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A B S T R A C T   

The development of an environmentally friendly agricultural system as opposed to conventional methods using 
chemical fertilizers and pesticides for improved crop productivity is a promising aspect of modern agricultural 
biotechnology. Current research has focused on using free-living microbes that can colonize the plant endosphere 
as a means of enhancing crop productivity. In the plant rhizosphere, the complex root matrix facilitates microbe- 
microbe, microbe-plant, and soil-microbe interactions in establishing microbial communities, which precede 
endophytic colonization of the plant by some of these microbes. Endophytic microbes play an important role in 
plant growth promotion, as they employ direct or indirect mechanisms to facilitate plant growth by producing 
phytohormones and various secondary metabolites. The roles of endophytic microbes in sustaining plant growth 
under biotic and abiotic stresses through these mechanisms can provide insights into their envisaged putative 
functions in establishing host plant interactions for maximum use in the agricultural sector as an ecofriendly 
alternative tool to improve crop yield. In addition, a better understanding of endophytic bacteria functions in 
agriculture, medicine, biotechnology, and industry may enable scientists to unlock several opportunities by 
exploring valuable endophytic bioproducts in the recent application as bioinoculants, biostimulants, and envi
ronmental safety in pollution control and phytoremediation. Furthermore, the genomic insights into endosphere 
biology can provide detail structural diversity and functional profiling of endophytic microbiome for possible 
recommendations in future agriculture as a source of the organic amendment. Hence, this review emphasis on 
the root-colonizing endophytic bacteria and their importance in modern agricultural biotechnology.   

1. Introduction 

Agricultural intensification is an important condition for the food 
security of the population of the world (Jayne et al., 2019; Adeleke and 
Babalola, 2020b). However, the use of chemical fertilizers to improve 
soil fertility and increase crop yields poses a threat to both ecosystems 
and human health. For example, human diseases, in some cases, have 
been linked to the consumption of foods grown with chemical fertilizers 
(Babalola, 2010). Against this background, the use of biofertilizers 
consisting of bacteria that are naturally associated with plant roots may 
be a useful and promising alternative to the widespread application of 
agricultural chemicals. Biofertilizer application may be utilized in the 
agricultural bioeconomy to maximally ensure food production, and 
incorporation into the crop-breeding programs (Uzoh and Babalola, 
2018; Fasusi et al., 2021). In recent times, the potential of crop micro
biomes for food security has been the focus of many researchers using 
the current state-of-art technology in understanding the biological 
functions of plant microbiome to enhance plant growth and control of 

plant diseases (Cordovez et al., 2019). The symbiotic association that 
exists between mycorrhizal and rhizobacteria in the root of leguminous 
plants enables them to establish cooperation with the host plants to 
overcome nutrients (nitrogen, phosphorus, potassium, etc.) deficiency 
in the soil and reduction of nitrogen fertilizer usage on farmlands 
(Oldroyd and Leyser, 2020). Some plant microbes, such as Rhizobium, 
Bacillus, Azospirillum, Pantoea, Streptomyces, Flavobacterium, and Pseu
domonas, fix nitrogen to the soil by forming symbioses with the plant 
root, thus enhancing symbiotic efficiency in shaping plant-bacteria in
teractions (Remans et al., 2008). Isolation and identification of endo
phytic bacteria associated with bananas in Kenya and their potential use 
in developing biofertilizers for sustainable banana production have been 
reported (Ngamau et al., 2012). Also, Vargas-Díaz et al. (2019) have 
evaluated the use of endophytic bacteria from the root nodules of soy
bean and their potential as biofertilizers. Biofertilizer use in agriculture 
is considered safe and environmentally friendly and can replace agro
chemicals (chemical fertilizers and pesticides) without any negative 
impacts on the ecosystem (Glick, 2020; Fasusi et al., 2021). 
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To further create insights into the potential of indigenous crop 
microbiomes for sustainable agriculture, a new framework for the next 
green revolution has been proposed to serve as an ecological model in 
unifying the principles of endophytic research (Chen et al., 2021b). 
Adopting this approach can help understand plant-bacteria co-evolve
ment with promises for a desirable selection of beneficial microbes to 
improved yield under drought stress (Tank and Saraf, 2010). Notably, a 
Raman-Stable Isotope Probing (Raman-SIP) and SynComs framework to 
validate the functions of plant microbiome under different conditions for 
sustainable agriculture with novel insights for future studies have 
recently been documented on beneficial biome (Chen et al., 2021b). 

To this above premise, three-step have been suggested, which 
include; (i) labeling the wild-relative-crop-associated microbes with 
15N2 and using Raman-SIP to probe N2-fixing bacteria based on the 15N2- 
induced Raman shifts in carbon-nitrogen (C–N) bonds of cytochrome c 
(cyt c), which suggest how nitrogen fixation activity of endophytic 
bacteria based on C–N shifts can be determined (Cui et al., 2018), (ii) 
sorting, purification, and inoculation of endophytic bacteria represen
tative based on their diversity and N2 fixation. Consequently, there is a 
need to take into consideration, the priority effects on crops when 
inoculating with SynComs in combined form (Carlström et al., 2019). 
Also, growing crops in a clay-based medium that contain soluble organic 
nitrogen ammonium, or nitrate amended with or without SynComs is 
fundamental. In step 3, the selection of most copious or combined strains 
can further be tested under field conditions. 

Despite the prospect of these frameworks in plant beneficial biome 
studies, several limitations surrounding their use have been highlighted 
in the previous study by Chen et al. (2021b), thus suggesting a future 
solution to improve the developed Raman hardware and software to 
facilitate the detection of endophytic bacterial cells of interest from the 
downstream procedures. The use of Raman-SIP to unraveled endosphere 
processes in bridging the gap between single-strain and 
community-level plant-microbe interactions has been documented 
(O’Banion et al., 2020). Authors proposed that through biotechnological 
advancement, Raman-SIP will be a powerful tool to unravel the poten
tial of endophytic microbiome in agriculture sustainably. 

