
Model-based Reinforcement Learning
of Nonlinear Dynamical Systems

by

Milad Farsi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2022

c© Milad Farsi 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Guillaume Crevecoeur
Associate Professor, Dept. of Electromechanical, Systems and
Metal Engineering, University of Ghent

Supervisor(s): Jun Liu
Associate Professor, Dept. of Applied Math., University of Waterloo

Internal Member: Xinzhi Liu
Professor, Dept. of Applied Math., University of Waterloo

Internal Member: Hans De Sterck
Professor, Dept. of Applied Math., University of Waterloo

Internal-External: Amir Khajepour
Professor, Dept. of Mechanical and
Mechatronics Engineering, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Model-based Reinforcement Learning (MBRL) techniques accelerate the learning task
by employing a transition model to make predictions. In this dissertation, we present
novel techniques for online learning of unknown dynamics by iteratively computing a feed-
back controller based on the most recent update of the model. Assuming a structured
continuous-time model of the system in terms of a set of bases, we formulate an infi-
nite horizon optimal control problem addressing a given control objective. The structure
of the system along with a value function parameterized in the quadratic form provides
flexibility in analytically calculating an update rule for the parameters. Hence, a matrix
differential equation of the parameters is obtained, where the solution is used to charac-
terize the optimal feedback control in terms of the bases, at any time step. Moreover, the
quadratic form of the value function suggests a compact way of updating the parameters
that considerably decreases the computational complexity. In the convergence analysis,
we demonstrate asymptotic stability and optimality of the obtained learning algorithm
around the equilibrium by revealing its connections with the analogous Linear Quadratic
Regulator (LQR). Moreover, the results are extended to the trajectory tracking problem.
Assuming a structured unknown nonlinear system augmented with the dynamics of a com-
mander system, we obtain a control rule minimizing a given quadratic tracking objective
function. Furthermore, in an alternative technique for learning, a piecewise nonlinear affine
framework is developed for controlling nonlinear systems with unknown dynamics. There-
fore, we extend the results to obtain a general piecewise nonlinear framework where each
piece is responsible for locally learning and controlling over some partition of the domain.
Then, we consider the Piecewise Affine (PWA) system with a bounded uncertainty as a
special case, for which we suggest an optimization-based verification technique. Accord-
ingly, given a discretization of the learned PWA system, we iteratively search for a common
piecewise Lyapunov function in a set of positive definite functions, where a non-monotonic
convergence is allowed. Then, this Lyapunov candidate is verified for the uncertain system.
To demonstrate the applicability of the approaches presented in this dissertation, simula-
tion results on benchmark nonlinear systems are included, such as quadrotor, vehicle, etc.
Moreover, as another detailed application, we investigate Maximum Power Point Tracking
(MPPT) problem of solar Photovoltaic (PV) systems. Therefore, we develop an analytical
nonlinear optimal control approach that assumes a known model. Then, we apply the ob-
tained nonlinear optimal controller together with the piecewise MBRL technique presented
previously.

iv

Acknowledgments

First, I would like to express my sincere gratitude to my supervisor, Dr. Jun Liu, whose
valuable guidance in identifying the research objectives and developing methodology in this
dissertation was essential. He has been a constant source of inspiration, and his insightful
advice helped me in refining my ideas and raising the quality of this research. I would like
to thank all my committee members, Dr. Guillaume Crevecoeur, Dr. Amir Khajepour,
Dr. Xinzhi Liu, and Dr. Hans De Sterck, who without their precious feedback, this
dissertation could not have been accomplished. I am appreciative for everything I learned
from my professors; my special thanks goes to Dr. Xinzhi Liu and Dr. Jeff Orchard who
helped me to deepen my knowledge through courses. Finally, I want to convey my heartfelt
thanks to my family, and friends for their unwavering support and encouragement during
my study and research.

v

Dedication

This dissertation is dedicated to my family ♥.

vi

Table of Contents

List of Figures xi

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 4

1.3 Contributions . 9

1.4 Preliminaries . 14

1.4.1 Notation . 14

1.4.2 Optimal Control . 14

1.4.3 System Identification . 17

1.4.4 Reinforcement Learning . 19

1.5 Outlines . 21

2 Structured Online Learning-based Control of Continuous-time Nonlinear
Systems 23

2.1 Introduction . 23

2.2 A Structured Approximate Optimal Control Framework 24

vii

2.3 Local Stability and Optimality Analysis 28

2.3.1 Linear Quadratic Regulator . 28

2.3.2 SOL Control . 29

2.4 A Structured Online Learning (SOL) Algorithm 38

2.4.1 ODE Solver and Control Update 38

2.4.2 Identified Model Update . 39

2.4.3 Database Update . 40

2.4.4 Limitations and Implementation Considerations 41

2.4.5 Asymptotic Convergence with Approximate Dynamics 41

2.5 Simulation Results . 42

2.5.1 Systems Identifiable in Terms of a Given Set of Bases 43

2.5.2 Systems to Be Approximated by a Given Set of Basis 44

2.6 Conclusion . 49

3 A Structured Online Learning Approach to Nonlinear Tracking with Un-
known Dynamics 53

3.1 Introduction . 53

3.2 A Structured Online Learning for Tracking Control 54

3.2.1 Stability and Optimality in the Linear Case 59

3.3 Learning-based Tracking Control Using SOL 62

3.4 Simulation Results . 63

3.4.1 Tracking Control of Pendulum . 64

3.4.2 Synchronization of Chaotic Lorenz System 65

3.5 Conclusion . 67

4 Piecewise Learning and Control with Stability Guarantees 71

4.1 Introduction . 71

4.2 Problem Formulation . 72

viii

4.3 The Piecewise Learning and Control Framework 72

4.3.1 System Identification . 73

4.3.2 Database . 74

4.3.3 Feedback Control . 75

4.4 Analysis of Uncertainty Bounds . 76

4.4.1 Quadratic Programs for Bounding Errors 77

4.5 Stability Verification for Piecewise-Affine Learning and Control 80

4.5.1 Piecewise Affine Models . 80

4.5.2 MIQP-based Stability Verification of PWA Systems 81

4.5.3 Convergence of ACCPM . 84

4.6 Numerical Results . 85

4.6.1 Pendulum System . 86

4.6.2 Dynamic Vehicle System with Skidding 88

4.6.3 Comparison of Runtime Results . 92

4.7 Conclusion . 93

5 Structured Online Learning for Low-Level Control of Quadrotors 95

5.1 Introduction . 95

5.2 Quadrotor Model . 97

5.3 Structured Online Learning with RLS Identifier on Quadrotor 98

5.3.1 Learning Procedure . 99

5.3.2 Asymptotic Convergence with Uncertain Dynamics 105

5.3.3 Computational Properties . 107

5.4 Numerical Results . 107

5.5 Conclusion . 108

ix

6 Applications to Solar Photo-voltaic Systems 112

6.1 Introduction . 112

6.2 Problem Statement . 115

6.2.1 PV Array Model . 116

6.2.2 DC-DC Boost Converter . 117

6.3 Optimal Control of PV Array . 120

6.3.1 Maximum Power Point Tracking Control 122

6.3.2 Reference Voltage Tracking Control 128

6.3.3 Piecewise Learning Control . 129

6.4 Application Considerations . 130

6.4.1 Partial Derivative Approximation Procedure 130

6.4.2 Partial Shading Effect . 133

6.5 Simulation Results . 135

6.5.1 Model and Control Verification . 136

6.5.2 Comparative Results . 137

6.5.3 Model-free Approach Results . 140

6.5.4 Piecewise Learning Results . 141

6.5.5 Partial Shading Results . 142

6.6 Conclusion . 142

7 Conclusions and Future Works 153

7.1 Conclusions . 153

7.2 Future Work . 154

References 155

x

List of Figures

2.1 Responses of the Lorenz system while learning by using the approximated
state derivatives as in Table 2.1, where starting from one equilibrium point,
we regulated the system to another unstable equilibrium. 45

2.2 The value, components of P , and prediction error corresponding to Fig. 2.1,
respectively. 46

2.3 A view of the graphical simulations of the benchmark cartpole and double
inverted pendulum examples. The video can be accessed in: https://

youtu.be/-j0vaHE9MZY . 47

2.4 Responses of the cartpole system while learning by using the approximated
state derivatives. 48

2.5 The value, components of P , and prediction error corresponding to Fig. 2.4,
respectively. 49

2.6 Responses of the double-inverted pendulum system while learning by using
the approximated state derivatives. 50

2.7 The value, components of P , and prediction error corresponding to Fig. 2.6,
respectively. 52

3.1 The control and states of the pendulum system within a run of the im-
plemented learning approach from a randomly chosen initial condition for
tracking a full state sinusoidal reference signal provided as in (3.24a). . . . 65

3.2 The control and states of the pendulum system within a run of the im-
plemented learning approach from a randomly chosen initial condition for
tracking a full state ramp reference signal provided as in (3.24b). 66

3.3 The control and states of the pendulum system within a run of the imple-
mented learning approach from a randomly chosen initial condition where
only the angle trajectory is provided as reference to be tracked. 67

xi

https://youtu.be/-j0vaHE9MZY
https://youtu.be/-j0vaHE9MZY

3.4 A view of the 3D simulation done for synchronizing the chaotic Lorenz sys-
tem. The video can be accessed at: https://youtu.be/1SnvDyb_7Os. . . . 68

3.5 The states and the obtained control of the Lorenz system while learning to
synchronize with the given reference trajectories, starting from a random
initial condition. 69

3.6 The evolutions of the value and parameters while learning the tracking con-
troller of the Lorenz system, corresponding to Fig. 3.5. 70

4.1 A scheme of obtaining a continuous piecewise model is illustrated. On the
left, partitions on two-dimensional domain is shown for which the pieces of
the model may not be connected in the borders. On the right, some extra
triangular pieces are constructed to allow filling the possible gaps in the model. 74

4.2 Sub-figures (a)-(f) denote the sample gaps located for different number of
samples. It is observed that the radius of the gap decreases by increasing
the number of the samples. 78

4.3 The scheme for obtaining the uncertainty bound according to the sample
gap. Black dots denote the measurements. 79

4.4 A view of the second dynamic of pendulum system (2.32) assuming u = 0
that is f2(x1, x2). 87

4.5 The procedure for learning the dynamics by the PWA model is illustrate
step-by-step that shows the convergence of the identifier. Subfigures (a)-(f)
show the improvement of estimations of f2(x1, x2), as the number of samples
increases. 88

4.6 To better illustrate the learning procedure, the step-by-step results of the
uncertainty bound corresponding to the results in Fig. 4.5 are provided. It
is evident that error bound is improved in every step. 89

4.7 The step-by-step results of the sampling procedure and the sample gap ob-
tained are provided that correspond to the results in Fig. 4.5 and 4.6. It is
evident that by acquiring more samples over different steps and expanding
the learning area, the sample gaps are decreased effectively. 90

xii

https://youtu.be/1SnvDyb_7Os

4.8 (a). The obtained Region of Attraction (ROA) of the closed loop PWA
system is illustrated for x1 and x2 ∈ [−6, 6]. The uniform grids denote the
modes of the PWA system. Multiple trajectories of the system are shown
in a phase portrait where colormap represents the magnitude in the vector
field. (b). The comparison results for ROA of the closed loop system is
illustrated for x1 and x2 ∈ [−6, 6], together with the trajectories of the
system. The comparison results for LQR, Neural Network (NN), and Sum
of Squares (SOS) are taken from [31]. 91

4.9 (a). The state and control signals are illustrated within an episode of learn-
ing. It can be clearly seen from the position signals that the vehicle is able
to minimize the distance from the goal point and converge to a circular path
around the goal point after some time of learning. (b). The graph denotes
the evolutions of the value function, the norm of the control parameters for
the active mode, the prediction error, and the active mode of the piece-
wise model that correspond to the results in Fig 4.9a. It can be seen that
the value function learned is minimized. (c). Corresponding to Fig. 4.9a
and 4.9c, the prediction results of the learned model is compared with the
original system within an episode of learning. It can be observed that the
prediction signals shown by the black lines can match the ones obtained
from the original dynamic. 92

4.10 A comparison of the runtime results for the identification and control pro-
cedures separately is given for the implemented examples. 93

5.1 A video of the training procedure can be found at https://youtu.be/

QO8Ql83qKFM, where the objective is to learn to fly and reach to the ref-
erence position and yaw. 99

5.2 The histogram of the runtime of the identification and the control algorithms.103

5.3 The attitude control results in the learning procedure illustrated in different
runs. 104

5.4 The position control results in the learning procedure illustrated in different
runs, starting from random initial positions 106

5.5 The model coefficients, identified by Recursive Least Squares (RLS), are
shown within a run of the system. 109

5.6 The Pulse-Width Modulation (PWM) inputs of the quadrotor generated by
the learned control. 110

xiii

https://youtu.be/QO8Ql83qKFM
https://youtu.be/QO8Ql83qKFM

5.7 The parameters of the value function within a sample run together with the
prediction error of the learned model. 111

6.1 The equivalent electrical model of the solar array 116

6.2 DC-DC boost converter used to interface the load to the solar array 117

6.3 Output results of the simulated solar array by changing the irradiance power
from 400 to 1000 W/m2, where the solid lines represent the track of the
Maximum Power Point (MPP) obtained by using the proposed NOC approach.138

6.4 Output results of the simulated solar array by changing the ambient tem-
perature from 5◦C to 65 ◦C, where the solid lines represent the track of the
MPP by using the proposed NOC. 139

6.5 I-V and P-V graphs are shown that characterize the solar PV system used
for piecewise learning control as an example. Moreover, the MPP is denoted. 140

6.6 The learning result of the solar PV system, given by Fig. 6.5, are shown.
It can be observed that after 0.4 sec, ξ converges to zero, that guarantees
operating in the MPP. It is also evident by the Va signal that the PV array
voltage can track the MPP voltage 51.2V given by Fig. 6.5. 141

6.7 The obtained control signal (NOC) compared to Sliding Mode Control (SMC)
and second-order SMC under the changing irradiance shown in (d). 144

6.8 Comparison results of the output power under the changing irradiance shown
in Fig. 5(d), where some parts of the graph are magnified in sub-figures (a-
c). The error graph denotes the comparative error for the proposed NOC
compared to SMC and second-order SMC (see the text for details). 145

6.9 The obtained control signal (NOC) compared to SMC and second-order
SMC under the changing ambient temperature shown in (d). 146

6.10 Comparison results of the output power under the changing ambient tem-
perature shown in Fig. 7(d), where some parts of the graph are magnified
in sub-figures (a-c). The error graph denotes the comparative error for the
proposed NOC compared to SMC and second-order SMC (see the text for
details). 147

6.11 The solar PV array illustrating the partial shading condition considered in
the simulation results. 148

6.12 Evolutions of the operating point of system on I-V curve before and after
partial shading event, where controllers are defined by (6.52). 148

xiv

6.13 Evolutions of the operating point of system on P-V curve before and after
partial shading event, where controllers are defined by (6.52). 149

6.14 Output voltage and current signals of the solar PV array together with the
control signal, where the shading event, corresponding to Fig. 9 and Fig.
10, is detected at 0.2 sec. 150

6.15 A sketch of the simulated solar PV system together with the proposed con-
trol approach in Matlab Simulink. 151

6.16 The results obtained by simulating the system with the proposed Algo-
rithm 2, which illustrate respectively: (a)-(b) First and second-order partial
derivatives. (c) Perturbation signal added to improve the estimation.(d)
The variable input irradiance applied to the solar PV array. (e) The output
power. 152

xv

List of Tables

2.1 The system dynamics and the corresponding value function obtained by the
proposed method, where the exact and the approximated derivatives of the
state variables are used in different scenarios 51

5.1 The coefficients of the simulated Crazyflie 107

6.1 Nomenclature . 115

6.2 Electrical data of the CS6X-335M-FG module[29] 137

xvi

List of Abbreviations

ACCPM Analytic Center Cutting-Plane Method 8, 83, 84

ARE Algebraic Riccati Equation 6

DNN Deep Neural Network 8

DP Dynamic Programming 2, 4, 6, 7, 15, 20

FPRE Forward-Propagating Riccati Equation 6, 10, 28

GD Gradient Descent 18, 19, 154

HJB Hamilton Jacobi Bellman 2, 7, 11, 16, 25, 56, 60

LQR Linear Quadratic Regulator iv, xiii, 1, 6, 10, 27–29, 37, 59, 61, 88, 91

LQT Linear Quadratic Tracking 9

MBRL Model-based Reinforcement Learning iv, 4, 5, 9, 12, 21–23, 96, 99, 107, 154

MIQP Mixed-Integer Quadratic Program 8, 12, 81, 84, 85, 87

MPC Model-Predictive Control 6, 8, 96

MPP Maximum Power Point xiv, 22, 112–115, 119, 122, 123, 127, 129–133, 137–143

MPPT Maximum Power Point Tracking iv, 112, 113, 120, 122, 126, 129, 130, 133, 142,
154

NN Neural Network xiii, 88, 91

xvii

PE Persistence of Excitation 7, 19

PI Policy Iteration 2, 7, 20, 21

PV Photovoltaic iv, xiv, xv, 13, 14, 22, 112–120, 122, 125, 127–131, 133, 136, 137, 140–
143, 148, 150–152, 154

PWA Piecewise Affine iv, xii, xiii, 8, 21, 81, 83, 86, 88, 91, 93, 141, 153, 154

PWM Pulse-Width Modulation xiii, 98, 99, 110, 119, 133, 136, 140

RL Reinforcement Learning 2–7, 9, 11, 14, 19, 20, 53, 96

RLS Recursive Least Squares xiii, 13, 40, 97, 99, 104, 107–109, 154

ROA Region of Attraction xiii, 22, 85, 88, 91, 93, 154

SDRE State-dependent Riccati Equations 6

SINDy Sparse Identification of Nonlinear Dynamics 10, 11, 38–40, 42, 62, 63, 154

SMC Sliding Mode Control xiv, 113, 114, 133, 138, 143–147

SOL Structured Online Learning 10, 11, 13, 21, 23, 38, 40, 43, 49, 57, 62, 63, 88, 97, 104,
105, 108, 154

SOS Sum of Squares xiii, 88, 91

TD Temporal Difference 7

VI Value Iteration 2, 3, 7, 20, 21

xviii

Chapter 1

Introduction

1.1 Motivation

Lack of a General Nonlinear Optimal Control Technique: Optimal control theory
plays an important role in designing effective control systems. Optimal control problem is
already solved successfully for linear systems that guarantees stability of the system in the
case the system is controllable. Linear Quadratic Regulator (LQR) problem is represented
by minimizing a quadratic cost in terms of the control input, where solving that allows
us regulate the state and the control input of the system. In the applications of control
systems, this provides an opportunity to specifically regulate the behavior of the system
by adjusting coefficients used in the cost functional. However, when it turns to nonlinear
dynamical systems, there is no systematic method for obtaining an optimal feedback control
for the general nonlinear systems. Thus, many of the techniques available in the literature
on linear systems do not apply in general.

Despite the complexity of nonlinear dynamical systems, they have attracted much at-
tention from researchers in recent years. This is mostly because of their practical benefit
in establishing a wide variety of applications in engineering, including power electron-
ics, flight control, and etc. Considering hybrid systems as the most general category of
dynamical system, optimal control involves finding a sequence that denotes the order of
switching among subsystems, corresponding control input, and switching times such that
a cost functional is minimized.

Importance of an Optimal Feedback Control: In general, there exist two well-know
approaches to solving such optimization problems: the minimum principles (Pontryagin)

1

[128] and the Dynamic Programming (DP) method (Bellman) [137]. To solve an optimiza-
tion problem that involves dynamics, minimum principles require us to solve a two point
boundary value problem, where the solution is not in feedback mode.

There exist plenty of numerical techniques presented in the literature to solve the opti-
mal control problem. Such approaches generally rely on our knowledge of the exact model
of the system. In the case where such model exists, the optimal control input is obtained
in the open-loop form that is given by a sequence of real values in time. Consequently,
their implementation in the real-world problems often involves many complications that
are well-known by control community. This is because of the model mismatch, noises,
and disturbances that greatly affect the online solution, causing it to diverge from the
preplanned offline solution. Therefore, obtaining a closed-loop solution for the optimal
control problem is often preferred in the applications.

DP approach analytically results in a feedback control for linear systems with quadratic
cost. Moreover, employing Hamilton Jacobi Bellman (HJB) equation with a value function,
one might manage to derive an optimal feedback control rule for some real-world applica-
tion. This motivates us to consider conditions leading to an optimal feedback control rule
that can be applied to real-world problems.

Limits of Optimal Feedback Control Techniques: Consider an optimal control
problem over an infinite horizon involving a non-quadratic performance measure. Us-
ing the idea of inverse optimal control, the cost functional can be then evaluated in closed
form as long as the running cost depends somehow on an underlying Lyapunov function
by which the asymptotic stability of the nonlinear closed-loop system is guaranteed. Then
it can be obtained that the Lyapunov function is indeed the solution of the steady-state
HJB equation. Although such formulation allows analytically obtaining an optimal feed-
back rule, choosing the proper performance measure may not be trivial. Moreover, from
practical point of view, because of the nonlinearity in the performance measure, it might
cause unpredictable behavior.

A well-studied method for solving an optimal control problem online is employing a
value function assuming a given policy. Then, for any state the value function gives a
measure of how good the state is by collecting the cost starting from that state while the
policy is applied. If such a value function can be obtained, and the system model is known,
the optimal policy is actually the one that takes the system in the direction by which the
value decreases the most in the space of the states. Such Reinforcement Learning (RL)
techniques which are known as value-based methods, including the Value Iteration (VI)
and the Policy Iteration (PI) algorithms, are shown to be effective in a finite state and

2

control spaces. However, the computations cannot efficiently scale with the size of the
state and control spaces.

Complexity of Approximate DP Algorithms: One way of facilitating the compu-
tations regarding the value updates is employing an approximate scheme. This is done by
parameterizing the value function, and accordingly adjusting the parameters in the train-
ing process. Then, the optimal policy given by the value function is also parameterized
and approximated accordingly. The complexity of any value update depends directly on
the number of parameters employed, where one may try limiting the number of the param-
eters by sacrificing the optimality. Therefore, we are motivated to obtain a more efficient
update rule for the value parameters, rather than limiting the number of the parameters.
We achieve this by reformulating the problem with a quadratically parameterized value
function.

Moreover, the classical VI algorithm does not explicitly use the system model for eval-
uating the policy. This benefits the applications in the way that the full knowledge of
the system dynamics is no longer required. However, now, the online training may take
much longer time since the model only participates implicitly through the future state.
Therefore, the learning can be potentially accelerated by introducing the system model.
Furthermore, this creates an opportunity for running a separate identifier unit, where the
model obtained can be simulated offline to complete the training or can be used for learning
optimal policies for different objectives.

It can be shown that, in the discrete time, the VI algorithm for linear systems results in
a Lyapunov recursion in the policy evaluation step based on the system matrices. However,
in the continuous time, especially for the general nonlinear case, methods for obtaining an
equivalent for that are not clear. Hence, in this dissertation, we investigate the chances of
acquiring such an update rule.

Importance of Learning-based Tracking Approaches: One of the most common
problems in the control of dynamical systems is to track a desired reference trajectory,
which is found in a variety of real-world applications. However, designing an efficient
tracking controller using conventional methods often necessitates a thorough understand-
ing of the model, as well as computations and considerations for each application. RL
approaches, on the other hand, propose a more flexible framework that requires less in-
formation about the system dynamics. While this may create additional problems, such
as safety or computing limits, there are already effective outcomes from the use of such
approaches in real-world situations. Similar to regulation problems, the applications of

3

tracking control can benefit from an Model-based Reinforcement Learning (MBRL) that
can handle the parameter updates more efficiently.

Opportunities for Obtaining a Realtime Control: In the approximate optimal con-
trol technique, employing a limited number of parameters can only yield a local approxi-
mation of the model and the value function. However, if an approximation within a larger
domain is intended, a considerably higher number of parameters may be needed. Then,
the identification and the controller’s complexity might be rather too high to be performed
online in real-world applications. This convinces us to circumvent this constraint by con-
sidering a set of local simple learners instead, in a piecewise approach.

As mentioned, there exist already interesting real-world applications of MBRL. Moti-
vated by this, we aim on introducing automated ways of solving optimal control problems
that can replace the conventional controllers. Hence, detailed applications of the proposed
approaches are included that are done through numerical simulations.

Summary:

• Optimal control is highly favored, while there is no general analytical technique
applicable to any nonlinear systems.

• Feedback control techniques are known to be more robust and computationally effi-
cient compared to the numerical techniques, especially in the continuous space.

• The chance of obtaining a feedback control in a closed-loop form is low and the known
techniques are limited to some classes of systems.

• Approximate DP provides a systematic way of obtaining an optimal feedback control,
while the complexity grows greatly with the number of parameters.

• An efficient parameterization of the optimal value may provide an opportunity for
more complex realtime applications in control regulation and tracking problems.

1.2 Literature Review

Reinforcement Learning: RL is a well-known class of machine learning methods that
are concerned with learning a particular task through interactions with the environment.

4

The task is often defined by some reward/cost assigned. The intelligent agent has to take
actions in different situations. Then, the reward/cost accumulated is used as a measure
to improve the agent’s actions in future, where the objective is to accumulate as much
as rewards possible or minimize a cost over some time. Therefore, it is expected that
the agent’s actions approach the optimal behavior in a long term. RL has gained lots
of successes in the simulation environment. However, the lack of explainability [46] and
data efficiency [44] make them less favorable as an online learning technique that can be
directly employed in the real-world problems, unless there exists a way to safely transfer
the simulation-based learned experience to the real world. The main challenges in the
implementations of the RL techniques are discussed in [46]. Numerous studies are done on
this subject. See e.g. [155, 166, 77, 7] for a list of related works. RL has found a variety of
interesting applications in robotics [89], multi-agent systems [177, 40, 73], power systems
[178, 171], autonomous driving [86] and intelligent transportation [72], healthcare [173],
etc.

Model-based Reinforcement Learning: MBRL techniques, as apposed to model-free
methods in learning, are known to be more data-efficient. Direct methods usually require
enormous data and hours of training even for simple applications [44], while model-based
techniques can show optimal behavior in a limited number of trials. This property, in
addition to the flexibilities in changing learning objectives and performing farther safety
analysis make them more suitable for real-world implementations, such as robotics [127].
In model-based approaches, having a deterministic or probabilistic description of the tran-
sition system saves much of the effort spent by direct methods in treating any point in the
state-control space individually. Hence, the role of model-based techniques becomes even
more significant when it comes to problems with continuous control rather than discrete
actions ([154, 9, 130]).

In [115], the authors provide a survey of some recent MBRL methods which are for-
mulated based on Markov decision process. In general, there exist two approaches for
approximating a system: parametric and non-parametric. Parametric models are usually
preferred over non-parametric since the number of the parameters are independent of the
number of samples. Therefore, they can be implemented more efficiently on complex sys-
tems, where many samples are needed. On the other hand, in non-parametric approaches,
the prediction for a given sample is obtained by comparing it with a set of samples already
stored, which represents the model. Therefore, the complexity increases with the size of
the dataset. In this dissertation, because of this advantage of parametric models, we focus
on the parametric techniques.

5

Optimal Control: Let us specifically consider implementations of RL on control sys-
tems. Regardless of the fact that RL techniques do not require the dynamical model to
solve the problem, they are in fact intended to find a solution for the optimal control
problem. This problem is extensively investigated by the control community. The LQR
problem has been solved satisfactorily for controllable linear using an Algebraic Riccati
Equation (ARE) [79] ensuring system stability. However, in the case of nonlinear systems,
it seems obtaining such a solution is not trivial.

Model-Predictive Control (MPC) [28, 60, 135, 66, 60, 109, 117]has been frequently used
as an optimal control technique, where it is inherently model-based. Furthermore, it deals
with the control problem only across a restricted prediction horizon. For this reason, and
for the fact that the problem is not considered in the closed-loop form, the stability analysis
is hard to establish. For the same reasons, the computational complexity is considerably
high compared to a feedback control rule implemented.

Forward-Propagating Riccati Equation (FPRE) [165, 131] is one of the techniques pre-
sented for solving the LQR problem. Normally, the differential Riccati equation is solved
in backward with a final condition. In an analogues technique, it can be solved in forward-
time with some initial condition instead. A comparison between these two schemes is given
in [131]. Employing forward-integration method makes it suitable for solving the problem
for time-varying [165, 32] system or in the RL setting [98] since the future dynamics are
not needed. However, the backward case needs the knowledge of the dynamics at the final
condition. FPRE has been shown to be an efficient technique in finding a sub-optimal
solution for the linear systems, while for the nonlinear systems, the assumption is that the
system is linearized along the system’s trajectories.

State-dependent Riccati Equations (SDRE) [37, 48, 38] is another technique can be
found in the literature for solving the optimal control problem. This technique relies on
the fact that any nonlinear system can be written in the form of a linear system with
state-dependent matrices. However, this conversion is not unique. Hence, a sub-optimal
solution is expected. Similar to MPC, it does not yield a feedback control rule since the
control at each state is computed by solving a different Riccati equation.

Dynamic Programming: Other model-based approaches can be found in the literature
that are mainly categorized under RL in two group: value function and policy search meth-
ods. In value function-based methods, known also as approximate/adaptive DP techniques
[163, 96, 11], a value function is used to construct the policy. However, policy search meth-
ods directly improve the policy to achieve optimality. Adaptive DP has found different
applications [133, 57, 134, 119, 174, 71, 94, 102, 57] in automotive control, flight control,

6

power control, etc. A review of recent techniques can be found in [80, 27, 140, 127, 83].
The Q-learning approach learns an action-dependent function using Temporal Difference
(TD) to obtain the optimal policy. This is inherently a discrete approach. There are con-
tinuous extensions of this technique, such as [111, 62, 144, 164]. However, for an efficient
implementation, the state and action space ought to be finite that is highly restrictive in
the continuous space.

Adaptive controllers [8], as a well-known class of control techniques, may seem similar
to RL in methodology, while there are substantial differences in the problem formulation
and objectives. Adaptive techniques, as well as RL, learn to regulate unknown systems
utilizing data collected in real-time. In fact, an RL technique can be seen as an adaptive
technique that converges to the optimal control [96]. However, as apposed to RL and
optimal controllers, adaptive controllers are not normally intended to be optimal, with
respect to a user-specified cost function. Hence, such methods will not be further discussed
in this dissertation.

Value methods in reinforcement learning normally require solving the well-known HJB.
However, common techniques for solving such equations suffer from curse of dimensionality.
Hence, in approximate DP techniques, a parametric or non-parametric model is used to
approximate the solution. In [97], some related approaches are reviewed that fundamentally
follow the actor-critic structure [14], such as VI and PI algorithms.

In such approaches, the Bellman error, which is obtained from the exploration of the
state space, is used to improve the parameters estimated in a gradient-descent or least-
squares loop that require the Persistence of Excitation (PE) condition. Since the Bellman
error obtained is only valid along the trajectories of the system, sufficient exploration in
the state-space is required to efficiently estimate the parameters. In [83], the authors have
reviewed different strategies employed to increase the data-efficiency in exploration. In
[160, 114], a probing signal is added to the control to enhance the exploring properties
of the policy. In another approach [114], the recorded data of explorations is used as a
replay of experience to increase the data efficiency. Accordingly, the model obtained from
identification is used to acquire more experience by doing simulation in an offline routine
that decreases the need for visiting any point in the state space.

As an alternative method, considering a nonlinear control affine system with a known
input coupling function, the work [82] used a parametric model to approximate the value
function. Then, they employed a least-squares minimization technique to adjust the pa-
rameters according to the Bellman error which can be calculated at any arbitrary point
of the state space by having identified internal dynamics of the system and approximated
state derivatives under a PE-like rank condition. In [81], the authors proposed an im-

7

proved technique, where it approximates the value function only in a small neighborhood
of the current state that travels within a compact set. It has been shown that the local
approximation can be done more efficiently since considerably less number of bases can be
used.

Piecewise Learning: There exist different techniques to efficiently fit a piecewise model
to data, see e.g. [158, 24, 57, 4, 139, 43]. In [57], a technique for the identification of
discrete-time hybrid systems by the piecewise affine model is presented. The algorithm
combines clustering, linear identification, and pattern recognition approaches to identify
the affine subsystems together with the partitions for which they apply. In fact, the
problem of globally fitting a piecewise affine model is considered to be computationally
expensive to solve. In [92], it is discussed that global optimality can be reached with a
polynomial complexity in the number of data, while it is exponential with respect to the
data dimension. In this regard, the work [24] presents an efficient two step technique: first,
recursively clustering of the regressor vectors and estimation of the model parameters, and
second, computation of a polyhedral partition. A review of some of the techniques can be
found in [59, 61].

The flexibility of Piecewise Affine (PWA) systems makes them suitable for different ap-
proaches in control. Hence, the control problem of piecewise systems is extensively studied
in the literature (see e.g. [108, 180, 142, 13, 150, 35, 143]). Moreover, various applications
can be found for PWA systems that includes robotics [5, 107], automotive control [21, 152],
and power electronics [63, 162]. In [180], the robust MPC strategy is extended to PWA
systems with polytopic uncertainty, where multiple PWA quadratic Lyapunov functions
are employed for different vertices of the uncertainty polytope in different partitions. In
an other work [108], hybrid MPC is formulated as a mixed-integer program to solve the
optimal control problem for PWA systems. However, these techniques are only available
in an open-loop form, which decreases their applicability for realtime control.

On the other hand, Deep Neural Network (DNN) offers an efficient technique for control
in closed loop. However, one drawback of DNN-based control is the difficulty in stability
analysis. This becomes even more challenging when PWA are considered. The work
[33] suggested a sample-efficient technique for synthesizing a Lyapunov function for the
PWA system controlled through a DNN in closed loop. In this approach, Analytic Center
Cutting-Plane Method (ACCPM) [64, 120, 22] is first used for searching for a Lyapunov
function. Then, this Lyapunov candidate is verified on the closed-loop system using a
Mixed-Integer Quadratic Program (MIQP). This approach relies on our knowledge of the
exact model of the system, hence, cannot be directly implemented on an identified PWA
with uncertainty.

8

Tracking Control: For the learning-based tracking problem, several techniques can be
found in the literature, in addition to some extensions presented for the techniques re-
viewed [113, 112, 179, 172, 106]. The authors of [113] have developed an integral RL
technique for linear systems based on policy iteration algorithm, starting with an admissi-
ble initial controller. It has been shown that the optimal tracking controller converges to
Linear Quadratic Tracking (LQT) controller, with a partially-unknown system. In [112],
an off-policy method is employed with three neural networks in an actor-critic-disturbance
configuration to learn an H∞-tracking controller for unknown nonlinear systems. The au-
thors of [179] constructed an augmented system using the tracking error and the reference.
Neural networks were employed, in an actor-critic structure, to approximate the value
function and learn an optimal policy. In another neural network-based approach [172],
a single network was used to approximate the value function, where a class of uncertain
dynamics were assumed. In addition to the above approaches, there exist other similar
ones in the literature. However, applications of RL in tracking control are not only limited
to model-based techniques. For instance, [106] suggests a critic-only Q-learning approach
for tracking problems, which does not require solving the HJB equation.

Applications: As mentioned, there exist different applications of MBRL, as well as the
optimal control, on the real-world problems [133, 57, 134, 119, 174, 71, 94, 102, 57]. Ac-
cordingly, we will later provide the detailed literature review for each of the applications
including the quadrotor and the solar photo-voltaic systems in Chapters 5 and 6 respec-
tively.

1.3 Contributions

In this section, we discuss the contributions and merits of the proposed techniques while
highlighting related results.

Structured Online Learning: In Chapter 2, by proposing a novel technique for param-
eterizing the system and the value function, we aim on solving a closed-loop optimal control
problem online, rather than using a minimization technique to update the parameters based
on the Bellman error. Although, Bellman theory is clearly behind all these techniques, the
formulation here is contrasted with previous approaches: assuming a particular structure
for the identified system allows us to analytically obtain a matrix differential equation in
terms of parameters. This relaxes the need of a gradient-descent or least-squares technique

9

that is used in similar approaches. Unlike [176, 17, 82], we assume a quadratic form for
the value function that provides a compact way for parameterizing the value in terms of
quadratic terms, following the structure considered for the dynamics. Accordingly, we will
refer the presented framework as a Structured Online Learning (SOL) algorithm.

Moreover, we present the stability analysis of the approach and its connections with
FPRE [165, 131]. Unlike FPRE technique, that only considers a linear system, the proposed
technique allow employing various nonlinear bases that may increase the adaptability of
the control.

