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Abstract

In this thesis, we work on a generalization of the entropy regularized optimal
transport problem, with the objective function being (spectral) risk measures.
We accomplish three goals: to present the corresponding dual problem and prove
Kantorovich duality, to prove stability of the optimal value under the weak conver-
gence of marginals, the reference measure and the regularization threshold, and to
explore an efficient numerical algorithm for a solution of the optimization problem.

The analogue of the Kantorovich duality is proved using techniques from convex
analysis. Stability and convergence of approximating optimization problems are
studied using the techniques of Gamma convergence, combined with recent results
on shadow couplings. For the numerical solution of the optimization problem, a
variation on Sinkhorn’s algorithm is developed, which improves on a naive linear
programming implementation significantly, in terms of both running time and
storage requirements.
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Chapter 1

Introduction

1.1 Background

The topic of optimal transport has been explored during the past decades, which
originates from the study of optimization in areas of resources allocation, route
planning, etc. Recently the topic of entropy regularized optimal transportation
draws the interest of academics, as well as the connection to machine learning. In
this thesis, we combine the theory of (entropy regularized) optimal transportation
and the spectral risk measure, which could serve for the general interest in risk
measurement, and contribute to both the theoretical and computational aspect of
the problem.

1.1.1 Risk Measures

A risk measure R maps a subset R of the set of random variables on some proba-
bility space (Ω,F , π), interpreted as the set of discounted net financial positions,
into real numbers. Coherent risk measures have been particularly well-studied (see,
e.g. Artzner et al. (1999), Delbaen (2002), Riedel (2004)), and are characterized
by the following properties:

• Monotonicity: R(X) ≤ R(Y ), for all X, Y ∈ R such that X ≤ Y , π-a.s.

• Positive Homogeneity: R(λX) = λR(X), for all X ∈ R and all λ ∈ R+

• Cash Invariance: R(X + c) = R(X) + c, for all X ∈ R and c ∈ R

• Subadditivity: R(X + Y ) ≤ R(X) +R(Y ) for all X, Y ∈ R
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One coherent risk measure (see Artzner et al. (1999)), Expected Shortfall (ES),
also known as Conditional Value-at-Risk (CVaR), is often used in the area of
quantitative risk management in the banking and insurance industries (see Basel
Committee on Banking Supervision (2019)).

For continuous loss variables, it is the expected loss given that the losses exceed
a prescribed quantile. Let W be a Polish space, let P(W) be the set of Borel
probability measures onW . For a confidence level α ∈ (0, 1), a probability measure
π ∈ P(W), and a bounded random variable L : W → R, the Expected Shortfall
(ES) of L is defined to be:

ESα,π(L) = (1− α)−1
∫ 1

α

F←L,π(u) du,

where F←L,π is the generalized inverse of the cumulative distribution function of the
random variable L (given the probability measure π on W):

F←L,π(u) = inf
{
x ∈ R : π(L−1(−∞, x]) ≥ u

}
.

1.1.2 Optimal Transportation Theory

Let’s begin with an example of the optimal transportation theory: consider the
problem of matching a number of workers and firms. Each worker can only work
for one firm, and each firm can only hire one worker. A matching between all
workers and all firms produces an economic utility. A natural question to ask
is does there exist an optimal matching such that the utility coming out of the
matching is maximized; and if so, what can we conclude for the optimal matching
and the corresponding optimal value, etc.

There is a large literature on the optimal transport problem and its applications
(e.g., Rachev and Rüschendorf (1998) or Villani (2003) or Villani (2008), and the
referneces therein). The applications to economics are discussed in Galichon (2016)
and to risk measures in Rüschendorf (2013). Optimal transport, and the related
martingale optimal transport problem have also been applied to the problem of
determining bounds for prices of financial instruments (e.g., Beiglböck, Henry-
Labordère, and Penkner (2013) or Henry-Labordère (2017)), and on risk measures
for particular choices of the function L (see McNeil, Frey, and Embrechts (2015)).

Here we give a basic introduction to the optimal transport problem. For more
details, see Galichon (2016) and Villani (2003).

Given two measure spaces X and Y , let µ ∈ X represent the vectors of charac-
teristics of workers, and let ν ∈ Y represent the vectors of characteristics of firms,
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and we can assume that the workers and firms are in equal mass, so we may nor-
malize µ and ν to 1, hence we can let µ and ν representing probability measures
on X and Y respectively. Let (X, Y ) ∈ X ×Y , the cost function c acting on (X, Y )
gives the cost/profit of assigning worker X to firm Y . Any possible pairing (X, Y ),
called a coupling, can be represented as an element in Π(µ, ν), where Π(µ, ν) is
defined to be the set of all possible joint distribution with fixed marginals µ and
ν.

The Monge problem assumes that every worker of type x get assigned to the
same type of firm, hence the coupling (X, Y ) becomes deterministic in terms of
X, i.e. Y = T (X) where we call T in this case a pure assignment. The Monge
problem reads:

max
{T : X→Y | T#µ=ν}

Eµ(c(X,T (X)))

Important advances have been made by the mathematician and economist
Leonid Kantorovich. A key approach to the Monge problem is to use the idea
of relaxation: rather than optimizing over the pure assignments, optimizing over
any assignment (or over all possible joint distributions):

max
π∈Π(µ,ν)

Eπ(c(X, Y ))

The following result is fundamental to the optimal transport.

Theorem 1.1.1 (Kantorovich duality). Let X and Y be two Polish spaces, let
µ ∈ P(X ) and ν ∈ P(Y), and let c : X × Y → R+ ∪ {+∞} be a lower semi-
continuous cost function.

Whenever π ∈ P(X × Y) and (φ, ψ) ∈ L1(dµ)× L1(dν), define

I(π) =

∫
c dπ, J(φ, ψ) =

∫
φdµ+

∫
ψ dν.

Define Π(µ, ν) to be the set of all Borel probability measures π on X ×Y such
that for all measurable subsets A ⊂ X and B ⊂ Y,

π(A× Y) = µ(A), π(X ×B) = ν(B),

and define Φc to be the set of all measurable functions (φ, ψ) ∈ L1(dµ) × L1(dν)
satisfying

φ(x) + ψ(y) ≤ c(x, y)

for dµ-almost all x ∈ X , dν-almost all y ∈ Y.
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Then
inf

Π(µ,ν)
I(π) = sup

Φc

J(φ, ψ) (1.1.1)

Moreover, the infimum in the left-hand side of (1.1.1) is attained. Furthermore,
it does not change the value of the supremum in the right-hand side of (1.1.1) if
one restricts the definition of Φc to those functions (φ, ψ) which are bounded and
continuous.

Proof. See Villani (2003) for more details.

1.1.3 Entropy Regularization

Recent literature (e.g. Glasserman and Yang (2018) or Nutz and Wiesel (2021) or
Genevay (2019)) combines the original optimal transport problem with an entropy
regularization term. One meaningful interpretation among others is that the op-
timizer should not deviate from our prior experience (which is represented as a
reference measure) to a large extent, and we want to control the distance between
the two measures.

A common choice for the regularization term is the relative entropy, or Kull-
back–Leibler divergence, which is used in economics, for example in areas of max-
min expected utility theory and robust control theory (see e.g. Hansen and Sargent
(2001) and Hansen et al. (2006)), and more recent literature on fast numerical al-
gorithms and solvers (e.g. Mérigot and Thibert (2021) and Tenetov, Wolansky,
and Kimmel (2018)). Given a reference measure πref , the relative entropy is given
by: ∫

X×Y
log

(
dπ

dπref

)
dπ

where π ≪ πref .

However other choices for the entropy on the probability space are possible to
study. In the terminology of economics and decision theory, Maccheroni, Mari-
nacci, and Rustichini (2006) characterizes the KL-divergence as one of the multi-
plier preferences (in the language of Hansen and Sargent, see Hansen and Sargent
(2001)) which in turn belong to a bigger class of preferences, called divergence
preferences that are in general smooth, which is an important feature for applica-
tions. The class of divergence preferences also include a third type of preferences,
called the mean-variance preferences of Markowitz (Markowitz (1952)) and To-
bin (Tobin (1958)). An example of mean-variance preferences is the relative Gini
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concentration index (or χ2 divergence) given by∫
X×Y

2−1
(
dπ

dπref
− 1

)2

dπ

where π ≪ πref .

Given a reference measure πref , the (relative) entropy regularized optimal trans-
port is:

max
π∈Π(µ,ν)

∫
X×Y

c dπ − 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ (1.1.2)

where the problem is defined for all π ≪ πref , and c0 is the regularization parameter
in R.

One benefit for adding a regularization term comes from the numerical aspect,
such as smoothness, existence of a gradient in gradient descent methods, and
an improved sampling complexity (see e.g. Genevay et al. (2016) and Cuturi,
Teboul, and Vert (2019)). In particular, the entropic regularization, as in our
case, combined with the Sinkhorn’s algorithm could be implemented at large scale
using parallel computing (see Sinkhorn and Knopp (1967) and Knight (2008)).

For large c0 > 0 , the penalty term in (1.1.2) is negligible, and solving (1.1.2) is
essentially approximating the unregularized version of the problem by empowering
the benefit of numerical algorithms (see e.g. Weed (2018) and Altschuler, Weed,
and Stromme (2021)). On the other hand, for small c0 > 0, the penalty term
is not negligible, and the problem (1.2.3) itself is of its own interest due to its
interpretation in measuring the divergence of distribution, as is in our case. The
magnitude of c0 can also reflect the degree of ambiguity aversion in economics and
decision theory (see Maccheroni, Marinacci, and Rustichini (2006)).

1.2 Problem Formulation

The original motivation for the formulation of the problem arose from applications
in counterparty credit risk, in which the two factors correspond to sets of factors
for market risk and credit risk (e.g., Garcia-Cespedes et al. (2010) and Rosen and
Saunders (2012)). Bounding the Credit Valuation Adjustment (CVA) (i.e. the
price of counterparty credit risk losses) given known market and credit risk factor
distributions assumes the form of an optimal transport problem: the distribution
of the exposures and the distribution of the counterparty’s default time are treated
as given marginals, and the expected credit loss for a counterparty portfolio is a
function that depends on both marginals, which provides another way to build the
correlation between these factors in addition to the copula approach.
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Memartoluie, Saunders, and Wirjanto (2012) considered the problem of bound-
ing ES given the distributions of the market and credit factors, and showed that
in the case of finite sample spaces, the problem is equivalent to a linear program.
Memartoluie (2017) further investigated into the issues on the bounds on CVA
contributions with given marginals, counterparty credit risk and bounds on ES.

Throughout the thesis, let X and Y be two Polish (i.e., complete, separable,
metric) spaces. Whenever we define measures and random variables, all the spaces
are equipped with their respective Borel sigma algebras. For a Polish space W ,
and for sequences πn ∈ P(W), πn → π denotes weak convergence of probability
measures: ∫

fdπn →
∫
fdπ, ∀f ∈ Cb(W)

where Cb(W) denotes the space of bounded continuous functions fromW to R. We
can metrize this convergence using (for example) the Prokhorov metric on P(W)
defined by:

dP(P,Q) = inf
π∈Π(P,Q)

inf
{
ε > 0 : π[(x, y) : dW(x,y) ≥ ε] ≤ ε

}
,

where Π(P,Q) denotes the set of joint probability measures on V with marginals
P and Q.

There are two useful equivalent characterizations of ES. The first one is based
on Rockafellar and Uryasev (2000) (see also Föllmer and Schied (2016) lemma
4.46):

ESα,π(L) = min
β∈R

(β + (1− α)−1Eπ[(L− β)+]).

The second one is the so-called dual representation of ES as a coherent risk
measure:

ESα,π(L) = max
Θ∈Gα(π)

EΘ[L],

where Gα(π) is the set of all probability measures Θ absolutely continuous with
respect to π with density satisfying dΘ

dπ
≤ (1− α)−1, π - almost surely:

Gα(π) :=
{
Θ ∈ P(W) | Θ≪ π,

dΘ

dπ
≤ (1− α)−1

}
,

with the inequality holding π-almost surely.