Endophytic microbes are often referred to as endosphere colonizers 
that complete their life cycle within the tissues of plants without causing 
harm to the host plants (Santoyo et al., 2016; Adeleke and Babalola, 
2020a, 2020b). The functioning of bacteria within plant tissues relies on 
their ability to colonize a complex root matrix and adapt to different 
environmental conditions (Banik et al., 2019). Plant adaptation to harsh 
environments can increase microbial survival in the endosphere. To this 
premise, the positive influence of endophytic bacteria in boosting the 
stress response in plants to environmental stressors can underlie their 
potential role in formulating bioinoculants (Orozco-Mosqueda et al., 
2021). Based on the prediction of oxidative and nitrosative stress genes 
in diverse endophytic bacteria, such as Stenotrophomonas indicatrix, 
Bradyrhizobium diazoefficiens, Leifonia sp., and Enterobacter cloacae, it 
has been recommended that these microbes can stimulate the induction 
of resistance in plants to environmental stressors (Battu and Ulagana
than, 2020; Li et al., 2020; Shastry et al., 2020; Adeleke et al., 2021b). 
Factors, such as drought, salinity, humidity, temperature, pathogen, and 
soil type have all been shown to influence the microbial population and 
functioning in plants (Adeleke and Babalola, 2020a; Igiehon et al., 
2021). Also, the influence of plant type, genotype, developmental stage, 
geographical location, and soil type on bacterial diversity and survival 
has been reported (Chen et al., 2019b). Wemheuer et al. (2017) exam
ined the influence of agricultural practices on the diversity of endo
phytic bacterial communities in the aerial parts of Dactylis glomerata, 
Festuca rubra, and Lolium perenne over two consecutive years using 16 S 
rRNA gene amplicon sequencing. 

The application of plant growth-promoting endophytic bacteria 
(PGPEB) to improve plant growth in drought-prone regions and 
nutrient-limiting soils have been investigated under greenhouse and 
field experimental trials (Banik et al., 2019). For example, the effect of 

co-inoculation of plant growth-promoting Bradyrhizobium and Azospir
illum on soybean germination under drought stress has been investigated 
to enhance soybean yield under greenhouse experiments (Silva et al., 
2019). Similarly, Dubey et al. (2021) reported bioprospecting the 
endophytic bacteria Bacillus cereus, Pseudomonas sp., and P. otitidis in 
enhancing soybean yield under drought stress. Hence, harnessing these 
bacteria should help circumvent some environmental stressors influ
encing plant performance. 

The abundance of rhizobacteria below ground shares some functions 
with the root endophytic bacteria. There is direct infiltration of some 
rhizosphere bacteria from the external root zone into the internal tissue 
to become endophytes (Nwachukwu et al., 2021). Endophytic bacteria 
can be linked to signal networking models and secretion of plant 
metabolic compounds which facilitate microbial communication in and 
out of the root tissues (Soldan et al., 2019). Bacterial endophytes pri
marily penetrate plant roots vertically or horizontally by seed inocula
tion, cell injury, or cracks (Banhara et al., 2015). Many bacteria 
regarded as root endophytes have been reported to originate from the 
rhizosphere (Aloo et al., 2019). 

An insight into the functioning of a few endophytic bacteria has been 
elaborated using a metagenomics approach (Akinsanya et al., 2015; 
Mashiane et al., 2017; Fadiji et al., 2020). According to Akinsanya et al. 
(2015), a total of 175 bacterial species from the leaf, 211 from the root, 
and 148 from the stem were reported, revealing diverse endophytic 
bacteria in the plant root compared to the stem and leaf. A study by 
Fadiji et al. (2020), reported major endophytic bacterial phyla, such as 
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acid
obacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, 
Cyanobacteria, and Chlorobi in maize cultivated on organic fertilizer, 
inorganic and non-fertilizer soils. Furthermore, a diverse bacteria com
munity structure in the tissues of Pseudowintera colorata (Mountain 
horopito or pepper tree) growing in sub-alpine regions of New Zealand 
has been reported to influence plant growth upon inoculating P. colorata 
seedlings and antagonism against four different phytopathogenic fungi 
(Purushotham et al., 2020). Maropola et al. (2015) documented the 
relative abundance of major bacterial lineages recovered from com
posite samples of sorghum root and stem tissues subsequently showing 
their role in enhancing sorghum yield. Several other studies have 
identified agriculturally important endophytic bacteria from the leaves 
and seeds of plants (Bilal et al., 2018; Rahman et al., 2018). Seed en
dophytes have been reported to exert beneficial effects on the next 
generation of the host plant, for example, plant protection against 
pathogens, releasing seeds from dormancy, seedling growth promotion, 
and enhanced seed germination (Khalaf and Raizada, 2018; Rahman 
et al., 2018). These attributes can be the reason why beneficial seed 
endophytes are often transferred from one generation to the other 
(Frank et al., 2017). Diverse seed endophytic bacteria phyla and genera 
have been reported (Truyens et al., 2015; Frank et al., 2017). Conse
quently, the identification of major endophytic bacterial phyla, Pro
teobacteria, and Firmicutes and genera, Bacillus, Pantoea, Pseudomonas, 
Stenotrophomonas, etc. with varied ecological functions, ranging from 
beneficial plant-microbe cooperation to antibiosis activity against plant 
pathogens have been reported in maize (Mashiane et al., 2018). Addi
tionally, Bulgari et al. (2014) reported an endophytic bacterial com
munity in grapevine leaves with identifiable genera, Sphingomonas, 
Burkholderia, Pantoea, and Methylobacterium. According to Lopez-Ve
lasco et al. (2013), the abundance of the bacterial phyla Proteobacteria 
was discovered in the seed and leaf endophytes of spinach (Spinacia 
oleracea). 

