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Abstract

The quantum correlations measured by quantum discord have been paying significant at-
tention since they are an essential resource for quantum information. This thesis focuses on
the quantum discord in continuous-variable (CV) quantum computing systems, especially
the quantum discord of the bipartite Gaussian states. We recognize the Gaussian quantum
discord using quantum machine learning.

We review in detail the CV quantum computing systems that implement hybrid quantum-
classical machine learning algorithms. Both Gaussian and non-Gaussian transformations
are necessary to construct universal quantum computing systems. The structure of quan-
tum discord can be studied using Gaussian states. The analytical solutions of Gaussian
quantum discord are the labels of Gaussian states data set used for training and evaluating
machine learning models. We presented the classical machine learning optimization algo-
rithm back-propagating (BP) of the neural network to realize quantum Gaussian discord.

We proposed the supervised hybrid quantum-classical optimization performed on the
variational quantum circuits for the Gaussian discord classification tasks. Moreover, we
implemented a hybrid quantum-classical machine learning algorithm: Quantum Kitchen
Sinks (QKS) for noisy intermediate-scale quantum (NISQ) devices. QKS uses the para-
metric variational quantum circuits to achieve non-linearly transformation from classical
inputs to higher-dimensional feature vectors. Simulating the QKS on classical computers
with the help of PennyLane, we demonstrated that the variational quantum circuits provide
more excellent performance than the classical linear classification algorithm, successfully
improving the classification accuracy from 70.12% up to 98.64%.
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Chapter 1

Introduction

With the rapid development of quantum information theory, the study of quantum cor-
relations is becoming more critical because correlations are a fundamental resource in
information processing. For a long time, the understanding of quantum correlations was
limited to quantum entanglement, an important feature distinguishing between classical
mechanics and quantum mechanics and a non-classical resource for quantum information
processing. However, several recent studies have found that quantum entanglement does
not characterize all quantum correlations in quantum systems, and separable (not entan-
gled) states, conventionally corresponding to classical correlation, can also be used for
quantum information processing with advantages beyond classical information processing
[8, 46]. It has been proposed to classify the correlations into classical and quantum cor-
relations and to use quantum correlations captured by quantum discord as resources for
quantum information processing. Quantum discord is defined by the difference between
two classically equivalent expressions for mutual information when the involved systems
are quantum [43]. Researchers may use quantum discord to recognize the quantum na-
ture of correlations and use the Gaussian states to explore the quantum discord inside the
continuous variables quantum systems. The analytical solutions of quantum discord for
Gaussian bipartite states are derived by overcoming the optimization challenge included
in the quantum discord definition. We aim to uncover a general approach for estimating
the quantum discord that may provide a good prediction.

In 1981, Richard Feynman proposed that quantum computers could simulate the quan-
tum mechanical physical world [17]. In 1985, Feynman further proposed using quantum
algorithms to solve practical but complicated problems [16]. In recent years, quantum com-
puters have demonstrated their potential to push the computation boundaries in quantum
chemistry, quantum optimization and machine learning.
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Machine learning is one of the most intelligent branches in the field of artificial intelli-
gence. In the 1980s, symbolic learning was the mainstream of machine learning; since the
1990s, the mainstream has evolved into statistical machine learning. In that time, machine
learning has developed from purely theoretical and modelling research to applied research
to solve real-life practical problems. Representative techniques for statistical learning are
Support Vector Machine (SVM) and, more generally, kernel methods. After the general ac-
ceptance of SVM, kernel methods have gradually become one of the fundamental elements
of machine learning.

R.S.Machalski et al. [39] proposed learning from samples, also known as generalized
inductive learning, which covers supervised learning such as classification problems, un-
supervised learning such as clustering problems, and semi-supervised learning. In recent
years, deep learning has become a new trend in machine learning. The revolution in hard-
ware technology and the improvement in computer speed have made it possible to employ
algorithms with high complexity. The main application areas of deep learning are neural
networks; in a narrow sense, deep learning is a neural network with many layers. Deep
learning involves high complexity models and therefore requires well-tuned parameters to
obtain high performance.

Quantum Machine Learning (QML) combines quantum computing and machine learn-
ing to implement QML algorithms on quantum computers and deal with quantum data.
Machine learning is used to create models for complicated processes and discover the fea-
tures of quantum systems; meanwhile, quantum computing has the potential to signifi-
cantly speed up tasks.

The noisy intermediate-scale quantum (NISQ) devices contain 50-100 noisy qubits but
give imperfect control over those qubits [47]. The implemented quantum circuits size limits
the computational power of NISQ devices. We want to explore the maximum computa-
tional power of current NISQ devices since the NISQ devices are considered a milestone
toward developing more powerful quantum devices and systems. The hybrid quantum-
classical algorithms may lead the NISQ computers to approach their actual benefits since
such quantum computers alone cannot yet demonstrate their computational speedup ca-
pabilities. Furthermore, the hybrid quantum-classical algorithms create a way to achieve
quantum advantage on NISQ devices. With the rapid development of NISQ technology,
many hybrid quantum-classical algorithms are driven and proposed, such as variational
quantum eigensolver [45], quantum approximate optimization algorithm [13], quantum-
assisted Helmholtz machines [5] and the variational classifier [14, 53].
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1.1 Overview

The purpose of my research detailed in this thesis is to investigate and recognize the
quantum discord of quantum Gaussian states, which are continuous-variable states, by
quantum machine learning algorithms.

Chapter 2 introduces the basic building blocks of using continuous-variable (CV) quan-
tum computing systems to encode quantum information. We then present Gaussian states,
which play an important role in CV systems. We also cover various CV gates: Gaussian
and non-Gaussian gates to achieve the universality of CV quantum systems and common
CV measurements to measure the output of CV systems.

Chapter 3 reviews the derivation process of quantum discord, which measures the quan-
tum correlation of CV quantum systems. We then show two approaches to obtaining the
analytical solutions of quantum discord for Gaussian states. Those quantum Gaussian
discord solutions will be the labels for the Gaussian state data set.

Chapter 4 presents the fundamental concepts of machine learning. We also introduce
neural networks, which are the core of deep learning and the back-propagation (BP) al-
gorithms used to optimize the parameters in neural networks. We also discuss the perfor-
mance of BP in the Gaussian discord classification task.

In Chapter 5, we start by introducing the quantum machine learning concept and a
machine learning library PennyLane used for implementing hybrid quantum-classical com-
putations. We then show how to optimize a variational quantum circuit by training samples
labelled by quantum Gaussian discord to classify new Gaussian state samples. Further-
more, we then describe a hybrid quantum-classical algorithm of QML called Quantum
Kitchen Sinks (QKS) and discuss its classical components and quantum node structure
and the performance for recognizing Gaussian quantum discord.
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Chapter 2

Theoretical background

Continuous-variable (CV) quantum computing is an alternative paradigm for quantum
computing, which contrasts with the discrete nature of qubit-based systems. In this sec-
tion, we review the related content of CV systems and the standard Gaussian states.
Meanwhile, both the Gaussian transformation and non-Gaussian transformation are im-
portant resources to construct a universal CV system. We would further utilize the CV
quantum computation platform to implement a quantum machine learning algorithm.