In [25], an algorithm for sparse identification of Sparse Identification of Nonlinear Dy-
namics (SINDy) is presented to obtain the explicit dynamics of the system. In [78], a
control approach is employed based on SINDy that includes two independent stages: the
identification with a generated random signal and the model predictive control. This tech-
nique is shown to be a data-efficient identification scheme that, in addition, can handle
the noise in data. A variant of sparse identification using the alternating direction method
of multipliers is applied on a set of real-world experimental data in [65]. Although the
identification methods can be used in SOL algorithm are not limited to any particular
approach, as another contribution of this dissertation, we employ SINDy to achieve faster
convergence of the parameters in an online scheme. This is contrasted with [78] in a way
that we iteratively perform both identification and control in a single loop.

Summary:

• A new formulation of the optimal control problem is proposed based on a particular
structure of the system in terms of nonlinear bases.

• A novel technique for parameterizing the value function in a quadratic form and
obtaining a feedback control is proposed.

• The quadratically parameterized value function in accordance with the structure in
the system results in a new technique for updating the value.

• It is shown that the proposed update rule can be run more efficiently compared to
previous techniques.

• Compared to FPRE, the proposed method improves adaptability in learning an op-
timal controller by allowing nonlinear bases.

• The local stability and optimality analysis are provided by making connections with
the LQR control.

10

• In a novel scheme, SINDy is employed for online RL of nolinear systems.

Learning-based Tracking Control: In Chapter 3, we employ SOL scheme in formu-
lating the tracking problem and approximating the solution of the HJB equation. By
sampling the input, state, and the reference trajectories, we exploit a system identification
method to update the system model and solve a closed-loop approximate optimal control
problem in an iterative fashion. In contrast with other learning approaches in the literature,
such as [112, 176, 17, 82], which normally use standard gradient descent or least squares
techniques, we extend the idea of SOL to the tracking problem. Hence, we analytically
develop and solve a matrix differential equation whose forward solution updates the value
and yields a tracking optimal control rule that includes the feedback and the feedforward
control terms of nonlinear basis functions.

Moreover, assuming a quadratic form for parameterizing the value function and up-
dating the parameters in the matrix form introduces considerably less complexity to value
update, compared to [112, 179, 172]. Furthermore, compared to [113], the control can be
obtained in terms of different nonlinear bases that can promote the adaptability of the
approach.

Summary:

• A novel formulation of optimal tracking control is presented.

• The computational complexity is improved since the quadratic parameterization is
employed for approximating the value function.

• The efficiency in computations allows employing more various bases that increases
the adaptability.

Piecewise Learning: In Chapter 4, we develop a piecewise learning technique according
to the SOL algorithm. In an alternative approach, instead of adding many bases to perform
learning in a large domain of interest, we divide the domain into pieces where each can be
handled independently with a limited number of bases. Employing a piecewise model will
considerably improve the learning by keeping the online computations needed for updating
the model and the control in a tractable size for every time step.

Despite the improvement in the computations, data efficiency of learning may be di-
minished if a large number of the pieces is chosen. Considering that the total number of

11

the model parameters is relative to the number of pieces, a piecewise model may involve
more parameters compared to learning in terms of bases. Therefore, they may need much
longer time to converge. In fact, there exists a trade-off between the data efficiency and
computational efficiency that can be controlled by the number of pieces and parameters
employed.

Summary:

• A novel procedure for learning a piecewise model with bounded uncertainty is pre-
sented.

• In the reinforcement learning setting, we developed a feedback controller based on
the forward integration of a differential equation for different modes of the system.

• The uncertain piecewise model together with the feedback controller is encoded in
an MIQP.

• We develop an optimization-based technique for guaranteeing asymptotic stability of
the uncertain piecewise system overall.

Learning-based Low-level Control of Quadrotor: In Chapter 5, similar to [91], we
use the flight data obtained along random open-loop trajectories to establish an initial
model, with no need for any expert demonstrations. However, in a different approach than
[91], once an initial model together with the corresponding controller is obtained, we switch
to learning in a closed-loop form to refine the model and the performance achieved. To
verify the method, we acquire data from the nonlinear model of the quadrotor, treated as
a black box.

For a practical framework, the MBRL approach has to be data-efficient while being
fast enough to allow real-time implementation. Unlike [91], our approach does not demand
a lot of computational efforts considering that we learn the system in terms of a limited
number of bases and accordingly obtain a feedback control rule. Hence, it can be used as a
lightweight alternative in implementations. Moreover, in [91], the objective is to reach the
hovering position, whereas in addition to the attitude control, we also control the position.
This means the quadrotor simultaneously learns to reach and stay at a given point in the
3D space. This will also minimize the instances where the quadrotor slides out of the
training environment.

12

For learning purpose, we implemented the SOL approach proposed in Chapter 2 with
a Recursive Least Squares (RLS) algorithm that is well known for its high efficiency in
online applications. Successful applications of RLS can be found in [103, 167, 170, 147].
In this application, as an alternative to the neural network approach, we used a system
structured in terms of a library of bases. Accordingly, by sampling the input and state,
we employ RLS to update the system model. Then, by exploiting the structure assumed
in the model and a quadratic parametrization of the value function in terms of the same
set of bases, we obtain a matrix differential equation to update the controller that can be
efficiently integrated online.

Summary:

• A more complex objective is considered that, in addition to stability also includes
reaching a position.

• The learned model supports more modes of the real quadrotor since a more complex
objective is defined.

• The obtained optimal feedback controller is computationally more efficient compared
to the previous technique.

Maximum Power Point Tracking of Solar PV Systems: While there exist vari-
ous approaches presented in the literature for improving the performance of the control in
tracking the maximum power point, there is still no clear connection made between the
configuration of the controller implemented and the performance obtained. Hence, perfor-
mance analysis and defining the problem of maximizing the output power of Photovoltaic
(PV) systems in optimal control framework still remain as a challenging problem. In this
dissertation, we addressed this problem by proposing three different techniques.

In Chapter 6, we formulate and solve an optimal feedback control problem of solar PV
systems that potentially brings many benefits in the applications. To obtain the optimal
feedback control law, we consider a nonlinear affine model with a performance measure
including a cross-weighting term. Hence, in contrast with the previous approaches, the
performance analysis is additionally done by satisfying optimality conditions, which are
adapted for a set of equilibrium points based on the incremental conductance approach.
The obtained feedback controller, due to its suitable responses around the maximum power
point, significantly decreases the undesired oscillations. Considering that the performance
of the solar PV system is affected by the changing weather condition, we demonstrate the

13

merits of the proposed controller under changing ambient temperature and solar radiation
power.

Summary:

• For the first time, a nonlinear optimal control problem is formulated and analytically
solved for tracking maximum power point of the solar PV systems.

• A model-free version of this framework were developed that only requires measure-
ments of the states.

• The proposed technique outperformed the previous control techniques implemented,
based on a realistic Matlab simulation.

• In an alternative scheme, the piecewise RL approach proposed in Chapter 4 was
implemented on the solar PV system that successfully reached the maximum-power
point with no knowledge of the system dynamics.

1.4 Preliminaries

1.4.1 Notation

We will denote the p-norm by ‖ · ‖p. For defining a set of bases, any operator on a vector
x, is performed component-wise e.g. x2 = [x2

1, . . . , x
2
n]. Moreover, a diagonal square matrix

A with elements A1, . . . , An on the diagonal is shortened as A = diag([A1, . . . , An]). The
set of real and non-negative real numbers are given by R and R+, respectively. The set of
all interior points of X is denoted by int(X).

1.4.2 Optimal Control

Control methods in applications generally involve some trial and error process through
which design parameters are chosen to satisfy desirable performance of the system. De-
sirable performance is usually determined in terms of systems responses such as peak
overshoot, settling time, and rise time. Furthermore, to reach the desirable response of the
system, the control effort usually need to be observed and restricted in some domain. Such

14

design considerations cannot be generally accomplished for complicated systems by classi-
cal control methods. Hence, optimal control framework is well-known as a direct approach
to the synthesis of such systems. In this regard, the goal of optimal control theory is to
obtain the control input that is required to satisfy a performance measure and physical
constraints.

First, to define an optimal control problem we need a model of the control system.
Hence, consider the general nonlinear system is given

ẋ = f(t, x, u), x(t0) = x0, (1.1)

where x ∈ Rn is the state, u is the control input taking values in U ∈ Rm, x0 is the initial
state at the initial time t0.

Then, a cost functional is required to assign a cost to any trajectory of the system.
Behaviors of the control system is determined by the control signal. Hence, the cost
functional associates a cost to any given control signal. A general form of cost functional
can be written as

J(t0, x0, tf , u) =

∫ tf

t0

L(t, x(t), u(t))dt + Φ(tf , xf), (1.2)

where L and Φ are the running cost and the terminal cost respectively. Given the cost
functional, we can then define the optimal control problem as finding a control u that takes
the system along a trajectory that minimizes the cost functional. This problem is known
as the Bolza problem in optimal control that results in the Lagrange problem as a special
case if there is no terminal cost [100]. Moreover, this cost functional can represent different
problems in control by adjusting the target set as the final condition. For instance, a free-
time fixed-endpoint optimal problem is given by enforcing the target set [t0,∞]× {xf}.

Dynamic Programming

Consider the cost functional (1.2) with the fixed final time t1, where the endpoint is free.
Then, instead of J(t0, x0, u), DP suggests minimizing

J(t, x, u) =

∫ t1

t

L(s, x(s), u(s))ds + Φ(xf),

where t ∈ [t0, t1) and x ∈ Rn.

15

This brings us to assume a corresponding value function

V (t, x) = inf
u[t,t1]

J(t, x, u)

that gives the optimal cost-to-go from (t, x), if a solution exists.

Necessary Conditions

Having the value function defined, we can introduce the principle of optimality. The value
function satisfies

V (t, x) = inf
u[t,t+∆t]

{
∫ t+∆t

t

L(s, x(s), u(s))ds}+ V (t+ ∆t, x(t+ ∆t)), (1.3)

for any (t, x) ∈ [t0, t1)× Rn and ∆t ∈ (0, t1 − t].
The importance of this condition is that we can now search for the optimal solution

over a small time interval. Then, the optimal control has to minimize the cost over this
interval plus the remaining cost-to-go [100].

HJB Equation

Looking at relation (1.3), the value function appears in both sides with two different times
and states. Therefore, a dynamic relation can be derived in the form of a partial differential
equation as the following

−Vt(t, x) = inf
u∈U
{L(t, x, u) + V T

x (t, x)f(t, x, u)}

for t ∈ [t0, t1) and x ∈ Rn. This equation is well known as the HJB equation.

Sufficient Conditions

Suppose that a C1 function V̂ : [t0, t1]× Rn → R satisfies the HJB equation

−V̂t(t, x) = inf
u∈U
{L(t, x, u) + V̂ T

x (t, x)f(t, x, u)}

for any (t, x) ∈ [t0, t1)× Rn and the boundary condition

V̂ (t1, x) = Φ(x).

16

Suppose that a control û : [t0, t1] → U and the corresponding trajectory x̂ : [t0, t1] → Rn,
with the given initial condition x̂(t0) = x0 satisfy everywhere the equation

L(t, x̂(t), û(t))+V̂ T
x (t, x̂(t))f(t, x̂(t), û(t))

= min
u∈U
{L(t, x̂(t), u) + V̂ T

x (t, x̂(t))f(t, x̂(t), u)},

which is equivalent to the Hamiltonian maximization condition

H(t, x̂(t), û(t),−V̂ T
x (t, x̂(t))) = max

u∈U
H(t, x̂(t), u,−V̂ T

x (t, x̂(t))).

Then V̂ (t0, x0) is the optimal cost and û is an optimal control [100].

1.4.3 System Identification

System identification can be defined as a set of techniques used for obtaining a model of
a dynamical system based on the observations and our prior knowledge of the system. In
practice, the model acquired almost always represents only an approximation of the real
plant.

The identification techniques can be categorized in three different groups. In white-
box methods, physical laws are used to directly derive the set of equations defining the
system. On the other hand, in the grey-box identification, only the structure of the model is
known while there exist some unknown or uncertain parameters that need to be estimated
through observations. Accordingly, the structure assumed may be a result of a white-box
identification with uncertain parameters. Finally, the black-box technique utilizes a generic
parameterization that is chosen independently from the physical laws and relationships
underlying the system [85]. In what follows, we review some well-known techniques for
updating a parameterized model through observations.

Recursive Least Squares

Consider the linear regression

yk = φTkw + ek,

where yk and φk are the observation and the regressor vector. Moreover, ek denotes the
prediction error. The objective is to minimize the sum of squares

J(w) =
N∑
k=1

(yk − φTkw)2,

17

with respect to the parameters w.

Then using the least squares technique, an estimation of the parameters can be obtained
as

ŵN = (
N∑
k=1

φkφ
T
k)−1

N∑
k=1

φkyk,

assuming that the matrix inverse exists. However, this technique cannot be implemented
online since the complexity grows with the number of observations made. Therefore, the
recursive algorithm is used instead that is

ŵk = ŵk−1 + Lk(yk − φTk ŵk−1),

Lk = Pk−1φk[1 + φTkPk−1φk]
−1,

Pk = Pk−1 − Pk−1φkφ
T
kPk−1[1 + φTkPk−1φk]

−1,

k = 1, . . . N , and for some initial P0 and w0 [104].

Gradient Descent

Gradient Descent (GD) is an iterative optimization algorithm that can be used to obtain
an estimation of the model parameters. Assume a differentiable objective J(w) is given.
Then, by moving in the direction of steepest decent as

wk = wk−1 − γ∂J(wk)/∂wk

for a small enough γ ∈ R+, we have J(wk−1) ≤ J(wk). Therefore, we hope the resulting
monotonic sequence leads to a desired minimum.

Sparse Identification

In the sparse identification techniques, in addition to minimizing the prediction error, we
also minimize the magnitude of the parameters as the following

ŵ = arg min
w

N∑
k=1

(yk − φTkw)2 + λ‖w‖1, (1.4)

where λ > 0 is a weighting factor. This choice of the cost encourages the sparsity in the
model. The technique for solving such an optimization problem will be discussed in detail
in the next chapter.

18

Persistence of Excitation

Consider the cost

J(w) =
1

2
eT e.

Then a continuous GD update rule for the parameters can be obtained as

ẇ = −γ∂J(w)/∂w = −γφ(x)eT .

Given w̃ = w − w∗ , as the estimation error, we have

˙̃w = ẇ = −γφ(x)φT (x)w̃,

where we substituted e = w̃φ(x). However, this equation does not guarantee exponential
convergence since φ(x) may become zero while convergence is not finished. Therefore, an
extra condition is required to assure φ(x) remains non-zero for some span of time so that
the estimation error converges zero. This is known as the PE condition that is given by∫ t+T

t

φ(x)φT (x)dτ ≥ α0I,

for all t ≥ t0 and some α0 ≥ 0 [121].

1.4.4 Reinforcement Learning

In [96], a complete review of RL methods and their relation with adaptive and optimal
control are provided. In this section, for the sake of self-containedness, we summarize some
concepts and techniques in RL.

Consider the following nonlinear affine system in discrete time

xk+1 = f(xk) + g(xk)uk,

where xk ∈ Rn and control input uk ∈ Rm. Moreover, the optimal behavior is defined by

Vh(xk) =
∞∑
i=k

γi−kr(xi, ui),

19

with the discount factor 0 < γ ≤ 1, and a feedback policy uk = h(xk). The Bellman
optimality condition suggests that

V ∗h (xk) = min
h(.)

[r(xk, h(xk)) + γV ∗h (xx+1)],

and the optimal control policy is given by the argument of this optimization problem.
Accordingly, DP is an approach for solving the optimal control backwards in time. This
requires us to have the future optimal policy for obtaining the optimal policy at current
time, hence, it is inherently an offline method. Therefore, by employing this technique, we
assume the full knowledge of the system dynamics. However, in RL, we seek a solution for
this optimal control problem online.

Assume an admissible policy uk = h(xk) is given. Moreover, the corresponding value is
Vh(xk). Then,

h′(xk) = arg min
h(.)

[r(xk, h(xk)) + γVh(xx+1)]

suggests an update rule for the policy where the resulting value satisfies V ′h(xk) ≤ Vh(xk).
Accordingly, an online iterative scheme can be derived instead of solving the optimal control
problem offline. In what follows, we review some well-known iterative techniques in RL.

Policy Iteration

Let us assume that a stabilizing initial policy is given by h0(x). Then the policy can be
evaluated by using the Bellman equation.

Vj+1(xk) = r(xk, hj(xk)) + γVj+1(xk+1).

Accordingly, the value is used to improve the policy by

hj+1(xk) = arg min
h(.)

(r(xk, h(xk)), γVj+1(xk+1)).

Value Iteration

In PI the initial policy needs to be stabilizing. However, this is not a requirement in VI.
Assuming an initial policy h0(xk), we update the value using

Vj+1(xk) = r(xk, hj(xk)) + γVj(xk+1).

20

Unlike PI which requires solving a nonlinear equation for evaluating the policy, this can
be easily done by a recursion in VI. Having the value updated, it is used to improve the
policy as below

hj+1(xk) = arg min
h(.)

(r(xk, h(xk)), γVj+1(xk+1)).

1.5 Outlines

Chapter 1, as the introduction, includes a review of the literature. Moreover, we motivate
this dissertation by discussing the limitations of related works, and challenges known in
MBRL. We provide preliminary discussions together with a summary of the contributions.

In Chapter 2, we consider an infinite horizon optimal control problem addressing a
given control objective. A structured continuous-time description of the system in terms
of a collection of bases, together with a value function that is parameterized in quadratic
form, is utilized to achieve an update algorithm for the parameters. As a result, a matrix
differential equation of the parameters is constructed, the solution of which is used to
describe the optimal feedback control in terms of the bases at every time step. In the
numerical results, the presented algorithm is implemented on four nonlinear benchmark
examples. The regulation problem is solved while an identified model of the system is
obtained with a bounded prediction error.

In Chapter 3, we obtain an approximate optimal control framework according to the
results achieved in Chapter 2 to generate a tracking controller for a nonlinear system that
can be implemented as an online model-based learning technique. We establish a control
strategy that minimizes a specified quadratic tracking objective function by assuming a
structured unknown nonlinear system enhanced with the dynamics of a commander system.
The suggested optimum tracking framework is utilized as an online model-based reinforce-
ment learning strategy in which we iteratively update the system model and construct a
corresponding control using a system identification method. In the simulation results, we
implement the presented approach to learn a tracking control on two nonlinear benchmark
problems.

In chapter 4, a piecewise affine framework is suggested for controlling nonlinear systems
with unknown dynamics. We develop the idea of SOL to acquire a piecewise nonlinear
framework where each piece is responsible for locally learning and controlling over some
partition of the domain. Then, we emphasize on learning in the form of the well-known
PWA as a special case of the proposed framework, for which we suggest an optimization-
based verification technique with considering the uncertainty bounds estimated. In the

21

numerical results, we implemented the approach on the pendulum system as a benchmark
example to obtain an Region of Attraction (ROA). Moreover, the comparison results with
related well-know control techniques are provided to better highlight the merits of the
approach.

In Chapter 5, we implement the learning technique discussed in chapter 2 on quadrotor
systems. We employ a structured model parameterized by a set of bases to identify the
governing dynamics of quadrotors where the control objective is to fly to a set goal position
and preserve the hovering state at that point. In the simulation results, a nonlinear model
of the quadrotor is exploited as a black box that replaces the real quadrotor. Accordingly,
the flight data together with the runtime results are reported within the learning process
to verify the presented approach.

In Chapter 6, we investigate applications of a nonlinear optimal control approach and
the piecewise MBRL technique presented in chapter 4 on solar PV systems. Considering
the nonlinearity appearing in the model of the solar PV system, we employ a nonlinear
optimal feedback control scheme to reach the Maximum Power Point (MPP), and deal with
the oscillations induced by the chattering phenomenon in the control. In an alternative
technique, we consider a similar problem with an unknown solar PV system. Then, we
implement the piecewise learning technique proposed. To demonstrate the merits of the
proposed framework, the obtained optimal feedback control, together with the partial
shading condition and model-free approach, is simulated under various weather conditions.

22

Chapter 2

Structured Online Learning-based
Control of Continuous-time
Nonlinear Systems

The results presented in this chapter are partially published in [52], and the journal paper
is submitted to [54].

2.1 Introduction

In this chapter, we propose an MBRL technique for solving a control regulation problem
for unknown nonlinear continuous-time systems. In Section 2.2, we propose an optimal
control approach based on a particular structure of dynamics, and characterize the optimal
feedback control based on a matrix of parameters obtained by a differential equation.
Section 2.4 outlines the SOL algorithm designed based on the obtained results. In Section
2.5, we present the numerical results of this algorithm implemented on a few benchmark
examples.

23

2.2 A Structured Approximate Optimal Control Frame-

work

Consider the nonlinear affine system

ẋ = F (x, u) = f(x) + g(x)u, (2.1)

where x ∈ D ⊂ Rn, u ∈ Ω ⊂ Rm, f : D → Rn, and g : D → Rn×m.

The cost function to be minimized along the trajectory, started from the initial condition
x0 = x(0), is considered in the following linear quadratic form

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
xTQx+ uTRu

)
dt, (2.2)

where Q ∈ Rn×n is positive semi-definite, γ ≥ 0 is the discount factor, and R ∈ Rm×m

is a diagonal matrix with only positive values, given by design criteria. With γ > 0,
this defines a discounted optimal control problem. Discounted optimal control problem
has been discussed in [129, 58]. Moroever, it is widely used in reinforcement learning to
determine the time horizon considered for minimizing the objective [95].

For the closed-loop system, by assuming a feedback control law u = ω(x(t)) for t ∈
[0,∞), the optimal control is given by

ω∗ = arg min
u(·)∈Γ(x0)

J(x0, u(·)), (2.3)

where Γ is the set of admissible controls.

Assumption 1. f and g can be identified or effectively approximated within the domain
of interest by the linear combination of some basis functions φi ∈ C1 : D → R for i =
1, 2, . . . , p.

Accordingly, (2.1) is rewritten as

ẋ = WΦ(x) +
m∑
j=1

WjΦ(x)uj, (2.4)

where W and Wj ∈ Rn×p are the matrices of the coefficients obtained for j = 1, 2, . . . ,m,
and Φ(x) = [φ1(x) . . . φp(x)]T .

24

In what follows, without loss of generality, the cost defined in (2.2) is transformed to
the space of bases Φ(x), that is

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
dt, (2.5)

where Q̄ = diag
(
[Q], [0(p−n)×(p−n)]

)
is a block diagonal matrix that contains all zeros except

the first block Q which correspond to the linear bases x.

Then the corresponding HJB equation can be written as

− ∂

∂t
(e−γtV)= min

u(·)∈Γ(x0)
H, (2.6)

by the Hamiltonian defined as

H = e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
+e−γt

∂V

∂x

T

(WΦ(x) +
m∑
j=1

WjΦ(x)uj). (2.7)

In general, there exists no analytical approach that can solve such partial differen-
tial equation and obtain the optimal value function. However, it has been shown in the
literature that approximate solutions can be computed by numerical techniques.

Assume a parameterization of the optimal value function in the following form

V = Φ(x)TPΦ(x), (2.8)

where P is symmetric.

Remark 1. Unlike other approximate optimal approaches in the literature, such as, [176,
17, 81], that use a linear combination of bases to parameterize the value function, we
assume a quadratic form. As a result, the value function now is defined in the product
space Λ := Φ×Φ. Hence, it is expected that the resulting quadratic terms better contribute
to basing a positive value function around x = 0. Furthermore, due to the function-
approximating properties of bases Φ itself, one may bring them to Λ in addition by including
a constant basis c in Φ. Therefore, compared to other approaches, the structure used in
(2.8) suggests a more compact way of formulating the problem where by only a limited
number of bases in Φ, we can attain a richer set Λ to parameterize the value function.

Then the Hamiltonian is given by

H =e−γt(Φ(x)T Q̄Φ(x) + uTRu)

25

+ e−γtΦ(x)TP
∂Φ(x)

∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)

+e−γt
(

Φ(x)TW T +
m∑
j=1

uTj Φ(x)TW T
j

)
∂Φ(x)

∂x

T

PΦ(x).

Moreover, based on the structure of R, the quadratic term of u is rewritten in terms of
its components.

H = e−γt

(
Φ(x)T Q̄Φ(x) +

m∑
j=1

rju
2
j + Φ(x)TP

∂Φ(x)

∂x
WΦ(x)+

Φ(x)TP
∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)uj

)
+Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x)

+

(m∑
j=1

ujΦ(x)TW T
j

)
∂Φ(x)

∂x

T

PΦ(x)

)
, (2.9)

where rj 6= 0 is the jth component on the diagonal of matrix R. To minimize the resulting
Hamiltonian we need

∂H

∂uj
= 2rjuj + 2Φ(x)TP

∂Φ(x)

∂x
WjΦ(x) (2.10)

= 0, j = 1, 2, . . . ,m.

Hence, the jth optimal control input is obtained as

u∗j = −Φ(x)T r−1
j P

∂Φ(x)

∂x
WjΦ(x). (2.11)

By plugging in the optimal control and the value function in (2.6) we get

−e−γtΦ(x)T ṖΦ(x) + γe−γtΦ(x)TPΦ(x)

= e−γt

(
Φ(x)T Q̄Φ(x)+

+ Φ(x)TP
∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)r−1
j Φ(x)TW T

j

)
∂Φ(x)

∂x

T

PΦ(x)

26

− 2Φ(x)TP
∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)r−1
j Φ(x)TW T

j

)
∂Φ(x)

∂x

T

PΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x)

)
.

This is rewritten as

Φ(x)T ṖΦ(x) + γΦ(x)TPΦ(x) = Φ(x)T Q̄Φ(x)+

− Φ(x)TP
∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)r−1
j Φ(x)TW T

j

)
∂Φ(x)

∂x

T

PΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x), (2.12)

where a sufficient condition to hold this equation is

−Ṗ =Q̄+ P
∂Φ(x)

∂x
W +W T ∂Φ(x)

∂x

T

P − γP

− P ∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)r−1
j Φ(x)TW T

j

)
∂Φ(x)

∂x

T

P. (2.13)

This equation has to be solved backward to get a value of P that characterizes the optimal
value function (2.8) and control (2.11). However, it has been shown that the forward
integration of such equation converges to similar results as long as we are not very close
to the initial time [131].

Remark 2. While the similarity between the derived optimal control and the LQR problem
cannot be denied, there are substantial differences. It should be noted that the matrix
differential equation (2.13) is derived in terms of Φ which is of dimension p in contrast
with the LQR formulation that includes only the linear terms of the state with dimension
n.

Remark 3. Because of the general case considered in obtaining (2.13), where Φ in-
cludes arbitrary basis functions of the state, there exists no way to escape from the state-
dependency in this equation, except in the linear case as mentioned. Hence, we require
(2.13) be solved along the trajectories of the system.

27

2.3 Local Stability and Optimality Analysis

In this section, we will present the stability analysis of the approach and its connections
with the FPRE for linear systems [165, 131]. To do this, we first formulate the LQR
problem for the linearized model of (2.4). Then we will show that once we get close
enough to the origin, the integration of (2.13) will be governed by the forward propagated
solution of the linearized system, as the dominant part.

Before we start, we need some regulations on the system that can be assured with no
loss of generality. Consider the structured system (2.4). We will assume an equilibrium
point at the origin. Moreover, we need to redefine the bases by using the following lemma.

Lemma 1. Assuming that the constant basis φ1(x) = 1 is included in Φ, we can always
redefine Φ such that φi(0) = 0 for i = 2, . . . , p. To hold this properties, we redefine
φi(x) := φi(x) − φi(0) for i = 2, . . . , p. Accordingly, we also set the W to zeros in the

entries corresponding to basis 1. For instance, the system ẋ = 1− cosx = [1 − 1]

[
1

cosx

]
can be equivalently rewritten as ẋ = [0 − 1]

[
1

cosx− 1

]
.

Accordingly, we construct the vector of basis as Φ = [1 xT Γ(x)T]T , where Γ includes
all the nonlinear basis. Then, according to Lemma 1, the system (2.4) is represented by
some block structured matrices.

ẋ =
[
0 W2 W3

]  1
x

Γ(x)

+
[
Wj1 Wj2 Wj3

]  1
x

Γ(x)

u. (2.14)

2.3.1 Linear Quadratic Regulator

By defining Γ1 = ∂Γ(x)
∂x
|x=0, the linearization of (2.14) at the equilibrium point yields

ẋ = Ax+
m∑
j=1

Bjuj, (2.15)

where A = W2 +W3Γ1 , and Bj = Wj1.

Now consider the LQR problem with quadratic cost (2.2) and γ = 0 for the linearized
system (2.15). Then, the optimal control is given by u = −r−1

j BT S̄x, where S̄ is the

28

solution of the well-known algebraic Riccati equation

Q+ S̄A+ AT S̄ − S̄(
m∑
j=1

Bjr
−1
j BT

j)S̄ = 0. (2.16)

Alternatively, we consider the forward solution of the following DRE where we update the
feedback controller with the solution S(t) at any t ∈ [0,∞),

uj = −r−1
j BTSx,

Ṡ = Q+ SA+ ATS − S(
m∑
j=1

Bjr
−1
j BT

j)TS. (2.17)

By substitution of A and B, we get

uj = −r−1
j Wj

T
1 Sx, (2.18)

Ṡ = Q+ S(W2 +W3Γ1) + (W T
2 + ΓT1W

T
3)S

− S(
m∑
j=1

Wj1r
−1
j Wj

T
1)S. (2.19)

The following theorem helps to illuminate the relation of FPRE with the LQR control.

Lemma 2. ([131]) Assume that (A,B) is controllable, (A,Q) is observable, and Q is
positive definite. Consider plant (2.15) with the control law (2.17), where, for all t ∈ [0,∞),
S(t) is the positive-semi-definite solution of the forward propagate Riccati equation (2.17).
Then, there exist some T1 > 0 such that the feedback control law renders the closed-loop
system asymptotically stable for all t > T1. Moreover, as t→∞, S(t) will converge to S̄.

Proof. See Theorems 1 and 4 in [131].

2.3.2 SOL Control

Based on the optimal control framework presented, for a known structured nonlinear system
in the form of (2.14), the optimal control is given by (2.11). Moreover, the value is updated
by the evolutions of the parameters in (2.13). Accordingly, the following theorem provides
guarantees for the stability of the closed-loop system.

29

Theorem 1. Let D̄ = {x ∈ D, ‖x‖ < r}, then, there exist some r > 0,γ > 0, and T2 > 0
such that the solution P (t) of (2.13) starting from P (0) = 0 establishes an stabilizing
controller for an initial condition x0 ∈ D̄ and for all t > T2. Hence, the nonlinear closed
loop system is asymptotically stable over D̄.

Proof. Consider a ball of radius r around the origin. We will show that the dominating
part of the solutions of (2.13) is equivalent to (2.19) for some small r. For this purpose, we
first consider the Taylor expansion of bases in (2.14) and its partial derivatives as below,

Φ(x) =

 1
x

Γ1x+O(x2)

 , and
∂Φ(x)

∂x
=

 0
I

Γ1 +O(x)

 , (2.20)

where O(xα) denotes higher order terms xα1
1 x

α2
2 . . . xαnn with α =

∑n
i=1 αi, and non-negative

integers αi. It should be noted that the expansion of the regulated nonlinear bases does
not include any constant term according to Remark 1. Moreover, Q̄ and P are structured
matrices including rectangular blocks of appropriate dimensions as below,

Q̄ =

0 0 0
0 Q 0
0 0 0

 , and P =

P1 P2 P3

P T
2 P4 P5

P T
3 P T

5 P6

 .
By substituting Q̄,P in (2.13), it is easy to investigate that starting from the initial condi-
tion P0 = 0, any term in the equations of Ṗ1, Ṗ2, and Ṗ3 will depend on P1, P2, or P3 as
below

Ṗ1 = −P2K1K
T
1 P

T
2 − P3Γ1K1K

T
1 P

T
2 − P2K1K

T
1 P

T
3

− P3Γ1K1K
T
1 P

T
3 ,

Ṗ2 = P2W2 + P3Γ1W2 − P2K1K
T
1 P4 − P3Γ1K1K

T
1 P4

− P2K1K
T
1 P

T
5 − P3Γ1K1K

T
1 P

T
5 ,

Ṗ3 = P2W3 + P3Γ1W3 − P2K1K
T
1 P5 − P3Γ1K1K

T
1 P5

− P2K1K
T
1 P6 − P3Γ1K1K

T
1 P6,

where K1 = Wj1 + Wj2x + Wj3Γ1x. Therefore, solutions P1, P2, and P3 will always stay

at zeros, and the matrix P will only grow on the block

[
P4 P5

P T
5 P6

]
. Therefore, for brevity,

30

we will follow the computations only for this block as long as this simplification does not
cause ambiguity. Now, let us take one step back and start with

Φ(x)T ṖΦ(x) = Φ(x)T Q̄Φ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x)

− Φ(x)TPΦxWjΦ(x)r−1
j Φ(x)TW T

j

∂Φ(x)

∂x

T

PΦ(x)

− γΦ(x)TPΦ(x), (2.21)

as in (2.12). For the non-zero block of P4, P5, and P6 with the corresponding bases, the
left hand side can be rewritten as 1

x
Γ1x+O(x2)

T 0 0 0

0 Ṗ4 Ṗ5

0 Ṗ T
5 Ṗ6

 1
x

Γ1x+O(x2)

 =

 1
x

O(x2)

T0 0 0

0 Ṗ4 + ΓT1 Ṗ
T
5 + Ṗ5Γ1 + ΓT1 Ṗ6Γ1 Ṗ5 + ΓT1 Ṗ6

0 Ṗ T
5 + Ṗ6Γ1 Ṗ6


 1

x
O(x2)

 , (2.22)

where we shifted the linear term in the third entry of the bases to the second. In the next
step, we will consider the following change of variables throughout the matrix differential
equation.

Z1 = P4 + ΓT1 P
T
5 + P5Γ1 + ΓT1 P6Γ1

Z2 = P5 + ΓT1 P6

Z3 = P6 (2.23)

For this reason we apply the same modification of bases to all the terms in the right hand
side of (2.21). The modification will not affect the first term since Q̄ is zero everywhere
except in the block corresponding to the second basis, that remained unchanged. Then,
let us consider the second term in the right hand side that becomes

Φ(x)TP
∂Φ(x)

∂x
WΦ(x)

31

=

 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 P T
5 P6

 0
I

Γ1 +O(x)


[
0 W2 W3

]  1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 Υ1 Υ2

0 Υ3 Υ4

 1
x

Γ1x+O(x2)


=

 1
x

O(x2)

T 0 0 0
0 Ῡ1 Ῡ2

0 Ῡ3 Ῡ4

 1
x

O(x2)

 , (2.24)

where

Υ1 = P4W2 + P5Γ1W2 + P5O(x)W2,

Υ2 = P4W3 + P5Γ1W3 + P5O(x)W3,

Υ3 = P T
5 W2 + P6Γ1W2 + P6O(x)W2,

Υ4 = P T
5 W3 + P6Γ1W3 + P6O(x)W3,

Ῡ1 = Z1(W2 +W3Γ1) + Z2O(x)(W2 +W3Γ1),

Ῡ2 = Z1W3 + Z2O(x)W3,

Ῡ3 = ZT
2 (W2 +W3Γ1) + Z3O(x)(W2 +W3Γ1),

Ῡ4 = ZT
2 W3 + Z3O(x)W3,

and we used (2.23) to get

P4W2 + P5Γ1W2 + P4W3Γ1 + P5Γ1W3Γ1

+ ΓT1 P
T
5 W2 + ΓT1 P6Γ1W2 + ΓT1 P

T
5 W3Γ1 + ΓT1 P6Γ1W3Γ1

= (P4 + ΓT1 P
T
5 + P5Γ1 + ΓT1 P6Γ1)(W2 +W3Γ1)

= Z1(W2 +W3Γ1),

P5O(x)W2 + P6O(x)W3Γ1 + ΓT1 P6O(x)W2 + ΓT1 P6O(x)W3Γ1

= Z2O(x)(W2 +W3Γ1),

P4W3 + P5Γ1W3 + P5O(x)W3 + ΓT1 P
T
5 W3

+ ΓT1 P6Γ1W3 + ΓT1 P6O(x)W3

32

= (P4 + P5Γ1 + ΓT1 P
T
5)W3 + (P5 + ΓT1 P6)O(x)W3

+ ΓT1 P6Γ1W3

= (Z1 − ΓT1Z3Γ1)W3 + Z2O(x)W3 + ΓT1Z3Γ1W3

= Z1W3 + Z2O(x)W3,

P T
5 W2 + P6Γ1W2 + P6O(x)W2 + P T

5 W3Γ1 + P6Γ1W3Γ1

+ P6O(x)W3Γ1

= (P T
5 + P6Γ1)(W2 +W3Γ1) + P6O(x)(W2 +W3Γ1)

= Z2
2(W2 +W3Γ1) + Z3O(x)(W2 +W3Γ1),

P T
5 W3 + P6Γ1W3 + P6O(x)W3

= ZT
2 W3 + Z3O(x)W3.

