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Abstract

Trapped ion systems have become one of the important platforms for quantum infor-
mation processing (QIP) experiments. However, conventional Paul ion traps suffer from
micromotion effect, which makes it difficult to extend the trapped ion crystals beyond one-
dimensional (1D) linear chain configuration, and limits the versatility of the systems. In
this thesis, we propose a scheme of trapping two-dimensional (2D) ion crystals by combin-
ing conventional and optical trapping techniques. Integrating an optical cavity into linear
Paul ion trap allows us to introduce an optical trapping period during which quantum gates
can be performed without micromotion effect. We explored the required trapping parame-
ters to constraining the system in 2D structure, by numerically calculating the equilibrium
positions of ions under the potential defined by all trapping parameters. We then study
the stability of 2D ion crystals between different spatial configurations, which do not arise
from 1D systems. We also provide estimation of trapping lifetime by estimating heating
rate of the system contributed from different sources which cannot be avoided by improv-
ing experimental designs. We find it is possible to trap tens of Yb+ ions optically with
our scheme for a potentially long enough lifetime to perform QIP experiments, followed
with the discussion on how to scale up the system. Strategies for trapping parameters
optimization can be developed based on our stability analysis such that the optical cavity
trap can be designed and built to fit different QIP experiments with experimentally feasible
parameters.
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Chapter 1

Introduction

The discovery of quantum mechanics was regarded as one of the starting signs of modern
physics, and its development has provided fundamental theoretical support for an numerous
of modern technologies. Although quantum mechanics is a well developed theory with
rich applications, it is still very difficult to solve many-body interacting systems with
quantum mechanics. Since in quantum mechanics, interacting systems are described by
nonlinear partial differential equations, which do not have analytic solutions in general.
Numerical calculation is the only way to solve it, but the computational complexity scales
up exponentially with the number of particles involved in the systems, e.g. the Hilbert space
of N number of two-level systems has dimension of 2N . Our progress of understanding the
physical world is eventually limited by our computing capability.

Quantum computation provides a solution to the problem of insufficient computing
capability, since by converting classical bits to quantum bits, one quantum algorithms can
be performed much faster than classical algorithms. In addition, instead of calculating
the exact solution, we can simulate many-body interacting systems and measure how it
evolve in time. Ions are good candidates to simulate interacting systems due to their
strong Coulomb interactions. The strong Coulomb interactions can also be used to create
quantum logic gates, which relate to quantum computation. These are part of the reasons
which motivate the idea of quantum simulation and computation with trapped ion systems.
Quantum computation and simulation are two branches of quantum information. In this
chapter, we will introduce trapped ion system as a platform for quantum information
processing (QIP) experiments.
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1.1 Tapped-ion Platform

Due to the phonon-mediated strong spin-spin interactions, the clean trapping environment,
and convenient spin dependent measurement capacity, trapped ion systems have become
one of the leading platforms to perform QIP experiments. With each ion presented as a
quantum bit (qubit), the two qubit states are encoded in the long-lived ground internal
hyperfine energy states. The two qubit states |0〉 and |1〉, sometimes also called as spin
states |↑〉 and |↓〉, can be coupled using two Raman beams or microwaves driving the two-
photon transition, allowing arbitrary single-qubit rotation. The feasibility of constructing
quantum computers with trapped ion systems was demonstrated by the first scheme to
implement controlled NOT gate [1], and more robust schemes [2, 3] are proposed later. A
universal set of quantum gates can be constructed by a sequence of single qubit rotations
and controlled NOT gates [4]. The ions can be trapped with conventional traps, such as
Paul trap and Penning trap, or conventional and optical combined hybrid traps.

Paul ion trap [5] uses a combination of static (DC) and oscillating (AC) electric fields to
trap ions, since charged particles cannot be trapped solely be static electric field(s), stated
by Earnshaw’s theorem. The DC field creates confinement to ions at one direction, while
the AC field creates both confinement and anti-confinement at the other two directions.
The confining and anti-confining direction is changing over time at a faster rate compared
to time for the ions to escape the trap, therefore the AC field creates an time averaged
trapping pseudo-potential for ions. The AC electric field oscillates at radio frequency (RF)
and it is also called RF field. If a single ion is trapped inside the Paul trap, and the ion is
not perfectly located at center of the potential, the oscillating field will continuously raise
and lower the potential energy of the ion, causing the ion to move. The motion is predicted
by Mathieu equation, which can be solved numerically. This motion can excite unwanted
normal modes of the system, which is the so-called micromotion problem of Paul trap.

The trapped ions can form a one-dimensional (1D) linear chain configuration, or a two-
dimensional (2D) plane configuration [6], and the later one with enriched phase diagrams
opens up a new realm for quantum simulation of many-body systems. There exist some
problems that are native to the 2D and 3D structure of the model which cannot be studied
with 1D systems, e.g. geometrical magnetic frustration, making 2D trapped ion systems
to be intrinsic different from 1D linear chain of trapped ions. However, the micromotion
problem poses challenges to extending the system beyond 1D, since the further the ion is
located from the center the stronger micromotion effect it will suffer.

Replacing the AC electric potential by optical potential is one of the approaches to
eliminate the micromotion effect, but it introduce other problems to the trap. Optical
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ion trap experiments have been performed on a system of one 138Ba+ ion [7, 8], and a
system of up to 6 138Ba+ ions in a linear chain [9], using a global Gaussian beam. Optical
trap depth is normally many orders of magnitude smaller than conventional trap depth,
and this is one of the reasons making optical trapping lifetime to be much shorter than
conventional trapping. Ions in strong light fields also scatter photons, and the scattering
rate is proportional to laser intensity. The scattering events can destroy coherence of the
quantum states of the ions, heat up the temperature of the system, as well as potentially
send the ions to some unwanted internal states. In this work, we theoretically investigate
the feasibility of trapping ions in 2D structure using optical trapping techniques, in order
to simulate 2D spin systems. We provide quantitative estimation of the different adverse
effects of optical trapping to determine whether QIP experiments can be performed with
our 2D trapped ion system.

1.2 Thesis Outline

In Chapter 1, we introduce QIP with trapped ion platform and the possibility of integrating
optical trapping techniques into conventional ion traps. We will explore how ions can be
trapped using lasers, find out the trapping parameters, and analyze the stability of the
system:

1. Chapter 2: We introduce the basic concepts and mechanisms of optical trapping,
including AC Stark shift, Rabi frequency, and scattering rate. We start the introduc-
tion with a simple two-level system, and then extend it to more complicated systems,
i.e. ions. Finally, using the knowledge we obtained, we explore the optical properties
of ion species for trapping.

2. Chapter 3: We introduce optical cavity and our optical cavity setup, along with all
the trapping parameters characterizing the trap. We then find the required trapping
parameters for 2D trapping, by studying the properties of 2D ion crystals.

3. Chapter 4: Since the equilibrium positions of trapped 2D ion crystals are not unique,
we investigate the potential barrier between different equilibrium positions to study
their stability in optical cavity trap. Next, we estimate trapping lifetime and heating
rate, by considering different sources of heating.
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Chapter 2

Optical Dipole Trap for Ions

From a classical mechanics point of view, when a laser beam shine on an atom or ion,
the electric field from this laser can polarize the atom or ion into an electric dipole. This
dipole in will experience a potential given by the electric field, and using this potential to
trap atom(s) or ion(s) leads to the idea of optical dipole trap. The atom or ion feels a
potential since the alternating electric field at its position shifts its internal energy levels,
and this energy shift is called AC Stark shift. Therefore, understanding AC Stark shift is
the first step to understand optical dipole trap. For ions in light field, they have a chance
to scatter a photon, and this scattering event will decay from an excited state to a lower
energy state. Scattering events can change the value of AC Stark shift, heat up the ion,
as well as break coherence of the quantum state, which undermines trapping stability and
create errors in QIP experiments. Thus, for optical dipole trap, we wish to have high AC
Stark shift, and small scattering rate.

In this chapter, we first study AC Stark shift and scattering rate. Next, we find out
how much trap frequency can a typical Gaussian beam optical dipole trap provide. Then,
we discuss the analytic model estimating single ion optical trapping lifetime. Finally, we
search for ion species on the periodic table to determine what ions are good candidate for
optical trapping based on their optical properties.

2.1 AC Stark Shift

The classical interpretation provides a good way to intuitively understand AC Stark Shift,
but we will start from quantum mechanics point of view to derive an expression for AC
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Stark Shift in terms of Rabi frequency and laser detuning, where Rabi frequency is a
parameter can be obtained from experimental measurements, and laser detuning is the
angular frequency different between laser and atomic transition.

In this section, we first derive AC Stark shift for a two-level-system. This AC Stark
shift depends on Rabi frequency, so we then derive the relation between Rabi frequency
and Einstein A coefficient. Next, we extend this two-level AC Stark shift calculation to
ions with multiple levels and hyperfine splitting. AC Stark shift calculations will provide
guidance to us in designing optical cavity trap and analyzing stability of trapped ion
system, in later chapters.

2.1.1 AC Stark Shift for a Two-Level System

A two-level system can be viewed as an imaginary atom with only two internal states. We
will call the two internal states as ground state |g〉 and excited state |e〉. Once this two-level
system, considering it as a hydrogen atom, is placed inside a time varying electric field, e.g. a
laser, the electric field creates a additional potential energy Ve(~r, t) = −e ~E(~r, t) · ~r, where
~r is the vector from nucleus to its electron, hence the atomic-field interaction Hamiltonian
is

H ′ = −e ~E(~r, t) · ~r, (2.1)

with
~E(~r, t) = E0 cos(ωlt)ε̂, (2.2)

where ωl is angular frequency of the laser. Now the total Hamiltonian is the sum of atomic
Hamiltonian Ha and H ′ ,

H = Ha +H ′. (2.3)

AC Stark shift of this system is the shift of eigenenergies from Ha to H due to the
presence of H ′. To do this, we define a basis as ordered set α = {|φ1〉 = |g〉 , |φ2〉 = |e〉},
where |φi〉 are time independent energy eigenstates of Ha, and the time dependent energy
eigenstates are |φi(t)〉 = e−iHt/~ |φi〉, then the matrix elements of H ′ are

H ′ij = 〈φi(t)|H ′ |φj(t)〉 = −eE0 cos(ωlt) 〈φi(t)| ε̂ · ~r |φj(t)〉 . (2.4)

We will show all diagonal elements of H ′ are zero, by using a theorem stated as, if potential
energy V (~r) has the property of V (~r) = V (−~r), the wavefunction of energy eigenstates, in
coordinate representation, have defined parity.

For this hydrogen atom, the electron experience a potential of V (~r) = −e2/4πε0|~r| =
V (−~r), and φi are eigenenergies of Ha, so φi has defined parity at any time. No matter
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even or odd, |φi|2 is an even function, and ε̂ · ~r|φi|2 is odd, thus once it is integrated over
all space, we have

H ′ii = −eE0 cos(ωlt) 〈φi(t)|~r |φi(t)〉

= −eE0 cos(ωlt)

∫
all space

ε̂ · ~r φ∗i (~r, t)φi(~r, t) dV

= −e ~E(~r, t) ·
∫

all space

ε̂ · ~r |φi(~r, t)|2 dV

= 0,

i.e. all diagonal elements of H ′ are zero.

Since we choose the basis as eigenbasis of Ha, Ha is a diagonal matrix, and all off-
diagonal elements are zero. Now we know Ha has only diagonal elements, and H ′ has only
off-diagonal elements, so we have

Hii = (Ha)ii, (2.5)

and for i 6= j

Hij = H ′ij

= 〈φi(t)|H ′ |φj(t)〉
= −eE0 cos(ωlt) 〈φi(t)| ε̂ · ~r |φj(t)〉 .

Define

Ωij ≡ −
eE0

~
〈φi(t)| ε̂ · ~r |φj(t)〉 , (2.6)

such that we can write

Hij = H ′ij = ~Ωij cos(ωlt) =
~Ωij

2
(eiωlt + e−iωlt). (2.7)

Note that Ωij can be a complex number. Its magnitude is called Rabi frequency Ω

Ω ≡
√
|Ωij|2 =

√
|Ωji|2 =

√
ΩijΩji. (2.8)

This H is time dependent. We will transform H into a rotating reference frame, then
use an approximation to make it time independent. The unitary matrix which transform
H into the rotating reference frame is time dependent, so we define it as U(t), and let ˜|Ψ〉
be the state in the rotating reference frame after the transform, we have

˜|Ψ〉 = U(t) |Ψ〉 , (2.9)
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H |Ψ〉 = i~
∂|Ψ〉
∂t

. (2.10)

We want to find a effective Hamiltonian in the rotating reference frame which satisfy

Heff
˜|Ψ〉 = i~

∂ ˜|Ψ〉
∂t

(2.11)

If we can find such Heff, AC Stark shift can be obtained by diagonalizing Heff. Note that
U(t) does not necessarily commute with H or time evolution operator. By using Eq. (2.9)
and (2.10), we have

∂ ˜|Ψ〉
∂t

=
∂
(
U(t) |Ψ〉

)
∂t

= U̇(t) |Ψ〉+ U(t)
∂|Ψ〉
∂t

= U̇(t) |Ψ〉 − i

~
U(t)H |Ψ〉

= U̇(t)
(
U †(t)U(t)

)
|Ψ〉 − i

~
U(t)H

(
U †(t)U(t)

)
|Ψ〉

=
(
U̇(t)U †(t)− i

~
U(t)HU †(t)

)
U(t) |Ψ〉

=
(
U̇(t)U †(t)− i

~
U(t)HU †(t)

) ∣∣∣Ψ̃〉 .
Multiply both sides by i~, we have

i~
∂ ˜|Ψ〉
∂t

= i~
(
U̇(t)U †(t)− i

~
U(t)HU †(t)

) ∣∣∣Ψ̃〉
=
(
i~ U̇(t)U †(t) + U(t)HU †(t)

) ∣∣∣Ψ̃〉
= Heff

∣∣∣Ψ̃〉 .
Overall, the effective Hamiltonian in the rotating reference frame is

Heff = i~ U̇(t)U †(t) + U(t)HU †(t). (2.12)