2.1 Continuous-variable Quantum computation

Discrete-variable (DV) and continuous-variable (CV) systems are two different approaches
to quantum information processing. DV systems, with basic element of the qubit, have
finite and individually addressable states, analogous to classical computers. A CV system,
whose elementary units are qumodes, has an infinite-dimensional Hilbert space with contin-
uous operators, including momentum and position operators. The most fundamental CV
system is the quantum harmonic oscillator, such as a quantized mode of electromagnetic
radiation. A harmonic oscillator can be associated with a pair of bosonic mode operators
(â, â†) called annihilation and creation operators, as well as the quadrature field operators
(x̂, p̂) representing the position and momentum canonical observables. The above opera-
tors of CV systems are similar to the Pauli operators (σ̂x, σ̂y, σ̂z) in the qubit model. The
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mode operators and quadrature operators are related by

x̂ =

√
ℏ
2

(â+ â†)

p̂ = −i
√

ℏ
2

(â− â†).
(2.1)

A N -qumode CV system corresponding to N quantum harmonic oscillators is asso-
ciated with the Hilbert space H⊗N = ⊗N

i=1Hi and N pairs of mode operators {âi, â†i}Ni=1

and quadrature field operators {x̂i, p̂i}Ni=1. In particular, those operators should obey the
commutation relations:

[âi, â
†
i ] = δij

[x̂i, p̂j] = iℏδij.
(2.2)

The expression of a quantum state in a DV system could be a linear superposition of
two orthogonal unit basis states |0⟩ and |1⟩ giving: |φ⟩ = α |0⟩+ β |1⟩ where α, β ∈ C and
satisfying |α|2 + |β|2 = 1. In addition, a pure qubit state can be visualized as living on
the so-called Bloch sphere if we write |φ⟩ = cos(θ/2) |0⟩ + sin(θ/2)eiϕ |1⟩ where θ and ϕ
to determine a point on the surface of Bloch sphere. If a point is on the Bloch sphere’s
surface, it corresponds to a pure state; otherwise, it’s a mixed state if the point is inside
the sphere.

The states in CV systems can express in both Fock space and phase space due to the
wave-particle duality. The Fock space has countable and discrete basis states {|n⟩}∞n=0

which are referred to commonly as photon number basis and are the eigenstates of photon
number operator n̂ = â†â with n̂ |n⟩ = n |n⟩. Though discrete, the Fock basis is infinite
dimensional. It is therefore often convenient to express CV states in the phase space of
x̂ and p̂. In place of coordinates represented by conjugate variables in the classical phase
space, the coordinates of phase space in quantum mechanics are the position operator x̂
and momentum operator p̂ in a Hilbert space. Both have continuous eigenspectra, giving

x̂ |x⟩ = x |x⟩ , p̂ |p⟩ = p |p⟩ (2.3)

with continuous eigenvalues x ∈ R, p ∈ R and continuous, infinite basis with eigenstates
{|x⟩}x∈R, {|p⟩}p∈R. Those two bases can be transformed by Fourier transformation. Unlike
the classical case, one quantum state cannot be expressed as a point in the phase space due
to the uncertainty principle. In general, the quantum state can be uniquely determined
by its density matrix or a so-called quasiprobability function over the phase space. The
Wigner function is perhaps the most well-known of the family of possible quasiprobability
functions, which a density matrix can transform with all information inside the quantum
state.
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2.2 Gaussian states

Assume there is a quantum system with all information encoded in N qumodes. We can
arrange a column vector of N pairs of quadrature field operators

r̂ = (x̂1, p̂1, x̂2, p̂2, ..., x̂N , p̂N)T . (2.4)

The 2N position and momentum operators contained in r̂ satisfy the commutation relations

[r̂i, r̂j] = iℏΩij, (i, j = 1, 2, ..., 2N) (2.5)

where Ωij is an element of the 2N × 2N symplectic form

Ω =
N⊕
k=1

ω, ω =

(
0 1
−1 0

)
. (2.6)

Based on this N -qumode symplectic form, we can define the Weyl operator which is a
multi-mode displacement operator

D(ξ) = exp
(
ir̂TΩξ

)
(2.7)

where ξ ∈ R2N . Moreover, the characteristic function of a N -qumodes state with density
operator ρ̂ has form [4]

χ(ξ) = Tr[ρ̂D(ξ)]. (2.8)

We can now obtain the Wigner function used to describe ρ̂ by Fourier transform acted on
the characteristic function

W (r) =

∫
R2N

d2Nξ

(2π)2N
exp
(
−irTΩξ

)
χ(ξ) (2.9)

where r are 2N -dimensional real continuous variables used for the total system and are
eigenvalues of quadratures operators in r̂. The above Wigner function is a quasi-probability
distribution with properties that can be normalized to one as normal probability distribu-
tion but may take negative values. The Wigner function W (r) transforms the N -qumode
quantum state ρ̂ from its Hilbert space H⊗N to a 2N real symplectic space κ = (R2N ,Ω)
named as phase space. A Gaussian state is defined as a state whose Wigner function and
characteristic function are Gaussian functions in the phase space κ.
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It is sufficient for Gaussian states to be completely characterized by their first and
second moments of quadrature operators, which are mean vector r̄ and covariance matrix
V, respectively [22]

r̄ = ⟨r̂⟩ = Tr(r̂ρ̂)

Vij =
1

2
⟨∆r̂i∆r̂j + ∆r̂j∆r̂i⟩

(2.10)

with ∆r̂i = r̂i − ⟨r̂i⟩ which refers to either position or momentum quadrature operator’s
variance of mode i. The diagonal elements of covariance matrix could be expressed as

Vii =

{ 〈
(∆x̂(i+1)/2)

2
〉

i = 1, 3, ..., 2N − 1〈
(∆p̂i/2)

2
〉

i = 2, 4, ..., 2N
. (2.11)

In addition, the Wigner function of any Gaussian states can be expressed by r as

W (r) =
exp

(
−1

2
(r− r̄)V−1(r− r̄)

)
(2π)N

√
detV

. (2.12)

It has been shown that the covariance matrix and mean vector of Gaussian states
contain a complete description of the states. It is therefore useful to study their properties,
as they are a much more compact representation of the state than a Wigner function or
density matrix. The valid and physical covariance matrix V describing Gaussian state ρ̂
should be a 2N × 2N real symmetric and positive semi-definitive matrix and follow the
uncertainty principle [57]

V + iΩ ≥ 0 (2.13)

which implies that the eigenvalues of Hermitian matrix V + iΩ should be non-negative
[2, 9].

A real symplectic matrix S should satisfy the condition

SΩST = Ω (2.14)

where Ω has been defined in 2.6. The symplectic matrix for a N -mode system is a invertible,
2N × 2N matrix with det(S) = 1. Based on the Williamson decomposition, for the
covariance matrix V of a N -mode Gaussian state, there exists a symplectic matrix S
which can diagonalize V such that

V = S
N⊕
k=1

(
vk 0
0 vk

)
ST (2.15)
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where vk are the symplectic eigenvalues of V [64]. Furthermore, it is more convenient to
calculate the symplectic eigenvalues vk of V by taking the absolute value of the standard
eigenvalues of iΩV [56]. The uncertainty principle can also be expressed as vk ≥ 1 for all
k.