Despite the advancement of metagenomics in identifying some non- 
culturable microbes, there remains a need for further study of these 
microorganisms for possible use in agriculture. Therefore, this review is 
focused on bacterial endophytes associated with plant roots and en
deavors to provide up-to-date information on their diversity and agri
cultural importance. In the sections below, the following shall be 
discussed (i) root-colonizing potential of endophytic bacteria and their 
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mechanism of action (ii) plant-endophyte interactions (iii) endophytic 
bacteria as a source of bioinoculants, and (iv) genomic insights into root 
endophytic bacteria communities. 

2. Overview of plant root-colonizing endophytic bacteria and 
their mechanism of action 

Endophytic bacteria colonizing plant roots can be isolated directly 
from surface-sterilized tissues. The mechanisms used by endophytic 
bacteria in plant growth promotion include nitrogen fixation, plant 
growth stimulation via phytohormone synthesis and modulation, side
rophore production, induction of systemic resistance, and synthesis of 
bioactive compounds against phytopathogens (Ngoma et al., 2014). The 
plant growth-promoting potential of endophytic bacteria, for example, 
to produce IAA, has contributed to the growth regulation and develop
mental processes in plants, which include tissue differentiation, cell 
division, and elongation, apical dominance, and responses to light, 
gravity, and pathogens (Babalola and Glick, 2012). Also, ACC deaminase 
production by endophytic bacteria plays a major role in lowering plant 
ethylene levels, thus stimulating plant growth (Glick et al., 2007). The 
highlights of various PGPEB inhabiting the roots of different plants, 
mechanisms used by these bacteria, and the effects of these relationships 
are presented in Table 1. The presence of special organelles, such as 
fimbriae or pili in bacteria cells can enhance their attachment to the root 
matrix and subsequently the absorption of soil nutrients for plant use 
(Kandel et al., 2017). 

Because of the high accumulation of nutrient and exudate secretions 
in the endo-rhizosphere compartments, the root zone is a hotspot pre
dominated by large numbers of endophytic microbes and other plant 
growth-promoting bacteria (Tsunoda and van Dam, 2017; Glick, 2020). 
High bacterial diversity in the root endosphere compared to the stems 
and leaves of plants has been documented (Zhang et al., 2017). Organic 
compounds, such as amino acids, vitamins, and carbohydrates released 
from plant roots can act as signaling molecules for root-associated mi
crobes to attach to the root surfaces in forming biofilms (Muzzamal 
et al., 2012). The colonization strategies employed by endophytic bac
teria and root nodule bacteria are presented in Fig. 1. Elucidation of the 
bacterial community across plant organs has revealed their structural 
dynamic in natural environments (Brijesh Singh et al., 2019). Different 
vascular plants growing in different climatic zones, such as tropical, 
temperate, cold, and polar harbor one or more bacterial endophytes, but 
are less explored (Acuña-Rodríguez et al., 2020). Nevertheless, focusing 
on endosphere research will make information available on PGPEB 
across different climatic regions. For example, findings on endophytic 
bacteria from plant species growing in the glacier forefront, rock sides, 
stream banks, and snow patch communities have been documented and 
suggested to have promise for use in sustainable agriculture (Zheng 
et al., 2016). Furthermore, the predominance of bacterial communities 
in the roots of different Mediterranean wild legumes growing in tropical 
regions has been reported (Muresu et al., 2019). Some of the identifiable 
PGBEB include Hedysarum carnosum, H. spinosissimum, Ornithopus com
pressus, Rhizobium sullae, Pseudomonas sp., Microbacterium sp., Micro
bacterium sp., and Pantoea agglomerans (Muresu et al., 2019). 

Based on the conservative biodiversity of the endophytic community, 
many hypotheses have been proposed for further investigation into the 
bacterial community structure of vascular plants in tropical, temperate, 
and other regions (Nandini et al., 2018). Many authors have reported 
endophytic bacterial phyla, for example, Actinobacteria, Bacteroidetes, 
Firmicutes, Acidobacteria, and Proteobacteria from plants growing in 
the Arctic, cold, tropical, polar, temperate, tropics, and cold regions 
(Nissinen et al., 2012; Park et al., 2013; Miguel et al., 2016; Firrincieli 
et al., 2020). To this end, additional research studying bacterial diversity 
across different climatic conditions would help elaborate their potential 
for various agricultural and industrial applications. 

3. Plant-endophyte interactions in promoting plant growth 

Plants harbor diverse bacterial communities and their cooperation 
contributes to the physiological functions of the host plants (Adeleke 
and Babalola, 2021). In a natural environment, the interdependent 
cooperation between endophytic bacteria and host plants depends on 
the nutrient bioavailability and colonization potential within the plant 
tissues. Some examples of identifiable endophytic bacteria genera 
include Pseudomonas brenneri, Ewingella Americana, Pantoea agglomerans, 
Bacillus cereus, and Pseudomonas otitidis (Babalola et al., 2021; Dubey 
et al., 2021; Rana et al., 2021). 

Many PGPEB has been identified and their application in improving 
crop yields has been aimed at ensuring agricultural sustainability 
(Babalola et al., 2007; Adedeji et al., 2020). For example, Rhizobacter 
spp. and other nitrogen fixers have been employed in agricultural 
management (Etesami, 2018). PGPEB colonizes the root endosphere and 
may benefit plants either by direct or indirect means (Glick, 2012). 
Directly, endophytic bacteria enhance plant growth by nitrogen fixation, 
modulation of plant hormone levels (auxin, cytokinin, ethylene, and 
gibberellin), phosphate, iron and potassium solubilization, secondary 
metabolite synthesis, antibiosis activities against plant pathogens, and 
boosting plant responses to abiotic stresses (Rajini et al., 2020). Some 
examples of phosphate solubilizing bacterial genera, such as Pseudo
monas, Burkholderia, Paraburkholderia, Novosphingobium, and Ochrobac
trum have been reported to enhance the biomass yield of Chinese 
seedlings based on their multifunctional attributes (Chen et al., 2021a). 
The use of root endophytic bacteria in developing bioinoculants has 
shown success and their application in modern agricultural practices is 
promising (Afzal et al., 2019). Several plant growth-promoting bacteria 
have been studied (Santoyo et al., 2016; Mamphogoro et al., 2020; 
Imade and Babalola, 2021; Orozco-Mosqueda et al., 2021). Therefore, 
harnessing these bacteria in organic farming to enhance agricultural 
productivity can help avert future food challenges. Also, the application 
of these bacteria in the bioremediation process of environmental pol
lutants, heavy metals, xenobiotics as well as in the production of anti
biotics, siderophores, enzymes, and induction of systemic resistance 
against pathogens has been documented (Glick, 2003, 2010; Glick and 
Stearns, 2011; Kong and Glick, 2017b; Etesami and Maheshwari, 2018). 
Based on the multifaceted roles of endophytic bacteria toward agricul
tural sustainability, additional research would help maximize their po
tential in sustainable plant health for improved crop yield. 