Furthermore, it is known (see Föllmer and Schied (2016)) that the above max-
imum is attained by the probability measure Θ0 ∈ Gα(π) with density:

dΘ0

dπ
=

1

1− α
(1{L>q} + κ1{L=1}),

6



where q is an α-quantile of L, and where κ is defined as:

κ =

{
0, if π(L = q) = 0
(1−α)−π(L>q)

π(L=q)
, otherwise.

Ghossoub, Hall, and Saunders (2020) introduces the Maximum Expected Short-
fall (MES) based on the above framework and by interpreting µ ∈ P(X ) and
ν ∈ P(Y) as the distributions of risk factors whose marginal distributions are
known, but whose joint distribution is unknown. Formally, the Maximum Ex-
pected Shortfall (MES) consistent with the prescribed marginals is:

MESα(L) := sup
π∈Π(µ,ν)

ESα,π(L)

= sup
π∈Π(µ,ν)

min
β∈R

(β + (1− α)−1Eπ[(L− β)+])

= sup
π∈Π(µ,ν),Θ∈Gα(π)

EΘ[L].

Föllmer and Schied (2016) proposition 4.19 states that, as a supremum of
suitably well-behaved risk measures, MES is itself a coherent risk measure on the
set of bounded functions on W .

In the notation above, we have expressed the dependence of the MES on
marginals µ and ν. In order to emphasize this dependence, we denote the MES as
follows:

Vα(µ, ν) := sup
π∈Π(µ,ν)

{
min
β∈R

{
β + (1− α)−1Eπ[(L− β)+]

}}
= sup

(π,Θ)∈Fα(µ,ν)

∫
X×Y

L(x, y) dΘ(x, y). (1.2.1)

where the correspondence Fα : P(X )×P(Y)⇒ P(X ×Y)×P(X ×Y) is defined
as

Fα(µ, ν) :=

{
(π,Θ) ∈M+(X × Y)×M+(X × Y) |π ∈ Π(µ, ν),Θ≪ π,

dΘ

dπ
≤ (1− α)−1

}
,

(1.2.2)
with the inequality holding π-almost surely.

In practice, we often employ a probability measure that represents our belief
of the past experience. We call this the reference probability in our setting. As
Glasserman and Yang (2018) presents, we may use the relative entropy (also called
Kullback–Leibler divergence) to measure the divergence between the prior proba-
bility measure and the reference measure. By adding the penalty to the original
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problem (1.2.1), we formulate the penalized version of the primal problem, with a
(given) penalty parameter c0 and a (given) reference probability measure πref :

Vα,c0(µ, ν) := sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ (1.2.3)

= sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref

= sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

Γ

(
dπ

dπref

)
dπref

and where Γ : R+ → R is defined as

Γ(r) :=

{
r log r if r > 0

0 if r = 0.
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1.3 Research Contributions

The work by Ghossoub, Hall, and Saunders (2020) considers the problem of bound-
ing the ES of a loss L(X, Y ) given that the marginal distributions of the factors
X and Y are known, and generalizes the setting by relaxing the assumptions on
the loss functions L (e.g. relaxing some assumptions on the shape of L which is
done in McNeil, Frey, and Embrechts (2015) and Rüschendorf (2013)) as well as
relaxing the spaces from being R-valued to complete separable metric spaces where
the risk factors lie.

The resulting optimization problem has the same constraint set as the optimal
transport problem, but its objective function is more general. Ghossoub, Hall, and
Saunders (2020) presents an analogue of the Kantorovich duality, the continuity of
the optimal value and optimizers with respect to the perturbation of the marginal
distributions, and the limiting behavior of the optimal value with marginals being
simulated from finite sample spaces.

In this thesis, we extend the work by Ghossoub, Hall, and Saunders (2020) to
the entropic regularization of optimal transport problem, and contribute to the
following aspects:

• We present a proof of an analogue of the Kantorovich duality by utilizing
existing results on the Kantorovich duality for optimal transport.

• We prove a convergence of the optimal values and a subsequence of optimal
solutions for the primal problem with respect to the Wasserstein conver-
gence of the marginal distributions, the reference measure (assumed to be
the product measure µ⊗ ν), and the penalty parameter.

• We modify an efficient numerical algorithm in solving the entropy regularized
optimal transport problem, i.e. Sinkhorn’s algorithm, to solve the problem of
interest in our case: use the minimax theorem to enable an iterative calling
of the Sinkhorn’s algorithm and the one dimensional problem solver

The remainder of this thesis is structured as follows: in Chapter 2 we derive the
dual problem and prove Kantorovich duality; in Chapter 3 we study the qualitative
stability of the primal problem; in Chapter 4 we focus on the numerical simulation
of the primal problem; and we conclude the thesis in Chapter 5. In Appendix A
we provide some background materials in convex analysis as well as some relevant
and important theorems and definitions.
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Chapter 2

Kantorovich Duality

In this chapter, we discuss the Kantorovich duality (including both weak and
strong duality) between the primal problem (1.2.3) and the dual problem (2.1.4).

Note that for the standard primal problem in many literature:

max
π∈Π(µ,ν)

∫
X×Y

c dπ,

its associated dual problem reads:

min
φ, ψ

∫
X
φdµ+

∫
Y
ψ dν

s.t. φ(x) + ψ(y) ≥ c(x, y), for almost all (x, y) ∈ (X ,Y)

where the infimum is over measurable and integrable functions φ and ψ.

The interpretation of the dual problem, in the worker and firm example, is as
follows: the primal problem calculates the total utility generated from an optimal
matching between workers and firms; the dual problem essentially breaks down the
total utility at the individual level. Here φ(x) represents the payoff that worker x
can generate, similarly ψ(y) represents the payoff that firm y can generate, hence
the dual problem represents the sum of each one integrated against its distribution.

The weak duality essentially says that the value of the primal problem is less
than or equal to that of the dual problem, which is reasonable since the total
utility returned by any pairing cannot exceed the sum of the workers’ utility (the
maximum utility the workers can possibly achieve) and firms’ utility (the maximum
utility the firms can possibly achieve). The strong duality says that the worker
and firm system reach an equilibrium if there is no gap between the optimal values
of the two problems.
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2.1 Dual Problem

In this section, we first employ the standard dual derivation method as in the
nonlinear programming in order to motivate the form of the dual problem. Then
we write down the actual dual problem that we consider in the thesis, for which
the proofs on Kantorovich duality are presented in later chapters.

We start from the penalized primal problem (1.2.3):

sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref

= sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

Γ

(
dπ

dπref

)
dπref (2.1.1)

Introduce the Lagrange multipliers φ ∈ L1(µ), ψ ∈ L1(dν), β ∈ R, ρ ∈
L1(dπ) and ρ ≥ 0, and we get the Lagrangian

L(π,Θ, φ, ψ, β, ρ) =
∫
X×Y

LdΘ− 1

c0

∫
X×Y

Γ

(
dπ

dπref

)
dπref

+

(∫
X
φdµ−

∫
X×Y

φdπ

)
+

(∫
Y
ψ dν −

∫
X×Y

ψ dπ

)

+

∫
X×Y

ρ
(
(1− α)−1dπ − dΘ

)
+ β

(
1−

∫
X×Y

dΘ

)
=

∫
X
φdµ+

∫
Y
ψ dν + β +

∫
X×Y

(L− ρ− β) dΘ

+
1

c0

∫
X×Y

(
c0((1− α)−1ρ− φ− ψ)

dπ

dπref
− Γ

(
dπ

dπref

))
dπref

The dual Lagrange function is then given by

Ldual(φ, ψ, β, ρ) = sup
(π,Θ)∈Fα(µ,ν)

L(π,Θ, φ, ψ, β, ρ)

=

∫
X
φdµ+

∫
Y
ψ dν + β + sup

Θ∈P(X×Y)

{∫
X×Y

(L− ρ− β) dΘ

}

+ sup
π∈Π(µ,ν)

 1

c0

∫
X×Y

(
c0((1− α)−1ρ− φ− ψ)

dπ

dπref
− Γ

(
dπ

dπref

))
dπref


(2.1.2)

11



Define

C :=

{
g ∈ L1(dπref) | g =

dπ

dπref
for some π ∈ P(X × Y)

}

Then if we restrict the set for taking supremum in (2.1.2), we have by Bhat-
tacharya and Dykstra (1995) and Bhattacharya (2006):

sup
g∈C

{
1

c0

∫
X×Y

(
c0((1− α)−1ρ− φ− ψ)g − Γ (g)

)
dπref

}
= log

∫
X×Y

ec0((1−α)
−1ρ−φ−ψ) dπref (2.1.3)

which relates to the Donsker-Varadhan variational formula as shown in Lemma
2.3.1.

Here we make a reasonable conjecture for the dual problem defined as follows:

Dα,c0(µ, ν) := inf
(φ,ψ,β)∈Cb(X )×Cb(Y)×R

Ldual(φ, ψ, β, ρ)

= inf
(φ,ψ,β)∈Cb(X )×Cb(Y)×R

{∫
X
φdµ+

∫
Y
ψ dν + β

+
1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

}
(2.1.4)

Note that here we restrict the feasible set from L1 integrable functions to those
of the continuous and bounded functions. Such change will not affect the theorems
and proofs in later chapters, as shown in Proposition 5.
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2.2 Weak Duality

In this section, we prove an analogue of the Kantorovich duality for the pri-
mal problem (1.2.3) and dual problem (2.1.4), i.e., we show that Dα,c0(µ, ν) ≤
Vα,c0(µ, ν). Throughout this section, α ∈ (0, 1) is fixed. We begin with the attain-
ment of the supremum of the entropic regularized primal problem.

Proposition 1 (Existence of Primal Optimizer). Let L be bounded above and
upper-semicontinuous. Then the supremum in (1.2.3) is attained. That is, there
exists a pair (π∗,Θ∗) ∈ P(X × Y)× P(X × Y) such that (π∗,Θ∗) ∈ Fα(µ, ν) and∫
X×Y LdΘ

∗ − 1
c0

∫
X×Y log

(
dπ∗

dπref

)
dπ∗ = Vα,c0(µ, ν).

Proof. First note that Fα(µ, ν) is nonempty (e.g., π = Θ = µ ⊗ ν). Next, since
L is bounded from above, the first integral term is finite; and the second term is
bounded below by 0:∫

log

(
dπ

dπref

)
dπ = −

∫
log

(
dπref
dπ

)
dπ ≥ − log

∫
dπref
dπ

dπ = 0, by Jensen’s Inequality

we have that the supremum is finite.

Let {(πn,Θn)}n be a sequence in Fα(µ, ν) with∫
X×Y

LdΘn −
1

c0

∫
X×Y

log

(
dπn
dπref

)
dπn → Vα,c0(µ, ν).

First note that the set Π(µ, ν) is tight on X ×Y : given X and Y being Polish
spaces, since µ ∈ P(X ) and ν ∈ P(Y), by Ulam’s Lemma (see appendix A.2.1),
both µ and ν are tight. Then for any ϵ > 0, there exists compact sets Kϵ ⊂ X and
Lϵ ⊂ Y such that

µ(Kc
ϵ ≤ ϵ/2), ν(Lcϵ ≤ ϵ/2).

then for any π ∈ Π(µ, ν),

π((Kϵ × Lϵ)c) ≤ µ(Kc
ϵ ) + ν(Lcϵ) ≤ ϵ.

By Prokhorov’s Theorem (see appendix theorem A.3.1), the set {πn} is se-
quentially compact: there exists a subsequence {πnk

} of {πn} ⊂ Π(µ, ν) and
π∗ ∈ Π(µ, ν) such that πnk

→ π∗. Then for each ε > 0 there exists a compact Kε

such that πnk
(Kε) ≤ (1− α)ε for all k ∈ N.