The covariance matrix of the two-mode Gaussian states has a standard form with
diagonalizable cross-correlation sub-blocks [10, 58]

V =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 (2.16)

where a and b respectively represent the local correlation of two modes; as well as, c and
d represent the inter-mode correlations between first mode and second mode shown as

a = (
〈
(∆x̂1)

2
〉

+
〈
(∆p̂1)

2
〉
)/2

b = (
〈
(∆x̂2)

2
〉

+
〈
(∆p̂2)

2
〉
)/2

c = |d| = (⟨∆x̂1∆x̂2⟩ − ⟨∆p̂1∆p̂2⟩)/2.
(2.17)

If c = d = 0, the corresponding covariance matrix would be a product state.

We know that a quantum state can also be expressed as an evolution which starts from
a vacuum state |0⟩ and evolves according to a Hamiltonian, H, for an evolution time t as

|Ψ(t)⟩ = exp(−itH) |0⟩ . (2.18)

For a bosonic system, H can be expressed as a polynomial function of quadrature operators
so that H = H(x̂, p̂). Gaussian states are states generated by Hamiltonians that are at
most quadratic in the operators x̂, p̂. These Hamiltonians correspond to linear systems, in
that they have linear equations of motion.

2.2.1 Pure Gaussian states

A single qumode pure Gaussian state could be completely characterized by two complex
continuous variables: displacement parameter α and squeezing parameter z [36]. In fact,
Gaussian state is named because it fits the Gaussian distribution that the displacement pa-
rameter and squeezing parameter are corresponding to the mean and variance of Gaussian
distribution, respectively. We would review several common single-mode pure Gaussian
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states and summarize their displacement and squeezing parameters, moreover, expressions
in Gaussian formulation.

Vacuum state

The most elementary Gaussian state is the vacuum state, and the Wigner function of
the vacuum state is shown in Fig.2.1a,

|0⟩ =
1

4
√
πℏ

∫
dxe−x2/(2ℏ) |x⟩ (2.19)

which represents not only the eigenstate of annihilation operator with eigenvalue equal
to zero, giving â |0⟩ = 0 but also a Fock state with n = 0, as well as the mean vector
r̄ = (0, 0) and covariance matrix V = ℏ

2
I. The vacuum state is often used as the initial

state for computation.

Coherent state

A coherent state is the vacuum state displaced by a displacement operator D(α) to a
point α in phase space [62]

|α⟩ = D(α) |0⟩ (2.20)

with D(α) = exp
(
αâ† − α∗â

)
, α ∈ C. Since â |α⟩ = α |α⟩, the coherent state is eigenstate

of annihilation operator â with eigenvalue α. The displacement operator D(α) is a unitary
operator with D(α)D†(α) = D†(α)D(α) = I due to D(−α) = D†(α) = D−1(α). We can

rewrite D(α) = exp
(
− |α|2

2

)
exp
(
αâ†
)

exp(−α∗â) so that coherent state can be expressed

in Fock basis as

|α⟩ = exp

(
−|α|

2

2

)
∞∑
n=0

αn

√
n!
|n⟩ . (2.21)

Meanwhile, the corresponding mean vector is r̄ = 2
√

ℏ
2
(Re(α), Im(α)) and covariance ma-

trix V = ℏ
2
I. In the propagating laser fields, the optical coherent states play an important

role since an ideal laser beam’s quantum state consists of N copies of identical pure coherent
states mixed together [60].

Squeezed state

The squeezed state is a squeezed vacuum state without displacement

|z⟩ = S(z) |0⟩ (2.22)

with S(z) = exp
(
1
2
(z∗â2 − zâ†2)

)
, z = r exp(iϕ) and r ≥ 0. Similarly, the squeezed operator

is also unitary as displacement operator. Because any Gaussian states can be expressed
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by Fock states, squeezed states have even number Fock states expansion, giving

|z⟩ =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!
(− exp(iϕ) tanh r)n |2n⟩ . (2.23)

In Gaussian formulations, the mean vector and covariance matrix of a squeezed state are

r̄ = (0, 0) and V = ℏ
2
R(ϕ/2)

[
e−2r 0

0 e2r

]
R(ϕ/2)T , respectively. The R(ϕ) inside covariance

matrix is a rotation operator with the unitary form R(ϕ) = exp(iϕn̂) where n̂ = â†â is the
photon number operator.

Displaced squeezed state

Combining the displacement operator and squeezed operator together on a vacuum
state, we get the definition of displaced squeezed state (also called squeezed coherent state)

|α, z⟩ = D(α)S(z) |0⟩ . (2.24)

It is important to note that those two operators do not commute so that D(α)S(z) ̸=

S(z)D(α). Furthermore, r̄ = 2
√

ℏ
2
(Re(α), Im(α)) and V = ℏ

2
R(ϕ/2)

[
e−2r 0

0 e2r

]
R(ϕ/2)T

for the displaced squeezed state. The displaced squeezed state is the most general single-
qumode pure Gaussian state.

2.2.2 Mixed Gaussian state

Thermal radiation is electromagnetic radiation emitted by any matter at finite tempera-
tures and is an inevitable noise resource. The thermal states of matter causing thermal
radiation describe the states of a system in thermal equilibrium at non-zero temperatures
T .

The thermal state is an important example of mixed Gaussian state, with density matrix

ρth(n̄) =
∞∑
n=0

n̄n

(1 + n̄)n+1
|n⟩ ⟨n| (2.25)

with the mean photon number n̄ = Tr(ρ(n̄)n̂). In addition, the mean vector is r̄ = (0, 0),
and covariance matrix is V = (2n̄+ 1)ℏ

2
I.
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2.3 Universality and CV gates

The quantum computer over DV is universal if it can implement any required unitary
transformation over finite qubits using quantum logic gates to any degree of accuracy.
For a CV quantum computer, the definition of universality is the ability to approach
any unitary transformation, which is related to Hamiltonian is a polynomial function of
mode operators, to arbitrary precision in finite steps [32]. However, Ref. [32] showed that
universality requires non-Gaussian resources, either gates or resource states.

Gaussian gates transform Gaussian states to Gaussian states; such a process is a linear
transformation. Several Gaussian gates are related to the Gaussian states from the last
section. The common Gaussian gates act on one-mode or two-mode, and are at most
quadratic in mode operators such as displacement D(α), rotation R(ϕ), squeezing S(z)
and beamsplitter BS(θ, ϕ) gates. The basic non-Gaussian gates are single-mode gates
which are degree 3 or higher in the mode or quadrature operators such as cubic phase
gate V (γ) and Kerr gate K(κ). Additionally, any CV gate for the multi-mode system can
decompose single-mode gates and two-mode gates due to universality.

Similar to the unitary transformation U operating on ρ̂ in the Hilbert space H, the
symplectic transformation S acts on the mean vector and covariance matrix in the phase
space κ [11]

ρ̂
′

= Uρ̂U † ⇔
r̄
′

= Sr̄

V
′

= SVST
(2.26)

where S is a symplectic matrix defined in 2.14. Indeed, each unitary operator on Gaussian
states can be linked with an associated symplectic matrix.

Displacement gate

The displacement gate has the form

D(α) = eαâ
†−α∗â = er(e

iϕâ†−e−iϕâ) (2.27)

with α = reiϕ where r ≥ 0 and ϕ ∈ [0, 2π). It could convert â and â† by Campbell-Baker
Hasdorff formula

D†(α)âD(α) = â+ αI,

D†(α)â†D(α) = â† + α∗I.
(2.28)

For Heisenberg picture, the displacement gate affects the position and momentum opera-
tors,

D†(α)x̂D(α) = x̂+
√

2ℏRe(α),

D†(α)p̂D(α) = p̂+
√

2ℏIm(α)
(2.29)
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which explains that the D(α) make displacement of state with α in phase space, see
Fig.2.1b.