The use of Bradyrhizobium diazoefficiens and Azospirillum spp. as in
oculants to enhance crop yield and productivity on a commercial scale 
by farmers growing soybean, corn, and wheat in Argentina and Mexico 
has been documented (Cassán et al., 2020). Rhizobium-based-biofertil
izers via seed inoculation are widely used in organic farming (Wolde-
meskel et al., 2018). The cooperation of PGPEB with plant roots can be 
achieved naturally or by inoculation. However, to confirm the efficacy 
of microorganisms on plant growth, it is necessary to re-isolate them 
after inoculation from the same inoculated plants. Interestingly, endo
phytic bacteria can be engineered in developing biopesticides as 
biocontrol agents against plant pathogens (Fadiji and Babalola, 2020b). 
Endosphere engineering can further be achieved through the informa
tion gained from metagenomics studies. 

The mechanisms displayed by microbial endophytes vary, based on 
their type and source. Understanding the mechanisms used by endo
phytes is important, as differences in their ability to modulate plant 
hormone levels and other metabolites can be measured under laboratory 
conditions (Ambreetha et al., 2018). The bioinoculant application and 
effect of endophyte application on root development for nutrient ab
sorption in tomato, corn, cotton, and sorghum have been documented 
(Lin et al., 2018). 

The mechanisms employed by endophytic bacteria in enhancing 
agricultural productivity are summarized in Fig. 2. The direct mecha
nisms employed by PGPEB, include nitrogen fixation, synthesis of the 
phytohormones auxin, cytokinin, gibberellin, and abscisic acid 
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Table 1 
Some plant-associated bacterial endophytes and their mechanisms of action.  

Host plant Endophytic bacteria Mechanisms Effects References 

Soybean Bradyrhizobium japonicum IAA production, nitrogen fixation Increased root and shoot dry weight, and nitrogen 
content 

Subramanian et al. 
(2015)  

Serratia proteamaculans IAA synthesis, ACC deaminase, acetoin, 2,3-butanediol synthesis Improved root and shoot development Taghavi et al. (2009) 
Arabidopsis Paraburkholderia phytofirmans IAA production, induction of salt tolerance Enhanced tolerance to stress, increase root and 

shoot weight, chlorophyll content 
(Zúñiga et al., 2013;  
Ledger et al., 2016) 

Tomato Pseudomonas fluorescens and P. migulae Induction of heat stress response; ACC deaminase, IAA production Enhanced stress tolerance (Ali et al., 2014a; Issa 
et al., 2018)  

Bacillus pumilis, B. licheniformis, B. megateruim, B. 
cereus, Serratia marcescens 

IAA production, secondary metabolite synthesis, antibiosis, siderophore 
production, phosphate solubilization, 

Increase root and shoot length, weight, and the 
number of secondary roots 

Amaresan et al. (2012) 

Wheat Paraburkholderia phytofirmans Solubilization and recovery of nitrogen, phosphorus, and potassium Enhanced root biomass, plant height, and 
chlorophyll content 

Aziz et al. (2020)  

Bacillus cabrialessi Biocontrol activity Phytopathogen control de los Santos Villalobos 
et al. (2019)  

Bacillus subtilis, Bacillus megaterium Biocontrol activity Suppressed fungal pathogen mycelial growth Pan et al. (2015) 
Onion Burkholderia phytofirmans ACC deaminase synthesis, IAA production Enhanced plant vigor and resistance to biotic and 

abiotic stresses 
Weilharter et al. (2011) 

Sunflower Stentotrophomonas indicatrix IAA synthesis, phosphate solubilization, siderophore production, secondary 
metabolite synthesis 

Enhanced root number, root length, seed number, 
shoot length 

Adeleke et al. (2021b) 

Groundnut Chryseobacterium indologenes, Enterobacter cloacae, 
Klebsiella pneumoniae, Pseudomonas aeruginosa, 
Enterobacter ludwigii 

Nitrogen fixation, IAA and ACC deaminase production, siderophore production, 
phosphate solubilization 

Increased root and shoot length and weight Dhole et al. (2016) 

Millet Bacillus amyloliquefaciens, B. subtilis, B. cereus Zinc, potassium and phosphate solubilization, siderophore production, antibiosis 
against Fusarium solani, Rhizoctonia solani, and Sclerotium rolfsii, protease, 
amylase, lipase, chitinase, pectinase production 

Enhance root length, weight, percent disease index, 
and disease over control 

Kushwaha et al. (2020) 

Cotton Pantoea spp, Empedobacter spp, Enterobacter spp, 
Rhizobium spp, Klebsiella spp. 