If we define Ha as

Ha =
~
2

[
−ωa 0

0 ωa

]
. (2.13)
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In other words, we defining the energy difference of energy eigenstates |g〉 and |e〉 to be
~ωa, where ωa is atomic resonance frequency. Combining Eq. (2.13) and (2.7), the total
Hamiltonian is

H = Ha +H ′ (2.14)

=
~
2

[
−ωa Ω12(eiωlt + e−iωlt)

Ω21(eiωlt + e−iωlt) ωa

]
. (2.15)

The time dependent unitary matrix U(t) that transform H into Heff is

U(t) =

[
e−iωlt/2 0

0 eiωlt/2

]
. (2.16)

Then we have

i~ U̇(t)U †(t) = i~
[
− iωl

2
e−iωlt/2 0
0 iωl

2
eiωlt/2

] [
eiωlt/2 0

0 e−iωlt/2

]
(2.17)

=
~
2

[
ωl 0
0 −ωl

]
, (2.18)

and

U(t)HU †(t)

=
~
2

[
e−iωlt/2 0

0 eiωlt/2

] [
−ωa Ω12(eiωlt + e−iωlt)

Ω21(eiωlt + e−iωlt) ωa

] [
eiωlt/2 0

0 e−iωlt/2

]
(2.19)

=
~
2

[
−ωa Ω12e

−i2ωlt

Ω21e
i2ωlt ωa

]
. (2.20)

Define laser detuning as δ ≡ ωl − ωa. For the case δ � (ωl + ωa) ≈ 2ωl, neglect the terms
ei(ωl+ωa)t compared to the ones of order eiδt. This approximation is called rotating wave
approximation, which allows us to write

U(t)HU †(t) =
~
2

[
−ωa Ω12

Ω21 ωa

]
(2.21)

Substitute Eq. (2.18) and (2.20) into Eq. (2.12), we have

Heff = i~ U̇(t)U †(t) + U(t)HU †(t) (2.22)

=
~
2

[
δ Ω12

Ω21 −δ

]
. (2.23)
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This matrix has eigenvalues of

λ = ±~
2

√
δ2 + Ω2

= ±~
2
δ

√
1 +

Ω2

δ2
,

where we use Rabi frequency square Ω2 to replace Ω12Ω21. In the limit where Ω� |δ|, by
using binomial expansion, we have

λ = ±~
2
δ(1 +

Ω2

2δ2
). (2.24)

Hence, within the rotating reference frame, AC Stark shift of the two levels are

∆Eg =
~Ω2

4δ
, ∆Ee = −~Ω2

4δ
. (2.25)

This is the results calculated from a small detuning case, δ � ωl, for which rotating wave
approximation applies, and Rabi frequency much smaller than detuning, Ω � |δ|, which
is always true in the situations where we are interested in.

As for the larger laser detuning case, where rotating wave approximation is not valid,
AC Stark shift calculation is discussed in [10], and ground state AC Stark shift is given by

∆Eg = −3πc2

2ω3
a

(
A

ωa − ωl
+

A

ωa + ωl

)
I (2.26)

where A is Einstein A coefficient of transition from |e〉 and |g〉. This result is valid when
excited state does not get strongly populated, in other words, when intensity of diving field
is not too high, or detuning is not too small.

To understand how the system evolve in time, we need to solve for the energy eigenstates
of Eq. (2.23), where we have

|Ψ+〉 =

(
δ +
√
δ2 + Ω2

)
|g〉

Ω

√
1 +

(δ+
√
δ2+Ω2)

2

Ω2

+
|e〉√

1 +
(δ+
√
δ2+Ω2)

2

Ω2

, (2.27)

|Ψ−〉 =

(
δ −
√
δ2 + Ω2

)
|g〉

Ω

√
1 +

(δ−
√
δ2+Ω2)

2

Ω2

+
|e〉√

1 +
(δ−
√
δ2+Ω2)

2

Ω2

. (2.28)
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Recall that {|g〉 , |e〉} is the eigenbasis for Ha, and here |Ψ+〉 and |Ψ−〉 are eigenstates of
Heff. By taking Ω� |δ|, we can approximate them as

|Ψ+〉 =

(
2δ
Ω

+ Ω
2δ

)
|g〉√

1 +
(

2δ
Ω

+ Ω
2δ

)2
+

|e〉√
1 +

(
2δ
Ω

+ Ω
2δ

)2
, (2.29)

|Ψ−〉 =
(Ω/2δ2) |g〉√

1 + Ω2

4δ4

+
|e〉√

1 + Ω2

4δ4

. (2.30)

If the system is initially at |g〉, and we want to know how this system evolve in time,
Eq. (2.29) and (2.30) give us the relation between {|g〉 , |e〉} and {|Ψ+〉 , |Ψ−〉}. We can
use it to find the unitary matrix that transform the time evolution operator from energy
eigenbasis to {|g〉 , |e〉} basis, and the probability of the system being in |e〉 state if it is
initially at |g〉 is

P (e|g) =

∣∣∣∣∣∣ 1√
1 + Ω2

4δ4

1√
1 +

(
2δ
Ω

+ Ω
2δ

)2

∣∣∣∣∣∣
2

·
∣∣∣∣−e−i√δ2+Ω2

2
t + ei

√
δ2+Ω2

2
t

∣∣∣∣2 (2.31)

=

(
1

4δ2

Ω2 + 4 + Ω2

δ2 + Ω4

16δ4

)
4 sin2

(√
δ2 + Ω2

2
t

)
(2.32)

=

(
Ω2

δ2 + Ω2

)
sin2

(√
δ2 + Ω2

2
t

)
. (2.33)

Some terms was omitted in Eq. (2.32) due to Ω � |δ| assumption. This probability is a
sinusoidal function with amplitude Ω2

δ2+Ω2 and angular frequency
√
δ2 + Ω2.

2.1.2 Rabi Frequency

In last section, we have expressed AC Stark shift of a two-level system in terms of laser
detuning and Rabi frequenc, but the magnitude of Rabi frequency is still unknown. In this
section, we will derive an expression for Rabi frequency, which shows Rabi frequency is
related to Einstein A coefficient, atomic transition wavelength, and laser intensity. Einstein
A coefficients for specific transitions can be retrieved from NIST atomic spectra database.

Let |i〉 be ground state, and |k〉 be excited state. I’m following the notation used on
NIST atomic spectra database. An excited atom in state |k〉 can decay back to state |i〉
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spontaneously without an external radiation field. This process is spontaneous emission.
The probability of such a spontaneous emission per second is

dPsp. em.
ki

dt
≡ Aki,

where Aki is Einstein A coefficient, and it is a parameter solely depends on the wave
function of state |k〉 and |i〉.

A classical oscillating electric dipole with electric dipole moment

~p(t) = q~d = ~p0 sin(ωt)

radiates total average power of

〈P 〉 =
〈p2〉ω4

6πε0c3
. (2.34)

For an atom emits a photon by transition from |k〉 to |i〉, the transition dipole moment
~µki = 〈~p〉 is defined as

~µki ≡ e 〈k|~r |i〉 . (2.35)

By evaluating the integration of wavefunction of hydrogen-like atom, we have relation

〈p2〉 = 2|~µki|2. (2.36)

For a single atom emits a photon by transition from |k〉 to |i〉, Einstein A coefficient is
related to 〈P 〉 by

〈P 〉 = Aki~ωa, (2.37)

where ~ωa is the energy difference between the two states. From (2.34), (2.36), and (2.37)
we have

Aki =
ω3
a

3πε0~c3
|~µki|2. (2.38)

Recall Rabi frequency of two states |k〉 and |i〉 is defined as

Ω ≡ −eE0

~
|〈k| ε̂ · ~r |i〉|. (2.39)

Define µ as ε̂ · ~µki
µ ≡ ε̂ · ~µki = e 〈k| ε̂ · ~r |i〉 , (2.40)

where µ is also referred as transition matrix element. We finally have

µ =

√
Aki

3ε0~λ3
a

8π2
. (2.41)
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Since E0 =
√

2I/(ε0c), we have

Ω = −
√
Aki

3λ3
aI

4~π2c
, (2.42)

where λa is the atomic transition wavelength between the two states, and I is the intensity
of the laser or light field. Sometimes the minus sign is ignored, since AC Stark shift is
related to Ω2.

2.1.3 AC Stark Shift for Ions

The internal states of ions, or more generally atoms, are not single particle states, in
general. However, we will only consider alkali-like ions, and treat their internal states as
single particle states. Alkali-like ions are referring to the ions with closed inner shell(s)
and one outer valence electron. A shell is closed when it contains the maximum number of
electrons permitted by Pauli exclusion principle. If all inner shells are closed, the electrons
in those shells form 1S0 state, where 1S0 is using Russell-Saunders notation, (2S+1)LJ .
In this case, the state of out electron in Russell-Saunders notation can fully specify the
electronic configuration of the ion, therefore we use the state of outer electron to represent
the state of the ion.

Ions are not simple two-level systems, and their internal states consist of multiple states.
However, ions under a laser field with specific wavelength can be treated as an ensemble
of multiple two-level systems, since only specific two-level transitions can be excited by
the laser field. For example, as for Ba+, transition from ground S1/2 state to P1/2 has
wavelength of 493.4 nm, and transition from S1/2 state to P3/2 has wavelength of 455.4 nm.
If a Ba+ ion is placed under 474 nm laser, the laser has the potential of exciting both P1/2

and P3/2 state, but once the Ba+ reach P1/2 state, it is very unlikely for such laser to excite
the Ba+ to P3/2 state. Since the energy difference between P1/2 and P3/2 states is much
smaller than the energy of a single photon from the laser. Therefore, AC Stark shift of
ground S1/2 state in this 3-level system, can be approximated as sum of AC Stark shift of
S1/2 → P1/2 and S1/2 → P3/2 transitions. We can write it as

∆Eg =
∑
e

∆Ee, (2.43)

where ∆Eg is AC Stark shift of ground state, and ∆Ee refers to all excited states that are
likely to be excited by the laser.
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While saying S1/2 state is the ground state of Ba+, or more generally of all alkali-like
ions, we have naively assumed all hyperfine states of S1/2 state are degenerate. However,
this is not true for any ion with nuclear spin quantum number I 6= 0. If we wish to know
AC Stark shift of a particular hyperfine state of S1/2 state, which could be more useful in
trapped ion experiments, we need to apply Wigner–Eckart theorem, which states as

〈F ′ m′F |T kq |F mF 〉 = 〈F k mF q|F ′ m′F 〉 〈F ′||T k||F 〉 , (2.44)

where T kq is the q-th component of the spherical tensor operator T k of rank k, and
〈F k mF q|F ′ m′F 〉 is the Clebsch–Gordan coefficient for coupling F with k to get F ′,
and 〈F ′||T k||F 〉 is some scalar that does not depend on mF , m′F , nor q, and is called
reduced matrix element.

Since the operator for transition matrix element, eε̂ ·~r, is a spherical tensor operator of
rank 1, we have

〈F ′ m′F | eε̂q · ~r |F mF 〉 = 〈F 1 mF q|F ′ m′F 〉 〈F ′||er||F 〉 , (2.45)

where q = −1, 0,+1 represents σ−, π, σ+ polarized light, and primed variables refer to
the excited states and the unprimed variables refer to the ground states. By introducing
Wigner 3-j and 6-j symbols, we have

〈F ′ m′F | eε̂q · ~r |F mF 〉

= (−1)F−1+m′
F

√
2F ′ + 1

(
F 1 F ′

mF q −m′F

)
〈F ′||er||F 〉

(2.46)

= (−1)2F+m′
F+J ′+I

√
(2F ′ + 1)(2F + 1)(2J ′ + 1)

{
J ′ J 1
F F ′ I

}
·
(
F 1 F ′

mF q −m′F

)
〈J ′||er||J〉 .

(2.47)

In the last line, we have written the reduced matrix element in J-basis, allowing us to
find the relation between transition matrix elements µJ ′→J and µF ′→F , as well as Rabi
frequency ΩJ ′→J and ΩF ′→F . With this relation, if we can calculation AC Stark shift with
ΩJ ′→J , we should also be able to calculate AC Stark shift for hyperfine states with ΩF ′→F .

Note that sometime 〈F ′||er||F 〉 is written as 〈α′F ′||er||αF 〉, where this α refers to any
variable that the reduced matrix element depends on, e.g. α can be principal quantum
number.
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2.2 Scattering Rate

Scattering of photons from atoms or ions caused by spontaneous emission is induced by
vacuum fluctuations, thus, this process and scattering rate are not explained by time
evolution operator obtained from Hamiltonian. When on atom or ion emits a photon, it
will transit from an excited state downwards to a state with lower energy, or to the ground
state. This process will also take the atom from a pure state, if it was in pure state, to
a mixture state. When a system turn into a mixture state from a pure state, not only
some information is lost, but also the system lose its coherence, creating errors to QIP
experiments. Therefore, for any QIP experiment with trapped ion systems, we wish to
eliminate this scattering rate, or perform our experiments in a short time scale such that
the probability for the trapped ions to scatter a photon is very low.

From a two-level system treatment, if the atom is initially at ground state, the scattering
rate of the atom under a laser with small detuning, is given by [11]

rsca. =
Ω2A

A2 + 2Ω2 + 4δ2
, (2.48)

where A is Einstein A coefficient of the transition.

As for large detuning, the scattering rate is [10]

rsca. = − 3πc2

2~ω3
a

(
ωl
ωa

)3(
A

ωa − ωl
+

A

ωa + ωl

)2

I. (2.49)

With the help from Eq. (2.42), and by taking δ � Ω, δ � Aeg, and ωl/ωa = 1, we can see
that the two equations for small and large detuning are now the same.

If we initialize the atom in ground state, and place it into a laser field, the total
scattering rate from a multilevel treatment is similarly to the multilevel treatment of AC
Stark shift

rtotal sca. =
∑
e

rsca.,e, (2.50)

where rsca.,e refers to the scattering rate from all |g〉 → |e〉 → |g〉 transitions that are likely
to be excited by the laser. However, the |e〉 → |g〉 transition does not necessarily bring the
atom back to the initial state, as it can go to other states, including hyperfine states, with
lower energy compared to |e〉, and at later times, the initial condition is not longer valid,
such that the calculation is not longer correct.