Let Θnk
∈ Gα(πnk

), i.e. Θnk
≪ πnk

and
dΘnk

dπnk
≤ (1− α)−1. Then for all k ∈ N:

Θnk
(Kε) =

∫
Kε

dΘnk

dπnk

dπnk
≤ ε

13



Therefore, the set {Θnk
} is tight. Again by Prokhorov’s Theorem, the set

{Θnk
} has a convergent subsequence {Θnkj

} tending to some Θ∗.

Hence we obtain a (further sub)sequence {(πm,Θm)} ∈ Fα(µ, ν) with πm ∈
Π(µ, ν), (πm,Θm) → (π∗,Θ∗). Lemma 6 from Ghossoub, Hall, and Saunders
(2020) yields that Θ∗ ≪ π∗ and dΘ∗

dπ∗ ≤ (1− α)−1.

Since L is upper-semicontinuous, and πm → π∗, by Villani (2008) Lemma 4.3,

lim sup
m→∞

∫
X×Y

LdΘm ≤
∫
X×Y

LdΘ∗.

Since the relative entropy function is lower-semicontinuous (Dupuis and Ellis
(1997) Lemma 1.4.3),

lim
m→∞

∫
X×Y

log

(
dπm
dπref

)
dπm ≥ lim inf

m→∞

∫
X×Y

log

(
dπm
dπref

)
dπm ≥

∫
X×Y

log

(
dπ∗

dπref

)
dπ∗.

Hence combing the above two inequalities,

Vα,c0(µ, ν) = lim
m

∫
X×Y

LdΘm −
1

c0

∫
X×Y

log

(
dπm
dπref

)
dπm

≤
∫
X×Y

LdΘ∗ − 1

c0

∫
X×Y

log

(
dπ∗

dπref

)
dπ∗.

Hence (π∗,Θ∗) is an optimal solution in (1.2.3), as desired.
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Proposition 2 (Weak Duality). Let L be bounded above and upper-semicontinuous.
Let (π,Θ) be feasible for the problem (1.2.3) and (φ, ψ, β) be feasible for the dual
problem (2.1.4). Then:∫

X×Y
LdΘ− 1

c0

∫
X×Y

log
dπ

dπref
dπ ≤

∫
X
φdµ+

∫
Y
ψ dν + β

+
1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

(2.2.1)

Proof. Since (π,Θ) is feasible, we have dπ
dπref

≥ 0 well-defined. Following our dis-

cussion on (2.1.3), and we have

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

≥ 1

c0

∫
X×Y

(
c0((1− α)−1(L− β)+ − φ− ψ)

dπ

dπref
− dπ

dπref
log

(
dπ

dπref

))
dπref

=

∫
X×Y

((1− α)−1(L− β)+ − φ− ψ) dπ −
1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

=

∫
X×Y

(1− α)−1(L− β)+ dπ −
∫
X
φdµ−

∫
Y
ψ dν − 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

Then for any β ∈ R,

β +
1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref ≥ β +

∫
X×Y

(1− α)−1(L− β)+ dπ

−
∫
X
φdµ−

∫
Y
ψ dν − 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

which implies∫
X
φdµ+

∫
Y
ψ dν + β +

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

≥ β +

∫
X×Y

(1− α)−1(L− β)+ dπ −
1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

≥ min
β∈R

{
β +

∫
X×Y

(1− α)−1(L− β)+ dπ

}
− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

as needed.

From the above proposition, we obtain Vα,c0(µ, ν) ≤ Dα,c0(µ, ν) (feasibility of
the dual problem is obvious by taking φ = ψ = 0, and β = 0).
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2.3 Strong Duality when X and Y are Compact

In this section, we aim at proving the strong duality Dα,c0(µ, ν) = Vα,c0(µ, ν) when
both X and Y are compact.

We first note the following lemma.

Lemma 2.3.1 (Donsker-Varadhan variational formula). Let X and Y be Polish
spaces. The relative entropy H(· | ·) has the following properties.

1. Denote by Cb(X ) the space of continuous bounded functions mapping X to
R. Then for each γ and θ in P(X ),∫

X
log

(
dγ

dθ

)
dγ =: H(γ|θ) = sup

g∈Cb(X )

{∫
X
g dγ − log

∫
X
eg dθ

}

2. H(γ|θ) is a convex, lower-semicontinuous function of (γ, θ) ∈ P(X × Y) ×
P(X × Y), and of each variables γ or θ separately.

Proof. See Dupuis and Ellis (1997) page 29-32.

Hence by Lemma 2.3.1, we can rewrite the relative entropy in the form of the
variational formula:

H(π|πref) = sup
g∈Cb(X×Y)

{∫
X×Y

g dπ − log

∫
X×Y

eg dπref

}
(2.3.1)

which is convex and lower-semicontinuous of (π, πref) ∈ P(X × Y) × P(X × Y),
and of each variables π or πref separately. Then −H(π|πref) is concave and upper-
semicontinuous.

Note that the supremum is obtained iff g is chosen to be

g := log

(
dπ

dπref

)
which makes

∫
eg dπref = 1. Given that log(t) ≤ t− 1 and the equality holds when

t = 1, we have another representation of the KL-divergence:

H(π|πref) = sup
g∈Cb(X×Y)

{∫
X×Y

g dπ + 1−
∫
X×Y

eg dπref

}
. (2.3.2)
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Lemma 2.3.2. Suppose that X ,Y are compact complete separable metric spaces,
µ ∈ P(X ), ν ∈ P(Y), and L : X × Y → R. Then

Vα,c0(µ, ν)

= sup
π∈Π(µ,ν)

 inf
β∈R,g∈Cb(X×Y)

{
β +

∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ +

1

c0
log

∫
X×Y

eg dπref

}
Proof.

Vα,c0(µ, ν)

= sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref by (1.2.3)

= sup
π∈Π(µ,ν)

min
β∈R

{
β + (1− α)−1

∫
X×Y

(L− β)+ dπ

}

− 1

c0
sup

g∈Cb(X×Y)

{∫
g dπ − log

∫
X×Y

eg dπref

}
by Lemma 2.3.1

= sup
π∈Π(µ,ν)

min
β∈R

{
β + (1− α)−1

∫
X×Y

(L− β)+ dπ

}

+
1

c0
inf

g∈Cb(X×Y)

{
−
∫
g dπ + log

∫
X×Y

eg dπref

}
= sup

π∈Π(µ,ν)

 inf
β∈R,g∈Cb(X×Y)

{
β +

∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ +

1

c0
log

∫
X×Y

eg dπref

}
We need the following important theorem in order to continue the argument.

Lemma 2.3.3 (Minimax Theorem). Let X be a locally convex space, Y be a linear
space (vector space), A ⊂ X be a nonempty convex compact set and B ⊂ Y be a
nonempty convex set. Let also f : A×B → R be a function with the property that
f(·, y) is concave and upper semicontinuous for every y ∈ B, and f(x, ·) is convex
for every x ∈ A. Then

max
x∈A

min
y∈B

f(x, y) = inf
y∈B

max
x∈A

f(x, y)
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Proof. See Zălinescu (2002) page 144-146.

Definition 2.3.1 (Locally Convex Space). A topological vector space over
F = R or C is a vector space with a Hausdorff topology such that the product
and sum maps p : F × U → U and s : U × U → U , given by p(t, x) = tx and
s(x, y) = x + y, are both continuous (where F × U and U × U use the product
topology). When U is a topological vector space, the continuous dual of U are the
spaces

U∗ = {f : U → F | f is linear and continuous}.
A topological vector space is said to be locally convex when its topology has a
basis which consists of convex sets.

Theorem 2.3.1 (Strong Duality under Compactness). Suppose that X ,Y are com-
pact complete separable metric spaces, µ ∈ P(X ), ν ∈ P(Y), and L : X × Y → R
is continuous and bounded. Then Dα,c0(µ, ν) = Vα,c0(µ, ν).

Proof. In order to apply the Lemma 2.3.3 in our case, we need to carefully examine
the following assumptions:

• X (which isM(X × Y)) is locally convex

• Y (which is R× Cb(X × Y)) is a linear space

• A (which is Π(µ, ν)) is nonempty, convex and compact

• B (which is R× Cb(X × Y)) is nonempty and convex

• f(·, y) is concave and upper semicontinuous for every y ∈ B, and f(x, ·) is
convex for every x ∈ A

where

f(π, (β, g)) := β +

∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ +

1

c0
log

∫
X×Y

eg dπref .

In the statement, we assume both X and Y are compact, following our notes
in section 1.2, as in Theorem A.4.1 the space of continuous and bounded functions
on a locally compact Hausdorff space, Cb(X × Y), has a dual space M(X × Y),
the set of Radon measures on X ×Y with bounded variation (the norm being total
variation of the measure). Cb(X × Y) induces a weak topology on M(X × Y),
which defines the weak convergence of measures:

µn → µ iff

∫
f dµn →

∫
f dµ, ∀f ∈ Cb(X × Y)
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Then the weak∗ topologyM(X ×Y) locally convex (see Brezis (2010) Proposition
3.12 that gives a basis consisting of convex sets).

The space R×Cb(X ×Y) is obviously convex, and linear (i.e. a vector space).

The set Π(µ, ν) is nonempty (the product measure µ⊗ν is contained in the set)
and convex: let π1 ∈ Π(µ, ν) and π2 ∈ Π(µ, ν), let α ∈ (0, 1), then απ1+(1−α)π2 ∈
Π(µ, ν). Indeed,

απ1 + (1− α)π2 ≥ 0,

απ1(X × Y) + (1− α)π2(X × Y) = 1,

απ1(A× Y) + (1− α)π2(A× Y) = αµ(A) + (1− α)µ(A) = µ(A), ∀A ⊂ X ,
απ1(X ×B) + (1− α)π2(X ×B) = αν(B) + (1− α)ν(B) = ν(B), ∀B ⊂ Y .

Furthermore, Π(µ, ν) ⊂ P(X ×Y) ⊂M(X ×Y), which is the set of joint prob-
ability measures with given marginals µ and ν, is (weakly) compact as discussed
in Villani (2003) page 49-50.

Finally, for each (β, g) ∈ R×Cb(X ×Y), f(π, (β, g)) is concave and continuous
in π ∈ Π(µ, ν) by Dupuis and Ellis (1997) pages 29-30. And for each π ∈ Π(µ, ν),
f(π, (β, g)) is convex in (β, g) (see Simon (2011) pages 12-13).
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Now we are ready to finalize the proof of theorem 2.3.1.

Vα,c0(µ, ν)

= sup
π∈Π(µ,ν)

 inf
β∈R,g∈Cb(X×Y)

{
β +

∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ +

1

c0
log

∫
X×Y

eg dπref

}
by Lemma 2.3.2

= inf
β∈R, g∈Cb(X×Y)

 sup
π∈Π(µ,ν)

{
β +

∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ +

1

c0
log

∫
X×Y

eg dπref

}
(2.3.3)

= inf
β∈R, g∈Cb(X×Y)

β + sup
π∈Π(µ,ν)

{∫
X×Y

(
(1− α)−1(L− β)+ −

1

c0
g

)
dπ

}
+

1

c0
log

∫
X×Y

eg dπref


= inf

β∈R, g∈Cb(X×Y)

β + inf
φ∈Cb(X ), ψ∈Cb(Y),

φ+ψ≥(1−α)−1(L−β)+− 1
c0
g

{∫
X
φdµ+

∫
Y
ψ dν

}
+

1

c0
log

∫
X×Y

eg dπref


(2.3.4)

= inf
β∈R, g∈Cb(X×Y),
φ∈Cb(X ), ψ∈Cb(Y),

φ+ψ≥(1−α)−1(L−β)+− 1
c0
g

{
β +

∫
X
φdµ+

∫
Y
ψ dν +

1

c0
log

∫
X×Y

eg dπref

}

= inf
φ∈Cb(X ), ψ∈Cb(Y), β∈R

{∫
X
φdµ+

∫
Y
ψ dν + β +

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

}
(2.3.5)

where in (2.3.3) we apply the minimax theorem; in (2.3.4) we apply the Kan-
torovich Duality; and in (2.3.5) we take g = c0

(
(1− α)−1(L− β)+ − φ− ψ

)
since

the term log
∫
eg dπref is increasing/non-decreasing in g.
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2.4 General Strong Duality

In this section, we aim at proving the strong duality result when X and Y are
Polish, following Villani (2003) pages 31-32.

