations. A node’s connection
weights can be thought of as a specific input combination that maximally excites it. Since
natural images are generally fairly homogeneous (smooth regions with few edges), if a good
input combination is learnt at one location, it is useful to look for it at other positions as
well.

Incorporating these two assumptions significantly decreases the parameter space of
CNNs. A convolutional layer’s connection weights can be rewritten as a much smaller
kernel. With this smaller kernel, a layer’s feature map is found by striding the kernel
across the layer and applying it at each node. This resembles the convolution operation
and is the reason for their name. The activity of a convolutional layer can then be expressed
as,

al = o(WE®al™t +bh), (3.2)

where ® is the convolutional operator and W is a kernel now that is much smaller than the
number of units in a layer. For image processing, typically 2D kernels, inputs and layers
are used.

Reducing the number of parameters also makes it computationally efficient to use large
architectures. In particular, multiple hidden layers (deep architectures) can be stacked
[LeCun et al., 2015, Goodfellow et al., 2016] on top of each other, enabling deeper layers to
learn more complex features from lower layer feature maps. Furthermore, smaller kernels
make the use of multiple kernels feasible, allowing multiple features to be simultaneously
extracted at each layer.

A famous deep CNN model, AlexNet [Krizhevsky et al., 2012], is shown in Figure 3.2.
Typically, in such large scale models, convolutional layers are used in conjunction with
other layers. Pooling layers summarize the activations of nodes over a confined area for
higher layers. These layers are specifically designed to develop tolerances to information
less pertinent to the overall goal of the network. For example, classification networks
frequently use max pooling layers. A max pooling layer sends the output of the most
active node within a neighborhood to higher layers and helps make the network position
invariant. Dense fully connected layers are also typically used at the deep end of the
network. Nodes within these layers see the entire information flowing in the network which
is useful when making a final decision on object labels. Another commonly included layer
is Batch Normalization (BN) [loffe and Szegedy, 2015] (Not included in network shown
in Figure 3.2). The use of multiple non-zero centered activation functions (such as ReLU
and Sigmoid Functions) can result in feature maps that have non-zero means and non-unit
variance. Batch normalization layers can restore feature maps to have zero mean and unit
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Figure 3.2: AlexNet CNN model [Krizhevsky et al., 2012]. This deep CNN model
consists of 5 convolutional layers and 3 fully connected (dense) layers. Inputs to the model
are 227x227x3 sized RGB Images. Each convolutional layer extracts multiple features.
Large rectangular boxes represent the activation volume of a layer, the set of feature maps
of a layer. Features maps are also referred to as channels. Small rectangular boxes are the
kernel sizes used at each layer.

variance and have been shown to improve performance (but see Brock et al. [2021]).

The last layer of classification networks contain the same number of nodes as the number
of classes of objects they are trained to predict. Furthermore, a special nonlinear activation
function (e.g. Softmax Function) that converts network outputs (logits) to probabilities of
each class, is used. For a given input, once a network’s probabilistic predictions for each
class is known, it can be directly compared with the one hot (1 for the true class, 0 for all
others) ground truth label for that input.

3.2.1 Training

Teaching a CNN to approximate p(y|x) is called training. This involves adjusting connec-
tion weights such that the network’s predictions match ground-truth labels. Many types of
training methods exist. For the task of object classification, typically supervised training is
used. In supervised training, a large dataset of inputs and their corresponding ground truth
labels are provided to the network to train with. Once trained, network predictions are
tested on held-out or unseen inputs to see if the model learnt good features that generalize
to data outside the training set.

Network probabilistic predictions and ground truth labels can be quantitatively com-
pared using a cost (loss) function. A typical cost function for object classification is the
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cross entropy loss function,
N
Lop(x) == pilog(a), (3.3)

where p; is the ground truth label for object class ¢ and ¢; is the network’s prediction for
the same class and NN is the total number of classes. The cross entropy function measures
the difference between the probability distribution of the network and the ground truth
labels of the data.

Given the quantitative difference, the parameters of the network need to be adjusted
such that the next time the network encounters a similar input, the difference is smaller.
The large parameter space of these models makes this a nontrivial optimization problem.
As there is no direct connection between the loss function and weights in earlier layers,
training is especially hard for deep networks. The back propagation(BP) algorithm [Rumel-
hart et al., 1986] provides an elegant solution by allowing error gradients to be propagated
through the entire network in a single backward pass. First, error gradients with respect
to the weights in the deepest layer are computed. Next, error gradients with respect to the
weights of the preceding layer are expressed in terms of the already computed gradients
in the current layer. This process is repeated until error gradients of all weights in the
network are found.

Once error gradients are known, gradient descent optimization is used to update net-
work weights,
aLCE(LC)
00,

where j is some connection weight in the network, 9Lcr(z)/a9; is the error gradient of the
loss function Leg(x) with respect to the weight j for input 2 and A € [0, 1] is the learning
rate which controls the amount weights are updated per input during training. In practice,
it is common to use more efficient optimizers such as batch Stochastic Gradient Descent
(SGD) or Adam [Kingma and Ba, 2014]. This process is repeated multiple times over
multiple cycles (epochs) of the training dataset until the network settles to some optimal
configurations. Typically, to speed up training time, inputs are grouped together into mini-
batches and weights are updated after every mini-batch using batched averaged gradients.

3.2.2 More advanced CNNs

Since the conception of CNNs [LeCun et al., 1998] and their break through performance in
object classification [Krizhevsky et al., 2012], innumerable improvements have been made.
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In fact, it is an active line of research that has surpassed human level performance on
object classification [He et al., 2015] (at least on clear natural images that contain typically
centered and unobstructed views of objects). Here I highlight a few improvements that
have lead to substantial improvements on state-of-the-art (SOTA) performance and have
been widely adopted by the research community.

In [He et al., 2016] the Residual Network (ResNet) model was introduced'. ResNets use
identity (skip) connections across layers. The main motivation for using these skip connec-
tions was to address the vanishing gradient problem of very deep networks. As networks
get deeper, the repeated application of multiplications in the back propagation of error
gradients results in very small gradients, especially at the shallow end of networks. These
small gradients make it difficult to adjust network weights. By adding skip connections,
error gradients of shallow layers parameters do not need to flow though every higher layer
and can reach them with fewer impediments. The use of these skip connections allowed
ResNet models to reach depths of hundreds of layers which in turn helped them achieve
SOTA performance when they were proposed.

Increasing depth is one way of increasing network capacity to improve performance.
There are other ways of improving network capacity including: increasing network width
(typically interpreted as the number of channels of a layer) and input resolution (the size of
input images). Images in large publicly available datasets come in all sizes. It is common
practice to include a preprocessing step that resizes them to a standard size before feeding
them into models. Large image sizes allow the network to learn more fine grain features
but comes with a cost of an O(N?) increase in computational complexity. Tan and Le
[2019] found that scaling any one dimension independently quickly saturates performance.
However, if all three are jointly scaled under the constraint that product of the increases to
depth, the square of the width and the square of the resolution was ~ 2, higher performance
can be achieved. After finding a base architecture using an automated network architecture
search algorithm [Zoph et al., 2018, Tan et al., 2019], Tan and Le used their network scaling
method to develop a new family of models, EfficientNets. EfficientNets achieve higher per-
formance while using an order-of-magnitude fewer parameters compared to their counter-
parts. Moreover, these have consistently featured on the the ImageNet classification leader-
ship board, https://paperswithcode.com/sota/image-classification-on-imagenet.

CNNs have also been used for a wide variety of other vision tasks including object
and instance segmentation [He et al., 2017, Redmon and Farhadi, 2018, Liu et al., 2016,

'ResNets are family of model. Many specific architectures, that differ in the number of layers and hence
the number pf parameters they contain, have been proposed. A particular ResNet architecture is specified
by including the number of layers it contains with its name (e.g. ResNet18, ResNet50 and ResNet152).
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Ronneberger et al., 2015], contour/edge detection [Xie and Tu, 2015, Shen et al., 2015,
Poma et al., 2020, Linsley et al., 2018], artistic picture-to-picture style transfer [Gatys
et al., 2015, 2016, Jing et al., 2019], and image restoration [Yeh et al., 2016, Pathak
et al., 2016]. Typically, models used in these tasks modify their architectures based on
the requirements and observed problems. However, it is common to build upon a main
'backbone’ structure that has been pre-trained on large scale object classification tasks.

3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [Rumelhart et al., 1986] are another type of ANN that
specialize in the processing of sequential data, such as audio signals, videos and textual
data. In sequential data, more input becomes available to the network at each time step.
Recurrent networks need to store information about past inputs in an internal memory
and use it to generate outputs at each subsequent step. RNNs handle this by storing
information in a hidden state and recurrently referring to it as well as new inputs in each
time step.

While RNNs can be set up in many ways, the simplest form is expressed as,
ht+1 = tanh (Wxxt + Whht —l— b) R (35)

where h; . is the hidden state activity at time ¢ + 1, x; is the input at time ¢ from the
sequential input stream (x1, Xa, ...x7), T'is the length of the sequence, Wy is the connection
matrix between input and hidden layer nodes, Wy, is the connection matrix that describes
recurrent connections between hidden nodes, b is a bias term and tanh is the hyperbolic
tangent non-linear activation function.

In the equation above and in the following discussion, a time step is used to refer to
the next item in the sequence. The actual data does not need to be a time series, but only
sequential in nature; RNNs work just as well with words in a sentence.

The architecture of the RNN described above is shown in Figure 3.3A. It is similar
to a regular ANN but with additional recurrent connections between nodes in the hidden
layers. These recurrent connections connect hidden layer nodes with all other hidden layer
nodes (including the same node) but with a one step time delay.

In the first time step, the first item of the input sequence, x1, is fed into the network.
The network stores useful information about the input in its hidden state. At each sub-
sequent time step, the network receives the next item in the input sequence, x;, and uses
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it to adjust its stored hidden state information. This process repeats until a fixed number
of iterations, T', (typically defined large enough to include the longest item in the training
dataset) have passed. The output of the model, y;, depends on the type of task the net-
work is designed to handle. For example, in classification tasks such as sentiment analysis
[Medhat et al., 2014], typically a single class label is generated after the full input stream
has been parsed. In language translation tasks [Sutskever et al., 2014], an input sequence
is used to generate an output sequence. In these sequence-to-sequence mapping tasks, an
output is generated at each iteration. There are even RNNs that work on static inputs and
use them to generate a sequence of outputs, such as image captioning networks [Vinyals

et al., 2015].
OB ONORENC)
w,
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Figure 3.3: Simple Recurrent Neural Network. (A) Architecture of a simple recurrent
neural network. At each recurrent step the hidden layer, h;, receives a new input x; as
well as hidden layer outputs of the previous time step. Activity propagates through the
network for a predefined number of time steps, 1. The output of the network, y;, depends
on the task the RNN is designed to handle. Hidden layer outputs can be passed to output
nodes every iteration or at the end of all iterations. W, , W;, W, are the connection
matrices between nodes in the input-to-hidden, hidden-to-hidden, and hidden-to-output
layers respectively. (B) An across time steps unrolled view of the RNN shown in A. The
hidden layer at each time step is similar to an individual layer in a deep feedforward
network with the added constraint that parameters are shared across different layers.

Another way of looking at the processing of an RNN is to roll it out across time
steps (see Figure 3.3B). When unrolled, the hidden layer at each iteration is similar to
individual layers of a deep feedforward ANN but with the added constraint that weights
of the network are shared across different layers. Increasing the number of iterations,
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expands the temporal depth of RNNs and allows them to detect long range relationships
in input sequences. It does not increase network capacity (as the parameters are shared)
but does increase the computational complexity and run time of models. The depth of
RNNs can also be increased by stacking recurrent layers on top of each other, similar to
how feedforward ANNs are made deeper. This increase expands the capacity of RNNs and
allows them to detect more complex patterns.

RNNs are considered function approximators for dynamic systems, similar to how feed-
forward ANNs are considered function approximators of static functions. If equation
3.5 can be considered to be the difference equation obtained by using Euler’s Method,
h(t+ 0t) = h(t) + 0tdh/at, on a dynamical system that is described by an ordinary differen-
tial equation (ODE), and assuming 0t = 1, the corresponding dynamical system is given

by,
dh
e tanh (W,x(t) + W;h(t) + b) — h(?), (3.6)
Most existing models of observed neurophysiological dynamic phenomenon, including
contour integration, are ODE based computational models (see Section 2.4). The ability
to relate simple RNNs directly to their ODE representation, makes them particularly

interesting for modelling these phenomena in ANNs.

3.3.1 Training

RNNs are most commonly trained using the Back Propagation Through Time (BPTT)
algorithm [Werbos, 1990]. The algorithm works similar to regular back propagation (BP)
but operates on unrolled RNNs (Figure 3.3B). In fact, most existing machine learning
frameworks implement both algorithms using the same function and implicitly distinguish
between the two based on the type of network being trained. The rest of the training
procedure including the type of training, cost functions and optimizers are similar to those
used for training feedforward ANNs (see Section 3.2.1).

In practice RNNs have been found to be difficult to train. They are weak at detecting
long-term relationships between input items that are separated by a large number of time
steps. The activation preserved in hidden nodes across time steps, that is pertinent to the
current sequence being processed, is sometimes call short term memory. Simple RNNs are
said to have short short-term memory. There are two root causes for this issue: the van-
ishing and exploding gradients problems [Bengio et al., 1994, Pascanu et al., 2013]. During
training, if gradients at the output of models are small, they become exponentially smaller
when back propagated through time steps rendering them too small to make effective
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changes to network weights. On the other hand, if gradients are too large, multiplications
during the backpropagation process causes them to exponentially grow or explode and re-
sults in large changes to network weights for small changes in the output. Both problems
prevent RNNs from learning efficiently. Many solutions have been proposed to tackle these
problems including: gradient clipping [Bengio et al., 1994], orthogonal weight initialization
of recurrent weight matrices [Saxe et al., 2013], and new recurrent architectures (covered
in the next section).

3.3.2 More advanced RNNs

In Hochreiter and Schmidhuber [1997], the Long Short Term Memory (LSTM) network was
introduced. Different from simple RNNs, the model uses new multistage nodes inside its
hidden layer. The internal architecture of these nodes was specifically designed to address
the vanishing gradient problem. In addition to the hidden state, each composite node
includes an extra cell state, where short term memory about the current sequence is stored.
Another prominent feature of LSTM networks is the use of new learnable multiplicative
gates that control the flow if information both in to and out of hidden and cell nodes.

The operation of an LSTM network is best understood by the set of equations that
describes it. The equations from an update variant [Graves et al., 2013] are defined below.

Compute the input, forget and output gates,

it = U(Wm‘Xt + Whiht—l + bz), (37)
ft = U(WJ;th + thht—l + bf), (38)
O = O'(WIOXt + Whohtfl -+ bo), (39)

where x; is the input at time ¢, h; is the hidden state activity at time t, W,;, Wy, are
learnt connection matrices between input layer — input gate, hidden layer — input gate
and b; are bias terms. The connection matrices and biases for the forget and the output
gate follow similar terminology. o() is the Sigmoid non-linear activation function which
restricts gate values to the range [0, 1].

Next, the cell state is updated by multiplying its forget gate with its previous value
and mixing it with the input gate modulated total input to the cell state,

Cy = ft ®C_q + it ® tanh(met + thht,1 + bc), (310)

where ©® is the Hadamard product.
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Finally, the hidden state is calculated by applying the output gate on the updated cell
state after it has passed though a tanh non-linear activation function,

ht =0, ® tanh(ct). (311)

The architecture of the LSTM was empirically designed to improve performance on
sequential tasks. It succeeded in making RNNs better at learning long term dependencies.
In fact, for quite some time after they were proposed, they achieved SOTA performance on
many sequential tasks. Unfortunately, their architectures are quite complex and difficult
to relate back to biology. They are generally not considered biologically plausible (but see
Costa et al. [2017]).

Cho et al. [2014] introduced the Gated Recurrent Unit (GRU) network. GRU models
can be considered simplified LSTM networks and were similarly designed to maximize
performance. Like LSTMs, they use gates to control the flow of information into and
out of hidden states. However, GRUs use 2 instead of 3 gates: a reset and an update
gate. Moreover, they do not use a secondary cell state that needs to be preserved across
iterations. Instead, they calculate a potential update every iteration and use the update
gate to mix the current hidden state with the potential update.

GRU networks are also best understood by the set of equations that describe them,
Compute the update and reset gates,

U = J(met + Whuht—l + bu); (312)
ry = O'(erxt + Whrht—l + br) (313)
Calculate the potential update,

hy = tanh(W _;x,) + W, (r, @ h, 1) + b;). (3.14)

Mix the potential update with the actual hidden state,

ht = (1—ut)®ht_1—|—ut®f1t. (315)

GRUs are faster (less steps) and more memory efficient (do not have a secondary cell
state) than LSTMs. At least on some tasks they have been shown to have similar perfor-
mance to LSTMs [Chung et al., 2014]. Unfortunately, their architecture do not align with
recurrent connections in the brain.
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In Vaswani et al. [2017], the Transformer model was introduced. Transformer networks
were a paradigm shift in the handling of sequential data. In particular, they got rid of
RNNs altogether and extensively used multiple attention layers [Bahdanau et al., 2014]
to learn dependencies between individual items in a series. Another prominent feature of
Transformer networks is the use of position embedding which are added to each item in the
sequence. By adding these position embedding, the order of the sequence was built into
the sequence itself and allowed the entire sequence to be processed simultaneously. This
dramatically improved the run and training time of Transformer networks (on graphics
processing unit (GPU) architectures). Transformers outperformed all RNN models and
are currently considered SOTA in almost all sequence tasks (but see Legendre Memory
Units (LMU) RNNs [Voelker et al., 2019]). Unfortunately, the attention mechanism (which
uses a Softmax function over all inputs in the sequence) and the parallel processing of all
items in the sequence are different from how the brain handles sequential data and are not
considered biologically plausible.

3.4 Biologically plausible ANNs

From the very beginning, the architecture of ANNs was inspired by the structure of the
brain [Rosenblatt, 1958, Fukushima, 1988]. Their use of populations of simple and identical
non-linear units to develop large complex systems is similar to how the brain uses neurons
as building blocks for complex sensory systems. Moreover, their stacking of layers of these
units into hierarchical systems is reminiscent of the anatomically and functionally distinct
areas of sensory systems, through which information passes sequentially (at least as a
first pass). CNNs take further inspiration from the visual cortex and restrict connections
between neurons to spatially confined areas, resembling the small cRF's of simple V1 cells
[Hubel and Wiesel, 1962]. Moreover, commonly included pooling layers are designed to
tolerate small translations in the responses of feature extracting neurons, in a manner
similar to how complex cells in V1 develop tolerances to spatial phase changes of simple
cells.