Furthermore, for the last term in the right hand side of (2.21), the followings hold.

Φ(x)TP
∂Φ(x)

∂x

m∑
j=1

(WjΦ(x)r−1
j Φ(x)TW T

j)
∂Φ(x)

∂x

T

PΦ(x)

=

 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 P T
5 P6

 0
I

Γ1 +O(x)

 m∑
j=1

(
[
Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)

 r−1
j

 1
x

Γ1x+O(x2)

T
Wj1

Wj2

Wj3

) 0
I

Γ1 +O(x)

T 0 0 0
0 P4 P5

0 P T
5 P6

 1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 P T
5 P6

 0
I

Γ1 +O(x)

Ω2

 0
I

Γ1 +O(x)

T 0 0 0
0 P4 P5

0 P T
5 P6

 1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T (

 0
P4 + P5Γ1

P T
5 + P6Γ1

+

 0
P5O(x)
P6O(x)

)Ω2

33

(

 0
P4 + P5Γ1

P T
5 + P6Γ1

+

 0
P5O(x)
P6O(x)

)T

 1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 Ω3 Ω4

0 ΩT
4 Ω5

 1
x

Γ1x+O(x2)


+

 1
x

Γ1x+O(x2)

T 0 0 0
0 Ω6 Ω7

0 ΩT
7 Ω8

 1
x

Γ1x+O(x2)


=

 1
x

O(x2)

T 0 0 0
0 Ω̄3 Ω̄4

0 Ω̄T
4 Ω̄5

 1
x

O(x2)

+

 1
x

O(x2)

T
0 0 0

0 Ω̄6 Ω̄7

0 Ω̄T
7 Ω̄8

 1
x

O(x2)

 ,
(2.25)

where Ω2 to Ω8 are defined as

Ω2 =
m∑
j=1

r−1
j

[
Wj1 Wj2 Wj3

]  1
x

Γ1x

 1
x

Γ1x

T Wj1

Wj2

Wj3

T

=
m∑
j=1

r−1
j

[
Wj1 Wj2 Wj3

]  1 xT xTΓT1
x xxT xxTΓT1

Γ1x Γ1xx
T Γ1xx

TΓT1

Wj1

Wj2

Wj3

T

=
m∑
j=1

(
Wj1Wj

T
1 +Wj2xWj

T
1 +Wj3Γ1xWj

T
1 +Wj1x

TWj
T
2 +

Wj2xx
TWj

T
2 +Wj3Γ1xx

TWj
T
2 +Wj1x

TΓT1Wj
T
3 +

Wj2xx
TΓT1Wj

T
2 +Wj3Γ1xx

TΓT1Wj
T
3

)
r−1
j ,

Ω3 = (P4 + P5Γ1)Ω2(P4 + ΓT1 P
T
5),

Ω4 = (P4 + P5Γ1)Ω2(P5 + ΓT1 P6),

Ω5 = (P T
5 + P6Γ1)Ω2(P5 + ΓT1 P6),

Ω6 = (P4 + P5Γ1)Ω2O(x)P T
5 + P5O(x)Ω2(P4 + ΓT1 P

T
5)

+ P5O(x2)P T
5 ,

34

Ω7 = (P4 + P5Γ1)Ω2O(x)P6 + P5O(x)Ω2(P5 + ΓT1 P6)

+ P5O(x2)P6,

Ω8 = (P T
5 + P6Γ1)Ω2O(x)P6 + P6O(x)Ω2(P5 + ΓT1 P6)

+ P6O(x2)P6.

Moreover, Ω̄3 to Ω̄3, are their analogous blocks after modifying the bases, where they can
also be rewritten in terms of the new variables defined in (2.23) as below

Ω̄3 = (P4 + ΓT1 P
T
5 + P5Γ1 + ΓT1 P6Γ1)Ω2

(P4 + ΓT1 P
T
5 + P5Γ1 + ΓT1 P6Γ1)T

= Z1Wj1Wj
T
1Z

T
1 ,

Ω̄4 = (P T
4 + P5Γ1 + ΓT1 P

T
5 + ΓT1 P6Γ1)Ω2(P5 + ΓT1 P6)

= Z1Wj1Wj
T
1Z2,

Ω̄5 = Ω5 = ZT
2 Wj1Wj

T
1Z2,

Ω̄6 = Ω6 + ΓT1 ΩT
7 + Ω7Γ1 + ΓT1 Ω8Γ1

= (P4 + P5Γ1 + ΓT1 P
T
5 + ΓT1 P6Γ1)Ω2O(x)P T

5

+ (P5 + ΓT1 P6)O(x)Ω2(P4 + ΓT1 P
T
5)

+ (P4 + P5Γ1 + ΓT1 P
T
5 + ΓT1 P6Γ1)Ω2O(x)P6Γ1

+ (P5 + ΓT1 P6)O(x)Ω2(P5 + ΓT1 P6)Γ1

+ (P5 + ΓT1 P6)O(x2)P T
5 + (P5 + ΓT1 P6)O(x2)P6Γ1

= (P4 + P5Γ1 + ΓT1 P
T
5 + ΓT1 P6Γ1)Ω2O(x)(P T

5 + P6Γ1)

+ (P5 + ΓT1 P6)O(x)Ω2(P4 + ΓT1 P
T
5 + P5Γ1 + ΓT1 P6Γ1)

+ (P5 + ΓT1 P6)O(x2)(P T
5 + P6Γ1)

= Z1Ω2O(x)ZT
2 + Z2O(x)Ω2Z

T
1 + Z2O(x2)ZT

2 ,

Ω̄7 = Ω7 + ΓT1 Ω8 = Z1Ω2O(x)Z3 + Z2O(x)Ω2Z2

+ Z2O(x2)Z3,

Ω̄8 = Ω8 = ZT
2 Ω2O(x)Z3 + Z3O(x)Ω2Z2 + Z3O(x2)Z3,

where we also used the fact that the constant term will dominate in Ω2 as x→ 0. Hence,
we get Ω2 →

∑m
j=1 r

−1
j Wj1Wj

T
1 .

By substituting (2.22), (2.24), and (2.25) in (2.21), one can obtain

Ż1 =Q+ Z1(W2 +W3Γ1) + (W T
2 + ΓT1W

T
3)ZT

1

35

− Z1(
m∑
j=1

Wj1r
−1
j Wj

T
1)ZT

1 + Z2O(x)(W2 +W3Γ1)

− γZ1 + (W2 +W3Γ1)TO(x)ZT
2 − Z1Ω2O(x)ZT

2

− Z2O(x)Ω2Z
T
1 − Z2O(x2)ZT

2

=Q+ Z1(W2 +W3Γ1) + (W T
2 + ΓT1W

T
3)ZT

1

− Z1(
m∑
j=1

Wj1r
−1
j Wj

T
1)ZT

1 − γZ1 +O(x), (2.26)

Ż2 =Z1W3 + (W2 +W3Γ1)TZ2 − Z1(
m∑
j=1

Wj1r
−1
j Wj

T
1)Z2

− γZ2 + Z2O(x)W3 + (W2 +W3Γ1)TO(x)ZT
3

− Z1Ω2O(x)Z3 − Z2O(x)Ω2Z2

− Z2O(x2)Z3, (2.27)

Ż3 =ZT
2 W3 +W T

3 Z2 − Z2(
m∑
j=1

Wj1r
−1
j Wj

T
1)Z2

− γZ3 + Z3O(x)W3 +W T
3 O(x)ZT

3 − ZT
2 Ω2O(x)Z3

− Z3O(x)Ω2Z2 − Z3O(x2)Z3 (2.28)

Moreover, for the optimal control (2.11) takes the following form,

u∗j = −

 1
x

Γ1x+O(x2)

Tr−1
j

0 0 0
0 P4 P5

0 P T
5 P6

 0
I

Γ1 +O(x)


[
Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)


= −

 1
x

Γ1x+O(x2)

T r−1
j

 0
P4 + P5Γ1

P T
5 + P6Γ1

 [Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)


= −r−1

j xT (P4 + P5Γ1 + ΓT1 P
T
5 + ΓT1 P6Γ1)(Wj1 +Wj2x+Wj1Γ1x)

= −r−1
j xT (P4 + P5Γ1 + ΓT1 P

T
5 + ΓT1 P6Γ1)Wj1

− r−1
j xT (P4 + P5Γ1 + ΓT1 P

T
5 + ΓT1 P6Γ1)(Wj2x+Wj1Γ1x)

36

= −r−1
j xTZ1Wj1 +O(x2)

where the linear term will dominate as x ∈ D̄. Hence, the control rule will take the form
of (2.18).

Accordingly, among the solutions of (2.26) to (2.27), only Z1(t) takes part in the control.
Hence, to guarantee the stability of the closed-loop system, Z1(t) should be stabilizing as
t→∞. In fact, by looking at (2.26), it is not difficult to verify it as a differential Riccati
equation for the linearized system (2.15). Therefore we can use Lemma 2 to conclude that
there is some T2 > 0 such that the integration of (2.26) will lead to an stabilizing controller
for all t > T2, as long as Q − γZ1 + O(x) > 0, where this can be assured by appropriate
choices of r and γ.

Furthermore, although Z2(t) and Z3(t) do not appear in the control, we require them
to remain bounded. (2.27) and (2.28) can be rewritten as

Ż2 = (Acl − γI)Z2 +G1(Z1) +O(x),

Ż3 = (−γI)Z3 +G2(Z2) +O(x),

where Acl = W2 + W3Γ1 − r−1
j Z1Wj1Wj

T
1 , and functions G1(Z1) and G2(Z2) cam be seen

as inputs to these differential equations. In fact, Acl is the closed-loop system matrix of
(2.15), hence, is Hurwitz for t > T2. Accordingly, in addition, considering γ > 0, both
autonomous dynamics are asymptotically stable with Hurwitz system matrices, Acl − γI,
and −γI. This guarantees that Z2(t) will stay bounded for the bounded solution Z1(t). In
a similar way, bounded Z3(t) can be concluded by the bounded Z2(t).

Once we assured the asymptotic stability in some region around the equilibrium point,
we can use the following results to investigate the optimality.

Theorem 2. Assume that the conditions of Theorem 1 holds and a local stabilizing con-
troller is obtained, with a sufficiently small choice of the discounting factor, γ → 0. Then,
the feedback control rule converges to the LQR control of the linearized system given by
(2.16). Hence, the local optimality of the obtained controller is guaranteed.

Proof. Assuming that the closed loop system is asymptotically stable, we have x → 0.
Furthermore, if γ can be made small enough, then the steady state solution of (2.26) will
converge to the steady state solution of (2.19), and hence to the solution of the algebraic
Riccati equation (2.16).

In the next section, we will establish an online learning algorithm based on the proposed
optimal control framework.

37

2.4 A Structured Online Learning (SOL) Algorithm

By considering a general description of the nonlinear input affine system in terms of some
bases as in (2.4), we obtained a structured optimal control framework that suggests using
the state-dependent matrix differential equation (2.13) to achieve the parameters of the
nonlinear feedback control. Next, we exploit this framework to propose the SOL algorithm.
Hence the focus of this section will be on the algorithm and practical properties of SOL.

The learning procedure is done in the following order. First, initialize P with a zero
matrix. Then, in the control loop:

• We acquire the samples of the states at any time step tk and evaluate the set of bases
accordingly.

• We update the structured system model by a system identification technique.

• Using the measurements and the updated model coefficients, we integrate (2.13) to
update P .

• We calculate the control value using (2.11) for the next step tk+1 using P .

• k + +.

In what follows, we discuss the steps involved in more details with focusing on SINDy
algorithm.

2.4.1 ODE Solver and Control Update

In this approach, we run the system from some x0 ∈ D, then solve the matrix differ-
ential equation (2.13) along the trajectories of the system. Different solvers are already
developed that can efficiently integrate differential equations. In the simulation, we use a
Runge–Kutta solver to integrate the dynamics of the system that replaces the real system
in a real-world application. Although the solver may take smaller steps, we only allow the
measurements and control update at time steps tk = kh, where h is the sampling time
and k = 0, 1, 2, For solving (2.13) in continuous time, we use the Runge–Kutta solver
with a similar setting, where the weights and the states in this equation are updated by a
system identification algorithm and the measurements xk at each iteration of the control
loop, respectively. A recommended choice for P0 is a matrix with components of zero or
very small values.

38

The differential equation (2.13) also requires evaluations of ∂Φ/∂xk at any time step.
Since the bases Φ are chosen beforehand, the partial derivatives can be analytically calcu-
lated and stored as functions. Hence, they can be evaluated for any xk in a similar way
as Φ itself. By solving (2.13), we can calculate the control update at any time step tk
according to (2.11). Although, at the very first steps of learning, control is not expected
to take effective steps toward the control objective, it can help in exploration of the state
space and gradually improve by learning more about the dynamics.

Remark 4. The computational complexity of updating parameters by relation (2.13) is
bounded by the complexity of matrix multiplications of dimension p which is O(p3). More-
over, it should be noted that, regarding the symmetry in the matrix of parameters P , this
equation updates L = (p2 + p)/2 number of parameters which correspond to the number
of bases used in the value function. Therefore, in terms of the number of parameters, the
complexity of the proposed technique is O(L3/2). However, for instance, if recursive least
squares technique were employed with the same number of parameters, the computations
are bounded by O(L3). As a result, the proposed parameter update scheme can be done con-
siderably faster than similar model-based techniques, such as, [82, 17]. In another effort,
[81] decreased the number of bases used to improve the computational efficiency, while the
complexity still remained as O(L3).

2.4.2 Identified Model Update

We considered a given structured nonlinear system as in Assumption 1. Therefore, having
the control and state samples of the system, we need an algorithm that updates the esti-
mation of system weights. As studied in [25, 78], SINDy is a data-efficient tool to extract
the underlying sparse dynamics of the sampled data. Hence, we use SINDy to update the
weights of the system to be learned. In this approach, along with the identification, the
sparsity is also promoted in the weights by minimizing

[Ŵ Ŵ1 . . . Ŵm]k = arg min
W̄

‖Ẋk − W̄Θk‖2
2 + λ‖W̄‖1, (2.29)

where k is the time step, λ > 0, and Θk includes a matrix of samples with the columns of

Θk
s = [ΦT (xs) ΦT (xs)u1

s . . . ΦT (xs)um
s]
T

k ,

for sth sample. In the same order, Ẋk keeps a table of sampled state derivatives.

Updating Ŵk based on a history of samples may not be favored as the number of sam-
ples needed tends to be large. Especially, real-time implementations may not be possible

39

because of the latency caused by the computations. There exist other techniques that can
be alternatively used in different situations, such as neural networks, nonlinear regression,
or any other function approximation and system identification methods. For real-time
control applications, considering the linear dependence on the system weights in (2.4), one
may choose the RLS update rule that only uses the latest sample of the system and Ŵk−1,
hence will run considerably faster.

2.4.3 Database Update

For using SINDy algorithm, a database of samples is required to recursively perform re-
gressions at each time step. These weights correspond to a library of functions given in Φ.
Any sample of the system at time k, to be stored in the database, includes Θk

s and the
derivatives of the states approximated by ˆ̇xk = (xk − xk−1)/h.

For better results, higher order approximations of the state derivative can be employed
that may also include future samples of the states, for instance, xk+1, xk+2, etc. To make
this possible in the implementations, the identification should lag a few step behind the
controller update. The effect of lagging for a few steps is minor and can be safely neglected
in the long run.

We adopt SINDy to do an online learning task, meaning that the database has to
be gradually built along with the exploration and control. Different approaches can be
employed in the choice of samples and building a database online. A comparison of these
techniques can be found in [87, 161].

In the implementations of SOL done in this chapter, we assume a given maximum
size of database Nd, then we keep adding the samples with larger prediction errors to the
database. Therefore, at any step we compare the prediction error ėk = ‖ẋk − ˆ̇xk‖ with the
average ¯̇ek =

∑k
i=1 ėk/k. Hence, if the condition ėk > η¯̇ek holds we add the sample to the

database, where the constant η > 0 adjusts the threshold. Choosing smaller values of η
will increase the rate of adding samples to the database.

This procedure is done in a loop together with updating the control until a bound of
the average prediction error is obtained that allows the controller to regulate the system
to the given reference state. If the maximum number of samples in database is reached,
we forget the oldest sample and replace it with the recent one. Hence, η should not be set
too low to avoid fast forgetting of the older useful samples.

40

2.4.4 Limitations and Implementation Considerations

In this section, we discuss some considerations should be taken into account prior to running
the algorithm:

• It should be noted that although the learning approach is validated only in the sim-
ulation environment here, it is proposed to be implemented on real world problems.
Hence, the training is meant to take place in real-time on real systems that requires
the computational and the data efficiency of the algorithm.

• It is assumed that the environment can be made safe in a region of interest, and there
exists a reseting mechanism if reached to the boundary of the region. This allows
trials and errors with no considerable damage to the system within a limited number
of episodes until the stability can be preserved.

• Considering the control problem formulation, the control and state spaces, and the
time horizon cannot be hardly constrained. However, they can be tuned by using
the parameters specified by the user in the objective (2.2) including R, Q, and γ,
respectively.

• Depending on the system identification technique implemented, there usually exist
some tuning parameters. Having an initial knowledge of the system can help greatly
in setting these parameters, as well as in choosing the set of bases.

2.4.5 Asymptotic Convergence with Approximate Dynamics

Consider the system structured as

ẋ = WΦ +
m∑
j=1

WjΦûj + ε. (2.30)

where ûj = −ΦTR−1P̂ΦxŴjΦ is the feedback control rule obtained based on the estimation

of the system (Ŵ , Ŵj). Moreover ε is the bounded approximation error in D. By assuming

W = Ŵ + W̃ and Wj = Ŵj + W̃j, this can be rewritten as

ẋ = ŴΦ +
m∑
j=1

ŴjΦûj + ∆(t), (2.31)

41

where unidentified dynamics are lumped together as ∆(t). By the assumption that the
feedback control uj is bounded in D, we have ‖∆(t)‖ ≤ ∆̄. For asymptotic convergence,
and also promote the robustness of the controller, the effect of the uncertainty should be
taken into account. Hence, we use an auxiliary vector ρ to get

ẋ = ŴΦ +
m∑
j=1

ŴjΦûj + ∆(t) + ρ− ρ

= ŴρΦ +
m∑
j=1

ŴjΦûj + ∆(t)− ρ,

where assuming that Φ also includes the constant basis, we adjusted the corresponding
column in the system matrix to get Ŵρ. In the case ∆̄ = 0, by using Theorem 1, the
controller û can be obtained such that the closed system is locally asymptotically stable.
For the case ∆̄ > 0, although the system will stay stable for small enough ∆̄, it may not
asymptotically converge to zero. Then, similar to [168, 136], we obtain ρ as below to help
sliding the system state to zero

ρ =

∫ t

0

[k1x(τ) + k2sign
(
x(τ)

)
]dτ ,

where k1 and k2 are positive scalars. It can be shown that over time ‖∆(t)− ρ‖ → 0, and
hence the system will asymptotically converge to the origin.

2.5 Simulation Results

We have implemented the proposed approach on four examples which are presented in two
categories considering Assumption 1, 1) the dynamics can be written exactly in terms of
some choice of basis functions, and 2) the dynamics include some terms that are required
to be approximated in the space of some given bases.

As mentioned, in these numerical examples we have exploited the SINDy algorithm
for the identification purpose, however, clearly the focus of the simulations here is on the
properties of the proposed control scheme rather than the identification part, regarding
that SINDy already has been extensively studied in [25, 78] as an offline identification
algorithm. The SINDy algorithm adopted here is a powerful tool to obtain the dynamics
of the system with a good precision. However, this depends greatly on how efficiently
we can approximate the derivatives of the states. Hence, in different implementations,

42

higher sampling rates or higher order approximation of the derivatives may be needed. For
the same reason, in the proposed examples, the number of samples used and the system
obtained may be further tuned to match the level of quality reported in [25, 78].

The simulations are done in Python, where we used the Vpython module ([146]) to
generate the graphics. We have set the sampling rate to 200Hz (h = 5ms) for all the
examples, unless explicitly mentioned otherwise. The control input value is updated at
every other time step meaning that the update rate is 100Hz. The simulation is stopped if
the trajectory reaches to the boundary of D or a timeout is reached without satisfying the
objective. Moreover, if the regulation objective is to reach a point other than the origin
(x ≡ 0), we consider the cost (2.2), the value (2.8), and the obtained differential equation
of the value parameters (2.13) by redefining x := x− xref.

2.5.1 Systems Identifiable in Terms of a Given Set of Bases

In the following two examples, we assume that the bases constituting the system dynamics
exist in Φ. The system identified, after running the proposed learning algorithm and
obtaining the value function, clearly depends on the identification algorithm used and its
tuning parameters.

In Table 2.1, we illustrate the variations of the identified system and the corresponding
value function by implementing the presented SOL algorithm with the exact ẋ and with
the first order approximation of the derivative. It can be observed that, in the pendulum
example, both of the obtained equations match the exact system (2.32) with a good pre-
cision. On the other hand, the Lorenz system is a more challenging system. Hence, by
the first-order approximation of ẋ with h = 5ms, only an approximation of the dynamics
can be obtained, while the exact system (2.33) is identified if we use the exact ẋ . As
shown in Fig. 2.1 and Fig. 2.2, although the model obtained for Lorenz system by using
the approximate state variables does not closely match the exact dynamics, the obtained
controller can successfully solve the regulation problem as long as the prediction errors
remain bounded.

Example 1 (Pendulum)

The state space description of the system is given as

ẋ1 = −x2,

ẋ2 = −g
l

sin(x1)− k

m
x2 +

1

ml2
u, (2.32)

43

where m = 0.1kg, l = 0.5m, k = 0.1, and g = 9.8m/s2. The performance criteria are
defined by the choices of Q = diag([1, 1]), R = 2.

Objective: The system is regulated to the unstable equilibrium point given by xref ≡ 0.

In table 2.1, the learned dynamics and value function are listed for the exact and the
approximated ẋ.

Example 2 (Chaotic Lorenz System)

The system dynamics are defined by

ẋ1 = σ(x2 − x1) + u,

ẋ2 = −x2 + x1(ρ− x3),

ẋ3 = x1x2 − βx3, (2.33)

where σ = 10, ρ = 28, and β = 8/3. Furthermore, we set the performance criteria
to Q = diag([160, 160, 12]), R = 1. This system has two unstable equilibrium points
(±
√

72,±
√

72, 27), where the trajectories of the system oscillate around these points.

Objective: By randomly setting the initial state x0 ∈ {x| − 40 ≤ xi ≤ 40, i = 1, 2, 3},
we regulate the system to the unstable equilibrium (−

√
72,−

√
72, 27).

2.5.2 Systems to Be Approximated by a Given Set of Basis

In what follows, we apply the presented learning scheme on two benchmark examples.
Unlike the previous examples, the dynamics of these systems includes some rational terms
that cannot be written in terms of some basis functions, however, an approximation can be
obtained locally that is shown to be sufficient to successfully solve the regulation problem,
as shown in Fig. 2.4-2.7.

Moreover, as shown in Fig. 2.3, a video of the graphical simulation of the following
benchmark examples is included.

Example 3 (Cartpole Swing up)

The dynamics are given as

ẋ1 = x2,

44

Figure 2.1: Responses of the Lorenz system while learning by using the approximated state
derivatives as in Table 2.1, where starting from one equilibrium point, we regulated the
system to another unstable equilibrium.

ẋ2 =
−u cos(x1)−mLx2

2 sin(x1) cos(x1) + (M +m)g sin(x1)

L(M +m sin(x1)2)
,

ẋ3 = x4,

ẋ4 =
u+m sin(x1)(Lx2

2 − g cos(x1))

M +m sin(x1)2
, (2.34)

where the state vector is composed of the angle of the pendulum from upright position,
the angular velocity, and the position and velocity of the cart, with m = 0.1kg, M = 1kg,
L = 0.8m, and g = 9.8m/s2. Moreover, we choose Q = diag([60, 1.5, 180, 45]), R = 1.

Objective: By starting from some initial angles close to the stable angle of the pen-
dulum (±π), the cart swings up the pendulum to reach to and stay at the unstable state
given as xref ≡ 0.

By running the learning scheme, an approximation of the system is identified as

ẋ1 = 1.000x2,

45

Figure 2.2: The value, components of P , and prediction error corresponding to Fig. 2.1,
respectively.

ẋ2 = 12.934 sin(x1) + 0.230 sin(x3)− 1.234 cos(x1)u,

ẋ3 = 0.995x4,

ẋ4 = 0.926 sin(x1) + 0.953u, (2.35)

where Φ = {1, x, x2, x3, sinx, cosx}. Moreover, considering the assumed bases, we obtained
the optimal value function as below.

V (x) = 59.712x2
1 + 9.855x2x1 + 134.855x2

2 + 9.587x3x1

+ 241.295x3x2 + 223.389x2
3 + 4.418x4x1 + 222.022x4x2

+ 226.646x4x3 + 100.417x2
4 − 63.050 sin(x1)x1

+ 1098.765 sin(x1)x2 + 2294.259 sin2(x1)

+ 984.786 sin(x1)x3 + 909.030 sin(x1)x4 − 1.712 sin(x3)x1

+ 18.102 sin(x3)x2 + 15.812 sin(x3)x3 + 0.806 sin2(x3)

+ 75.231 sin(x3) sin(x1) + 15.072 sin(x3)x4. (2.36)

46

Figure 2.3: A view of the graphical simulations of the benchmark cartpole and dou-
ble inverted pendulum examples. The video can be accessed in: https://youtu.be/

-j0vaHE9MZY .

Example 4 (Double Inverted Pendulum on a Cart)

By defining y := [q θ1 θ2]T to be a vector of the cart position and angles of the double
pendulum from the top equilibrium point, the system dynamics can be written in the
following form.

ẋ =

[
ẏ

M−1f(y, ẏ)

]
, (2.37)

where

M =

 m+m1 +m2 l1(m1 +m2) cos(θ1) m2l2 cos(θ2)
l1(m1 +m2) cos(θ1) l21(m1 +m2) l1l2m2 cos(θ1 − θ2)

l2m2 cos(θ2) l1l2m2 cos(θ1 − θ2) l22m2

 ,

f(y, ẏ) =

 l1(m1 +m2)θ̇2
1 sin(θ1) +m2l2θ̇

2
2 sin(θ2)− d1q̇ + u

−l1l2m2θ̇
2
2 sin(θ1 − θ2) + g(m1 +m2)l1 sin(θ1)− d2θ1

l1l2m2θ̇
2
1 sin(θ1 − θ2) + gl2m2 sin(θ2)− d3θ2

 ,
m = 6kg, m1 = 3kg, m2 = 1kg, l1 = 1m, l2 = 2m,d1 = 10, d2 = 1, and d3 = 0.5.

Objective: We run the system from random angles around the top unstable equilibria
of the pendulums given by θ1 = 0 and θ2 = 0, where the controller has to learn to regulate
the system to xref ≡ 0.

47

https://youtu.be/-j0vaHE9MZY
https://youtu.be/-j0vaHE9MZY

Figure 2.4: Responses of the cartpole system while learning by using the approximated
state derivatives.

We choose the bases as Φ = {1, x, x2}. Moreover the performance criteria is given by
Q = diag([15, 15, 15, 1, 1, 1]), R = 1. A sample of the obtained approximate dynamics is

ẋ1 = 0.998x4, ẋ2 = 0.997x5, ẋ3 = 0.996x6,

ẋ4 = 0.238x1 − 4.569x21.245x3 − 1.891x4 − 0.908x6

− 0.105x2
2 + 5.0131u− 2.824x2

2u,

ẋ5 = 16.718x2 − 2.328x3 + 1.558x4 − 0.598x5 + 0.130x6

− 0.114x2
2 − 4.9911u5.777x2

2u− 0.690x2
3u,

ẋ6 = 0.123x1 − 6.721x2 + 9.032x3 + 0.191x5 − 0.358x6

+ 0.969x2
3 + 0.184x2

6 − 1.898x2
2u+ 1.431x2

3u. (2.38)

It should be noted that, because of the random initial conditions and different samples
in the database, a different approximation of the system may be obtained in any learning
procedure. Furthermore, considering the dimension of the system and the number of
terms in the identified system (2.38), the obtained value function includes many terms of
polynomials as expected. Therefore, for the sake of brevity, the obtained optimal value

48

Figure 2.5: The value, components of P , and prediction error corresponding to Fig. 2.4,
respectively.

function is omitted.

2.6 Conclusion

Considering the online model-based regulation problem, the structured dynamics helped us
in analytically computing an iterative update rule to improve the optimal value function
according to the latest update on the identified system. Based on the computational
complexity and the performance observed in the numerical and graphical simulations, we
showed some potential opportunities in employing the SOL algorithm as an online model-
based learning technique. Our future research will follow on the stability analysis and
further applications of this approach.

49

Figure 2.6: Responses of the double-inverted pendulum system while learning by using the
approximated state derivatives.

50

T
ab

le
2.

1:
T

h
e

sy
st

em
d
y
n
am

ic
s

an
d

th
e

co
rr

es
p

on
d
in

g
va

lu
e

fu
n
ct

io
n

ob
ta

in
ed

b
y

th
e

p
ro

p
os

ed
m

et
h
o
d
,

w
h
er

e
th

e
ex

ac
t

an
d

th
e

ap
p
ro

x
im

at
ed

d
er

iv
at

iv
es

of
th

e
st

at
e

va
ri

ab
le

s
ar

e
u
se

d
in

d
iff

er
en

t
sc

en
ar

io
s

E
x
ac

t
ẋ

ẋ
≈

(x
k
+

1
−
x
k
)/
h
,h

=
5m

s

P
en

d
u
lu

m
(Φ

=
{1
,x
,s

in
x
})

ẋ
1

=
−

1.
00

0x
2

ẋ
2

=
−

1.
00

0x
2
−

19
.6

00
si

n
(x

1
)

+
40
.0

00
u

ẋ
1

=
−

1.
01

1x
2

ẋ
2

=
−

0.
99

5x
2
−

19
.6

65
si
n

(x
1
)

+
40
.0

98
u

V
(x

)
=

1.
97

4x
2 1
−

0.
05

8x
2
x

1
+

0.
03

6x
2 2

−
2.

2
si

n
(x

1
)x

1
−

0.
07

7
si

n
(x

1
)x

2

+
1.

54
8

si
n

2
(x

1
)

V
(x

)
=

2.
04

9x
2 1
−

0.
05

8x
2
x

1
+

0.
03

6x
2 2

−
2.

37
1

si
n
(x

1
)x

1
−

0.
07

7
si

n
(x

1
)x

2

+
1.

63
0

si
n

2
(x

1
)

C
h
ao

ti
c

L
or

en
z

S
y
st

em
(Φ

=
{1
,x
,x

2
,x

3
,x

ix
j
},

i,
j
∈
{1
,.
..
,n
},
i
6=
j)

ẋ
1

=
−

10
.0

00
x

1
+

10
.0

00
x

2
+

1.
00

0u

ẋ
2

=
28
.0

00
x

1
−

1.
00

0x
2
−

1.
00

0x
1
x

3

ẋ
3

=
−

2.
66

7x
3

+
1.

00
0x

1
x

2

ẋ
1

=
−

10
.0

70
x

1
+

9.
97

3x
2

+
0.

98
9u

ẋ
2

=
0.

99
3x

1
−

0.
99

7x
2

+
8.

48
3x

3
−

1.
00

0x
1
x

3

ẋ
3

=
−

8.
48

3x
1
−

8.
48

3x
2
−

2.
66

6x
3

+
1.

00
0x

1
x

2

V
(x

)
=

30
.3

77
x

2 1
+

48
.9

39
x

2
x

1
+

25
.3

11
x

2 2

+
1.

50
0x

2 3
−

1.
87

3x
1
x

2
x

3
+

4.
71

9x
2 1
x

2 2

−
3.

29
1x

2 1
x

3
+

1.
46

9x
1
x

2 3
−

0.
01

2x
2 1
x

2
x

3

V
(x

)
=

11
.1

93
x

2 1
+

8.
38

9x
2
x

1
+

42
.8

55
x

2 2

−
20
.9

50
x

3
x

1
+

28
.4

41
x

3
x

2
+

32
.0

45
x

2 3

−
1.

89
9x

2 1
x

2
−

4.
77

7x
1
x

2 2
−

0.
45

6x
1
x

2
x

3

+
5.

06
4x

2 1
x

2 2
+

2.
95

3x
2 1
x

3
−

8.
16

8x
1
x

2 3

−
2.

63
3x

2 1
x

3
x

2
+

1.
35

3x
2 1
x

2 3

51

Figure 2.7: The value, components of P , and prediction error corresponding to Fig. 2.6,
respectively.

52

Chapter 3

A Structured Online Learning
Approach to Nonlinear Tracking with
Unknown Dynamics

The results presented in this chapter are published in [53].

3.1 Introduction

Tracking a desired reference trajectory is one of the most classical objectives in the con-
trol of dynamical systems, and is commonly encountered in many real-world applications.
However, the design of an effective tracking controller via conventional approaches often
requires sufficient knowledge of the model, and a lot of calculations and considerations are
involved for any particular application. On the other hand, RL techniques suggest a more
adaptable framework that requires less knowledge about the system dynamics.

In this chapter, we extend the results obtained in the previous chapter to the tracking
problem of unknown continuous dynamical systems. In Section 3.2, we propose an ap-
proximate optimal tracking control framework based on a particular structure of nonlinear
dynamics, where a linear quadratic discounted cost is assumed. Section 3.3 provides the
details of implementation of the obtained framework as a learning-based approach. In
Section 3.4, two numerical results illustrating the proposed approach are reported on two
benchmark examples.

53

3.2 A Structured Online Learning for Tracking Con-

trol

Consider the nonlinear affine system

ẋ = f(x) + g(x)u, (3.1)

where x ∈ D ⊂ IRn, u ∈ Ω ⊂ IRm, f : D → IRn, and g : D → IRn×m.

Assumption 2. f and g can be identified or effectively approximated within the compact
domain of interest by a linear combination of some bases functions φi ∈ C1 : D → IR for
i = 1, 2, . . . , p.

Accordingly, (3.1) is rewritten as

ẋ = WΦ(x) +
m∑
j=1

WjΦ(x)uj, (3.2)

where W and Wj ∈ IRn×p are the matrices of the coefficients obtained for j = 1, 2, . . . ,m,
and

Φ(x) = [xT φn+1(x) . . . φp(x)]T .

Remark 5. The structure employed in (3.2) is motivated by the fact that the linear com-
bination of the bases provides an opportunity of obtaining an analytical control approach.
At the same time, we can profit from the variety of the applicable identification techniques.

Remark 6. Regarding Assumption 2, in this chapter, we will not perform convergence
analysis of any particular identification approach. Instead, we will focus on the controller
design procedure, in a way that the problem formulation and the design allow exploiting
different identification methods alternatively. Hence, this section presents the control tech-
nique for given W and Wj. However, in the implementations, an estimation of these
weights will be used, which is discussed in the next section.

Assumption 3. The given reference trajectory yref(t) : IR → IRd is a particular solution
of a dynamical system of the form

ẏref = MΨ(yref), (3.3)

where
Ψ(yref) = [yTref ψd+1(yref) . . . ψq(yref)]

T

54

is a set of bases and M ∈ IRd×q is the matrix of coefficients. This system can be seen as
the virtual command generator, which with the variety of the chosen bases can supports a
wide range of signals, from simple ramp or sinusoidal signals to more complex ones.

In the optimal tracking problem, a cost functional is assumed to measure the per-
formance. Starting from the initial condition x0 = x(0), the following discounted linear
quadratic cost is minimized along the trajectory:

J(x0, u) =

lim
T→∞

∫ T

0

e−γt
(
(Cx− yref)

TQ(Cx− yref) + uTRu
)
dt, (3.4)

where Q ∈ IRd×d is positive semi-definite, γ ≥ 0 is the discount factor, and R ∈ IRm×m

is a diagonal matrix with only positive values, given by design criteria. Moreover, corre-
sponding to the dimension of yref , a subset of the states is chosen by using C ∈ IRd×n, that
includes entries one corresponding to the measured states and zero elsewhere.