Squeezing gate

Squeezing gate for single-mode is defined as

S(z) = e
1
2
(z∗â2−zâ†2) (2.30)

where z = reiϕ with r ≥ 0 and ϕ ∈ [0, 2π). Similarly, it could transform â and â† as

S†(z)âS(z) = cosh râ− eiϕ sinh râ†,

S†(z)â†S(z) = cosh râ† − e−iϕ sinh râ.
(2.31)

The squeezing gate acts on quadrature operators,

S†(z)x̂S(z) = e−rx̂,

S†(z)p̂S(z) = erp̂.
(2.32)

Additionally, the associated symplectic matrix of squeezing is

Ssqueezing(r, ϕ) =

(
cosh r − cosϕ sinh r − sinϕ sinh r
− sinϕ sinh r cosh r + cosϕ sinh r

)
. (2.33)

In phase space, the squeezing operator acts on a vacuum state (see Fig.2.1c) so that
one quadrature squeezed by a factor e−r has a lower uncertainty; as a consequence, the
orthogonal quadrature with a higher uncertainty would be stretched by a factor er to obey
the uncertainty principle. In the limitation that the squeezing parameter is sufficiently
large with z ≈ r, we can approach the zero momentum eigenstates |0⟩p and zero position
eigenstates |0⟩x via squeezing on vacuum state

|0⟩p ≈ S(−r) |0⟩ ,
|0⟩x ≈ S(r) |0⟩ .

(2.34)

Phase rotation gate

The phase rotation operation is defined as

R(ϕ) = eiϕn̂ (2.35)

where n̂ = â†â is photon number operator. We could obtain transformation of mode
operators according to

R†(ϕ)âR(ϕ) = eiϕâ,

R†(ϕ)â†R(ϕ) = e−iϕâ†.
(2.36)
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The phase rotation gate rotates a state represented by position and momentum quadratures
in phase space by an angle of ϕ, see Fig.2.1d,

R†(ϕ)x̂R(ϕ) = cosϕx̂− sinϕp̂,

R†(ϕ)p̂R(ϕ) = sinϕx̂+ cosϕp̂.
(2.37)

The symplectic transformation corresponding to a unitary phase rotation is

SR(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (2.38)

Beamsplitter Gate

The beamsplitter gate is a two-mode gate with form

BS(θ, ϕ) = eθ(e
iϕâiâ

†
j−e−iϕâ†i âj). (2.39)

We could mix two modes âi and âj by applying beamsplitter operator on mode operators

BS†(θ, ϕ)âiBS(θ, ϕ) = cos θâi − e−iϕ sin θâj = T âi −R∗âj,

BS†(θ, ϕ)âjBS(θ, ϕ) = cos θâj + eiϕ sin θâi = T âj +Râi
(2.40)

where T = cos θ is transmittivity amplitude, and R = eiϕ sin θ is reflectivity amplitude
of the beamsplitter with |T |2 + |R|2 = 1. The special case of beamsplitter gate is 50-50
beamsplitter which has θ = π/4 such that |T |2 = |R|2 = 1

2
, see Fig.2.1e.

If we apply a beamsplitter operation on random two single-mode Gaussian states whose
covariance matrices are A = aI and B = bI, the covariance matrix of output state is
obtained by VBS = SBS(A⊕B)S†

BS [48] as

VBS =


(a− b) cos2(θ) + b 0 (a− b) sin θ cos θeiϕ 0

0 (a− b) cos2(θ) + b 0 (a− b) sin θ cos θe−iϕ

(a− b) sin θ cos θe−iϕ 0 (b− a) cos2(θ) + a 0
0 (a− b) sin θ cos θeiϕ 0 (b− a) cos2(θ) + a


(2.41)

where SBS is the symplectic transformation matrix of beamsplitter operator. If the initial
two states are both thermal states with thermal photon number N1, N2 for each state, their
covariance matrices can be replaced by A = (N1 + 1

2
)I and B = (N2 + 1

2
)I, respectively.

Two-mode squeezing gate
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The two-mode squeezing operator has definition as

S2(z) = e(zâ
†
i â

†
j−z∗âiâj) (2.42)

where z = reiϕ with squeezing parameter r ≥ 0 and squeezing phase angle ϕ ∈ [0, 2π).
Two-mode squeezing operator could transform the mode operators as

S2(z)†âiS2(z) = âi cosh(r)− â†jeiϕ sinh(r),

S2(z)†âjS2(z) = âj cosh(r)− â†ieiϕ sinh(r).
(2.43)

In addition, the two-mode squeezing gate could be decomposed into two single-mode
squeezing gate with opposite squeezing parameters between two 50-50 beamsplitters

S2(z) = BS†(π/4, 0)[S(z)⊗ S(−z)]BS(π/4, 0). (2.44)

The two-mode squeezed (TMS) vacuum state (see Fig.2.1f) can be obtained by a two-
mode squeezing operator acting on the vacuum state, a representative state for a two-mode
continuous-variable entangled state. The TMS vacuum state has zero mean and covariance
matrix

VTMSvacuum =


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 . (2.45)

More generally, the correlations a, b, c, d in the covariance matrix of TMS thermal state
would be calculated by [15]

a = cosh 2r + 2N1 cosh2 r + 2N2 sinh2 r

b = cosh 2r + 2N2 cosh2 r + 2N1 sinh2 r

c = −d = (1 +N1 +N2) sinh 2r

(2.46)

where N1, N2 are the mean thermal photon number of each mode.

Cubic phase gate

The cubic phase gate is a single mode gate which is a non-Gaussian resource for CV
computation with definition

V (γ) = ei
γ
3ℏ x̂

3

. (2.47)

The cubic phase state |γ⟩ is generated by applying the cubic phase gate on the zero mo-
mentum eigenstate |0⟩p as |γ⟩ = V (γ) |0⟩p.

14



Kerr gate and Cross-Kerr gate

The Kerr gate which acts on a single mode is given by

K(κ) = eiκn̂
2

(2.48)

since the relative Hamiltonian of Kerr interaction is H = (â†â)2 = n̂2.

The cross-Kerr gate also provides non-Gaussian transformation as Kerr gate, but it
implements on two-mode as

CK(κ) = eiκn̂1n̂2 (2.49)

where the Hamiltonian of cross-Kerr interaction is H = n̂1n̂2.

2.4 CV measurements

In place of Pauli-basis measurements |0/1⟩ ⟨0/1| , |±⟩ ⟨±| , |±i⟩ ⟨±i| on qubits, we con-
sider the Gaussian measurements of homodyne and heterodyne detection, as well as non-
Gaussian measurement of photon counting.

Homodyne measurement

Homodyne detection is a measurement that is projected onto the eigenstates of a single
field quadrature operator x̂ or p̂. More generally, homodyne measurement could be ex-
panded to projection onto eigenstates of the Hermitian operator x̂ϕ with operator |xϕ⟩ ⟨xϕ|.

x̂ϕ = cosϕx̂+ sinϕp̂ (2.50)

This is the same as rotating the state by −ϕ and taking a homodyne measurement on x̂,
and would return a real measurement value. It is important to note that the conditional
state of the remaining modes preserves its Gaussian Character if we take a homodyne
measurement on one of the modes in a multi-mode Gaussian state.