There are also some remarkable similarities between the features learned by trained
CNNs and tuning preferences of neurons in the ventral stream. This is even more aston-
ishing considering that CNNs are trained with objective maximizing cost functions without
any neurophysiological constraints [Yamins et al., 2014, Yamins and DiCarlo, 2016]. The
first feature extracting layer of CNNs learns multiple Gabor-like edge detectors and colour
blobs that are analogous to tuning profiles of V1 neurons [Krizhevsky et al., 2012, Zeiler
and Fergus, 2014]. The complexity of features learnt by CNNs increases with depth [Guclu
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and van Gerven, 2015, Zeiler and Fergus, 2014], rivaling the increase in neuron selectivities
as one traverses down the ventral stream [Kruger et al., 2012].

Many studies have shown that there are also similarities between internal representa-
tions in CNNs and the ventral visual stream. Khaligh-Razavi and Kriegeskorte [2014] used
representation similarity analysis [Kriegeskorte et al., 2008] to show that objects CNNs rep-
resent similarly are likewise similarly represented by the primate I'T cortex. The similarity
was greatest for the last dense layer of AlexNet [Krizhevsky et al., 2012]. Yamins et al.
[2014], Cadieu et al. [2014] showed that measured neuronal responses in various parts of
ventral stream can be expressed as simple linear combination of activations of deeper layers
of CNNs. In the model they considered [Zeiler and Fergus, 2014], the last network layer was
the best at explaining measured I'T responses while the penultimate layer best explained
responses in V4 cortex. In Khan and Tripp [2017], Tripp [2017], statistical properties of IT
neurons and their populations were compared with those of nodes in CNNs. Many simi-
larities were found including population level spareness and size tuning bandwidth. Given
their best-in-class performance and superior ability to explain neural activities in multiple
cortices, deep CNNs were considered best in class mechanistic models of the ventral visual
stream [Yamins and DiCarlo, 2016].

More recently, driven by the goal of maximizing task level performance, the architec-
tures of state-of-the-art (SOTA) models have become significantly more complex; they can
include hundreds of layers and multiple branching structures. Not only has it become
difficult to map these models back to the brain, but Schrimpf et al. [2018] has shown that
they are also worse at explaining internal representations of the ventral visual stream.
Moreover, many other differences between CNNs and the brain’s visual system have been
observed. Rajalingham et al. [2018] showed that even though deep CNNs categorized ob-
ject categories similarly, their within category responses to specific instance of objects were
not predictive of primate responses, suggesting that the underlying mechanisms by which
ANNSs reach their decisions may be different. Geirhos et al. [2018] observed that CNNs
trained to classify objects on ImageNet [Deng et al., 2009], a large dataset containing mil-
lions of natural images of 1000 different objects, showed a clear bias for object texture over
object contours and shape. Humans, on the other hand, rely mainly on object contours
when making decisions. Deep networks also have well-known functional limitations, such
as being easily fooled by adversarial stimuli [Szegedy et al., 2013, Nguyen et al., 2015],
poor generalization outside the distribution of training data [Hendrycks and Dietterich,
2019, Geirhos et al., 2018, Serre, 2019], and poor sample efficiency [Lake et al., 2015].

These differences and commonly found recurrent connections in the ventral stream has
lead to many researchers interested in developing biologically plausible ANNs to focus on
incorporating recurrence into CNNs. There is even recent evidence that recurrent activity

o8



is involved in fast ’core’ object recognition [Kar et al., 2019]. Several different approaches
have been tried. Below, I highlight some of the more heavily cited ones.

3.4.1 Recurrent convolutional neural networks

Liang and Hu [2015] attempted to capture lateral within-layer interactions by including
an extra convolutional operation focused on the same layer’s activations but at a previous
time in a new recurrent convolutional layer,

zijp(t) = o (w,]:u(i’j)(t) FwixED (- 1) + bk) , (3.16)
where, z;;x(t) is the activation of the node at position (i, j) for kernel k at time ¢, wi
is the kth feedforward kernel, w7 is the kernel that models lateral interactions, u(9(t)
is the feedforward input to the layer at time ¢, x() (¢t — 1) is the recurrent input (the
activation of the layer) at time ¢ — 1 and o() is the activation function. In the full model,
where activations of all nodes are considered simultaneously, multiplications are replaced
with convolutions. Recurrency in this recurrent convolutional neural network (rCNNs) is

different from general RNNs as inputs are static and only lateral interactions change with
time.

Liang and Hu [2015] constructed a 5 convolutional layer CNN model with the top 4
layers replaced with recurrent convolutional layers. An identical number of kernels was
used in the feedforward and lateral directions. The model was compared with 2 control
feedforward networks with a similar number of parameters and convolution operations re-
spectively. Classification error was compared over the MNIST, CIFAR 10/100 [Krizhevsky
et al., 2009] and the Google Street View Numbers [Netzer et al., 2011] datasets. The net-
work outperformed these control models. Since then, newer models have surpassed this
model’s performance.

Spoerer et al. [2017] extended the recurrent convolutional layer of Liang and Hu [2015]
to additionally include feedback from a higher layer,

b l t
Nk = 0 (Wo pPrm—15 + Why thr—1mi g + W e 11 + bok) (3.17)

where h.,,;;r is the activation of the node at position (,j) in response to kernel k, in
layer m at time 7, w?, ;, wi, ., wl, , are the kth kernel in the bottom up, lateral and top
down directions of layer m, by, is a bias term and () is the activation function. By omit-
ting some of the connections, three different recurrent convolutional layers were defined:

bottom up and lateral connections (BL), bottom up and top down connection (BT), and
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all three connections (BLT). For each type, a 2 hidden layers CNN was constructed. These
models were compared with two feedforward control models for which the kernel size or
the number of feature kernels where increased to match the parameters of the recurrent
models. Classification performance of all five networks were compared over MNIST with
various distortions. T'wo types of occlusion distortions were added to images: digital debris
where fragments of other classes were added on top of the target class and digital clutter
where multiple complete classes were overlapped. Additive white Gaussian noise was also
added to test images.

Spoerer et al. [2017] found that under all considered distortions, recurrent neural net-
works outperformed feedforward models. Moreover, under the digital debris condition
recurrent connections offered greater resilience to higher levels of occlusion; percentage
decrease of classification error dropped much less for recurrent networks with increasing
levels of occlusion. This was not the case for digital clutter where full classes overlapped.
Recurrent convolutional still performed better than feedforward connections, but fell sim-
ilarly with occlusion increased. Amongst the recurrent networks, BLT and BL had similar
performance except under the highest levels of occlusions. When white Gaussian noise
was added to input images, recurrency did not offer much advantage. Classification per-
formance was similar to the case when no noise was added. However, this may be due to
the amount of noise added, as a similar result was seen for feedforward networks.

Spoerer et al. [2020] expanded the BL model variant to a 7 layer network and showed
that recurrent CNNs can be used on much larger datasets such as ImageNet. They com-
pared their model with several feedforward control models whose parameter were matched
to the recurrent model in several ways including: increasing the kernel sizes, adding more
feature maps and adding more layers. The recurrent BLL model was able to outperform all
feedforward controls of similar capacities. Moreover, they observed that with every iter-
ation the classification accuracy of model predictions increased. By using a threshold on
the probabilistic predictions of the model, they could flexibly trade off between time and
accuracy in the model. Finally, they found a high correlation between human reactions
time and the number of iterations the model spent on individual images.

3.4.2 CORnet-S

In Kubilius et al. [2019] the CORnet-S model was introduced. Its architecture was inspired
by the high level neuroanatomy of the brain’s visual system and consisted of four opera-
tional blocks that were modeled after the V1, V2, V4 and IT cortices. Each block contains
2 to 3 convolutional layers and other non-feature extracting layers, such as max pooling
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and batch normalization. Recurrent connections were added at the block level rather than
at individual convolutional layers; block outputs are fed back into their inputs at each
time step. Moreover, each block iterates though a predefined number of time steps before
passing its outputs to the next block. Inputs from lower layers feed into a block only in
the first time step. In all subsequent time steps, inputs are replaced by recurrent outputs
by means of a gate. The output of the last I'T layer feeds into a dense layer that maps its
activity into category predictions.

The model was trained on the task of object classification on ImageNet. Trained models
were tested for accuracy and for the ability to explain a large benchmark of V4 and IT neu-
ral recordings as well as behavioural measurements (Brain-Score [Schrimpf et al., 2018]).
The CORnet-S model achieved the highest ranking on Brain-Score benchmark and out-
performed many feedforward models of similar capacities on classification accuracy. Based
on their results, Kubilius et al. [2019] claimed CORnet-S as the current best mechanistic
model of the ventral visual stream.

3.4.3 Horizontal Gated Recurrent Unit and Gamma-Net

The Horizontal Gated Recurrent Unit (hGRU) Model of Linsley et al. [2018] is a single layer
convolutional RNN model that was inspired by lateral connections in the V1 cortex. Unlike
standard RNNs, recurrent interactions were designed based on the interactions between
units in an existing computational model of the neural phenomenon of surround modulation
[Mély et al., 2018]. Linsley et al. showed that their model is proficient at detecting long
range spatial patterns on a synthetic visual task that involved tracing fragmented contours
to determine if two circles were connected. The model matched or outperformed several
feedforward models including those that had several orders of magnitudes more parameters.
In addition, learnt lateral connections between component units contained several examples
of concentric circles with opposing polarities. A connection structure that is consistent
with hypothesized excitatory near-cRF and inhibitory far-cRF of surround modulation
[Angelucci et al., 2017, Shushruth et al., 2013]. Finally, when the model was trained
on another synthetic visual task that involved detecting fragmented linear contours, its
performance monotonically dropped as the spacing between fragments increased, consistent
with behavioural trends observed by [Li and Gilbert, 2002].

In building their model, although they started by modeling interactions between units
as proposed by Mély et al. [2018], several modifications were made to improve model train-
ability and expressiveness. In particular, a Gated Recurrent Unit (GRU) [Cho et al., 2014]
inspired architecture that included multiple learnable gates was incorporated. Compared
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to vanilla RNNs, gated RNNs are better at learning long range dependencies [Tallec and
Ollivier, 2018]. The set of equations below describe how lateral interactions between units
were modeled,

Compute suppression gates,
Gilt] = o (U ® Holt — 1] + b)), (3.18)

where U; € R>EXK are learnable kernels that act on the output activity of all com-
ponent units, Hs[t — 1], at time step ¢t — 1, K is the number of input as well as output
channels, ® is the convolution operator, b; are biases and ¢ is a sigmoid non-linear acti-
vation function.?

Compute suppressive influences,
Ci[t]| =W & (G4[t] © Hs[t — 1)), (3.19)

where W € RS*SXEXE are Jearnt lateral weights, S x S is the spatial extent of lateral
kernels and ® is the Hadamard product. A default size of 15 x 15 was used as the spatial
extent of lateral kernels.

Calculate the recurrent input,
H,[t] = (X — Ci[tl(aH[t — 1]+ p)), (3.20)

where X is the feedforward input, a and g control the multiplicative and additive in-
fluences of suppression respectively and ( is the hyperbolic tangent non-linear activation
function.

Compute the mixing gate,
Gslt| =0 (U ® Hq[t] + bs), (3.21)

where U,y € RUXIPXEXK are learnable kernels that act on the recurrent input, H,[t] at time
t and by are biases.

Compute enhancing influences,

Colt] = W ® H[1]. (3.22)

2The notation used has been slightly modified from that of Linsley et al. [2018] to improve clarity.
In particular, the collective interactions of the entire layer are used instead of a particular unit in the
layer. Furthermore, the superscripts identifying recurrent inputs (1) and outputs (2) have been changed
to subscripts.
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Calculate the potential output update,
H,[t] = ¢ (kH\ [t] + BCL[t] + wH, [t]Cy[t]) (3.23)

where b and w controls the additive and multiplicative influences of excitatory influences
and k controls the influence of recurrent input directly (without excitatory influences).?

Mix the potential output update with the previous output to get the recurrent output
at time step ¢,

Hlt] = 1 (HQ[t (1 — Galt]) + Holt] + G2[t]> (3.24)

The above recurrent layer received inputs from a preceding convolutional layer that
consisted of 25 kernels of size 7 x 7. These kernels were initialized as Gabor filters with
12 different orientations plus a radially symmetric difference of Gaussian kernel. Outputs
of the convolutional layer were passed though a squaring non-linear activation function
before being fed into the hGRU layer. Outputs of the hGRU layer were passed to a read
out stage that consists of two 1 x 1 convolutional filters, batch normalization and a global
max pooling layer that mapped onto desired output dimensions.

In Linsley et al. [2020b], they extended their model into a multi-layer hierarchical
model, vy-net, that included similarly designed feedback connections(fGRU) and multiple
hGRU layers. When trained on the task of object contour detection in natural images,
~v-net models matched the performance of SOTA feedforward models. However, when
trained with smaller subsets of the data, ~-net models outperformed their feedforward
counterparts. Trained models also replicated a well known psychophysical phenomenon,
the orientation tilt illusion [O’Toole and Wenderoth, 1977]. In the orientation tilt illusion,
the perceived orientation of a central circular grating tilts away from the orientation of a
surrounding concentric grating when both have similar orientations and tilts towards the
orientation of the surrounding grating when both have relatively orthogonal orientations.

3.5 Precautions when comparing biological systems
and DNNs

While DNNs can be used to shed more light and explore the inner workings of the brain
[Cichy and Kaiser, 2019, Barrett et al., 2019], there are some important factors that need to

3In later revisions of the model [Linsley et al., 2020b], the kH [t] term was removed and non-negativity
was more strictly enforced by replacing, ¢ with a ReLLU nonlinear activation function. In addition, ReLU
activation functions were added to the enhancing and suppressive influences as well.
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be taken into account before drawing conclusions. DNNs are infamous black-boxes whose
internals are hard to interpret. It is tempting to attribute the human-like performance of
DNNs to the same underlying principles [Buckner, 2019]. However, just because two sys-
tems have the same performance does not mean they utilize the same internal mechanisms.
It is possible to solve tasks in multiple ways, especially complicated high dimensional ones.

DNNs are also prone to shortcut learning |[Geirhos et al., 2020]; they will use any
discriminative feature, available in training data, to solve the task. More often than not,
they will use the simplest ones and will overly rely on them at the expense of others. On
complicated tasks these features can be very different and unexpected from those used by
humans [Geirhos et al., 2018, Brendel and Bethge, 2019, Funke et al., 2021]. The problem
with using these features is that although they work well on training data and on test
data generated from the same underlying probability distribution, they typically fail to
generalize to data that is out-of-distribution from the training set.

For complicated tasks, it is often difficult to detect shortcut learning. Recently, a
number of studies have suggested guidelines on how to design and test models so that
they learn intended solutions as opposed to a shortcut. In particular, [Funke et al., 2021]
pointed out that it is important to carry out several different analyses to equate strategies
and at multiple levels Lindsay [2020]. Sinz et al. [2019] suggested the possibility of adding
constraints to models to narrow the solutions space of DNNs. These inductive biases
can guide networks to prefer certain solutions over others. Suggestions included adding
more biologically realism to constrain model architectures, matching neurophysiological
data and simultaneously training on multiple tasks [Tripp, 2019]. Finally, Geirhos et al.
[2020] highlighted the importance of testing trained models with out-of-distribution data
to ensure models learnt the underlying principles correctly.

exX
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Chapter 4

Contour Integration in Artificial
Neural Networks

In the previous chapters, I reviewed several existing computational models of contour in-
tegration. These models can replicate neural mechanisms in exceptional detail and can
reproduce many observed neurophysiological data. Unfortunately, they cannot satisfac-
torily relate contour integration to high-level goals of the complex systems that they are
part of. ANNs on the other hand, are capable of solving high-level tasks. However, so-
lutions learnt by DNNs are difficult to interpret. Often these solutions are different from
those anticipated by humans. It is important to constrain these models so that they favor
desired solutions over shortcut solutions [Geirhos et al., 2020]. In this chapter, I propose
my approach to constraining DNNs by incorporating architectures, nodes, and the interac-
tions proposed by these computational models into DNNs. Incorporating realistic neural
mechanisms is a good way to relate mechanism to function.

In this chapter, first, the proposed ANN based model of contour integration is described.
Connections within the model and incorporated attributes of V1 lateral connections are
discussed. Second, the model is trained on a dataset of synthetic fragmented contours.
The dataset contains stimuli typically used to study properties of contour integration in
the brain. Third, to see if the model learnt to integrate contours in a manner similar
to the brain, trained models are analyzed for consistency with several known behavioural
and neurophysiological properties of contour integration. Fourth, learnt lateral connection
structures of trained models are compared with observed properties of V1 lateral connec-
tions. Fifth, a sensitivity analysis of the model’s parameters is carried out to investigate
how individual parameters influence its performance. Sixth, different variants of the model
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are explored and compared to investigate the role of its individual components. Finally,
the model is compared with existing models of contour integration.

4.1 Contour integration block

The central component of the model is the contour integration (CI) block [Khan et al.,
2020]. Tt models V1 orientation columns' and the interactions between them. Each orienta-
tion column represents a population of neurons that respond to edges of similar orientations
at a particular spatial location. Individual orientation columns are modeled with a pair of
excitatory (E) and inhibitory (I) nodes. An E-I pair and all of its connections are shown in
Figure 4.1. E and [ nodes reciprocally connect within a node pair and selectively with other
nodes in their vicinity via lateral connections. E nodes receive inputs from neighboring E
nodes and from the I node in their node pair. E nodes send their outputs to neighboring E
and I nodes. I nodes receive inputs from neighboring E nodes but only send their outputs
to the E node in their node pair. They do not connect with other I nodes.

Output

+ @ r&:‘ ‘r'+ -

Input

Figure 4.1: Internal connections of the contour integration block. Best viewed in
colour. Each excitatory (4) and inhibitory (-) pair represents a V1 orientation column.
Outbound connections of a single excitatory node are highlighted in blue, while those of
its paired inhibitory node are shown in red. Connections ending in a circle are excitatory
while those ending in a bar are inhibitory.