Biocontrol activity, siderophore and IAA production, protease, chitinase, 
cellulose, pectinase production 

Enhanced shoot and root length, germination, and 
vigor index 

(Li et al., 2010, 2012) 

Potato Klebsiella oxytoca, Pseudomonas marginalis, P. 
viridilivida, Bacillus endophyticus, B. atrophaeus/subtilis 

Amylase, cellulase, protease, and phosphatase production, biocontrol against 
plant fungal pathogens 

Suppressed fungal pathogen mycelial growth Boiu-sicuia et al. (2017)  

Burkholderia vietnamiensis Nitrogen fixation Enhanced yield biomass Shinjo et al. (2018) 
Hopbush Streptomyces alboniger, Bacillus idriensis, Pseudomonas 

taiwanensis, P. geniculate 
Ammonia production, hydrogen cyanide, and siderophore production, phosphate 
solubilization, ACC deaminase, IAA production, cellulase, protease, pectinase, 
chitinase 

Enhanced root length Afzal et al. (2017) 

Peanut Bacillus velesensis Siderophore production, phosphate solubilization Inhibition of fungal pathogen mycelial growth, 
seedling height, seedling dry weight, root length, 
and root dry weight 

Chen et al. (2019a) 

Sugarcane Gluconacetobacter diazotrophicus IAA synthesis, nitrogen fixation Enhanced biomass yield Bertalan et al. (2009)  
Kosakonia radicincitans Nitrogen fixation, secondary metabolite synthesis, siderophore production, IAA 

biosynthesis 
Enhanced root length and plant weight Beracochea et al. (2019) 

Rice Pantoea ananatis IAA and siderophore production Increased plant growth and crop yield Megías et al. (2016) 
Poplar Stenotrophomonas maltophilia, Pseudomonas putida ACC deaminase, IAA synthesis Improved root and shoot development Taghavi et al. (2009) 
Cape 

periwinkle 
Achromobacter xylosoxidans ACC deaminase Increased germination percentage and root weight 

under saline conditions 
(Karthikeyan et al., 
2012; Wu et al., 2021)  

B.S. A
deleke et al.                                                                                                                                                                                                                              



Rhizosphere 20 (2021) 100433

5

(Maheshwari et al., 2019). Also, lowering of ethylene by the enzyme 
1-aminocyclopropane-1-carboxylate (ACC) deaminase and the solubili
zation of minerals (zinc, iron, phosphorus, sulfur, and potassium) and 
the increased survival under stress conditions, such as drought and soil 
salinity (Dubey et al., 2021). Also, the ability of PGPEB to produce 
organic acids, enzymes, antimicrobial compounds such as antibiotics 
and cyanide, induce systemic resistance and produce siderophores all 

promote plant growth indirectly (Santoyo et al., 2016). The enzyme ACC 
deaminase is one of the key attributes of endophytic bacteria in stimu
lating plant growth under high concentrations of toxic metals (Gamalero 
and Glick, 2012; Kong and Glick, 2017b; Pandey and Gupta, 2019). 
These abiotic stressors are of particular agricultural importance in less 
than favorable soils or climate conditions. Some endophytic bacteria can 
modulate root-bacteria and bacteria-bacteria interactions due to their 

Fig. 1. Bacterial dynamics and root nodules containing endophytes. Key: RNE – root-nodule endophytes.  

Fig. 2. Mechanisms used by PGPEB and agricultural importance. a - plant immunity/survival, b - plant growth promotion, c - agricultural importance.  
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ability to fix nitrogen in the soil and the major group of bacteria found in 
this category are rhizobia inhabiting the nodules of plants (See Fig. 1). 
The α- and β-rhizobia, such as Rhizobium tropici and Cupriavidus taiwa
nensis colonizing root nodules of Phaseolus vulgaris and Mimosa pudica 
have been identified as nitrogen-fixing bacteria (Bomfeti et al., 2011). 
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing 
endophytic bacterium, Pseudomonas fluorescens, however, can lower 
ethylene levels in plants and this has been shown to play an important 
role in facilitating the nodulation process of α- and β-rhizobia (Nasci
mento et al., 2019). Furthermore, endophytic bacteria can indirectly 
enhance plant growth by stimulating plant responses or producing sec
ondary metabolites against phytopathogens (Santoyo et al., 2012). One 
such indirect technique is the induction of systemic responses (ISR) 
which can be achieved through specific plant response pathways e.g., 
the jasmonic acid (JA) pathway (van Loon and Glick, 2004; Asghari 
et al., 2020). Stimulation of plant defense responses through signaling 
pathways in endophytic bacteria has been reported by Montejano-R
amírez et al. (2020). The authors investigated the antifungal compound 
(N, N-dimethyl hexadecyl amine) produced by the facultative endo
phytic bacterium Arthrobacter agilis. This compound modulates the 
expression of genes involved in low-response, defense, and iron con
centrations in Medicago truncatula infected with phytopathogens, such as 
Botrytis cinerea, and Pseudomonas syringae without involving the JA 
pathway. 

Additionally, the compound IAA produced by endophytic bacteria 
can directly contribute to plant physiological functions, such as growth 
promotion, lateral root formation, increase in biomass yield in terms of 
below and aboveground parameters, and chlorophyll pigmentation 
(Santoyo et al., 2016). Subsequently, to further discuss the direct and 
indirect mechanisms of PGPEB and their bioprospecting in agricultural 
biotechnology, we recommend a few recently published review articles 
and books (Adeleke and Babalola, 2021; Eid et al., 2021; Wu et al., 
2021). These mechanisms help in understanding the coexistence be
tween endosphere bacterial communities and host plants. 

4. Plant root endophytes and bioinoculant synthesis 

Roots are specialized organs that provide mechanical support to 
plants in the uptake of nutrients from the soil (Ahkami et al., 2017). The 
plant supporting tissue (xylem and phloem) in the roots can facilitate the 
absorption and movement of nutrients and water directly from the soil 
to the stem and other parts of the plant (Feng et al., 2019). The ability of 
root-associated endophytic bacteria to produce IAA can enhance root 
development, thus contributing to plant nutrition in absorbing nutrients 
from the soil (Adedeji and Babalola, 2020). Injury to plant roots allows 
free release of root exudates containing fixed carbon in the form of 
polysaccharide mucilage to the soil environment and these compounds 
can serve as a chemoattractant and source of energy to the microor
ganisms around the root (Adeleke and Babalola, 2021). Like soils, plant 
roots harbor a consortium of bacteria in the endosphere compartments 
(Wang et al., 2019). The root architectural system and rhizodeposition 
of nutrients can modulate the activities of root endophytic bacteria in 
the endo-rhizosphere regions. Regardless of the plant regions colonized 
by endophytes, they may exhibit similar functions in crop breeding 
(Hashem et al., 2019). 