Heterodyne measurement

Unlike homodyne measurements which only measure a single quadrature operator, het-
erodyne detection simultaneously measures both quadratures x̂ and p̂. Because these two
conjugate operators do not commute, Heisenberg’s uncertainty principle limits the simul-
taneous measurement’s precision. That is, heterodyne detection must add noise to the
measurement. A heterodyne measurement projects onto the basis of coherent states with
operator 1√

π
|α⟩ ⟨α|. The output value is complex and can be expressed by the Husimi Q
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function defined Q(α) = 1
π
⟨α| ρ |α⟩. Again, the conditional state of the remaining modes

is still a Gaussian state after heterodyne measurement.

Photon counting

Photon counting measurement projects the states onto the Fock basis |n⟩ with corre-
sponding measurement operator |n⟩ ⟨n| so that the measurement output values are non-
negative integer. Unlike homodyne and heterodyne measurements, a photon counting
measurement projects the system into a non-Gaussian basis, except if the the output is
n = 0. (The vacuum state is unique in being both a Gaussian state and a Fock state.)
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(a) Vacuum state (b) Displacement (c) Squeezing

(d) Phase rotation (e) Beamsplitter (f) Two-mode squeezing

Figure 2.1: Operation of common Gaussian gates. Wigner functions of (a) vacuum state,
(b) coherent state obtained by acting displacement gate on vacuum state, (c) squeezed
vacuum state, (d) phase rotation of coherent state, (e) beamsplitter of two-mode vacuum
state, and (f) TMS vacuum state, which are drawn using Strawberry Fields. [26]
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Chapter 3

Gaussian Quantum Discord

Quantum entanglement was the first kind of quantum correlation studied. It has a wide
range of applications in quantum information processing with various research. However,
people have realized there are other types of quantum correlation, with quantum discord
being one broad category. Quantum discord measures the quantum correlation of bipartite
quantum systems and is an essential resource for quantum information processing, espe-
cially in mixed-state quantum systems. Researchers have extended quantum discord to
the CV systems and analytically evaluated the quantum discord for two-mode Gaussian
states, which is thus named Gaussian quantum discord. This section introduces how to
measure quantum discord. It starts with two equivalent expressions of mutual information
in the classical information theory and then expands to quantum analogues of mutual in-
formation. Furthermore, we demonstrate two approaches to obtaining analytical solutions
for different kinds of Gaussian states.

3.1 Quantum discord definition

For bipartite quantum states, there exist classical correlation and quantum correlation
[41]. The difference between classical and quantum correlation originates from that the
measurement will disturb the quantum systems but won’t disturb the classical systems,
and the disturbance can be used to calculate the quantum correlation [34]. Furthermore,
the classical correlation can be qualified as the information of one subsystem gained by
measurements on the other subsystem. For pure quantum states, the quantum correla-
tion accords with the quantum entanglement. Quantum discord can be used to measure
the quantum correlation of mixed states, which is defined by the difference between two
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classically equivalent expressions for mutual information, which need not be the same for
quantum systems [21].

From classical information theory, the Shannon entropy H(A) describes the average un-
certainty in a discrete random variable A with outcomes a1...an that occur with probability
P (a1)...P (an). The entropy of A is defined as

H(A) = −
n∑

i=1

P (ai) logP (ai). (3.1)

The mutual information measures the total correlation between two random variables
A and B, which reduces the uncertainty of A due to knowledge of B. Due to Bayes’ and
its property, the two classical expressions of mutual information I and J are equal

I(A : B) = H(A) +H(B)−H(A,B)

J(A : B) = H(A)−H(A|B)
(3.2)

where H(A|B) is conditional entropy and H(A,B) is joint entropy.

Now the above concepts in classical systems are extended to quantum systems. To
obtain the quantum mutual information of a bipartite quantum state, we replace cor-
responding classical probability distributions by density matrices ρA, ρB, ρAB as well as
generalizing Shannon entropy to S(ρ) = −Tr(ρ log ρ) von Neumann entropy

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (3.3)

The quantum mutual information contains the total correlations of the system, i.e.,
the quantum mutual information is the sum of the classical correlation and the quantum
correlation. However, the quantum analog J(ρAB) couldn’t be as easily substituted as for
I(ρAB) since it involves a generalization of the conditional entropy H(A|B). The J(ρAB)
can be obtained with the help of a set of measurements {Bi},

∑
iBi = I made on B where

i corresponds to the different measurement results. After the measurement, the state of A
when result Bi is detected becomes

ρA|Bi
=

TrB(ρABBi)

TrAB(ρABBi)
. (3.4)

The probability of this result is pi = TrAB(ρABBi) so that the generalization of the condi-
tional entropy of state A can be defined as

S(ρA|{Bi}) =
∑
i

piS(ρA|Bi
). (3.5)
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Accordingly, the quantum generalization J(ρAB) is expressed as

J(ρAB){Bi} = S(ρA)− S(ρA|{Bi}). (3.6)

The magnitude of J(ρAB) is related to the choice of the measurement base, and after
maximizing overall measurement results, which means find the infimum value of S(ρA|{Bi})
term, we obtain the classical correlation as

J(ρAB){Bi} = S(ρA)− inf{Bi}S(ρA|{Bi}). (3.7)

The quantum discord, which measures the quantum correlation, is equal to the differ-
ence between the total correlation and classical correlation [21]

D(ρAB){Bi} = I(ρAB)− J(ρAB){Bi} = S(ρB)− S(ρAB) + inf{Bi}S(ρA|{Bi}). (3.8)

Since we only consider quantum discord with measurement made on B, we can abbreviate
it as

D(ρAB) ≡ D(ρAB){Bi}. (3.9)

Quantum discord has the following properties:

(1) Generally, quantum discord is asymmetric since the conditional entropy is asym-
metric such that D(ρAB){Ai} ̸= D(ρAB){Bi}.

(2) For pure states, quantum discord is equal to quantum entanglement; they are
generally not equal for mixed states.

(3) Quantum discord is non-negative D(ρAB) ≥ 0 since the concavity of conditional
entropy. The quantum discord is equal to zero if and only if for product state with ρAB =∑

iBiρABBi.

(4) D(ρAB){Bi} ≤ S(ρB), however D(ρAB){Bi} ≤ S(ρA) does not necessarily hold.

(5) Quantum discord is invariant under local unitary transformation such as D(ρAB) =
D((UA ⊗ UB)ρAB(UA ⊗ UB)†).

(6) For separable states except for product states, the quantum discord must be smaller
than 1. On the contrary, if the quantum discord is smaller than 1, the corresponding
Gaussian state has the probability of being an entangled state.
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3.2 Analytical solution of Gaussian quantum discord

The analytical solution of quantum discord is complicated to obtain since the final part in
the definition of quantum discord need to be optimized. In [30, 33], the analytical solution
of quantum discord for a kind of two-qubit states was demonstrated. In [3, 35], a more
general analytical solution for quantum discord of X-states that only diagonal and anti-
diagonal elements in the covariance matrices are nonzero was further obtained. We would
focus on a family of CV states , i.e., the Gaussian state, as an example, to introduce how
to get Gaussian quantum discord for bipartite Gaussian states. Recall 2.16 the diagonal
sub-blocks expression of covariance matrix for any two-mode Gaussian state, and re-write
it as

σAB =

(
α γ
γT β

)
(3.10)

where α = aI, β = bI, γ = diag{c, d}. The correlations a, b, c and d are determined
by the four symplectic invariants A = detα = a2, B = detβ = b2, C = detγ = cd,
D = detσAB = (ab−c2)(ab−d2). Additionally, the symplectic eigenvalues v± of a covariance
matrix can be expressed as

2v2± = (A+B + 2C)±
√

(A+B + 2C)2 − 4D (3.11)

where v− ≥ 1 to ensure the corresponding Gaussian state are meaningful due to the
uncertainty principle.