! More precisely, it models neurons in the superficial layers of V1 orientation columns.
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In the brain, lateral connections of V1 orientation columns are sparse and preferentially
connect with neighbors with similar orientations [Stettler et al., 2002]. Existing contour
integration models (see Section 2.4) use fixed association-field shaped [Field et al., 1993]
connection structures to model directed lateral connections of orientation columns. In this
implementation, I do not force fixed lateral connection patterns, but learn them through
optimizing for task performance; all E-I pairs are connected over a defined spatial area and
by minimizing loss on high-level tasks, the model learns which connections to keep and
which ones to get rid of. Additionally, a sparsity constraint is used to retain only the most
prominent connections (see Section 4.3). The constraint penalizes weights that are far
away from the origin and encourages them to be small. Lastly, batch normalization [Ioffe
and Szegedy, 2015] is included to model the spatially spread but weak omni-directional
inhibition of contextual interactions [Kapadia et al., 2000].

The interactions between nodes are derived from the differential equation based contour
integration model of Piéch et al. [2013]. To incorporate it into neural networks, I used
Euler’s method to express its components as difference equations. The resultant equations
can then be trained using standard RNN training techniques [Linsley et al., 2018, Tallec
and Ollivier, 2018]. The final form of these interactions is represented by,

vy = (1= 0o(a)zia +o(a) [=0(Jay) fy (1) + Lo + 1+ We ® fo(Xin)], (4.1)
ye = (1 =a(0)yer +0(b) [0(Jye) fa(0) + Loi + Wi ® fo(X0)] (4.2)

Here, x and y are the membrane potentials of E and I nodes, respectively, f(.) is
a non-linear activation function that transforms membrane potentials into firing rates,
o(a), o(b) are functions of the membrane time constants of component neurons, o(J,,),
o(Jyz) are local I — E, E — I connection strengths, o() is the Logistic Sigmoid function
which constrains time constants and local connection strengths to be positive, W, are
lateral excitatory connections from E nodes in nearby columns to E, W; are connections
from nearby E nodes to I, f.(X;) is the output of all modeled nodes at time ¢, ® is the
convolution operator, I is the external input and Ij is a node’s background activity. E
nodes also locally self connect, E — E. This is included in W, which connects neighboring
columns and includes those that operate over the same spatial location.

The model of [Piéch et al., 2013] used fixed positive only lateral connections between
E-I pairs. In my model, these connections are learnt. However, regular ANNs do not put
any sign constraints on their learnt parameter. To ensure internal nodes interacted in a
manner consistent with the model of [Piéch et al., 2013], lateral weights are constrained
to be positive only; during the learning process, negative weights are clipped. Details on
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how the above equations were derived from the differential equation model of [Piéch et al.,
2013] are given in Appendix A.

The full CI block consists of a 3D grid of E-I pairs; separate E-I pairs are defined at each
spatial location and at each input channel. Here, channels refers to the different features
extracted by the preceding layer. Orientation columns connect with neighboring columns at
different spatial locations and on different channels (including those at the same location)
via lateral connections. Parameters of E-I node pairs are shared across spatial locations
but not across channels. The CI block acts on the output of an edge extraction layer (a
standard first layer of a convolutional network). The external input to each E-I node pair,
I, is the output of a single node at the corresponding spatial and channel location in the
preceding layer. Feedforward input is received only by E nodes. After iterating through
the CI block for Ny, steps, E node outputs are passed to the next layer. The spatial extent
of V1 lateral connections S is much larger than cRF of V1 neurons neurons [Stettler et al.,
2002]. Consistent with this, S was defined to be much larger than edge extracting kernels.
Parameters of the CI block as well as their default settings are shown in Table 4.1.

Feedforward control block

The CI block was compared with a control feedforward block with matching capacity (num-
ber of parameters). The control block contained a matching number of convolutional layers
but ordered them sequentially. Fach convolutional layer had the same configurations and
parameters as those used in the CI block. Additionally, batch normalization and dropout
layers (paropout = 0.3) were added after every convolutional layer. This was necessary to
prevent the control from over-fitting training data. The same sparsity constraint as used
on lateral connection kernels in the CI block was used on the convolutional kernels of the
control block. However, unlike the CI block, no positive-only weight constraint was used
for the control block and it was free to choose whichever weights led to the highest perfor-
mance. For ease of notation, the term CI block refers to this control block as well as the
actual CI block and the network type is used to differentiate between the two (model vs.
control).

4.2 The complete model

The CI block, of both the model and the control, sits atop an edge extraction block. The
same edge extraction block was used. For edge extraction, the first convolutional layer of a
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Figure 4.2: Model architectures. The main component of the model is the contour
integration (CI) block. It consists of a 3D grid of orientation columns and models the
horizontal interactions between them. Each orientation column is modeled by a pair of
excitatory (E) and inhibitory (I) nodes. Each orientation column receives as input the
output of an edge extraction unit at the same spatial location and channel. Horizontal
connections connect orientation columns with other orientation columns at different spa-
tial locations and channels. These connections are learnt by optimizing performance on
high-level tasks. The full model consists of three main blocks: edge extraction, CI and
classification blocks. Edge extraction and CI blocks are common for all tasks. For edge
extraction, the first convolutional layer of a ResNet50 [He et al., 2016] that was previously
trained on ImageNet [Deng et al., 2009] was used. Task specific classification blocks: edge
detector (Section 5.1), fragments classifier (Section 4.3), binary classifier (Section 5.2) map
contour integration activations to output labels. For each convolutional (conv) layer, the
square brackets specify the number, size, and stride length of kernels. Batch normalization
(BN) layers were typically used after convolutional blocks. Bi-linear interpolation was used
for up-sampling in the edge detector classification block.
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Name Description Setting ~ Trainable

Nitors Number of recurrent iterations 5 No
S Spatial Extent of lateral connections 15 No

0 (Juy) I — E connection strength 0.1 Yes
o(Jyz) E — I connection strength 0.1 Yes
o(a) E node membrane time constant 0.5 Yes
a(b) I node membrane time constant 0.5 Yes
W, Excitatory lateral connections [chin, S, S| Yes
W; Inhibitory lateral connections [chin, S, S| Yes

Table 4.1: Parameters of the contour integration block. Values for non-trainable
parameters were fixed at the start of training. Trainable parameters were initialized by the
indicated value and allowed to change during training. S is the spatial extent of lateral
kernels and ch;, is the number of input channels. Parameters shown are for a single unique
orientation column. The full contour integration block modeled ch;, unique orientation
columns.

ResNet50 model [He et al., 2016] that was pre-trained on ImageNet [Deng et al., 2009] was
used. Typically, a batch normalization (BN) and max pooling layer (stride length of 2) were
included after the edge extraction block and before the CI block. Not only did this reduce
computational complexity (by reducing the spatial dimensions over which the recurrent
CI block acts) but improved performance as well. The output of the CI block is passed
to classification blocks that map activations to desired outputs. Separate classification
blocks were used for each considered task. In general, capacities of classification blocks
were kept to a minimum to allow the CI block to do most of the work. Figure 4.2 shows
the architectures of all the models that were used in this work.

4.3 Synthetic contour fragments task

As a first test of the network, I used stimuli typically used to study biological contour
integration [Field et al., 1993, Li et al., 2006, 2008]. Li et al. [2008] found that macaque
monkeys progressively improved at detecting contours and had higher contour enhanced
V1 responses with experience on these stimuli. Hence, contour integration is learnable
from these stimuli. Each input stimulus consisted of a grid of Gabor fragments that
were identical in every aspect except for their orientations. The orientations of a few
adjacent (contour) fragments were aligned to form a smooth contour. The orientations
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Figure 4.3: Contour fragments stimuli. (Best viewed in colour). A and B, Training
stimuli. All line segments are Gabor fragments, which are identical except for their ori-
entations. The orientations of a few adjacent fragments were aligned to form a smooth
contour (highlighted in red). Remaining fragments had orientations that were uniformly
distributed. Contours differed in their location, length, inter-fragment curvature and their
component Gabors. C and D, Test stimuli use to analyze the impact of length and inter-
fragment spacing. Test stimuli consisted of centrally located contours with different lengths
(C) and different spacing between contour fragments (D).

of the remaining (background) fragments varied randomly. Embedded contours differed
in their location, length [. (number of fragments), inter-fragment degree of curvature 3,
and the type of Gabor fragment used in their construction. Example stimuli are shown in
Figure 4.3.

Stimulus construction

Stimuli similar to those of Field et al. [1993] were used. To construct an input stimulus,
first, a Gabor fragment, contour length in number of fragments, [., and curvature, 3, were
selected. Each Gabor fragment was a square tile the same size as the cRF (kernel spatial
size) of the edge extracting layer. Second, a blank image was initialized with the mean
pixel value of the boundary pixels of the selected Gabor. This was done to blend the edges
of Gabor fragments with the background. Third, the input image was sectioned into a grid
of squares (full tiles) whose length was set to the pixel length of a fragment plus the desired
inter-fragment spacing, ds,;. For training stimuli, inter-fragment spacing was set to the
same length as fragment length. The grid was aligned to coincide the center of the image
with the center of the middle full tile. Fourth, a starting contour fragment was randomly
placed in the image. Fifth, the location of the next contour fragment was determined by
projecting a vector of length dy,y £ dre/s and orientation equal to the previous fragment’s
orientation £4. The random direction of § and distance jitter were added to prevent them
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from appearing as cues to the network. Sixth, a fragment rotated by 3, was added at this
position. The fifth and sixth steps were repeated until |!/2] contour fragments were added
to both ends of the starting fragment. Seventh, background fragments were added to all
unoccupied full tiles. Background fragments were randomly rotated and positioned inside
the larger full tiles. Lastly, a binary label of whether the center of a contour fragment was
present in each full tile was generated.

All input images were of a fixed size of 256x256 pixels. The first convolutional layer
of a ResNet50 model uses kernels of size 7x7. Consequently, Gabor fragments of size 7x7
pixels and full tile of size 14x14 pixels were used in stimulus construction. This resulted
in labels of size 19x19 for each input stimulus.

Dataset

The contour fragments dataset contains 64,000 training and 6,400 validation images. In
its construction, 64 different Gabors types, contours of lengths, I., 1, 3, 5, 7, 9 fragments
and inter-fragment rotations, 3, of 0° & 15° were used. Gabor parameters were manually
picked with the only restriction that the resultant Gabor fragment visually appear as a
well-defined line segment. Each Gabor fragment was defined over three channels and the
dataset included coloured as well as standard black and white stimuli. [, = 1 stimuli were
included to teach the model to not do contour integration when there are no co-aligned
fragments outside the cRF. Contour integration requires inputs from outside the cRF and
the model had to learn when not to apply enhancement gains. For these stimuli, the label
was set to all zeros. An equal number of images were generated for each condition. Due
to the random distance jitter, the random inter-fragment rotation between fragments, and
the random location of contours, multiple unique contours were possible for each condition.
Moreover, background fragments varied in each image. Code to generate the dataset is
freely available at https://github.com/salkhan23/contour_integration_pytorch.

Task

Networks were tasked with predicting which full tiles contained contour fragments (red
squares in Figure 4.3A and B) and which did not. A fragment classifier block (see Figure
4.2) was used to map CI block outputs to the desired label size. The fragments classifier
block’s capacity was intentionally kept low to allow the CI block to do most of the work.
The same classifier block was used by the model and control.

Network performance was evaluated using the mean Intersection over Union (IoU) score
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of predictions and labels,

IoU(A, B) Z% 3 (4.3)

where, N is the number of images in the dataset, and A and B are network predictions and
labels for image n. To get network predictions for an image, its output was passed through a
Logistic Sigmoid non-linearity. Next, sigmoid outputs were converted to binary predictions
by thresholding. A threshold value of 0.5 was used. Given the binary prediction of a
network for each full tile location, the intersection with the label was found by multiplying
the predictions with the label while the union was found by summing labels and predictions
followed by subtracting the intersection of the two. An IoU score of 1 signifies a perfect
match between predictions and labels, while an IoU score of 0 means that there is no
match between what the network predicted and the label. The mean IoU score was found
by averaging IoU scores over all images in the dataset.

Training
Models were trained to minimize binary cross entropy loss,

Hy(g) = = D [plog(a) + (1 = p)log(1 — )] (4.4

where p is the label and ¢ is the soft (not binary but in range [0, 1]) prediction of the model.
Here, N represents the total across all images as well as the total predictions per image.

To encourage sparse lateral connections, L1 regularization loss multiplied with an in-
verted 2D Gaussian mask was applied over excitatory and inhibitory lateral kernels,

Laparsity = [(1 = G(oar))We[ + [(1 = G(our))Wil, (4.5)

where G(.) is a normalized 2D Gaussian mask whose spatial spread, oy, is defined by its
standard deviation (SD). Importantly, the use of the Gaussian mask allowed for a gradual
tapering of connection strengths rather than a hard cutoff of lateral connection size.

The total loss was defined as,
Ltotal = Hp(Q) + /\Lsparsity7 (46)

where \ is a weighting term for sparsity loss. For the contour fragments dataset, A was
set to 107" and oy, was set to 10 pixels. Learnt lateral connections of the model (but not

73



the control) were restricted to be positive-only. After every weight update step, negative
weights were clipped to 0. Networks were trained for 100 epochs with the Adam [Kingma
and Ba, 2014] optimizer. The starting learning rate was set to 10~* and was reduced by a
factor of 2 after 80 training epochs. A fixed batch size of 32 was used during training.

All input images were of a fixed size of 256 x 256 pixels. Input images were normalized
with the dataset mean and standard deviation to be zero centered with a unit SD on
average.

4.4 Results

In this section, performances of the model and the control on the contour fragments dataset
are analyzed and compared. First, networks are compared on task level performance. IoU
scores while training are compared to analyze training efficiency. Peak IoU scores over all
training are also compared. Second, trained networks were tested on stimuli similar to those
used to analyze behavioural and neurophysiological properties of contour integration in the
brain. Networks were tested for consistency with observed trends. Third, learnt lateral
connections of the model were compared with known properties of lateral connections in
the V1 cortex.

4.4.1 Behavioural (task level) performance

Train Validation Straight Contours Only
Model  87.33 +£0.28% 84.48 + 0.30% 85.73 + 3.15%
Control 71.62 £ 0.35% 73.61 +0.38% 82.16 + 5.53%

Table 4.2: Peak IoU scores on the contour fragments dataset. Peak values (mean
+ SD) were averaged across 5 independent runs for each network. In the straight contours
only column, trained networks were tested on a new dataset composed of centrally located
straight contours only. These results were compared with observed data [Li et al., 2006].

The loss and IoU scores over the time course of training for both the model and the
control are shown in Figure 4.4. Results were averaged over 5 independent runs with
different random seeds. Early in training, IoU scores of the control rose faster than the
model. However, they quickly plateaued while the models performance kept improving.
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Figure 4.4: Loss and intersection-over-Union (IoU) scores over the time course
of training on the contour fragments dataset. Best viewed in colour. Model (blue)
and control (red) (A) loss and (B) Mean IoU vs training time. Results were averaged over
5 independent runs with different random seeds. Dark lines show mean values averaged
over multiple runs and shaded area shows one standard deviation from means.

Average peak IoU scores over training are shown in Table 4.2. The model performed =~ 11%
better than the control (Validation). Table 4.2 also shows mean IoU scores over centrally
located straight contours from the analysis of the effects of contour lengths (see Section
4.4.2). Both the model and the control were better at detecting straight contours compared
with curved contours, consistent with Field et al. [1993]. For straight contours, the model
outperformed the control although the relative increase in performance when comparing
all contours in the dataset and straight contours was higher for the control.

4.4.2 Effects of contour length and fragment spacing

Trained networks were tested for consistency with behavioural and neurophysiological data
with centrally located straight contours only (consistent with available neurophysiological
data [Li et al., 2006]). Behavioural performance was quantified using task-level mean IoU
scores. Neurophysiological responses were monitored at the output of centrally located
neurons in CI Blocks. For the model, this corresponded to the outputs of E neurons while
for the control, the outputs of the second convolutional layer were monitored. In test
stimuli, the starting contour fragment was always centered at the image center such that it
was fully contained within the cRF of monitored neurons. This ensured centrally located
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neurons always received a full stimulus within their cRF. When testing for the effect of
fragment spacing, the distance between fragments was varied; a condition that was not seen
by networks during training. New test stimuli were generated for each analyzed neuron
and were not seen by networks during training. Example test stimuli are shown in Figure

4.3C and D.

Neural responses of each of the 64 channels of the CI block were analyzed separately. For
each channel, first, the optimal stimulus was found by monitoring which of the 64 Gabor
fragments elicited the maximum response in the cRF. Next, test stimuli were constructed
by extended contours in the preferred direction (the orientation of the optimal Gabor
fragment). Similar to Li et al. [2006], neurophysiological responses were quantified by the
contour integration gain,

Output ., RC'D
l., RCD) = , 4.
G, RCD) Output I.=1, RCD =1 (47)

where the relative co-linear distance (RCD) is defined as the ratio of inter-fragment spacing
to fragment length in pixels and [, is the number of contour fragments in the contour, i.e,
contour length. The condition [, = 1, RCD=1 is when a neuron receives its optimal stimu-
lus within its cRF and no neighboring contour fragments align with it. All training stimuli
used a fixed inter-fragment spacing of RCD=1. In test stimuli, variable inter-fragment
spacing was modeled by changing dy,; (see Section 4.3) while keeping the fragment length
constant.

The effects of contour length were analyzed using [. = 1, 3, 5, 7, 9 fragments and a fixed
spacing of RCD=1 (see Figure 4.3C). The effects of inter-fragment spacing were analyzed
using RCD = [7, 8, 9, 10, 11, 12, 13, 14] / 7 and a fixed [. = 7 fragments (see Figure 4.3D).
For each condition, results were averaged across 100 different images.

Results were collected over 5 separate runs of each network. While analyzing results,
only neurons for which the optimal stimulus (non-zero CI block output for any single Gabor
fragment in the cRF) were considered. Out of the 320 possible, 188 model and 178 control
neurons met this criteria. Average IoU scores as contour length increases are shown in
Figure 4.5A. Both the model and control excelled (> 95%) at detecting the absence of
contours. There were dips in performance for length 3 contours as they were the hardest
to detect. For all other lengths, prediction accuracy increased with length. For straight
contours, behavioural performance of both networks were quite similar.