Proposition 3. Suppose that X ,Y are complete separable metric spaces, µ ∈
P(X ), ν ∈ P(Y), and L : X ×Y → R is uniformly continuous and bounded. Then
Dα,c0(µ, ν) = Vα,c0(µ, ν).

Proof. Main idea: In light of the weak duality in Proposition 2, we only need to
prove Dα,c0(µ, ν) ≤ Vα,c0(µ, ν). We also know that on compact spaces, by the
above Theorem 4.1 we have already obtained the strong duality. Hence we aim
at constructing a compact subset in the product space, and relate the inequality
between Dα,c0(µ, ν), Vα,c0(µ, ν) and their value restricted on the compact subset.

Given δ1 > 0, by tightness, there exist compact X0
1 ⊂ X and Y 0

1 ⊂ Y such that
µ[(X0

1 )
c] ≤ δ1, ν[(Y

0
1 )

c] ≤ δ1 and therefore

∀π ∈ Π(µ, ν), π[(X0
1 × Y 0

1 )
c] ≤ 2δ1. (2.4.1)

Given δ2 > 0, by tightness again, there exists a compact K ⊂ X ×Y such that

πref [K
c] ≤ 2δ2 (2.4.2)

Now let X0 × Y 0 := K ∪ (X0
1 × Y 0

1 ).

Also note that since log
(

dπ
dπref

)
is measurable w.r.t. dπ,

∀ϵ > 0, ∃ δ3 > 0 s.t. π[(X0 × Y 0)c] ≤ 2δ3 ⇒ |
∫
(X0×Y 0)c

log

(
dπ

dπref

)
dπ| < ϵ

(2.4.3)

Hence we can choose δ := min{δ1, δ2, δ3} > 0, such that all (2.4.1) and (2.4.2)
and (2.4.3) hold.

Let (π∗,Θ∗) be optimal for the primal problem on X × Y (existence of an
optimal solution is guaranteed by Proposition 1), and let π0

∗ be the normalized
restriction of π∗ to X

0 × Y 0, i.e.,

π0
∗ =

1X0×Y 0

π∗(X0 × Y 0)
π∗

which is a probability measure on X0 × Y 0. Let the marginal distributions of π0
∗

be denoted by µ0 and ν0.
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Let

V 0
α,c0

(µ0, ν0) := sup
(π0,Θ0)∈F 0

α(µ
0,ν0)

∫
X0×Y 0

LdΘ0 − 1

c0

∫
X0×Y 0

log

(
dπ0

dπref

)
dπ0

where:

F 0
α(µ

0, ν0) := {(π0,Θ0)|π0 ∈ Π0(µ0, ν0),Θ0 ≪ π0,
dΘ0

dπ0
≤ (1− α)−1}

and let (π̃0, Θ̃0) attain this maximum (existence is guaranteed by Proposition 1).
Define:

π̃ := π∗(X
0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗ on X × Y

Lemma 2.4.1. By our definition, π̃ ∈ Π(µ, ν).

Proof. First it is easy to see that π̃ ≥ 0. We also have that∫
X×Y

dπ̃ =

∫
X×Y

d(π∗(X
0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

=

∫
X0×Y 0

d(π∗(X
0 × Y 0)π̃0) +

∫
(X0×Y 0)c

d(1(X0×Y 0)cπ∗)

= π∗(X
0 × Y 0)

∫
X0×Y 0

dπ̃0 +

∫
(X0×Y 0)c

dπ∗

= π∗(X
0 × Y 0) + π∗((X

0 × Y 0)c)

= 1

Hence π̃ is a probability measure on X × Y .
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Let A be a measurable subset of X , then

π̃[A× Y ] =
∫
A×Y

dπ̃

=

∫
A∩X0×Y

dπ̃ +

∫
A∩(X0)c×Y

dπ̃

=

∫
A∩X0×Y 0

dπ̃ +

∫
A∩X0×(Y 0)c

dπ̃ +

∫
A∩(X0)c×Y 0

dπ̃ +

∫
A∩(X0)c×(Y 0)c

dπ̃

=

∫
A∩X0×Y 0

d(π∗(X
0 × Y 0)π̃0) +

∫
A∩X0×(Y 0)c

d(1(X0×Y 0)cπ∗)

+

∫
A∩(X0)c×Y 0

d(1(X0×Y 0)cπ∗) +

∫
A∩(X0)c×(Y 0)c

d(1(X0×Y 0)cπ∗)

= π∗(X
0 × Y 0)

∫
A∩X0×Y 0

dπ̃0 +

∫
A∩(X0)c×(Y 0)c

dπ∗

= π∗(X
0 × Y 0)π̃0(A ∩X0 × Y 0) + π∗(A ∩ (X0)c × (Y 0)c)

= π∗(X
0 × Y 0)µ0(A ∩X0) + π∗(A ∩ (X0)c × (Y 0)c)

= π∗(A ∩X0 × Y 0) + π∗(A ∩ (X0)c × (Y 0)c)

= π∗(A ∩ X × Y)
= µ(A)

Similarly, we have π̃[X×B] = ν(B), ∀ measurable B ⊂ Y . Hence by definition,
π̃ ∈ Π(µ, ν).

Define Θ̃ by:

dΘ̃

dπ̃
:=

dΘ̃0

dπ̃0
+ 1(X0×Y 0)c ≤ (1− α)−1 on X × Y

=


dΘ̃0

dπ̃0 on X0 × Y 0

1 on (X0 × Y 0)c

0 otherwise.
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Lemma 2.4.2. Based on our definition, we have Θ̃ ∈ P(X × Y).

Proof.∫
X×Y

dΘ̃ =

∫
X×Y

dΘ̃

dπ̃
dπ̃

=

∫
X×Y

(
dΘ̃0

dπ̃0
+ 1(X0×Y 0)c) d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

=

∫
X0×Y 0

dΘ̃0

dπ̃0
d(π∗(X

0 × Y 0)π̃0) +

∫
(X0×Y 0)c

1(X0×Y 0)c d(1(X0×Y 0)cπ∗)

= π∗(X
0 × Y 0)

∫
X0×Y 0

dΘ̃0

dπ̃0
dπ̃0 +

∫
(X0×Y 0)c

dπ∗

= π∗(X
0 × Y 0)

∫
X0×Y 0

dΘ̃0 + π∗((X
0 × Y 0)c)

= π∗(X
0 × Y 0) + π∗((X

0 × Y 0)c) = 1

as desired.

Now that we have constructed compact subsets and the associated probability
measures, we first aim at relating the penalized primal problem value Vα,c0(µ, ν)
with its restriction on the compact subset V 0

α,c0
(µ, ν).

Note that

Vα,c0(µ, ν) =

∫
X×Y

LdΘ∗ −
1

c0

∫
X×Y

log

(
dπ∗
dπref

)
dπ∗

≥
∫
X×Y

LdΘ̃− 1

c0

∫
X×Y

log

(
dπ̃

dπref

)
dπ̃

=

∫
X0×Y 0

LdΘ̃− 1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

+

∫
(X0×Y 0)c

LdΘ̃− 1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

= T1 + T2 (2.4.4)

where

T1 :=

∫
X0×Y 0

LdΘ̃− 1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

T2 :=

∫
(X0×Y 0)c

LdΘ̃− 1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃
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Our goal is to give a lower bound of the above inequality (2.4.4). In order to
improve clarity of the proof, we deviate a little bit here to present two lemmas
that aim at working on (2.4.4).

Lemma 2.4.3.

T1 = π∗(X
0 × Y 0)V 0

α,c0
(µ0, ν0)− π∗(X0 × Y 0) log(π∗(X

0 × Y 0))
1

c0

Proof.

T1 =

∫
X0×Y 0

L
dΘ̃

dπ̃
dπ̃ − 1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

=

∫
X0×Y 0

L(
dΘ̃0

dπ̃0
+ 1(X0×Y 0)c) dπ̃ −

1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

=

∫
X0×Y 0

L
dΘ̃0

dπ̃0
dπ̃ − 1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

=

∫
X0×Y 0

L
dΘ̃0

dπ̃0
d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

− 1

c0

∫
X0×Y 0

log

(
d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

dπref

)
d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

=

∫
X0×Y 0

L
dΘ̃0

dπ̃0
d(π∗(X

0 × Y 0)π̃0)− 1

c0

∫
X0×Y 0

log

(
d(π∗(X

0 × Y 0)π̃0)

dπref

)
d(π∗(X

0 × Y 0)π̃0)

= π∗(X
0 × Y 0)

∫
X0×Y 0

L
dΘ̃0

dπ̃0
dπ̃0 − π∗(X0 × Y 0)

1

c0

∫
X0×Y 0

log

(
dπ̃0

dπref
π∗(X

0 × Y 0)

)
dπ̃0

= π∗(X
0 × Y 0)

∫
X0×Y 0

LdΘ̃0

− π∗(X0 × Y 0)
1

c0

∫
X0×Y 0

log

(
dπ̃0

dπref

)
dπ̃0

− π∗(X0 × Y 0)
1

c0

∫
X0×Y 0

log(π∗(X
0 × Y 0)) dπ̃0

= π∗(X
0 × Y 0)V 0

α,c0
(µ0, ν0)− π∗(X0 × Y 0) log(π∗(X

0 × Y 0))
1

c0
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Lemma 2.4.4.

T2 =

∫
(X0×Y 0)c

Ldπ∗ −
1

c0

∫
(X0×Y 0)c

log

(
dπ∗
dπref

)
dπ∗

Proof.

T2 =

∫
(X0×Y 0)c

L
dΘ̃

dπ̃
dπ̃ − 1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

=

∫
(X0×Y 0)c

L(
dΘ̃0

dπ̃0
+ 1(X0×Y 0)c) dπ̃ −

1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

=

∫
(X0×Y 0)c

L1(X0×Y 0)c dπ̃ −
1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

=

∫
(X0×Y 0)c

Ldπ̃ − 1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

=

∫
(X0×Y 0)c

Ld(π∗(X
0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

− 1

c0

∫
(X0×Y 0)c

log

(
d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

dπref

)
d(π∗(X

0 × Y 0)π̃0 + 1(X0×Y 0)cπ∗)

=

∫
(X0×Y 0)c

Ld(1(X0×Y 0)cπ∗)−
1

c0

∫
(X0×Y 0)c

log

(
d(1(X0×Y 0)cπ∗)

dπref

)
d(1(X0×Y 0)cπ∗)

=

∫
(X0×Y 0)c

Ldπ∗ −
1

c0

∫
(X0×Y 0)c

log

(
dπ∗
dΘref

)
dπ∗

Now we go back to the main proof of Proposition 4. By combining the above
two lemmas, we can finally bound Vα,c0(µ, ν) in (2.4.4) from below:

Vα,c0(µ, ν) ≥
∫
X0×Y 0

LdΘ̃− 1

c0

∫
X0×Y 0

log

(
dπ̃

dπref

)
dπ̃

+

∫
(X0×Y 0)c

LdΘ̃− 1

c0

∫
(X0×Y 0)c

log

(
dπ̃

dπref

)
dπ̃

≥ π∗(X
0 × Y 0)V 0

α,c0
(µ0, ν0)− π∗(X0 × Y 0) log(π∗(X

0 × Y 0))
1

c0

+

∫
(X0×Y 0)c

Ldπ∗ −
1

c0

∫
(X0×Y 0)c

log

(
dπ∗
dπref

)
dπ∗
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Since 1 ≥ π∗(X
0 × Y 0) ≥ 1− 2δ, as δ ↘ 0 we have π∗(X

0 × Y 0)→ 1.