For the closed-loop system, by assuming a feedback control law

u = ω(x(t), yref(t))

for t ∈ [0,∞), the optimal control is given by

ω∗ = arg min
u(·)∈Γ(x0)

J(x0, u(·)), (3.5)

where Γ(x0) is the set of admissible control signals.

Lemma 3. The optimal tracking control obtained by minimizing

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
Φ̄T Q̄Φ̄ + uTRu

)
dt, (3.6)

is equivalent to the solution of (3.5) assuming (3.4), where

Φ̄(x, yref) =
[
(Cx)T yref

T φ(d+1)(x) . . . φ(p)(x)

ψ(d+1)(yref) . . . ψ(q)(yref)
]T
, (3.7)

and

Q̄ = diag

([
Q −Q
−Q Q

]
, [0(p+q−2d)×(p+q−2d)]

)
(3.8)

is a block diagonal matrix that contains all zeros except the first block which correspond to
the linear bases Cx and yref.

55

Proof. It is straightforward to rewrite the performance measure (3.4) in terms of the vector
of bases [(Cx)T yref

T] with a positive semi-definite matrix defined as the none-zero block
in (3.8). Later, the obtained cost is again transformed to the space of bases Φ̄ to take the
form (3.6), where we assume (3.8).

Remark 7. In some particular application, while tracking a given trajectory, we might
need to penalize at the same time the growth in some other states which are not in the
list of the tracked states yref . Such conditions can be still handled by the block-diagonal
matrix (3.8), that is to assign a non-zero value, corresponding to that particular state, in
the diagonal of the second block of (3.8).

Now, consider the system dynamics (3.2) and the command generator (3.3). We define
the augmented system as

ż =

[
ẋ
ẏref

]
= F Φ̄ +

m∑
j=1

GjΦ̄uj, (3.9)

where the system matrices F and Gj are obtained by rearranging the block entries of the
coefficient matrices of (3.2) and (3.3) according to the ordering of entries in Φ̄.

By defining the Hamiltonian, the corresponding HJB equation of (3.6) is given as

− ∂

∂t
(e−γtV) = min

u(·)∈Γ(x0)
{H = e−γt

(
Φ̄T Q̄Φ̄ + uTRu

)
+e−γt

∂V

∂z

T

(F Φ̄ +
m∑
j=1

GjΦ̄uj)}. (3.10)

Then, we employ an approximation scheme to estimate a parameterized value function
V : D × [0,∞)→ IR satisfying the above partial differential equation.

Unlike other approximate optimal control approaches in the literature, such as [176,
17, 81, 179], we use a quadratic form to parameterize the value function as follows:

V = Φ̄TP Φ̄, (3.11)

where P is a symmetric matrix.

As suggested in [52], defining V in the product space Λ := Φ̄× Φ̄, provides a compact
form of parameterizing the value function, and a variety of bases can be produced in the
product space Λ by only including a limited number of bases in Φ̄. It should be noted that

56

updating the parameters in the matrix form in SOL will considerably decrease the com-
putations required to updated the parameters, where the matrix multiplications involved
will remain as cheap as the dimension of Φ̄. On the other hand, in alternative parameter
update methods, such as gradient descent, matrix multiplications of the dimension of the
numbers of elements in set Λ is involved, which is a considerably larger set compared to Φ̄.

Assuming (3.11), the Hamiltonian is written as

H =e−γt(Φ̄T Q̄Φ̄ + uTRu)

+ e−γt
(
∂Φ̄

∂z

T

P Φ̄

)T(
F Φ̄ +

m∑
j=1

GjΦ̄uj

)

+ e−γt
(
F Φ̄ +

m∑
j=1

GjΦ̄uj

)T(
∂Φ̄

∂z

T

P Φ̄

)

In the following, we rewrite the quadratic term of u based on its components, assuming
that rj 6= 0 is the jth component on the diagonal of R.

H = e−γt

(
Φ̄T Q̄Φ̄ +

m∑
j=1

rju
2
j + Φ̄TP

∂Φ̄

∂z
F Φ̄+

Φ̄TP
∂Φ̄

∂z

(m∑
j=1

GjΦ̄uj

)
+ Φ̄TF T ∂Φ̄

∂z

T

P Φ̄

+

(m∑
j=1

ujΦ̄
TGT

j

)
∂Φ̄

∂z

T

P Φ̄

)
. (3.12)

The obtained Hamiltonian is minimized if, for the jth system input, we have

∂H

∂uj
= 2rjuj + 2Φ̄TP

∂Φ̄

∂z
GjΦ̄ (3.13)

= 0, j = 1, 2, . . . ,m.

Accordingly, the optimal control input is calculated as

u∗j = −Φ̄T r−1
j P

∂Φ̄

∂z
GjΦ̄. (3.14)

57

Then, we substitute the obtained optimal feedback control law and the value function to
(3.10), which yields

−e−γtΦ̄T Ṗ Φ̄ + γe−γtΦ̄TP Φ̄

= e−γt

(
Φ̄T Q̄Φ̄ + +Φ̄TP

∂Φ̄

∂z
F Φ̄ + Φ̄TF T ∂Φ̄

∂z

T

P Φ̄

+ Φ̄TP
∂Φ̄

∂z

(m∑
j=1

GjΦ̄r
−1
j Φ̄TGT

j

)
∂Φ̄

∂z

T

P Φ̄

− 2Φ̄TP
∂Φ̄

∂z

(m∑
j=1

GjΦ̄r
−1
j Φ̄TGT

j

)
∂Φ̄

∂z

T

P Φ̄

)
.

By some manipulation we get

Φ̄T Ṗ Φ̄ + γΦ̄TP Φ̄ = Φ̄T Q̄Φ̄+

− Φ̄TP
∂Φ̄

∂z

(m∑
j=1

GjΦ̄r
−1
j Φ̄TGT

j

)
∂Φ̄

∂z

T

P Φ̄

+ Φ̄TP
∂Φ̄

∂z
F Φ̄ + Φ̄TF T ∂Φ̄

∂z

T

P Φ̄.

Finally, a sufficient condition for satisfying this equation is obtained as

−Ṗ =Q̄+ P
∂Φ̄

∂z
F + F T ∂Φ̄

∂z

T

P − γP

− P ∂Φ̄

∂z

(m∑
j=1

GjΦ̄r
−1
j Φ̄TGT

j

)
∂Φ̄

∂z

T

P. (3.15)

The standard way for solving such an equation is by integrating in the backward direction,
where it requires full knowledge of the system including the weights F and Gj for all time
horizon. As a result, a value of P is obtained, which realizes the optimal value function
(3.11), and leads to the optimal control (3.14). Recalling Remark 6, one can employ the
presented method to design a tracking control of a known system. However, in this chapter,
we focus on the learning problem where the accurate system model may not be known at
first place. Therefore, we propagate the obtained differential equation in forward direction.
This will provide an opportunity to update our estimation of the system dynamics online
at any step together with the control rule.

58

3.2.1 Stability and Optimality in the Linear Case

In this section, the proposed control framework is analyzed in a special case where both
the virtual target system and the tracker system are linear.

In fact, the optimality and stability of optimal control approaches based on forward
propagation of the Riccati differential equation is still an open problem, where even in the
linear case, their properties are not fully known yet. For instance, in [165], for time-variant
linear systems, it has been shown that if the closed-loop dynamics are symmetric, and
also for some systems with sufficiently fast dynamics, the stability can be guaranteed. In a
more general result, [131] guarantees stability employing the forward solution of differential
Riccati equation for t > T , where T is some positive time. Hence a full Lyapunov stability
analysis for the linear case remains open. The situation becomes even more complex, when
we consider the more general framework where we include arbitrary choices of nonlinear
bases, or encounter the issue of incomplete knowledge of the system dynamics.

Therefore, in the followings, by taking linear systems as an example, and by making
a connection to the classical LQR formulation, we will demonstrate that, in this special
case, the presented approach becomes equivalent to the LQR framework. This allows us to
provide guarantees for the presented tracking control approach, by exploiting the existing
result in the literature, at least for the linear case.

Proposition 1. Consider the controllable linear system ẋ = Ax + Bu1 together with the
linear command generator ẏref = Ayref + Bud, where ud is the given desired input. Fur-
thermore, the tracking performance measure is given by (3.4) with C = In×n. Then, as
γ → 0, the optimal feedback control (3.14) constructed by the solution of (3.15), and the
optimal value (3.11) with the choice of Φ̄ = [x yref 1]T , approaches the LQR feedback
control with the gain k = r−1

1 SB̃ of the generalized error system

d

dt

xe
1

 = Ã

xe
1

+ B̃u1, (3.16)

where Ã =

A 0 0
0 A Bud
0 0 0

 , B̃ =
[
B −B 0

]T
, e is the tacking error, and S is given at any

t ∈ [0,∞) by the solution of the well-known continues-time differential Riccati equation

Ṡ = Q̃− SB̃r−1
1 B̃TS + SÃ+ ÃTS. (3.17)

59

Proof. In this case, the linear bases of each tracker and the target dynamics, together with
a constant basis 1 will suffice to implement the presented approach. Hence, we proceed
with the choice of Φ̄ = [x yref 1]T . Note that this will not affect the generality, and
including extra basis will only add more columns of zeros in the computations. Then the
augmented system (3.9) becomes

ż =

[
ẋ
ẏref

]
=

[
A 0 0
0 A Bud

]
︸ ︷︷ ︸

F

Φ̄ +

[
0 0 B
0 0 0

]
︸ ︷︷ ︸

G1

Φ̄u1. (3.18)

Similar to the procedure presented in the previous section, the optimal control should
satisfy the HJB equation

Φ̄T Ṗ Φ̄+γΦ̄TP Φ̄ = Φ̄T

 Q −Q 0
−Q Q 0
0 0 0

 Φ̄ + u∗1
T r1u

∗
1

+

(
Φ̄TP

∂Φ̄

∂z

)
ż + żT

(
∂Φ̄

∂z

T

P Φ̄

)
, (3.19)

where

P =

P1 P2 P3

P T
2 P4 P5

P T
3 P T

5 P6

 .
In this step, we substitute yref = x + e in (3.19). Accordingly, we redefine z :=

[
x e

]T
and Φ̄ :=

[
x e 1

]
. Hence, the augmented system (3.18) can be rewritten with the new

definitions, where augmented system matrix become

G1 :=

[
0 0 B
0 0 −B

]
,

and F remain the same.

Now, by substituting the optimal control (3.14) and considering the change of variables,
(3.19) is equivalent to

Φ̄T ṠΦ̄ + γΦ̄TSΦ̄ = Φ̄T Q̃Φ̄+

− Φ̄TS
∂Φ̄

∂z
G1Φ̄r−1

1 Φ̄TGT
1

∂Φ̄

∂z

T

SΦ̄

60

+ Φ̄TS
∂Φ̄

∂z
F Φ̄ + Φ̄TF T ∂Φ̄

∂z

T

SΦ̄, (3.20)

where Q̃ = diag([0, Q, 0]). For brevity, we omitted the detailed computations, while one
can check with some effort the equivalency by using Lemma 3, and

S =

P1 + P4 + P2 + P T
2 P2 + P4 P3 + P5

P T
2 + P T

4 P4 P5

P T
3 + P T

5 P T
5 P6

 .
By plugging in

∂Φ̄

∂z
=

I 0
0 I
0 0

 ,
and defining

Ã =
∂Φ̄

∂z
F =

A 0 0
0 A Bud
0 0 0

 ,
B̃ =

∂Φ̄

∂z
G1Φ̄ =

[
B −B 0

]T
we can conclude from (3.20):

Ṡ = Q̃− SB̃r−1
1 B̃TS + SÃ+ ÃTS − γS. (3.21)

As γ → 0, this yields the well-known continuous-time differential Riccati equation (3.17)
for the generalized error system (3.16). Moreover, the LQR feedback gain k = r−1

1 SB̃ can
be obtained by using the definition of B̃.

For linear time-invariant systems, the steady-state solution of (3.17) realizes the optimal
feedback control that guarantees asymptotic stability of the error, and optimality of the
solution. However, in the reinforcement learning setting, as well as in time-variant systems,
we can only rely on the presence knowledge of the system and hence on the continuous
evolutions of the differential Riccati equation. In the linear case of this type, the stability
is guaranteed only for t > T . For more details, we refer the readers to Theorem 4 of [131].

The next section will discuss the details of implementing the nonlinear optimal tracking
control as a model-based reinforcement learning approach.

61

3.3 Learning-based Tracking Control Using SOL

Initially, the SOL approach was proposed for solving stabilization and regulation problems
[52]. However, in the previous section, we demonstrated that a tracking controller can be
obtained by extending the underlying idea of SOL , that is somehow unifying the dynamics
and the optimal control objective to gain some flexibility in solving the optimal control
problem. As a result, we obtained a state-dependent matrix differential equation (3.15),
whose solution provides the parameters of the nonlinear optimal tracking control in terms
of the reference and state trajectories. In the followings, we will briefly review the model-
based learning framework.

We run the system from some x0 ∈ D for a time step of length h. Then, by sampling
the input, system state, and reference trajectories, we evaluate Φ̄, which together with
the approximation of the augmented state derivative ż is used to update our estimation
of the augmented system, including the system and the commander dynamics coefficients.
Later, the estimated weights and the current measured state is used to integrate (3.15) for
some time step. This is immediately followed by updating the control value for the next
iteration in the control loop by employing (3.14).

Consider the system weight update as

[F̂ Ĝ1 . . . Ĝj]k = arg min
[F,G1,Gj]k

E(żk, [F,G1, . . . Gj]k,Θ(zk, uk)),

where k is the time step and E(·) is the defined cost in the identification technique em-
ployed. Moreover, we construct

Θ(zk, uk) = [Φ̄T (zk) Φ̄T (zk)u1k . . . Φ̄T (zk)umk]
T

(3.22)

by using the measurements obtained from the system and reference trajectories at time tk.
To solve (3.22), different approaches can be alternatively exploited in various applications,
such as SINDy [25], recursive least-squares, neural networks, each of which has its own
benefits and drawbacks.

Remark 8. It should be noted that estimating the true dynamics by (3.22) is not generally
a trivial task. However, this is a well-studied topic in the literature of system identification
for any estimation technique specifically. The well-know persistent excitation of the input
signal is one of the common requirements that can be satisfied by adding an exploring signal
to the control.

62

Remark 9. Depending on the application, the commander dynamics (3.3) may be given
or unknown. In the case the dynamics are provided, we initialize the associated coefficients
when considering the augmented system. This will accelerate the identification process.

In the control update procedure, a recommended choice for initial condition P0 is a
zero square matrix of appropriate dimension. Then, off-the-shelf solvers can be used to
effectively integrate (3.15). This also requires evaluations of ∂Φ̄/∂zk at any time step. Since
the bases Φ̄ are chosen beforehand, the partial derivatives can be analytically calculated
and stored as functions. Hence, they can be evaluated for any zk in a similar way as Φ̄
itself.

3.4 Simulation Results

To illustrate the effectiveness of the proposed SOL approach for tracking, we implement it
on two benchmark nonlinear systems. As shown in [52], SOL can be employed to solve the
regulation problem of nonlinear systems with unknown dynamics, including the benchmark
pendulum and Lorenz system examples. In what follows we borrow these two examples
to investigate the characteristics of the tracking control approach derived based on the
SOL framework. For the simulation results, we use a Runge–Kutta solver to integrate
the dynamics of the system. These data are treated as measurements in lieu of physical
experiments.

In these benchmark examples, we update the model with the most recent measurement
by using SINDy [25]. However, considering that this identification technique is already
studied and introduced as a data-efficient and robust method ([25, 78]), we will focus on
the properties of the proposed control scheme rather than the identification process within
the simulations.

Moreover, it is observed that the accuracy of the obtained model depends directly on
the precision in measuring the derivatives of the states, which may be a source of noise in
the real-world implementations, resulting in an ineffective controller. Through these simu-
lations, we assume full access to the states. We then obtained the state derivatives using a
one-step backward approximation, which can potentially be improved by considering more
steps.

We performed the simulations in Python, including the 3D graphics generated via the
Vpython module ([146]). The sampling rate is 200Hz (h = 5ms) for all the simulations.
Accordingly, the control input value is calculated with the frequency of 100Hz. In the learn-
ing process, to simulate the real behaviors of the given system, we integrate the differential

63

equations with a sufficient precision from initial conditions randomly chosen within the
domain of interest. However, we only allow measurements at time steps conforming to the
sampling rate.

Furthermore, in the following examples, we use the candidate bases {1, x, x2, x3, sinx,
cosx, xixj}, where i, j ∈ {1, . . . , n}, i 6= j, and the operations on vector x is assumed to
be component-wise and defines a sub-category of bases, e.g. x2 = {x2

1, . . . , x
2
n}. Hence,

Assumption 2 holds.

3.4.1 Tracking Control of Pendulum

The state space model used for the simulation of the pendulum system is given by

ẋ1 = −x2,

ẋ2 = −g
l

sin(x1)− k

m
x2 +

1

ml2
u, (3.23)

where m = 0.1kg, l = 0.5m, k = 0.1, and g = 9.8m/s2. A desired performance is
characterized by matrices Q = diag([2, 7]), R = 1, γ = 1.

The simulations for this system are done in two different scenarios. In the first scenario,
we assume having the full state reference trajectory for the angle and angular velocity.
Thus, we try, for instance, sinusoidal and ramp reference signals as below respectively.

(a) :

{
y1ref

= − sin(t),

y2ref
= cos(t).

, (b) :

{
y1ref

= −t,
y2ref

= 1,
(3.24)

where the corresponding states are measured by choosing C = diag([1, 1]) in (3.1).

Fig. 3.1 and Fig. 3.2 illustrate system responses for sinusoidal and ramp references
starting from a random initial condition, respectively. As seen in these figures, although
the learning process is run with zero prior experience, it can efficiently track the reference
by quickly learning the dynamics and the optimal tracking controller.

In the second scenario, to better examine the tracking control scheme presented in the
main results, we assume only the trajectory of the angular position is provided as the
reference, where C = diag([1, 0])and Q = 2. Hence, the control objective is defined based
on only the angular position error. For this reason, one should not expect the tracking
results to be as smooth as the previous case. However, as shown in Fig. 3.3, the objective
is achieved by perfect tracking of the angular position, where in addition, the other state
still resembles the non-given target trajectory, to an acceptable extent.

64

0 5 10 15 20 25 30
4

2

0

St
at

e
x1

Angle
Reference

0 5 10 15 20 25 30
2

1

0

1

St
at

e
x2

Angular velocity
Reference

0 5 10 15 20 25 30
1

0

1

Co
nt

ro
l

Figure 3.1: The control and states of the pendulum system within a run of the imple-
mented learning approach from a randomly chosen initial condition for tracking a full state
sinusoidal reference signal provided as in (3.24a).

3.4.2 Synchronization of Chaotic Lorenz System

The Lorenz system is well-known for its chaotic behavior around its unstable equilibrium
points. As an illustrative example (Fig. 3.4), we aim to synchronize two Lorenz systems
starting from different initial conditions. This is done by measuring the states of one as the
target system, then controlling the other system to track these target states over time by
the proposed learning-based tracking control technique. We assume no prior knowledge of
the system dynamics and parameters. Hence, the dynamics of the target and the tracker
are learned together with a tracking controller on the fly. The system dynamics used in
the simulation are described as

ẋ1 = σ(x2 − x1) + u,

65

0 5 10 15 20 25 30
30

20

10

0

St
at

e
x1

Angle
Reference

0 5 10 15 20 25 30

2

4

St
at

e
x2

Angular velocity
Reference

0 5 10 15 20 25 30
1.0

0.5

0.0

0.5

Co
nt

ro
l

Figure 3.2: The control and states of the pendulum system within a run of the implemented
learning approach from a randomly chosen initial condition for tracking a full state ramp
reference signal provided as in (3.24b).

ẋ2 = −x2 + x1(ρ− x3),

ẋ3 = x1x2 − βx3, (3.25)

where σ = 10, ρ = 28, and β = 8/3. Furthermore, we set the performance criteria
to Q = diag([280, 280, 210]), R = 0.05, and γ = 200, with choosing C as an identity
matrix to match with the provided full state reference by the target system. Fig. 3.5
illustrates the evolution of the controlled system and the target trajectories together with
the control while learning process. In Fig. 3.6, the tracking value and its parameters
are shown. A video of the simulation showing the synchronization details is uploaded on
https://youtu.be/1SnvDyb_7Os.

66

https://youtu.be/1SnvDyb_7Os

0 5 10 15 20 25 30

1

0

1
St

at
e

x1

Angle
Reference

0 5 10 15 20 25 30

5

0

5

St
at

e
x2

Angular velocity

0 5 10 15 20 25 30
2
1
0
1
2

Co
nt

ro
l

Figure 3.3: The control and states of the pendulum system within a run of the implemented
learning approach from a randomly chosen initial condition where only the angle trajectory
is provided as reference to be tracked.

3.5 Conclusion

This chapter introduces an online learning-based method for nonlinear tracking with un-
known dynamics. We assumed nonlinear affine dynamics structured in terms of a set of
bases functions. Accordingly, we formulated an optimal tracking control, where the ob-
jective function was redefined to conform with the structured system. This performance
measure and a value function parameterized in a quadratic form were approximately min-
imized by solving a derived matrix differential equation. Hence, the formulation allows us
to compose a learning-based tracking control framework, which relies only on the online
measurements of the system states and the reference trajectory. In the simulation results,
the proposed learning approach demonstrated satisfactory tracking of fully or partially

67

Figure 3.4: A view of the 3D simulation done for synchronizing the chaotic Lorenz system.
The video can be accessed at: https://youtu.be/1SnvDyb_7Os.

provided reference trajectories. Considering the improved computational complexity of
the obtained update rule for the value parameters, future research will include address-
ing practical limitations, and accordingly obtain an end-to-end platform for real-world
applications.

68

https://youtu.be/1SnvDyb_7Os

0 1 2 3 4 5

50
0

50

St
at

e
x1 x1

Reference

0 1 2 3 4 5
100

0
100

St
at

e
x2 x2

Reference

0 1 2 3 4 5

0

100

St
at

e
x3 x3

Reference

0 1 2 3 4 5
50
0

50

Co
nt

ro
l

Figure 3.5: The states and the obtained control of the Lorenz system while learning to
synchronize with the given reference trajectories, starting from a random initial condition.

69

0 1 2 3 4 5
0

10000

20000

30000

Va
lu

e

0 1 2 3 4 5

1

0

1

Pa
ra

m
et

er
s

Figure 3.6: The evolutions of the value and parameters while learning the tracking con-
troller of the Lorenz system, corresponding to Fig. 3.5.

70

Chapter 4

Piecewise Learning and Control with
Stability Guarantees

The results presented in this chapter are submitted to [50].

4.1 Introduction

In chapter 2, we employed a set of bases to parameterize the system model. For this pur-
pose, a set of polynomial or trigonometric bases is proven to be effective in approximating
different functions with any arbitrary accuracy over a compact domain. Even though a set
of polynomial bases, for instance, is known to be sufficient as a universal approximator, the
number of bases required for a tight approximation of the dynamics over a given domain
may be exceedingly high. The number of the bases, in fact, depends on the domain of
interest, where a larger domain may exhibits nonlinearites that requires a larger set of
bases. This highly impedes implementations, especially in an online learning and control
setting.

In an alternative approach, instead of adding many bases to cover a large domain of
interest, we divide the domain into pieces where each can be handled independently with
a limited number of bases. Employing a piecewise model will improve learning greatly by
keeping the online computations needed for updating the model in a tractable size.

Despite the improvement in the computations, data efficiency of learning may be di-
minished if a large number of the pieces is chosen. Considering that the total number of the
model parameters is relative to the number of pieces, a piecewise model may involve more

71

parameters compared to learning in terms of bases. In fact, there exist a trade off between
the data efficiency and computational efficiency that can be controlled by the number of
pieces employed.

The rest of the chapter is presented in the following order. Section 4.2 formulates the
problem. In Section 4.3, we propose a piecewise learning and control framework, where
we first obtain an estimation of the system and then solve an approximate optimal control
in a closed-loop form. In Section 4.4, we provide an upper bound for the uncertainty in
the identified piecewise model based on the observations. In Section 4.5, the obtained
uncertainty bounds are implemented to synthesize a Lyapunov function for the closed-loop
system. In Section 4.6, two benchmark examples are discussed to numerically validate the
approach.

4.2 Problem Formulation

Consider the nonlinear system in control-affine form

ẋ = F (x, u) = f(x) + g(x)u = f(x) +
m∑
j=1

gj(x)uj, (4.1)

where x ∈ D ⊂ Rn, u ∈ Ω ⊂ Rm, f : D → Rn, and g : D → Rn×m.

The cost functional to be minimized along the trajectory, started from the initial con-
dition x(0) = x0, is considered to be in the following linear quadratic form

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
xTQx+ uTRu

)
dt, (4.2)

where Q ∈ Rn×n is positive semi-definite, γ ≥ 0 is the discount factor, and R ∈ Rm×m is a
diagonal matrix with only positive values, given by the design criteria.

4.3 The Piecewise Learning and Control Framework

We approximate the nonlinear system (4.1) by a piecewise model with a bounded uncer-
tainty

ẋ = WσΦ(x) +
m∑
j=1

WjσΦ(x)uj + dσ, (4.3)

72

where dσ ∈ Rn is a time-varying uncertainty, Wσ and Wjσ ∈ Rn×p are the matrices of the
coefficients for σ ∈ {1, 2, . . . , nσ} and j ∈ {1, 2, . . . ,m}, with a set of differentiable bases
Φ(x) = [φ1(x) . . . φp(x)]T , and nσ denoting the total number of pieces. Moreover, any
piece of the system is defined over a convex set given by a set of linear inequalities as
Υσ = {x ∈ D|Zσx ≤ zσ}, where σ ∈ {1, . . . , nσ} and Zσ and zσ are a matrix and a vector
of appropriate dimensions.

We assume that the set {Υσ} forms a partition of the domain and its elements do not
share any interior points, i.e.

⋃nσ
σ=1 Υσ = D and int[Υσ]

⋂
int[Υl] = ∅ for σ 6= l and σ,

l ∈ {1, 2, . . . , nσ}. Furthermore, the piecewise model is assumed to be continuous across
the boundaries of {Υσ} that will be discussed later in detail. The control input and the
uncertainty are assumed to be bounded and lie in the sets Ω = {u ∈ Rm||uj| ≤ ūj, ∀j ∈
{1, 2, . . . ,m}} and ∆σ = {dσ ∈ Rn||dσi| ≤ d̄σi, ∀i ∈ {1, 2, . . . , n}}, respectively. The
uncertainty upper bound d̄σ = (d̄σ1, · · · , d̄σn) is to be determined.

4.3.1 System Identification

Having defined the parameterized model of the system, we employ a system identification
approach to update the system parameters. For each pair of samples obtained from the
input and state of the system, i.e., (xs, us), we first locate the element in the partition {Υσ}
that contains the sampled state xs. Then, we locally update the system coefficients of the
particular piece from which the state is sampled. The weights are updated according to

[Ŵσ Ŵ1σ . . . Ŵmσ]k = arg min
W̄

‖Ẋkσ − W̄Θkσ‖2
2, (4.4)

where k is the time step, and Θkσ includes a matrix of samples with

Θk
s = [ΦT (xs) ΦT (xs)us1 . . . ΦT (xs)usm]

T

k ,

for the sth sample in the σth partition. Correspondingly, Ẋkσ contains the sampled state
derivatives. While in principle any identification technique can be used, e.g., [26, 175], the
linearity with respect to the coefficients allows us to employ least-square techniques. In this
chapter, since an online application is intended, we implement the recursive least-square
technique that provides a more computationally efficient way to update the parameters.

Continuity of the Identified Model

Considering that differentiable bases are assumed, the model identified is differentiable
within the interior of Υσ for σ ∈ {1, 2, . . . , nσ}. However, the pieces of the model may not
meet in the boundaries of Υσ where x ∈ Υσ

⋂
Υl for any σ 6= l and σ, l ∈ {1, 2, . . . , nσ}.

73

Based on our knowledge of system (4.1) from which we collect samples the continuity
holds for the original system. Hence, in theory, if many pieces are chosen, and enough
samples are collected, the edges of pieces will converge together to yield a continuous
model. However, choosing arbitrarily small pieces is not practical.

There exist different techniques to efficiently choose the partitions on D and best fit a
continuous piecewise model, see e.g. [158, 24, 57, 4, 139]. Such techniques usually involve
global adjustments of the model weights and the partitions for which the computations can
be considerably expensive. Therefore, we choose to locally deal with the gaps among the
pieces. This can be done by a post-processing routine performed on the identified model.

A rather straightforward technique is to define extra partitions in the margins of each
Υσ to fill the gaps among pieces. The weights of the corresponding pieces added can be
chosen according to the weights of the adjacent pieces that is given by the identification.
This is done in a way that they help to connect all the pieces together to make a continuous
piecewise model. Fig. 4.1 illustrates the process of constructing extra partitions for a two-
dimensional case, where we choose them to be in triangular shapes. A similar approach
can be taken for generalizing to the n-dimensional case.

Figure 4.1: A scheme of obtaining a continuous piecewise model is illustrated. On the left,
partitions on two-dimensional domain is shown for which the pieces of the model may not
be connected in the borders. On the right, some extra triangular pieces are constructed to
allow filling the possible gaps in the model.

4.3.2 Database

Although an online technique is used to update the piece-wise model along trajectories, we
still need to collect a number of samples for each piece of the system. The set of samples
recorded will be used later to obtain an estimation of the uncertainty bounds for each
mode of the system. For this purpose, we, over time, hand pick and save samples that best
describe the dynamics in any mode of the piecewise system.

74

It should be noted that, the database will be processed offline to extract the uncertainty
bounds. Hence, it does not affect the online learning procedure and its computational cost.
Any sample of the system, to be stored in the database, includes (Θk

s, ˆ̇xk), where the state
derivative is approximated by ˆ̇xk = (xk − xk−1)/h and ėk. For better results, higher order
approximations of the state derivative can be employed.

Different techniques can be employed to obtain a summary of the samples collected. We
assume a given maximum size of database Nd. Then, for any mode of the piecewise model,
we keep adding the samples with larger prediction errors to the database. Therefore, at
any step, we compare the prediction error ėk = ‖ẋk − ˆ̇xk‖ with the most recent average
error ¯̇ekσ obtained for the active piece. Hence, if the condition ėk > η¯̇ekσ holds we add the
sample to the database, where the constant η > 0 adjusts the threshold. If the maximum
number of samples in database is reached, we replace the oldest sample with the recent
one.

4.3.3 Feedback Control

In Chapter 2, a matrix differential equation is proposed using a quadratic parametrization
in terms of the basis functions to obtain a feedback control. Here, we adopt a similar
learning framework, but consider a family of nσ differential equations, each of which cor-
responds to one particular mode of the system in the piecewise model. We integrate the
following state-dependent Riccati differential equation in forward time:

−Ṗσ =Q̄+ Pσ
∂Φ(x)

∂x
Wσ +W T

σ

∂Φ(x)

∂x

T

Pσ − γPσ

− Pσ
∂Φ(x)

∂x

(m∑
j=1

WjσΦ(x)r−1
j Φ(x)TW T

jσ

)
∂Φ(x)

∂x

T

Pσ. (4.5)

The solution to the differential equation (4.5) characterizes the value function defined by

Vσ = ΦTPσΦ, (4.6)

based on which we obtain a piecewise control

uj = −r−1
j

∂Vσ
∂x

T

gj(x) = −Φ(x)T r−1
j Pσ

∂Φ(x)

∂x
WjσΦ(x). (4.7)

75

4.4 Analysis of Uncertainty Bounds

We use the uncertainty in the piecewise system (4.3) to capture approximation errors in
identification. In this section, we analyze the worst-case bounds to provide guarantees for
the proposed framework.

There exist two sources of uncertainty that affect the accuracy of the identified model.
The first is the mismatch between the identified model and the observations made. The
latter may also be affected by the measurement noise. The second is due to unsampled
areas in the domain. We can estimate the uncertainty bound for any piece of the model by
combining these two bounds. In what follow, we discuss the procedure of obtaining these
bounds in more detail.

Assumption 4. For any given (xs, us), let Fi(x
s, us) be the ith element of F (xs, us). We

assume that Fi(x
s, us) can be measured with some tolerance as F̃i(x

s, us), where |F̃i(xs, us)−
Fi(x

s, us)| ≤ %e|F̃i(xs, us)| with 0 ≤ %e < 1 for all i ∈ {1, · · · , n}.

We make predictions F̂i(x
s, us) of the state derivatives for any sample using the iden-

tified model. Hence, we can easily compute the distance between the prediction and the
approximate evaluation of the system by using the samples collected for any piece. This
gives the loss |F̂i(xs, us)− F̃i(xs, us)|.

Theorem 3. Let Assumption 4 hold, and SΥσ denote the set of indices for sample pairs
(xs, us) such that xs ∈ Υσ. Then, an upper bound of the prediction error, regarding any
sample (xs, us) for s ∈ {1, . . . , Ns}, is given by

|F̂i(xs, us)− Fi(xs, us)| ≤ d̄eσi := max
s∈SΥσ

(|F̂i(xs, us)− F̃i(xs, us)|+ %e|F̃i(xs, us)|),

where σ ∈ {1, . . . , nσ}, and i ∈ {1, . . . , n}.

Proof. According to Assumption 4, it is straight forward to show that the prediction error
can be bound for any σ by using the samples in partition σ as

|F̂i(xs, us)− Fi(xs, us)| ≤ |F̂i(xs, us)− F̃i(xs, us)|+ |F̃i(xs, us)− Fi(xs, us)|
≤ |F̂i(xs, us)− F̃i(xs, us)|+ %e|F̃i(xs, us)|
≤ max

s∈SΥσ

(|F̂i(xs, us)− F̃i(xs, us)|+ %e|F̃i(xs, us)|)

= d̄eσi.

76

4.4.1 Quadratic Programs for Bounding Errors

The samples may not be uniformly obtained from the domain. Depending on how smooth
the dynamics are, there might be unpredictable behavior of the system in the gaps among
the samples. Hence, the predictions made by the identified model may be misleading in the
areas we have not visited yet. To take this into account, we assume a Lipschitz constant is
given for the system. More specifically, we let %x ∈ Rn

+ and %u ∈ Rn
+ denote the Lipschitz

constants of F (x, u) with respect to x and u on D×Ω, respectively. We use this to bound
the uncertainty for the unsampled areas.

We need to compute the worst case of the prediction error within any piece that is
given by |F̂i(x, u) − Fi(x, u)|, where F̂ (·, ·) denotes an evaluation of the identified model.
However, according to Assumption 4, we do not have access to the original system to
exactly evaluate F (·, ·). Therefore, we obtain the bound in terms of the approximate value
instead.

Assumption 5. For system (4.1), ∃%x ∈ Rn
+ such that we have

|Fi(x0, u)− Fi(y0, u)| ≤ %xi‖x0 − y0‖,

for any x0, y0 ∈ D, and u ∈ Ω, where i ∈ {1, . . . , n}.

Assumption 6. For system (4.1), ∃%u ∈ Rn
+ such that we have

|Fi(x, u0)− Fi(x,w0)| ≤ %ui‖u0 − w0‖,

for any x ∈ D, and u0, w0 ∈ Ω, where i ∈ {1, . . . , n}.

Assumption 7. An initial estimation of %e and Lipschitz constants %xi and %ui is known.

The following results and the bounds will directly depend on the choice of %x, and %u.
However, this is the least we can assume that allows us to carry out the computations.
Moreover, making such assumptions is not restrictive in practice since we often have a
general knowledge of the application. Moreover, the learning may be first started with
an initial guess of the continuity constants. Later, if the samples collected override the
assumption made, we can update these values.

To calculate the uncertainty bound for any piece, we first look for the largest gap
existing among the samples within each piece. The procedure starts with searching for the
largest gaps in the state and control spaces that do not contain any samples as show in
Fig. 4.2. Let (xs∗, us∗) be the closest sample indexed in SΥσ to the center point (c∗xσ, c

∗
uσ)

77

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Sub-figures (a)-(f) denote the sample gaps located for different number of
samples. It is observed that the radius of the gap decreases by increasing the number of
the samples.