Since we wish to have small scattering rate, the equations tell us to choose lasers with
low intensity or with large detuning. However, we also want to have large AC Stark shift,
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as discussed in the following chapter. Since scattering rate follows rsca. ∝ 1/δ2 and AC
Stark shift obeys ∆E ∝ 1/δ, for building optical ion trap, the best strategy is to use
lasers with large detuning and high intensity, such that scattering rate is suppressed by
rsca. ∝ 1/δ2 term, and large AC Stark shift is provided by ∆E ∝ I term.

2.3 Optical Dipole Trap

Since AC Stark shift is proportional to the laser intensity, if one have a nonuniform inten-
sity distribution in space, ions in such field will experience different potential at different
position, and this potential can be made to be trapping potential, which leads to the idea of
optical trapping of ions. However, optical trap depth is normally much smaller than conven-
tional trap depth, where conventional trap depth can easily exceed eV, 1 eV ≈ 12000 K·kB,
whereas optical trap depth is measure in unit of mK · kB. Optical ion trap experiments
have been performed on a system of one 138Ba+ ion [7, 8], and a system of up to 6 138Ba+

ions in a linear chain [9], using a global Gaussian beam. In this section, we will find the
trap frequencies in all 3 directions provided by a Gaussian beam.

For a Gaussian beam propagating at +z direction, its intensity distribution is given by

I(s, z) = I0

(
w0

w(z)

)2

exp

(
−2s2

w(z)2

)
, (2.51)

where
s2 ≡ x2 + y2,

I0 ≡ I(s = 0, z = 0) and w0 ≡ w(z = 0),

w(z) is beam radius, and w0 ≡ w(z = 0) is beam waist. Please notice that w is different
from angular frequency ω, and it is given by

w(z) = w0

√
1 +

(
z

zR

)2

, (2.52)

where

zR =
πw2

0n

λ
, (2.53)

zR is Rayleigh range, and λ is the wavelength of the light, n is the index of refraction.
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As mentioned, AC Stark shift, ∆E, is proportional to intensity, so optical potential can
be written as

Vopt = −∆Emax

(
w0

w(z)

)2

exp

(
−2s2

w(z)2

)
, (2.54)

where ∆Emax is the maximum absolute AC Stark shift in the space, located at (s = 0, z =
0), which is also regarded as optical trap depth. The negative sign indicates it is a trapping
potential. Define z direction as axial direction, and any direction in xy plane as transverse
direction. We will show along axial direction, the optical potential is a Lorentzian, and
along transverse direction, it is a Gaussian.

Along transverse direction, we have

Vopt(z = 0, s) = −∆Emax exp

(
−2s2

w2
0

)
(2.55)

= ∆Emax

(
−1 +

2s2

w2
0

− . . .
)

(2.56)

≈ −∆Emax +
1

2
mω2

transs
2, (2.57)

where m is mass of the trapped ion. In the second line, we take the Taylor expansion of
the potential, and in the third line, we approximate the potential as a harmonic potential,
hence we have

ωtrans =

√
4∆Emax

mw2
0

=
2

w0

√
∆Emax

m
. (2.58)

Along the axial direction, we have

Vopt(s = 0, z) = −∆Emax

(
w0

w(z)

)2

(2.59)

= −∆Emax

(
1

1 + (z/zR)2

)
(2.60)

= ∆Emax

(
−1 +

z2

z2
R

− . . .
)

(2.61)

= ∆Emax

(
−1 +

z2λ2

π2w4
0n

2
− . . .

)
(2.62)

≈ −∆Emax +
1

2
mω2

axialz
2, (2.63)
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hence we have

ωaxial =

√
2λ2∆Emax

π2mw4
0n

2
=

λ

πw2
0n

√
2∆Emax

m
. (2.64)

Eq. (2.58) and (2.64) are showing the trap frequencies along transverse and axial direction,
and we have

ωaxial =
λ√

2πw0n
ωtrans (2.65)

If we take wavelength λ = 500 nm, beam waist w0 = 1 µm, and index of refraction n = 1, we
have ωaxial ≈ 0.1ωtrans, axial trap frequency is much smaller than transverse trap frequency.
Therefore, in this case, the Gaussian beam is only providing enough trapping for transverse
direction. To compensate the weak trapping along axial direction, DC electrodes are used
to provide axial trap frequency, creating static electric field confinement such that the trap
frequencies along all 3 spacial directions are in similar order of magnitude.

2.4 Optical Trapping Lifetime

Trap frequencies determine whether ions can be trapped or not, but it does not determine
the trapping lifetime. Optical trapping lifetime is determined by optical trap depth, and
heating rate of the trapped ion system, which is the rate of temperature increase of the
system. Calculating optical trapping lifetime is calculating optical trapping probability.
As for trapping with a single ion, optical trapping probability is simply the probability for
the ion does not escape the trap. If optical trapping probability is exponentially decrease
in time, or can be approximated as an exponential function with respect to time, optical
trapping lifetime can be defined as the time for trapping probability to reach 1/e.

Energy-cutoff model, described in [12], is a simple analytic model describing a single
ion in a single-beam optical dipole trap, and predicts the trapping probability. This model
treats the system as a 3D harmonic oscillator, with the same trap frequencies in all 3
directions. Then, the total trap potential is

Vtrap(x, y, z) =
1

2
mω2

trapr
2,

where
r2 ≡ x2 + y2 + z2.

This is a trap potential with infinite depth, but any real trap should have finite depth. We
assume the trap depth is the same in all 3 directions, so we cut a line at Vtrap(x, y, z) =
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Vdepth, where Vdepth is optical trapping depth. We assume the trapped ion is lost if it has
kinetic energy higher than Vdepth, such that trapping probability is sum of the probabilities
of the ion being in each motional state with eigenenergy lower than Vdepth, and the proba-
bility of the ion being in each state can be calculated from a canonical ensemble. In this
case, we are using a infinitely deep trapping potential to calculate the energy eigenstates,
but we assume the ion is lost if it has an energy above Vdepth.

For 3D harmonic oscillator, we know the partition function, Z3, and density of states,
D3(E), are

Z3 ≈ (β~ω)−3 ,

where β ≡ 1/(kBT ), and

D3(E) ≈ E2

2 (~ω)3 .

Now, we can write optial trapping probability, popt, as

popt =

∫ Vdepth

0

1

Z3

D(E) exp(−βE) dE (2.66)

=

∫ Vdepth

0

1

2
β3E2 exp(−βE) dE (2.67)

= − exp(−βE)

(
β2E2

2
+ βE + 1

) ∣∣∣∣∣
Vdepth

0

(2.68)

= 1−
(
β2V 2

depth

2
+ βVdepth + 1

)
exp(−βVdepth). (2.69)

Now, trapping probability popt is a function of Udepth and β. By intro ducting a new variable
heating rate, H, where

H ≡ ∆T

∆t
.

Since optical trapping lifetime for a single ion is limited to few second [7], which is much
smaller than conventional trapping lifetime, we assumed the heating rate is a constant in
during the trapping lifetime. If we also assume Vdepth is a constant, we have

popt(t) = 1−
(
β(t)2V 2

depth

2
+ β(t)Vdepth + 1

)
exp(−β(t)Vdepth), (2.70)

where β(t) ≡ 1/[kBT (t)], T (t) = T0 + Ht, and T0 is initial temperature of the system.
Optical trapping probability popt(t) is a function of time, and trapping lifetime can be
extracted by calculating popt(t).
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2.5 Searching for Ion Species

For optical trapping of neutral atoms, alkali-metal atoms are commonly used. Since alkali
atoms have only one valence electron with a closed inner shell, we can approximately treat
its internal states as single particle states, thus, it is easy to manipulate the states using
lasers with appropriate wavelengths. If the internal states of a atom can be treated as
single particle states, this atom will have a strong S → P manifold transition, since the
ground internal state must be S1/2 state. Moreover, lasers with wavelengths corresponding
to the S → P transitions of alkali atoms are easier to prepare experimentally. As for
optical trap of ions, similarly, alkali-like ions are the most favored candidates.

Figure 2.1: Singly ionized alkali-like ions.

Fig. 2.1 shows all alkali-like ions, if the atom is singly ionized, on periodic table. These
ions have different S → P transition wavelengths and matrix elements, therefore they have
different AC Stark shift and scattering rate.
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Ion species
Frequency

[THz]
Wavelength

[nm]
A

[s−1]
µ

[C·m]
Ω/
√
I

[Hz · W −1/2· m]
Ba+ 607.43 493.55 9.53 ×107 2.016 ×10−29 5.25 ×106

Ra+ 640.10 468.35 1.061 ×108 1.966 ×10−29 5.12 ×106

Sr+ 710.96 421.67 1.279 ×108 1.844 ×10−29 4.80 ×106

Ca+ 755.22 396.96 1.4 ×108 1.763 ×10−29 4.59 ×106

Yb+ 811.29 369.52 1.23 ×108 1.484 ×10−29 3.86 ×106

Be+ 957.20 313.20 1.1285 ×108 1.109 ×10−29 2.89 ×106

Mg+ 1069.3 280.35 2.57 ×108 1.417 ×10−29 3.69 ×106

Cd+ 1323.2 226.57 3.177 ×108 1.145 ×10−29 2.98 ×106

Zn+ 1453.4 206.27 3.86 ×108 1.096 ×10−29 2.85 ×106

Hg+ 1543.5 194.23 7.5 ×108 1.396 ×10−29 3.63 ×106

Table 2.1: Transitions from S1/2 to P1/2 state of alkali-like ions.

To judge which ion is a better candidate for optical trapping, we list the parameters
that are relevant to AC Stark shift and scattering rate calculation in Table 2.1. In this
table, ion species are ordered by their transition frequencies from S1/2 to P1/2 state, and
Einstein A coefficient, A, transition matrix element, µ, and Rabi frequency per square root
of laser intensity, Ω/

√
I, are listed. Hyperfine levels of the ions are not considered, since

we did not specify isotope number. In addition, No+ is not listed in the table, since it has
no stable isotope. Table 2.1 shows that Ba+ ion has the smallest transition frequency and
largest Rabi frequency at a given laser intensity, which means Ba+ experience more AC
Stark shift magnitude compared to other ions at the same laser detuning and intensity.
This makes Ba+ to be a potential candidate, however, AC Stark shift is not the only
criterion to judge an ion.
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Figure 2.2: Singly ionized alkali-like ions having isotope(s) with nucleus spin
I = 1/2.

We also want the ion to have a isotope with nuclear spin I = 1/2, since it will make
state detection of the ion to be convenient. Fig. 2.2 shows there are only 4 alkali-like ions
satisfy the condition, Ba+, Yb+, Cd+, and Hg+. Since AC Stark shift is proportional to
Ω2, from Table 2.1, we know Cd+ and Hg+ have much smaller AC Stark shift compared
to Ba+ and Yb+, and since Cd+ and Hg+ are toxic, we will focus our discussion mainly on
Ba+ and Yb+ ions.

For QIP experiments with trapped ion system, both Ba+ and Yb+ are commonly used
ions with their own advantages and disadvantages. We will explore their properties by
placing them under a 1064 nm laser, which is a typical high power laser. This laser is red
detuned to S1/2 → P1/2 transition for both Ba+ and Yb+ ions, meaning its frequency is
smaller than the transition frequency, and creates a negative AC Stark shift. Here, we will
only discuss the magnitude of AC Stark shift. Since Ba+ has a smaller transition frequency,
which leads to a smaller laser detuning, and it also has a larger Ω, both of two conditions
give Ba+ a stronger AC Stark shift compared to Yb+. However, the small detuning of Ba+

leads to the problem of high scattering rate.

Since AC Stark shift scales as I/δ, while scattering rate scales as I/δ2, using large
laser detuning to minimize scattering rate is a much more efficient compared to lowering
laser intensity. As for Yb+, since it has a larger transition frequency, its high detuning
under 1064 nm laser will strongly suppress the scattering rate. In particular, since 1064 nm
laser has a high power, the high intensity can potential boost AC Stark shift to a desired
magnitude.
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Scattering rate to meta-stable D manifold is also an important criterion to an ion.
Since AC Stark shift is a internal state dependent energy shift, when the ion scatter to D
manifold, the trapping potential can become much shallower, or it can turn from a trapping
potential to an anti-trapping potential. For Ba+, the branching ratio for P1/2 → S1/2

versus P1/2 → D3/2 is about 3:1, whereas for Yb+, this branching ratio is about 200:1. The
probability for Ba+ in P1/2 state to scatter to D3/2 is 25%, and for Yb+ is 0.5%. This high
scattering rate to meta-stable D state for Ba+ strongly limits its optical trapping lifetime,
as we will discuss this topic in Section 4.2.3.
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Chapter 3

Optical Cavity Trap for 2D Ion
Crystals

Up to now, optical trapping for 2D ion crystals is still a field without experimental ex-
ploration, and even conventional 2D Paul ion trap has not been experimentally achieved
until recent studies [6, 13]. For optical trapping, as discussed in Section 1.1, the feasibility
of trapping ions in a 1D linear chain is experimentally demonstrated [9]. The difficulty of
extending the system to 2D comes from the shallow optical trap depth, since in practice,
lasers have finite power, and they cannot be focus to arbitrary small waist. As we have
shown in previous chapter, a small optical trap depth will lead to a short optical trapping
lifetime, and also a small trap frequency. If the trap frequency is not high enough, the
trapped ions will not transition to 2D structure. If the optical trap depth is not high
enough, the system will not have long enough trapping lifetime to do any QIP experiment.

In this chapter, we will theoretically explore the feasibility of 2D optical ion trapping
with a Gaussian beam plus an optical cavity. Intensity of the beam will get amplified
by the cavity, creating a much higher AC Stark shift, which can potentially provide high
enough optical trap depth. Moreover, the intensity distribution inside an optical cavity
has a standing wave profile, such that ion can be trapped in the plane perpendicular to the
direction of beam propagation, with a much higher trap frequency, which is now related
to the wavelength of the beam.