Larger contrasts between the model and control were observed in neurophysiological
gains. Figure 4.5B shows population average gains as contour lengths changed. For pop-
ulation average gains, neurons that were unresponsive to any contour condition (all zero
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Figure 4.5: Synthetic contour fragments results. A, IoU vs. contour length for straight
contours. Behavioural classification performance of the model and control were similar.
B and C, Population average gains vs. length and vs. fragment spacing, respectively.
Contour lengths are expressed in number of fragments and spacing between fragments are
expressed in relative co-linear distance (RCD). RCD is defined as the ratio between the
spacing between fragments to the length of a fragment in pixels, consistent with available
neurophysiological data. Measured neurophysiological gains were extracted from the results
of Li et al. [2006]. Dark lines show mean values and shaded areas represent unit standard
deviation from means. The results were averaged across 5 different runs for each model. D
and E, Gradients of linear fits of the outputs of individual neurons as contour length and
as inter-fragment spacing were increased. F and G, similar plots as D and E but for the
control. The model shows consistent trends with neurophysiological data while the control
behaved differently.

gains) and those that had outlier gains (> 20) for any contour condition were also re-
moved. Typically, these large gains were seen for neurons that had small responses to
lc.=1, RCD =1 contours and small changes in the CI block outputs significantly affected
their gains. This resulted in the removal of an additional 36 and 144 control neurons. For
the model, average gains increased monotonically with contour length. Control average
gains did not change appreciably with contour length. Across populations (model and
control), individual neurons displayed different amounts of contour enhancement. There
was a wide range of enhancement gains exhibited by individual neurons as shown in the
mean +1 SD shaded area in Figure 4.5B. This may be an artifact of the limited dataset
size used during training; it may not have contained enough data to stimulate all edge
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extraction kernels sufficiently to learn their contour enhancing lateral kernels.

Figure 4.5B also shows measured neurophysiological gains from Li et al. [2006] ex-
periments. Here, population average gains from two monkeys used in their study were
extracted using WebPlotDigitizer [Rohatgi, 2020] and their weighted averages are plotted.
The impact of contour length on observed and model gains was consistent. Figure 4.5C
shows population average gains as the spacing between fragments was increased. Model
gains decreased monotonically with spacing, consistent with neurophysiological data [Li
et al., 2006]. Control gains, surprisingly increased with spacing.

To get a better picture of overall trends, I plotted histograms of the gradients of linear
fits to CI block outputs as contour length and as inter-fragment spacing were increased.
This was done for all neurons for which the optimal stimulus was found. Since outputs
and not gains were considered, additional filtering due to outliers gains were removed.
Results of the model are shown in figure 4.5D and E while those of the control are shown
in Figures 4.5F and G. Most model neurons were consistent with population average trends
and showed positive slopes as contour lengths increased and negative slope when fragment
spacing increased. The results of the model are consistent with observed neurophysiological
trends while the control behaved differently. Remarkably, their behavioural predictions
were comparable. The model and control appear to be employing different strategies to
solve the task and only the model aligns with neurophysiology.

4.4.3 Learnt lateral kernels

Sincich and Blasdel [2001] found that superficial layer V1 lateral connections are anisotrop-
ically distributed; lateral connections spread out more densely in the direction of the pre-
ferred orientations of source V1 neurons. In their experiments, first, axon staining dye
was injected into V1 orientation columns and the spread of lateral connections was ana-
lyzed. Areas where axons terminated in clusters were identified as patch sites (after the
patchy structure of lateral connection, see Section 2.2.4). Second, the directional selectivity
of lateral connections was quantified using an averaging vector, R, of all patch locations
surrounding an injection site (see details below). Third, the axis of elongation of lateral
connections was compared to the orientation preferences of stained V1 orientation columns.
In 11 of the 14 injections sites, a highly elliptical distribution of lateral connections was
found (mean index of ellipticity = 0.42) as well as a close correspondence between the axis
of elongation of lateral connections and the preferred orientation of injected V1 columns
(mean difference of 11°).

The magnitude, r, of R of an injection site quantifies the ellipticity of lateral connec-
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tions, while the angle, #, points in the direction along which patches are densest (axis of
elongation). The degree of ellipticity measures the compression of a sphere to form an ellip-
soid. It is defined as the ratio of the semi-major (largest) axis to the semi-minor (smallest)
axis of an ellipsoid. To compute (r, ) of an injection site, first patch vectors starting at
the injection site and ending at the center of all patch sites were constructed. Next, the
vector sum of all patch vectors was calculated. Before the vector sum was calculated, the
orientation of individual patch vectors were doubled. This was done to account for the
fact that orientations separated by 180° point in the same direction. As a result, patches
that were in opposite directions summed constructively while those that were orthogonal
summed destructively. After computing the vector sum, the resultant angle was halved
to get 6. An injection site with equidistant patches uniformly distributed around it, gave
an average vector of (0,0) and reflected an omni-directional spread of lateral connections.
Finally, r was divided by the magnitude sum of all patch vectors to give a normalized index
of ellipticity, r,. A value of 7, of 0 indicated no ellipticity while a value of 1 indicated a
straight line.

Following the analysis of Sincich and Blasdel [2001], the degree of ellipticity and axis of
elongation of lateral connections of trained models were investigated. First, the orientation
preferences of feedforward edge extraction kernels were found by least square fitting indi-
vidual kernels to 2D Gabor functions [Movellan, 2002]. The main component of the edge
extraction block was the first convolutional layer of a ResNet50. It contains 64 kernels and
each kernel has 3 input channels and a spatial spread of 7x7 (see Figure 4.6). The fitting
algorithm fit each kernel to 8 parameters of a 2D Gabor including: the x and y location
of its center, its amplitude, the orientation, wavelength and phase offset of its sinusoid
component and the spatial extent and ratio of the spread in the z versus y direction of
its Gaussian envelope. Separate fits for each input channel were found and the orientation
of the channel with the highest absolute amplitude was selected as the kernel’s preferred
orientation. Orientation preferences of the pre-trained edge extraction kernels are shown
in Figure 4.6. Feedforward kernels for which Gabor fits could not be found or for which
fitted Gabors did not visually appear to be directed were excluded in the analysis. Out of
the 64 feedforward kernels, orientation preferences of 42 kernels were considered.

Example learnt lateral excitatory and inhibitory kernels of a trained model are shown
in Figures 4.7 and 4.8 respectively. Each set contained 64 kernels. Each individual kernel
had 64 input channels (output of edge extraction block) with a spatial spread of 15x15.
To visualize lateral kernels, their channel dimension was summed to compress their di-
mensionality. Visually, lateral excitatory connections spread out further and were more
directed than inhibitory connections.

Next, the average r, for each lateral kernel of the CI block was found. Excitatory and
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inhibitory lateral kernels were analyzed separately. Slightly different from the method of
Sincich and Blasdel [2001], individual patch vectors were calculated for every lateral weight.
Moreover, as the weights of each connection were available, they were used to weight indi-
vidual patch vectors. Stronger weights contributed more to the average vector compared
to weaker ones. Only those lateral kernels for whom the orientation of feedforward kernels
were found were considered in the analysis. For the trained model discussed above, the
average 1, for excitatory neurons was found to be 0.27 while for the inhibitory kernels
it was substantially lower at 0.10. The distributions of r, for excitatory and inhibitory
kernels are shown in Figure 4.9A and 4.9B respectively. Results were consistent across
the 5 independently trained models; population average excitatory r,= 0.25 £ 0.02 and
inhibitory 7, = 0.10 & 0.01 (mean £ 1 SD).

The average r, of excitatory neurons was lower than what was found by Sincich and
Blasdel [2001]. However, they excluded nearby connections and only considered connec-
tions that were outside a radius of 200 um of the injection location. Moreover, all patch
vectors were equally weighted. The strength of lateral connections drops sharply with
distance [Chisum et al., 2003]. In this analysis, connection weights were used to weight
component patch vectors. As Sincich and Blasdel [2001] only considered excitatory con-
nections, a similar comparison with inhibitory connections was not possible.

Next, the orientation difference, 04 ¢f, between that axis of elongation of lateral con-
nections and the orientation preferences of their source feedforward kernels was analyzed.
Results of the trained model discussed previously are shown in Figure 4.9C. In the fig-
ure, points were scaled by the normalized index of ellipticity. Larger markers show more
anisotropic connections and are in general more aligned with the feedforward orientation
preference. To account for wrapping effects around 0° and 180°, the smallest angular
difference between 84¢; and 180 — 04,4y were considered. This resulted in angular dif-
ferences in the the range +90°. Both the excitatory and inhibitory connections show
a strong correspondence with feedforward kernels (mean excitatory 64 7;=29°, mean in-
hibitory 64;ry=31°). There were a few outliers where the axis of elongation was orthogonal
to the preferred orientation of feedforward kernels. The results were consistent across the
5 independently trained models (population average excitatory 4 rf = 29° & 2° and in-
hibitory 64,5 = 29° 4+ 4°). The difference in orientations between lateral connections axis
of elongation and feedforward orientation preferences was larger than what Sincich and
Blasdel [2001] found, however the trend was similar; most lateral connections project in
the same direction as the orientation preference of their associated feedforward kernel.

In other models with fixed connection structures (see Section 2.4), typically a simi-
lar size is used for both excitatory and inhibitory connections. Contrastingly, the model
learns smaller omni-directional inhibitory kernels compared with excitatory kernels. More-
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over, previous models align the orientation of lateral inhibitory kernels in the orthogonal-
to-the-preferred direction of feedforward kernel. These are modelled after the observed
orthogonal-to-the-preferred direction regions of inhibitory contextual interactions [Kapa-
dia et al., 2000]. Contrastingly, the model learns inhibitory connections aligned with the
preferred orientation of feedforward kernels. One possible reason for this discrepancy may
be related to the input filtering done by these models. In the models of Li [1998], Piéch et al.
[2013], at each spatial location only the input edge with the strongest magnitude passed
through to the contour integration model. All other inputs at that location are suppressed.
There is no interference from other edge extracting neurons responding to sub-optimum
stimuli on the trajectory of the contour. The results here indicate this source of interference
is strong and most inhibitory connections appear to be suppressing less relevant neurons
in the same direction as the contour.

The elliptical structure of learnt excitatory lateral connections is in agreement with
the hypothesized layout of lateral connections proposed in the Association Field Model
[Field et al., 1993]. This structure was believed to be necessary to do curve-linear contour
enhancement. In an update to their original model, Field et al. included short range
omni-directional inhibition connections [Field et al., 2013]. Their inclusion was based on
the results of Das and Gilbert [1999]. Many of the neurons in V1 in Layer 2/3 have den-
drites and axons that branch out omni-directionally over short distances [Malach et al.,
1993]. This is the case even for neurons that were close to hypercolumn boundaries and
pinwheel singularities (see Section 2.2.4) where orientation preferences change sharply. Das
and Gilbert [1999] measured the correlation between the firing rates of several pairs of V1
neurons. Many of these neuron pairs crossed orientation boundaries and point of sharp ori-
entation changes. By using stimuli that specifically targeted these connections as opposed
to long range horizontal connections, it was found that they are relatively independent of
direction and largely suppressive. The learnt inhibitory connection structures of my model
are consistent with this result (see Figure 4.10).
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Figure 4.6: Feedforward edge extraction kernels and their preferred orientations.
Best viewed in colour. Each subplot shows one of the 64 kernels of the first convolutional
layer of a ResNet50 model that was trained on ImageNet. This served as the main com-
ponent of the edge extraction block. Each kernel was fit to a 2D Gabor function to find
its preferred orientation(red lines). Kernels for whom no fits were found (no red line) were
skipped.
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Figure 4.7: Learnt lateral excitatory kernels of a trained model. Each subplot
plots one of 64 learnt lateral kernels. Individual kernels had 64 input channels and had a
spatial spread of 15 x 15. To view the kernels, the channel dimensions were compressed
by summing over all input channels. Many excitatory kernels appear to be highly directed,
spreading out in one dimension more than others.
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Figure 4.8: Learnt lateral inhibitory kernels of a trained model. Each subplot
plots one of 64 learnt lateral kernels. Individual kernels had 64 input channels and had a
spatial spread of 15 x 15. To view the kernels, the channel dimension were compressed
by summing over all input channels. The spatial extent of inhibitory kernels was less than
the spread of excitatory kernels and appears to be omni-directional.
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Figure 4.9: Feedforward kernel orientations and lateral kernels axis of elongation.
Best viewed in colour. A and B, Histograms of normalized index of ellipticity of lateral
excitatory and inhibitory connections respectively. Lateral excitatory connections spread
out further and are more directed than inhibitory connections. C, Axis of elongation of
lateral connections plotted against the orientation of their corresponding feedforward edge
extraction kernels. Each point is scaled by its normalized index of ellipticity; larger markers
are more directed kernels. Dashed lines show +90° angular difference. Lateral kernels that
lie on these lines are orthogonal to feedforward kernels.

Figure 4.10: Updated Association Field Model. Figure reproduced from [Field et al.,
2013]. Field et al. updated their theorized projections of lateral connections (association
field model), by superimposing short-range omnidirectional inhibitory connections on top
of the long range directed excitatory connections [Field et al., 2013]. The model pro-
posed here, learns excitatory and inhibitory lateral connections aligned with their updated
proposed layout.
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4.5 Sensitivity analysis

In this section, I analyze the roles of individual CI block parameters and training hyper-
parameters on task-level performance. Additionally, alternative choices for several selected
training algorithms are compared. In the interest of time, models were trained with a
subset of the data which consisted of 20,000 training and 2,000 validation images. Images
were randomly selected from the contour fragments dataset and different subsets were
chosen for each parameter. Except for the parameter under investigation, all other model
and training parameters were set to their default values, as described in Sections 4.1 and
4.3. For each parameter setting, the model was trained for 100 epochs. Mean training and
validation IoU scores were recorded after every epoch and parameter values were plotted
against peak mean IoU scores across all epochs. Finally, none of the held-out test stimuli
(see Section 4.4.2) were considered in the sensitivity analysis.

4.5.1 Model parameters

Within the CI block, interactions between E and I nodes repeat N5 times before outputs
are passed to subsequent layers. Figure 4.11A shows the effect of varying Ny, on task per-
formance. Mean IoU scores continued to rise even with the highest tested Ny.,.,. However,
the relative increase above 8 iterations was negligible. Increasing the number of recurrent
iterations significantly increases training time as well as memory requirements; RNN mod-
els use backpropagation through time (BPTT) [Werbos, 1990] to calculate gradients and
this requires storing activations after each iteration across the model. As a compromise
between performance and run time complexity, Ny, was set to 5 in the default settings.

The spatial extent of lateral kernels, S, defines how far E-I node pairs can commu-
nicate with their neighbors. The same size was used for both excitatory and inhibitory
connections. The impact of varying S on model performance is shown in Figure 4.11B.
Performance peaked for a spatial size of 15 x 15 before decreasing slightly and plateauing.
As a result, S was set to 15 x 15 by default.

Figure 4.11C shows how internal connections of E and I node pairs affect performance.
In this analysis, individual connection strengths, o(J,,) and o(J;), of all model E-I node
pairs were held constant. By default, these parameters are defined as trainable and are
independently learnt by each channel-wise E-I pair. Hence, the analysis here only reflects
their influences partially. Behavioural performance was not significantly impacted by fixed
0(Jyy) and o(Jy,). However, peak validation performance was seen when both were set

86



o ~ 0.2. In the default settings, both o(J,,) and o(J,,;) were initialized to 0.1 and were
allowed to be adjusted by the learning process.

The effects of fixed membrane time constants of E and I nodes on performance are
shown in Figure 4.11D. Similar to the analysis of connection strengths, individual time
constants o(a) or o(b) were fixed for all E-I pairs but by default are defined as trainable.
Behavioural performance was not significantly impacted by o(a) or o(b). Hence, membrane
time constants of both E and I nodes were randomly initialized around 0.5 and were
trainable.

4.5.2 Training parameters

The performance impact of changing the learning rate is shown in Figure 4.12A. On this
smaller dataset, model performance was highest for a learning rate of 1072, while for the
control the best learning rate was 10~*. However, when the model was training on the
full dataset, best model performance was achieved by setting the learning rate to 107
Consequently, the default learning rate for both the model and the control was set to 107

Sparse lateral connections were modelled by including a sparsity constraint in the total
loss function. The sparsity constraint was defined as L1 loss modulated by an inverted
Gaussian mask (IGM L1 Loss) on lateral kernels, W, and W; (see Section 4.3). The same
mask was used for both excitatory and inhibitory lateral connections. The relative weight
of the sparsity constraint to the criterion loss in the total loss function was set to the default
value of 107*. The effects of varying the width of the Gaussian mask on performance are
shown in Figure 4.12B. Validation [oU scores plateaued at a mask width of 8, while training
IoU scores continued to increase with mask width. However, the relative increase above a
width of 10 was small. Consequently, mask width was set to 10 by default.

Figure 4.12C (blue curves) shows the performance impact of sparsity loss weight relative
to criterion loss in the total loss function. The width of the Gaussian mask was set to the
default value of 10. Peak validation performance was seen for a sparsity loss weight of
10~*. Higher weights significantly attenuated performance while lower weights, plateaued
at a slightly lower value. Consequently, default sparsity loss weight was set to 1074,

The chosen sparsity constraint was also compared with other more common forms of
weight regularization including L1 and L2 loss,

Loparsity-ra = Y _ Well + Y IIWill (4.8)
Loparsityr2 = Y [IWell® + Y IWill*, (4.9)
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where ||.|| and ||.||* are the L1 and L2 norms of lateral kernels.

The effect of sparsity loss weight on task performance for these two weight regularization
methods are shown in Figure 4.12C. For loss weights below 10~*, the performance of models
trained with IGM L1 Loss was always better than models trained with L1 weight loss while
the performance of models trained with L2 weight loss sparsity were better than models
trained with IGM L1 Loss. However, L2 sparsity loss penalizes large weights and tends
to distribute activity amongst many smaller weights. This has an adverse effect on the
results on the neurophysiological gains experiments; smaller distributed weights produce
small neuronal activations and this results in large contour gain measurements for small
changes in output activations. For weights 10~° and above, performance flattened at similar
values for all considered sparsity constraints. As a result, IGM L1 loss was used as the
default weight sparsity constraint.