The root systems serve as an excellent source of nutrients for endo
phytic bacteria and form an interface for plant-bacterial interactions in a 
given econiche. Excessive rhizodeposition of root exudates containing 
metabolite compounds, such as terpenoid, phenol, alkaloids, proteins, 
and peptides have been reported to influence belowground bacterial 
diversity (Imade and Babalola, 2021). Apart from the roots of plants, 
endophytic bacteria also colonize other parts of the plants. For example, 
the identification of endophytic bacteria colonizing the leaves and stem 
of plants has been reported (Cao et al., 2004; Akinsanya et al., 2015; 
Mahlangu and Serepa-Dlamini, 2018; Zakaria and Aziz, 2018). The 
bacterial populations found in various plant organs often share similar 

functions but are different in terms of abundance and diversity (Bergna 
et al., 2018). The plant growth-promoting bacteria found in the root 
nodules of leguminous plants can function in fixing atmospheric nitro
gen for plant use (Naik et al., 2019). 

Many bacterial endophytes can be cultured and can be directly 
applied to crops either by spraying, seed, or root inoculation. Also, 
endophytic microbes can be used to combat phytopathogens as an 
alternative to pesticides and insecticides (Fadiji and Babalola, 2020a). 
Bacterial root colonization is determined by bacteria strain, host geno
type, soil pH, soil type, drought, salinity, root architecture, soil nutri
ents, etc. The pattern of bacterial colonization in the root endosphere 
differs from one bacterium to another. Endophytic bacteria may enter 
plant tissue via roots, stems, leaves, flowers, and cotyledons (Ambele 
et al., 2020). Findings have shown different entry modes and coloniza
tion patterns of different endophytic strains (Omomowo and Babalola, 
2019; Fouda et al., 2021). The secretion of lytic enzymes, cell wall 
degrading enzymes, and cellulases by endophytic bacterial strains can 
facilitate the entry of a bacterial strain by hydrolyzing the external 
covering of plant cells (Toghueo and Boyom, 2021). A study by Rein
hold-Hurek et al. (2006) revealed the colonization potential of the 
endophytic bacterium Azoarcus sp. in the root endosphere was due to 
endoglucanase biosynthesis and the presence of the eglA gene. Similar 
reports have been documented by Suzuki et al. (2005) on the biosyn
thesis of a nonspecific wax-degrading enzyme by Streptomyces galbus, 
which enhances the colonization of the Rhododendron endosphere by 
this bacterium. The colonization pattern of endophytic bacteria, such as 
Paraburkholderia phytofirmans, and Ralstonia solanacearum by attach
ment, and invasion of the root regions through the exodermis layer have 
been reported to facilitate subsequent bacterial entry and survival, and 
use of plant nutrients as a source of carbon (Afzal et al., 2019). In 
addition, all of the mechanisms for the successful establishment of 
bacteria as endophytes rely on their ability to utilize certain metabolites 
secreted from plants. 

Biofertilization in agriculture is considered safe and environmentally 
friendly. The use of bacterial endophytes as bioinoculant has the po
tential to immensely contribute to crop production since these organ
isms exhibit a strong affinity for their host plants (Mahanty et al., 2017). 
Intensive agriculture using chemical fertilizer in large amounts has no 
doubt resulted in a manifold increase in the productivity of farm com
modities, but the adverse effect of these chemicals are visible to soil 
structure, endo-rhizosphere biodiversity, water bodies, persistent in the 
food chain, and human health (Ngwira et al., 2013). Hence, organic 
farming using organic fertilizer in enhancing biodiversity can be 
instrumental in enhancing biodiversity as the best substitute for chem
ical fertilizer. To successfully achieve this, the real potential of organic 
agriculture on biodiversity requires a stronger shift to a systems 
approach, based on an improved understanding of ecosystem functions 
(Akanmu et al., 2021). Therefore, incorporation of organic fertilizer, 
such as compost, manure, animal waste, and biofertilizers into the soil 
can play a major role in improving soil fertility by supplying micro-and- 
macro-nutrients as major plant nutrients, which favor healthy root 
growth (Fasusi et al., 2021). In addition, organic fertilizers increase 
microbial activity in the endo-rhizosphere region, which helps free up 
other nutrients in addition to those provided by the fertilizer. Subse
quently, soil amended with biofertilizers can enhance nutrient avail
ability to crop plants and boost plant and soil health for higher crop 
yields sustainably (Mahanty et al., 2017). 

Furthermore, for effective production of bioinoculants on a com
mercial scale, selection of appropriate carrier and bacterial strains is 
required. In addition, bacteria in the plant endosphere can be difficult to 
isolate due to the complex environment in which they are found. 
Nevertheless, findings into diverse bacterial community structures in the 
roots of soybean, corn, sorghum, tomatoes, millet, wheat, and cherry 
have been reported using 16 S rRNA gene amplicon sequencing (Berg 
et al., 2015). Furthermore, employing metagenomics techniques in 
evaluating unculturable endophytic bacteria should provide additional 
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opportunities to harness PGPEB for use in agriculture and further 
studies. 