First, we introduce what is an optical cavity. Then, we introduce our proposed optical
cavity ion trap, by explaining its setup, trapping parameters, and two different trapping
strategies. Finally, we investigate what are the required trapping parameters to trap ion
crystals in 2D, by studying the properties of 2D ion crystals.
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3.1 Optical Cavity

The simplest optical cavity consists of two parallel thin mirrors, separated by some dis-
tance d, which is called Fabry–Perot interferometer. We will exam how laser intensity get
amplified by this Fabry–Perot interferometer by deriving a relation between electric field
amplitude of incident electromagnetic wave and the electromagnetic wave inside the cavity,
which is in between the two mirrors. Then, we will find out how to have standing wave
intensity distribution inside the cavity.

To find the relation between electric field amplitude of incident and cavity electro-
magnetic waves, we will consider the electromagnetic waves as plane waves, travelling at
the direction perpendicular to the mirrors, which we define it as z direction. In the real
world, electromagnetic waves are never plane waves in large spatial scale, thus, this is an
assumption. We have incident electromagnetic wave as

EI(z, t) = E0,Ie
iωt−kz, (3.1)

and cavity electromagnetic wave as

Ecavity(z, t) = E0,cavity(t)eiωt−kz, (3.2)

where ω and k are angular frequency and wave vector of the electromagnetic wave, re-
spectively. Consider the two mirrors are identical and separated by a distance of d, with
electric field reflection and transmission coefficients r and t, which satisfy

r2 + t2 = 1. (3.3)

The time for electromagnetic wave to circulate one round-trip is

τ ≡ 2d

v
=

2nd

c
, (3.4)

where v = c/n is the speed of light in a medium with index of refraction n, which is filling
the cavity, and time τ is called cavity round-trip time. Consider the incident wave enters
the cavity at t = 0, then the wave inside the cavity at t = τ consist of two part. The
first part is the wave transmitted through the mirror at t = 0. The second part is the
wave transmitted through the mirror at t = τ , and has propagate inside the cavity for a
round-trip. We can write

Ecavity(t = τ) = E0,cavity(t)eiωτ = tE0,Ie
iωτ + r2E0,cavity(t)ei(ωτ−2kd). (3.5)
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After many round-trip cavity times, e.g. at t = mτ , the cavity will reach steady state, such
that E0,cavity(t > mτ) becomes a constant in time. Define E0,cavity(t = mτ) ≡ E0,cavity, we
can solve for

E0,cavity =
t

1− r2e−i∆
E0,I, (3.6)

where
∆ = 2kd

is the round-trip phase difference.

At cavity steady state, if the electromagnetic wave propagating at different directions
satisfy

Ecavity(z, t) = E+
0,cavity cos(ωt− kz) + E−0,cavity cos(ωt+ kz) (3.7)

= 2E0,cavity cos(ωt) cos(kz), (3.8)

where E+
0,cavity and E−0,cavity are electric field amplitude of two waves propagating at different

directions, with E+
0,cavity = E−0,cavity = E0,cavity. Now, the electromagnetic wave inside the

cavity is a standing wave, therefore, we need round-trip phase difference ∆ equals to integer
times 2π, which is

e−i∆ = 1.

Overall, we find that a standing wave cavity can amplify intensity of incident laser by

Icavity

II

=
ncavity|E0,cavity|2

nI|E0,I|2
=
ncavity

nI

(
t

1− r2

)2

, (3.9)

where ncavity and nI are index of refraction for the mediums inside and outside the cavity,
respectively.

Similarly, we can find the transmittance T of whole Fabry–Perot interferometer system
is

T ≡ IT

II

=
1

1 + [4r2/(1− r2)2] sin2(∆/2)
, (3.10)

where IT and II are transmitted and incident laser intensity. We define the factor inside
the square bracket as coefficient of finesse, F

F ≡ 4r2

(1− r2)2
, (3.11)

and define cavity finesse, F as

F ≡ π
√
F

2
=

πr

1− r2
. (3.12)
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Cavity finesse F is an important parameter to characterize a cavity. From now on, we will
use finesse to indicate how good a cavity is at amplifying laser intensity, e.g. by solving
Eq. (3.9) and (3.12), taking all index of refraction as 1, we find a cavity with F = 3000 has
r = 0.999477, and Icavity/II = 955 ≈ 1000, which means a F = 3000 cavity can amplify
intensity by ∼ 1000 times.

3.2 Optical Cavity Ion Trap

In this section, we propose a scheme to trap 2D ion crystals with optical cavity trap. As
discussed in Section 2.3, optical trap depth is normally smaller conventional trap depth
for ions by 5-6 orders of magnitude. This small trap depth limits optical trapping lifetime,
and also brings difficulties of loading ions into the optical trap. Therefore, we load the ions
into a conventional Paul trap, and have them trapped in 2D structure initially. Trapping
2D planar ion crystals in a linear Paul trap have been accomplished in a recent experiment
[6]. Then, we apply laser cooling to the ions to bring its temperature below the optical
trap depth, and adiabatically transfer the system to optical trapping, by ramping down
the conventional trap strength while ramping up the optical beam intensity with certain
rate. This adiabatic process must be slow enough such that the internal states of ions
are unchanged, and also be fast compared to the optical trapping lifetime such that the
remaining optical trapping period is still long enough to perform QIP experiments. A
method of finding the best adiabatic transfer scheme is developed and discussed in Ap-
pendix. After the optical trapping period, we want to transfer the 2D ion crystal become
to conventional trap to perform state detection. Since the detection is a measurement
that causes the quantum state to collapse into the measured state, and AC Stark shift is
a state dependent energy shift, performing state detection during optical trapping period
can change the effective optical potential, which heat up the system, potentially causing
the ions to escape the trap.

In this section, we explain the optical cavity setup, and find the relations between optical
trapping parameters, i.e. trap depth and trap frequency, and optical cavity parameters,
i.e. cavity finesse and laser parameters. Then we discuss two trapping strategies associated
with trapping with red or blue detuned laser.
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3.2.1 Trap Setup

Figure 3.1: Optical cavity trap setup.

Optical cavity ion trap consists of a circular electrode and a optical cavity, aligned to the
same axis along axial direction, as shown in Fig. 3.1. The circular electrode is applied
with DC voltage, creating a static electric potential to the 2D ion crystal. This electric
potential provides radial confinement in x and y directions. Meanwhile, a laser amplified
by the optical cavity is providing axial confinement in z direction.

Since the size of trapped ion crystals are normally measured in unit of µm, the DC
electrode is much larger than the trapped 2D ion crystal. Thus, electric potential offered
by this DC electrode, denoted as VDC, can be approximated as harmonic potential

VDC(x, y, z) =
1

2
m
[
ω2

DC,xx
2 + ω2

DC,yy
2 − ω2

DC,zz
2
]
, (3.13)

with
ω2

DC,z = ω2
DC,x + ω2

DC,y, (3.14)

where m is mass of the ion, ωDC,x and ωDC,y are trap frequencies of DC potential in x and
y directions. This potential is created by static electric field, therefore we can verify that
it satisfies Laplace’s equation

∇2 VDC = 0.

Laplace’s equation tells us, electric potential cannot provide trapping in all 3 spatial direc-
tion, hence, if we have trapping in x and y directions, the potential must be anti-trapping
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in z direction. This anti-trapping DC potential in z will be compensated by optical po-
tential created by laser intensity, to make a total trapping potential in all 3 direction. In
addition, the shape of the electrode is not restricted to be circular, and it could be any
shape such that it can provide a potential described by Eq. (3.13).

Optical potential is provided by a Gaussian laser beam, whose intensity is amplified by
the optical cavity, and we consider the cavity has only lowest Gaussian cavity mode being
excited, therefore cavity intensity also has a Gaussian profile. The optical potential inside
the cavity trap is given by

Vopt = −Vopt,depth

(
w0

w(z)

)2

exp

(
−2(x2 + y2)

w(z)2

)
cos2

(
2πz

λred

)
(3.15)

Vopt = Vopt,depth

(
w0

w(z)

)2

exp

(
−2(x2 + y2)

w(z)2

)
sin2

(
2πz

λblue

)
, (3.16)

where Vopt,depth is optical trap depth, w(z) is beam radius, w0 ≡ w(z = 0) is beam waist,
λred and λblue are wavelengths of red and blue detuned lasers. Optical trap depth Vdepth

is defined to be the maximum absolute value of AC Stark shift in space, which located
maximum intensity point in space. Optical potential is expressed by two equations, since
the optical potential created by red and blue detuned lasers are slightly different. Red
detuned laser has frequency smaller than the atomic transition frequency, thus, laser de-
tuning δ ≡ ωl − ωa < 0, and the AC Stark shift of ground internal atomic state from red
detuned lasers is negative. This means red detuned laser intensity lowers ground atomic
state energy, hence, there is a minus sign in Eq. (3.15), and 2D ion crystal can be trapped
in the plane of z = 0, where cavity intensity reaches maximum value. Blue detuned laser
is an opposite case, whose laser detuning is positive, and its intensity rises ground atomic
state energy, leading to a positive AC Stark shift. Hence, for blue detuned laser, 2D ion
crystal need to be trapped in a plane of intensity minimum, and the sine square standing
wave in Eq. (3.16) makes z = 0 to be the plane.

Total trap potential of optical cavity ion trap is the sum of DC and optical potential,

Vtot,trap = VDC + Vopt. (3.17)

Total potential energy of the trapped ion system consisting N ions is the sum of total trap
potential on each ion, labeled by index i, and total Coulomb potential

Vtot =

(
N∑
i=1

VDC,i + Vopt,i

)
+ VCoulomb, (3.18)
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where total Coulomb potential is given by,

VCoulomb =
N∑
i<j

e2

4πε0 ‖ri − rj‖
. (3.19)

Here, e, ri, and ε0 are respectively electron charge, the position vector of ith ion, and the
permittivity of free space. In next section, we will derive the trap frequencies offered by
this trap potential Vtot,trap in all spatial directions.

3.2.2 Trapping Parameters

Consider optical potential created by red detuned laser along z direction, from Eq. (3.15),
we can write it as

Vopt(x = y = 0, z) = −Vopt,depth

(
w0

w(z)

)2

cos2

(
2πz

λred

)
. (3.20)

Use Taylor expansion to expand it at z = 0, and the coefficient in front of term with z2

indicates at x = y = 0, optical trap frequency along z is

ωopt,z =
2π

λred

√
2

m
Vopt,depth, (3.21)

which is similar to the method used in Section 2.3. Now, considering both optical and DC
potential, the total z direction trap frequency at point x = y = z = 0 is

ωz =

√
2Vopt,depth

m

(
2π

λ

)2

− ω2
DC,z. (3.22)

This result can be generalized to both red and blue detuned lasers. The total z direction
trap frequency depends on DC trap frequency, laser wavelength, and optical trap depth,
which optical trap depth further depends on cavity finesse and parameters of the laser.
However, this z direction trap frequency does not depend on cavity length. Therefore we
have some freedom to pick a cavity length that is relatively stable against cavity intensity
noise, or a length which is easier to be integrated into the full ion trap system.

Using similar way, we can find the total radial direction trap frequency at point x =
y = z = 0 is

ωr =

√
4Vopt,depth

mw0
2

+ ω2
DC,r, (3.23)
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where we assumed DC potential has radial symmetry ω2
DC,x = ω2

DC,y ≡ ω2
DC,r, and ωr can

be trap frequency along any direction in xy plane. Normally, the optical contribution to
total radial trap frequency is small, such that ωr ≈ ωDC,r, but in the cases where optical
potential depth is large, or beam waist w0 is small, optical contribution to total radial trap
frequency can be significant.

For both radial and axial directions, Taylor expansion of the total optical cavity trap
potential have no r1 or z1 term, and the terms with power higher than 2 have small
coefficients in front of them, compared to terms with r2 and z2. Therefore the total
potential can be approximated as harmonic at small neighbourhood of point x = y = z = 0,
but when the size of 2D ion crystal is big, or the laser beam waist is small, the ions will
experience a strong inharmonicity from the potential. We will use trap frequencies in all
spatial directions, beam waist w0, and radius of the 2D ion crystal rmax to characterize
total potential of the system. The ratio of trap frequencies in axial and radial direction
is another important parameter, since if this ratio is small, the trapped ions will not form
2D structure. We call this ratio as trap aspect ratio, and denote is as α, where

α ≡ ωz
ωr
. (3.24)

In later sections, we will numerically find the relation connecting structural phase transition
point, trap aspect ratio α, and w0/rmax.

Now we want to know what is the total trap depth. Similar to total trap frequency,
total total trap depth Vopt,depth is determined by both optical and DC potential. At z ≈ 0,
the local trapping potential along z direction can be written as

Vtot,trap(x = y = 0, z) = −Vopt,depth cos2

(
2πz

λ

)
− 1

2
mω2

DC,zz
2, (3.25)

where total trap depth is the largest local maximum value of Vtot,trap(x = y = 0, z) −
Vtot,trap(x = y = z = 0). The value of total trap depth can be numerically calculated by
solving

Vopt,depth sin2

(
2

2πz

λ

)
−mω2

DC,zz
2 = 0, (3.26)

and the smallest nonzero solution is the z value where the total trap depth is located.
Combining Eq. (3.25) and (3.26), we can find the value of total trap depth. Its value
is determined by 3 parameters, Vopt,depth, λ, and ωDC,z. However, for the cases we are
studying, we normally have the optical potential to be the dominating term, such that

Vtot,trap(x = y = 0, z) ≈ −Vopt,depth cos2

(
2πz

λ

)
, (3.27)
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and
Vtot,depth ≈ Vopt,depth. (3.28)

For writing convenience, we will use Vdepth ≡ Vtot,depth ≈ Vopt,depth to denote total trap
depth.