In 2010, Adesso derived the closed solution of quantum discord for general two-mode
Gaussian states after measurements made on mode B by projecting on pure Gaussian
states [1]. The measurement state B is given by

σ0 =

(
λ 0
0 1/λ

)
(3.12)

where λ = 1 or λ → 0 implies that the executed measurement is heterodyne or homo-
dyne, respectively. The reduced state A whose covariance matrix is independent of the
measurement result is described by [12, 18, 20]

ε = α− γ(β + σ0)
−1γT (3.13)

Now the Gaussian quantum discord with covariance matrix σAB is expressed as

D(σAB) = f(
√
B)− f(v−)− f(v+) + infσ0f(

√
detε) (3.14)
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with f(x) = (x+1
2

) ln
(
x+1
2

)
− (x−1

2
) ln
(
x−1
2

)
.

We can let infσ0detε = Emin. If (D − AB)2 ≤ (1 + B)C2(A + D), the conditional
entropy is minimized by heterodyne measurements which project on the coherent state
basis so that

Emin =
2C2 + (−1 +B)(−A+D) + 2|C|

√
C2 + (−1 +B)(−A+D)

(−1 +B)2
. (3.15)

Otherwise, the homodyne measurements which project on the squeezed state basis mini-
mize the conditional entropy such that

Emin =
AB − C2 +D −

√
C4 + (−AB +D)2 − 2C2(AB +D)

2B
. (3.16)

We additionally verify a set of formulas for Gaussian quantum discord, which are easier
to derive and return the same result as Adesso obtained. Firstly, we should find the
covariance matrix ε of reduced state A and the corresponding symplectic eigenvalues for
three different states. Then, we substitute the above results into Gaussian quantum discord
expression to get some simple analytical results.

Recall the expression of ε and substitute the diagonal elements of γ with d = ±c so
that

ε =

(
a− c2

b+λ
0

0 a− c2

b+1/λ

)
. (3.17)

For heterodyne measurements which λ = 1, the ε = pεI with pε = a − c2

b+1
. The

covariance matrix elements of a two-mode squeezed (TMS) vacuum state can be defined
by a = b = 2NS + 1, c =

√
a2 − 1 =

√
4NS(NS + 1) where NS is the squeezing number

of photons so that pε = 1 and ε = I which means the state A reduced to vacuum state.
For symmetric Beamsplitter (BS) state, the covariance matrix has elements a = b =
2NS + 1, c =

√
4N2

S = 2NS and now pε = 3NS+1
NS+1

≈ 1 + 2NS for NS ≪ 1. Furthermore, the
covariance matrix of a asymmetric BS state takes the form a = 2NS + 1, b = 2NI + 1, c =√

4NSNI ; therefore, pε = 2NS + 1− 4NSNI

2(NI+1)
≈ 1 for NI →∞.

For homodyne measurements where λ→ 0, the ε takes the form

ε =

(
a− c2

b
0

0 a

)
. (3.18)
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We can re-define pε = a − c2

b
, and the TMS state has pε = 1

2NS+1
≈ 1 − 2NS if 2NS ≪ 1.

For the symmetric BS state, pε = 2 − 1
2NS+1

≈ 1 + 2NS if 2NS ≪ 1. In addition, the

asymmetric BS state has pε = 2NS + 1− 4NSNI

2NI+1
≈ 1 for NI →∞.

To find the symplectic eigenvalues v±, we start with symmetric states such as TMS state
and symmetric BS state. Recall expression of v± in which C = ±c2 and D = (a2 − c2)2
now, we can define △ = A+B + 2C = 2a2 + 2C and β2 = △2− 4D = 8a2(c2 +C) so that

v± =
1

2
(△± β)

= a2 + C ± a

2

√
8(C + c2).

(3.19)

For the general TMS vacuum states, we can substitute C = −c2 into above expression
so that v± =

√
a2 − c2, furthermore v± = 1 since a = 2NS + 1, c =

√
4NS(NS + 1). The

BS states have C = c2 such that v± = a ± c, and v+ = 4NS + 1, v− = 1 for a vacuum
symmetric BS state.

Now, let’s consider the Gaussian quantum discord of TMS vacuum states if heterodyne
measurements made on mode B, thus

D(σAB) = f(2NS + 1)

= (NS + 1)ln(NS + 1)−NSlnNS

(3.20)

since
√
B = 2NS + 1, v± = 1,

√
detε = 1. Furthermore, D(σAB) ≈ −NSlnNS for NS ≪ 1.

Similarly, if homodyne measurements made on mode B, discord has same result due to√
detε =

√
a2 − c2 = 1.

The Gaussian quantum discord of symmetric BS states in which
√
detε = 3NS+1

NS+1
based

on heterodyne measurements has

D(σAB) = f(2NS + 1)− f(4NS + 1) + f(
3NS + 1

NS + 1
) (3.21)

moreover pε ≈ 2NS +1 for NS ≪ 1 so that D(σAB) ≈ 2f(2NS +1)−f(4NS +1) ≈ 2NSln2.

Indeed, it’s more complicated for the asymmetric BS states to find Gaussian quantum
discord. To find the symplectic eigenvalues v±, we can let

p =
a+ b

2

, δp =
a− b

2
,

χ =
√
δp2 + c2

(3.22)
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and use the results obtained in symmetric BS case so that △ = 2(p2 + χ2), β = 4pχ
and v± = 1

2
(△ ± β) = p ±

√
δp2 + c2. For a vacuum case, the symplectic eigenvalues

are calculated by v± = (NS + NI + 1) ±
√

((NS −NI)2 + 4NSNI = 2N + 1 ± 2N where
N = NS+NI

2
, hence v+ = 4N + 1, v− = 1. Rewrite pε = 2NS + 1 − 4NSNI

2NI+1
= 1 + 2NS

NI+1

and substitute it into discord expression, the Gaussian quantum discord of asymmetric BS
states is

D(σAB) = f(2NI + 1)− f(4N + 1) + f(1 +
2NS

NI + 1
). (3.23)

Particularly, there is infinite idler with weak signal measured that NI → ∞, NS ≪ 1,
as a result DIS ≈ f(2NS + 1) − f(2NI + 1) + f(2NI + 1) ≈ f(2NS + 1) which looks
closed to TMS state discord. In comparison, if measurements made on idler, DSI ≈
f(2NI + 1)− f(2NI + 1) + f(1 + 2NS

NI+1
) ≈ f(1 + 2NS

NI+1
).

The values of quantum Gaussian discord for TMS vacuum states, symmetric BS vacuum
states and asymmetric BS vacuum states are shown in Fig.3.1.