We still need an additional argument to make sure that the last term in the

above equation
∫
(X0×Y 0)c

Ldπ∗ − 1
c0

∫
(X0×Y 0)c

log
(
dπ∗
dπref

)
dπ∗ vanishes as δ ↘ 0, as

shown in the below lemma.

Lemma 2.4.5.
∫
(X0×Y 0)c

Ldπ∗ − 1
c0

∫
(X0×Y 0)c

log
(
dπ∗
dπref

)
dπ∗ is finite as a linear

order in δ.

Proof.

|
∫
(X0×Y 0)c

Ldπ∗| ≤∥L∥∞ π∗((X
0 × Y 0)c)

≤ 2δ∥L∥∞

1

c0
|
∫
(X0×Y 0)c

log

(
dπ∗
dπref

)
dπ∗| ≤

1

c0
ϵ by our choice of δ

where ϵ↘ 0 as δ ↘ 0.

Hence
δ ↘ 0, Vα,c0(µ, ν) ≥ V 0

α,c0
(µ, ν) (2.4.5)

which completes the first part of our final goal.

Next, we aim at relating the penalized dual problem value Dα,c0(µ, ν) with its
value D0

α,c0
(µ, ν) restricted on the compact subset.

Now define, with the obvious notation:

J(w) :=

∫
X
φdµ+

∫
Y
ψdν + β +

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

J0(w0) :=

∫
X0

φ0dµ0+

∫
Y 0

ψ0dν0+β0+
1

c0
log

∫
X0×Y 0

ec0((1−α)
−1(L−β0)+−φ0−ψ0) dπref

There exists w0 = (φ0, ψ0, β0) ∈ Cb(X0)× Cb(Y 0)× R) such that

J0(w0) ≤ inf J0 + δ =: D0
α,c0

(µ0, ν0) + δ
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where

D0
α,c0

(µ0, ν0) := inf
w0
J0(w0)

= inf
(φ0,ψ0,β0)∈Cb(X0)×Cb(Y 0)×R

{∫
X0

φ0dµ0 +

∫
Y 0

ψ0dν0 + β0

+
1

c0
log

∫
X0×Y 0

ec0((1−α)
−1(L−β0)+−φ0−ψ0) dπref

}
Noting that (0, 0,∥L∥∞) is feasible, we obtain inf J0 ≤∥L∥∞, and therefore:

J0(ν0) =

∫
X0

φ0dµ0 +

∫
Y 0

ψ0dν0 + β0 +
1

c0
log

∫
X0×Y 0

ec0((1−α)
−1(L−β0)+−φ0−ψ0) dπref

≤∥L∥∞ + δ (2.4.6)

Since X0, Y 0 are compact subsets of Polish spaces X and Y respectively,
by Tietze extension theorem (see appendix A.6.1), we can extend our choice
(φ0, ψ0, β0) ∈ Cb(X

0) × Cb(Y
0) × R to (φ̄0, ψ̄0, β0) ∈ Cb(X ) × Cb(Y) × R such

that φ̄0 = φ0 on X0, ψ̄0 = ψ0 on Y 0.

Proceeding as in Villani (2003) page 30, one can then show that

Dα,c0(µ, ν) ≤
∫
X
φ̄0 dµ+

∫
Y
ψ̄0 dν + β0 +

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

=

∫
X0

φ̄0 dµ+

∫
Y 0

ψ̄0 dν + β0 +
1

c0
log

∫
X0×Y 0

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

+

∫
(X0)c

φ̄0 dµ+

∫
(Y 0)c

ψ̄0 dν +
1

c0
log

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

=

∫
X0

φ0 dµ0 +

∫
Y 0

ψ0 dν0 + β0 +
1

c0
log

∫
X0×Y 0

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

+

∫
(X0)c

φ̄0 dµ+

∫
(Y 0)c

ψ̄0 dν +
1

c0
log

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

≤ D0
α,c0

(µ0, ν0) + δ

+

∫
(X0)c

φ̄0 dµ+

∫
(Y 0)c

ψ̄0 dν +
1

c0
log

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

≤ D0
α,c0

(µ0, ν0)

+ δ · (
∥∥φ̄0

∥∥
∞ +

∥∥ψ̄0
∥∥
∞) +

1

c0
log

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref
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Note that since for all x > 0, log x < x, we have that as δ ↘ 0,

log

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

<

∫
(X0×Y 0)c

ec0((1−α)
−1(L−β0)+−φ̄0−ψ̄0) dπref

≤ πref [(X
0 × Y 0)c]

∥∥∥ec0((1−α)−1(L−β0)+−φ̄0−ψ̄0)
∥∥∥
∞

≤ 2δ ·
∥∥∥ec0((1−α)−1(L−β0)+−φ̄0−ψ̄0)

∥∥∥
∞
→ 0

Hence we have

δ ↘ 0 ⇒ Dα,c0(µ, ν) ≤ D0
α,c0

(µ, ν) (2.4.7)

which completes the last part of our final goal.

Combining (2.4.5), (2.4.7) and the strong duality on compact sets (i.e. Theorem
4.1), we obtain

Dα,c0(µ, ν) ≤ D0
α,c0

(µ, ν) = V 0
α,c0

(µ, ν) ≤ Vα,c0(µ, ν)

which, together with weak duality, yields the intended result.
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Proposition 4. Suppose that X ,Y are complete separable metric spcaes, µ ∈
P(X ), ν ∈ P(Y), and L : X × Y → R is upper semi-continuous and bounded
above. Then Dα,c0(µ, ν) = Vα,c0(µ, ν).

Proof. Again, we can follow Villani (2003) pp.31-32.

Since L is upper semi-continuous and bounded above in the Polish space, one
can find a sequence of nonincreasing uniformly continuous functions Ln such that
L = inf Ln. By replacing Ln by sup{Ln, n}, we can assume that each Ln is bounded
from above.

Denote by Dn
α,c0

(µ, ν) = V n
α,c0

(µ, ν) the optimal value with loss function Ln. It
is immediate that Hα,c0(Ln) ⊂ Hα,c0(L) and therefore Dn

α,c0
(µ, ν) ≥ Dα,c0(µ, ν).

Furthermore, V n
α,c0

(µ, ν) is decreasing in n and V n
α,c0

(µ, ν) ≥ Vα,c0(µ, ν). Let
(πn,Θn) be optimal for V n

α,c0
(µ, ν) and, applying Prokhorov’s Theorem as above

(and passing to a subsequence if necessary), (πn,Θn) → (π,Θ). When n ≥
m,
∫
LndΘn− 1

c0

∫
log
(
dπn
dπref

)
dπn ≤

∫
LmdΘn− 1

c0

∫
log
(
dπn
dπref

)
dπn, and therefore

by the Portmanteau Theorem and lower-semicontinuity of the Kullback-Leibler
distance:

lim
n→∞

V n
α,c0

(µ, ν) = lim
n→∞

∫
LndΘn −

1

c0

∫
log

(
dπn
dπref

)
dπn

≤ lim sup
n→∞

∫
Lm dΘn −

1

c0

∫
log

(
dπn
dπref

)
dπn

≤
∫
LmdΘ−

1

c0

∫
log

(
dπ

dπref

)
dπ

Monotone convergence then gives limn→∞ V
n
α,c0

(µ, ν) ≤
∫
LdΘ− 1

c0

∫
log
(

dπ
dπref

)
dπ ≤

Vα,c0(µ, ν). Thus limn→∞ V
n
α,c0

(µ, ν) = Vα,c0(µ, ν), and we have Vα,c0(µ, ν) ≥
Dα,c0(µ, ν), and the result follows by weak duality.

30



Proposition 5. It does not change the value of the infimum in (2.1.4) if one
restricts the dual feasible set to those functions (φ, ψ, β) which are bounded and
continuous.

Proof. We wish to emphasize the distinction between these definitions, hence here
we informally write Hα,c0(L)∩Cb for restriction to continuous bounded functions,
and Hα,c0(L) for the dual feasible set containing L1 integrable functions.

Define

J(φ, ψ, β, ρ) =

∫
X
φdµ+

∫
Y
ψ dν + β +

1

c0
log

∫
X×Y

ec0((1−α)
−1(L−β)+−φ−ψ) dπref

I(π,Θ) =

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

We claim that

inf
φ∈Cb(X ), ψ∈Cb(Y), β∈R

J(φ, ψ, β, ρ) ≥ inf
φ∈L1(dµ), ψ∈L1(dν), β∈R

J(φ, ψ, β, ρ) ≥ sup
(π,Θ)∈Fα(µ,ν)

I(π,Θ)

Indeed, the left inequality is a direct consequence of Cb(X ) × Cb(Y) × R ⊂
L1(dµ)× L1(dν)× R, and the right inequality is shown in Proposition 2.

Hence if we manage to show the strong duality

inf
φ∈Cb(X ), ψ∈Cb(Y), β∈R

J(φ, ψ, β, ρ) = sup I(π,Θ),

it automatically implies

inf
φ∈L1(dµ), ψ∈L1(dν), β∈R

J(φ, ψ, β, ρ) = inf
φ∈Cb(X ), ψ∈Cb(Y), β∈R

J(φ, ψ, β, ρ).

Hence we can work with (2.1.4).
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Chapter 3

Stability of the Entropy Penalized
Maximum Expected Shortfall

3.1 Introduction

In this chapter, we study the convergence of the objective value, and the set of
optimal solutions of the entropy penalized problem (1.2.3) with respect to weak
convergence of the marginal distributions µ, ν, and the reference measure πref that
parametrize the problem.

Let (X , dX ) and (Y , dY) be two Polish (i.e., complete, separable, metric) spaces,
and W = X × Y be the product space. When p ∈ [1,∞] is given, we will employ
the following product metric on W , where w = (x, y), and w′ = (x′, y′)

dW,p(w,w
′) =

{
(dX (x, x

′)p + dY(y, y
′)p)1/p, p ∈ [1,∞),

max(dX (x, x
′), dY(y, y

′)), p =∞.
(3.1.1)

The spaces are equipped with their respective Borel sigma algebras. For a
Polish space V , let P(V) denote the set of all Borel probability measures. For
sequences πn ∈ P(V), πn → π denotes weak convergence of probability measures:∫

fdπn →
∫
fdπ, ∀f ∈ Cb(V).

Let µ ∈ P(X ), ν ∈ P(Y), and let Π(µ, ν) be the set of joint probability mea-
sures on X × Y with marginals µ and ν. Assume L : X × Y → R is continuous
and bounded (we will need additional assumptions on L later on).
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Suppose that we have sequences µn → µ in P(X ), νn → ν in P(Y), and
πref,n ∈ Π(µn, νn)→ πref ∈ Π(µ, ν). Let cn be sequence of strictly positive numbers,
with cn → c > 0.

Define the following functions on P(W):

In(πn) :=

{
ESα,π(L)− 1

cn
H(πn | πref,n), πn ∈ Π(µn, νn)

−∞, πn /∈ Π(µn, νn)

I(π) :=

{
ESα,π(L)− 1

c
H(π | πref), π ∈ Π(µ, ν)

−∞, π /∈ Π(µ, ν)

Alternatively, we can write:

In(πn) :=

{
minβ∈R

{
β + (1− α)−1

∫
(L− β)+ dπn

}
− 1

cn
H(πn |πref,n), πn ∈ Π(µn, νn)

−∞, πn /∈ Π(µn, νn)

I(π) :=

{
minβ∈R

{
β + (1− α)−1

∫
(L− β)+ dπ

}
− 1

c
H(π |πref), π ∈ Π(µ, ν)

−∞, π /∈ Π(µ, ν)

Furthermore, let Vn = sup In, and V = sup I, and note that by Proposition 1,
both suprema are attained.

Then

Vn : = sup
πn∈Π(µn,νn)

In(πn) = In(π
∗
n).

Also define
V := sup

π∈Π(µ,ν)

I(π) = I(π∗).