78

xs∗

c∗xσ

x

Fi

F̂i
d̄σi

Figure 4.3: The scheme for obtaining the uncertainty bound according to the sample gap.
Black dots denote the measurements.

of the sample gap (as a Euclidean ball) with radius (r∗xσ, r
∗
uσ). For this purpose, we solve

a quadratic programming (QP) problem for each piece. The solution to the following QP
returns the centre c∗xσ at which an n-dimensional ball of the largest radius r∗xσ can be found
in the σth piece such that no samples xs are contained in this ball:

arg max
cxσ ,rxσ

rxσ (4.8)

subject to cxσ ∈ Υσ

for s ∈ SΥσ : ‖xs − cxσ‖ ≥ rxσ

Similarly, we can obtain the centre c∗uσ and radius r∗uσ to represent the sample gap as an
m-dimensional ball in the control space by solving

arg max
cuσ ,ruσ

ruσ (4.9)

subject to cuσ ∈ Ω

for s ∈ SΥσ : ‖us − cuσ‖ ≥ ruσ.

Theorem 4. Let Assumptions 4-7 hold and (r∗xσ, r
∗
uσ) is given by the solutions of (4.8) and

(4.9) (details given in Appendix 4.4.1). Then, an upper bound for the prediction error can
be obtained regarding all unvisited points x ∈ Υσ and u ∈ Ω as below

|Fi(x, u)− F̂i(x, u)| ≤ d̄σi = %uir
∗
uσ + %xir

∗
xσ + d̄eσi + %̂uir

∗
uσ + %̂xir

∗
xσ. (4.10)

79

Proof. According to the Lipschitz condition, the following holds for any (x, u) ∈ Υσ

|Fi(x, u)−Fi(xs∗, us∗)|
≤ |Fi(x, u)− Fi(x, us∗)|+ |Fi(x, us∗)− Fi(xs∗, us∗)|
≤ %ui‖u− us∗‖+ %xi‖x− xs∗‖. (4.11)

Moreover, we have the estimation F̂ (x, u) of the system. Then, the difference is bounded
by

|Fi(x, u)− F̂i(x, u)| ≤ |Fi(x, u)− Fi(xs∗, us∗)|+ |Fi(xs∗, us∗)− F̂i(x, u)|,
≤ |Fi(x, u)− Fi(xs∗, us∗)|+ |Fi(xs∗, us∗)− F̂i(xs∗, us∗)|,

+ |F̂i(xs∗, us∗)− F̂i(x, u)|,
≤ %ui‖u− us∗‖+ %xi‖x− xs∗‖+ d̄eσi + |F̂i(xs∗, us∗)− F̂i(x, u)|,
≤ %ui‖u− us∗‖+ %xi‖x− xs∗‖+ d̄eσi + |F̂i(xs∗, us∗)− F̂i(xs∗, u)|,

+ |F̂i(xs, u)− F̂i(x, u)|,
≤ %ui‖u− us∗‖+ %xi‖x− xs∗‖+ d̄eσi + %̂ui‖u− us∗‖+ %̂xi‖x− xs∗‖,

where in the last step, we used inequality (4.11) and the bound obtained in Theorem 3
according to the samples. Then, considering that F̂i(x, u) is known, we can easily compute
the corresponding Lipschitz constants %̂ui and %̂xi. The largest distance with the closest
sample (xs∗, us∗) happens in the sample gap given with the radius r∗xσ, and r∗uσ. This yields
the total bound of the error as

|Fi(x, u)− F̂i(x, u)| ≤ %uir
∗
uσ + %xir

∗
xσ + d̄eσi + %̂uir

∗
uσ + %̂xir

∗
xσ

4.5 Stability Verification for Piecewise-Affine Learn-

ing and Control

4.5.1 Piecewise Affine Models

A special case of system (4.3) can be obtained when we choose Φ(x) =
[
1 xT

]
. We

consider system coefficients in the form of Wσ =
[
Cσ Aσ

]
and Wjσ =

[
Bjσ 0

]
. Clearly,

80

Aσ, Bjσ, and Cσ can be used to rewrite the PWA system in the standard form

ẋ = Aσx+
m∑
j=1

Bjσuj + Cσ + dσ, (4.12)

4.5.2 MIQP-based Stability Verification of PWA Systems

In this section, we adopt an MIQP-based verification technique based on the approach
presented in [33]. In this framework, by considering a few steps ahead, we verify that the
Lyapunov function is decreasing. However, it may not be necessarily monotonic, meaning
that it may be increasing in some steps and then be decreasing greatly in some other steps
to compensate. Regarding the fact that this approach is inherently a discrete technique,
we need to consider a discretization of (4.12). By Euler approximation we have

xk+1 = F̌d(xk, uk) = Ǎσxk +
m∑
j=1

B̌jσujk + Čσ + dσ (4.13)

where Ǎσ, B̌jσ, and Čσ are the discrete system matrices of the same dimension as (4.12).
Moreover, we re-adjust the uncertainty bound as d̄σ := hd̄σ, where h denotes the time step.

We refer the uncertain closed loop system with the control ujk = ωj(xk) as

xk+1 = F̌d,cl(xk). (4.14)

For this system, let the convex set D̄ = {x ∈ D|ZD̄x ≤ zD̄} be a user-defined region of
interest, within which obtaining a region of attraction (ROA) is desirable.

Searching for a Lyapunov Function

We summarize an altered version of the technique for obtaining a Lyapunov function that
is first presented in [33] for a deterministic closed-loop system with the neural network
controller. Hence, we modify the algorithm to allow the uncertainty together with the
feedback control (4.7).

The procedure includes two stages that are performed iteratively until a Lyapunov
function is obtained and verified, or it is concluded that there exist no Lyapunov function
in the given set of candidates.

81

In the first stage, we assume an initial set of Lyapunov candidates in the form of (4.15).
Then, the learner searches for a subset for which the negativity of the Lyapunov difference
can be guaranteed with respect to a set of samples collected from the system. If such
subset exists, one element in this subset is proposed as the Lyapunov candidate by the
learner.

In the second stage, the proposed Lyapunov candidate is verified on the original system.
Noting that the learner only uses finite number of samples for suggesting a Lyapunov
candidate, it may not be valid for all the evolutions of the uncertain system. Accordingly,
the verifier either certifies the Lyapunov candidate, or finds a point as the counter-example
for which the Lyapunov candidate fails. This sample is added to the set of samples collected
from the system. Then, we again proceed to the learner stage with the updated set of
samples.

The algorithm is run in a loop, where we start with an empty set of samples in the
learner. Then, we continue with proposing a Lyapunov candidate, and adding one counter-
example in each iteration of the loop. While growing the set of samples, the set of Lyapunov
candidates shrinks in every iteration until it is either validated, or no element is left in the
set meaning that no such Lyapunov exists.

Learning and Verification of A Lyapunov Function

Assuming uj = −r−1
j BT

jσP3σxk, and defining Ǎcl,σ = Ǎσ −
∑m

j=1 r
−1
j B̌jσB

T
jσPσ, the discrete

closed-loop system becomes xk+1 = Ǎcl,σxk + Čσ + dσ.

Now, consider the Lyapunov function

V (xk, P̂) =

[
xk
xk+1

]T
P̂

[
xk
xk+1

]
(4.15)

characterized by P̂ ∈ F , where

F = {P̂ ∈ R2n×2n|0 ≤ P̂ ≤ I, V (xk+1, P̂)− V (xk, P̂) < 0,∀xk ∈ D̄\{0}, dσ ∈ ∆σ}.

The structure of the Lyapunov function is suggested by [33] that employs a piecewise
quadratic function to parameterize the Lyapunov function. This approach combines the
non-monotonic Lyapunov function [3] and finite-step Lyapunov function [20, 2] techniques
to provide a guarantee by looking at the next few steps. It should be noted that the
Lyapunov function may not be necessarily decreasing within any single step, while it must
be decreasing within the finite steps taken into account.

82

The Learner: To realize a Lyapunov function, one needs a mechanism to look for the
appropriate values of P̂ within F . For this purpose, we obtain an over-approximation of F
by considering only finite number of elements in (D̄,∆). Let us first define the increment
on the Lyapunov function as

∆V (x, P̂) = V (F̌d,cl(x), P̂)− V (x, P̂) =

[
F̌d,cl(x)

F̌
(2)
d,cl(x)

]T
P̂

[
F̌d,cl(x)

F̌
(2)
d,cl(x)

]
−
[

x
F̌d,cl(x)

]T
P̂

[
x

F̌cl(x)

]
,

where F̌
(2)
d,cl(x) = F̌d,cl(F̌d,cl(x)).

Furthermore, assume that the set of Ns number of samples are given as below

S = {(x, F̌d,cl(x), F̌
(2)
d,cl(x))1, . . . , (x, F̌d,cl(x), F̌

(2)
d,cl(x))Ns}.

Note that S implicitly includes samples of the disturbance input and the state.

Now, using S we obtain the over-approximation

F̃ = {P̂ ∈ R2n×2n|0 ≤ P̂ ≤ I,∆V (x, P̂) ≤ 0, ∀x ∈ S , dσ ∈ ∆σ}.

To find an element in F̃ , there exist efficient iterative techniques that are well-known
as cutting-plane approaches. See e.g. [10, 47, 23]. In [33], the ACCPM [64, 120, 22] is
employed in an optimization problem:

P̂ (i) = arg min
P̂

−
∑
x∈Si

log(−∆V (x, P̂))− log det(I − P̂)− log det(P̂) (4.16)

where i is the iteration index. If feasible, the log-barrier function in the first term guarantees
the solution within F̃ for which the negativity of the Lyapunov difference holds. The other
two terms ensure 0 ≤ P̂ (i) ≤ I. The solution gives a Lyapunov function V based on the
set of the samples Si in the ith stage. On the other hand, if a solution does not exist, the
set F is concluded to be empty.

The Verifier: The Lyapunov function candidate suggested by (4.16) may not guarantee
asymptotic stability for all x ∈ D̄ and dσ ∈ ∆σ since only the sampled space was considered.
Therefore, in the next step, we need to verify the Lyapunov function candidate for the
uncertain system. To do so, a mixed-integer quadratic program is solved based on the
convex hull formulation of the PWA:

max
xj ,uj ,dj ,µj

[
x1

x2

]T
P̂ (i)

[
x1

x2

]
−
[
x0

x1

]T
P̂ (i)

[
x0

x1

]
(4.17)

83

subject to

ZD̄x0 ≤ zD̄, ‖x0‖∞ ≥ ε (4.18)

uj = ω(xj) (4.19)

Zσxjσ ≤ µjσzσ, Zuuσ ≤ µjσzu, |d
j
σi| ≤ µjσd̄σi, (4.20)

(1, xj, uj, dj, xj+1) =
Nσ∑
σ=1

(µjσ, x
j
σ, u

j
σ, d

j
σ, Aσxjσ +Bσujσ + µjσcσ + djσ)

(4.21)

µσ ∈ {0, 1},∀σ ∈ {1, . . . , Nσ}, i ∈ {1, . . . , n}, j ∈ {0, 1}, (4.22)

where a ball of radius ε around the origin is excluded from the set of states, and ε is chosen
small enough in (4.18). This is due to Remark 10 and the fact that the numerical value
of the objective becomes considerably small when approaching the origin. This makes the
negativity of the objective too hard to verify around the origin. For more details in the
implementation of the algorithm, we refer the reader to [33].

The system is given by (4.21) and (4.22). To define the piecewise system in a mixed-
integer problem, similar to [33], we use the convex-hull formulation of piecewise model that
is presented in [108]. However, to consider the uncertainty, we compose a slightly different
system where we define extra variables to model the disturbance input.

Constraints (4.18), and (4.20) define the sets of the initial condition, the state, the
control, and the disturbance inputs, respectively. Furthermore, the feedback control is
implemented by (4.19).

To certify the closed-loop system as asymptotically stable, the optimal value returned
by the MIQP (4.17) is required to be negative. Otherwise, the argument (x0∗, x1∗, x2∗) of
the optimal solution is added to the set of samples S as a counter-example.

4.5.3 Convergence of ACCPM

The convergence and complexity of the ACCPM for searching a quadratic Lyapunov func-
tion is discussed in [151, 33], where an upper bound is obtained for the number of steps
taken until the algorithm exits.

Lemma 4. Let F be a convex subset of Rn×n. Moreover, there exists Pcenter ∈ Rn×n

such that {P ∈ Rn×n|‖P − Pcenter‖F ≤ ε} ⊂ F , where Frobenius norm is used, and
F ⊂ {P ∈ Rn×n|0 ≤ P ≤ I}. Then, the center cutting-plane algorithm concludes in at
most O(n3/ε2) steps.

84

Proof. See [151, 33] for the proof.

Stability Analysis

Combining the uncertainty bounds in Section 4.4 and the Lyapunov-based verification
results of this section, we are able to prove the following practical stability results of the
closed-loop system.

Theorem 5. Suppose that the MIQP (4.17) yields a negative optimal value. Let Bε denote
the set {x ∈ Rn|‖x‖∞ ≤ ε}, i.e., the ball of radius ε in infinity norm around the origin.
Then the set Bε is asymptotically stable for the closed-loop system (4.14). The largest
sub-level set of V , i.e., {x ∈ Rn |V (x) ≤ c} for some c, contained in D̄ is a verified
under-approximation of the real ROA.

Proof. According to the conditions of the verifier, if the optimal value returned by the
MIQP (4.17) is negative, we have effectively verified the following Lyapunov conditions:

V (0) = 0, V (x) > 0, ∀x ∈ D̄\{0}, (4.23)

V (F̌d,cl(x))− V (x) < 0, ∀x ∈ D̄\Bε, d ∈ ∆σ, (4.24)

for the uncertain closed-loop system (4.14). By standard Lyapunov analysis for set stability
[68, 76], the set Bε, which is the ball of radius ε in infinity norm around the origin,
is asymptotically stable for system (4.14). Furthermore, any sub-level set of V (x), i.e.,
{x ∈ Rn |V (x) ≤ c} for some c, contained in D̄ is contained in the ROA of Bε.

Remark 10. Due to the existence of a non-zero additive uncertainty bound, one cannot
expect convergence to the origin precisely. This issue is addressed by providing convergence
guarantee to a small neighborhood of the origin, i.e., Bε. By collecting enough samples
around the origin, a local approximation of the system is obtained by the mode σ = 0 of the
identified system, whose domain includes the origin, while dσ can be made arbitrarily small
as xk → 0. By doing so, we can make ε in Theorem 5 arbitrarily small and the stability re-
sult is practically equivalent to the asymptotic stability of the origin. Alternatively, one can
assume that there exists a local stabilizing controller that one can switch to when entering
a small neighborhood of the origin. In this case, asymptotic stability can be achieved.

4.6 Numerical Results

To validate the proposed piecewise learning and verification technique we implemented the
approach on the pendulum system as (2.32) and the dynamical vehicle system [125]. More-

85

over, we compared the results with other techniques presented in the literature. To make
a fair comparison, we have taken the parameters of the system from [31]. We performed
all the simulations in Python 3.7 on a 2.6 GHz Intel Core i5 CPU.

4.6.1 Pendulum System

For the pendulum system, we discuss the simulation results in three sections. In the
first section, we will explain the procedure of identifying the uncertain PWA model with
a piecewise feedback control. In the second section, we verify the closed-loop uncertain
system and obtain an ROA in D̄. In the third section, we will present the comparison
results.

Identify and Control

Control objective is to stabilize the pendulum at the top equilibrium point given by xeq =
(0, 0). First, we start with learning a piecewise model together with the uncertainty bounds,
and the feedback control. For this purpose, we sample the system, and update our model
as discussed in section 4.3.1. We set the sampling time as h = 5ms. Accordingly, the
value function and the control rule are updated online as in section 4.3.3. Then, to verify
the value to be decreasing within each mode, it only remains to calculate the uncertainty
bounds using the results obtained in section 4.4.

To make a visualization of the nonlinearity in the pendulum system (2.32) possible,
we portray the second dynamic assuming u = 0 in Fig. 4.4, where the first dynamic is
only linear. The procedure of learning is illustrated through several stages in Fig. 4.5. In
the first column from the left, we illustrated the estimations only for the second dynamic
with u = 0 to be comparable to Fig. 4.4. Accordingly, it can be observed that the system
identifier is able to closely approximate the nonlinearity with a piecewise model.

It should be noted, the learning is started from the mode containing the origin in its
domain, that we label by σ = 0. As we collect more random samples in Υ0, we can
effectively decrease the uncertainty of the model around the origin, and obtain a local
controller. Then, we gradually expand the areas sampled to train the rest of the pieces in
the PWA model.

Remark 11. It is worth mentioning that the model obtained and the uncertainty bounds
can be further improved by continuing the sampling. In this implementation, we perform
sampling only until the uncertainty bound obtained allows us to verify a decreasing value
function for each piece of the PWA system.

86

Figure 4.4: A view of the second dynamic of pendulum system (2.32) assuming u = 0 that
is f2(x1, x2).

Verification

Having the system identified and the feedback control, we can apply the verification algo-
rithm based on MIQP problem. As done in [33], we implemented the learner in CVXpy
[42] with MOSEK [6] solver, and the verifier in Gurobi 9.1.2 [67].

We choose D̄ such that x1 and x2 ∈ [−6, 6]. To verify the system, we ran the algorithm
and obtained a matrix P̂ that characterizes the Lyapunov function as in (4.15).

P̂ =


0.69371067 0.02892586 0.1944487 0.05196313
0.02892586 0.26941371 0.02718769 −0.21348358
0.1944487 0.02718769 0.69518109 0.05041737
0.05196313 −0.21348358 0.05041737 0.33469316

 .
The largest level set of the associated Lyapunov function in D̄ is pictured in Fig. 4.8a

as the the ROA of the closed-loop system. Moreover, we illustrate different trajectories
of the controlled system that confirms the verified Lyapunov function by constructing an
ROA around the origin.

87

(a) (b) (c)

(d) (e) (f)

Figure 4.5: The procedure for learning the dynamics by the PWA model is illustrate
step-by-step that shows the convergence of the identifier. Subfigures (a)-(f) show the
improvement of estimations of f2(x1, x2), as the number of samples increases.

Comparison Results

To highlight the merits of the proposed piecewise learning approach, we compare the ROA
obtained by different approaches in the literature. [31] proposed a Neural Network (NN)
Lyapunov function for stability verification. According to [31], the comparison done on the
pendulum system with LQR and Sum of Squares (SOS) showed noticeable superiority of the
NN-based Lyapunov approach. Following the comparison results from [31], we compare
the ROA obtained by our approach with NN, SOS, and LQR techniques in Fig. 4.8b.
Clearly, the ROA obtained by the piecewise controller with the non-monotonic Lyapunov
function is considerably larger than the ones obtained by NN, SOL, and LQR algorithms
as shown in [31].

4.6.2 Dynamic Vehicle System with Skidding

In this section, to better demonstrate the merits of the algorithm proposed, we imple-
mented the approach on a more complex system. The kinematic model of the vehicle
system does not consider the real behavior of the system at high speed where skidding is
possible. Therefore, [125] proposed a more realistic dynamical model of the vehicle which
is implemented in this chapter.

88

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

50
100
150
200
250
300
350
400

(a)

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

25
50
75
100
125
150
175
200

(b)

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

20
40
60
80
100
120

(c)

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

20
40
60
80
100
120

(d)

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

5
10
15
20
25
30
35
40

(e)

Angle

6 4 2 0 2 4 6
Angular velocity

6
4

2
0

2
4

6

2
4
6
8
10
12

(f)

Figure 4.6: To better illustrate the learning procedure, the step-by-step results of the
uncertainty bound corresponding to the results in Fig. 4.5 are provided. It is evident that
error bound is improved in every step.

According to [125], we present the dynamic model of the vehicle implemented. Let us
define the states x and y as the coordinate of the center of gravity in the 2D space, θ as
the orientation of the vehicle, vy as the lateral velocity, and r as the rate of the orientation.
Moreover, the input of the system is given by the front-wheel angle δf . Then, by assuming
a constant longitudinal velocity vx, the dynamical model of the vehicle can be written as

v̇y = −Cαf cos δf + Cαr
mvx

vy +
−LfCαf cos δf + LrCαr

Izvx
r +

Cαf cos δf
m

δf ,

ṙ = (
−LfCαf cos δf + LrCαr

mvx
− vx)vy −

L2
fCαf cos δf + L2

rCαr

Izvx
r +

LfCαf cos δf
Iz

δf ,

ẋ = vx cos θ − vy sin θ,

ẏ = vx sin θ + vy cos θ,

θ̇ = r,

where Cxf , and Cxr denote the cornering stiffness coefficients of the front and rear wheels.
Moreover, the distance of the center of gravity from the front and rear wheels are given by
Lf , and Lr.

89

(a) (b) (c)

(d) (e) (f)

Figure 4.7: The step-by-step results of the sampling procedure and the sample gap obtained
are provided that correspond to the results in Fig. 4.5 and 4.6. It is evident that by
acquiring more samples over different steps and expanding the learning area, the sample
gaps are decreased effectively.

Identify and Control

Control objective is to minimize the distance of the vehicle from the goal point (x, y)goal =
(70, 70) in the 2D map. To achieve the objective, we run the vehicle from some random
initial position and yaw values. Then, identification and control procedures are done in
a loop through different episodes. The longitudinal velocity of the vehicle is assumed to
be constant in this system similar to [125]. Therefore, to minimize the cost given by the
control objective, the vehicle converges to some circular path around the goal point, which
is indeed the optimal path for the problem defined. Fig. 4.5, contains the simulation results
within an episode of learning, including the state and control signals, prediction error for

90

(a)

6 4 2 0 2 4 6
Angle

6

4

2

0

2

4

6

An
gu

la
r v

el
oc

ity

PWA
LQR
NN
SOS

(b)

Figure 4.8: (a). The obtained ROA of the closed loop PWA system is illustrated for x1

and x2 ∈ [−6, 6]. The uniform grids denote the modes of the PWA system. Multiple
trajectories of the system are shown in a phase portrait where colormap represents the
magnitude in the vector field.
(b). The comparison results for ROA of the closed loop system is illustrated for x1 and
x2 ∈ [−6, 6], together with the trajectories of the system. The comparison results for LQR,
NN, and SOS are taken from [31].

91

each state, the value function and the modes.

0 5 10 15 20 25 30

50

75

100

St
at

es

Car position x
Car position y

0 5 10 15 20 25 30

5

0

5

St
at

es

Yaw Angle
Velocity (m/sec)
Yaw rate

0 5 10 15 20 25 30
t (sec)

1

0

1

Co
nt

ro
l

(a)

0 5 10 15 20 25 30
10
0

10

x-
Po

sit
io

n

0 5 10 15 20 25 30
10
0

10

y-
Po

sit
io

n

0 5 10 15 20 25 30
2.5
0.0
2.5

Ya
w

0 5 10 15 20 25 30
200

0
200

Ve
lo

cit
y

0 5 10 15 20 25 30
100

0
100

Ya
w

ra
te

(b)

0 5 10 15 20 25
0

5000

Va
lu

e

0 5 10 15 20 25
0

1000

|P
|

0 5 10 15 20 25
0

500

Er
ro

r

0 5 10 15 20 25

1000

1500

M
od

e

(c)

Figure 4.9: (a). The state and control signals are illustrated within an episode of learning.
It can be clearly seen from the position signals that the vehicle is able to minimize the
distance from the goal point and converge to a circular path around the goal point after
some time of learning.
(b). The graph denotes the evolutions of the value function, the norm of the control
parameters for the active mode, the prediction error, and the active mode of the piecewise
model that correspond to the results in Fig 4.9a. It can be seen that the value function
learned is minimized.
(c). Corresponding to Fig. 4.9a and 4.9c, the prediction results of the learned model
is compared with the original system within an episode of learning. It can be observed
that the prediction signals shown by the black lines can match the ones obtained from the
original dynamic.

4.6.3 Comparison of Runtime Results

To analyze the computational aspects of the proposed technique, we provide the runtime
results while learning the dynamics and obtaining the control for both examples imple-
mented. The proposed framework is considered as an online technique. Hence, in the
applications, the computational complexity of the realtime identification and control be-
comes more important. Therefore, we here focus in the complexity of the online learning
procedure rather than the verification technique which can be done offline. Fig. 4.10 in-
cludes the runtime results separately for the identification and control units. Accordingly,
the identifier and the controller can be updated in at most 1ms and 20ms respectively.
Accordingly, it can be observed that for the higher dimensional system with also larger

92

number of partitions the computations still remain in a tractable size that can allow real-
time applications, considering the nature of the systems.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

500

1000

1500

2000

C
ou

nt
Runtime: Identify (RLS)

Dynamical Vehicle, n=5, #Partitions=2744
Pendulum, n=2, #Partitions=361

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t(msec)

0

100

200

300

400

500

600

700

800

C
ou

nt

Runtime: Control

Figure 4.10: A comparison of the runtime results for the identification and control proce-
dures separately is given for the implemented examples.

4.7 Conclusion

For regulating nonlinear systems with uncertain dynamics, a piecewise nonlinear affine
framework was proposed in which each piece is responsible for learning and controlling over
a partition of the domain locally. Then, in a particular case of the proposed framework, we
focused on learning in the form of the well-known PWA systems, for which we presented
an optimization-based verification approach that takes into account the estimated uncer-
tainty bounds. We used the pendulum system as a benchmark example for the numerical
results. Accordingly, an ROA resulting from the level set of a learned Lyapunov function
is obtained. Furthermore, the comparison with other control approaches in the literature
illustrates a considerable improvement in the ROA using the proposed framework. As
another example, we implemented the presented approach on a dynamical vehicle system
with considerably higher number of partitions and dimension. The results demonstrated

93

that the approach can scale efficiently, hence, can be potentially implemented on more
complex real-world problems in realtime.

94

Chapter 5

Structured Online Learning for
Low-Level Control of Quadrotors

The results presented in this chapter are submitted to [55].

5.1 Introduction

Quadrotors have received enormous attention because of their efficacy in various applica-
tions. Nowadays, quadrotors are produced at a reasonable cost and in different sizes that
justify their increasing deployment in new environments. Their applications can range from
industry to everyday life and they can reach and operate in situations that may be expen-
sive or dangerous for humans to enter. In response to the high demand, researchers have
developed extensive approaches over the past decade to control quadrotors for complicated
tasks and high-precision acrobats.

For an effective fly of the quadrotor, there are two levels of controls involved: the
low-level control that is required for the stability of the hovering position, and the high-
level control that provides a sequence of setpoints as commands to achieve a particular
objective. Even though effective controllers have been already implemented on quadrotors
for various objectives, the design and tuning procedure of such controllers still requires a
considerable amount of expert knowledge about the governing dynamics and experiments
to determine the exact system parameters. This becomes even more challenging considering
the underactuated and rapid dynamics of the quadrotor. Hence, having successful learning

95

approaches are extremely desired, because it can automate and accelerate the procedure
of reaching the flying state with minimum knowledge of the dynamics.

In [45], the main challenges in the application of RL approaches are highlighted. Among
RL approaches, MBRL techniques are sometimes preferred over model-free methods, be-
cause of their effectiveness in learning from limited data and their computationally tractable
properties, which allow real-time inference of the policy. In contrast, direct RL approaches,
on the other hand, usually require a large amount of data and a long time of training [44].
Therefore, in this chapter, we will only discuss MBRL strategies that provide an opportu-
nity for learning in a few tries.

There are plenty of MBRL approaches implemented on aerial vehicles that use demon-
strations led by humans to collect data and realize a model that can best predict the future
state for a given action [39, 12]. Moreover, MBRL techniques are effectively implemented
on quadrotors that assume an on-board stable low-level controller to learn the high-level
control [101, 1, 15], which is not in the scope of this chapter. Hence, in this chapter, we
are interested in obtaining a low-level control that requires no initial controller and no
knowledge of the system parameters.

Recently, the authors of [91] suggested an interesting approach in learning a low-
level controller by running an MBRL approach on a real nano-quadrotor, best known as
Crazyflie. In this approach, they train a neural network by collecting experimental data,
which is then used to run a random-shooter MPC on a graphic processing unit (GPU) to
establish a real-time controller. The approach can successfully reach a hovering position
in a few tries. However, the need for GPU to learn a low-level control can be seen as a
limiting factor of its implementation.

In this chapter, similar to [91], we use the flight data obtained along random open-
loop trajectories to establish an initial model, with no need for any expert demonstrations.
However, in a different approach than [91], once an initial model together with the corre-
sponding controller is obtained, we switch to learning in a closed-loop form to refine the
model and the performance achieved. To verify the method, we acquire data from the
nonlinear model of the quadrotor, treated as a black box.

For a practical framework, the MBRL approach has to be data-efficient while being
fast enough to allow real-time implementation. Unlike [91], our approach does not demand
a lot of computational efforts considering that we learn the system in terms of a limited
number of bases and accordingly obtain a feedback control rule. Hence, it can be used as
a lightweight alternative in implementations. Moreover, in [91], the objective is to reach
the hovering position, whereas in this chapter, in addition to the attitude control, we also
control the position. This means the quadrotor simultaneously learns to reach and stay at

96

a given point in the 3D space. This will also minimize the instances where the quadrotor
slides out of the training environment.

For learning purpose, we implemented the SOL approach proposed in [52] with a RLS
algorithm that is well known for its high efficiency in online applications. Successful appli-
cations of RLS can be found in [103, 167, 170, 147]. In this chapter, as an alternative to
the neural network approach, we used a system structured in terms of a library of bases.
Accordingly, by sampling the input and state, we employ RLS to update the system model.
Then, by exploiting the structure assumed in the model and a quadratic parametrization
of the value function in terms of the same set of bases, we obtain a matrix differential
equation to update the controller that can be efficiently integrated online. An extension
of SOL is presented in [53] for tracking unknown systems that can be also implemented
on the quadrotor. However, in this chapter, we will only focus on the attitude-position
control.

The rest of the chapter is organized as follows. In section 5.2, we will introduce the
nonlinear model of the quadrotor. In Section 5.3, we will highlight the SOL framework,
together with the practical considerations required for a real-time implementation on the
quadrotor. Section 5.4 contains the simulation results.

5.2 Quadrotor Model

The nonlinear dynamics of the quadrotor can be written as

ẏ = v,

v̇ =

 0
0
−g

+
1

m
R

0
0
T

 ,
Ṙ = RQ(ω),

ω̇ = J−1(−ω × Jω + τ), (5.1)

where the states include the 3D position y, the linear velocity v of center of gravity in
the inertial frame, the rotation matrix R, and the angular velocity ω in the body frame
with respect to the inertial frame. It should be noted that the third equation is written
in a matrix form, where R takes value in the special orthogonal group SO(3) = {R ∈
R3×3|R−1 = RT , det(R) = 1}. Accordingly, the attitude of the quadrotor χ =

[
φ θ ψ

]
can be extracted from R at any time instance, which contains the roll, pitch, and yaw
angles, respectively.

97

Moreover, the gravity acceleration, the body mass, and the inertia matrix are given by
g, m, and

J =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 .
The skew-matrix Q is composed by the angular velocity ω =

[
p q r

]T
as

Q(ω) =

 0 −r q
r 0 −p
−q p 0

 .
The inputs of this system are given by the moments in the body frame

τ =

CTd(−ω̄2
2 − ω̄2

4 + ω̄2
1 + ω̄2

3)
CTd(−ω̄2

1 + ω̄2
2 + ω̄2

3 − ω̄2
4)

CD(ω̄2
2 + ω̄2

4 − ω̄2
1 − ω̄2

3)

 ,
and the thrust

T = CT (ω̄2
1 + ω̄2

2 + ω̄2
3 + ω̄2

4)

generated in the body frame by the rotors, where ω̄i, d, CT , and CD denote the rotational
speed of each rotor, the arm length, the lift, and the drag coefficients of the propellers,
respectively.

The system is usually actuated by four DC motors that are controlled by Pulse-Width
Modulation (PWM) signals. To convert the PWM values to the rotational speed RPM,
we use

ω̄i = η1ui + η2,

where η1 and η2 are the coefficients specified for any motor, and i ∈ {1, 2, 3, 4}. Accordingly,
in the learning process we will consider ui as the inputs of the quadrotor system.

5.3 Structured Online Learning with RLS Identifier

on Quadrotor

In what follows, we discuss different stages of the proposed learning procedure in detail.
Moreover, we present considerations to be taken into account in the implementation to-
gether with the computational properties of the proposed framework.

98

ω̄3
ω̄2

ω̄1

ω̄4

φ

θ

ψ

Figure 5.1: A video of the training procedure can be found at https://youtu.be/

QO8Ql83qKFM, where the objective is to learn to fly and reach to the reference position
and yaw.

5.3.1 Learning Procedure

The learning procedure is done in the following order: In the first stage (pre-run), we
run the quadrotor in an open-loop form with almost equal PWM values for every motor.
These values are perturbed slightly in a random way that provides a probing input signal
to collect diverse samples from the system. The design and importance of such probing
signals are well studied in MBRL techniques, and in system identification algorithms in
particular. See, for instance, [126, 83]. The data is used to establish an initial model to
start online learning.

In the second stage, we implement the learning in a closed-loop form by using the initial
model obtained in the pre-run. In the control loop, at any time step tk, the samples of
the states are acquired and a set of bases are evaluated accordingly. Next, by using RLS
algorithm, the system model is updated. Then, the measurements and the most recent
model coefficients are used to update a value function, which is required to calculate the
control value for the next step tk+1.

Remark 12. Considering that we assume no knowledge about the system coefficients,
initial learning is done through several unsafe tries similar to [91]. Hence, the first runs of
the system may show poor control performance or instability, which requires a safe training
environment and/or a resetting mechanism that allows safe crashes.

Two blocks are responsible for the control and model update in a loop that will be

99

https://youtu.be/QO8Ql83qKFM
https://youtu.be/QO8Ql83qKFM

discussed next.

Control Update

Consider the quadrotor model (5.1), where we compose the state vector by using the
position, the velocity, the attitude, and the angular velocity as

x :=
[
y v χ ω

]
,

where x ∈ D ⊂ Rn, and u ∈ Ω ⊂ Rm with n = 12 and m = 4. As mentioned, angles χ can
be obtained using the state R.

The cost function to be minimized along the trajectory started from the initial condition
x0 = x(0) is considered in the following linear quadratic form

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
xTQ0x+ uTR0u

)
dt, (5.2)

where Q0 ∈ Rn×n is positive semi-definite, γ ≥ 0 is the discount factor, and R0 ∈ Rm×m is
a diagonal matrix with only positive values, given by design criteria.

For the closed-loop system, by assuming a feedback control law u = ν(x(t)) for t ∈
[0,∞), the optimal control is given by

ν∗ = arg min
u(·)∈Γ(x0)

J(x0, u(·)), (5.3)

where Γ is the set of admissible controls.

For now, we assume that we can approximate the dynamics of (5.1) in terms of some
differentiable bases such as polynomial and trigonometric functions, where the system
identification approach will be discussed later. Accordingly, (5.1) is rewritten as

ẋ = WΦ(x) +
m∑
j=1

WjΦ(x)uj, (5.4)

where W and Wj ∈ Rn×p are the matrices of the coefficients obtained for j = 1, 2, . . . ,m,
and Φ(x) = [φ1(x) . . . φp(x)]T is the set of chosen bases.

In what follows, without loss of generality, the cost defined in (5.2) is transformed to
the space of bases Φ(x), that is

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
Φ(x)T Q̄0Φ(x) + uTR0u

)
dt, (5.5)

100

where Q̄0 = diag
(
[Q0], [0(p−n)×(p−n)]

)
is a block diagonal matrix that contains all zeros

except the first block Q0, which corresponds to the linear basis x.

Then the corresponding HJB equation can be written by the Hamiltonian defined as

− ∂

∂t
(e−γtV)

= min
u(·)∈Γ(x0)

{H = e−γt
(
Φ(x)T Q̄0Φ(x) + uTR0u

)
+e−γt

∂V

∂x

T

(WΦ(x) +
m∑
j=1

WjΦ(x)uj)}. (5.6)

In general, there exists no analytical approach that can solve such a partial differential
equation and obtain the optimal value function. However, it has been shown in the litera-
ture that approximate solutions can be computed by numerical techniques.

Assume the optimal value function in the following form

V = Φ(x)TPΦ(x), (5.7)

where P is symmetric. Then the Hamiltonian is given by

H =e−γt(Φ(x)T Q̄0Φ(x) + uTR0u)

+ e−γtΦ(x)TP
∂Φ(x)

∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)

+e−γt
(

Φ(x)TW T +
m∑
j=1

uTj Φ(x)TW T
j

)
∂Φ(x)

∂x

T

PΦ(x).