Figure 3.1: Analytical solutions of quantum Gaussian discord for TMS vacuum states,
symmetric BS vacuum states and asymmetric BS vacuum states. Note that the values of
quantum Gaussian discord for the asymmetric BS vacuum states are small but not zero.
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Chapter 4

Classical neural network with error
Back-Propagating

This chapter presents the first approach for recognizing Gaussian discord by performing
a back-propagating (BP) algorithm on a double hidden-layer neural network. Machine
learning is such a process that how a machine approximately builds a parametric model
via learning from known data set to predict the output of unknown data. The BP algorithm
is gradient descent and back-forward updates neural network parameters from the output
layer to the input layer.

4.1 Machine Learning

Machine learning (ML) is the necessary product of developing artificial intelligence research
to a certain stage. A data set is a collection of relevant records, and each record is corre-
spondent to an object defined as a sample in ML. Matters that reflect the performance of
nature in a certain aspect are called features, and the space into which the feature is tangled
becomes the feature space. Generally, assuming that D = {x1, x2, ..., xm} is a data set con-
taining m samples, and each sample is described by d features so that xi = (xi1, xi2, ..., xid)
is a feature vector of the d-dimensional feature space X .

Learning a model from data is called training, and this process is accomplished by
executing some learning algorithm. The data used in the training process is called the
training data set, and each sample in it is called a training sample. The learned model
responds to some underlying pattern of the data in question and is also called a hypothesis.
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To build the relevant predictive model, we need to obtain the results about the training
samples named label. For a given data set D = {(xi, yi)|xi ∈ Rd, yi ∈ R} (i = 1, 2, ...,m),
(xi, yi) represents ith samples where yi is the label of xi belonging to label space Y .

ML requires the construction of a map from the feature space X to the label space Y
as f(x) : X → Y , where the unknown function f(x) is target function. Since the target
function is unknown, we could only find the closest one to the target function. The approx-
imate target function is a parameterized function f(x; θ) which could be the sum of some
nonlinear functions with optimal performance on training data set, and the parameters θ
could be learned by the optimization process. The process of finding optimal parameters to
maximize model performance is called deep learning in the neural network. After learning
the model, using the model to make predictions is called testing, and the sample being
tested is called the test sample. In this paper, we focus on a binary classification task
whose predicted values are discrete.

4.2 Neural Networks

The most fundamental element in Neural Network (NN) is neuron (also named as percep-
tron). The neuron receives input values xi which multiplying by connection weight wi and
then comparing with threshold b, so the output of neuron y is obtained by passing this
sum to an activation function f(x), giving as

y = f(
∑

wixi − b). (4.1)

The above mentioned situation can be abstracted into a simple model, which is the Mc-
Culloch–Pitts neuron model, see Fig.4.1 that has been used until now [38].

The activation function should be a non-linear function for which can introduce non-
linear properties. For example, the step function is the most straightforward activation
function

f(x) =

{
1 x > 0
0 x ≤ 0.

(4.2)

Another standard activation function is the sigmoid function which output is bounded in
the range (0, 1).

f(x) =
1

1 + exp{−x}
(4.3)

A neural network is formed by interconnecting a set of neurons in a specific structure
[27]. The part of a neural network that receives input data is called the input layer, and
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Figure 4.1: McCulloch–Pitts neuron model

the part that is used to output the result is the output layer. The layer of neurons between
the input layer and output layer is called the hidden layer. Several famous neural networks
exist, such as multi-layer feedforward neural network with derivative convolution-neural
network and recurrent neural network with long short-time memory.

4.3 Back-Propagating algorithm

A well-known algorithm in the neural network is Back-Propagating (BP) which is one of the
most widely used machine learning algorithms for many practical problems [52]. Here we
show a double-layer feedforward neural network example, see Fig.4.2, for explaining the er-
ror Back-Propagating (BP) algorithm, which is used for updating weights and thresholds of
a given neural network. The BP algorithm is the application and extension of gradient de-
scent in neural network models [63, 52]. For a data set D = {(x1, y1), (x2, y2), ..., (xm, ym)},
xi ∈ Rd, yi ∈ Rl, each input sample is described by d features and output is l-dimensional
real value vector; meanwhile, the first hidden layer has q neurons and the second hidden
layer has p neurons.

Assuming the threshold of jth neuron in output layer is represented by θj, and thresholds
for hth neuron in first hidden layer and kth neuron in second hidden layer are γh and µk,
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Figure 4.2: Neural network with two hidden layers

respectively. The connection weight between ith neuron in the input layer and hth neuron
in the first hidden layer is vih so that the input and output of hth neuron in the first hidden
layer are αh =

∑d
i=1 vihxi and bh = f1(αh − γh). Similarly, assuming uhk is the connection

weight between hth neuron in first hidden layer and kth neuron in second hidden layer, the
input and output for kth neuron are λk =

∑q
h=1 uhkbh and ck = f2(λk−µk). For jth neuron

in output layer with connected weight wkj, the input and output are βj =
∑p

k=1wkjck
and yj = f3(βj − θj). The activation functions f1, f2, f3 inside above expressions might be
different.

Matrices could express those. For the feature space of data set D, assuming the thresh-
old as a dummy node with input −1 gives

X =


x11 x12 . . . x1d −1
x21 x22 . . . x2d −1
...

...
. . .

...
...

xm1 xm2 . . . xmd −1

 . (4.4)
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The transposed weight matrix for input layer to hidden layer 1 has the form

V T =


v11 v12 . . . v1(q−1) v1q
v21 v22 . . . v2(q−1) v2q
...

...
. . .

...
...

vd1 vd2 . . . vd(q−1) vdq
γ1 γ2 . . . γ(q−1) γq

 . (4.5)

Similarly, if the left two transposed weight matrices are UT and W T , the final output could
be

ŷ = f3(f2(f1(XV
T )UT )W T ). (4.6)

For a training sample (xe, ye) ∈ D, and the output of neural network is ŷe = (ŷe1, ŷ
e
2, ..., ŷ

e
l )

with ŷej = f(βj − θj), j = 1, 2, ..., l. Meanwhile, the mean-square error on (xe, ye) is

Ee = E(ye, ŷe) =
1

2

l∑
j=1

(ŷej − yej )2. (4.7)

The goal of BP algorithm is to minimize the accumulated mean-square error E on the data
set D where

E =
1

m

m∑
e=1

Ee. (4.8)

There are (d + p + 1)q + (l + 1)p + l parameters need to be confirmed: d × q weights
from the input layer to the first hidden layer, q × p weights from the first hidden layer to
the second hidden layer, p× l weights from the secon hidden layer to the output layer; and
q+ p+ l thresholds for each layer except input layer. BP is an iterative learning algorithm
that uses a generalized perceptron learning rule to update the parameter estimates in each
round of the iteration, such as for a random parameter v

v ← v +△v. (4.9)

We use connected weight wkj from the second hidden layer to the output layer for
derivation. The BP algorithm is gradient descent which modifies parameters in the negative
step direction of the target. For a given studying rate η ∈ (0, 1),

△ wkj = −η ∂Ee

∂wkj

(4.10)
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the weights wkj are first effect on the input value βj of jth neuron in output layer, then on
this neuron’s output value ŷej , and finally to the Ee so that

∂Ee

∂wkj

=
∂Ee

∂ŷej

∂ŷej
∂βj

∂βj
∂wkj

. (4.11)

We can define the gradient term in the output layer as

gj = −∂Ee

∂ŷej

∂ŷej
∂βj

= −(ŷej − yej )f
′
(βj − θj)

= ŷej (1− ŷej )(yej − ŷej )

(4.12)

if the activation function is sigmoid function with property f
′
(x) = f(x)(1 − f(x)). Ac-

cording to the definition of βj, it is obvious that

∂βj
∂wkj

= ck. (4.13)

Now, the updated formulas for the weights from second hidden layer to output layer and
thresholds of output layer are obtained as

△wkj = ηgjck,

△θj = −ηgj.
(4.14)

Similarly, for second hidden layer to the first hidden layer, there are

△uhk = ηrkbh,

△µk = −ηrk
(4.15)

where rk =
∑l

j=1wkjgjf
′
(λk − µk). For the first hidden layer to input layer, we have

△vih = ηehxi,

△γh = −ηeh
(4.16)

where eh =
∑p

k=1 uhkrkf
′
(αh − γh).