The trap depth we find is only the trap depth along z direction. Since the confinement
of ions along radial x and y direction is provided by DC potential, which has trap depth of
∼ eV ≈ 104 K · kB. This trap depth is many orders of magnitude larger than z direction
trap depth provided by optical potential, which is normally measured in unit of mK · kB.
Therefore, when we need to estimate the stability of the system by considering the trap
depth, we are referring to the trap depth along z direction.

3.2.3 Trapping with Red or Blue Detuned Laser

Recall in Section 2.1.1, we defined laser detuning δ as

δ ≡ ωl − ωa, (3.29)

where ωl is laser frequency, and ωa is atomic transition frequency. As discussed in Section
3.2.1, red detuned lasers have δ < 0, whereas blue detuned lasers have δ > 0. In other
words, whether a specific laser is red or blue detuned depends on what is the atomic
transition it is referring to. In Table 2.1, we see the S1/2 to P1/2 state transtition wavelength
for Ba+ is 493.5 nm, and for Yb+ is 369.5 nm. For instance, the typical high power 1064 nm
laser is red detuned for both Ba+ and Yb+.

From Eq. (3.15) and (3.16), we know both red and blue detuned lasers can provide
trapping potential for ions, but trapping ions with red or blue detuned laser are very
different. In Chapter 2, we discuss AC Stark shift and scattering rate are determined by
laser detuning, meanwhile from Eq. (3.22) we can see lasers with different wavelengths
provide different total trap frequency. Therefore, the trapping parameters offered by red
and blue detuned lasers are completely different. More importantly, for red detuned lasers,
ions are trapped in the plane of intensity maximum, while for blue detuned lasers, ions
are trapped in the plane of zero intensity. If intensity is zero, the ions will not suffer from
scattering, which is creating errors to QIP experiments as well as heating up the system.
However, we need to assume the trapped ion system is initialized at zero temperature such
that ions stay exactly at zero intensity plane, but we can never do this practically. The
higher temperature the ions have, the further they can deviate from the zero intensity
plane, and resulting higher scattering rate and heating rate. We would expect a nonlinear
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temperature increase in a optical ion trap with blue detuned laser. Furthermore, the
trapping probability may not be able to approximated as exponential function.

These concerns do not arise from optical ion trapping with red detuned lasers, and it
indicates the lifetime and heating rate analysis for trapping with red and blue detuned laser
should be very different. In this thesis, we will focus on trapping with red detuned lasers,
especially with the high power 1064 nm laser, but we will discuss the scalable potential of
blue detuned laser trapping in later chapters and in outlook.

3.3 Structural Phase Transition of 2D ion crystals

We have demonstrated optical cavity trap can provide confinement to a 2D ion crystal
using DC and optical potential. However, before designing an optical cavity trap with
some specific parameters, we need to know what are the required trapping parameters to
trap ion crystals in 2D. To address this question, we need to introduce structural phase
transition of 2D ion crystals. If the trap potential at ion crystal can be treated as harmonic
potential locally, we can use trap frequencies to quantify the trap strength in each direction,
and use trap aspect ratio, α, to quantify how stronger or weaker axial trap frequency is
compared to radial trap frequency. For small α, the ion crystal will form a 1D linear chain,
and by increasing α, the ion crystal will transition form 1D linear chain to a 3D zig-zag
or 3D a spheroidal structure, and for very high α, the 3D structure will transition to a 2D
planar structure. We want to know what are the α values for these transitions to occur,
particularly for transition between 3D and 2D structural, but before that, we first need to
know whether critical phase transition point exist or not.

In this section, we will first show the existence of critical structural phase transition
point between 2D to 3D phases of ion crystals in harmonic potential, and come up with a
way to precisely define critical structural phase transition point. However, 2D ion crystal
can have more than one stable equilibrium positions under a given trapping potential,
and critical structural phase transition points for different different equilibrium positions
are different. Then, we will show some examples of different equilibrium positions of 2D
ion crystals in optical cavity trap. Finally, we will numerically find the structural phase
transition points as a function of equilibrium positions and ion number, and discuss how
does our result connect to the analytic prediction [ref] of structural phase transition points.
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3.3.1 Critical Transition Point

For ion crystals, structural phases are 1D, 2D, and 3D structure, and structural phases
transition points are evaluated by trap aspect ratio α, which are analogous to phases
transition points of substances measured by pressure and temperature. Critical structural
phase transition points of ion crystals can be illustrated by using analogy with critical
phase transition points of substances, e.g. water and alloy. At atmospheric pressure, solid
to liquid phase transition of water has critical point of 0 ◦C, whereas liquid to gas phase
transition has critical point of 100 ◦C. As for alloy, most alloy do not have a well defined
critical phase transition points between different phases, since they are made of two or
more different metals. By heating up a piece of solid alloy, it will becomes softer and
softer as temperature increases, and gain liquidity gradually. We don not know whether
structural phase transitions of ion crystals behave like water or alloy, so in this section, we
will numerically explore how do ion crystals in harmonic potential transition between 2D
and 3D structural phases.

To study this problem, we will numerically calculate the equilibrium positions of N = 13
171Yb+ ions in harmonic potential. To find the equilibrium positions, we first give the ions
a initial guess of 3D positions, such that each ion has a position of (x, y, z) where x, y,
and z are randomly generated. Then, we apply an optimization algorithm to find the local
minimum potential energy of the trapped ion system described by Eq. (3.18) with respect
to positions N ions. Starting from the initial guess, this optimization algorithm iteratively
changes the positions of N ions by a small amount, until local minimum potential point is
reached. The algorithm treats the potential energy as a function on 3N variables, and the
resulting N -ion positions from local minimum potential point is the equilibrium position
of the N -ion system. The local minimum point obtained in this way is not guaranteed to
be global minimum point. Therefore, if the potential energy has multiple local minimum
points, this means the numerical solution of equilibrium position is not unique, and which
equilibrium position the algorithms is getting depends on the initial guess. From our
numerical investigation, 2D ion crystal with N = 13 ions is a special case whose equilibrium
position is unique under harmonic potential.
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Figure 3.2: Equilibrium position of 13 ions in 2D structural phase. The result is
numerically calculated by loading N = 13 171Yb+ ions into a harmonic potential with trap
frequencies ωr/2π = 0.5 MHz and ωz/2π = 1.5 MHz.

The equilibrium position of N = 13 2D ion crystal is presented in Fig. 3.2. The plot is
calculated with trap aspect ratio α ≡ ωz/ωr = 3, which is high enough for the system to
transition of 2D structural phase. This calculated N = 13 ions configuration agrees with
the detection image of experimentally trapped N = 13 2D ion crystal in Paul trap [6].

Figure 3.3: Structural properties of trapped 13 ions in different trap aspect
ratio. This is numerically calculated with the same trapping parameters in Fig. 3.2,
but with different α ≡ ωz/ωr, by changing ωz. For vertical axis, zmax and rmax are the
maximum absolute value of z position and radial position of the trapped ions. The two
plots are showing the same data with (a) vertical axis in linear scale and (b) vertical axis
in log scale.
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To see when the 2D to 3D structural transition occur, we numerically calculated the
equilibrium positions with different α. In Fig. 3.3, structural properties of trapped 13 ions
are characterized by zmax/rmax, where zmax is the maximum absolute value of z position
of all ions, and rmax is the maximum radial position r =

√
x2 + y2. Since the center of

trapped ion system is located at point x = y = z = 0, zmax and rmax are the maximum
separation of ions from its center. For a 3D isotropic harmonic potential, we have α = 1,
and the figure is showing zmax/rmax = 1 as expected. In a particular small interval of α,
near α = 2.1, zmax/rmax decreases exponentially as α increases, which can be clearly viewed
in Fig. 3.3 (b), since a exponential decay in log scaled plot is presented as a linear line.
This is a sign indicating critical structural phase transition point exists, and we now know
which interval it is located.

To find the precise value of structural phase transition point, we can start by assuming
the system is 2D and calculate its normal mode frequencies. As α ≡ ωz/ωr becomes smaller,
z direction normal mode frequency of the trapped ion system becomes smaller. When the
lowest z mode frequency reaches zero, keep decreasing α will cause the lowest z mode
frequency to have no real solution, since our 2D assuming is not longer valid. Therefore,
we can define structural phase transition point as the point where the lowest z direction
normal mode frequency reaches zero, when assuming the ions equilibrium positions are
always in 2D plane. This definition defines critical point by the transition from 2D to 3D,
since we know critical point exists, it can be generalized to transition from 3D to 2D.

Figure 3.4: Lowest z mode frequency of 2D ion crystal in different trap aspect
ratio. This is numerically calculated with the same trapping parameters in Fig. 3.3. The
algorithm calculating ions equilibrium positions is assuming the space is 2D in xy plane.
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To calculate normal mode frequencies, we need first obtain the equilibrium position.
Since we assume the system is 2D, now we set the initial guess of ions’ positions as 2D,
therefore each ion is given with two random numbers as its initial (x, y) position. The
optimization algorithm will also find the local minimum potential energy in a 2D space to
get a 2D equilibrium position. The calculated results are shown in Fig. 3.4, and it tells
us critical structural phase transition point for N = 13 ion between 2D and 3D phases is
α = 2.1.

3.3.2 Equilibrium Positions of 2D Ion Crystal

In last section, we saw an example of equilibrium position of 13 ions in harmonic poten-
tial. However, the equilibrium positions of 2D ion crystals in harmonic or optical cavity
trap potential are not unique. This means it is possible to trap N ions in different 2D
configurations under the same optical cavity trap potential. This is one of the intrinsic
differences between 1D and 2D ion crystals, since the equilibrium position of 1D ion crystal
in harmonic potential is unique.

Figure 3.5: Equilibrium positions of N = 5 2D ion crystal. The results are
numerically calculated by loading N = 5 171Yb+ ions into an optical cavity potential
with ωr/2π = 0.5 MHz and a sufficiently large axial trap frequency, and beam waist
w0 = 100 µm. The two equilibrium positions are (a) stable configuration with crystal
radius rmax = 4.8 µm, and (b) meta-stable configuration with rmax = 5.4 µm.

2D ion crystal with N = 5 ions is the smallest ion number to have more than one
equilibrium positions in optical cavity trap potential, as they are shown in Fig. 3.5. Stable
equilibrium position is the configuration with the smallest potential energy among all other
possible equilibrium positions, whereas meta-stable ones are the local minimum points of
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potential energy. Stable and meta-stable configurations are labeled by their ion numbers in
each ring, such as [5] and [1,4]. Different equilibrium positions also have different normal
mode frequencies and eigenvectors.

Figure 3.6: Normal mode frequencies and eigenvectors in z direction for stable
configuration of N = 5 2D ion crystal. This is numerically calculated with the same
trapping parameters in Fig. 3.5. Both mode (b) and (c) have two-fold degeneracy due to
radial rotational symmetry of the potential, thus there are 5 z modes in total.

The z direction normal mode frequencies and eigenvectors for N = 5 2D ion crystals
are shown in Fig. 3.6 and 3.7. Since the trapping potential has radial symmetry, the 2D ion
crystals are free to rotate in xy plane without changing its potential energy, therefore some
of the z modes are degenerate due to this symmetry. If a 2D ion crystal reach its 2D to
3D structural phase transition point, some ions will buckle first to turn into 3D structure,
and this buckling of ions follows the directions of eigenvector of the lowest z mode.
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Figure 3.7: Normal mode frequencies and eigenvectors in z direction for meta-
stable configuration of N = 5 2D ion crystal. This is numerically calculated with the
same trapping parameters in Fig. 3.5. The mode (b) has two-fold degeneracy due to radial
rotational symmetry of the potential, thus there are 5 z modes in total.

We numerically calculated equilibrium positions of 2D ion crystals from N = 5 to
N = 30, and present the results in Table 3.1. The equilibrium positions are generated
by running the algorithms with different initial position guess, and the stable equilibrium
position is the one with lowest potential energy among all other equilibrium positions.
However, we do not claim the table lists all possible equilibrium positions, since randomly
generated initial guess cannot guarantee to find all local minimum points of potential
energy.
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Ion number N Stable equilibrium position Meta-stable equilibrium position(s)
5 [5] [1, 4]
6 [1, 5] [6]
7 [1, 6]
8 [1, 7]
9 [2, 7] [1, 8]
10 [2, 8] [3, 7]
11 [3, 8]
12 [3, 9] [4,8]
13 [4, 9]
14 [4, 10] [5, 9]
15 [5, 10] [1, 5, 9]
16 [1, 5, 10] [5, 11]
17 [1, 6, 10] [1, 5, 11]
18 [1, 6, 11] [1, 7, 10]
19 [1, 6, 12] [1, 7, 11]
20 [1, 7, 12] [1, 7, 12(larger radius variance)]
21 [1, 7, 13] [2, 7, 12]
22 [2, 8, 12] [2, 7, 13]
23 [2, 8, 13] [3, 8, 12]
24 [3, 8, 13] [3, 9, 12]
25 [3, 9, 13] [3, 8, 14]
26 [3, 9, 14] [4, 9, 13]
27 [4, 9, 14] [4, 10, 13]
28 [4, 10, 14] [4, 9, 15]
29 [4, 10, 15] [5, 10, 14], [4, 11, 14]
30 [5, 10, 15] [4, 10, 16], [4, 11, 15], [1, 5, 10, 14]

Table 3.1: Equilibrium positions of 2D ion crystals with N = 5 to 30 ions. The
results are numerically calculated by loading 171Yb+ ions to an optical cavity potential
with ωr/2π = 0.5 MHz and a sufficiently large axial trap frequency, and beam waist
w0 = 100 µm. Different equilibrium positions are obtained by feeding the algorithm with
different initial position guess.
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3.3.3 Structural Phase Transition Points

Since different equilibrium positions of 2D ion crystals have different normal mode spectrum
and eigenvectors, we should expect structural phase transition points between 2D and 3D
structures for different equilibrium positions are different, as we have defined transition
points using the lowest z mode frequency in Section 3.3.1. In this section, we will explore
structural phase transition points in optical cavity potential as a function of ions number
N and its equilibrium positions, and the ratio of laser beam waist and ion crystal radius
w0/rmax. First, we will take w0/rmax to be large enough such that the radial inharmonic
potential terms are negligible, and exam structural phase transition points at different ion
numbers and equilibrium positions. Then, we fix N and equilibrium position, so that rmax

is also fixed, to find how does structural phase transition points changes as a function of
w0.