Moreover, based on the diagonal structure of R0, the quadratic term of u is rewritten
in terms of its components, where r0j 6= 0 is the jth component on the diagonal of matrix
R0. To minimize the resulting Hamiltonian we need

∂H

∂uj
= 2r0juj + 2Φ(x)TP

∂Φ(x)

∂x
WjΦ(x) (5.8)

= 0, j = 1, 2, . . . ,m.

Hence, the jth optimal control input is obtained as

u∗j = −Φ(x)T r−1
0j P

∂Φ(x)

∂x
WjΦ(x). (5.9)

101

Based on [52], the following update rule can be obtained by plugging in the optimal control
in the Hamiltonian.

−Ṗ =Q̄0 + P
∂Φ(x)

∂x
W +W T ∂Φ(x)

∂x

T

P − γP

− P ∂Φ(x)

∂x

(m∑
j=1

WjΦ(x)r−1
0j Φ(x)TW T

j

)
∂Φ(x)

∂x

T

P. (5.10)

In a standard optimal control approach, this equation has to be solved backward in time,
which assumes complete knowledge of the system, i.e., W and Wj along the time horizon.
However, in this chapter, we are interested in the learning problem, where the system model
may not be known initially. Therefore, we propagate the obtained differential equation in
the forward direction. This will provide an opportunity to update our estimation of the
system dynamics online at any step together with the control update.

In this approach, we run the system from some x0 ∈ D, then solve the matrix differential
equation (5.10) along the trajectories of the system. Different solvers are already developed
that can efficiently integrate differential equations. Although the solver may take smaller
steps, we only allow the measurements and control update at time steps tk = kh, where
h is the sampling time and k = 0, 1, 2, For solving (5.10) in continuous time, we use
the LSODA solver [74], where the weights and the states in this equation are updated by
a system identification algorithm and the measurements xk at each iteration of the control
loop, respectively. A recommended choice for P0 is a matrix with components of zero or
very small values.

The differential equation (5.10) also requires evaluations of ∂Φ/∂xk at any time step.
Since the bases Φ are chosen beforehand, the partial derivatives can be analytically calcu-
lated and stored as functions. Hence, they can be evaluated for any xk in a similar way
as Φ itself. By solving (5.10), we can calculate the control update at any time step tk
according to (5.9). Although at the very first steps of learning, control is not expected to
take effective steps toward the control objective, it can help in the exploration of the state
space and gradually improve by learning more about the dynamics.

Model Update

In the previous step, we considered a given structured nonlinear system as in (5.4). There-
fore, having the control and state samples of the system, we need an algorithm that updates
the estimation of system weights. As studied in [25, 78], SINDy is a data-efficient tool to

102

Figure 5.2: The histogram of the runtime of the identification and the control algorithms.

extract the underlying sparse dynamics of the sampled data. In this approach, along with
the identification, the sparsity is also promoted in the weights by minimizing

[Ŵ Ŵ1 . . . Ŵm]k = arg min
W̄

‖Ẋk − W̄Θk‖2
2 + λ‖W̄‖1, (5.11)

where k is the time step, λ > 0, and Θk includes a matrix of samples with the columns of

Θk
s = [ΦT (xs) ΦT (xs)u1

s . . . ΦT (xs)um
s]
T

k ,

for sth sample. In the same order, Ẋ keeps a table of sampled state derivatives.

Updating Ŵk based on a history of samples may not be favored as the number of sam-
ples needed tends to be large. Especially, real-time implementations may not be possible

103

Figure 5.3: The attitude control results in the learning procedure illustrated in different
runs.

because of the latency caused by the computations. There exist other techniques that can
be alternatively used in different situations, such as neural networks, nonlinear regression,
or any other function approximation and system identification methods. For real-time
control applications, considering the linear dependence on the system weights in (5.4), one
may choose RLS algorithm that only uses the latest sample of the system and Ŵk−1, hence
will run considerably faster.

For this reason, in the application of SOL on the quadrotor we employ the RLS algo-
rithm. Moreover, to improve the runtime of the identification we only choose the linear and
the constant bases. Considering that the quadrotor usually operates around the hovering
situation such approximation will still be able to preserve the required properties of the

104

system. However, for better results, one can add higher-order polynomial in the library as
shown in [52].

In the implementations of SOL done in this chapter, we compare the prediction error
ėk = ‖ẋk− ˆ̇xk‖ with the average ¯̇ek =

∑k
i=1 ėk/k. Hence, if the condition ėk > η¯̇ek holds we

use that sample to update the model, where the constant 0 < η < 1 adjusts the threshold.
Choosing smaller values of η will increase the rate of adding samples to the database.

5.3.2 Asymptotic Convergence with Uncertain Dynamics

Having arranged the identifier and controller, it only remains us to consider the model
uncertainty’s effect on the asymptotic convergence to the equilibrium point. Assume the
system structured as

ẋ = WΦ +
m∑
j=1

WjΦûj + ε, (5.12)

where ûj = −ΦTR−1P̂ΦxŴjΦ is the feedback control rule obtained based on the estimation

of the system (Ŵ , Ŵj). Moreover, ε is the bounded approximation error in D. By assuming

W = Ŵ + W̃ and Wj = Ŵj + W̃j, this can be rewritten as

ẋ = ŴΦ +
m∑
j=1

ŴjΦûj + ∆(t), (5.13)

where unidentified dynamics are lumped together as ∆(t). By the assumption that the
feedback control uj is bounded in D, we have ‖∆(t)‖ ≤ ∆̄. For asymptotic convergence,
and also promote the robustness of the controller, the effect of the uncertainty should be
taken into account. Hence, we use an auxiliary vector ρ to get

ẋ = ŴΦ +
m∑
j=1

ŴjΦûj + ∆(t) + ρ− ρ

= ŴρΦ +
m∑
j=1

ŴjΦûj + ∆(t)− ρ,

where assuming that Φ also includes the constant basis, we adjusted the corresponding
column in the system matrix to get Ŵρ. In the case ∆̄ = 0, the controller û can be
obtained such that the closed system is locally asymptotically stable. For the case ∆̄ > 0,

105

although the system will stay stable for small enough ∆̄, it may not asymptotically converge
to zero. Then, similar to [168, 136], we obtain ρ as below to help to slide the system state
to zero

ρ =

∫ t

0

[k1x(τ) + k2sign
(
x(τ)

)
]dτ ,

where k1 and k2 are positive scalars. It can be shown that over time ‖∆(t)− ρ‖ → 0, and
hence the system will asymptotically converge to the origin.

Figure 5.4: The position control results in the learning procedure illustrated in different
runs, starting from random initial positions

106

5.3.3 Computational Properties

The computational complexity of updating parameters by relation (5.10) is bounded by the
complexity of matrix multiplications of dimension p which is O(p3). Moreover, it should be
noted that, regarding the symmetry in the matrix of parameters P , this equation updates
L = (p2 + p)/2 number of parameters which correspond to the number of bases used
in the value function. Therefore, in terms of the number of parameters, the complexity
is O(L3/2). It is discussed in [52] that this can be done considerably faster than similar
MBRL techniques, such as [82, 17, 81]. If only linear and constant bases are chosen, we will
require matrix multiplications of dimension 13 to update the controller for the quadrotor.
The runtime results reported in Fig. 5.2 for the quadrotor indicates a maximum process
time of 8ms for calculating the control.

Moreover, as mentioned RLS is already implemented in many online identification tech-
niques [103, 167, 170, 147]. Similarly, the runtime results in Fig. 5.2 confirm that RLS
updates can be efficiently done under 2ms.

Accordingly, the total latency added by the computations in the control loop will be at
most about 10ms. Therefore, the control frequency of 100Hz is achievable, which is enough
for controlling a wide range of quadrotors.

5.4 Numerical Results

In the simulation, we consider the nonlinear model (5.1) for the Crazyflie, where the
parameters are taken from [105] as listed in Table 5.1. The model is treated as a black box to
simulate the real-world implementation. This model is integrated by using a Runge–Kutta
solver.

m 0.33 [Kg] d 39.73× 10−3[m]

Ixx 1.395× 10−5[Kg×m2] CT 0.2025
Iyy 1.436× 10−5[Kg×m2] CD 0.11
Izz 2.173× 10−5 [Kg×m2] g 0.98[m/s2]

Table 5.1: The coefficients of the simulated Crazyflie

Through these simulations, we assume full access to the states. We then obtained the
state derivatives using a one-step backward approximation.

107

We performed the simulations in Python on a 2.6 GHz Intel Core i5, including the
3D graphics generated via the Vpython module [146], as shown in Fig.5.1. The sampling
rate is 66.6Hz (h = 15ms) for all the simulations. Accordingly, the control input value is
calculated with the same rate. In the learning process, to simulate the exact behavior of
Crazyflie, we integrate the continuous differential equations in sufficiently high precision.
However, we only allow measurements at time steps conforming to the sampling rate.
Moreover, the initial position is randomly chosen while the rest of states are set to zero.

The controller algorithm is run with the following settings defining the objective func-
tions and the bases

Q0 = diag([20, 20, 20, 0.8, 0.8, 0.8, 0, 0, 0, 0.4, 0.4, 0.04]),

R0 = 3.5× 10−7I4×4,Φ = {1, x}, γ = 0.4.

We choose xref = [0, 0, 3] meters and ψref = 30 degrees. In Fig. 5.3 and Fig. 5.4, the
attitude and position error of the quadrotor with respect to the reference are illustrated
within different runs, where we employed 3 pre-runs before starting the closed-loop learning.
A simulation video of the training is also uploaded at https://youtu.be/QO8Ql83qKFM.
Although the quadrotor shows unstable behavior in its very first runs as expected according
to Remark 12, it can achieve and preserve a stable hovering mode soon after. Fig. 5.5
denotes the model coefficients identified using RLS. In addition, it can successfully reach
the goal point after collecting 634 samples within 68 seconds of flying until the end of Run
#2.

5.5 Conclusion

In this chapter, by focusing on Crazyflie, we implemented the SOL learning algorithm to
learn the low-level control for quadrotors to fly and keep the hovering state in a goal position
point. To improve the runtime results of the learning, we implemented SOL with the RLS
algorithm that is more suitable for online applications. The simulation results, illustrated
rapid and efficient learning, where an initial model is obtained by random pre-runs then
the model was improved within different runs in a closed-loop form. Based on the flight
data and runtime results the approach can be employed to automate the control of the
quadrotor. In future work, we will employ the obtained results and the tracking extension
of SOL combined with a higher-level approach to achieve more complex objectives with no
knowledge of the dynamics.

108

https://youtu.be/QO8Ql83qKFM

0 1 2 3 4 5
t (sec)

3

2

1

0

1

2

3

M
od

el
 C

oe
ffi

cie
nt

s

Figure 5.5: The model coefficients, identified by RLS, are shown within a run of the system.

109

0 5 10 15 20 25 30
t (sec)

40000

45000

PW
M

1

0 5 10 15 20 25 30
t (sec)

42500
45000
47500

PW
M

2

0 5 10 15 20 25 30
t (sec)

40000

45000

PW
M

3

0 5 10 15 20 25 30
t (sec)

42500
45000
47500

PW
M

4

Figure 5.6: The PWM inputs of the quadrotor generated by the learned control.

110

0 5 10 15 20 25 30

10

0

10

20

Pa
ra

m
et

er
s

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

M
od

el
 E

rro
r

Figure 5.7: The parameters of the value function within a sample run together with the
prediction error of the learned model.

111

Chapter 6

Applications to Solar Photo-voltaic
Systems

The results presented in this chapter are published in [51].

6.1 Introduction

Solar power as a renewable source of energy has attracted worldwide attention in recent
years. Discussions regarding the maximization of solar energy accumulation have domi-
nated research in this field, and many efforts have been made on the development of PV
devices and their applications. Designing an effective control algorithm plays an impor-
tant role in developing an efficient solar PV system. To this objective, various algorithms,
known as Maximum Power Point Tracking (MPPT) methods, have already been presented
in the literature of power electronics.

Among the conventional MPPT methods, perturb and observe (P&O)[56], incremental
conductance algorithm [93, 148], and hill climbing algorithm (HC)[169] are the most favor-
able techniques. It has been shown that some of these approaches have advantages over
others in terms of implementation complexity or performance. Furthermore, they are all
easy to apply and hence, become more suitable for low-cost applications. Comparative re-
sults can be found in [49, 116, 138]. In spite of the simplicity of the conventional methods,
they have shown a slow response to changes in the ambient temperature and solar radiation
power [138]. Consequently, the deviation from the MPP of the system results in an extent
of power loss which is proportional to the size of the implemented solar array. Hence, for

112

relatively large solar arrays, in the trade-off between simplicity and performance, we tend
to give priority to the latter since the amount of energy saved by the implementation of
some elaborate techniques is appreciable enough to justify the extra cost brought.

The performance of MPPT methods can be analyzed by observing the operating point
behavior in two phases: the convergence phase and the steady-state phase. In the conver-
gence phase, the implemented control needs to be fast enough in its responses to imme-
diately lead the operating point to the MPP of the system. This can save a considerable
amount of energy when the system is exposed to a large-amplitude disturbance by the
surrounding environment. On the other hand, in the steady-state phase, the operating
point is constantly disturbed due to noises, model imperfections, and the structure of the
controller circuit. Hence, the operating point needs to be continuously supervised by a
high-performance control scheme to keep it within a desirable bound around the MPP.
Although the oscillations caused by inefficient controllers usually take place in a small
scale, they potentially waste a huge amount of energy in high-power implementations by
failing to tightly track the ideal MPP, and also by draining considerable power on non-ideal
switching components.

Soft computing techniques, such as fuzzy logic control, artificial neural networks, and
genetic algorithms are effective tools in dealing with nonlinear problems. Hence, as a rem-
edy of certain inherent drawbacks in conventional methods, numerous soft computing-based
algorithms have been implemented on solar PV systems[34, 157, 110]. These approaches
generally show improved results on the performance of MPPT control while each algorithm
has its own constraints. For instance, despite that fuzzy logic is easy to implement and
can provide a flexible design, it is widely accepted that designing fuzzy rules to satisfy a
particular performance measure normally needs a considerable amount of knowledge and
training; otherwise, using an inadequate number of membership functions will encourage
oscillations around MPP [138].

From a control systems point of view, solar PV systems can be modeled as a dynamical
system for which more complicated and efficient control techniques can be exploited in
comparison with the conventional MPPT methods. This provides many advantages in the
design and analysis of solar PV systems since there already exists a vast literature of control
systems that can be exploited to develop more efficient techniques (see, e.g., [99, 18, 36]).

In [141], a Sliding Mode Control (SMC) approach with a saturation functions has been
presented that guarantees stability of the MPP of the system. In this approach, a design
coefficient defining the sliding layer is chosen by trying different values and observing the
convergence and steady-state results to find the optimum value. Although it illustrates
improved results in the performance of the system in the nominal condition, the chattering

113

problem still remains a major drawback since the saturation function and the controller
gain chosen by trial and error cannot widely guarantee the performance for various settings
of the solar PV system and the surrounding environment.

The double integral of the tracking error term can be used for constructing the sliding
surface to eliminate steady-state error as well as to provide robust control responses against
uncertainties [156]. While this contributes to the improved performance of the controller,
it induces slow transient responses in the system. Hence, for tracking MPP of PV system,
[132] develops an altered double integral SMC to speed up the convergence phase and
alleviate the chattering effect. It stands to reason that, as an alternative method, the
second-order SMC has advantages over the classical SMC methods in dealing with nonlinear
systems. This justifies employing the second-order SMC in [145] by implementing a so-
called super-twisting algorithm. The approach is developed in [84] for further moderating
the chattering effect with the difference that, compared to [145], only one-loop control is
used in [84]. The simulation results presented in [84] illustrate improved responses almost
everywhere along the control signal. However, chattering effects can still be easily observed
in the output power signal.

While there exist various approaches presented in the literature for improving the per-
formance of the control in tracking the MPP, there is still no clear connection made between
the configuration of the controller implemented and the performance obtained. Hence, per-
formance analysis and defining the problem of maximizing the output power of PV systems
in optimal control framework still remain as a challenging problem. To preserve a uniform
quality in the performance of the system, a performance measure needs to be guaranteed.

In this chapter, we formulate and solve an optimal feedback control problem of solar PV
systems that potentially brings many benefits in the applications. To obtain the optimal
feedback control law, we consider a nonlinear affine model with a performance measure
including a cross-weighting term. Hence, in contrast with the previous approaches, the
performance analysis is additionally done by satisfying optimality conditions, which are
adapted for a set of equilibrium points based on the incremental conductance approach.
The obtained feedback controller, due to its suitable responses around the MPP, signifi-
cantly decreases the undesired oscillations. Considering that the performance of the solar
PV system is affected by the changing weather condition, we demonstrate the merits of
the proposed controller under changing ambient temperature and solar radiation power.

The remaining of the chapter is organized as follows. In the next section, we will
investigate the model details and parameters involved in the solar PV system and the
boost converter considered in this chapter. Furthermore, we will see how they are paired
together to let the control scheme regulate the operating point of the system as required.

114

Sections III and IV present the main results of this chapter. In Section III, we first
introduce an optimal control problem to minimize the deviation from the MPP of the
system. Then, we show that the optimal control law exists with respect to the defined cost
functional. Moreover, by modifying the formulated optimal control problem, we derive an
optimal voltage control for solar PV systems. Section IV addresses two main challenges in
controlling real-world solar PV systems. In the first subsection, we propose an algorithm
to realize the obtained control law without complete knowledge of the system parameters
and only by samples obtained from the output voltage and current of the PV system.
In the second subsection, we discuss the considerations for implementing the approach
under non-uniform insolation. In Section V, the simulation results are provided for both
model-based and model-free approaches, under uniform and non-uniform insolation.

A list of parameters used is given in Table 6.1.

Table 6.1: Nomenclature

Symbol Description

Iph Light-generated current
Is Reverse saturation current
n Ideality factor of PV cell
VT Thermal voltage

Np, Ns Parallel and series branches in PV module
Rsh, Rs Shunt and series resistance of PV module
Voc, Isc Open circuit voltage and short circuit current
L, C Inductor and capacitor of DC-DC converter
RL Parasitic resistance of the inductor
R0 Applied resistive load

Pa, Va, ia Power, voltage, and current of solar array
vC Output voltage of DC-DC converter
Vo Desired output voltage of DC-DC converter
kPID A vector of PID parameters

6.2 Problem Statement

This section formulates the control system and provides sufficient details on the model for
later use in the controller design procedure. As shown in Fig. 6.2, in order to control the

115

operating point of the system, a DC-DC boost converter can be used to couple the PV
array with the load. The following two subsections present the model for describing the
PV array and the boost converter, respectively.

6.2.1 PV Array Model

A solar PV array contains a number of PV modules. Suppose all the PV modules used in the
array have identical electrical characteristics. Likewise, it is assumed that the surrounding
environment affecting the solar panels, such as the ambient temperature, power density
of the solar radiation, and wind speed, do not change considerably from one module to
another.

Figure 6.1: The equivalent electrical model of the solar array

Fig. 6.1 illustrates the equivalent circuit used to model an array of the PV modules ar-
ranged in Np parallel branches, where each branch contains Ns modules in series. Applying
Kirchhoff’s current law at the top node results in

ia = NpIph −NpIs

(
exp(

Rsia
Np

+ Va
Ns

nVT
)− 1

)
− Ish, (6.1)

wherein Iph, Is, n and VT are the light-generated current, reverse saturation current, ideality
factor, and thermal voltage of the PV module, respectively. Moreover, considering the
equivalent shunt resistor Rsh and the series resistor Rs of the PV module in the circuit, we
can write the current flowing through the shunt resistor as

116

Ish =
Rsia + Np

Ns
Va

Rsh

. (6.2)

Hence, the output voltage Va of the PV array can be calculated in terms of the output
current ia as

Va = NsnVT ln

(
NpIph +NpIs − ia − Ish

NpIs

)
− Ns

Np

Rsia. (6.3)

Then the first order and the second-order derivative of PV array voltage with respect to
the output current can be computed as follows:

∂Va
∂ia

=
−NsnVT

NpIph +NpIs − ia − Ish
− Ns

Np

Rs, (6.4)

∂2Va
∂ia

2 =
−NsnVT

(NpIph +NpIs − ia − Ish)2
.

Note that, since the output power of the PV array is less sensitive to the changes in Rsh,
the dependence of Ish to Va is disregarded to simplify the computations of the derivatives
in (6.4). More details on the model of the PV array are provided in [159].

6.2.2 DC-DC Boost Converter

Figure 6.2: DC-DC boost converter used to interface the load to the solar array

Dynamical systems with a finite number of subsystems are generally known as switched
systems. In such systems, a switching strategy orchestrates the switching action among
these subsystems to ensure stability and performance. Switched affine systems introduce

117

an important class of switched systems with a constant input that brings much convenience
to design and application.

Consider the following model of the switched system

ẋ = Aσx +BσVa, (6.5)

y = Cσx,

where Aσ ∈ Rn×n, Bσ ∈ Rn and CT
σ ∈ Rn denote the system matrices. The active subsys-

tem is given by the piecewise-constant signal σ : [0,∞)→ {0, 1}. By choosing the current
of the inductor iL and the voltage of the capacitor vC as the states of the system, the state
vector becomes x = [iL vC]T . The input Va plays the role of the power source for the
system (6.5). As seen in the model of the PV array (6.3), this input depends on the state
since ia equals iL for the coupled DC-DC converter and the solar PV array. Moreover, Va
is affected by the changes in the light-generated current Iph and operating temperature T ,
considering that VT is related to the temperature in (6.3). However, since the input irra-
diance and temperature are slowly changing parameters compared to the switched current
flowing through the inductor, Va is considered as a function of the state only. Henceforth,
we regard Va : D → Ξ, where D ⊂ R2

+ and Ξ ⊂ R+ are domains of interest with Rn
+

denoting the n-dimensional positive-real space.

In this chapter, a boost converter is used to formulate the problem, while a similar
approach can be applied to different configurations of converters. Details on the design
and switched system model of DC-DC converters can be found in [123, 41, 122]. For a
typical boost converter, the switched affine model can be constructed by the following
system matrices:

A0 =

[
−RL/L 0

0 −1/R0C

]
, A1 =

[
−RL/L −1/L

1/C −1/R0C

]
,

B1 = B0 =

[
1/L

0

]
, C1 = C0 =

[
1 1

]
.

The load applied to the system is denoted by R0 ∈ Ω ⊆ R+. Moreover, L and C are positive
constants that denote the values of the inductor and the capacitor, respectively. In this
model, the inductor is supposed to be non-ideal, for which a parasitic resistance, indicated
by RL, is considered in series. Likewise, the leakage current of the output capacitor can
be modeled as a resistor in parallel combination with the output load; however, it is
disregarded in this model since the structure of the system matrices is not affected by that.

118

To obtain the PWM-controlled model of the system, the switched affine system is over-
approximated by the convex hull of the subsystems

ẋ = (1− u(t))(A0x +B0Va) + u(t)(A1x +B1Va),

where u(t) : [0,∞)→ [0, 1] gives the duty-cycle values. This results in the average model
of the system as

ẋ = u(t)g(x) + f(x, Va, R0), (6.6)

with x = [iL vC]T and

g(x) =

[
− 1
L
vC

1
C
iL

]
, f(x, Va, R0) =

[
−RL

L
iL + 1

L
Va

− 1
R0C

vC

]
,

where x := x(t) ∈ D ⊆ R2
+ for t ∈ [0,∞) and x(0) = x0. Moreover, f : D×Ξ×Ω → R2 and

g : D → R2 are vector-valued functions. It should be noted that, the problem is formulated
for inverted PWM generators, where, for instance, the sampled control u(tk) = 0 at kth
time step will keep the transistor in ON mode within t ∈ [tk, tk+1) for k ∈ IN. This can
be simply adapted for non-inverted PWM devices by again inverting the duty-cycle value
generated by the obtained control signal.

Furthermore, by the following substitution:

u(t) =
Va −RLiL

vC
+ ωc(t), (6.7)

the system dynamics can be rewritten as

d

dt

[
iL
vC

]
= ωc(t)

[
− 1
L
vC

1
C
iL

]
︸ ︷︷ ︸

g(x)

+

[
0

VaiL−RLi2L
vCC

− vC
R0C

]
︸ ︷︷ ︸

f(x,Va,R0)

, (6.8)

where the control ωc(t) ∈ W ⊆ R for t ∈ [0,∞) is chosen from the set of all admissible
controls Γ. The first part of control (6.7) can be seen as an equivalent control that requires
diL
dt

= 0 for (6.6). Furthermore, the simple linear dependence of diL
dt

on the control input
ωc(t) in (8) facilitates the stability analysis done later in the main results.

After modeling the switched system using a nonlinear affine system, in the next step,
we exploit an inverse optimal control approach (see e.g. [118, 16, 70, 69]) to pose and solve
an optimal control problem for tracking the MPP of the solar PV system.

119

6.3 Optimal Control of PV Array

In this section, we consider a particular form of the cost functional to regulate the per-
formance of the solar PV system. We first present conditions needed for optimality and
stability of (6.8) with respect to a set of equilibrium points and a given performance mea-
sure. By formulating an optimal MPPT problem, we then confirm that the stability and
optimality conditions obtained indeed hold for the obtained control law.

Lemma 5. Consider the system (6.8) with the cost functional

J(x0, ωc(·)) = lim
T→∞

∫ T

0

L
(
ξ
(
x, Va(x)

)
, ωc(t)

)
dt, (6.9)

where x is the solution starting from x0 ∈ D, and L : R ×W → R is the running cost.
Moreover ξ : D × Ξ → R defines the equilibrium set as

E = {x ∈ D : ξ(x, Va(x)) = 0}. (6.10)

Suppose there exists a C1 function V : D × Ξ → R and a control law ω∗c = φ(x, Va(x))
with φ : D → W such that

V(x, Va(x)) = 0 for x ∈ E, (6.11)

V(x, Va(x)) > 0 for x ∈ D, x /∈ E, (6.12)

φ(x, Va(x)) = 0 for x ∈ E, (6.13)

VT
x [φ(x, Va(x))g(x) + f(x, Va(x), R0)] < 0

for x ∈ D, x /∈ E, R0 ∈ Ω,
(6.14)

H
(
x, Va(x), φ(x, Va(x))

)
= 0 for x ∈ D, R0 ∈ Ω, (6.15)

H
(
x, Va(x), ωc

)
≥ 0 for x ∈ D, ωc ∈ W, R0 ∈ Ω, (6.16)

where Vx and H denote, respectively, the partial derivatives with respect to the state as

Vx :=
∂V

∂x
+
∂V

∂Va

∂Va
∂x

,

and the Hamiltonian defined by

H
(
x, v, ω) =L

(
ξ(x, v), ω

)
+ VT

x

(
ωg(x) + f(x, v, R0)

)
.

120

Then, with the feedback control rule, the solutions of (6.8) converge to the set E. Moreover,
the feedback control rule minimizes the performance functional in the sense that

J(x0, ω
∗
c (·)) = min

ωc∈Γ
J(x0, ωc(·)), (6.17)

where

J
(
x0, ω

∗
c (·)
)

= V(x0, Va(x0)). (6.18)

Proof. Conditions (6.11) to (6.14) guarantee attractivity of the set E since V is a Lyapunov
function of the system (6.8).

The derivative of the Lyapunov function is given by

V̇(x, Va(x)) = VT
x

(
ωcg(x) + f(x, Va(x), R0)

)
, (6.19)

then we add the running cost to both sides of (6.19) to obtain

L
(
ξ(x, Va(x)), ωc(t)

)
=L
(
ξ(x, Va(x)), ωc(t)

)
− (6.20)

V̇(x, Va(x)) + VT
x (ωc(t)g(x) + f(x, Va(x), R0)) .

By integrating both sides from 0 to T and letting T →∞, we obtain

J(x0, ωc(·)) = lim
T→∞

∫ T

0

[L
(
ξ(x, Va(x)), ωc(t)

)
− V̇(x, Va(x))

+ VT
x

(
ωc(t)g(x) + f(x, Va(x), R0)

)
]dt

= lim
T→∞

∫ T

0

[−V̇(x, Va(x))

+H
(
x, Va(x), ωc(t)

)
]dt

=V(x0, Va(x0))− lim
T→∞

V
(
xT , Va(xT)

)
+

lim
T→∞

∫ T

0

H
(
x, Va(x), ωc(t)

)
dt

≥ V(x0, Va(x0)), (6.21)

where this concludes (6.17) by defining the Hamiltonian and using (6.16) and (6.18).

121

6.3.1 Maximum Power Point Tracking Control

The goal of MPPT techniques is to maximize the output power of the PV array which is
measured as below

Pa = Vaia.

The output power is obviously a function of the state and the state-dependent input of the
switched system. Looking at (6.3), the input Va is only related to the first state, where
by considering the average model, we have ia = iL. Hence, according to the incremental
conductance approach [93, 148], the stationary point of the output power with respect to
the inductor current, i.e. points such that

∂Pa
∂iL

=
∂Va
∂iL

iL + Va = 0, (6.22)

defines a set of equilibrium points that addresses the MPP of the solar array. By this
knowledge, one can observe that choosing (6.9) in the following form

J(x0, ωc(·)) =

lim
T→∞

∫ T

0

[L1(ξ) + ωc(t)L2(ξ) + Sωc(t)
2]dt, (6.23)

along with the appropriate choices of functions L1, L2 : R → R penalize the deviation
of the operating point of PV array from ξ = ∂Pa

∂iL
= 0, which guarantees the maximum

power point, and simultaneously regulates the control input. In (6.23), L1 and L2 can be
written in terms of x and Va by using (6.22), and S is a positive constant given by design
considerations.

As declared in [70], it is evident that involving the cross-weighting term, with L2 6=
0, not only brings extra flexibility into the design, but also illustrates better transient
performance in terms of peak overshoot over the case L2 = 0.

Remark 13. The uniform irradiance only leads to one maximum point in the power-
voltage (P-V) characteristic curves that can be located with minimizing the defined cost
functional and it is known to be the global MPP of the system. However, under non-
uniform irradiance, only reaching a local MPP is guaranteed. To overcome the resulting
non-convexity, more actions are needed that will be discussed in detail later in Section IV.

Having defined the cost functional, we need to solve the minimization problem (6.17) to
achieve the control law, which optimally leads the operating point of the system to MPP.

122

Theorem 6. Consider the nonlinear affine dynamical system (6.8) and performance mea-
sure (6.23) with functions L1, L2 : R→ R chosen respectively as

L1(ξ) =
p2

4S
(ξ̄ − 1)2ξ2, L2(ξ) = pξ, p > 0, (6.24)

where

ξ =
∂Pa
∂iL

, ξ̄ = (
∂2Va
∂i2L

iL + 2
∂Va
∂iL

)(
vC
L

). (6.25)

Then, by the choice of the inductor L with 0 < RL < limiL→0

{
|∂Va
∂iL
|
}

and the feedback

control rule (6.7) constructed by

ω∗c =
1

2S
pξ(ξ̄ − 1), (6.26)

the solutions of the system (6.8) converge to the set E defined by (6.10) with (6.25), and
the performance measure (6.23) is minimized, for a given positive constant S.

Proof. As stated, the maximum power point is given by the stationary point of the output
power with respect to the state iL as in (6.22). Thus, for tracking the MPP, we need to
guarantee that the set E defined by choosing ξ = ∂Pa

∂iL
is attractive. Therefore, regarding

the structure of the running cost, the optimal value function is supposed to possess the
following form

V =
1

2
p(
∂Pa
∂iL

)2 =
1

2
p(
∂Va
∂iL

iL + Va)
2. (6.27)

According to the HJB equation and using the optimal value function defined in (6.27),

0 = inf
ωc(·)∈Γ

{
H(x, Va, ωc) = (6.28)

L(ξ, ωc) + VT
x (ωcg(x) + f(x, Va, R0))

}
,

holds along the optimal path given by the optimal control law chosen from the set of all
admissible controls Γ, where L(ξ, wc) is the running cost chosen as in (6.23). With regard
to (6.8) and (6.27), the optimal value function is independent of vC . Also, vC does not
appear in (6.3) and (6.4). Therefore, V only changes along iL, i.e.,

Vx =

 ∂V
∂iL

∂V
∂vC

 =


∂V
∂iL

+ ∂V
∂Va

∂Va
∂iL

+ ∂V

∂(∂Va
∂iL

)

∂
∂iL

(∂Va
∂iL

)

0

 (6.29)

123

=

[
p(∂Va

∂iL
iL + Va)(

∂2Va
∂i2L

iL + 2∂Va
∂iL

)

0

]
.

Now, by substitution of the optimal value and the running cost, the Hamiltonian is
obtained as

H(x, Va, ωc) = L1(ξ) + ωcL2(ξ) + Sωc
2+ (6.30)

VT
x (wcg(x) + f(x, Va, R0))

= L1(ξ) + ωcL2(ξ) + Sωc
2 +

∂V

∂iL
(
−vCωc
L

)+

∂V

∂vC
(

1

C
iLωc +

VaiL −RLi
2
L

vCC
− vC
R0C

)

= L1(ξ) + ωcL2(ξ) + Sωc
2+

p(
∂Va
∂iL

iL + Va)(
∂2Va
∂i2L

iL + 2
∂Va
∂iL

)(
−vCωc
L

).

Then, the optimal control law minimizing the given Hamiltonian is obtained by solving
the following equation

∂H(x, Va, ωc)

∂ωc
= L2(ξ) + 2ωcS+

p(
∂Va
∂iL

iL + Va)(
∂2Va
∂i2L

iL + 2
∂Va
∂iL

)(
−vC
L

) = 0.

As a result, the optimal control law is given by

ω∗c =
−1

2S

[
L2(ξ)+ (6.31)

p(
∂Va
∂iL

iL + Va)(
∂2Va
∂i2L

iL + 2
∂Va
∂iL

)(
−vC
L

)

]
.

To shorten the computations, an intermediary function ξ̄ is defined as (6.25), by which
equations (6.30) and (6.31) become

H(x, Va, ωc) = L1(ξ) + ωc(L2(ξ)− pξξ̄) + Sω2
c ,

ω∗c =
−1

2S
(L2(ξ)− pξξ̄), (6.32)

124

respectively. Furthermore, the substitution of ω∗c in the Hamilton-Jacobi-Bellman (HJB)
equation yields

inf
ωc(·)∈Γ

{H(x, Va, ωc)} = H(x, Va, ω
∗
c) (6.33)

= L1(ξ)− 1

2S
(L2(ξ)− pξξ̄)2+

1

4S
(L2(ξ)− pξξ̄)2

= L1(ξ)− 1

4S
(L2(ξ)− pξξ̄)2.

To determine the optimal control input, it only remains to choose L1 and L2 functions
such that the optimality and stability conditions are satisfied as required in Lemma 5.
Regarding the structure of the value function in (6.27), conditions (6.11) and (6.12) hold.
Furthermore, to guarantee the asymptotic stability, we need to verify (6.14) for the obtained
feedback control. Using (6.8) and (6.29), V̇ is obtained as the following:

V̇ = VT
x (wcg(x) + f(x, Va, R0))

=

[
p(∂Va

∂iL
iL + Va)(

∂2Va
∂i2L

iL + 2∂Va
∂iL

)

0

]T
(
ωc

[
− 1
L
vC

1
C
iL

]
+

[
0

VaiL−RLi2L
vCC

− vC
R0C

])

= p(
∂Va
∂iL

iL + Va)(
∂2Va
∂i2L

iL + 2
∂Va
∂iL

)(
−vCωc
L

). (6.34)

With ξ̄ defined in (6.25) and the optimal control law (6.32) this results in

V̇|ω∗
c

= −pξξ̄
(
−1

2S
(L2(ξ)− pξξ̄)

)
=

1

2S
pξξ̄L2(ξ)− 1

2S
(pξξ̄)2, (6.35)

wherein p and S are positive constants. Moreover, according to (6.25), the sign of ξ̄
depends on ∂Va

∂iL
and ∂2Va

∂i2L
which both are known to be negative values, considering electrical

characteristics of solar PV cells. See, for instance, the current-voltage characteristic curves
of a solar array in Fig. 6.3 and Fig. 6.4, wherein the voltage is strictly decreasing and
concave-downward with respect to the current. As a result, ξ̄ only takes negative values.