In Figure 4.12D, different criterion loss functions are compared. By default, Binary
Cross Entropy (BCE) Loss was used (see Section 4.3). The loss function treats the two
classes (contour fragment vs. background fragment) equally. However, in each input
stimulus, there are many more background fragments than contour fragments. To account
for this class imbalance, Xie and Tu [2015] proposed class-balanced BCE Loss,

1 N

p(@) =—5 ) [p*Blog(q) + (1 —p)(1 - B)log(l—q)], (4.10)

i=n

where 3 = Nog/N, . is defined as the ratio of the number of background fragments to total
fragments in an image, p is the contour fragment label and ¢ is probability of a contour
fragment predicted by the model. § is a dynamically calculated parameter for each image
and proportionally scales up the loss associated with contour fragments by the number of
background fragments in the image while at the same time scales down the loss associated
with background fragments proportional to the number of contour fragments. As can be
seen in Figure 4.12D, using class-balanced BCE Loss resulted in worse performance with
the default learning settings. Therefore, by default, BCE loss was used.
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Figure 4.11: Effects of CI block parameters on performance. Best viewed in colour.
A, Number of recurrent iterations. Performance increased as the number of iterations
increased. Increasing the number of iterations above 8 did not significantly improve per-
formance but increased training time substantially. B, The spatial extent of lateral connec-
tions. Performance peaked at a size of [15 x 15] before plateauing at a slightly lower ToU
score. C, Fixed E — I (red) and I — E connection strengths. Behavioural performance was
not significantly impacted by fixed values of J,,, or Jy,. D, Fixed membrane time constants
of E (blue) and I(red) nodes. Similar to connection strengths, fixed time constant settings

did not significantly impact performance.
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Figure 4.12: Effects of training parameters on performance. Best viewed in colour.
A, Learning rate. On the smaller dataset used in the sensitivity analysis, peak model
performance was seen for a learning rate of 103 while for the control the best learning
rate was 10™%. B, The effect of mask width of the inverted Gaussian masked (IGM)
L1 Loss sparsity constraint on performance. Validation performance plateaued at values
above 8 while training performance continued to rise with mask width. C, Performance
impact of sparsity loss weight with respect to criterion loss. Three different sparsity loss
functions were considered. At the default weight setting of 107*, IGM L1 Loss had the
best performance. D, Different criterion loss functions. For the default learning rate of
1073, Binary Cross Entropy (BCE) outperformed class-balanced BCE.
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4.6 CI block variations

In this section, I consider alternative formulations of the CI block to analyze the roles
of its individual components as well as some of the constraints imposed during training.
All considered variants were trained on the full contour dataset and used the same edge
extraction and classification blocks as the original model; only the CI blocks were changed.
Trained variants were compared with behavioural and neurophysiological data for straight
contours of different lengths and inter-fragment spacing [Li et al., 2006]. Results were
also compared with the results of the original model (Section 4.4.2). For each variant,
results were averaged across at least 3 independent runs with different starting random
seeds. Unless stated otherwise, all variants were trained with the default training settings
described in Section 4.3.

4.6.1 Relaxed lateral connections positivity constraint

In the original model, lateral weights were forced to be positive by clipping negative weights
to zero after every parameter update step while training. Pruning learnt negative lateral
weights interferes with the learning process (by setting some weights to non-recommended
values) and significantly slowed down training time. Positive-only lateral weights were
necessary to compare learnt lateral connection structures with physical properties of V1
lateral connections. Other methods of encouraging positive lateral weights were also tried
including, an additional L2 weight loss on negative lateral weights, convolving with ex-
ponential lateral kernels, and convolving with the absolute value of lateral kernels [Minni
et al., 2019]. However, no significant improvements were seen and I continued with the
simplest approach of clipping negative weights.

Alternatively, I tried a more relaxed positivity constraint on lateral kernels; interactions
of lateral connections with the rest of the membrane potential dynamics were restricted
to be positive but not the kernels themselves. This was accomplished by using a ReLU
non-linearity on the outputs of lateral kernels and is similar to how positivity was enforced
on local E-I connection strengths and membrane time constants. With this modification,
the membrane potential equations of E and I nodes were defined as,

v, =(1—o0(a))vi—1 + o(a) [—0(Jay) fy(Yi—1) + Lloe + I + ReLUW, ® f,(X;-1))], (4.11)

ye = (1 =0 (b))ye—1 + 0(b) [0(Jye) fa2e) + Loi + ReLU(W; ® fo(X3))] (4.12)

where parameters and operators are identical to how they were defined in Section 4.1.
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Figure 4.13: IoU scores of the RPCM variant over the time course of training on
the contour fragments dataset. Best viewed in colour. Mean IoU scores of the model
(blue), control (red) and the RPCM variant (green) vs. training time. Dark lines show
mean values and the shaded area shown one standard deviation from mean values.

Importantly, this constraint did not interfere with the learning process. This improved
the trainability and as a result the task level performance of the model variant. Others have
also included this less strict constraint to model biologically plausible lateral interactions
[Linsley et al., 2020b].

IoU scores of the relaxed positivity constraint model (RPCM) variant over the time
course of training are shown in Figure 4.13. In the interest of time, RPCM networks
were trained for 50 epochs only. The default starting learning rate of 10~* was used but
was dropped by a factor of 2 after 40 epochs. All other training parameters were set to
their default values. As can be seen in the figure, trained networks had fully converged
by the end of training. RPCM variants trained more efficiently (higher IoU score for
same epoch) and substantially outperformed both the model and the control. Peak IoU
scores, averaged across three runs, are shown in Table 4.3. On the complete dataset,
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Train (%)  Validation(%) Straight Contours Only(%)
Model 87.33 £ 0.28% 84.48 £+ 0.30% 85.73 + 3.15%
Control  71.62 +0.35% 73.61 4+ 0.38% 82.16 4 5.53%
RPCM 94.11 + 0.05% 91.40 + 0.12% 91.23 + 1.64%
CurrDi 86.86 + 0.48% 83.81 4+ 0.39% 81.35 + 2.45%
RCNNM_a 8258 +£0.31% 81.26 +0.20% 68.94 + 2.31%
RCNNM.b 77.65+0.24% 77.04 +2.09% 84.48 +1.21%

Table 4.3: Peak IoU scores of model variants on the contour fragments dataset.
Each row corresponds to a different model variant. RPCM is the relaxed positivity con-
straint model (Section 4.6.1), CurrDi is the current-based-divisive-inhibition variant (Sec-
tion 4.6.2), RCNNM_a and RCNNM_b are two different solutions of the recurrent convo-
lutional neural network model variant (Section 4.6.3).

the RPCM variant performed =~ 7% better than the model and =~ 18% better than the
control (validation). The performance of the RPCM variant was similar on curved and
straight contours. Contrastingly, both the model and the control found it easier to detect
straight contours. However, even for straight contours, the RPCM variant outperformed
both networks.

The effect of contour length on behavioural performance is shown in Figure 4.14A. For
all considered contour lengths, IoU scores of the RPCM variant were higher than those
of the model. Apart from the higher performance, trends in the results of the RPCM
variant were similar to the model; performance dipped for length 3 contours, but increased
monotonically for longer contours. Figure 4.14B shows how average contour integration
gains of centrally located neurons changed as the length of contours was increased. Consis-
tent with measured neurophysiological data, gains increased monotonically with contour
length. However, measured gains of neurons in the RPCM variant were lower than those
of neurons in the model.

The effect of inter-fragment spacing on average neuronal gains of monitored neurons is
shown in Figure 4.14C. For inter-fragment spacing of up to 1.5 RCD, gains monotonically
decreased with spacing, consistent with observed neurophysiological data. However, for
larger fragment spacing, neuronal gains showed a slight increase and were inconsistent with
neurophysiological data. The observed gain increases were smaller than those observed in
neurons of control networks.

Histograms of gradients of linear regression fits of the outputs of monitored neurons
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Figure 4.14: RPCM variant results on the contour fragments task. The RPCM
variant is similar to the original model but did not enforce a strict positive-only constraint
on lateral kernels. A, IoU vs. contour length for centrally located straight contours.
Behavioural IoU scores of the RPCM variant were higher than the original model for
all contour lengths. B and C, Population average contour integration gains vs. length
and vs. fragment spacing respectively. Similar to the original model, gains monotonically
increased with contour length. However, actual gains were smaller than those of the model.
For inter-fragment spacing of up to 1.5 RCD, gains monotonically decreased. For higher
inter-fragment spacing, slight increases in gains were seen. F and G, Gradients of linear fits
of CI block outputs vs. length and vs. fragment spacing of individual neurons in RPCM
networks. Individual neuronal trends were similar to population trends.

as contour lengths and inter-fragment spacing were increased are shown in Figure 4.14 F
and G respectively. For the majority of neurons, output activations increased with contour
lengths and decreased with fragment spacing, consistent with trends observed in population
results. However, there were a few neurons whose outputs increased with spacing. The
number of neurons that showed gain increases as inter-fragment spacing increased was
larger in the RPCM variant than in the model.

4.6.2 Divisive E-I interactions
Piéch et al. [2013] also defined a current-based-divisive-inhibition (CurrDI) version of their

contour integration model (see Section 2.4.3). The main difference between this version and
their current-based-subtractive-inhibition (CurrSI) version, from which the original model
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Figure 4.15: CurrDi variant results on the contour fragments task. The CurrDi
variant is modeled after the current-based-divisive-inhibition model of Piéch et al. [2013].
A, ToU vs. contour length for straight contours. Behavioural classification performance of
the currDi variant was similar to the original model. B and C, Population average contour
integration gains vs. length and vs. fragment spacing. Contour integration gains increased
with contour length. Gains increased with fragment spacing and were inconsistent with
observed neurophysiological data. F and G, Gradients of linear fits of CI block outputs vs.
length and vs. spacing curves of individual neurons, respectively. The majority of neurons
showed increases in output activation as contour lengths increased and decreases in output
activations as the spacing between fragments increased. However, a number of neurons
showed output increases with fragment spacing. Compared to the model, a larger number
of neurons showed outputs increasing with fragment spacing.

is derived, is in the way in which inhibitory neurons interact with excitatory neurons; in-
hibitory nodes interacted divisively rather than subtractively with excitatory nodes. Using
the approach used to convert the CurrSI model into a trainable neural network model (see
Appendix A), a trainable neural network model of their CurrDI model was constructed.
The final forms of the membrane potentials of E and I node are given by,

[Oe + I + We ® fx(thl)
L+ 0(Jay) fy(ye-1)

yo = (1= 0(0))yr1 +0(b) [0(Jya) ful@r) + Los + Wi ® fo(X)], (4.14)

where parameters and operators are identical to how they were defined in Section 4.1.

ry = (1—o0(a))xi1 + o(a) : (4.13)
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The CurrDi variant was trained using the default training settings. Similar to the
original model, all lateral weights were constrained to be positive.

Peak ToU scores, averaged across 3 independent runs, for the CurrDi variant are shown
in Table 4.3. Over the entire dataset, the performance of the currDi variant was similar
to the original model. When only centrally located straight contours were tested, the
performance of the currDi variant was &~ 4% worse than the model.

The effect of contour length on behavioural performance is shown in Figure 4.15A.
Overall trends were similar to the model; performance dipped for length 3 contours and
monotonically increased with larger contour lengths. The dip in performance for length 3
contours was larger for the currDi variant compared with the model. At this length, the
model was ~ 11% better. For all considered lengths, model performance was always better
that the currDi variant.

Figure 4.15B shows the effect of contour length on neurophysiological gains of centrally
located neurons in the CI block of the CurrDi variant. No gain increase was seen for length
3 contours. For longer contours, gains increased monotonically with contour length. In
general, neuronal gains were smaller than those of neurons in the original model. Figure
4.15C shows the effect of inter-fragment spacing on gains. Spacing results were inconsistent
with observed neurophysiological data. For small inter-fragment distances (RCD < 1.12),
gains dropped with spacing. However, for larger spacing, gains initially increased and then
plateaued at a value higher than the gain for the RCD=1 condition.

Histograms of linear fits to the output activation vs. contour length and vs. fragment
spacing results of individual neurons of the currDi variant are shown in Figure 4.15F and G
respectively. Neurons showed increases in output activations as contour lengths increased.
However, gradients of increases were in general less than those of the model. Although the
majority of monitored neurons showed decreases in output activations as inter-fragment
spacing increased, a sizable proportion of neurons showed increases in gain as spacing
increased. The number of neurons that showed increases was larger for the currDi variant
then the model as well as the RPCM variant.

4.6.3 Recurrence with no E-I organization

To investigate the significance of the E-I organization of neurons, the model was com-
pared with a variant based on recurrent CNNs [Liang and Hu, 2015, Spoerer et al., 2017].
The recurrent CNN variant (RCNNM) included the same number of recurrent steps and
matched the capacity of the model. However, it did not include inhibitory neurons and
therefore lacked the organization of component neurons in a 3D grid of E-I pairs. The
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Figure 4.16: RCNNM variant results on the contour fragments task. The RCNNM
variant is modelled after recurrent CNNs [Liang and Hu, 2015]. The variant had the
same capacity and the same number of recurrent steps as the original model, but lacked
its biologically inspired connection structure. Trained variants converged to one of two
solutions: RCNNM_a and RCNNM_b. A, IoU vs. contour length for straight contours.
For short contours, test IoU scores of the RCNNM_a variant was significantly worse than
the RCNNM_b variant as well as the original model. B and C, Population average contour
integration gains vs. length and vs. fragment spacing. Gains of both solutions increased
monotonically with contour length, consistent with neurophysiological data. Gains of the
RCNNM _a variant increased with as spacing between fragments increased, inconsistent
with neurophysiological data. Gains of the RCNNM_b variant decreased monotonically
with inter-fragment spacing. Gain trends in the RCNNM_b variant were consistent with
neurophysiological data but were noticeably higher. D and E, Gradients of linear fits of
outputs vs. length and vs. inter-fragment of individual channels of the CI block for the
RCNNM_a variant. F and G, similar plots as D and E but for the RCNNM_b variant.

main purpose of this variant was to disentangle the role of recurrence from the biologically
inspired organization of connections of the model.

The CI block of the RCNNM variant consisted of two convolutional layers and was
defined as,
hy =0 BN(W, ® x4+ W, ® hy_1)], (4.15)

where h;_; is the hidden state activation at iteration ¢t — 1, x is the feedforward input from
the edge extraction block, W,, W), are learnt convolutional kernels that act on the output
activations of the preceding edge extraction block and hidden state activations respectively,
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® is the convolutional operator, BN is a batch normalization layer and o is a non-linear
activation function. Similar to Liang and Hu [2015], lateral connections were modeled by
the weight matrix acting over hidden activations.

Feedforward inputs propagated Ny, times through the CI block before hidden layer
activations were passed to subsequent layers. Component convolutional layers were iden-
tical to those used in the model. Similar to the model, all convolutional layers of the CI
block were constrained to be positive only. To ensure a fair comparison with the model,
Niier was set to 5 and the default training settings were used. A ReLU function was used
as the non-linear activation function.

Peak ToU scores of the RCNNM variant are shown in Table 4.3. Trained RCNNM
variants converged to one of two solutions: RCNNM_a, RCNNM_b. RCNNM _a occurred
~ 62.5% of the time while RCNNM_b occurred =~ 37.5% of the time. For each solution,
results were averaged over three independent runs. Over the entire dataset, the RCNNM_a
variant outperformed the RCNNM_b variant by ~ 4% (validation IoU). Compared to the
model, the performance of the RCNNM_a variant was =~ 3% worse, while the RCNNM_b
variant was ~ 7% worse. When the two solutions were tested on straight contours that
optimally stimulated centrally located neurons, the performance of RCNNM_a variants
dropped dramatically (=~ 12%). RCNNM_b variants fared much better on similar stimuli,
and showed a performance improvement of ~ 7% compared to its performance on the val-
idation dataset. Finally, even on straight contours, the model showed higher performance
than the RCNNM_b variant.

The effect of contour length on behavioural IoU performance is shown in Figure 4.16A.
The RCNNM _a variant found it difficult to detect short (length 3 and 5) contours. IoU
scores for length 3 contours were particularly bad (0.58 %) as the RCNNM_a variant failed
to detect almost all component fragments. In contrast, RCNNM_b variants performed
particularly well on length 3 contours and even outperformed the model by ~ 11%. For
all other contour lengths, the model outperformed both solutions of the RCNNM variant.

Figure 4.16B shows the effect of contour length on neurophysiological gains of centrally
located neurons of the CI block. Both solutions showed monotonically increasing gains
with contour length. However, neuronal gains in the RCNNM_b variant were significantly
higher than those of the RCNNM_a variant, the model and observed neurophysiological
data. A sharper contrast between the the two solutions was seen when the effects of
fragment spacing were analyzed. Gains for the RCNNM _a variant increased with spacing
and were inconsistent with neurophysiological data. Neuronal gains of the RCNNM_b
variant decreased monotonically with inter-fragment spacing. Trends in the gain changes
with spacing for the RCNNM_b variant were consistent with neurophysiological data but
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were noticeably higher.

Figure 4.16D and E show histograms of gradients of linear regression fits to output acti-
vations of individual neurons as contour lengths and inter-fragment spacing were increased
for the RCNNM_a variant. Figure 4.16F and G show similar plots for the RCNNM_b vari-
ant. For both solutions, most neurons showed increases in output activations as contour
lengths increased. Increases in outputs of neurons in the RCNNM_b model were larger.
Almost all neurons in the RCNNM_a variant showed positive slopes as the spacing be-
tween fragments increased and were inconsistent with neurophysiological data. Moreover,
increases in outputs were higher than those observed for neurons in the control. Fur-
thermore, gains continued to rise even at the largest inter-fragment spacing. Neurons of
the RCNNM_b variant, showed decreases in output activations as inter-fragment spacing
increased. Observed decreases were larger than those observed in neurons of the model.

In summary, the most probable solution of the RCNNM variant, RCNNM_a, had com-
parable performance to the model on the task it was trained for. However, when it was
tested with novel test stimuli, its performance dropped dramatically. An analysis of learnt
contour integration gains show inconsistencies with observed neurophysiological data, espe-
cially when the spacing between fragments were increased. A second less probable solution,
RCNNM _b, was also learnt. RCNNM_b variants had comparatively worse performance on
the training task, but was much more robust to test stimuli at the behavioural level.
RCNNM_b variants showed trends that were largely consistent with trends in the neuro-
physiology. However, observed gains were noticeably higher.

4.7 Comparison with existing models

In this section, I discuss similarities and differences between my proposed model and the
hGRU model of Linsley et al. [2018] (see Section 3.4.3 for a review). In terms of method-
ology, the hGRU model is the most similar model; it is derived from an existing compu-
tational model of a V1 neural phenomenon and uses ANNs to learn lateral connections
between component units. However, there are a number of differences that separate the
two models in their objectives, architectures and the experiments that were carried out.

First, at a high-level, the objectives of the two models are different. The hGRU model
was designed to address the inefficient detection of long-range spatial dependencies in
CNNs. Consequently, its emphasis is on task-level performance. Many biological con-
straints were relaxed to achieve higher performance. On the other hand, the objective
of my model was on modeling brain-like contour integration in ANNs. It more strictly
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adheres to biological constraints which allows it to be more directly compared with the
brain and to be used to explore the brain’s mechanism of contour integration.