The numerically calculated results for structural phase transition points and the fitting
functions are shown in Fig. (3.8). The theoretically prediction of 2D to 3D structural phase
transition points of ion crystals in harmonic trap are studied analytically and numerically
in Ref. [14, 15]. In Ref. [14], the analytic perdition of transition points is that α ≡ ωz/ωr is
proportional to N0.25 with a good agreement to the numerically simulated results at large
N , which is a simulation with up to N = 500 ions. In Ref. [15], α ∝ N0.26 is obtained by
fitting the numerically simulated results with N = 10, 25, 70, 180, 500. From the result
shown in Fig. (3.8), we find for N = 30 to 120, α ∝ N0.27 in optical cavity trap. The
results in harmonic trap and optical cavity trap is close, but still different, since we did not
introduce any errors for the trapping parameters. The only source of error is numerical
error, which is negligible. This is what we should expect, since the trap potentials are
similar, but slightly different. We think the difference comes from the different trapping
potential used in the simulations, the different range of N , and the different transition
points for different equilibrium positions. The transition points in optical cavity trap can
teach us how choose the trapping parameters, and also provide guidance for scaling up the
2D trapped ion system.
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Figure 3.8: Structural phase transition points for ion crystals in optical cavity
trap. The results are numerically calculated by loading N 171Yb+ ions into an optical
cavity potential with ωr/2π = 0.5 MHz and a sufficiently large axial trap frequency, and
beam waist w0 = 100 µm. The two plots have x − y axes (a) in linear-linear scale and
(b) in log-log scale. For small N , we show the transition points with stable and meta-
stable equilibrium positions as blue and orange dots. For large N , we pick an arbitrary
equilibrium position and show its transition points as green dots. The fitting function fits
the data from stable and arbitrary equilibrium position.
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As discussed in Section 3.2.2, optical cavity trap potential is not only characterized by
trap frequencies, but also beam waist and 2D ion crystal radius. We now choose a fixed N
to study how structural phase transition points changes respect to the ration of beam waist
and 2D ion crystal radius. The result is showing in Fig. 3.9. If beam waist is smaller than
two times the 2D ion crystal radius, structural phase transition points tends to increase by
a large amount, which we do not want it to happen. This teaches us beam waist need to
at least two times larger than 2D ion crystal radius.

Figure 3.9: Structural phase transition points for N = 30 ion crystals with dif-
ferent beam waist. This is numerically calculated using stable equilibrium position of
N = 30 2D ion crystal of 171Yb+ in an optical cavity potential with ωr/2π = 0.5 MHz and
a sufficiently large axial trap frequency. The beam waist w0 take values from 13-50 µm,
and corresponding 2D ion crystal radius rmax is 13.37-13.38 µm.

3.4 2D Optical Cavity Ion Trap Design

In last section, we studied how the structural phase transition points change as a function
trapping parameters. Now we can choose the trapping parameters based on the 2D ion
trap we wish to build. In this section, we will provides several sets of trapping parameters
for different N , by showing how those trapping parameters are related, i.e. if one need to
change one or more parameters, how do other parameters change.
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The first trapping parameter one need to choose is the DC trap frequencies, which
determines the size of trapped 2D ion crystal. The choice of radial DC trap frequency
specifies ion crystal radius, minimum ion spacing, and also provides an axial anti-trap
frequency based on the value of radial trap frequency, as shown in Eq. (3.13). We want
the minimum ion spacing to be large enough allowing individual addressing of ions with
lasers, bu also want ion crystal radius to be small such that trapping beam waist is small,
since in last section, we learned that beam waist must be at least two times the ion crystal
radius. It is necessary to introduce a small asymmetry in radial DC trap frequencies,
e.g. ωy = 1.1ωx, to prevent the 2D ion crystal to freely rotate in radial direction, which
corresponds to the zero-frequency rotational mode.

After choosing DC trap frequencies and laser beam waist, if we assume the ion crystal
will be trapped in 2D, the stable equilibrium position of each N is now well defined. To
maintain the ion crystal in 2D phase, we need to provide enough axial trap frequency from
optical potential, which is described by Eq. (3.22), and the undetermined parameters are
optical trap depth Vdepth and laser wavelength λ. In Section 3.2.3, we discussed the pros
and cons of trapping ions with different laser wavelengths, and as mentioned, we will use
λ = 1064 nm laser. Since the analysis of structural phase transition points tells us the
minimum axial trap frequency to trap ion crystals in 2D, we can use it to calculate the
minimum required optical trap depth. From the AC Stark shift calculation, optical trap
depth can be converted to cavity laser intensity, which depends on incident laser intensity
and cavity finesse via Eq. (3.9) and (3.12).

Overall, all trapping parameters are related except cavity length and mirrors’ radii of
curvature, which define the stability parameter g of a cavity

g1 = 1− L

R1

(3.30)

g2 = 1− L

R2

, (3.31)

where L is cavity length, R1 and R2 are the radii of curvature of two mirrors. A stable
cavity must satisfy condition.

0 ≤ g1g1 ≤ 1. (3.32)

For 2D optical cavity trap, we propose utilizing near-concentric cavity, for which R1 =
R2 ≈ L/2, since it has a small and adjustable beam waist.
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Ion number N 5 19 30
DC radial trap frequency 2π × 0.5 MHz

Laser wavelength 1064 nm
Minimum ion spacing 5.7 µm 5.3 µm 4.4 µm

Ion crystal radius 4.8 µm 11 µm 13.4 µm
Laser beam waist 10 µm 22 µm 28 µm

Minimum AC Stark shift 230 MHz · h 430 MHz · h 565 MHz · h
Minimum cavity intensity 7.4× 1011 W/m2 1.4× 1012 W/m2 1.82× 1012 W/m2

Cavity finesse 3000
Minimum laser power 120 mW 1.1 W 2.4 W

Scattering rate 2.3 s−1 4.3 s−1 5.6 s−1

Table 3.2: Trapping parameters for 2D optical cavity trap. The ion is 171Yb+.
For each N , the parameters are determined for the stable equilibrium position of the ion
crystal.

The required trapping parameters for 2D optical cavity trap are listed in Table 3.2, for 3
different choices of N . For 1064 nm laser, one can easily obtain ∼ 10 W of power, therefore
trapping up to 30 171Yb+ ions in 2D is feasible if we only looking at trapping parameters,
i.e we did not consider trapping lifetime. We pick N = 19, since this is the maximum N
that used in the 2D linear Paul ion trap [6], and we need to first load the ions into a Paul
ion trap, then adiabatically transfer it to an optical cavity trap. The N = 30 case shows
the ion crystal which can be trapped is scalable with respect to N , but in next chapter,
we will find the difficulties for scalability of the system come from trapping lifetime. The
parameters listed in Table 3.2 are not the recommended parameters, since the minimum
cavity intensity is the smallest value such that the system can be constrained in 2D, and
this value is determined by numerical calculation of structural phase transition point and
AC Stark shift. The minimum laser power is determined by minimum cavity intensity,
cavity finesse, and laser beam waist, since intensity is proportional to power, and inverse
of beam waist square 1/w2

0.

To conclude, it is feasible to trap N = 30, and possibly more, 171Yb+ ions in optical
cavity trap in 2D, but at this stage, we do not know the stability and trapping lifetime of
the system. We will study the stability and trapping lifetime in next chapter.
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Chapter 4

Stability and Normal Mode Analysis
of 2D Ion Crystal

In previous chapters, we show 2D ion crystal can be trapped in optical cavity trap with
some experimentally realistic trapping parameters. However, we do not know the trap-
ping lifetime of this system. If trapping lifetime is too short to do some interesting QIP
experiments, 2D ion trapping with optical cavity is still not a feasible approach. More
importantly, we do not know the stability between different equilibrium positions. If the
potential barrier between two different equilibrium positions is smaller than the kinetic
energy of the trapped ion system, the system will have a high probability of transitioning
between the two equilibrium positions. Since different equilibrium positions have different
normal mode frequencies and eigenvectors, it is difficult to perform QIP experiments to
such an unstable system.

In this chapter, we will first numerically investigate potential barrier between different
equilibrium positions. If the potential barrier is larger than trap depth, the equilibrium
position will be stable in the sense of not transitioning to another equilibrium position dur-
ing optical trapping period. Then, we will estimate optical trapping lifetime by estimating
the heating rate of the system. Finally, we will numerically study how normal modes are
affected by trapping parameters.

4.1 Potential Barrier between Equilibrium Positions

Different equilibrium positions of 2D ion crystals have different potential energy, but poten-
tial barrier between equilibrium positions are not the differences of their potential energy.
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When a 2D ion crystal transitioning from one equilibrium position to another, the system
must follow a continuous path in the configuration space with 2N dimensions, since there
are N ions in total, and each ion has two x and y positions, meanwhile we are assuming
the axial trap frequency is large enough to constrain the system in z = 0 plane. There-
fore, each point on this path refers to a N -ion-position which has a total potential energy,
and the highest total potential energy along the path is called potential peak. There are
infinitely many continuous paths connecting two equilibrium positions, and each path has
a potential peak. Potential barrier between two equilibrium positions is defined as the
potential peak along the path with smallest potential peak among all continuous paths
connecting the two two equilibrium positions. We choose this definition since the system
will likely follow the path with smallest potential peak during transition, and if the system
does not have kinetic energy higher than the potential barrier, it cannot reach the second
equilibrium position.

Figure 4.1: Potential energy along the straight path between the two equilibrium
positions of N = 5 2D ion crystal. This is numerically calculated by loading N = 5
171Yb+ ions into an optical cavity potential with radial trap frequency ωr/2π = 0.5 MHz
and a sufficiently large axial trap frequency, and beam waist w0 = 50 µm. Orange dot:
potential energy of stable equilibrium position. Green dot: maximum potential energy
along the straight path. Red dot: potential energy of meta-stable equilibrium position.

Before finding the correct path which gives us the potential barrier, let us first look
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at how potential energy changes along the straight path where every ion in the initial
equilibrium position moves straightly to its final position forming the final equilibrium
position. To do this, every ion must know which is the final position it is going to such
that total path length of the N ions is minimized. In other words, each ion in initial position
must have a unique finial position. Therefore, we label all ions in initial equilibrium position
and consider them as a set, while the ions in final equilibrium position as another set, and
find out all possible bijections between the two sets. There are N ! bijections in total, and
for each case, we numerically calculated the sum of ions’ separations between initial and
final position. The straight path is corresponds to the bijection with smallest total path
length, which is the sum of ions’ separations.

In Fig. 4.1, we use a variable called path to define the ratio of current path length and
total path length for each ion. The potential energy difference between maximum point
and stable equilibrium position is 827 mK, and the difference between maximum point
and meta-stable equilibrium position is 413 mK. The value of potential energy depends on
the choice of radial trap frequency, but we can compare this result to the result calculated
from a numerically optimized path which gives us the potential barrier.

Figure 4.2: Potential energy along the numerically optimized path between the
two equilibrium positions of N = 5 2D ion crystal. This is numerically calculated
with the same trapping parameters in Fig. 4.1. Orange dot: potential energy of stable
equilibrium position. Green dot: maximum potential energy along the straight path. Red
dot: potential energy of meta-stable equilibrium position.
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In Fig 4.2, The potential energy difference between maximum point and stable equi-
librium position is 454 mK, and the difference between maximum point and meta-stable
equilibrium position is 41 mK. By comparing to the result in Fig. 4.1, the numerically
optimized path lowered the potential peak by ∼ 370 mK. This indicates the meta-stable
equilibrium position of N = 5 2D ion crystal is much more unstable than the stable equi-
librium position.

Figure 4.3: Ions positions along the numerically optimized path between the
two equilibrium positions of N = 5 2D ion crystal. The subplot (1) to (9) are 9
intermediate steps between the two equilibrium positions along the path in Fig.4.2.
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The numerically optimized path is presented as 5-ion-position in the 9 subplots of
Fig. 4.3. Subplot (1) starts from the stable equilibrium position, corresponding to the
potential energy at path = 0 in Fig 4.2. Subplot (9) reaches to the meta-stable equilibrium
position, corresponding to the potential energy at path = 0 in Fig 4.2. From Fig. 4.3, we
can see only the center ion is roughly moving along a straight path, while others are not.
The two neighbouring ions of the center ion is first pushed outwards as the center ion is
moving, and then come backwards to its final positions.

Finding this correct path which gives us the potential barrier is not a easy problem. We
need to numerically optimize the path in the 2N dimensional configuration space, therefore
the computational power needed to obtain the correct path scales up exponentially with
ion number N . Calculating the result in Fig 4.2 is much harder than the one in Fig. 4.1,
especially for large N . This is the reason why the curve in Fig 4.2 is not as continuous as
the one in Fig. 4.1.

To optimize the path in the 2N dimensional configuration space, we divide the path
into n steps, where each step corresponds to a N -ion position, and note that this position
does not need to be equilibrium position. Each N -ion position can also be regarded as a
point in the 2N dimensional configuration space, and for each point, we apply the following
algorithm to find the (i+ 1)th step from ith step:

1. In ith step, define a neighbourhood space of the point in the 2N dimensional config-
uration space, which is a set of N -ion positions that are close enough to the point. In
addition, we judge closeness base on the path length of each ion, e.g. if there exists
an ion which does not move much distance between the two equilibrium positions,
its neighbourhood subspace will be small.

2. Select all points in the neighbourhood space that is closer to the final equilibrium
position by a predetermined distance.

3. Calculate the potential energy of all selected points in the neighbourhood space.

4. Assign each selected point with a normalized transition probability, which is analo-
gous to Boltzmann probability distribution

pj = normalize
[
e−(Ej−Ei)/kBT

]
, (4.1)

where Ei is potential energy of the N -ion position in ith step, Ej is potential energy
of the selected point, kB is Boltzmann constant, and T is a predetermined parameter
which has unit of temperature. The probability is normalized such that

∑
pj = 1.
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5. Choose one of the selected point as (i+ 1)th step based on transition probability pj.