125

In (6.35), the second term is obviously negative definite; however, to decide the sign of V̇ ,
we still need to inspect the values taken by ξ and L2 that can be any positive or negative
real values. To deal with this undetermined situation, let L2 as in (6.24), then,

V̇|ω∗
c

=
1

2S
(pξ)2ξ̄ − 1

2S
(pξξ̄)2 < 0

is obtained that is clearly negative definite with ξ̄ < 0 for x /∈ E, and satisfies (6.14).
Moreover, this completes the optimal control input as in (6.26) by which (6.13) is also
verified for the set E defined in (6.10).

Now, we choose L1 as in (6.24) to satisfy the HJB equation. With the substitution of
L1 and L2, it follows from (6.33) that

H(x, Va, ω
∗
c) =

p2

4S
ξ2(ξ̄ − 1)2 +

1

2S
pξ(ξ̄ − 1)(pξ − pξξ̄)+

S

(
1

2S
pξ(ξ̄ − 1)

)2

=
p2

4S
ξ2(ξ̄ − 1)2 − p2

2S
ξ2(ξ̄ − 1)2 +

p2

4S
ξ2(ξ̄ − 1)2

= 0. (6.36)

Thus, the HJB condition of optimality holds as in (6.15). In the last step, we need to inspect
the Hamiltonian given by (6.32) to assure positivity for all admissible control ωc ∈ W , as
required in (6.16),

H(x, Va, ωc) = L1(ξ) + ωc(L2(ξ)− pξξ̄) + Sωc
2

=
p2

4S
ξ2(ξ̄ − 1)2 + ωc(pξ − pξξ̄) + Sωc

2

=

(
p

2
√
S
ξ(ξ̄ − 1)

)2

− ωcpξ(ξ̄ − 1) + (
√
Sωc)

2

=

(
p

2
√
S
ξ(ξ̄ − 1)−

√
Sωc

)2

≥ 0. (6.37)

This completes the conditions needed to be verified in Lemma 5. Hence, the obtained feed-
back control also satisfies optimality conditions and regulates the performance of MPPT
controller with the performance measure given by (6.23).

126

Furthermore, the equilibrium currents of the closed-loop system (6.8), with control law
(6.26), can be obtained by using the first state equation of the system (6.8):

ieqL =

{
−Va/∂Va∂iL

,(
L
vC
− 2∂Va

∂iL

)
(1/∂

2Va
∂i2L

),
(6.38)

where the latter is obviously negative and out of D, by negativity of the partial derivatives.
Hence, only the first equilibrium current belongs to D. Plugging in the valid equilibrium
current in the second state equation of the system (6.8) yields a relation for the equilibrium
voltage of the capacitor as

veqC = ±

√
−R0(RL + ∂Va

∂iL
)

∂Va
∂iL

Va. (6.39)

Similarly, one of the equilibrium voltage relations is always negative and out of D. Thus,
for a fixed R0, the operating point of the system converges to the only valid equilibrium
point

(ieqL , v
eq
C) = (−Va/

∂Va
∂iL

,−

√
−R0(RL + ∂Va

∂iL
)

∂Va
∂iL

Va), (6.40)

which takes values in E for different R0 ∈ Ω.

Accordingly, to achieve a positive real equilibrium voltage, we also need, the design
specification of the inductor satisfy 0 < RL < |∂Va∂iL

|, for any x ∈ D. Hence, a practical and

safe choice of the upper bound for RL is infx∈D

{
|∂Va
∂iL
|
}

= limiL→0

{
|∂Va
∂iL
|
}

, which can be

estimated from the voltage-current characteristic curve or experiment results of the solar
PV array near open-circuit state.

Remark 14. Considering relation (6.40), the equilibrium current does not directly depend
on the output load. Hence, the proposed control law can independently follow the MPP
regardless of the applied load, while the equilibrium voltage can be chosen by only regulating
R0. In the solar PV array connected to the AC grid, the load is usually controlled by a
separate PI controller to regulate the output voltage vC at a fixed level which is vital for
correct power injection to the grid. Moreover, to ensure the valid operation of the boost
converter, we need vC > Va. This suggests a lower bound to the applied load as

R0 > −
(
∂Va
∂iL

)2

/(RL +
∂Va
∂iL

), (6.41)

127

for any x ∈ D, which can be used to make an estimation of Ω.

6.3.2 Reference Voltage Tracking Control

In the previous subsection, we proposed a framework to optimally control the solar PV
array to gain the maximum power. As a second application of the proposed framework,
we design an optimal feedback control rule to regulate the output voltage of the solar PV
array to a reference value.

Corollary 1. Consider the nonlinear affine dynamical system (6.8) and performance mea-
sure (6.23) with L1 and L2 chosen respectively as (6.24), where

ξ = Va − Vref , ξ̄ =
∂Va
∂iL

vC
L
. (6.42)

Then, by the feedback control rule (6.26) constructed by (6.42) the solutions of the sys-
tem (6.8) converge to the set E defined by (6.10), and the performance measure (6.23) is
minimized.

Proof. Regarding the structure of the running cost, the optimal value function is supposed
to possess a quadratic form as

V =
1

2
p(Va − Vref)2. (6.43)

By taking the derivative, we obtain

V̇ = VT
x (wcg(x) + f(x, Va, R0))

=

[
p(Va − Vref)(∂Va∂iL

)

0

]T (
ωc

[
− 1
L
vC

1
C
iL

]
+

[
0

VaiL−RLi2L
vCC

− vC
R0C

])
= p(Va − Vref)(

∂Va
∂iL

)(
−vCωc
L

). (6.44)

For the closed loop system, by substituting the control rule (6.26) constructed by (6.42)
the following can be concluded

V̇ =
p2

2S
(Va − Vref)2(

−∂Va
∂iL

vC
L

)︸ ︷︷ ︸
(+)

(
∂Va
∂iL

vC
L
− 1)︸ ︷︷ ︸

(−)

< 0.

128

This is obtained by the fact that the first partial derivative is always negative that also
makes the last term negative while the other terms multiplied are all positive. Hence, the
set E defined by choosing ξ as in (6.42) is attractive. The rest is followed in the similar
way as the proof of Theorem 6 by defining Hamiltonian as (6.30) with the choices of ξ
and ξ̄ as in (6.42), by which, in addition, conditions (6.15) and (6.16) of the Lemma 5 are
satisfied.

While the control rule obtained can be employed to regulate the output voltage of
the solar PV array in various applications, in the next section and later in the simulation
results, we will see how it is particularly useful in partial shading condition.

Remark 15. It should be noted that the control objective is to control the output voltage
of the PV array, which is different than the goal of MPPT controller obtained in the last
subsection. Hence, both parameters p and S may be independently adjusted for each case.

Remark 16. Similar to [84] and [141], the proposed approach can be considered as a model-
based control approach since the partial derivatives appeared in the control rule depend on
the model parameters as in (6.4). In the following section, we introduce a procedure,
according to the obtained optimal scheme, to develop a model-free control by approximating
the partial derivatives. In addition, we combine the results of Theorem 6 and Corollary 1
to deal with the partial shading phenomenon as a well-known imperfection in the operation
of real-world PV arrays.

6.3.3 Piecewise Learning Control

Consider the following system

d

dt

 iLvC
ξ

 =

− 1
L
vCu(t)− RL

L
iL + 1

L
Va

1
C
iLu(t)− 1

R0C
vC

d
dt

(∂Va
∂iL
iL + Va)

 (6.45)

that is constructed by the average model of the solar PV system (6.6), augmented with ξ
as the third state. It should be noted that, the states iL and vC can be directly measured.
In addition, since we can measure Va, then ξ can be approximated. The only concern is
obtaining the partial derivative term that can be also obtained by measurements done.
This will be discussed in detail in the next section.

Now, this nonlinear system contains the DC-DC converter’s dynamics, the PV array
model through function Va, and ξ which can be used to reach the MPP. Let us assume

129

that we do not have access to the parameters of this system that is indeed a common
scenario in real-world applications. Hence, we need to approximate such system by only

our observations of
[
iL vC ξ

]T
. The problem formulated fits best in the piecewise learning

framework presented in Chapter 4. Accordingly, we use the following model to approximate
this unknown system.

ẋ = WσΦ(x) +
m∑
j=1

WjσΦ(x)uj + dσ, (6.46)

where Wσ and Wjσ ∈ Rn×p are the matrices of the coefficients for σ ∈ {1, 2, . . . , nσ} and
j ∈ {1, 2, . . . ,m}, with a set of differentiable bases Φ(x) = [φ1(x) . . . φp(x)]T , and nσ
denoting the total number of pieces.

Considering that the MPP is given by ξ = 0, to set up a learning MPPT controller, it
only remains to choose Q in the control objective (2.2) in a way that the third component
of the state is penalized.

6.4 Application Considerations

In this section, we address two main challenges of establishing maximum power point
tracking control in real-world applications.

6.4.1 Partial Derivative Approximation Procedure

In the optimal approach proposed in the previous section, it is supposed that the exact
values of partial derivatives, given by (6.4), are available at any t ∈ R+. However, in
the real-world implementation of PV arrays, there exist numerous parameters affecting the
output power characteristics of the PV array that cannot be directly measured or estimated.
In the literature, some effort has been made on online parameter identification of solar PV
arrays, while application of the MPPT methods using only the output voltage and current
measurements of the PV array is often preferred. This is because of their simplicity and
robustness while using no extra knowledge of the surrounding environment and electrical
characteristics of the solar cell, which make them less expensive for applications as well.

To set up the presented optimal control approach, we only need the partial derivatives
in (6.4), which can be obtained approximately by using the sampled output voltage and
output current of the PV array. Consider the output current ia, the light-generated current

130

Iph and the ambient temperature T as three major parameters affecting the output voltage
of the PV array, given in (6.3). Compared to the output current, the solar irradiation
and ambient temperature are changing slowly. Hence, it is assumed |dia| � |dIph| and
|dia| � |dT |. Then the rate of changes of the output voltage of the array is approximated
for sufficiently small |dt| as

dVa
dt
' ∂Va

∂ia

dia
dt
,

and this yields an estimation of the partial derivative as

∂Va
∂ia
' dVa

dt
/
dia
dt
. (6.47)

Remark 17. This can be considered as a strong assumption applied to the problem that
might adversely affect the performance of the system when the rate of changes in the solar
irradiation and the ambient temperature is relatively high. However, since in the realistic
weather condition, the irradiation and temperature inputs will eventually reach a stable
condition with a tolerable rate of changes, the controller will also be able to survive from
sudden disturbances and retrieve the track of the MPP in a short time.

Moreover, the second-order derivative can be similarly written as:

d2Va
dt2

=
d

dt
(
dVa
dt

)

' ∂

∂ia

(
∂Va
∂ia

dia
dt

)
dia
dt

=

(
∂2Va
∂ia

2

dia
dt

+
∂Va
∂ia

∂

∂ia
(
dia
dt

)

)
dia
dt

=
∂2Va
∂ia

2

(
dia
dt

)2

. (6.48)

This is obtained using the fact that the derivative of the output current is independent
of the output current, according to the first state equation of the system (6.6). Then the
second-order partial derivative becomes

∂2Va
∂ia

2 '
d2Va
dt2

/

(
dia
dt

)2

, (6.49)

as dt → 0. For the implementation of the proposed approach, the values given by (6.47)
and (6.49) are needed to be calculated at each time sample. Thus, for a sufficiently small

131

sampling time τ = tk − tk−1, (6.47) and (6.49) can be measured at t = tk respectively as

∂Va
∂ia

∣∣∣∣
t=tk
'
(
V k
a − V k−1

a

τ

)
/

(
ika − ik−1

a

τ

)
=

∆V k
a

∆ika
,

∂2Va
∂ia

2

∣∣∣∣
t=tk
'
(

∆2V k
a

τ 2

)
/

(
∆ika
τ

)2

=
∆V k

a −∆V k−1
a

(∆ika)
2 , (6.50)

where

∆ika = ika − ik−1
a , (6.51)

∆V k
a = V k

a − V k−1
a ,

∆V k
a −∆V k−1

a = V k
a − 2V k−1

a + V k−2
a .

Hence, while the division by ∆ia is allowed, the relations in (6.50) approximate the partial
derivatives required for constructing the feedback control. It is worth noting that the
signals obtained in (6.51) may be prone to high-frequency noises in applications. However,
considering the smooth properties of (6.4), we can safely employ low-pass filters as long as
they do not induce slow responses.

In the convergence phase, since the inductor current is strictly increasing or decreasing
toward its steady-state value within a period of time, the chance to meet ∆ia → 0 is
sufficiently low. Therefore, the approximations done by the divisions in relations (6.50)
are expected to be valid until the steady state is achieved. In other words, the feedback
controller supplied by these approximations will be able to converge to the MPP.

Furthermore, the performance of the controller highly depends on the steady-state
responses as well, where oscillations of iL around its steady-state value result in some
stationary points of iL that make the denominator ∆ia → 0. Let κ > 0 be the minimum
value allows dividing by, that is chosen by design considerations. Then, based on the
second derivative in (6.51), |∆ia| can take at least

√
κ to yield a valid division. Hence,

relations (6.50) are used as long as ∆ia is greater than
√
κ. Otherwise, the samples are

accumulated by Σ∆i, Σ∆V , and Σ∆2V , without any update done in the approximation
values. Afterwards, once the condition |Σ∆i| >

√
κ is met, the divisions are done and the

approximation values are updated by the accumulated samples.

As stated, the technique established for the approximation of the partial derivatives
relies on the magnitude of changes in iL. If the controller chooses to let this current rest for
a while, there will be no longer updates on the approximation values as well. Thus, it gives

132

the operating point the opportunity to diverge from MPP as far as possible. In other words,
a minimum perturbation is always required on iL to perform a valid approximation and to
decide a suitable control input as quickly as possible. Therefore, when the amplitude of
changes on iL do not satisfy the condition |∆ia| >

√
κ, a constant positive or negative value,

in accordance with the sign of changes on iL, is added to the control input to encourage the
perturbations. This procedure is illustrated in Algorithm 1, where the approximated values
are only updated when the condition is satisfied; otherwise, the samples are accumulated
for future use, and a small perturbation is continuously added to the PWM value in each
iteration.

In the simulation results, the proposed algorithm will be implemented to control a
sample solar PV array under uniform and non-uniform insolation.

6.4.2 Partial Shading Effect

Partial shading phenomenon is widely studied in the literature as one of the factors re-
sulting in current-voltage characteristic curve mismatching among PV modules. Although
non-uniform insolation caused by partially shaded PV modules is known as the most likely
scenario, there exist other possible imperfections, such as the production tolerance, accu-
mulated dust, and ageing ([124, 149]), that can promote the mismatching effect.

As shown in Fig. 6.12 and Fig. 6.13, the mismatching in current-voltage (I-V) curves
caused by partial shading effect leads to some local maxima in the P-V characteristic curve
of the solar array. Consequently, conventional MPPT methods, such as P&O, incremen-
tal conductance, and HC algorithms, as well as control system approaches, such as SMC,
second-order SMC, and double integrator control, possibly fail in tracking the global max-
imum since they search locally by following the direction that increases the output power.
Hence, a higher level control is required to systematically [19] or randomly [153] switch
among the local areas to search for the greatest MPP of the solar array. In this regard,
some approaches are already presented in the literature, such as power increment technique
[90], load-line MPPT [88, 75], and instantaneous operating power optimization approach
[30], that exploit one of the conventional methods at some stage to identify the local MPP
corresponding to the current area of interest (for more details see [19]). Therefore, to
boost the performance of these algorithms, the control rule suggested by Theorem 6 can
be implemented as an alternative to the conventional methods and previously presented
control system approaches.

The proposed optimal control framework can be combined by algorithms presented
in the literature to tackle the mismatching effect appeared in non-uniform insolation. In

133

Algorithm 1

1: procedure Approximation of partial derivatives
Input:

2: Samples obtained from ia and Va;
Output:

3: ∂Va
∂ia

∣∣
tk

, ∂2Va
∂ia2

∣∣
tk

;
Initialization:

4: Choose ε, κ > 0;
5: Set Σ∆i,Σ∆V ,Σ∆2V = 0;
6: while (true) do
7: Read samples ika, V

k
a ;

8: Update ∆ika, ∆V k
a and ∆2V k

a by (6.51);
9: if |∆ia| >

√
κ then

10: Update ∂Va
∂ia

∣∣
tk

, ∂2Va
∂ia2

∣∣
tk

using (6.50);
11: else
12: Σ∆i := Σ∆i + ∆ika;
13: Σ∆V := Σ∆V + ∆V k

a ;
14: Σ∆2V := Σ∆2V + ∆2V k

a ;
15: if |Σ∆i| >

√
κ then

16: Update:
17: ∂Va

∂ia

∣∣
tk
' Σ∆V

Σ∆i
;

18: ∂2Va
∂ia2

∣∣
tk
' Σ∆2V

(Σ∆i)2 ;
19: Reset Σ∆i,Σ∆V ,Σ∆2V = 0;
20: else
21: Add perturbation:
22: ωc := ωc + εSign(Σ∆i);
23: end if
24: end if
25: end while
26: end procedure

134

this chapter, we exploit the load line technique together with the optimal voltage control
obtained in Corollary 1 to relocate the operating point after the partial shading event. In
contrast with [75], to implement [88], additional circuits are required to measure Voc and
Isc online. Hence, we compose the main controller by the following control rules:

Controller One : (6.7) with (6.26) using (6.25),

Controller Two : (6.7) with (6.26) using (6.42), (6.52)

where the controller choice is governed by Algorithm 2 that exploits the load-line technique
in [75]. A graphical representation of the approach together with the simulation results
will be provided in the next section.

Algorithm 2

1: procedure Control scheme in partial shading
Input:

2: Samples obtained from ia and Va;
Output: Sub-controller chosen from (6.52).

3: Initialization:
4: Choose ς > 0;
5: Define Vref = 0, Controller = Controller One;
6: while (true) do
7: Read samples ika, V

k
a ;

8: if (partial shading condition) then
9: Vref = NsVoc

NpIsc
ika;

10: Controller = Controller Two;
11: while (|V k

a − Vref | > ς) do
12: Read sample V k

a ;
13: end while
14: Controller = Controller One;
15: end if
16: end while
17: end procedure

6.5 Simulation Results

To assess the proposed approach under a realistic condition, the Canadian Solar CS6X-
335M-FG module [29] has been simulated in MATLAB/Simulink R© with the obtained con-

135

trol rule to generate the maximum power in different weather conditions. This module
contains 72 solar cells and the electrical characteristics were listed in Table 6.2. In this
simulation, the PV array is composed by 12 modules placed in 6 parallel branches where
there exist 2 modules in series at each branch. As illustrated in Fig. 6.2, a DC-DC boost
converter is used to regulate the load applied to the PV array that provides the control
over the operating point of the solar array.

Control input (6.7) is constructed by the optimal control law obtained in (6.26). Ac-
cording to the cost functional (6.23) defined by (6.24), increasing S penalizes the control
effort. Moreover, by looking at (6.26), one can observe that only the proportion of S and
p appeared in the control rule. Hence, by arbitrarily fixing p, which scales the value func-
tion, and by relatively changing S, the control parameters corresponding to a desirable
performance can be obtained. Regarding Remark 15, for each of Controllers (6.52), the
parameters are chosen as [S, p] = [5.88, 1× 10−5] and [S, p] = [1, 1× 10−2], respectively.

Since the average model of the converter was considered, the continuous value given by
the control law needs to be converted back into a quantized signal that complies with the
number of subsystems. Therefore, any value given by u(t) ∈ [0, 1] is considered as a duty
cycle to constantly generate a pulsed signal to drive the switch within a particular period
of time which depends on the frequency chosen for PWM. Moreover, the output load is
controlled by a PI controller to regulate the output voltage vC to a fixed DC voltage level
Vo. For PV arrays connected to AC grid, this can be replaced by a DC-AC inverter. A
schematic diagram of the system is given in Fig. 6.15.

In this simulation, the parameters of the boost converter are set to have the following
values: L = 0.2mH, RL = 1Ω, and C = 2500µF . Also, switching components are chosen
such that for the diode we have VOn = 0.6V, on resistance= 0.3Ω, and off conductance=
10−8Ω−1, and for the switch, on resistance = 10−2Ω, and off conductance= 10−6Ω−1. The
PWM frequency is set to be 65kHz, where the duty cycle value is updated by the controller
every 0.1ms. Moreover, we set kPID = [6, 10, 0]. The desired output voltage level is
assumed to be Vo = 120V for any part of the simulations, unless explicitly mentioned
otherwise.

6.5.1 Model and Control Verification

Since the function of solar PV systems is mainly affected by the changes in the input
irradiance and temperature, the performance of the proposed nonlinear optimal control
(NOC) approach is investigated by changing these parameters. Fig. 6.3 denotes the output
results of the simulated solar array by changing the irradiance power from 400 to 1000

136

Table 6.2: Electrical data of the CS6X-335M-FG module[29]

Under STC (1000 W/m2 and 25◦C) Value

Nominal Max. Power (Pmax) 335 W
Open Circuit Voltage (Voc) 46.1 V
Short Circuit Current (Isc) 9.41 A

Temperature Coefficient (Pmax) -0.41 % / ◦C
Temperature Coefficient (Voc) -0.31 % / ◦C
Temperature Coefficient (Isc) 0.053 % / ◦C
Nominal Module Operating

Temperature (NMOT) 43 ± 2 ◦C

W/m2. Similarly, the next set of graphs in Fig. 6.4 is obtained by changing the ambient
temperature from 5◦C to 65◦C. In both figures, the system starts up from the rest situation,
i.e. x = 0. Then, the operating point continues moving on the I-V and P-V characteristic
curves determined by the input irradiance and temperature, until it reaches its MPP. The
system operates around the MPP while the input does not change. Once the input starts
moving to the next value on a ramp, the controller also regulates the operating point to the
corresponding MPP of the system. Hence, it is evident in these figures that the proposed
controller can successfully lead the operating point to the MPP and track it in the presence
of a disturbance applied on the temperature and irradiance.

6.5.2 Comparative Results

In the comparison results of the system, the obtained control law is compared with two
recent approaches targeting on the performance improvement of the generated control
signal: sliding mode control [141] and second-order sliding mode control[84]. For a fair
comparison, the boost converter and solar PV system were chosen to remain the same for
all simulated approaches.

As the first scenario, we generated a random fast-changing signal as the input irradiance
of the system while the operating temperature is fixed at 25◦C. This signal is shown in
Fig. 6.7(d). By running the simulation with these inputs, the output power is captured
for the optimal control and the other two approaches in Fig. 6.8. In the second scenario,
the same was done by fixing the input irradiance at 800 W/m2 and applying a changing
temperature, as shown in Fig. 6.9(d).

137

0 20 40 60 80 100
Voltage (V)

0

2000

4000

Po
w

er
 (w

at
t)

 W/m 2 400
 W/m 2 600
 W/m 2 800
 W/m 2 1000

0 20 40 60 80 100
Voltage (V)

0

20

40

60

C
ur

re
nt

 (A
)

 W/m 2 400
 W/m 2 600
 W/m 2 800
 W/m 2 1000

Figure 6.3: Output results of the simulated solar array by changing the irradiance power
from 400 to 1000 W/m2, where the solid lines represent the track of the MPP obtained by
using the proposed NOC approach.

By the output power comparison results, in Fig. 6.8 and Fig. 6.10, we can observe
the SMC control reaches to the MPP faster than the other approaches while it shows
a constant chattering effect almost everywhere. The second-order SMC shows improved
results on the chattering effect; however, it fails to demonstrate a robust performance
within the simulation. See, for instance, Fig. 6.8(a) and Fig.6.10(b), wherein the second-
order SMC manages to efficiently decrease the chattering effect, whereas, in Fig. 6.8(c)
and Fig. 6.10(c), the amplitude of oscillations around MPP is almost as large as the SMC
control. In addition, the second-order SMC illustrates slow responses under fast changes
of the input, i.e. in the convergence phase, hence looses the track of MPP in fast-changing
weather conditions. For instance, see Fig. 6.8(a) and Fig. 6.10(a), respectively. In contrast
with the second-order SMC control, the obtained control with a guaranteed cost is able

138

0 20 40 60 80 100
Voltage (V)

0

2000

4000

Po
w

er
 (w

at
t)

°C
5

°C
25

°C
45

°C
65

0 20 40 60 80 100
Voltage (V)

0

20

40

60

C
ur

re
nt

 (A
)

°C

5

°C
25

°C
45

°C

65

Figure 6.4: Output results of the simulated solar array by changing the ambient tempera-
ture from 5◦C to 65 ◦C, where the solid lines represent the track of the MPP by using the
proposed NOC.

to maintain a constant performance for different weather conditions. Moreover, from the
comparative error results given in Fig. 6.8 and Fig. 6.10, it can be clearly seen that
the proposed control law outperforms the other two methods, where the error graph, for
any control approach, is obtained by the absolute difference of the corresponding output
power with the maximum of all three approaches at any time instant t ∈ [0, 1]. This is
also evident in the corresponding control signals given in Fig. 6.7 and Fig. 6.9, that the
optimal control signal illustrates the smoothest response with almost no chattering effect.

139

6.5.3 Model-free Approach Results

To verify the model-free controller using the proposed approximation procedure, Algorithm
1 was implemented with a changing irradiance as the input. As mentioned, κ is a sufficiently
small value that yields a valid division. This can be chosen by starting from large values
and decreasing until a minimum amplitude of oscillations is observed in the steady state.
Moreover, ε is a small perturbation recursively added to control that can affect output
signal of the PWM generator within a few time steps. Hence, it is chosen with respect to
the PWM resolution of the device. A possible choice is a fraction of 1/PWM resolution. In
this simulation, the parameters are chosen as κ = 1×10−3 and ε = 5×10−3. Fig. 6.16 shows
the approximated partial derivatives, perturbation, and output power signals corresponding
to the input irradiance. It is evident by Fig. 6.16(e) that NOC operating based on the
approximation of partial derivatives are able to tightly track the ideal maximum power
curve. Although, as expected, the output power corresponding to the model-free controller
is not as smooth as the results obtained by the model-based controller, it does still illustrate
satisfactory results.

0 10 20 30 40 50 60
0

10

20

30

40

50

(51.2, 50.3)

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

(51.2, 2580)

ia

Pa

Va

Figure 6.5: I-V and P-V graphs are shown that characterize the solar PV system used for
piecewise learning control as an example. Moreover, the MPP is denoted.

140

0.0 0.2 0.4 0.6 0.8 1.0
0

50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0
5

0

0.0 0.2 0.4 0.6 0.8 1.0
0

50

0.0 0.2 0.4 0.6 0.8 1.0
t (sec)

0.25
0.50
0.75

iL

vC

ξ

Va

u

Figure 6.6: The learning result of the solar PV system, given by Fig. 6.5, are shown. It
can be observed that after 0.4 sec, ξ converges to zero, that guarantees operating in the
MPP. It is also evident by the Va signal that the PV array voltage can track the MPP
voltage 51.2V given by Fig. 6.5.

6.5.4 Piecewise Learning Results

In this section, we implement the piecewise learning controller on a sample PV system.
To do so, we use a PV system as a black box for which the characterizing P-V and I-V
graphs are given in Fig. 6.5 together with the MPP. Targeting the system (6.45), we
choose the observation vector as

[
iL vc ξ

]
. To start learning, we need to define the

partitions of the piecewise model. Therefore, we uniformly grid the state space with the
number of points given by the vector [11, 11, 11], which corresponds to the state vector. We
choose only the linear and constant bases that yields a linear PWA model. Regarding the
discussion on approximating the partial derivatives, and the convergence of the piecewise
model learner, the system needs to be persistently stimulated with some input signal.
Hence, a sinusoidal probing signal with the amplitude 0.03 and frequency 76Hz is added
to the control. Moreover, we define the objective function with Q = diag([0, 0, 102]) and
R = [102].

According to the objective defined, it is expected that after enough time of learning

141

the controller drives ξ to zero. According to the definition of the MPP this guarantees
operating in the MPP of the system. It can be observed from Fig. 6.6 that ξ indeed
converges to zero after about 0.4 sec of training. Hence, the learning control can achieves
the MPPT objective. This is also shown by the PV array voltage Va that can track the
MPP voltage given by Fig. 6.5.

6.5.5 Partial Shading Results

Considering the partial shading effect as shown in Fig. 6.11, we run a simulation of the
PV array in both uniform and non-uniform insolation. In this regard, we implemented
Algorithm 2 with ς = 1 and the dc link voltage is set to be Vo = 160. Furthermore, we
used Algorithm 1 to estimate the partial derivatives. Evolutions of the operating point
on I-V and P-V curves are given in Fig. 6.12 and Fig. 6.13, respectively. The system
is run from zero initial state assuming uniform insolation. As seen in P-V curve of the
system Fig. 6.13, Controller One (6.52) is used to reach the MPP of the system. Once the
system is exposed to the non-uniform insolation, some local maxima appear in the P-V
curve. Consequently, the partial shading condition is detected by the algorithm and the
reference voltage is calculated as Vref = 49.5V . This voltage is tracked by Controller Two
(6.52) until Va is ς-close to the reference voltage, where ς can be chosen with respect to the
open circuit voltage of the PV array so that remaining in the neighborhood of the global
MPP is assured. Once the output voltage is arrived in the neighborhood of the calculated
Vref , Controller One (6.52) is again activated to track the MPP in that local area which
is expected to be the global MPP. In Fig. 6.14, output power, voltage, and current are
illustrated that correspond to Fig. 6.12 and Fig. 6.13. Furthermore, Fig. 6.14 denotes the
control signal and switchings between the sub-controllers given by (6.52).

6.6 Conclusion

Motivated by the lack of performance analysis of the solar PV system in the literature, we
developed an optimal feedback control approach to improve the convergence and steady-
state responses of the system. The nonlinear non-quadratic cost as a performance measure,
which involves the cross-weighting term, introduced a degree of freedom in the stability and
optimality analysis. Then, we obtained a nonlinear optimal feedback controller by mini-
mizing the corresponding Hamiltonian. The idea is exploited to establish two controllers
for tracking the MPP and a given reference voltage that is separately activated according
to an algorithm to deal with the partial shading condition. Moreover, the resulting optimal

142

control rule involved partial derivatives of the output voltage of the solar PV array with
respect to the inductor current. Hence, an exact implementation of the proposed scheme
depends on the solar PV model details. This motivated us to obtain a model-free based
control scheme. Moreover, we proposed a piecewise learning-based control that relaxes
the need for the exact dynamics. The simulation results, obtained by the implementation
of the proposed algorithm on a realistic solar PV model, demonstrated the applicability
of the approach in uniform and non-uniform insolation. Furthermore, in the comparison
results, the nonlinear optimal control illustrated a suitable convergence response with the
minimum oscillations around the MPP. Compared to the second-order SMC, the chatter-
ing phenomenon that emerges in the SMC was further decreased by employing the optimal
approach with a guaranteed performance measure.

143

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(c
) P

ro
po

se
d

N
O

C
C

on
tro

l S
ig

na
l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(b
) 2

nd
-o

rd
er

 S
M

C
C

on
tro

l S
ig

na
l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(a
) S

M
C

C
on

tro
l S

ig
na

l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0.5

1

(d
)

Irr
ad

ia
nc

e
(k

W
/m

2)

Figure 6.7: The obtained control signal (NOC) compared to SMC and second-order SMC
under the changing irradiance shown in (d).

144

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

1500

2000

2500

3000

3500

4000

Po
w

er
 (w

at
t)

a

b
c

SMC
2nd-order SMC
Proposed NOC

t (sec)
c

Po
w

er
 (w

at
t)

t (sec)
a

Po
w

er
 (w

at
t)

t (sec)
b

Po
w

er
 (w

at
t)

b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

50

Er
ro

r
(w

at
t)

SMC 2nd-order SMC Proposed NOC

Figure 6.8: Comparison results of the output power under the changing irradiance shown in
Fig. 5(d), where some parts of the graph are magnified in sub-figures (a-c). The error graph
denotes the comparative error for the proposed NOC compared to SMC and second-order
SMC (see the text for details).

145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(c
) P

ro
po

se
d

N
O

C
C

on
tro

l S
ig

na
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(b
) 2

nd
-o

rd
er

 S
M

C
C

on
tro

l S
ig

na
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

0.5

1

(a
) S

M
C

C
on

tro
l S

ig
na

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

50

 (d
)

Te
m

pe
ra

tu
re

 (°
C

)

Figure 6.9: The obtained control signal (NOC) compared to SMC and second-order SMC
under the changing ambient temperature shown in (d).

146

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

2800

3000

3200

3400

3600

Po
w

er
 (w

at
t) a

b

c

SMC
2nd-order SMC
Proposed NOC

t (sec)

Po
w

er
 (w

at
t)

b
t (sec)

Po
w

er
 (w

at
t)

a
t (sec)

Po
w

er
 (w

at
t)

c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

50

100

Er
ro

r
(w

at
t)

SMC

Proposed NOC
2nd-order SMC

Figure 6.10: Comparison results of the output power under the changing ambient temper-
ature shown in Fig. 7(d), where some parts of the graph are magnified in sub-figures (a-c).
The error graph denotes the comparative error for the proposed NOC compared to SMC
and second-order SMC (see the text for details).

147

Figure 6.11: The solar PV array illustrating the partial shading condition considered in
the simulation results.

20 40 60 80 100 120
Voltage (V)

0

2

4

6

8

10

12

14

16

18

20

C
ur

re
nt

 (A
)

P-V Curve in Non-uniform Irradiance
P-V Curve in Uniform Irradiance
Controller One
Partial Shading Event
Controller Two

Figure 6.12: Evolutions of the operating point of system on I-V curve before and after
partial shading event, where controllers are defined by (6.52).

148

20 40 60 80 100 120
Voltage (V)

200

400

600

800

1000

1200

1400

1600

1800

2000

Po
w

er
 (w

at
t)

P-V Curve in Non-uniform Irradiance
P-V Curve in Uniform Irradiance
Controller One
Partial Shading Event
Controller Two

Figure 6.13: Evolutions of the operating point of system on P-V curve before and after
partial shading event, where controllers are defined by (6.52).

149

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

0
0.5

1

C
on

tro
l S

ig
na

l

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

1000
2000

Po
w

er
 (w

at
t)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

0
50

100

Vo
lta

ge
 (V

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

5
10
15
20

C
ur

re
nt

 (A
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

1
1.5

2

C
on

tro
lle

r

Figure 6.14: Output voltage and current signals of the solar PV array together with the
control signal, where the shading event, corresponding to Fig. 9 and Fig. 10, is detected
at 0.2 sec.

150

Load Control Using PID Control Signal PWM Genrator

DC-DC Boost Converter

Controller

Partial Derivative Approximation- Algorithm1

Powergui Solver Setting

f(x) = 0

Solver
Configuration

PV Array

[V]

Continuous

[I]

D P[w]

[Sig]

[Sig]

[Vc]
K Ts

z-1

Discrete-Time
Integrator

[Rv]

K (z-1)
Ts z

Discrete Derivative

[Rv]

[Vc]

[w]

[Perturb]

In1

In2

Out1

Out2

Out3
[V]

[I]

[dv]

[Perturb]

[d2v]

Irradiance

Temperature

In1

In2

In3

In4

In5

Out1

MPPT
Nonlinear Optimal Control

[d2v]

[dv]

[Vc]

[V]

[I] Z-1

Z-1

Z-1

[V] Z-1

Z-1

Figure 6.15: A sketch of the simulated solar PV system together with the proposed control
approach in Matlab Simulink.

151

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

-30
-20
-10

0

(a
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

-80-60-40-200(b
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

-0.02
0

0.02

(c
)

Pe
rtu

rb
at

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0.5

1

(d
)

Irr
ad

ia
nc

e
(k

W
/m

2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

1000

2000

3000

4000

(e
)

Po
w

er
 (w

at
t)

0.5 0.51 0.52 0.53
3600

3700

3800

0.03 0.04 0.05
1400
1500
1600

Figure 6.16: The results obtained by simulating the system with the proposed Algorithm
2, which illustrate respectively: (a)-(b) First and second-order partial derivatives. (c)
Perturbation signal added to improve the estimation.(d) The variable input irradiance
applied to the solar PV array. (e) The output power.