Second, the hGRU model is derived from the computational model of Mély et al.
[2018], while my model is derived from the model of Piéch et al. [2013]. The computational
model of Mély et al. [2018] is in fact a model of surround modulation (see Section 2.3.5)
rather than contour integration. Surround modulation is a neural phenomenon that focuses
more on the suppressive impacts of stimuli in the extra classical receptive field (e-cRF) and
typically involves using stimuli that excite the entire e-cRF simultaneously [Angelucci et al.,
2017]. In comparison, contour integration stimuli selectively stimulate parts of the e-CRF
to see how within cRF stimuli responses are enhanced.

Third, although the hGRU model includes inhibitory influences, it does not incorporate
any inhibitory neurons. Inhibitory influences are generated from the outputs of surrounding
units and affect a unit’s input, while excitatory influences are generating from the inputs
of surrounding units and affects a unit’s output. Hence, individual units have both positive
and negative influences on each other. The separation of inhibitory and excitatory neurons
is a fundamental principle of the brain (Dale’s principle); each neuron can be excitatory or
inhibitory based on the set of neurotransmitters it releases [Dale, 1935, Eccles et al., 1954].
In contrast, inhibitory influences in my model are generated by separate inhibitory units
which is more aligned with Dale’s principle. It is also similar to how inhibitory influences
are typically modelled in contour integration models (see Section 2.4).

Fourth, recurrent interactions in the hGRU model are inspired from complex GRU
networks (see Section 3.3.2). Compared to vanilla RNNs, GRU networks are more trainable
and expressive. While performance was not directly compared, it is likely that the hGRU
model will achieve comparatively higher task-level performance. However, the hGRU model
forgoes several biological constraints to improve performance. In particular, time constants
of component units are replaced with learnable gates. These gates access the hidden state
of other units (at the same location) to determine how to modulate the unit’s activity. Not
only is this conceptually different from the time constants (internal property of a neuron)
that were replaced, but it also introduces multiple parallel paths for information to flow
between units. These multiple parallel paths also make it difficult to compare component
connections with those in the brain. In contrast, all connections in my model can be
directly mapped back to the brain.

Fifth, in my model, a strict positive-only constraint is enforced on lateral kernels during
training. This ensures that each learnt excitatory and inhibitory connection always oper-
ates in its intended direction. In the hGRU model, no similar constraint was imposed on
lateral connections. If the ANN training process learns negative weights, inhibitory con-
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nections may turn into excitatory connections and visa versa. In later revisions [Linsley
et al., 2020b], Linsley et al. force non-negativity on excitatory and inhibitory interactions
by using ReLLU non-linear activation functions on the combined outputs of lateral interac-
tions. This is similar to the RPCM model variant (see Section 4.6.1) where excitatory and
inhibitory lateral influences are forced to be as intended but not the weights themselves.
Although this more relaxed constraint was found have have better task-level performance
compared to forcing individual weights to be positive, it does not strictly conform to Dale’s
principle. Individual neurons can still have positive and negative influences on other neu-
rons, depending on the polarity of the weights learnt during training.

Sixth, because of the different objectives, different experiments were carried out for the
two models. In my analysis, the model was compared with the brain at the behavioural,
neurophysiological and neuroanatomical levels. On the other hand, the hGRU was only an-
alyzed at the behavioural and neuroanatomical levels. Moreover, even though Linsley et al.
analyzed learnt lateral kernels, I conducted a deeper analysis of lateral kernels whereby
axes of elongation of lateral connections were compared with the preferred orientation of
source V1 neuron. The association field is a directed structure that spreads out more in
the preferred direction of the cRF of neurons. Hence, to see if the model learnt lateral con-
nections that are consistent with the association field, it is necessary to look at feedforward
and lateral kernels together.

Finally, there was differences in the lateral kernels learnt by the two models. Based only
on the structure of lateral kernels, Linsley et al. categorized them into three groups: (1) a
near e-cRF region with excitatory connections and a far e-cRF with inhibitory connections
(consistent with connection patterns hypothesized by surround modulation models), (2)
association field like structures with co-linear excitation and orthogonal inhibition and
(3) more complex excitatory and inhibitory regions that are extensions of on-off regions
within the cRF of V1 neurons [Tanaka and Ohzawa, 2009]. In my analysis of learnt lateral
kernels, I found many more examples of connectivity patterns as proposed in the updated
model of the association field [Field et al., 2013]. In this model, inhibitory connections
are omnidirectional and are much shorter than excitatory connections. The differences in
learnt lateral connections may have resulted from different training tasks or the different
approaches used to visualize lateral kernels.

4.8 Discussion

In this chapter, I proposed a new model of contour integration that is based on recurrent
Convolutional Neural Networks (rCNNs). Compared to standard rCNNs [Liang and Hu,
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2015, Spoerer et al., 2017], its internal architecture and lateral connections are more strictly
aligned with those of the V1 cortex. The model also differs from existing computational
models of contour integration as its parameters are learnt instead of being fixed at start
up. The model establishes a measurable link between the low-level neural phenomenon
and high-level goals of the larger system that it is a part of. This link can be used to
quantitatively measure the role of contour integration on various high-level tasks, an area
which existing computational models have not addressed in detail.

On synthetic data composed of contours formed from co-aligned fragments embedded
in sea of identical but randomly oriented fragments, I show that the model can learn to
integrate contours in a manner similar to the brain. This was validated by comparing the
model with observed data at multiple points including at the behavioural, physiological
and the anatomical levels.

At a behavioural level, the model outperformed a feedforward control of similar capac-
ity by =~ 11% (peak IoU score). Moreover, for contours composed of 3 or more fragments,
behavioural performance monotonically increased with contour length, consistent with ob-
served data [Li et al., 2006]. At a neurophysiological level, neurons responding to contour
fragments showed elevated responses. The amount of enhancement gains (compared to
when they receive optimal stimuli in their cRFs only) seen by these neurons monotoni-
cally increased with contour lengths and monotonically decreased with spacing between
fragments, also consistent with observed data [Li et al., 2006].

In contrast, the control feedforward network displayed similar behavioural trends, but
differed markedly at the neurophysiological level; responses of neurons were largely in-
different to changes in contour length and surprisingly increased as the spacing between
fragments increased. This demonstrates that it is important to compare ANN models at
multiple levels to accurately equate models with systems in the brain [Lindsay, 2020].

Comparisons between ANNs and neuronal data are typically done using representation
similarity analysis [Kriegeskorte et al., 2008] or by expressing individual neuron responses
as a linear combinations of the activities of multiple units in a particular layer of an ANN
[Yamins et al., 2014, Cadieu et al., 2014]. Both of these approaches can be considered
population level comparisons; they do not compare individual units in the two systems
directly. At a neurophysiological level, I was interested in seeing if individual units in the
CI block behaved similar to neurons. However, exact quantitative correspondence between
units of one complex system with those of another are difficult. It is especially difficult
for ANNs as a majority of their parameters are learnt through training rather than being
fixed at initialization. Hence, in this work, responses of networks units were compared with
recorded data at a macroscopic level, where trends in responses rather than exact values
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were compared. Using this approach, it was shown that the proposed model matched
observed neurophysiological data while the feedforward control did not. Finally, it is likely
that better quantitative matches between model and neuronal responses may be possible
by using existing computational models. These models have many tunable parameters
that can be handcrafted to match neural data. Although this has not been done for the
considered neurophysiological data [Li et al., 2006].

The number of parameters of the feedforward control network was made similar to the
model by matching the number of convolutional layers and the number and size of kernels
used in each such layer. Compared to standard feedforward models, the control network
used relatively larger kernels. Many other feedforward architectures with a matching num-
ber of parameters are also possible. It is likely some of these may have better task-level
performance. Spoerer et al. [2020] compared their rCNN model with three feedforward
networks that have similar capacities but different architectures. In their control networks,
parameters were matching by increasing the spatial size of kernels, increasing the num-
ber of kernels in convolutional layers (network width) and increasing the number of layers
(network depth) respectively. They found that performance improved the most when net-
work depth was increased and the lowest when the size of kernels was increased (consistent
with previous results [Simonyan and Zisserman, 2014]). Moreover, even greater perfor-
mance may be realized if network width, depth and input image resolution are increased
proportionally under a constraint [Tan and Le, 2019]. However, the aim of the contour
integration block was to model V1 lateral connections, which are known to spread out up
to eight times the cRF of V1 neurons [Stettler et al., 2002]. Consequently, the model was
only compared with a feedforward control with kernels of similar size.

Because the model uses recurrence, it also performs a larger number of computations
per input as compared to the feedforward control. The model contained x1.0002 more
parameters that the feedforward control. By default, the model was set to use five recurrent
steps. Hence, compared to the feedforward control, it performs &~ 5.001 more computations
per image. Relatedly, it has a larger inference run time as well. However, this is inline
with how contour integration operates in the brain. Contour integration affects late-phase
responses of neurons rather than their initial responses (see Section 2.3.2).

Next, after analyzing the model at the behavioural and neurophysiological levels, learnt
lateral connections of trained models were compared with observed properties of lateral
connections of V1 neurons. It was found that excitatory lateral connections spread out
anisotropically and are densest in the preferred direction of source V1 neurons, consis-
tent with observed neuroanatomical data [Sincich and Blasdel, 2001]. The analysis was
extended to lateral inhibitory connections as well. Lateral inhibitory connections were
found to be shorter than excitatory connections and were mostly omnidirectional. Their

103



structures differed from those assumed by most existing models of contour integration. In
these models, inhibitory lateral connections are densest in the orthogonal-to-the preferred
direction of source V1 neurons and have a spatial extent that is similar to excitatory lateral
connections. Overall, the lateral connectivity suggested by my model is congruent with
the hypothesized updated association field model proposed by Field et al. [2013].

To investigate the role of individual components of the model, different permutations
of the model were also analyzed. In particular, the RPCM variant, which relaxes the
strict positive-only constraint on lateral connections but still enforces their interactions
with the rest of the model to be positive, was found to be easier to train and reached
higher peak IoU scores compared to the model. Moreover, it was generally consistent
with behavioural and neurophysiological data. However, when spacing between fragments
increased beyond a certain value, it showed slight increases in contour enhancement gains,
which was inconsistent with observed data. Although, these increases were substantially
less than those shown by the control network.

The model was also compared to standard rCNN with matching capacity. These
networks use recurrence but lack the organization of component neurons into E-I pairs.
Trained networks settled into one of two solutions: RCNNM_a and RCNNM_b. Both solu-
tions had lower behavioural performance then the model. RCNNM _a networks had higher
behavioural performance compared to RCNNM_b networks. However, their neurophysi-
ological comparisons showed inconsistencies with observed data. RCNNM_b variants on
the other hand, were consistent at both the behavioural and neurophysiological level. In
summary, both recurrence as well as the biological inspired architecture of the model were
necessary to reliably replicate results across all three points of analysis.
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Chapter 5

Tasks on natural images

In the previous chapter, it was seen that with synthetic fragmented contours stimuli, the
proposed model learns to integrate contours similar to the brain; in a manner consistent
with many observed behavioural and neurophysiological properties. Moreover, learnt lat-
eral connections were consistent with observed V1 lateral connection patterns. However,
these stimuli are unnatural and are not frequently encountered in our natural viewing en-
vironment. Yet V1 lateral connections exist in the brain. Hence, it must be possible to
learn them directly from natural scenes. It has also not been established which high-level,
frequently used tasks in our natural viewing environment, utilize and benefit from contour
integration.

In this chapter, I explore different tasks involving natural images to see if the model
can learn to integrate contours and what benefits it may provide. In particular I train the
proposed model on two tasks, detecting all edges and tracing contours in natural images.

5.1 Edge detection

To investigate how contour integration may be learnt from our natural viewing environ-
ment, I first tried the task of edge detection in natural images. Edge detection involves
detecting all edges in an image. In the literature, edge detection is often (and more com-
monly) used to refer to the task of object contour/outer boundary detection which focuses
on detecting object edges only [Martin et al., 2001, Hariharan et al., 2011]. The distinction
between the two tasks is important because contour integration is a low-level phenomenon,
whereas object awareness relies on more abstract representations that are typically learnt
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in deeper layers. In the literature, only two datasets specifically target all-edge detection:
the Multi-cue Boundary Detection Dataset [Mély et al., 2016] and the Barcelona Images
for Perceptual Edge Detection (BIPED) Dataset [Poma et al., 2020]. For the analysis of
the usefulness of contour integration for the task of edge detection, the BIPED Dataset
was selected as contains more images.

5.1.1 BIPED Dataset

The Barcelona Images for Perceptual Edge Detection (BIPED) Dataset [Poma et al., 2020]
is composed of a base set of 200 train and 50 validation (image, edge map) pairs. Input im-
ages consist of outdoor natural scenes and have a fixed size of 1280 x 720 pixels each. Edge
maps were manually annotated by computer vision specialists. The training dataset was
further expanded (by the authors) by using several data augmentation methods including;:
random image crops and rotations, horizontal flips and gamma corrections. The resultant
augmented training dataset contains 57,600 images. Sample images and ground-truth edge
maps are shown in Figure 5.1A and 5.1B. The complete dataset and scripts for generating
the augmented dataset are available at https://github.com/xavysp/MBIPED.

Figure 5.1: Edge detection in natural images stimuli. A, Example images from the
BIPED [Poma et al., 2020] dataset. Each row show a different image. B, Ground truth
edge maps for input images shown in column A. C and D, Corresponding predictions of
the control and model, respectively.
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5.1.2 Task

The task involved detecting all contours in input images. The expected output of networks
was a prediction map, the same size as input images, where each pixel expresses the
probability of whether it is an edge or not. Network performance were evaluated using
mean loU scores (see Section 4.3) between network predictions and ground-truth labels
over all pixels in an image and all images in the dataset. For computing IoU scores,
binary prediction maps of the model were generated by thresholding its outputs. Multiple
thresholds, ranging from 0.1 to 0.8 with a step size of 0.1, were experimented with.

An edge detection block was used to map CI block outputs to the same dimensions
as labels. The architecture of the edge detection block is shown in Figure 4.2. CI block
outputs were upsampled by a factor of 4, using bi-linear interpolation, to resize them back
to input sizes. Up-sampled activations were passed through two convolutional layers before
prediction maps were generated. The first convolutional layer contained 8 kernels of size
of 3 x 3 and used a stride length of 1. A batch normalization layer was added after the
first convolutional layer. The last convolutional layer, contained a single kernel of size 1
x 1, and was used to flatten activations to a single channel dimension. Outputs of the
final convolutional layer were passed though a sigmoid non-linearity to generate prediction
maps. The capacity of the edge detection block was intentionally kept to a minimum to
allow the CI block to do most of the work.

5.1.3 Training

Networks were trained using Binary Cross Entropy criterion loss as well as an inverted
Gaussian masked L1 regularization loss over lateral kernels. Details of the loss function
can be found in Section 4.3. The weight of the lateral sparsity loss with respect to the
criterion loss was set to 107* and a Gaussian mask width of 10 was used. For the model,
lateral kernel weights were forced to be positive by clipping all negative weights to zero
after each parameter update. The control model was not similarly constrained and was
free to choose weights that resulted in the best performance. All networks were trained
with the Adam optimizer for at least 50 epochs. A batch size of 32 images were used. The
learning rate was set to 1072 and was reduced by a factor of 2 after 80 epochs.

Input images were pre-processed to have zero mean and unit standard deviation (SD)
on average by normalizing using ImageNet channel means and SDs. All input images as
well as ground-truth labels were resized to a fixed size of 256 x 256 pixels.
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5.1.4 Results
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Figure 5.2: Edge detection in natural images results. A, Validation IoU scores of
the model, RPCM variant and control networks over training. The model and control had
similar performance. The RPCM variant showed slightly better performance. B and C,
Average prediction difference between model and control over the validation dataset as a
function of prediction strength. The sigmoid outputs of the model were compared with
control outputs over the full validation dataset. Using a sliding window of width 0.2 and
a step size of 0.1, control predictions within the window were highlighted and compared
with corresponding model predictions. The average difference between the model and
the control for edge pixels is plotted in B. In C average differences between the model
and the control for non-edges is shown. Positive values indicate higher model predictions
compared to control. Solid line shows mean differences and the shaded area shows unit
standard deviation around the mean.

Sample predictions of trained control and model networks are shown in Figure 5.2C
and D respectively. Visually, it was difficult to notice differences between their predictions.

Validation IoU scores over the time course of training, for a detection threshold of
0.3, are shown in Figure 5.2A. Both networks achieved their highest mean IoU scores at
this threshold. IoU scores for the other thresholds dropped off monotonically as detection
threshold deviated away from 0.3.

Peak validation IoU scores for both the model and the control was 0.45. Runs of the
model and control were also trained for 100 Epochs (default is 50 Epochs). For both these
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networks IoU scores did not improve over 0.45. Even when peak IoU scores are compared,
the two networks behave quite similarly. The contour integration block has little impact on
overall performance, and it appears that the model does not need to integrate contours to
detect them, at least on the considered dataset. To further confirm this, I trained a version
of the model with a much reduced spatial extent; lateral kernels of size 3 x 3 (default is
15 x 15, see Table 4.1). The model reached the same peak performance (model 3x3 in
Figure 5.2A). When a similar modification was made to the model on the synthetic contour
fragments dataset, its performance dropped substantially, see Figure 4.11B.

In the synthetic contour fragments dataset, all input fragments were identical and the
edge detection block did not provide any cues about which fragments were part of the
contour. Hence, it was necessary to observe neighboring neurons to determine contour
fragments. In comparison, for the task of edge detection in natural images, feedforward
edge extraction provides sufficient information to detect contours and there is little need to
integrate contextual information from neighbors. Relatedly, even for synthetic fragmented
contours, Li et al. [2006] and Chen et al. [2017] observed that V1 neurons do not show en-
hancement gains when background fragments are absent, when edge extraction activations
are clear and fragments can easily be distinguished from the background.

Weak vs. strong edge pixel detection

In the synthetic contour fragments dataset, all input image fragments are of the same
strength. In natural images, contour pixels have non-uniform strengths and some contour
parts are easier to detect than others. The models of Li [1998] and Piéch et al. [2013]
showed that contour integration can potentially enhance weak contours in natural images.
However, results were only qualitatively analyzed with a single image. It is not clear if this
is a general tendency nor how it quantitatively affects behavioural performance.