We are interested in two fundamental questions:

• Does Vn → V hold?

• Does a subsequence π∗nk
of {π∗n} ⊂ Π(µn, νn) exist such that π∗nk

converges
to π∗ ∈ Π(µ, ν), which solves the limiting optimization problem?
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3.2 Epi-Convergence

In order to answer the questions raised above, we employ the notion of Gamma con-
vergence, also called epi-convergence, which we recall here (see, for example Bor-
wein and Zhu (2005)).

Definition 3.2.1 (Epi-convergence). Let W be a metric space, and let fn :W →
[−∞,∞] be a sequence of lower semi-continuous functions. We say that fn epi-
converges to the function f : W → R if and only if at each point w ∈ W we
have:

• lim infn→∞ fn(wn) ≥ f(w) for every sequence wn → w

• lim supn→∞ fn(wn) ≤ f(w) for some sequence wn → w

The importance of this notion of convergence is emphasized by the following
result (Borwein and Zhu (2005), Theorem 5.1.14). Here, domf := {v | f(v) <
∞}, and for a sequence of sets An in a metric space V , lim supAn = {v ∈
V | lim inf d(An, v) = 0}.

Theorem 3.2.1. Let V be a metric space, and let fn : V → [−∞,∞] be a sequence
of lower semi-continuous functions. Suppose that fn epi-converges to f , and that
domf, domfn ⊆ K, n = 1, 2, . . . for some compact subset K of V. Then

lim
n→∞

(inf fn) = inf f (3.2.1)

and
lim sup(argmin fn) ⊂ argmin f. (3.2.2)

We note that epi-convergence is designed for an application to problems of min-
imization, whereas we are considering a problem of maximization. Consequently,
we seek to prove epi-convergence of the sequence fn = −In to the function f = −I,
i.e. we want to prove the following two inequalities:

lim sup
n→∞

In(πn) ≤ I(π) for every sequence πn → π (3.2.3)

lim inf
n→∞

In(πn) ≥ I(π) for some sequence πn → π (3.2.4)
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The first inequality is (relatively) easy, and we present its proof here.

Proposition 6. Suppose that πn → π. Then lim supn→∞ In(πn) ≤ I(π).

Proof. If π /∈ Π(µ, ν), then there is nothing to prove. Consider a subsequence πnk

with limk→∞ Ink
(πnk

) = lim supn→∞ In(πn). The desired inequality is immediate
unless πnk

∈ Π(µnk
, νnk

) for k large enough.

Let Θnk
be such that Θnk

≪ πnk
,
dΘnk

dπnk
≤ (1− α)−1, and EΘnk

[L] = ESα,πnk
[L]

(Föllmer and Schied (2016), Theorem 4.52 and Remark 4.53). Since πnk
→ π, the

set {πnk
, k ∈ N} is compact. Therefore, by Prokhorov’s Theorem, for each ε > 0

there exists a compact Kε such that πnk
(Kε) ≤ (1 − α)ε for all k ∈ N. Thus, for

all k ∈ N:
Θnk

(Kε) =

∫
Kε

dΘnk

dπnk

dπnk
≤ ε.

Therefore, again by Prokhorov’s Theorem, the set Θnk
has a convergent sub-

sequence Θnkj
tending to some Θ. Lemma 6 from Ghossoub, Hall, and Saunders

(2020) yields that Θ ≪ π and dΘ
dπ
≤ (1 − α)−1, and therefore EΘ[L] ≤ ESα,π(L).

Thus:

lim sup
n

In(πn) = lim
j
EΘnkj

[L]− 1

cnkj

H(πnkj
|πnkj

,ref)

= EΘ[L]− lim
j

1

cnkj

H(πnkj
| πnkj

,ref)

≤ I(π), (3.2.5)

using that EΘ[L] ≤ ESα,π(L), and the joint lower semicontinuity of relative entropy
(see Dupuis and Ellis (1997)).

Corollary 3.2.1.1. The functions f = −I, and fn = −In are lower semi-
continuous.

Proof. Lower semi-continuity of f follows from the above Proposition by taking
µn ≡ µ, νn ≡ ν, cn ≡ c, and πn,ref ≡ π. Lower semi-continuity of the fn then
follows immediately.

35



3.3 Required Background Material from Proba-

bility Theory

For the proof of the second part of the epi-convergence (3.2.4), we need to introduce
some additional concepts from probability theory.

Definition 3.3.1 (Kernel). Suppose that (S,S ) and (T,T ) are measurable spaces.
A kernel from (S,S ) to (T,T ) is a function K : S ×T → [0,∞] such that

1. x 7→ K(x,A) is a measurable function from S into [0,∞] for each A ∈ T

2. A 7→ K(x,A) is a positive measure on T for each x ∈ S

If (T,T ) = (S,S ), then K is said to be a kernel on (S,S ). If K(x, T ) = 1
for every x ∈ S, then K is called a probability kernel.

Definition 3.3.2 (Products of Kernels and Measures). Let (S,S , η) be a proba-
bility space, and (T,T ) a measurable space.

1. By η ⊗ K we denote the measure on S ⊗ T defined for sets of the form
A×B, A ∈ S , B ∈ T as: ∫

A

K(x,B) dη(x),

and by extension to S ⊗T .

2. By ηK, we denote the second marginal of η⊗K, i.e. the measure on (T,T )
defined by:

ηK(B) =

∫
S

K(x,B) dη(x), B ∈ T .

The following fundamental result allows us to decompose a measure on S × T
into its marginal distribution on S and a kernel K. It is proved in Kallenberg
(2021) (it is a special case of Theorem 3.4 there).

Theorem 3.3.1 (Disintegration Theorem). Let (S,S ) be a measurable space,
(T,T ) be a Borel space,1 and m be a probability measure on S ⊗T . Let η be the
marginal distribution of m on S. Then m = η ⊗K for a probability kernel K.

1. Measurable spaces (T1,T1) and (T2,T2) are Borel isomorphic if there exists a bijection
f : T1 → T2 such that both f and f−1 are measurable. A space is Borel if it is Borel isomorphic
to a Borel set in [0, 1]. Kallenberg (2021), Theorem 1.8 shows that any Polish space equipped
with its Borel sigma-algebra is a Borel space.
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Definition 3.3.3 (Product of Kernels). Suppose that (Si,Si) and (Ti,Ti), i = 1, 2
are measurable spaces, and that Ki : Si × Ti → [0,∞] are kernels. Then the
product kernel K1 ⊗K2 : (S1 × S2) × (T1 ⊗ T2) is defined for si ∈ Si and sets of
the form B1 ×B2, Bi ∈ Ti as:

K1 ⊗K2((s1, s2), (B1 ×B2)) = K1(s1, B1) ·K2(s2, B2)

and by extension to T1 ⊗T2.

We will need the following important distances on subsets of the set of proba-
bility measures on a metric space V .

Definition 3.3.4 (p-Wasserstein distance). Let (V , dV) be a Polish space, and
p ∈ [1,∞]. Let Pp(V) ⊆ P(V) be the set of probability measures η with finite
p-th moment, i.e.,

∫
dV(v, v0)

p η(dv) < ∞ for some v0 ∈ V . For p = ∞, we define
P∞(V) as the measures with a bounded support. Define the p-Wasserstein distance
Wp(η, η

′) between η, η′ ∈ Pp(V) as:

Wp(η, η
′) := inf

π∈Π(η,η′)

∫
dV(v, v

′)pπ(dv, dv′), p ∈ [1,∞),

W∞(η, η
′) := inf

π∈Π(η,η′)
ess sup
(V,V ′)∼π

dV(V, V
′).

The following is proven in Theorem 7.12 in Villani (2003).

Theorem 3.3.2. Let (V , dV) be a Polish space, p ∈ [1,∞). Let (ηn)n∈N be a
sequence in Pp(V), and η ∈ P(V). Then Wp(ηn, η)→ 0 if and only if∫

f dηn →
∫
f dη (3.3.1)

for all continuous functions f such that there exist C ∈ R+ and v0 ∈ V such that:

|f(v)| ≤ C[1 + d(v0, v)
p], ∀v ∈ V . (3.3.2)

In particular, we see that Wp(ηn, η)→ 0 implies that ηn → η.

Kernels, disintegration, and Wasserstein distances come together nicely in the
following definition due to Eckstein and Nutz (2021).

Definition 3.3.5 (Shadow). Fix N ∈ N and let (Xi, dXi
), i = 1, . . . , N be Pol-

ish probability spaces with measures µi ∈ P(Xi). Let p ∈ [1,∞], and µi, µ̃i ∈
Pp(Xi), i = 1, . . . , N . Let κi ∈ Π(µi, µ̃i) be a coupling attaining Wp(µi, µ̃i)
and κi = µi ⊗ Ki a disintegration. Given π ∈ Π(µ1, . . . , µN), its shadow π̃ ∈
Π(µ̃1, . . . , µ̃N) is defined as the second marginal of π⊗K ∈ P(X ×X), where the
kernel K : X → P(X) is defined as K(x) = K1(x1)⊗ . . .⊗KN(xN).
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p-Wasserstein distances on W = X ×Y will always be understood to be taken
with respect to dW,p. Furthermore, following Eckstein and Nutz (2021), we define,
for µ, µ̃ ∈ P(X ) and ν, ν̃ ∈ P(Y)

Wp(µ, ν; µ̃, ν̃) =

{
(Wp(µ, µ̃)

p +Wp(ν, ν̃)
p)1/p, p ∈ [1,∞)

max(W∞(µ, µ̃),W∞(ν, ν̃)), p =∞.
(3.3.3)

For our purposes, the main importance of shadows is due to the following result
of Eckstein and Nutz (2021).

Lemma 3.3.1. Let p ∈ [1,∞] and µ, µ̃ ∈ P(X ) and ν, ν̃ ∈ P(Y). Given π ∈
Π(µ, ν), its shadow π̃ ∈ Π(µ̃, ν̃) satisfies:

Wp(π, π̃) = Wp(µ, ν; µ̃, ν̃), (3.3.4)

H(π̃ | µ̃⊗ ν̃) ≤ H(π, µ⊗ ν). (3.3.5)

3.4 Completion of the Proof of Epi-Convergence

under Additional Assumptions

To complete the proof of epi-convergence of the functions fn = −In to f = −I,
we require some additional assumptions on the loss function L and the reference
measures πref , πref,n. In particular, in order to use the results on shadows from Eck-
stein and Nutz (2021), we will from now on need to assume that πref = µ ⊗ ν,
and πref,n = µn⊗ νn. We will furthermore assume that the cost function is Hölder
continuous, in order to employ the following result from Pichler (2013).

Proposition 7. Suppose that L :W → R is bounded and Hölder continuous, with
constant CL,β, i.e. |L(w) − L(w′)| ≤ CL,β · dW(w,w′)β, for some β ≤ 1, and let
π, π′ ∈ Pp(W), p ∈ [1,∞). Then:

|ESα,π(L)− ESα,π′(L)| ≤ CL,β ·Wp(π, π
′) · (1− α)−

β
p . (3.4.1)

Proposition 8. Let p ∈ [1,∞), and suppose that:

• L is bounded and Hölder continuous.

• Wp(µn, µ)→ 0 and Wp(νn, ν)→ 0.

• πref = µ⊗ ν, and πref,n = µn ⊗ νn.
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Then exists a sequence πn → π such that lim infn→∞ In(πn) ≥ I(π).

Proof. Suppose that π /∈ Π(µ, ν), so that I(π) = −∞. Then the constant sequence
πn ≡ π will have a subsequence πnk

with πnk
/∈ Π(µnk

, νnk
), and therefore the result

will hold.