Starting from the initial equilibrium position, applying this algorithm iteratively to each
step will help us to find a path leading to the final equilibrium position, since the selected
points are always closer to the final position. If Ej − Ei is positive, the probability makes
sure that the points with lower potential energy are more likely to be chosen in (i + 1)th
step, since the smaller Ej −Ei > 0 is, the larger the probability is. If Ej −Ei is negative,
this means we have already found the potential peak, since we have reached and passed the
peak of potential energy, therefore how we choose the probability will not affect the value
of potential peak. In this way, we are more likely to find a path with small potential peak,
but the value is not necessarily the minimum value. The potential peaks we obtained are
upper bounds of the desired potential barrier. We will need to calculate pn different paths
with this approach and take the smallest potential peaks as final result, where pn denotes
path number.

If we calculate enough number of paths, we can obtain a potential peak close enough to
the potential barrier. However, even the calculation for a single path is extremely difficult
to perform on an ordinary computer, since the number of the points we need to consider
in the neighbourhood space is too large. Suppose for each ion, we only consider 4 points in
its neighbourhood subspace, where the 4 points can locate at its up, down, left, and right
in the 2D space. In this case, for the neighbourhood space, we need to consider 42N points
in total. If N = 5, we have 42N = 1048576 ≈ 106, which is around one million points. For
each of these points, we need to calculate its distance between the final position, and we
need to do this in each step, and each path. Calculating the distances cannot be avoided
by transforming the N -ion positions between different coordinate systems. We use an
approximation method to generate the date in Fig 4.2, where instead of defining large
amount of points, we randomly sample ns = 1000 points in the neighbourhood space, and
ns denotes number of points in the space.

To summarize the algorithm parameters, we have n = 11, pn = 10, ns = 1000, and
T = 1 mK, where n is the number of steps in each path, pn is the number of paths, ns is
the number of random points sampled in the neighbourhood space, and T is a parameter
to determine the transition probability. We do not know if this is the optimized set of
algorithm parameters such that the algorithm can generate the smallest potential peak
with limited computational resources, but this set of parameters is good enough to produce
a path with a much smaller potential peak than the one along straight path.

To conclude, since 41 mK is an upper bound of the potential barrier for meta-stable
equilibrium position of N = 5 2D ion crystal, if the potential depth is smaller than this
value, the ion crystal can transit into another equilibrium position during optical trapping
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period. The stable equilibrium position of N = 5 2D ion crystal is much more stable
compare to the meta-stable one. Since conventional trapping has a much higher trap
depth compared to optical trapping, we can always temporarily turn off the cooling of
ions in conventional traps to exam whether a particular equilibrium position of the 2D
ion crystal stable enough against other equilibrium position(s). This examination can be
done before transferring the system into optical trapping period. It is possible to calculate
the potential barrier(s) of 2D ion crystals with large N , but the calculations need to be
performed on more capable computing devices than personal computers.

4.2 Trapping Lifetime and Heating Rate Estimation

In Section 2.4, we introduce an analytic model calculating optical trapping lifetime for
a single ion. This model can be extended to systems with multiple ions, if we know the
motional density of states, and multi-ion heating rate. Motional density of states for multi-
ion system can be calculated numerically, but we do not know how to convert single ion
heating rate to multi-ion heating rate. Due to the presence of ions’ interaction, the increase
of energy for one ion will affect other ions. In addition, this model assumes trap depth
along all directions are the same, however this does not apply to the optical cavity potential
we are studying. It is hard to come up with a theoretical model predicting optical trapping
probability of the optical cavity trap. In this section, we will not use any theoretical model,
instead, we will do an order of magnitude estimation for trapping lifetime, based on the
value of optical trap depth and total heating rate. Once the system has an energy higher
or comparable to the trap depth, it is very likely to have some of its ions to escape the
trap.

Optical trapping lifetime is defined as the time for trapping probability to reach 1/e,
where for single ion, trapping probability is the probability for the ion does not escape the
trap. However, for multiple ions, trapping probability can lead to ambiguity, as it can be
phrased as trapping population, or the probability for any ion does not escape the trap.
We will define trapping probability as the probability for any ion does not escape the trap.
If one or more ions leave the trap, the remaining ions will reach to a new equilibrium
position, and the quantum state of the system will be altered due to the strong interaction
between ions, which will destroy the quantum information of original system. Therefore,
all ions must remain inside the trap after the QIP experiment.

The trap depth is normally around 1-100 mK·kB, e.g. 1 GHz AC Stark shift is 1 GHz·h =
48 mK·kB, the relations between AC Stark shift, laser power, and beam waist can be found
in Table 3.2. The sources of heating rate includes:
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1. Recoil heating from photon scattering.

2. Stray electric field fluctuation.

3. Collisions with background gas particles

4. The variation of effective optical potential in time,

(a) which is caused by the changing internal states of ions, i.e. the scattering events
of ions.

(b) which is caused by cavity length fluctuation.

(c) which is caused by cavity intensity fluctuation.

Recoil heating is caused by the photon scattering from ion. The scattered photon will
be emitted to a random direction, and since photon carries momentum, the photon will
provide a “momentum kick” to the ion at the opposite direction. This recoil heating can
be easily calculated by

Erec =
p2

2m
=

h2

2λ2m
= 6.83× 10−31 J = 4.95× 10−5 mK · kB, (4.2)

where p is momentum, h is Planck constant, we substitute the mass of 171Yb+, m = 171 u =
2.84 × 10−25 kg, and wavelength of λ = 1064 nm. This Erec is the increase of energy for
a single ion per scattering event. If we consider 100 ions with scattering rate of 10 s−1

for each ion, the resulting recoil heating rate is still smaller than trap depth by orders of
magnitude. By the time we have the estimation of other sources of heating rate, we will
have more quantitative reasons to say this recoil heating rate is negligibly small.

As for heating induced by stray electric field fluctuation, the main source of stray
electric field is caused by the laser ionized nonconducting part of the trap device, or the
electrode patch fields. We do not have a good theoretical way to estimate the strength of
stray electric field, but since the cavity amplified laser field is much stronger than the laser
without cavity, and laser with near infrared 1064 nm wavelength is hard to ionize materials,
we think heating rate caused by electric field fluctuation is also small. Therefore, we will
focus on the estimation and analysis of heating rate due to collision with background gas
particles, and the variation of effective optical potential in time.
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4.2.1 Background Gas Collision

In linear Paul traps, ions are trapped in a vacuum chamber, but it is not perfect vacuum.
Since ions carry charges, it can polarize the particles in the environment and interact with
them. The majority of background gas particles in vacuum chambers are H2 molecules [16],
since the chamber walls are made of molten steel which contain Hydrogen. This interaction
is described by Langevin collision model, where by polarizing the H2 gas molecules, the
ion provide a potential of

V (r) = −1

2
p(r)E(r) = − αe2

8πε0r4
, (4.3)

where e is electron charge, ε is the vacuum permittivity, α is polarizability of the gas
molecule, r =

√
x2 + y2, E(r) = e/(4πε0r

2) is the electric field of the ion, p(r) = 4πε0αE(r)
is the induced electric dipole moment of the gas molecule. Note that in Eq. (4.3), polariz-
ability α is in centimetre–gram–second (CGS) unit for electromagnetism, such that for H2

molecules, we have α = 0.787 Å
3
. To convert α in CGS unit to SI unit, one can use

α′(C ·m2 · V−1) = 10−30 · 4πε0 α(Å
3
), (4.4)

and the conversion factor 4πε0 is included in Eq. (4.3) and all other equations including α.
In addition, Eq. (4.3) is also assuming the ion is always located at r = 0.

Figure 4.4: Illustrative trajectories of gas particles in Langevin collision model.

The word “collision” does not properly describe the interaction between the ion and gas
molecules, since particles in Langevin collision model are not treated as hard spheres. The
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illustrative trajectories of gas molecules are shown in Fig. 4.4, where the impact parameter
b is defined as the separation between the ion and the gas molecule along the direction
perpendicular to gas molecule’s initial velocity in the plane of motion. For small b, the gas
molecule will be captured by the ion and follow a spiral trajectory before it hit the ion,
resulting a large energy exchange between the two particles. For large b, the interaction will
deflect the gas molecule’s trajectory, and only small amount of energy of the gas molecule
is transferred to the ion. There exists a critical separation such that the ion will capture
the gas molecule if b is small than its value, and we denote this critical separation as bcrit.
This critical impact parameter is dependent on the speed of the gas molecule

bcrit =

(
αe2

πε0µv2
0

)1/4

, (4.5)

where v0 is initial speed of the gas molecule before interaction, µ is reduced mass of the
ion and the gas molecule, which is defined as

µ =
mYbmH2

mYb +mH2

, (4.6)

where we are considering the two particles as Yb+ ion and H2 molecules. Langevin collision
rate is the rate that gas molecules colliding with the ion with impact parameter b < bcrit,
which is the number of gas molecules passing through an area of

σLgvn = πb2
crit =

πe

v0

√
α

πε0µ
=

e

v0

√
πα

ε0µ
(4.7)

where σLgvn is called Langevin collision cross section. Therefore Langevin collision rate is

rLgvn = nσLgvnv0 = ne

√
πα

ε0µ
. (4.8)

At the end, We find that Langevin collision rate rLgvn is independent of speed v0.

At room temperature, T = 300 K, the most probable speed of H2 molecule is

vp =

√
2kBT

mH2

, (4.9)

thus at room temperature, H2 molecules are most likely to have kinetic energy of

1

2
mH2v

2
p = kBT = 300 K · kB. (4.10)
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Since the optical cavity trap has trap depth ∼ 100 mK · kB, a small fraction of energy
from one H2 molecule might be enough to knock the ion out of the trap, therefore we are
interested to numerically calculate the collision with b > bcrit.

Figure 4.5: Numerically calculated Yb+ and H2 collision trajectories. The Yb+ ion
and H2 have masses of 171 u and 2 u respectively, and the H2 molecule has polarizability

of α = 0.787 Å
3
, impact parameter b = 1.1 bcrit, and initial speed v0 = 1579 m/s, which is

the most probable speed at T = 300 K. The Yb+ ion is initially at rest and gain a kinetic
energy of 1.65 K · kB at the end.

To simulate the dynamics of one Yb+ ion and H2 molecules in Langevin collision model,
and find out the amount of energy exchange between the two particles, we cannot treat it
as a one body central-force problem, since we need to assume the two particles are both
moving during their interaction period. An example of numerically calculated trajectories
of the two particles using classical mechanics is shown in Fig. 4.5 with a specific b and v0.

If we can perform this calculation for all possible b and v0, and by accounting the
probability of each individual collision event, we can obtain a heating rate caused by
background gas collisions. The probability of having a H2 molecule with speed v0 can be
calculated from Maxwell–Boltzmann speed distribution

f(v) dv =

(
m

2πkBT

)3/2

4πv2e−mv
2/(2kBT ) dv, (4.11)
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where m is the mass of the gas particle, and f(v) dv is the probability of the particle
having speed between v and v + dv. The probability of having a H2 molecule with impact
parameter b can be calculated by modifying the Langevin collision rate.

Figure 4.6: Kinetic energy gain of 171Yb+ by colliding with H2 molecules. The nu-
merical calculation takes the Yb+ ion and H2 in Fig. 4.5, with different impact parameters
b and initial speed v0. The white region refers to the cases with b < 1.1 bcrit, which we did
not calculate.

In Fig. 4.6, we show the kinetic energy gain of 171Yb+ ion by colliding or interacting
with H2 molecules for all possible collision scenarios, without including the probability of
the collision events. We can use this to calculate the heating rate caused by background
gas collisions, but the figure shows despite few collision scenarios where 171Yb+ ion receives
a large amount of energy, most of the collisions are associated with much smaller energy
exchange. We do not want the low probability but high energy exchanging collisions to
contaminate our heating rate calculation, since their amount of energy exchange is larger
than the optical cavity trap depth. We will filter out the collision events with energy
exchange larger than the total trap depth. By accounting the probability of each collision
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event, and considering the vacuum chamber has pressure of 10−9 Pa = 10−11 mbar and
temperature of 300 K, we find the heating rate caused by background gas collisions is
0.013 mK/s = 46.8 mK/hour per ion, for 50 mK · kB trap depth, and 0.022 mK/s =
79.2 mK/hour per ion, for 100 mK · kB trap depth. This is the heating rate caused by
background gas collisions for a single ion, therefore if we have N ions, we should multiply
this heating rate by N . The heating rate is also proportional to pressure inside vacuum
chamber, and it illustrates the importance of keeping a low pressure.

The value of this heating rate is much larger than recoil heating rate, but it is still much
smaller than the trap depth, if we are aiming for a lifetime around few microseconds to few
seconds. The high energy collisions can knock the ions out of the trap, but the probability
for the collision to occur is extremely low during the lifetime we are considering. For
the pressure and temperature we choose to study, Langevin collision rate is 1.3 collisions
per hour, and the high energy collision rate is having similar order of magnitude to this
Langevin collision rate.

It is worth to note that our method of calculating of heating rate caused by background
gas collisions can also be applied to convention ion traps. In convention ion traps, the trap
depth is normally much higher than the total kinetic energy of H2 molecules, and trapping
lifetime is much longer than optical trapping, which is measure in unit of hours, therefore
we do not need to filter out high energy collision events. For 10−9 Pa = 10−11 mbar pressure
and 300 K temperature, heating rate caused by background gas collisions is 0.086 mk/s =
310 mk/hour plus the heating caused by Langevin collisions. The heating rate cause by
low energy collisions is negligible compared to the trap depth and trapping lifetime of
conventional ion traps, hence it indicates high energy collision, such as Langecin collisions,
are more significant for conventional ion traps.