5. Genomic insights into root endophytic bacteria communities 

Genomic insights into endosphere biology have significantly 
increased our understanding of root endophytic bacteria and their 
functioning in plant growth promotion and crop protection (Adeleke 
et al., 2021b). Diverse approaches in assessing endophytic bacterial 
communities have been documented in the literature. Hence, it is 
important to adopt appropriate techniques in studying bacterial endo
phytes inhabiting the root endosphere. In this regard, the two ap
proaches widely adopted include culture-dependent and 
culture-independent techniques. Culture-dependent approaches 
include direct culturing of relevant bacteria while culture-independent 
approaches include shotgun metagenomics, proteomics, metabolomics, 
and meta-transcriptomics (Maropola et al., 2015; Selvin et al., 2019). 
The section below provides a brief overview of the metagenomics of 
endophytes. To isolate endophytic bacteria from plant organs such as 
leaves, roots, and stems, surface sterilization of the plant tissue is 
important before plating on appropriate media. Culture-dependent 
methods have been widely employed due to their low cost, ease of 
performance, and effectiveness in obtaining pure bacterial cultures for 
further characterization of bacteria morphology, phylogeny, physiology, 
and biochemistry (Pei et al., 2017). 

It is often difficult to assess diverse bacteria communities in the plant 
endosphere due to the varied growth parameters required for culturing 
them. For instance, the growth of oligotrophic endophytic bacteria on 
solid media is often outcompeted by the copiotrophic endophytes due to 
their ability to utilize nutrients in synthesizing antibiotics (Okunishi 
et al., 2005). To successfully isolate endophytic bacteria from the plant 
endosphere, the procedures involved are (i) surface sterilization of plant 
tissue using disinfectants such as 3% hypochlorite, 70% ethanol, a 
combination of mercury chloride and ethanol. These disinfectants are 
used to remove unwanted or contaminating microbes from the plant 
surfaces. The efficient use of Tween 20 or Tween 80 to reduce the surface 
tension of solvents has also been used (Romero et al., 2014). Depending 
on the plant material, sterilization time with ethanol and hypochlorite is 
usually from 30 s to 10 min. Furthermore, the samples are typically 
rinsed several times with distilled water to remove the chlorinated 
compounds that may later induce mutagenesis and cell death. Alterna
tively, sodium thiosulfate has been reported to decrease the damaging 
effects of hypochlorite on bacterial cells, suggesting its suitability in 
preparing gnotobiotic models (Miché and Balandreau, 2001). Following 
an appropriate sterilization procedure helps to prevent the penetration 
of the disinfectant into the plant endosphere and the removal of 
epiphytic microbes. A sterility check is usually performed by plating the 
last rinse of water on appropriate bacteriological solid media, such as 
nutrient agar. 

Copiotrophic endophytic are a group of endophytes that require a 
nutrient-rich medium for growth. This notwithstanding, endophytic 
bacteria are often referred to as oligotrophs that require specific media 
for growth. For example, the use of nutrient agar for culturing endo
phytic bacteria from Aloe vera has been reported (Youssef et al., 2016). 
Growing bacterial endophytes in a rich and minimal medium may be 
influenced by the media nutrient composition. Hence, devising inno
vative culture approaches will help obtain sufficient data from unculti
vable endophytic microbes in future research. 

Recent research is focused on the metagenomics approach in 
studying bacterial communities of the root endosphere. Employing 
metagenomics is promising because it helps to identify the role of bac
terial endophytes in various plant biological processes, including nitri
fication, phytoremediation, biodegradation, plant growth promotion, 
and suppression of phytopathogens (Li et al., 2018). 
Culture-independent techniques first begin with the collection of 
healthy plant materials, washing these tissues with distilled water, 

surface sterilization, DNA extraction from the sterilized plant tissues, 
and, finally, sequencing either the 16 S rRNA gene amplicon or shotgun 
metagenome to determine bacteria taxonomy. The metagenomics and 
functional profiling of diverse bacterial endophytes in plants, such as 
maize, rice, sorghum, and cowpea have been investigated by several 
researchers (Maropola et al., 2015; Kunda et al., 2018; de Araujo et al., 
2019; Fadiji et al., 2020). The specific functions of maize inhabiting 
endophytes, which include nitrogen metabolism, stress response, po
tassium, and phosphorus metabolism, iron acquisition, and metabolism 
have been reported by Fadiji et al. (2020). Based on the putative func
tions of these bacteria, the authors have recommended the use of 
culture-dependent methods in identifying these bacteria for further 
exploration in sustainable agricultural systems. 

Metagenomic techniques are promising without bias compared to 
culture-dependent methods in culturing prokaryotes, but with limita
tions, among which are, the extra cost of depleting host DNA for 
sequencing, the presence of plant DNA, the low efficiency of endophytic 
DNA extraction or amplification of the 16 S rRNA. Small amounts of 
bacterial DNA sometimes result after DNA extraction (Bulgarelli et al., 
2013). These limitations might be the reasons why limited success has 
been recorded using shotgun metagenome sequencing to investigate 
endosphere bacterial communities in plants. Hong et al. (2019) per
formed a metagenomic analysis of the bacterial endophyte community 
structure and functions in Panax ginseng at different ages and identified 
important putative genes involved in iron acquisition and metabolism, 
metabolite metabolism, stress response, nitrogen fixation, and side
rophore production which might contribute to bacterial functions in 
plants. Similarly, Tian et al. (2015) employed a metagenomics approach 
in studying endophytic bacterial communities and functions in tomatoes 
and found that they possess secondary metabolite genes which suggest 
that they may suppress nematode infection in tomato roots. 