152

Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this dissertation, we aimed on solving the control regulation problem for unknown
nonlinear dynamics. We assumed nonlinear affine dynamics in terms of a collection of
basis functions as a structured system. Then, it assisted us in analytically computing an
iterative update method to obtain the optimal value function according to the most recent
update on the identified system. We demonstrated some possible options for using the
SOL algorithm as an online model-based learning tool based on the computational cost
and performance seen in numerical and graphical simulations. Accordingly, we proposed
a nonlinear tracking control technique with unknown dynamics. As a result, we devised
an optimal tracking control, with the performance measure rewritten to fit the structured
system. A matrix differential equation was developed to approximate the solution of the
optimal control problem with a value function parameterized in quadratic form. As a result
of this formulation, we accomplished a learning-based tracking control framework that only
uses online measurements of the system states and the reference trajectory. Moreover,
we proposed a piecewise nonlinear affine learning framework with guarantee for regulating
nonlinear systems with uncertain dynamics. In this framework, each piece was intended for
locally learning and controlling over a partition of the domain. Then, as a specific instance
of the proposed framework, we focused on learning in the form of linear PWA systems. Due
to the linearity, we achieved an optimization-based verification approach that takes into
account the estimated uncertainty bounds of the model. Hence, this verification technique
allowed us to validate the stability globally among all the pieces. We used the pendulum
system as a benchmark example in the numerical results that demonstrated the superiority

153

of the proposed technique by achieving a larger ROA.

Simulation results on benchmark nonlinear systems were presented to illustrate the
applicability of the established frameworks. We applied the SOL approach on four dis-
tinct nonlinear systems for this purpose. Through these implementations, the model was
identified and the control problem was satisfactorily addressed. On unknown nonlinear dy-
namics, we successfully implemented the trajectory tracking extension. Furthermore, for
the quadrotor and solar PV systems, detailed numerical results of SOL and the piecewise
learning technique were reported that demonstrated the applicability of these approaches.
Regarding the runtime results on the higher dimensional quadrotor system, we observed
that the proposed MBRL can be efficiently implemented in realtime. Moreover, we used
a nonlinear optimal feedback control strategy for the MPPT problem to deal with the
oscillations caused by the chattering phenomena in the control. The comparison results
confirmed the advantages of the proposed technique over the ones in the literature.

7.2 Future Work

Currently, there exist two directions in which we follow the research based on the MBRL
techniques presented in this dissertation.

Python Toolbox Considering that most of the implementations are done in the Python
environment, we develop a Python-based toolbox. This toolbox allows learning in terms
of different basis function can be chosen from a library of bases. Regarding the system
identification, one may choose different well-known techniques already implemented, such
as RLS, GD, SINDy, etc. Accordingly the SOL and the piecewise learning technique are
employed for MBRL of different nonlinear benchmark examples including quadrotor and
vehicle system, robot arm, etc. Then, for the PWA, we provide the user with the option
to verify the learned controller for the uncertain system based on the technique presented
in Chapter 4.

Real-world Implementation Given the improved computational complexity of the re-
sulting update algorithm for the value parameters, as well as the simulation results, future
research in this direction focuses on overcoming practical constraints and developing a
complete platform for real-world applications, such as vehicle and quadrotor systems.

154

References

[1] Mahyar Abdolhosseini, YM Zhang, and Camille Alain Rabbath. An efficient model
predictive control scheme for an unmanned quadrotor helicopter. Journal of intelli-
gent & robotic systems, 70(1-4):27–38, 2013.

[2] Dirk Aeyels and Joan Peuteman. A new asymptotic stability criterion for nonlin-
ear time-variant differential equations. IEEE Transactions on automatic control,
43(7):968–971, 1998.

[3] Amir Ali Ahmadi and Pablo A Parrilo. Non-monotonic lyapunov functions for sta-
bility of discrete time nonlinear and switched systems. In 2008 47th IEEE conference
on decision and control, pages 614–621. IEEE, 2008.

[4] Edoardo Amaldi, Stefano Coniglio, and Leonardo Taccari. Discrete optimization
methods to fit piecewise affine models to data points. Computers & Operations
Research, 75:214–230, 2016.

[5] George Andrikopoulos, George Nikolakopoulos, Ioannis Arvanitakis, and Stamatis
Manesis. Piecewise affine modeling and constrained optimal control for a pneumatic
artificial muscle. IEEE Transactions on Industrial Electronics, 61(2):904–916, 2013.

[6] MOSEK ApS. The mosek optimization toolbox for python manual, 2020.

[7] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[8] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[9] Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and
model-based reinforcement learning. In Proceedings of International Conference on
Robotics and Automation, volume 4, pages 3557–3564. IEEE, 1997.

155

[10] David S Atkinson and Pravin M Vaidya. A cutting plane algorithm for convex
programming that uses analytic centers. Mathematical Programming, 69(1):1–43,
1995.

[11] SN Balakrishnan, Jie Ding, and Frank L Lewis. Issues on stability of adp feed-
back controllers for dynamical systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 38(4):913–917, 2008.

[12] Somil Bansal, Anayo K Akametalu, Frank J Jiang, Forrest Laine, and Claire J Tom-
lin. Learning quadrotor dynamics using neural network for flight control. In 2016
IEEE 55th Conference on Decision and Control (CDC), pages 4653–4660. IEEE,
2016.

[13] Mato Baotic. Optimal control of piecewise affine systems: A multi-parametric ap-
proach. PhD thesis, ETH Zurich, 2005.

[14] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, SMC-13(5):834–846, 1983.

[15] Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt.
Learning to fly via deep model-based reinforcement learning. arXiv preprint
arXiv:2003.08876, 2020.

[16] Dennis S Bernstein. Nonquadratic cost and nonlinear feedback control. Int. J. Robust
Nonlin., 3(3):211–229, 1993.

[17] Shubhendu Bhasin, Rushikesh Kamalapurkar, Marcus Johnson, Kyriakos G
Vamvoudakis, Frank L Lewis, and Warren E Dixon. A novel actor–critic–identifier
architecture for approximate optimal control of uncertain nonlinear systems. Auto-
matica, 49(1):82–92, 2013.

[18] Enrico Bianconi, Javier Calvente, Roberto Giral, Emilio Mamarelis, Giovanni
Petrone, Carlos Andrés Ramos-Paja, Giovanni Spagnuolo, and Massimo Vitelli. A
fast current-based MPPT technique employing sliding mode control. IEEE Trans.
Ind. Electron., 60(3):1168–1178, 2013.

[19] Ali Bidram, Ali Davoudi, and Robert S Balog. Control and circuit techniques to mit-
igate partial shading effects in photovoltaic arrays. IEEE Journal of Photovoltaics,
2(4):532–546, 2012.

156

[20] Ruxandra Bobiti and Mircea Lazar. A sampling approach to finding lyapunov func-
tions for nonlinear discrete-time systems. In 2016 European Control Conference
(ECC), pages 561–566. IEEE, 2016.

[21] Francesco Borrelli, Alberto Bemporad, Michael Fodor, and Davor Hrovat. An
mpc/hybrid system approach to traction control. IEEE Transactions on Control
Systems Technology, 14(3):541–552, 2006.

[22] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[23] Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods.
From Stanford EE 364b lecture notes, 2007.

[24] Valentina Breschi, Dario Piga, and Alberto Bemporad. Piecewise affine regression
via recursive multiple least squares and multicategory discrimination. Automatica,
73:155–162, 2016.

[25] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing
equations from data by sparse identification of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences, 113(15):3932–3937, 2016.

[26] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing
equations from data by sparse identification of nonlinear dynamical systems. Pro-
ceedings of the national academy of sciences, 113(15):3932–3937, 2016.

[27] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-
ment learning and dynamic programming using function approximators. CRC press,
2017.

[28] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
science & business media, 2013.

[29] CanadianSolar. Datasheet - dymond-cs6x-m-fg-v5.51en, 2016.

[30] Giuseppe Carannante, Ciro Fraddanno, Mario Pagano, and Luigi Piegari. Experi-
mental performance of mppt algorithm for photovoltaic sources subject to inhomo-
geneous insolation. IEEE transactions on industrial electronics, 56(11):4374–4380,
2009.

[31] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. arXiv
preprint arXiv:2005.00611, 2020.

157

[32] M-S CHEN and C-Y KAO. Control of linear time-varying systems using forward
riccati equation. Journal of dynamic systems, measurement, and control, 119(3):536–
540, 1997.

[33] Shaoru Chen, Mahyar Fazlyab, Manfred Morari, George J. Pappas, and Victor M.
Preciado. Learning lyapunov functions for piecewise affine systems with neural net-
work controllers, 2020.

[34] Chian-Song Chiu and Ya-Lun Ouyang. Robust maximum power tracking control of
uncertain photovoltaic systems: A unified TS fuzzy model-based approach. IEEE
Trans. Control Syst. Technol., 19(6):1516–1526, 2011.

[35] Frank J Christophersen, Mato Baotić, and Manfred Morari. Optimal control of piece-
wise affine systems: A dynamic programming approach. In Control and Observer De-
sign for Nonlinear Finite and Infinite Dimensional Systems, pages 183–198. Springer,
2005.

[36] Chen-Chi Chu and Chieh-Li Chen. Robust maximum power point tracking method
for photovoltaic cells: A sliding mode control approach. Sol. Energy, 83(8):1370–
1378, 2009.

[37] Tayfun Çimen. State-dependent riccati equation (sdre) control: a survey. IFAC
Proceedings Volumes, 41(2):3761–3775, 2008.

[38] James R Cloutier. State-dependent riccati equation techniques: an overview. In Pro-
ceedings of the 1997 American control conference (Cat. No. 97CH36041), volume 2,
pages 932–936. IEEE, 1997.

[39] Adam Coates, Pieter Abbeel, and Andrew Y Ng. Apprenticeship learning for heli-
copter control. Communications of the ACM, 52(7):97–105, 2009.

[40] Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learn-
ing for multiagent reinforcement learning systems. Journal of Artificial Intelligence
Research, 64:645–703, 2019.

[41] G Silva Deaecto, José Cláudio Geromel, FS Garcia, and JA Pomilio. Switched affine
systems control design with application to DC-DC converters. IET Control Theory
& A., 4(7):1201–1210, 2010.

[42] Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language
for convex optimization. The Journal of Machine Learning Research, 17(1):2909–
2913, 2016.

158

[43] Yingwei Du, Fangzhou Liu, Jianbin Qiu, and Martin Buss. Online identification of
piecewise affine systems using integral concurrent learning. IEEE Transactions on
Circuits and Systems I: Regular Papers, 68(10):4324–4336, 2021.

[44] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In International Con-
ference on Machine Learning, pages 1329–1338, 2016.

[45] Gabriel Dulac-Arnold et al. Challenges of real-world reinforcement learning.
arXiv:1904.12901, 2019.

[46] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[47] Jack Elzinga and Thomas G Moore. A central cutting plane algorithm for the convex
programming problem. Mathematical Programming, 8(1):134–145, 1975.

[48] Evrin B Erdem and Andrew G Alleyne. Design of a class of nonlinear controllers via
state dependent riccati equations. IEEE Transactions on Control Systems Technol-
ogy, 12(1):133–137, 2004.

[49] Trishan Esram and Patrick L Chapman. Comparison of photovoltaic array maximum
power point tracking techniques. IEEE Trans. Energy Convers., 22(2):439–449, 2007.

[50] Milad Farsi, Yinan Li, Ye Yuan, and Jun Liu. A piecewise learning framework for
control of nonlinear systems with stability guarantees. In Learning for Dynamics and
Control (Submitted). PMLR, 2022.

[51] Milad Farsi and Jun Liu. Nonlinear optimal feedback control and stability analysis
of solar photovoltaic systems. IEEE Transactions on Control Systems Technology,
28(6):2104–2119, 2019.

[52] Milad Farsi and Jun Liu. Structured online learning-based control of continuous-time
nonlinear systems. IFAC-PapersOnLine, 53(2):8142–8149, 2020.

[53] Milad Farsi and Jun Liu. A structured online learning approach to nonlinear tracking
with unknown dynamics. In 2021 American Control Conference (ACC), pages 2205–
2211. IEEE, 2021.

[54] Milad Farsi and Jun Liu. Structured online learning-based control of continuous-time
nonlinear systems. Automatica (Submitted), 2022.

159

[55] Milad Farsi and Jun Liu. Structured online learning for low-level control of quadro-
tors. In 2022 American Control Conference (ACC) (Submitted). IEEE, 2022.

[56] Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, and Massimo Vitelli. Op-
timization of perturb and observe maximum power point tracking method. IEEE
Trans. Power Electron., 20(4):963–973, 2005.

[57] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. A
clustering technique for the identification of piecewise affine systems. Automatica,
39(2):205–217, 2003.

[58] Vladimir Gaitsgory, Lars Grüne, and Neil Thatcher. Stabilization with discounted
optimal control. Systems & Control Letters, 82:91–98, 2015.

[59] Claudio Gambella, Bissan Ghaddar, and Joe Naoum-Sawaya. Optimization prob-
lems for machine learning: A survey. European Journal of Operational Research,
290(3):807–828, 2021.

[60] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:
Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[61] Andrea Garulli, Simone Paoletti, and Antonio Vicino. A survey on switched and
piecewise affine system identification. IFAC Proceedings Volumes, 45(16):344–355,
2012.

[62] Chris Gaskett, David Wettergreen, and Alexander Zelinsky. Q-learning in continuous
state and action spaces. In Australasian joint conference on artificial intelligence,
pages 417–428. Springer, 1999.

[63] Tobias Geyer, Georgios Papafotiou, and Manfred Morari. Hybrid model predictive
control of the step-down dc–dc converter. IEEE Transactions on Control Systems
Technology, 16(6):1112–1124, 2008.

[64] Jean-Louis Goffin and Jean-Philippe Vial. On the computation of weighted analytic
centers and dual ellipsoids with the projective algorithm. Mathematical Programming,
60(1):81–92, 1993.

[65] S Khatiry Goharoodi, Kevin Dekemele, Luc Dupre, Mia Loccufier, and Guillaume
Crevecoeur. Sparse identification of nonlinear duffing oscillator from measurement
data. IFAC-PapersOnLine, 51(33):162–167, 2018.

160

[66] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. In Nonlinear
model predictive control, pages 45–69. Springer, 2017.

[67] Gurobi Optimizer Gurobi. Reference manual, gurobi optimization, 2020.

[68] Wassim M Haddad and VijaySekhar Chellaboina. Nonlinear dynamical systems and
control. Princeton university press, 2011.

[69] Wassim M Haddad and Andrea L’Afflitto. Finite-time stabilization and optimal
feedback control. IEEE Trans. Autom. Control, 61(4):1069–1074, 2016.

[70] W.M. Haddad and V. Chellaboina. Nonlinear Dynamical Systems and Control: A
Lyapunov-based Approach. Princeton University Press, 2008.

[71] Dongchen Han and SN Balakrishnan. State-constrained agile missile control with
adaptive-critic-based neural networks. IEEE Transactions on Control Systems Tech-
nology, 10(4):481–489, 2002.

[72] Ammar Haydari and Yasin Yilmaz. Deep reinforcement learning for intelligent trans-
portation systems: A survey. IEEE Transactions on Intelligent Transportation Sys-
tems, 2020.

[73] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique
of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 33(6):750–797, 2019.

[74] A. C. Hindmarsh and L. R. Petzold. LSODA, ordinary differential equation solver
for stiff or non-stiff system, 2005.

[75] Young-Hyok Ji, Doo-Yong Jung, Jun-Gu Kim, Jae-Hyung Kim, Tae-Won Lee, and
Chung-Yuen Won. A real maximum power point tracking method for mismatching
compensation in pv array under partially shaded conditions. IEEE Transactions on
power electronics, 26(4):1001–1009, 2011.

[76] Zhong-Ping Jiang and Yuan Wang. Input-to-state stability for discrete-time nonlinear
systems. Automatica, 37(6):857–869, 2001.

[77] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

161

[78] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of non-
linear dynamics for model predictive control in the low-data limit. Proceedings of the
Royal Society A, 474(2219):20180335, 2018.

[79] Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. soc.
mat. mexicana, 5(2):102–119, 1960.

[80] Shivaram Kalyanakrishnan and Peter Stone. An empirical analysis of value function-
based and policy search reinforcement learning. In Proceedings of The 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages
749–756. Citeseer, 2009.

[81] Rushikesh Kamalapurkar, Joel A Rosenfeld, and Warren E Dixon. Efficient model-
based reinforcement learning for approximate online optimal control. Automatica,
74:247–258, 2016.

[82] Rushikesh Kamalapurkar, Patrick Walters, and Warren E Dixon. Model-based re-
inforcement learning for approximate optimal regulation. Automatica (Journal of
IFAC), 64(C):94–104, 2016.

[83] Rushikesh Kamalapurkar, Patrick Walters, Joel Rosenfeld, and Warren Dixon.
Model-based reinforcement learning for approximate optimal control. In Reinforce-
ment Learning for Optimal Feedback Control, pages 99–148. Springer, 2018.

[84] A Kchaou, A Naamane, Y Koubaa, and N M’sirdi. Second order sliding mode-based
MPPT control for photovoltaic applications. Sol. Energy, 155:758–769, 2017.

[85] Karel J Keesman and Karel J Keesman. System identification: an introduction,
volume 2. Springer, 2011.

[86] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab,
Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 2021.

[87] Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with
kernels. IEEE Transactions on Signal Processing, 52(8):2165–2176, 2004.

[88] Kenji Kobayashi, Ichiro Takano, and Yoshio Sawada. A study on a two stage max-
imum power point tracking control of a photovoltaic system under partially shaded
insolation conditions. In 2003 IEEE Power Engineering Society General Meeting,
volume 4, pages 2612–2617. IEEE, 2003.

162

[89] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[90] Eftichios Koutroulis and Frede Blaabjerg. A new technique for tracking the global
maximum power point of pv arrays operating under partial-shading conditions. IEEE
Journal of Photovoltaics, 2(2):184–190, 2012.

[91] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto Ca-
landra, and Kristofer SJ Pister. Low-level control of a quadrotor with deep model-
based reinforcement learning. IEEE Robotics and Automation Letters, 4(4):4224–
4230, 2019.

[92] Fabien Lauer. On the complexity of piecewise affine system identification. Automat-
ica, 62:148–153, 2015.

[93] Jae Ho Lee, HyunSu Bae, and Bo Hyung Cho. Advanced incremental conductance
MPPT algorithm with a variable step size. In 12th International Power Electronics
and Motion Control Conference, pages 603–607. IEEE, 2006.

[94] George G Lendaris, Larry Schultz, and Thaddeus Shannon. Adaptive critic de-
sign for intelligent steering and speed control of a 2-axle vehicle. In Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
volume 3, pages 73–78. IEEE, 2000.

[95] Frank L Lewis and Derong Liu. Reinforcement learning and approximate dynamic
programming for feedback control, volume 17. John Wiley & Sons, 2013.

[96] Frank L Lewis and Draguna Vrabie. Reinforcement learning and adaptive dynamic
programming for feedback control. IEEE circuits and systems magazine, 9(3):32–50,
2009.

[97] Frank L Lewis and Draguna Vrabie. Reinforcement learning and adaptive dynamic
programming for feedback control. IEEE Circuits and Systems Magazine, 9(3):32–50,
2009.

[98] Frank L Lewis, Draguna Vrabie, and Kyriakos G Vamvoudakis. Reinforcement learn-
ing and feedback control: Using natural decision methods to design optimal adaptive
controllers. IEEE Control Systems Magazine, 32(6):76–105, 2012.

163

[99] Xiao Li, Yaoyu Li, John E Seem, and Peng Lei. Detection of internal resistance
change for photovoltaic arrays using extremum-seeking control MPPT signals. IEEE
Trans. Control Syst. Technol., 24(1):325–333, 2016.

[100] Daniel Liberzon. Calculus of variations and optimal control theory. Princeton uni-
versity press, 2011.

[101] Hao Liu, Danjun Li, Jianxiang Xi, and Yisheng Zhong. Robust attitude controller
design for miniature quadrotors. International Journal of Robust and Nonlinear
Control, 26(4):681–696, 2016.

[102] Xin Liu and SN Balakrishnan. Convergence analysis of adaptive critic based optimal
control. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat.
No. 00CH36334), volume 3, pages 1929–1933. IEEE, 2000.

[103] XY Liu, Stefano Alfi, and Stefano Bruni. An efficient recursive least square-based
condition monitoring approach for a rail vehicle suspension system. Vehicle System
Dynamics, 54(6):814–830, 2016.

[104] Lennart Ljung and Torsten Söderström. Theory and practice of recursive identifica-
tion. MIT press, 1983.

[105] Carlos Luis and Jérôme Le Ny. Design of a trajectory tracking controller for a
nanoquadcopter. arXiv preprint arXiv:1608.05786, 2016.

[106] Biao Luo et al. Model-free optimal tracking control via critic-only q-learning. IEEE
TNNLS, 27(10):2134–2144, 2016.

[107] Tobia Marcucci, Robin Deits, Marco Gabiccini, Antonio Bicchi, and Russ Tedrake.
Approximate hybrid model predictive control for multi-contact push recovery in com-
plex environments. In 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids), pages 31–38. IEEE, 2017.

[108] Tobia Marcucci and Russ Tedrake. Mixed-integer formulations for optimal control of
piecewise-affine systems. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages 230–239, 2019.

[109] David Q Mayne and Hannah Michalska. Receding horizon control of nonlinear sys-
tems. In Proceedings of the 27th IEEE Conference on Decision and Control, pages
464–465. IEEE, 1988.

164

[110] Abderraouf Messai, Adel Mellit, A Guessoum, and SA Kalogirou. Maximum power
point tracking using a GA optimized fuzzy logic controller and its FPGA implemen-
tation. Sol. Energy, 85(2):265–277, 2011.

[111] José Del R Millán, Daniele Posenato, and Eric Dedieu. Continuous-action q-learning.
Machine Learning, 49(2):247–265, 2002.

[112] Hamidreza Modares et al. H∞ tracking control of completely unknown continuous-
time systems via off-policy reinforcement learning. IEEE TNNLS, 26(10):2550–2562,
2015.

[113] Hamidreza Modares and Frank L. Lewis. Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement learning. IEEE
TAC, 59(11):3051–3056, 2014.

[114] Hamidreza Modares, Frank L Lewis, and Mohammad-Bagher Naghibi-Sistani. In-
tegral reinforcement learning and experience replay for adaptive optimal con-
trol of partially-unknown constrained-input continuous-time systems. Automatica,
50(1):193–202, 2014.

[115] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based rein-
forcement learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

[116] Alivarani Mohapatra, Byamakesh Nayak, Priti Das, and Kanungo Barada Mohanty.
A review on MPPT techniques of PV system under partial shading condition. Renew.
Sust. Energ. Rev., 80:854–867, 2017.

[117] Manfred Morari and Jay H Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23(4-5):667–682, 1999.

[118] P Moylan and B Anderson. Nonlinear regulator theory and an inverse optimal control
problem. IEEE Transactions on Automatic Control, 18(5):460–465, 1973.

[119] John J Murray, Chadwick J Cox, George G Lendaris, and Richard Saeks. Adaptive
dynamic programming. IEEE transactions on systems, man, and cybernetics, Part
C (Applications and Reviews), 32(2):140–153, 2002.

[120] Yu Nesterov. Cutting plane algorithms from analytic centers: efficiency estimates.
Mathematical Programming, 69(1):149–176, 1995.

[121] Nhan T Nguyen. Model-reference adaptive control. In Model-Reference Adaptive
Control, pages 83–123. Springer, 2018.

165

[122] Abdollah Noori, Milad Farsi, and Reza Mahboobi Esfanjani. Robust switching strat-
egy for buck-boost converter. In 2014 4th International Conference on Computer
and Knowledge Engineering (ICCKE), pages 492–496. IEEE, 2014.

[123] Abdollah Noori, Milad Farsi, and Reza Mahboobi Esfanjani. Design and implemen-
tation of a robust switching strategy for DC-DC converters. IET Power Electron.,
9(2):316–322, 2016.

[124] Hiren Patel and Vivek Agarwal. Matlab-based modeling to study the effects of
partial shading on pv array characteristics. IEEE transactions on energy conversion,
23(1):302–310, 2008.

[125] Romain Pepy, Alain Lambert, and Hugues Mounier. Path planning using a dynamic
vehicle model. In 2006 2nd International Conference on Information & Communi-
cation Technologies, volume 1, pages 781–786. IEEE, 2006.

[126] John W Pierre, Ning Zhou, Francis K Tuffner, John F Hauer, Daniel J Trudnowski,
and William A Mittelstadt. Probing signal design for power system identification.
IEEE Transactions on Power Systems, 25(2):835–843, 2009.

[127] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforce-
ment learning: Applications on robotics. Journal of Intelligent & Robotic Systems,
86(2):153–173, 2017.

[128] L. Pontryagin. Mathematical Theory of Optimal Processes. London:Routledge, 1987.

[129] Romain Postoyan, L Buşoniu, D Nešić, and Jamal Daafouz. Stability of infinite-
horizon optimal control with discounted cost. In 53rd IEEE Conference on Decision
and Control, pages 3903–3908. IEEE, 2014.

[130] Warren Buckler Powell. Handbook of learning and approximate dynamic program-
ming, volume 2. John Wiley & Sons, 2004.

[131] Anna Prach, Ozan Tekinalp, and Dennis S Bernstein. Infinite-horizon linear-
quadratic control by forward propagation of the differential riccati equation [lecture
notes]. IEEE Control Systems Magazine, 35(2):78–93, 2015.

[132] Raseswari Pradhan and Bidyadhar Subudhi. Double integral sliding mode MPPT
control of a photovoltaic system. IEEE Trans. Control Syst. Technol., 24(1):285–292,
2016.

166

[133] Danil Prokhorov. Neural networks in automotive applications. In Computational
intelligence in automotive applications, pages 101–123. Springer, 2008.

[134] Danil V Prokhorov, Roberto A Santiago, and Donald C Wunsch II. Adaptive critic
designs: A case study for neurocontrol. Neural Networks, 8(9):1367–1372, 1995.

[135] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control
technology. Control engineering practice, 11(7):733–764, 2003.

[136] Zhihua Qu and Jian-Xin Xu. Model-based learning controls and their comparisons
using lyapunov direct method. Asian Journal of Control, 4(1):99–110, 2002.

[137] S. E. Dreyfus R. E. Bellman. Applied dynamic programming. Princeton university
press, 2015.

[138] J Prasanth Ram, T Sudhakar Babu, and N Rajasekar. A comprehensive review
on solar PV maximum power point tracking techniques. Renew. Sust. Energ. Rev.,
67:826–847, 2017.

[139] Steffen Rebennack and Vitaliy Krasko. Piecewise linear function fitting via mixed-
integer linear programming. INFORMS Journal on Computing, 32(2):507–530, 2020.

[140] Benjamin Recht. A tour of reinforcement learning: The view from continuous control.
Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

[141] Miloud Rezkallah, Shailendra Kumar Sharma, Ambrish Chandra, Bhim Singh, and
Daniel R Rousse. Lyapunov function and sliding mode control approach for the
solar-PV grid interface system. IEEE Trans. Ind. Electron., 64(1):785–795, 2017.

[142] Luis Rodrigues and Stephen Boyd. Piecewise-affine state feedback for piecewise-affine
slab systems using convex optimization. Systems & Control Letters, 54(9):835–853,
2005.

[143] Luis Rodrigues and Jonathan P How. Observer-based control of piecewise-affine
systems. International Journal of Control, 76(5):459–477, 2003.

[144] Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja,
and Craig Boutilier. Caql: Continuous action q-learning. arXiv preprint
arXiv:1909.12397, 2019.

167

[145] Hamza Sahraoui, Larbi Chrifi, Said Drid, and Pascal Bussy. Second order sliding
mode control of DC-DC converter used in the photovoltaic system according an
adaptive MPPT. Int. J. Renew. Energy Res., 6(2), 2016.

[146] David Scherer, Paul Dubois, and Bruce Sherwood. Vpython: 3d interactive scientific
graphics for students. Computing in Science & Engineering, 2(5):56–62, 2000.

[147] Matthias Schreier. Modeling and adaptive control of a quadrotor. In 2012 IEEE in-
ternational conference on mechatronics and automation, pages 383–390. IEEE, 2012.

[148] P Sivakumar, Abdullah Abdul Kader, Yogeshraj Kaliavaradhan, and M Arutchelvi.
Analysis and enhancement of PV efficiency with incremental conductance MPPT
technique under non-linear loading conditions. Renew. Energ., 81:543–550, 2015.

[149] Filippo Spertino and Jean Sumaili Akilimali. Are manufacturing i–v mismatch and
reverse currents key factors in large photovoltaic arrays? IEEE Transactions on
Industrial Electronics, 56(11):4520–4531, 2009.

[150] Nard Strijbosch, Isaac Spiegel, Kira Barton, and Tom Oomen. Monotonically con-
vergent iterative learning control for piecewise affine systems. IFAC-PapersOnLine,
53(2):1474–1479, 2020.

[151] Jie Sun, Kim-Chuan Toh, and Gongyun Zhao. An analytic center cutting plane
method for semidefinite feasibility problems. Mathematics of Operations Research,
27(2):332–346, 2002.

[152] Xiaoqiang Sun, Houzhong Zhang, Yingfeng Cai, Shaohua Wang, and Long Chen.
Hybrid modeling and predictive control of intelligent vehicle longitudinal velocity
considering nonlinear tire dynamics. Nonlinear Dynamics, 97(2):1051–1066, 2019.

[153] Kinattingal Sundareswaran, Sankar Peddapati, and Sankaran Palani. Application
of random search method for maximum power point tracking in partially shaded
photovoltaic systems. IET Renewable Power Generation, 8(6):670–678, 2014.

[154] Richard S Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Machine Learning Proceedings 1990,
pages 216–224. Elsevier, 1990.

[155] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

168

[156] Siew-Chong Tan, YM Lai, and K Tse Chi. Indirect sliding mode control of power con-
verters via double integral sliding surface. IEEE Trans. Power Electron., 23(2):600–
611, 2008.

[157] Boutabba Tarek, Drid Said, and MEH Benbouzid. Maximum power point tracking
control for photovoltaic system using adaptive neuro-fuzzy ANFIS. In IEEE 8th
EVER Conf., pages 1–7, 2013.

[158] Alejandro Toriello and Juan Pablo Vielma. Fitting piecewise linear continuous func-
tions. European Journal of Operational Research, 219(1):86–95, 2012.

[159] Huan-Liang Tsai. Insolation-oriented model of photovoltaic module using mat-
lab/simulink. Sol. Energy, 84(7):1318–1326, 2010.

[160] Kyriakos G Vamvoudakis, Frank L Lewis, and Greg R Hudas. Multi-agent differ-
ential graphical games: Online adaptive learning solution for synchronization with
optimality. Automatica, 48(8):1598–1611, 2012.

[161] Steven Van Vaerenbergh and Ignacio Santamaŕıa. Online regression with kernels. In
Regularization, Optimization, Kernels, and Support Vector Machines, pages 495–521.
Chapman and Hall/CRC, 2014.

[162] Cristina Vlad, Pedro Rodriguez-Ayerbe, Emmanuel Godoy, and Pierre Lefranc. Ex-
plicit model predictive control of buck converter. In 2012 15th International Power
Electronics and Motion Control Conference (EPE/PEMC), pages DS1e–4. IEEE,
2012.

[163] Fei-Yue Wang, Huaguang Zhang, and Derong Liu. Adaptive dynamic programming:
An introduction. IEEE computational intelligence magazine, 4(2):39–47, 2009.

[164] Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. Multiagent soft q-learning.
In 2018 AAAI Spring Symposium Series, 2018.

[165] Avishai Weiss, Ilya Kolmanovsky, and Dennis S Bernstein. Forward-integration
riccati-based output-feedback control of linear time-varying systems. In 2012 Amer-
ican Control Conference (ACC), pages 6708–6714. IEEE, 2012.

[166] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation,
learning, and optimization, 12(3), 2012.

169

[167] Lifu Wu, Xiaojun Qiu, Ian S Burnett, and Yecai Guo. A recursive least square
algorithm for active control of mixed noise. Journal of Sound and Vibration, 339:1–
10, 2015.

[168] Bin Xian, Darren M Dawson, Marcio S de Queiroz, and Jian Chen. A continuous
asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans-
actions on Automatic Control, 49(7):1206–1211, 2004.

[169] Weidong Xiao and William G Dunford. A modified adaptive hill climbing MPPT
method for photovoltaic power systems. In IEEE 35th Power Electron. Conf., pages
1957–1963. IEEE, 2004.

[170] Jinpeng Yang, Zhihao Cai, Qing Lin, and Yingxun Wang. Self-tuning pid control
design for quadrotor uav based on adaptive pole placement control. In 2013 Chinese
Automation Congress, pages 233–237. IEEE, 2013.

[171] Ting Yang, Liyuan Zhao, Wei Li, and Albert Y Zomaya. Reinforcement learning
in sustainable energy and electric systems: A survey. Annual Reviews in Control,
49:145–163, 2020.

[172] Xiong Yang et al. Guaranteed cost neural tracking control for a class of uncertain
nonlinear systems using adaptive dynamic programming. Neurocomputing, 198:80–
90, 2016.

[173] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare:
A survey. arXiv preprint arXiv:1908.08796, 2019.

[174] Miao Yu, Chao Lu, and Yongjun Liu. Direct heuristic dynamic programming method
for power system stability enhancement. In 2014 American Control Conference, pages
747–752. IEEE, 2014.

[175] Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han
Ding, and Jorge Goncalves. Data driven discovery of cyber physical systems. Nature
communications, 10(1):1–9, 2019.

[176] Huaguang Zhang, Lili Cui, Xin Zhang, and Yanhong Luo. Data-driven robust ap-
proximate optimal tracking control for unknown general nonlinear systems using
adaptive dynamic programming method. IEEE Transactions on Neural Networks,
22(12):2226–2236, 2011.

170

[177] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms. Handbook of Reinforcement
Learning and Control, pages 321–384, 2021.

[178] Zidong Zhang, Dongxia Zhang, and Robert C Qiu. Deep reinforcement learning
for power system applications: An overview. CSEE Journal of Power and Energy
Systems, 6(1):213–225, 2019.

[179] Yuanheng Zhu et al. Using reinforcement learning techniques to solve continuous-
time non-linear optimal tracking problem without system dynamics. IET CTA,
10(12):1339–1347, 2016.

[180] Yuanyuan Zou and Shaoyuan Li. Robust model predictive control for piecewise affine
systems. Circuits, Systems & Signal Processing, 26(3):393–406, 2007.

171

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Literature Review
	Contributions
	Preliminaries
	Notation
	Optimal Control
	System Identification
	Reinforcement Learning

	Outlines

	Structured Online Learning-based Control of Continuous-time Nonlinear Systems
	Introduction
	A Structured Approximate Optimal Control Framework
	Local Stability and Optimality Analysis
	Linear Quadratic Regulator
	SOL Control

	A Structured Online Learning (SOL) Algorithm
	ODE Solver and Control Update
	Identified Model Update
	Database Update
	Limitations and Implementation Considerations
	Asymptotic Convergence with Approximate Dynamics

	Simulation Results
	Systems Identifiable in Terms of a Given Set of Bases
	Systems to Be Approximated by a Given Set of Basis

	Conclusion

	A Structured Online Learning Approach to Nonlinear Tracking with Unknown Dynamics
	Introduction
	A Structured Online Learning for Tracking Control
	Stability and Optimality in the Linear Case

	Learning-based Tracking Control Using SOL
	Simulation Results
	Tracking Control of Pendulum
	Synchronization of Chaotic Lorenz System

	Conclusion

	Piecewise Learning and Control with Stability Guarantees
	Introduction
	Problem Formulation
	The Piecewise Learning and Control Framework
	System Identification
	Database
	Feedback Control

	Analysis of Uncertainty Bounds
	Quadratic Programs for Bounding Errors

	Stability Verification for Piecewise-Affine Learning and Control
	Piecewise Affine Models
	MIQP-based Stability Verification of PWA Systems
	Convergence of ACCPM

	Numerical Results
	Pendulum System
	Dynamic Vehicle System with Skidding
	Comparison of Runtime Results

	Conclusion

	Structured Online Learning for Low-Level Control of Quadrotors
	Introduction
	Quadrotor Model
	Structured Online Learning with RLS Identifier on Quadrotor
	Learning Procedure
	Asymptotic Convergence with Uncertain Dynamics
	Computational Properties

	Numerical Results
	Conclusion

	Applications to Solar Photo-voltaic Systems
	Introduction
	Problem Statement
	PV Array Model
	DC-DC Boost Converter

	Optimal Control of PV Array
	Maximum Power Point Tracking Control
	Reference Voltage Tracking Control
	Piecewise Learning Control

	Application Considerations
	Partial Derivative Approximation Procedure
	Partial Shading Effect

	Simulation Results
	Model and Control Verification
	Comparative Results
	Model-free Approach Results
	Piecewise Learning Results
	Partial Shading Results

	Conclusion

	Conclusions and Future Works
	Conclusions
	Future Work

	References