Now suppose that π ∈ Π(µ, ν). Let πn ∈ Π(µn, νn) be the shadow of π. By
Lemma (3.3.1), we have that Wp(πn, π) = Wp(µn, νn;µ, ν)→ 0, and therefore, by
Proposition 7, ESα,πn(L)→ ESα,π(L). Then:

lim inf
n→∞

In(πn) = lim inf
n→∞

(ESα,πn(L)− c−1n H(πn|πn,ref)) (3.4.2)

= ESα,π(L)− lim sup
n→∞

c−1n H(πn|πn,ref) (3.4.3)

≥ ESα,π(L)− c−1H(π|πref) = I(π), (3.4.4)

where, in the final line we have again used Lemma 3.3.1.

Corollary 3.4.0.1. Under the hypotheses of the proposition, the sequence of func-
tions fn epi-converges to f .

3.5 Convergence of the Optimal Values and (Sub-

sequences of) Optimal Solutions

We have shown epi-convergence of the fn to f . To apply Theorem 3.2.1, it remains
to show that there exists a compact set K ⊆ W such that domf, domfn ⊆ K.

Proposition 9. Let (µn)n∈N be a sequence in P(X ), with µn → µ, and (νn)n∈N be
a sequence in P(Y) with νn → ν. Then:

Π∗ = Π(µ, ν) ∪

(
∞⋃
n=1

Π(µn, νn)

)
(3.5.1)

is relatively compact.

Proof. We first note that the sets A = {µ, µ1, µ2, . . .} and B = {ν, ν1, ν2, . . .} are
compact in P(X ) and P(Y) respectively. Let ε > 0. By Prokhorov’s Theorem,
there exist compact sets K1 ⊆ X and K2 ⊆ Y such that m1(K

c
1) < ε

2
, and

m2(K
c
2) <

ε
2
for any m1 ∈ A, and m2 ∈ B. Note that K1 × K2 is compact, and

that (K1 ×K2)
c ⊆ (Kc

1 × Y) ∪ (X ×K2
2), so that for any π ∈ Π∗:

π(K1 ×K2) ≤ π(Kc
1 × Y) + π(X ×Kc

2) ≤ ε. (3.5.2)

Another application of Prokhorov’s Theorem implies the result.
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We can now give the main result of this chapter.

Theorem 3.5.1. Let p ∈ [1,∞), and suppose that:

• L is bounded and Hölder continuous.

• Wp(µn, µ)→ 0 and Wp(νn, ν)→ 0.

• πref = µ⊗ ν, and πref,n = µn ⊗ νn.

Then Vn → V . Furthermore, lim sup(argmax In) ⊆ argmax I.

Proof. We have that fn = −In epi-converges to f = −I, and that domf, domfn
are all contained in the (compact) closure of Π∗. The hypotheses of Theorem 3.2.1
are then satisfied, yielding the result.
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Chapter 4

Numerical Simulation

In this section, we aim at efficiently computing the entropy penalized primal prob-
lem (1.2.3). Throughout this section, we assume |X | = NX and |Y| = NY .

The penalized primal in the discrete setting is as follows:

max
π∈RNX×RNY

Θ∈RNX×RNY

NX∑
i=1

NY∑
j=1

LijΘij −
1

c0

NX∑
i=1

NY∑
j=1

πij log

(
πij

(πref)ij

)

s.t.

NY∑
j=1

πij = µi, i = 1, . . . , NX ,

NX∑
j=1

πij = νj, j = 1, . . . , NY ,

Θij ≤ (1− α)−1πij, i = 1, . . . , NX , j = 1, . . . , NY ,

NX∑
i=1

NY∑
j=1

Θij = 1,

πij,Θij ≥ 0, i = 1, . . . , NX , j = 1, . . . , NY
(4.0.1)

and the penalized dual problem (although we do not consider computing it):

min
φ∈Cb(X ),

ψ∈Cb(Y), β∈R

∑
i

φiµi +
∑
j

ψjνj + β +
1

c0
log
∑
i

∑
j

ec0((1−α)
−1(Lij−β)+−φi−ψj)(πref)ij.

A direct implementation of the entropy penalized primal problem (4.0.1) is
both time and memory consuming: computing a single distance between a pair
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of histograms of high dimensions can take more than a few seconds, not to even
mention adding more constraints and complicating objective functions. For the
problem in the space Rd×Rd, with the use of the standard algorithms in optimiza-
tion, such as network simplex and interior point methods, the complexity scales at
least in O(d3 log d) and is super-cubic in practice (see Pele and Werman (2009)).

4.1 Switching Min and Max

We apply the minimax theorem, Lemma 2.3.3, again to the primal problem, note
that here we have equivalence between sup and max because of the finite dimen-
sions of X and Y which guarantees the compactness of Π(µ, ν):

sup
(π,Θ)∈Fα(µ,ν)

∫
X×Y

LdΘ− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref

= sup
π∈Π(µ,ν)

min
β∈R

{
β +

∫
X×Y

(1− α)−1(L− β)+ dπ

}
− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref


= max

π∈Π(µ,ν)

min
β∈R

{
β +

∫
X×Y

(1− α)−1(L− β)+ dπ

}
− 1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref


= inf

β∈R

β + sup
π∈Π(µ,ν)

{∫
X×Y

(1− α)−1(L− β)+ dπ −
1

c0

∫
X×Y

log

(
dπ

dπref

)
dπ

dπref
dπref

} ,

(4.1.1)

or in the discrete case,

inf
β∈R

β + max
π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(1− α)−1(Li,j − β)+πi,j −
1

c0

NX∑
i=1

NY∑
j=1

log

(
πi,j
πref i,j

)
πi,j


 .

(4.1.2)
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4.2 Sinkhorn Algorithm - Computation of Max

An efficient algorithm for computing the above maximum part is Sinkhorn-Knopp
matrix scaling algorithm, or Sinkhorn algorithm in short (see Sinkhorn and Knopp
(1967) and Knight (2008)). The Sinkhorn algorithm employs the technique of
vectorization and is amenable to large scale computation on parallel platforms
such as GPGPU (see Cuturi (2013), Benamou et al. (2015)). Recent applications
connect the computational optimal transport to the field of machine learning and
partial differential equations (see Mena et al. (2017), Berman (2020)).

The optimal value of the maximum part inside (4.1.2), i.e.

ξ(β) : = max
π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(1− α)−1(Li,j − β)+πi,j −
1

c0

NX∑
i=1

NY∑
j=1

log

(
πi,j
πref i,j

)
πi,j


= max

π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(1− α)−1(Li,j − β)+πi,j −
1

c0

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j

+
1

c0

NX∑
i=1

NY∑
j=1

log(πref i,j)πi,j


= max

π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(
(1− α)−1(Li,j − β)+ +

1

c0
log(πref i,j)

)
πi,j

− 1

c0

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j


= − min

π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

−
(
(1− α)−1(Li,j − β)+ +

1

c0
log(πref i,j)

)
πi,j

+
1

c0

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j


can be efficiently computed using Sinkhorn-Knopp algorithm (see Cuturi (2013)):
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Algorithm 1 Sinkhorn-Knopp’s fixed point iteration (written in Matlab syntax)

Input: M = −
(
(1− α)−1(Li,j − β)+ + 1

c0
log(πref i,j)

)
, λ = c0, µ ∈ RNX , ν ∈

RNY

I ← (µ > 0)
µ← µ(I)
M ←M(I, :)
K ← exp(−λ ∗M)
x← ones(length(µ), size(ν, 2))/length(µ)
while x changes do x← diag(1./µ) ∗K ∗ (ν. ∗ (1./(K ′ ∗ (1./x))))
y ← 1./x
z ← ν. ∗ (1./(K ′ ∗ y))

Output: OptimalValue = sum(y. ∗ ((K. ∗M) ∗ z)), Optimizer = diag(y) ∗ e−λM ∗
diag(z)
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4.3 Computation of Min

Now that we can solve ξ(β) efficiently using the Sinkhorn’s algorithm, we need to
solve

min
β∈R

τ(β)

where
τ(β) = β + ξ(β).

For β ≥ ∥L∥∞, ξ(β) = 0 and it holds when π = πref solves the maximum
problem. For β ≤ mini,j Li,j, we have (L− β)+ = L− β ≥ 0 and then

τ(β) = β + ξ(β)

= β + max
π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(
(1− α)−1(Li,j − β)+ +

1

c0
log(πref i,j)

)
πi,j

− 1

c0

∫
X×Y

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j


= β + max

π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(
(1− α)−1(Li,j − β) +

1

c0
log(πref i,j)

)
πi,j

− 1

c0

∫
X×Y

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j


= β(1− (1− α)−1)

+ max
π∈Π(µ,ν)


NX∑
i=1

NY∑
j=1

(
(1− α)−1Li,j +

1

c0
log(πref i,j)

)
πi,j −

1

c0

∫
X×Y

NX∑
i=1

NY∑
j=1

log(πi,j)πi,j


whose value decreases as β increases.

Hence it is enough to only consider the following problem:

min
mini,j Li,j≤β≤maxi,j Li,j

τ(β) = min
mini,j Li,j≤β≤maxi,j Li,j

β + ξ(β)

which can be solved efficiently using one dimensional algorithms, such as golden
section method and Brent’s method.

Note that the subdifferential of τ at β is [∂τ−(β), ∂τ+(β)] where

∂τ−(β) = 1− min
π∈Π∗(β)

∑
i,j

πi,j1{Li,j ≥ β}
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∂τ+(β) = 1− min
π∈Π∗(β)

∑
i,j

πi,j1{Li,j > β}

where Π∗(β) is the set of optimizers for ξ(β). Hence the optimal β is obtained
when 0 ∈ [∂τ−(β), ∂τ+(β)].

It is worth mentioning in Cuturi (2013) that when πref = µ ⊗ ν, the product
measure, then if one is interested in the following problem:

max
π∈Π(µ,ν)

∑
i,j

(Lij − β)+πij

s.t.
∑
i,j

πij log
πij

(µ⊗ ν)ij
≤ η

then Sinkhorn’s algorithm can be iteratively applied by changing the values of c0
until

∫
log(dπ) dπ =

∫
log(dµ) dµ+

∫
log(dν) dν + η where π = argmax ξ(β).
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4.4 Numerical Results

In this section we give numerical examples as in Ghossoub, Hall, and Saunders
(2020) part 6, but with an enlarged sample space due to the power of the Sinkhorn’s
algorithm.

Example 1 (Linear Loss with Gaussian Marginals). There exists known results
for the case where the objective function being linear and the marginals being
Gaussian. According to Manistre and Hancock (2005), the limiting distribution of
the ES based on empirical samples will be Gaussian.

Now let L : X × Y → R be defined as L(x, y) = x + y. Let µ ∈ P(X ) follows
N(0, 1), and let ν ∈ P(Y) follows N(0, 1). We sample d points from (X , µ) and d
points from (Y , ν), set α = 0.9, choose a penalty parameter c0 = 5, and a reference
measure πref ∼ Unif(X × Y). For |X | = |Y| = d = 200, the results are displayed
in Figure 4.1 and Figure 4.2. For |X | = |Y| = d = 300, the results are displayed
in Figure 4.3 and Figure 4.4.

Test for Normality Shapiro-Wilk Test D’Agostino and Pearson Test
d = 200 0.546 0.700
d = 300 0.546 0.599

Table 4.1: Statistical Test for Normality at 5% Significance Level - Example 1

In both cases we cannot reject the distribution of the optimal values being
Gaussian at 5% significance level, which validate the known results. It is worth
noting that as the sample size increases, the variance of the distribution decreases,
which is also expected since the sample variance is negatively related to the sample
size.
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Figure 4.1: Histogram of the entropy
regularized primal problem based on
1000 simulations.

Figure 4.2: qq-plot of the entropy
regularized problem based on 1000
simulations.

Figure 4.3: Histogram of the entropy
regularized primal problem based on
1000 simulations.