The genetic composition of bacteria in the root endosphere may 
differ from the bacterial genetic composition in the whole plant, but 
with similar structural diversity and metabolic activities (Stefan et al., 
2018). Genetic analysis of many plant-associated microbes has revealed 
the structural composition and functions of the bacterial community in 
the endo-rhizosphere compartments (Beckers et al., 2017). The use of 
next-generation sequencing in the identification of bacteria genera 
associated with the roots of plants have been reported, which include 
maize (Potshangbam et al., 2017), sorghum (Correa-Galeote et al., 
2018), millet (Manjunatha et al., 2019), and soybean (Yang et al., 2018). 
Similarly, several methods have been employed in the identification of 
novel genes from bacteria colonizing the root endosphere and a few of 
the specific functional genes have been revealed in field experimental 
studies (Afzal et al., 2019). For example, the identification of multiple 
genes responsible for plant growth promotion in endophytic Bacillus 
toyonensis COPE52 and B. thuringiensis CR71 which upon inoculation 
under greenhouse conditions has been reported to enhance the yield of 
blueberry (Vaccinium spp.) and cucumber (Cucumis sativus) (Con
treras-Pérez et al., 2019; Flores et al., 2020). Also, a bioinformatics study 
by Ali et al. (2014b) reported a set of functional genes involved in 
determining the endophytic behavior of Burkholderia spp. Hence, pre
diction of plant growth-promoting genes involved in the synthesis of IAA 
(dha and trp), enzyme production (lon, amy, and pul), phosphate solu
bilization (ppx and pho), bacterial attachment (flg, flh, fli, and mot), 
biological control by secreting volatile compounds (i.e., acetoin, 2,3 
-butanediol (ilv), biofilms (efp, hfq, bcs, yhj, and crp), plant protection 
against oxidative and nitrosative stress (sod, kat, bsa, and grx), side
rophores (fbp fiu, and fet), cytokinin biosynthesis (mia), and ammonia 
production (nad) in the bacterial genome can be inferred to confirm the 
activities of these bacteria through inoculation experiments (Zaferanloo 
et al., 2013; Adeleke et al., 2021a; Singh et al., 2021). Furthermore, 
molecular analysis of endophytic bacteria from plant roots can enable 
scientists to determine genomic sequences that reveal important func
tions of these microbes via online analytical software. 

Research into diverse bacterial communities in some plants using 
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culture-dependent methods has been reported (Puri et al., 2018), how
ever, only a very small portion (1%) of the microbial population in these 
samples has been identified. The use of a metagenomics approach in 
studying endophytic bacteria is relatively new and has not yet been fully 
explored. Several hypotheses exist regarding the use of metagenomic 
analysis of root-associated endophytic bacteria. A metagenomic study of 
a transgenic Bacillus thuringiensis (Bt) cry maize cultivar and its isogenic 
parental line (i.e., a non-Bt maize cultivar) revealed that the most 
dominant Proteobacteria in the Bt maize endosphere were similar to 
those in the non-Bt maize cultivar (Mashiane et al., 2017). While this 
phenomenon appears universal, the challenges associated with the use 
of culture-independent techniques in culturing endophytic bacteria have 
caused some technical difficulties. Therefore, employing a meta
genomics approach in studying diverse endophytic bacterial commu
nities would help scientists to develop bioinoculants that can be applied 
in the field for improved crop production. For instance, based on the 
functional traits of some identifiable bacteria endophytes, a field 
experiment performed by Hungria et al. (2010) using singularly or 
combined applied endophytic Azospirillum brasilense and A. lipoferum as 
bioinoculants found that these strains contributed significantly to the 
yield of maize and wheat in Brazil. 

6. Conclusion and future prospects 

Endospheric communities are groups of microorganisms colonizing 
the internal tissues of plants without causing any deleterious effects to 
the host plants. Understanding the mechanisms employed by PGPEB in 
plant growth promotion is fundamentally important and this can be 
conventionally investigated in vitro. Endophyte interdependence with 
their host plants contributes to their effectiveness under different envi
ronmental conditions. On a commercial scale, harnessing endophytic 
products as an alternative to chemical fertilizers is suggested for 
developing eco-friendly approaches to agriculture. Many identifiable 
root-associated bacteria have been isolated and studied with great 
promises in agriculture and many of them are still under investigation. 
Most endophytic bacteria have not been cultured, thus limiting their use 
in agricultural biotechnology. It is, therefore, necessary to devise 
appropriate measures to achieve this by employing 16 S rRNA gene 
amplicon sequencing or shotgun metagenomics. The use of meta
genomics techniques is promising to unveil structural diversity and 
novel functional information of nonculturable root-colonizing bacteria. 
A correlation between root bacterial endophytes and metagenomic in
sights into the functioning of these bacteria will help understand their 
functional attributes and ensure endosphere competence. 

The metagenomic approach of studying root endosphere bacterial 
communities is a promising area of research that is currently being used 
to analyze bacterial metagenomes from plant roots based on diversity, 
functions, and metabolic pathways. Metagenomics can reveal novel as
pects of root endophytes. Several molecular techniques can be employed 
in the characterization of bacterial genes such as characterizing and 
understanding nitrogen fixation genes. Some culturable bacterial en
dophytes have been isolated, identified, and characterized with this and 
other traits such as siderophores genes, ACC deaminase genes, and 
phosphate-solubilizing genes. 

This review has focused on the relevance of root-endophyte bacteria 
that promote plant growth and soil health for improved crop yield. The 
benefits of these bacteria in crop production are multiple as they can be 
employed in the synthesis of bioinoculants that can be substituted for 
agrochemicals. Nevertheless, this area requires additional research on 
the use of biofertilizers in developing eco-friendly agriculture. Finally, 
the application of metagenomics in understanding root endophytic 
bacteria has been studied with success in determining their structural 
diversity, functional, and metabolic pathways. Promisingly, biotechno
logical advancement using modern analytical methods in determining 
endophytes and their metabolites can be adopted for research relating to 
plant-microbe interactions. For instance, stable isotope probing (SIP) 

combined nanoscale secondary ion mass spectrometry techniques 
(NanoSIMS) combined with advanced Raman spectroscopy-based single 
cell-based methods can be employed in the study of plant-endophyte- 
interactions in situ, and biological functions in the removal of complex 
pollutants from the contaminated soil. Hence, the concept of this 
biotechnological advancement in establishing a strong plant-microbial 
framework may create insights for future endosphere research with 
promises in solving agricultural problems. 
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