To investigate whether the CI block of the model learned to enhance weak contours,
model and control outputs were compared at different prediction strengths, pixel-by-pixel.
It was necessary to compare model and control outputs directly as binary edge labels do
not provide information on the detectability of individual pixels.

To compare predictions of the model and the control at different edge strengths, first
pre-threshold control and model outputs over the entire BIPED validation dataset were
collected. Second, a sliding window of size 0.2 was run over control outputs to highlight
pixels whose predictions lay within the desired range. Third, corresponding predictions of
the model were found. Fourth, the average difference between model and control predic-
tions were recorded. The process was repeated over the full range of predictions (0, 1) by
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sliding the window at intervals of 0.1.

Both edge pixels and non-edge pixels were separately analyzed. To extract edge pre-
dictions, network outputs were multiplied with the ground truth mask. While to separate
non-edge pixels, network outputs were multiplied with the inverted ground truth mask.
Considering edge pixels, if the mean difference is above zero, this suggests that the model is
better at detecting pixels of the corresponding strength. Considering non-edge pixels, if the
mean difference is below zero, then the model has lower tendency for false positives. Code
for carrying out this analysis is available at https://github.com/salkhan23/contour_
integration_pytorch.

The results of these analyses are shown in Figure 5.2B for edge pixels and in Figure
5.2C for non-edge pixels. Compared to the control, on average the model had higher
edge predictions up to edge strengths of 0.3. For higher edge strengths, the control was
on average better. Although the difference between the model and the control plateaued
above edge strengths of 0.6. For non-edge pixels, model outputs were on average lower than
control outputs for all control predictions above 0.2. This shows the model has a lower false
positive detection rate. Similar analyses were also carried out between the RPCM model
variant (see Section 4.6.1) and the control network. The RPCM variant was on average
better than than the control at detecting edges up to edge strengths of 0.55. Moreover,
even at high edge strengths, the predictions of the RPCM variant were only slightly lower.
For non-edge pixels, predictions of the RPCM model were lower than the control for all
prediction strengths above 0.3.

Both the model and the RPCM variant are better at detecting weaker edges compared
to the control. These results support the claim of Li [1998] and Piéch et al. [2013] that
contour integration enhances weak contours. However, this enhancement had little impact
on natural contour detection overall (IoU scores were the almost the same).

Effect of contour length on edge detectability

On the synthetic contours dataset, it was found that that longer contours are easier to
detect than shorter ones. To investigate if contour length affects their detectability in
natural images, the impact of contour lengths were analyzed. This required creating a
new dataset of contours of known lengths in natural images. First, random smooth con-
tours of various lengths were selected from the BIPED validation dataset. The proce-
dure for selecting a smooth contour from an input image using its corresponding edge
map is described in Section 5.2.1. Extracted contours were grouped into bins of length
[20-49, 50-99, 100-149, 150-199, 200+] pixels. Each bin contained at least 50,000 edge
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pixels. At inference time, networks were not aware of selected contours and were fed-
in original images from where selected contours were extracted. For each selected con-
tour, a new ground-truth label was constructed that only highlighted the selected con-
tour. Next, sigmoid predictions of networks corresponding to edge pixels were compared.
For each contour length bin the mean difference between the model and control was cal-
culated. Code for constructing the dataset and conducting the analysis is available at
https://github.com/salkhan23/contour_integration_pytorch.

Results of this experiment were repeated over three different datasets where contours
were independently collected. The control network’s predictions were compared with the
model and the RPCM variant. When the results of this experiment were analyzed, no
discernible trend with contour length was seen for either network (results not shown). It
appears contour length is not a determining factor for the detectability of contours in
natural images, at least in the BIPED dataset.
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5.2 Contour tracing in natural images

In Section 5.1, it was found that for clear natural images, it is not necessary to recurrently
integrate contours in order to detect them as feedforward edge extraction outputs provide
sufficient information. To further investigate how contour integration may be learnt in our
natural viewing environment, a new task was created where edge extraction outputs are
less helpful. The new task involved tracing image contours to determine if two appended
markers were connected by a smooth contour. In some images, markers were placed on the
same contour and were connected, while in others they were placed on different contours
and were not connected. Markers were added directly to contours in input natural images,
and networks were given no information about the selected contours. Finally, contours
in the image were fragmented by puncturing images with occlusion bubbles. The task is
inspired by the pathfinder task [Houtkamp and Roelfsema, 2010] which is typically used to
explore behavioural properties of contour integration, but uses natural images rather than
synthetic contour fragments.

5.2.1 Dataset

To construct the training dataset, natural images from the BIPED [Poma et al., 2020]
dataset were used as a starting point. Next, modified input images and new labels were
generated using the process described below.

Extracting smooth contours from natural images

The first step in constructing input images required the extraction of smooth contours from
a natural image. A random smooth contour, C}, was extracted from an (image, edge map
label) pair in the BIPED dataset. Contours were extracted by first selecting a random
starting edge pixel from the edge map. Valid starting pixels had to be part of a straight
contour in their 3x 3 pixel vicinity, either vertically, horizontally or diagonally. Next, this
starting contour was extended at both ends by adding contiguous edge pixels that were
at most +7/4 radians from the local direction of the contour. The local direction of the
contour was defined as the angular difference between the last two points of the contour.
If there were more than one candidate edge pixels, the candidate with the smallest offset
from the contour direction was selected. The process was repeated until there were no
more edge pixels at candidate positions or if the selected candidate pixel was already a
part of Cy (circular contour). Additionally, once contour length was greater than 8 pixels,
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Figure 5.3: Contour tracing in natural images stimuli. Best viewed in colour. A,
Sample image from the BIPED dataset [Poma et al., 2020]. B, Using its edges label, two
markers were randomly placed on edge pixels. C, During training, images were punctured
with occlusion bubbles to randomly fragment all image contours. D, After training, the
impact of fragment spacing was analyzed using test contours with equidistant occlusion
bubbles that were placed along contours with various inter-fragment spacing. The top
row shows an example connected class stimulus, while the bottom row shows an example
unconnected class stimulus. Only connected stimuli were used for analyzing the impact of
inter-fragment spacing.

a large-scale smooth curvature constraint was applied to check that the angle difference
between (n,n—4) and (n—4,n—8) contour points was not greater than 7/4 radians, where,
n is the last point on the contour. Contour extraction was also stopped if the large-scale
curvature constraint was not met.

Stimulus construction

After extracting C', one of its endpoints was chosen as the position of the first marker, M.
Next, a second edge pixel that did not lie on C; was randomly selected. To ensure that
connected and unconnected stimuli had similar separation distances, the selection process
used a non-uniform probability distribution to favor edge pixels that were equidistant with
the unselected endpoint of C';. The probability distribution was constructed by calculating
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the distance of all edge pixels in the image from M;. Next, the absolute difference between
edge pixels distances and the distance to the unselected endpoint of C] was calculated.
A Softmax function was used to convert negative distances differences to probabilities.
Edge pixels that were of a similar distance to the unselected end point of C'; had distance
differences close to zero and were more likely to be selected, while edge pixels that were at
a different distance had large negative distance differences and were less probable.

Given the location of the second edge pixel, a second contour, Cs, was extended from
it. If any point on Cy overlapped with C, a new starting edge pixel was selected and the
process was repeated until a non-overlapping pair of contours was found. The location of
the second marker, M,, was determined by the type of stimulus. For connected stimuli,
the opposite end of C was selected as M,, while for unconnected stimuli, one of the
endpoints of (', was chosen. Once marker positions were determined, markers were placed
at corresponding positions in the input image. Each marker consisted of a bulls-eye of
alternating red and blue concentric circles (see Figure 5.3B).

To fragment contours, occlusion bubbles were added to input images. Following Gos-
selin and Schyns [2001], bubbles with a 2D Gaussian profile were used to reduce the impact
of bubble edges. Each image was punctured using 200 bubbles of multiple sizes. Bubble
sizes were specified by the full-width-half-maximum (FWHM) of 2D Gaussian functions
and were chosen to correspond to bubble sizes used to explore the effects of fragment spac-
ing on neurophysiological gains (see Section 5.2.4). Individual bubbles were defined over a
2xFWHM square area. After randomly selecting bubble sizes and locations, bubbles were
placed in a mask which was used to blend the input image with image channel mean values
using,

img,,,,,. = mask x img + (1 — mask) x mean,. (5.1)

Within a mask, bubbles were allowed to overlap and a different mask was used for each
image. Values in the bubble mask ranged between (0, 1). Sample input training images
for the contour tracing task are shown in Figure 5.3C.

Complete Dataset

The train dataset contained 50,000 contours that were extracted from BIPED train images
while the validation dataset contained 5,000 contours and were extracted from BIPED test
images. Since the BIPED test dataset contains only 50 images, multiple contours per image
were extracted. Care was taken to ensure duplicate contours were not selected. All contour
containing input images were resized to a fixed size of 256 x 256 and stored with markers
appended. Puncturing of input images was done as a pre-processing step. Consequently,
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each exposure of an image to a network was unique. Equal probabilities were used for
generating connected and unconnected stimuli and the distribution of distances between
the two markers for both classes was similar (see Figure 5.4). Code for generating this
dataset from the BIPED dataset is freely available at https://github.com/salkhan23/
contour_integration_pytorch.

Connected

Not Connected
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Figure 5.4: Distribution of marker distances in the task of contour tracing in
natural images task Histograms of the distances between the markers for the connected
and non-connected classes in the contour tracing in natural images training dataset.

5.2.2 Task

Networks were tasked with determining whether the two markers added to input images
were connected by a smooth contour or not. Network performance was measured by com-
paring the accuracy of network predictions with true labels. To obtain binary predictions,
network outputs were passed though a sigmoid activation function and were then thresh-
olded at 0.5.

A binary classifier block was used to map CI block outputs to class labels. The archi-
tecture of the binary classifier block is shown in Figure 4.2. It consisted of 2 convolutional
layers. The first convolutional layer consisted of 8 kernels of size 3x3 and used a stride
length of 3. A batch normalization layer was added after the first convolutional layer.
The final convolutional layer used a single kernel of size 1 x 1 and used a stride length
of 1. Finally, a global average pooling layer [Lin et al., 2013] was added to map output
activations to a single value that could be compared with image labels. The capacity of

115


https://github.com/salkhan23/contour_integration_pytorch
https://github.com/salkhan23/contour_integration_pytorch

the classifier block was intentionally kept low to allow the contour integration layer to do
most of the work.

5.2.3 Training

Networks were trained using the same loss function used on the synthetic contour fragments
task (see Section 4.3) and included a Binary Cross Entropy criterion loss as well as the
inverted Gaussian masked L1 loss on lateral kernels. The weight of the lateral sparsity
loss with respect to the criterion loss was set to 10~* and a Gaussian mask width of 10
was used. For the model, lateral kernel weights were forced to be positive by clipping all
negative weights to zero after each parameter update. The control model was not similarly
constrained and was free to choose weights that resulted in the best performance. Networks
were trained with the Adam optimizer for 100 epochs. A batch size of 32 images was used.
The learning rate was set to 1072 and was reduced by a factor of 2 after 80 epochs.

Images were pre-processed to have zero mean and unit SD on average by normalizing
using ImageNet channel means and SD. Pre-processing also included puncturing input
images with occlusion bubbles (see Section 5.2.1).

5.2.4 Effects of fragment spacing

After training, the consistency of networks with trends in primate behaviour and neu-
rophysiology were explored. Not many studies focus on neurophysiological properties of
contour integration while viewing natural images. In this analysis, I try to generalize re-
sults from neurophysiological studies on synthetic fragmented contours [Li et al., 2006].
Test stimuli used in the analysis were different from those used in training. This is a form
of out-of-distribution testing of networks and gives a better picture of model generaliz-
ability compared to testing with held-out test images that are generated from the same
distribution as training images [Geirhos et al., 2020].

Test stimuli used contours with connected endpoints that were fragmented in an orderly
manner; bubbles were evenly spaced along contours to fragment contours with fixed inter-
fragment spacing. An example test stimulus is shown in Figure 5.3D. Contours were
punctured with bubbles of sizes 7, 9, 11, 13, 15, 17 pixels, corresponding to fragment
spacing of [7, 9, 11, 13, 15, 17]/7 RCD (see Section 4.4.2).

Binary classification accuracy was used to quantify behavioural performance while neu-
rophysiological responses were quantified by the contour integration gain for natural im-
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ages,
CI Output @ RCD = red

CI Output @ RCD =1

Here, the relative co-linear distance (RCD) is the ratio of inter-fragment spacing to frag-
ment length in pixels, CI Output @ RCD = 1 is the output activation of an individual
neuron responding to its optimal stimulus within the cRF and with the contour fragmented
with gaps the same size as the stimulus, while CI Output @ RCD = rcd is the response of
the neuron when the spacing between fragments was changed.

GN[(TCd) = (52)

Test Stimuli Construction

The first step in measuring Gy of individual channels of the CI block required finding their
optimal stimuli. In the synthetic contour fragments dataset, input images were altered to
find the optimal stimuli of monitored neurons. However, for natural images, inputs cannot
be similarly changed. Therefore, a new procedure was devised. To find optimal stimuli of
an individual channel, multiple unoccluded connected contours were presented to networks
(Figure 5.3B). For each image, the position of the most active neuron of each channel in
the CI block was found. If it was within 3 pixels (the same as the stride length of the
subsequent convolutional layer) of the contour, the image as well as the position of most
active neuron were stored. The process was repeated over 5,000 contours and the top 50
(contour, most active neuron) pairs were retained for each channel. New random contours
were selected from the augmented BIPED train dataset. The train dataset, as opposed to
the test dataset, was used as it contained more images and a larger variety of contours.

Given the optimal stimulus for a channel, each input contour was fragmented by in-
serted occlusion bubbles at specific positions along the contour. Different bubble sizes
were used to fragment contours with different inter-fragment spacing. A fixed fragment
length of 7 pixels, the same size as the cRF, was used. To ensure the cRF of the
most active neuron was unaffected by bubbles, first, the position of the closest point
on the contour was found. Bubbles were then inserted along the contour at offsets of
£ (rragtloubie) 2, £3(UsragHloubbie) f2, £5(UsragHoubnie) /2, ... until the ends of the contour. Finally,
the blending-in area of bubbles was restricted to FWHM pixels to ensure visible con-
tour fragments were unaffected. Code for conducting this experiment is available at
https://github.com/salkhan23/contour_integration_pytorch.
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5.2.5 Results

Behavioural (task level) performance
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Figure 5.5: Network accuracy vs. time on the contour tracing in natural images
task. Best viewed in colour. A, Model (blue), control (red), and the RPCM model variant
(green) classification accuracies vs training time. Results were averaged over 5 separate
runs. Lines show mean values across individual runs and shaded areas show unit standard
deviation from mean values. By default all networks were trained for 100 Epochs. B, One
run of the model was trained for 300 Epochs. Training accuracy continued to improve
but validation accuracy plateaued at the same value as when models were trained for 100
Epochs.

Classification accuracies over the time course of training for the model, control and the
RPCM model variant are shown in Figure 5.5A. For each network, results were averaged
over 5 independent runs with different random seeds. Classification accuracies of the control
and RPCM variant rose quickly and converged within the 100 epochs used for training.
In contrast, model performance gradually improved and did not fully converge by the
end of training. As previously noted (Section 4.6.1), the strict positive-only lateral weights
constraint enforced on the model significantly impacts its training. To see if its performance
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Name Train (%)  Validation (%) Test (%)

Model 70.52 £ 0.95  77.27 &£ 1.55 70.39
Control 77.54 £ 0.44  82.67 £ 0.53 65.65
RPCM variant 92.90 + 0.14  90.62 £ 0.21 84.36

Table 5.1: Peak classification accuracies on the contour tracing in natural images
task. Networks were trained for at least 100 Epochs each.

would improve given more training time, a trial of the model was trained for 300 epochs (see
Figure 5.5B). Training IoU continued to improve with training time, however validation IoU
scores plateaued at 78%. As model performance did not significantly improve but training
time increased substantially, multiple runs of the model were trained for 100 epochs, similar
to other networks. Table 5.1 shows peak classification accuracies averaged across multiple
runs of all considered networks. Over the whole dataset, the model performed ~ 5% worse
than the control (validation IoU). The RPCM variant, which only differs from the model in
the use of the strict positivity constraint, trained much more efficiently (higher performance
at same epoch) and significantly outperformed the control by ~ 8%.

When occlusion bubbles were added along contours (test data, RCD=1), classification
accuracies of all considered networks dropped even for the smallest bubble size (Table 5.1
Test column). However the relative drop in performance for the model and the RPCM
model variant (= 6%) was significantly less than that of the control (= 17%), showing
that the strategy employed by the model generalized better. Figure 5.6A shows the results
of fragment spacing on the behavioural performance of networks. From the least to the
most spacing configuration, model performance dropped by ~ 4% while RPCM variant
performance dropped by ~ 3%, consistent with observed behavioural trends. Contrastingly,
performance of the control was unaffected by the spacing between fragments.

Neurophysiological results

Figure 5.6B shows population averaged contour integration gains, Gy, as the spacing
between fragments increased. For each network, population average G y; was found by
averaging gains of individual channels for whom the optimal stimuli were found across all
trained models. Model results were averaged across 293 neurons, RPCM variant results
were averaged across 257 neurons while control results were averaged across 120 neurons.
Neurophysiological gains of all networks dropped as spacing increased, consistent with
observed neurophysiological trends. Gains of the model and the RPCM variant dropped
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Figure 5.6: Contour tracing in natural images results. A, Classification accuracy of
the model (blue), control (red) and RPCM model variant (green) vs. fragment spacing.
Dark lines show mean accuracies and shaded areas shows unit standard deviation around
means. Performances of the model and the RPCM variant dropped as spacing increased,
consistent with observed behavioural trends. B, Population average Gy vs. spacing.
Gains of all networks dropped with spacing. C, D and E, Histograms of gradients of
linear fits of gain vs. spacing results for the model, control and RPCM variant. For all
networks, gains decreased as spacing increased. The model and the RPCM variant were
more sensitive to inter-fragment spacing. Insets show histograms of gradients of CI block
input activations vs. fragment spacing.

more sharply with spacing compared with the control.

The impact of fragment spacing on output activations was analyzed by doing linear
regression fits on output activations vs. fragment spacing results for all monitored neu-
rons. Histograms of gradients of the fits are plotted in Figure 5.6C, D and E for the model,
control and the RPCM variant respectively. Model and RPCM variant output activations
dropped sharply with spacing (consistent with neurophysiological responses to more artifi-
cial stimuli). While control output activations only dropped slightly as spacing increased.
The results are consistent with trends observed in population averages. Inset plots in Fig-
ure 5.6C, D and E show gradients of linear fits of input activations with spacing. For all
networks input gradients did not change significantly with spacing, showing that observed
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trends were learnt by CI blocks.