Figure 4.4: qq-plot of the entropy
regularized problem based on 1000
simulations.
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Example 2 (Counterparty Credit Risk). A loss function related to counterparty
credit risk (see Memartoluie (2017)) is as follows:

L(X, Y ) = max(Y1, 0)·Φ

(
Φ−1(PD1)−

√
ρ1X√

1− ρ1

)
+max(Y2, 0)·Φ

(
Φ−1(PD2)−

√
ρ2X√

1− ρ2

)
where Φ is the standard normal cumulative distribution function. This gives the
systematic credit losses in the Vasicek model, with systematic credit factor X ∼
N(0, 1), for a portfolio consisting of two counterparties with probabilities of default
PD1 and PD2, systematic credit factor loadings ρ1 and ρ2, and counterparty
portfolio values Y1 and Y2 (i.e. the distributions of exposures to two different
counterparties of the bank), where we assume for simplicity that(

Y1
Y2

)
∼ N

(µ1

µ2

)
,

(
σ1
1 rσ1σ2

rσ1σ2 σ2
2

)
We simulated 1000 values from each of X and Y , and set α = 0.9, with the

model parameters PD1 = PD2 = 0.02, ρ1 = ρ2 = 0.2, r = 0.5, µ1 = 10, µ2 = −10,
σ1 = σ2 = 5. The histogram of 1000 realized optimal values is given in Figure 4.5,
the qq plot is given in Figure 4.6.

Figure 4.5: Histogram of the entropy
regularized primal problem based on
1000 simulations.

Figure 4.6: qq-plot of the entropy
regularized problem based on 1000
simulations.

Test for Normality Shapiro-Wilk Test D’Agostino and Pearson Test
d = 1000 1.24e-09 1.828e-15

Table 4.2: Statistical Test for Normality at 5% significance level - Example 2

Note that we reject the resulting distribution of the optimal values being normal
at 5% significance level, based on the plots and statistical tests.
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Chapter 5

Conclusions

In this thesis, we start with an entropy penalized maximum expected shortfall
problem, and call it our primal problem in the context of duality theory. We
present the associated dual problem based on a conjecture using the standard
convex analysis approach.

Next we prove the Kantorovich duality, including both weak duality and strong
duality. For the strong duality, we first prove the case when the underlying spaces
are not only Polish spaces but also compact, by utilizing the minimax theorem
and the variational formula to rewrite and relative entropy. For the general strong
duality, i.e. without the compactness of the underlying spaces, we follow the
strategy in Villani (2003).

Then we prove the convergence of the optimal value of the primal problem
in terms of the Wasserstein convergence of the marginals, the penalty threshold,
and the reference measure (assumed to be the product measure), when the cost
function is bounded and Hölder continuous. The key strategy we employed is the
epi-convergence, or Gamma convergence. One direction of the epi-convergence
comes relatively easily due to the lower-semicontinuity property of the Kullback-
Leibler divergence.

For the other direction, we invoke the results from Eckstein and Nutz (2021)
including the concepts of shadow and stochastic kernels. In particular, we need to
make additional assumption: the loss function (begin bounded and Hölder contin-
uous), the reference measure simply being the product measures of marginals, and
the p-Wasserstein metricizing the weak convergence. Then we are able to construct
a shadow of the probability measure and succeed in proving this direction.

We end with the discussion of the numerical simulation of the primal problem.
A direct implementation of the problem would be costly and impractical. Hence
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we apply the minimax theorem again and use Sinkhorn’s algorithm to handle the
max part in our problem, and then solve the min part which is a one dimensional
optimization problem where we also discuss the interval for the optimal solution.
Two numerical examples are presented, including the linear loss with gaussian
marginals for which we have known results of the limiting distribution, and the
counterparty credit risk example.

5.1 Directions for Future Research

There are a number of possible future research directions based on this thesis:

• As mentioned in the introduction, there are other (actually wider classes of)
choices for the penalty term, and the result in this paper could be potentially
further generalized.

• For the stability under weak convergence part, we assume really strong condi-
tions on the loss function, i.e. Hölder continuity, as well as the p-Wasserstein
distance that metricizes weak convergence. One can explore a relaxation of
those conditions and prove the same or similar result.

• One can further explore the quantitative stability under weak convergence.
Similar ideas have been done on the standard entropy regularized optimal
transport, see Nutz and Wiesel (2021).

• There are other efficient numerical algorithms, including a greedy version of
Sinkhorn algorithm, called Greenkhorn (see Altschuler, Weed, and Stromme
(2021)) which allows to select and update columns and rows that most vi-
olate the polytope constraints, the Nys-Sink algorithm (see Altschuler et
al. (2019)) based on low-rank approximation of the cost matrix using the
Nyström method, etc. It would be interesting to compare the results re-
turned by these algorithms.
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Appendix A

Important Theorems

A.1 Some Background Materials on Convex Op-

timization

In this section, we present some useful background material in (convex) optimiza-
tion, summarized from Villani (2003), Bonnans (2019), Boyd and Vandenberghe
(2004), and Ekeland and Témam (1999).

Definition A.1.1 (Convex optimization). A convex optimization problem is one
of the form

minimize
x ∈ Rn

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

where the functions fi : Rn → R ∪ {∞} are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

Definition A.1.2 (Conjugate (or Polar) function). Let f : Rn → R ∪ {∞} be a
proper function (not identically ∞). The function f ∗ : Rn → R defined as

f ∗(y) = sup
x∈domf

(yTx− f(x))

is called the (convex) conjugate function (or Legendre transform) of the function f.
The domain of the conjugate function consists of y ∈ Rn for which the supremum
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is finite, i.e., for which the difference yTx − f(x) is bounded above on dom f.
Note that f ∗ is a proper lower semi-continuous (l.s.c.) convex function, as it is
the pointwise supremum of a family of affine functions of y, no matter whether f
is convex or not.

Remark 1. Note here we do not assume f to be integrable on any subset of Rn.
However the integrability of f does not matter when domf = Rn (Villani (2003)
section 2 lemma 2.10).

Before we proceed, we can generalize the concept into more general spaces. Let
X be a vector space and X∗ be its dual space, equipped with a bilinear mapping
⟨·, ·⟩. Furthermore,X andX∗ are equipped with topologies σ(X,X∗) and σ(X∗, X)
which render them locally convex and Hausdorff.

Definition A.1.3 (Bi-conjugate (or Bi-polar) function). The biconjugate of f :
X → R ∪ {∞} = R̄ is the function f ∗∗ : X → R̄ defined by

f ∗∗(x) = sup
x∗∈X∗

⟨x∗, x⟩ − f ∗(x∗)

Theorem A.1.1. The biconjugate f ∗∗ is the supremum of the affine minorants of
f. If f : X → R̄ is proper l.s.c. convex, then f = f ∗∗.

Proof. See Bonnans (2019) proposition 1.43 and theorem 1.44.

After introducing the concept of conjugacy, we are ready to discuss duality
theory.

Consider the family of “primal” problems

min
x∈X

φ(x, y)− ⟨x∗, x⟩ (A.1.1)

where X and Y are Banach spaces, φ : X × Y → R̄, x∗ ∈ X∗, y ∈ Y . We denote
the associated value function by

v(y) = inf
x
(φ(x, y)− ⟨x∗, x⟩)

Note that

v∗(y∗) = sup
y
(⟨y∗, y⟩ − v(y))

= sup
y
(⟨y∗, y⟩ − inf

x
(φ(x, y)− ⟨x∗, x⟩))

= sup
y
(⟨y∗, y⟩+ ⟨x∗, x⟩ − φ(x, y))

= φ∗(x∗, y∗)
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Hence if follows that

v∗∗(y) = sup
y∗∈Y ∗

(⟨y∗, y⟩ − φ∗(x∗, y∗))

We define the dual problem as

max
y∗∈Y ∗

(⟨y∗, y⟩ − φ∗(x∗, y∗)) (A.1.2)

Theorem A.1.2 (Weak Duality).

val (A.1.1) = v∗∗(y) ≤ v(y) = val (A.1.2)

Theorem A.1.3 (Strong Duality). If val (A.1.1) = val (A.1.2), we have the strong
duality between the two problems. This means that (x, y, y∗) ∈ X × Y × Y ∗ such
that

φ(x, y)− < x∗, x >=< y∗, y > −φ∗(x∗, y∗)
is an optimality condition.

Remark 2. The strong duality has a close connection with a characterization of
the subdifferential of value function. Here we omit this part and refer to the books
for more details.

A.2 Ulam’s Lemma

Theorem A.2.1 (Ulam’s Lemma). Let (W , τ) be a Polish space and µ a positive
finite Borel measure on W. Then for every ϵ > 0 there exists a compact set
K = K(ϵ) ⊂ W s.t. µ(W \K) < ϵ.

A.3 Prokhorov’s Theorem

Definition A.3.1. A family P(W) of probability measures on a topological space
W is said to be tight if for any ϵ > 0 there exists a compact set Kϵ ⊂ W for which

sup
µ∈P

µ[Kc
ϵ ] ≤ ϵ

Theorem A.3.1 (Prokhorov’s Theorem). Let W be a Polish space, then any tight
family in P(W), the set of probability measures on W, is relatively sequentially
compact in P(W): from any {µk} in P(W) one can extract a subsequence, still
denoted {µk}, and a probability measure µ∗ on W, such that for any φ ∈ Cb(W),

lim
k→∞

∫
W
φdµk =

∫
W
φdµ∗

Proof. See Billingsley (1999) section 5 for a detailed proof.
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A.4 Riesz–Markov–Kakutani Representation The-

orem

Theorem A.4.1 (Riesz–Markov–Kakutani Representation Theorem). Let W be
a locally compact Hausdorff space. For any continuous linear functional ψ on
C0(W), there is a unique regular countably additive complex Borel measure µ on
W such that

∀f ∈ C0(W) : ψ(f) =

∫
W
f(w) dµ(w).

The norm of ψ as a linear functional is the total variation of µ, that is

∥ψ∥ = |µ|(W)

Finally, ψ is positive if and only if the measure µ is non-negative.

Proof. See Malliavin (1995) chapter II section 5, or Dudley (2002) theorem 7.4.1,
for a detailed proof.

A.5 Urysohn’s Lemma

Definition A.5.1 (Normal space). A topological space (W , T ) is called normal if
for every pair of disjoint nonempty closed subsets C,D ⊂ W there exist disjoint
open sets U, V such that C ⊂ U and D ⊂ V .

Theorem A.5.1 (Urysohn’s Lemma). A topological space (W , T ) is normal if
and only if for every pair of disjoint nonempty closed subsets C,D ⊂ W there is
a continuous function f : W → [0, 1] such that f(w) = 0, ∀w ∈ C and f(w) =
1, ∀w ∈ D.

A.6 Tietze Extension Theorem

Theorem A.6.1 (Tietze Extension Theorem). If X is a normal space and f :
A→ R is a continuous map from a closed subset A of W into the real numbers R
carrying the standard topology, then there exists a continuous extension of f to W,
which by definition is a continuous map F : X → R with F (a) = f(a) for all a ∈ A.
Moreover, F may be chosen such that sup{|f(a)| : a ∈ A} = sup{|F (w)| : w ∈ W}
that is, if f is bounded then F may be chosen to be bounded (with the same bound
as f).

60


	List of Figures
	Introduction
	Background
	Risk Measures
	Optimal Transportation Theory
	Entropy Regularization

	Problem Formulation
	Research Contributions

	Kantorovich Duality
	Dual Problem
	Weak Duality
	Strong Duality when X and Y are Compact
	General Strong Duality

	Stability of the Entropy Penalized Maximum Expected Shortfall
	Introduction
	Epi-Convergence
	Required Background Material from Probability Theory
	Completion of the Proof of Epi-Convergence under Additional Assumptions
	Convergence of the Optimal Values and (Subsequences of) Optimal Solutions

	Numerical Simulation
	Switching Min and Max
	Sinkhorn Algorithm - Computation of Max
	Computation of Min
	Numerical Results

	Conclusions
	Directions for Future Research

	References
	APPENDICES
	Important Theorems
	Some Background Materials on Convex Optimization
	Ulam's Lemma
	Prokhorov's Theorem
	Riesz–Markov–Kakutani Representation Theorem
	Urysohn’s Lemma
	Tietze Extension Theorem