4.2.2 Changing Optical Potential

In optical cavity trap, the optical potential is offered by AC Stark shift of the ions, and AC
Stark shift depends on the laser intensity as shown in Eq. (2.26). Cavity length fluctuation
can change the local intensity at the positions of ions, therefore both cavity length and
intensity fluctuation introduce noises to the optical potential which can potentially heat
up ion the N -ion system. However this heating caused by intensity fluctuation is not a
fundamental limitation of optical cavity traps, since it can be minimized by utilizing better
experimental procedures and better devices. The fundamental limitation comes from the
changing optical potential caused by scattering events of ions.

Since AC Stark shift is a internal state dependent energy shift, if the ion leave ground
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internal state, its AC Stark shift will be changed according to which excited state it transits
to. If AC Stark shift for an ion in ground internal state is negative providing a trapping
potential, the AC Stark shift for the ion in any excited internal state will be positive
providing an anti-trapping potential. This conclusion can be derived by using the trace
of Hamiltonian matrix is invariant under unitary transformation. Once an ion reach an
excited state, it will stay in the excited state for a short duration and emit a photon to
decay back to ground state. If this duration, or call it atomic level lifetime, is long enough,
the ion can escape the trap, otherwise it will be heated up.

We know for P1/2 state of 171Yb+, its atomic lifetime is 8 ns. We consider for each
scattering event, the ion is exposed in an anti-trapping potential for 8 ns with some initial
energy, and find its increase of energy for each scattering event. Considering the optical
anti-trapping frequency is 2×(2π·MHz), and DC anti-trapping frequency is 0.5×(2π·MHz),
such that the total anti-trapping frequency is 2.06 × (2π · MHz). We can consider the
optical anti-trapping frequency to be smaller than optical trapping frequency, since the
ground state AC Stark shift is sum of energy shifts from all relevant excited states. The
initial position and speed along z direction is determined by its initial energy, and we are
assuming the ion only have z direction initial speed, since the anti-trapping potential is
only along z direction.

From our calculation, using the anti-trapping frequency of 2.06 × (2π ·MHz), we find
the increase of ion’s energy from one scattering event is proportional to its initial energy
with a slope of 0.0047. This mean for ion with 1 mK · kB initial energy, one scattering
event will increase its energy by 0.0047 mK · kB, similarly, for 100 mK · kB initial energy,
one scattering event will increase its energy by 0.47 mK · kB. This is energy increase from
one scattering event of each ion. If we consider we have scattering rate of 10 s−1, and
we are trapping 10 ions, the heating rate per second must be higher than 100 times the
temperature increase from each scattering event. If we multiply the results by 100, the
increase of system’s temperature in one second of this heating rate is comparable to optical
cavity trap depth. Based on our analysis of other sources of heating rate, we think heating
rate caused by scattering is fundamentally limiting the lifetime of optical cavity trap.

Since the energy increase of each ion depends on its initial energy, and each scattering
event will increase its energy, the heating rate for each ion should not be multiplying the
energy increase by scattering rate. The heating rate should be higher than that. However,
since the slope 0.0047� 1 is much less than 1, if we perform the calculation by considering
each scattering event changes the initial energy of next event, and after 10 scattering events,
the heating rate is not much different from the heating rate obtained by multiplying energy
increase with scattering rate.
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4.2.3 Conclusion for Lifetime and Scalability

By estimating the heating rate from different sources, we find the heating rate caused by
scattering is much larger than background gas collisions, which is also much larger than
recoil heating rate. We think without considering the environmental fluctuations, i.e stray
electric field fluctuation and cavity intensity fluctuation, the dominant source of heating
rate is photon scattering from ions. In addition, the scattering rate is proportional to
intensity, such that we cannot mitigate heating effect by increasing our optical cavity trap
depth. The heating rate from scattering is proportional to both initial energy of the ion
and scattering rate, it should be positively correlated with the number of ions in the trap.
Note that we do not know how to connect single ion heating rate to multi-ion heating rate,
therefore we cannot predict how trapping lifetime scale with N . But let’s try to think
about this question by looking at each individual ion.

Recall in Section 4.2, we define trapping probability of N ions is the probability for
any one of the N ions does not escape the trap. Trapping lifetime is the time for trapping
probability of N ions to reach 1/e. Therefore if we wish to trap N ions, the trapping
probability for each ion at the end of trapping lifetime should be (1/e)1/N , e.g. for N = 20,
(1/e)1/N = 0.95. We see that trapping lifetime for N ions should be much smaller than
the lifetime for one ion.

Consider the case of trapping 20 171Yb+ ions in 2D structure in optical cavity trap, each
ion has initial energy of ∼ 1 mK · kB with ∼ 100 mK · kB trap depth provide by 1064 nm
laser, we will have scattering rate to be around ∼ 30 s−1 for each ion. If we can assume
single ion trapping probability is ∼ (1−E/Vdepth), where E is the energy of the single ion.
Based on our previous heating rate analysis, we have trapping lifetime for N = 20 ions of
∼ 35 s. However, this trapping lifetime is too longer to be true.

Recall again in Section 2.5, we mention for each scattering event of Yb+, there is a 5%
probability for the ion to scatter to meta-stable D manifold. If we are considering a total
scattering rate as ∼ 30 s−1 for each ion, the scattering rate to meta-stable D manifold is
∼ 0.15 s−1 for each ion. The states in D manifold are anti-trapping states under 1064 nm,
and once the ion reach this manifold, it cannot go back to the ground state directly,
therefore we can consider the ion is lost once it decays to this manifold. This strongly
limits the trapping lifetime of systems with multiple ions. Assuming scattering to meta-
stable states is the only lose mechanism, the trapping probability for each ion is e−0.15t,
where 0.15 is the scattering rate to meta-stable states, and t has unit of second. Since
for N = 20 ions, trapping lifetime is the time for trapping probability for each ion to
decay to (1/e)1/N = 0.95, we have trapping lifetime of t = 0.342 s = 342 ms, such that
e−0.15t = 0.95. For N = 10 ions, trapping lifetime is the time for trapping probability for
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each ion to decay to (1/e)1/N = 0.90, the trapping lifetime becomes t = 702 ms, if the
scattering rate is unchanged. We find the scattering to meta-stable states for large N is
more problematic.

We eventually find the lose mechanism of ions of large N is not governed by temperature
increase of the system, but by scattering probability to meta-stable D manifold. However,
we cannot reach this conclusion without having the previous heating rate analysis. In
the case of large N , we now know how trapping lifetime scales with N , which is scaled
by 1 − (1/e)1/N . Trapping lifetime does not necessarily determine coherence time of the
quantum states, since coherence time is mostly limited by total scattering rate in optical
traps, which will be discussed in next chapter.
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Chapter 5

Conclusion and Outlook

We introduce the basic concepts and mechanisms for optical ion trapping in this thesis,
which is providing theoretical supports to our study of 2D ion trapping. We propose a
scheme to trap 2D ion crystals with optical cavity trap. We develop systemic methods
to study the structural and mechanical properties of 2D ion crystals with the presence
of optical cavity trap potential. This study helps us to find sets of experimental feasible
trapping parameters for optical cavity ion trap with different ion number N . We provide
stability analysis and trapping lifetime estimation for 2D ion crystals in optical cavity trap.
We study lifetime by first estimating the heating rate of the system from different sources,
to get a sense of how they affect the system. The heating rate estimation can help us to
estimate trapping lifetime for small N , but for large N , we find the trapping lifetime is
fundamentally limited by scattering rate to meta-stable D manifold of the ion. We thus
find how trapping lifetime scales with N for large N .

Some of our results not only apply to optical traps but also conventional traps, e.g. po-
tential barrier analysis between different equilibrium positions of 2D ion crystals, and
heating rate caused by background gas collisions. Some of our results seems to be redun-
dant, e.g. we find heating rate caused by background gas collisions is too small to change
trapping lifetime, but we do not know the significance before getting the final result.

We mention both red and blue detuned lasers can be used to trap ions, but we only work
with red detuned lasers. The analysis for trapping parameters and lifetime for blue detuned
lasers is very different from red detuned lasers. Blue detuned lasers normally have smaller
laser power than red detuned ones such that we need to choose a smaller laser detuning to
create enough AC Stark shift, but this makes the scattering rate to be high. As discussed
in Section 3.2.3, ions are trapped at zero intensity plane with blue detuned lasers. If
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the trapped ions have zero temperature, they will not scatter photons, since the local laser
intensity at ions’ positions is zero. However, ions cannot be initialized at zero temperature,
and their kinetic energy can deviate them from the zero intensity plane. The scatter rate
will not be zero, and the scattering events will continuously increase its temperature. Since
the scattering rate can be suppressed by having a low initial temperature, we may expect
optical ion trapping with blue detuned lasers to have brighter potential for scalability and
longer quantum coherence times, which can be explored in future studies.

To discuss whether a trapped ion system is capable of performing QIP experiments,
we need to estimate the time scales for quantum gate time and the available quantum
coherence time from the trap. Quantum logic gates consist of a sequence of single and two-
qubit operations. Normally, single-qubit operations are several orders of magnitude faster
than two-qubit operations, therefore quantum gate time is determined by the time required
for two qubits operations. For example, the Mølmer–Sørensen scheme [2, 3] to perform
two-qubit operations, the required time is of the order of ∼ 1 ms [17]. The coherence times
estimation for conventional and optical traps are very different. The coherence times of
optical traps are fundamentally limited by scattering rate, e.g. when performing a two-
qubit gate, we do not want both of the two ions to scatter photons during the gate time.
Again, considering each ion has scattering rate of 30 s−1, the time for the probability of
both of the two ions do not scatter to reach 90% is 1.8 ms. The estimated coherence
time and Mølmer–Sørensen gate time are having similar order of magnitude, which means
it is difficult to apply a sequence of Mølmer–Sørensen gates during coherence time. It is
possible to make Mølmer–Sørensen gate time shorter by increasing the axial trap frequency,
and it is also possible to make coherence time to be longer by reducing scattering rate, e.g.
scattering rate can be reduced by reducing ion number N , since the required trap frequency
and laser intensity will be smaller. However, it is hard to make orders of magnitude
changes to the numbers, thus we think it is challenging to perform QIP experiments using
Mølmer–Sørensen gates in optical ion traps with red detuned lasers. One potential solution
is using faster gates [18] than Mølmer–Sørensen gates, and another approach is investigating
optical ion traps with blue detuned lasers, since it can potentially provides us with a low
scattering rate period after initializing the system at a low temperature.
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Appendix A

Atomic Energy Levels Diagram

A.1 Yb+ Energy Levels Diagram
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Figure A.1: Yb+ fine energy levels diagram. Brackets states are using J1K coupling
notation. The plot is scaled by the energy difference between states.
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A.2 171Yb+ Hyperfine Levels Diagram

Figure A.2: Yb+ fine energy levels diagram. Brackets states are using J1K coupling
notation. The plot is scaled by the energy difference between states.
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Appendix B

Conventional to Optical Trapping
Adiabatic Transfer

Before any QIP experiment, the quantum systems must be initialized into the desire qubit
state, and after the experiment, we also need to detect the final state of the system. For
QIP experiments with trapped ion system, performing initialization and detection on each
ion requires the ion to scatter photons. Normally, from an order of magnitude estimation,
state initialization takes ∼ 10 scattering events to complete, and detection requires ∼ 1000
scattering events. From Section 4.2.2, we know scattering events limit the optical trapping
lifetime, therefore we wish to move initialization and detection stages out of optical trapping
period.

The optical trapping period is sandwiched with conventional trapping, and transferring
the system between conventional and optical trapping is associated with ramping up or
down optical and RF trapping potentials. Internal states of ions are stable against changing
trapping potentials, but external (motional) states are not. Changing trapping potential
in time can heat up the system such that the external state of the system is changed.
Adiabatic transfer refers to the transferring process which is slow enough such that external
state of the system in unchanged after the process. However, we cannot make the process
to be arbitrarily long, since it must be much shorter than optical trapping lifetime. We
thus need to optimize the rate of ramping up or down optical and RF trapping potentials.

It is easy to move detection stage out of optical trapping period, since the QIP ex-
periment is complete before the detection stage, and we do not care about external states
anymore. For each ion, after the very first scattering event in detection stage, its quantum
state collapse into one of the qubit states, which is normally chosen as the hyoerfine levels
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of ground internal states. At this point, we do not need adiabatic transferring.

As for initialization stage, we do care about the external state of the system. Our task
is to calculate the optimized ramping rate of optical and RF trapping potentials during
conventional to optical trapping transferring process, such that the propagator of initial
and final external states of the system is maximized. Consider a simple case where we
first ramp up optical cavity potential from t0 to t1, then start to ramp down conventional
potential from t1 to t2. We have

Vtot(t) = λopt.(t)Vopt. + Vcon., t0 < t < t1, (B.1)

Vtot(t) = Vopt. + λcon.(t)Vcon., t1 < t < t2, (B.2)

and
λopt.(t), λcon.(t) ∈ [0, 1], (B.3)

where λopt.(t) and λcon.(t) are the ramping rates for optical cavity and conventional trapping
potentials. The ramping rate λopt.(t) is increasing in time, and λcon.(t) is decreasing in time.
We are trying to find the λopt.(t) and λopt.(t) such that 〈ψ(t0)|ψ(t2)〉 is maximized, where
|ψ(t)〉 is the external state of the system.

By dividing the time interval [t0, t1] into many smaller dt intervals and applying time
dependent perturbation theory, we can calculate 〈ψ(t)|ψ(t+ dt)〉 for a given dλ/dt within
this interval dt. Numerically performing this calculation iteratively, we can find the relation
between λ(t) and 〈ψ(t0)|ψ(t2)〉. Now we need an optimization algorithm to complete our
task. We can make use of the optimization algorithm which we used to calculate the
optimized path between different equilibrium positions of ion crystals in Section 4.1, by
treating λ(t) as the path of N -ion position, and 〈ψ(t)|ψ(t+ dt)〉 as the potential energy of
N -ion position. This approach can be generalized to more complicated cases. If we want
to ramp optical and conventional trapping potentials at the same time, we only need to
optimize an array of [λopt.(t), λcon.(t)] with respect to 〈ψ(t0)|ψ(tf )〉, where tf is the final
time.
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