5.3 Discussion

In this chapter, the contour integration model was evaluated on two natural images tasks.
The first task involved detecting all-edges, as opposed to object-only edges, in natural
images. Over the BIPED dataset [Poma et al., 2020], model and control networks had
similar performance and attained the same mean peak IoU score of 0.45 on the validation
dataset. The RPCM variant (see Section 4.6.1) fared slightly better and achieved a peak
IoU score of 0.46. The results suggest that in clear natural images (like the ones in the
BIPED dataset), it is not necessary to recurrently integrate contours in order to detect
them. At least not in the manner that is possible with lateral connections alone whereby
all smooth contours are enhanced. This was further confirmed by testing a version of the
model with severely curtailed lateral connections; the spatial extent of lateral connections
was reduced to 3 x 3 (Default is 15 x 15). This version of the model also reached the same
peak ToU score of 0.45. When a similar modification was made on the synthetic contour
fragments dataset, the performance of the model dropped dramatically (See Figure 4.11B).

In synthetic contour fragment stimuli, all input fragments are identical and the edge
extraction block did not provide any information about which fragments were part of the
contour and which were not. Consequently, it was necessary to observe neighboring neurons
to determine contour fragments. In contrast, in clear natural images, outputs of the edge
extraction block contain sufficient information about the location of contours; there is little
need to integrate contextual information from outside the cRF of neurons to determine if
they contain contours or not.

It has been suggested that contour integration may strengthen weaker contours in
natural images [Li, 1998, Piéch et al., 2013]. To investigate, I compared the pre-threshold
predictions of networks at different strengths over the entire BIPED validation dataset.
It was found that indeed, model and RPCM networks did enhance weaker contour pixels
compared to the control network. However, this did not affect their overall IoU scores, at
least not on images in the BIPED dataset.

The second task networks were evaluated on was a novel task in which edge extraction
outputs were designed to be less helpful. The task involved detecting if two markers
added into natural images were connected via smooth contour or not. Image contours
were also fragmented by randomly puncturing inputs with occlusion bubbles of different
sizes [Gosselin and Schyns, 2001] to simulate variable inter-fragment spacings. It was found
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that the control trained more efficiently (higher mean classification accuracy at the same
epoch) than the model. Moreover, its peak loU accuracy was also ~ 5% higher. RPCM
variants were also analyzed. These networks trained even more efficiently than the control
and outperformed them by = 8% in peak IoU scores.

Next, trained networks were tested on slightly different stimuli where occlusion bubbles
were strategically placed along contours to simulate fixed inter-fragment spacings. The
performance of all networks dropped even for the smallest bubble sizes. However, the drop
in performance for the control (~ 17%) was significantly higher than the model (~ 6%) and
the RPCM variant (=~ 6%). This shows that the strategy learnt by the model generalized
better.

Furthermore an analysis on the effect of spacing on the classification accuracies of
networks showed that performance of the model and the RPCM variant dropped as the
spacing between fragments increased. Conversely, the performance of the control was in-
different to the spacing between fragments. When neurophysiological gains were analyzed,
neuronal outputs of all networks dropped as spacing increased. The drop was sharpest for
the model, followed by RPCM variant and then the control. The results of the model were
most consistent with neurophysiological responses to more artificial stimuli.
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Chapter 6

Conclusion

6.1 Summary of contributions

In this thesis, a new biologically-inspired, recurrent convolutional neural network based
model of contour integration is proposed. The model sits on top of an edge (low-level
features) extraction block and models lateral interactions between component neurons. It
is based on the lateral connections of neurons in the primary visual cortex of the brain.
Unlike most existing contour integration models, connections were not pre-configured but
were learnt by optimizing performance on high-level behavioural tasks.

The model was trained with synthetic stimuli composed of contours formed from co-
aligned fragments embedded in a sea of identical but randomly oriented fragments. Similar
stimuli are widely used to study the properties of contour integration in the brain. On
datasets composed of these stimuli, the model out-performed feedforward CNN control
models of similar capacities.

The trained model replicated many observed behavioural and neurophysiological prop-
erties of contour integration. Specifically, at a behavioural level, the model’s ability to
detect contours increased monotonically with contour length (see Figure 4.5A). At a neu-
ronal level, optimally stimulated neurons that were responding to contour fragments showed
elevated outputs in response to aligned contextual stimuli that were outside their classical
receptive fields. Enhancement gains monotonically increased as contour length increased
(see Figure 4.5B) and monotonically decreased as the spacing between fragments increased
(see Figure 4.5C). Overall, model results were consistent with behavioural and neurophys-
iological properties of V1 neurons observed by Li et al. [2006]. In contrast, the feedforward
control did not show similar neurophysiological trends.
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Through an extensive sensitivity analysis and experimenting with model permutations,
it was found that both recurrence as well as the biologically inspired architecture of the
model were necessary to reliably reproduce results.

Strict constraints imposed on the model allowed learnt lateral connections to be directly
observed and compared with lateral connections of V1 neurons. Recently, other researchers
have highlighted a need for such a detailed analysis of learnt lateral connections in similar
R-CNN models [Spoerer et al., 2020].

It was found that learnt lateral connections were non-uniformly distributed and spread
out more densely in the direction of the preferred orientation of their source edge extrac-
tion neurons. Excitatory connections showed a higher degree of anisotropy and spread
out further than inhibitory ones (see Figure 4.9). The results were in contrast with the
predefined lateral connectivity structures used in existing models of contour integration.
Most models assume a similar spread for inhibitory and excitatory connections. Moreover,
the model’s inhibitory connections, although less directed than excitatory connections, also
spread out most densely in the direction of the preferred orientation of source V1 neurons.
Most existing contour integration models assume inhibitory connections spread out more
densely in the orthogonal-to-the-preferred direction of source V1 neurons. Overall, learnt
connectivity patterns were consistent with the updated Association Field Model proposed
by Field et al. [2013].

Next, the model was used to explore how contour integration may benefit the processing
of natural images. In natural images, edge pixels have variable strengths and some contour
parts are harder to detect compared to others. When the model was trained on the task
of edge detection in natural images, it learnt to enhance responses to weaker contours, as
previously suggested by Piéch et al. [2013] and Li [1998] (see Figure 5.2). However, this
did not translate to an increase in overall behavioural performance. At least on the dataset
used for training, feedforward responses appear to provide sufficient information to detect
contours, and the model did not need to recurrently integrate contours in order to detect
them.

To further investigate the role of contour integration in natural images, a new task where
edge extraction outputs are less helpful was introduced. The task involved tracing contours
between two markers to determine if they are connected via a smooth contour. The trained
model learned a robust strategy that translated well to stimuli that were slightly different
from training data. This was not the case for the feedforward control which saw a dramatic
drop in performance, even though it had a higher task-level performance over the training
dataset. Moreover, the model’s responses varied in the same direction as in the task with
synthetic fragmented contours; task-level performance as well as contour integration gains
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of component neurons dropped monotonically as the spacing between fragments increased
(see Figure 5.6). In contrast, the behavioural responses of the control were unaffected by
fragment spacing, and its component neurons showed lower drops in gains as the spacing
between neurons was increased.

The work presented here should be of interest to neuroscientists as it offers a way of
quantitatively analyzing the role of low-level neural phenomena in high-level behavioural
tasks. Although I investigated the role of contour integration on edge detection and con-
tour tracing in natural images only, the model can easily be incorporated in larger ANNs
and used on many other tasks, including object classification and segmentation. Moreover,
the ability to quantify performance on high-level tasks can be used to compare alternative
mechanistic models of neuron phenomena. Furthermore, the approach of learning parame-
ters using DNNs can challenge assumptions used in predetermined computational models.
Finally, trained models provide full access to their internals and can be used to simultane-

ously analyze multiple properties of contour integration more easily than can be done in
the brain [Olshausen and Field, 2006].

This work should also be of interest to the machine learning community. Recently, it
has been highlighted that ANNs are prone to excessively relying on the simplest discrimi-
native feature they can find in training data [Funke et al., 2021, Geirhos et al., 2020]. The
performance of these networks falls dramatically when tested with inputs that are from
outside the distribution of training data [Hendrycks and Dietterich, 2019]. Often even the
smallest changes in the data can cause these collapses. It is important to add additional
constraints on models or remove these features from the data [Geirhos et al., 2018] to guide
the model to learn desired solutions over shortcut ones. In complex problems, it can be
difficult to identify and separate out these less reliable features. Adding architectural con-
straints, as done here, is one way of providing these restrictions. By doing so, I have shown
that ANNs can learn more resilient features that generalize well to out-of-distribution data,
at least for the task of tracing contours in natural images.

6.2 Future work

The work presented here can be expanded in several different directions. In the following
section I highlight a few interesting directions.
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Alternative mechanisms of contour integration

The model’s contour integration mechanism only involved lateral connections in shallow
layers of a visual systems. However, the V1 cortex also contains dense feedback connec-
tions from multiple higher layers. An alternative theory postulates that the brain mostly
uses these feedback connections for contour integration (see Section 2.3.4). Particularly
interesting are the neurophysiological properties observed by Chen et al. [2014]. Here,
they propose that contour integration is mediated by a recurrent loop between the V1
and V4 cortices. Mechanistically, there are not many models of contour integration that
utilize feedback as their main conduit for contour integration. It would be interesting to
develop such a model and quantitatively compare it with this model. The work present
here provides a framework for carrying out such a comparison.

Moreover, the brain most likely uses both mechanisms for contour integration. A model
that includes both can be used to elucidate how the two mechanisms interact on different
high-level visual tasks. Such a model could also be used to analyze other properties of
contour integration, such as selective object boundaries enhancement and what role contour
integration plays in the perception of non-luminance defined contours (see Section 2.2.3).
Finally, V4 is strongly interconnected with the MT cortex of the dorsal stream [Markov
et al., 2014]. It contains many neurons that are sensitive to motion defined shapes [Handa
and Mikami, 2018]. Potentially, such a model can be used to analyze the interplay between
V4 detected kinetic contours and luminance defined contours detected by V1.

Positive-only constraint

The strict positive-only constraint imposed on lateral connection weights of the model
severely impacted training time and task-level performance. The method of clipping neg-
ative weights during training interfered with the training process. When the constraint
was removed, in the Relaxed Positive Constraint Model (RPCM) (Section 4.6.1) vari-
ant, the model trained faster and achieved the highest task-level performance on multiple
tasks. However, the constraint conforms the model with Dale’s principle [Dale, 1935, Ec-
cles et al., 1954] and makes it more biologically plausible. Moreover, restricting excitatory
and inhibitory lateral kernels to be positive only allowed them to be directly compared
with connections in the brain. Finally, it was found that the model was the only network
that was reliably consistent with the brain at the behavioral, neurophysiological and neu-
roanatomical levels. It would interesting to explore other methods of incorporating this
constraint that have a less dramatic affect on training time and performance.
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Preliminary analysis of the RPCM model’s dynamic equations show that at steady
state and with certain reasonable parameter values, both lateral excitatory and inhibitory
connections affect neuronal responses in the same way. Hence, negative connections in the
excitatory connection matrix can be moved to the inhibitory connection matrix and visa
versa without affecting performance. Alternatively, Tripp and Eliasmith [2016], Parisien
et al. [2008] present a method that can convert any idealized network (with units that
form positive and negative connections to other units) into another more physiologically
plausible (with units that only form positive connections) one that is nearly functionally
equivalent. In this new network, source units project to target units with positive-only
connections, as well as to a small population of inhibitory units that also form positive-
only connections with target units. This method can potentially be used to convert the
better performing RPCM network into a more biologically plausible one. Finally, Cornford
et al. [2021] recently proposed an initialization method and weight update mechanism for
inhibitory neurons in a sign constraint network that can help Dale’s principle compliant
ANNSs reach the same performance as regular ANNs.

Alternative learning rules

The Back Propagation Through Time learning algorithm was used to train the model. A
major limitation of this algorithm is it’s large memory requirement; activations of every
recurrent step need to be retained in memory to calculate gradients and update network
parameters. This limits the number of recurrent steps that can be modelled. Recently,
Linsley et al. [2020a] presented a new learning algorithm, the Contractor Recurrent Back
Propagation algorithm that has the same memory requirements regardless of the number of
modelled recurrent steps. Figure 4.11A shows that increasing the number of recurrent steps
improved performance. It would be interesting to see if incorporating this learning rule can
similarly improve the performance of the proposed model. Moreover, it may potentially
improve model stability by allowing the underling differential equations to be modelled up
to their steady states.

Neurophysiological properties of contour integration in natural images

The work presented here hypothesizes several behavioural and neurophysiological trends
of contour integration in natural images. As far as I am aware, similar behavioural and
neurophysiological results for contour integration in natural images do not exist. It would
be interesting to conduct similar experiments neurophysiologically on V1 neurons and check
the validity of these predictions.
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More shape reliant visual ANN models

Geirhos et al. [2018] found that CNN models trained on ImageNet show a strong bias
towards texture over shape when recognizing objects. Humans, on the other hand, rely
mostly on object edges [Landau et al., 1988]. They constructed a new dataset, Stylized
ImageNet, where texture cues were made inconsistent with object identities. Specifically,
content (high-level activations) from natural images was separated and mixed in with style
(low-level activations) from many art paintings. These were then used to generate new
stylized images.

When networks were jointly trained on the two datasets, they learnt to rely on object
edges more than textures compared to networks trained only on ImageNet. These networks
also demonstrated higher performance on the tasks of object classification and detection.
Since contour integration is a mechanism to enhance object edges, it would be interesting to
see if incorporating the contour integration model into these networks could lead models to
learn more shape based features directly from natural images. It would also be interesting
to see if this would further improve performance on these tasks.

Robustness to common ANN pitfalls

Finally, neurophysiological analyses of the model indicated that the model learns to solve
tasks using different strategies compared to feedforward models. The strategies employed
by the model showed several similarities with contour integration in the brain. It was found
that the strategies learnt by the model generalized better to stimuli outside the training
distributions. It would be interesting to see if the mechanism employed by the model also
lead to better robustness against adversarial images [Goodfellow et al., 2014, Madry et al.,
2017] and other common image perturbations [Hendrycks and Dietterich, 2019]. Using an
older version of the model, I showed how contour integration offered greater resilience from
One (few) Pixel Adversarial Attacks, [Khan et al., 2018]. It would be interesting to repeat
the analysis using the updated model proposed here and to expand to other more severe
adversarial attacks.
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Appendix A

Contour Integration Layer Derivation

In the current-based-subtractive-inhibition model of Piéch et al. [2013], the temporal dy-
namics of a single orientation column are defined as,

dx 1

E - T_w —T + Jmcfx(x) - nyfy(Q) + [Oe _'_ [ + / Z Lxx'fﬂ?(w/) ) (Al)
' €eCRF
dy 1 ’
% = ;y —y + Jyxfx(x> + [Oi + / Z Lyx’fx(l' ) . (A2>
z € eCRF

Here, x and y are the membrane potential of E and I nodes, J,4, Juy, Jyr are E=E (self),
[—-E and E—I within node-pair connection strengths, respectively, f(.) is a non-linear
activation function that transforms membrane potentials into firing rates, 7. are membrane
time constants, I are background currents, [ is the external input current to the model,
and L, and L,/ are lateral connections strengths from E nodes z" in neighboring ori-
entations columns that lie within the extra classical receptive fields (e-cRF) of the target
orientation column.

Each spatial location contains multiple orientation columns with similar selectivities
but with different orientation preferences. The lateral connections of an E-I node pair
are modelled as fixed association field structures. They are different for each orientation
column; excitatory connections are directed towards the column’s preferred orientation
while inhibitory connections are directed orthogonal to it. The same set of orientation
columns is repeated at different spatial locations. Lateral connection patterns are shared
across different spatial locations. The full model consists of a 2D grid of spatial locations
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with multiple columns at each location. The dynamics of the full model are realized as the
joint activities of all modelled orientation columns.

To incorporate the model into neural networks, first, summations over orientation
columns in the e-cRF are replaced with sliding convolutions. The convolutional kernel op-
erates over orientation columns at the same spatial location as well as orientation columns
at neighboring locations that lie within the e-cRF. It also operates over the target ori-
entation column and incorporates the excitatory self connection J,,. The convolutional
operation also allows modelling of multiple E-I node pairs simultaneously.

The dynamics of a single orientation column can then be expressed as,

‘é_j = e Ty ) + o+ T+ (W ® £(X)], (A3)
dy 1
% = T—y[—y—FJyzfx(l')"’[Oi‘i‘(vvz'@fx(X))]v (A'4)

where, f,(X) is the output activation of all modeled excitatory neurons.

Using Euler’s Method, the approximate solution is given by the following difference
equations,

ot
Ty =2T41+ - [—xto1 — Juy fy(ye—1) + Toe + T + (We ® fo(Xi21))], (A.5)

T

Yt = Ye—1 + ? [_yt—l + Jy;tf;t(xt—l) + loi + (Wi ® f:c(Xt—l))] . (A.6)

Yy

Setting 9/r, = a, %¢/r, = b and collecting all like terms together,
Ty = (1 - 6L):Et—l +a [_mefy(yt—l) + IO@ + [ + (We ® fz(Xt—l))] ) (A7)

Yo = (1 = 0)ye1 + b [Ty fo, () + Tos + (Wi ® fo(Xe))], (A.8)
where xy = yg = 0.

This final form resembles a leaky vanilla recurrent neural network [Tallec and Ollivier,
2018] which can be trained using standard neural network training techniques.

In the original model, fixed positive values were used for time constants, local and lateral
connection weights. Rather than arbitrarily setting these values, I included them in the
parameters of the model and let the neural network learn their optimal values. However,
to ensure connections operate in a manner consistent with the original model, positive-only
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constraints were added to lateral connections of the model. For time constants and local
connections strengths (Jgy, Jy ), a sigmoid non-linearity was added to keep their influences
on membrane potentials positive. For lateral connection weights, all negative weights were
set to zero after every parameter update. This more strict constraint allowed learnt lateral
weight structures to be directly comparable to neurophysiologically observed connections.

With these additional constraints, the activity of an orientation column is expressed
as,

vy = (1= 0o(a)zi +0(a) [=0(Juy) fy (W) + Loe + 1+ We ® fo( X)), (A.9)

yo=(1=00)ye1+0(b) [0(Jye) falwr) + Toi + Wi ® fo(X)], (A.10)

where xy = yg = 0.
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