Obviously, to calculate the gradient terms rk of the second hidden layer, the gradient
terms gj at the output layer must be known, i.e., the gradient terms are derived from the
last layer to the first layer, which is why the algorithm is called the BP algorithm. When
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the number of layers in the neural network is enormous, the gradient terms are almost zero
after passing backwards several layers. This problem is called gradient vanishing, with one
possible solution being to learn multi-Level Hierarchies [28].

The learning rate η controls the update step in each algorithm iteration; if it is too
large, it tends to oscillate, and if it is too small, it converges too slowly. For each layer,
the learning rate η could be different for more precise regulation.

4.4 Recognizing the Gaussian quantum discord by BP

algorithm with neural network

For recognizing the Gaussian discord by the BP algorithms, the first step is to construct
a generalized Gaussian state data set. The analytical solutions of quantum discord for
different kinds of Gaussian states could be seen as labels. The input point of each Gaussian
state sample is the covariance matrix.

There are two general types of parameters in machine learning: those that need to
be learned and estimated from data, called model parameters, and tuning parameters in
machine learning algorithms, which need to be set artificially, called hyper-parameters.
The parameters in the neural networks usually are weights and thresholds. For the neural
network using BP algorithm, the choice of hyper-parameters: learning rate η, the number
of hidden layers and the number of neurons in each hidden layer determine the model’s
performance. The setting of these hyper-parameters needs to base on experience and many
attempts.

We set the number of hidden layers as two, the first hidden layer has 256 neurons
and the second hidden layer has 128 neurons. Since each covariance matrix of bipartite
Gaussian state is described by 16 elements, the number of neurons of the input layer is 16.
The expected output of the neural network is one real value that represents the predicted
Gaussian quantum discord, thus the output layer only consists of one neuron.

We construct a Gaussian data set to evaluate the performance of the double hidden lay-
ers neural network. The number of samples of the Gaussian data set is 800. The Gaussian
data set is constructed by randomly choosing correlations a, b, c, d in the covariance matrix
standard form shown in 2.16; then we calculate the Gaussian quantum discord using its
analytical solutions 3.15 or 3.16 as labels. The result of inputting the Gaussian data set
into the neural network is shown in Fig.4.3.

The result performs poorly for various reasons, such as the hyper-parameters and acti-
vation functions are not appropriate, and we deal with the Gaussian states as the classical
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information. To overcome the limitations of recognizing Gaussian states using classical
machine learning, we will introduce quantum machine learning in Chapter 5, which demon-
strates the ability to handle Gaussian quantum discord classification task.

Figure 4.3: Recognizing Gaussian quantum discord using double hidden layers neural net-
work with BP algorithms. The predicted results marked as blue versus the label values
marked as red are obtained based on the Gaussian data sets that the input Gaussian data
set is constructed by randomly choosing a, b, c, d
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Chapter 5

QKS Algorithm for Recognizing
Gaussian Discord

Classical machine learning seems ineffective in recognizing Gaussian states since it may
not appropriately acquire and deal with the complete quantum information inside quan-
tum states. The states would need to be measured to produce classical information to feed
into the algorithm. In comparison, quantum machine learning could directly take quan-
tum states as input. In this chapter, we will simulate a QML algorithm acting directly
on Gaussian quantum states using the PennyLane package. PennyLane is an open-source
framework in Python 3, could help us implement quantum subroutines of a given quantum-
classical hybrid algorithm on classical simulators or quantum hardware. The problem of
classifying Gaussian quantum discord into two groups could be approached by a super-
vised classifiier using hybrid optimization performed on a variational quantum circuit. In
particular, we have applied the Quantum Kitchen sinks (QKS) [65] algorithm to recognize
Gaussian quantum discord, which has a classical counterpart known as random kitchen
sinks (RKS) [51, 49, 50].

5.1 Quantum Machine learning

Quantum machine learning expands machine learning and is expected to solve both clas-
sical and quantum machine learning problems on quantum devices. Quantum operations
and quantum systems are used in quantum machine learning to demonstrate the quantum
advantages in solving classical problems; moreover, quantum machine learning combines
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quantum computing and classical machine learning algorithms. The computer hardware
used to run classical algorithms has always determined the limitations of what computers
can learn, such as the parallel GPU clusters that enable the implementation of deep learn-
ing using neural networks [55]. We could wish to see if quantum computers can reduce
their training time. Recently, as the area of quantum machine learning has progressed,
several proposals for quantum machine learning algorithms that can be implemented on
CV systems have been developed, which could help recognize some Gaussian states prop-
erties. Instead of ideal and universal quantum computers, we prefer developing quantum
machine learning algorithms on the near-term quantum computers.

With the advent of the noisy intermediate-scale quantum (NISQ) device, the poten-
tial of conducting practical quantum information processing computations has emerged.
While NISQ technologies do not have fault tolerance or a very large number of qubits,
both of which are needed for code-breaking applications, they do open up new possibil-
ities for accessing quantum information. The power of near-term quantum computers
may be researched using NISQ devices which need completely different approaches than
error-corrected quantum computers to perform computations. Hybrid algorithms, which
combine classical and quantum processing, have been proposed as a way to achieve quan-
tum enhancement by utilizing the available NISQ computers.

In quantum machine learning, the quantum circuits are trainable and differentiable.
That is the generalization of deep learning in machine learning with the application in
quantum optimization. There are two approaches to train quantum circuits: classical
simulators and quantum hardware. The first approach is more suitable for the small
quantum circuit, which simulates on classical software with the help of optimization and
machine learning tools. On the other hand, the hardware-based method cannot extract
quantum information and only could return measurement values.

5.2 PennyLane

PennyLane is an open-source software framework built on Python 3 to explore quantum
machine learning on large-scale quantum computing [6]. PennyLane is developed by a
Canadian quantum technology company called Xanadu. The main proposal of PennyLane
is the optimization and automatic differentiation of quantum-classical hybrid computa-
tions due to their capacity to calculate the gradients of a random variational quantum
circuit. The automatic differentiation provides an algorithm of calculating ∇f(x, y) for
some function f(x, y) which may be a mathematical function or arbitrary numerical code.
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Pennylane supports both DV (qubit-model) and CV (continuous-variable) quantum
systems and constructs generalized architecture for near-term quantum computers. Fur-
thermore, the quantum computer could be regarded as a classical neural network and
trained on PennyLane. The framework is compatible with any gate-based quantum sim-
ulator or hardware via the diverse plugin systems. As a result, the limitations of what
computers can learn were pushing since the relevant optimization and running process
could execute quantum hardware like QPU instead of GPU. For another example, it is
accessible to Strawberry Fields [26] via the PennyLane-SF plugin to simulate photonic
quantum circuits. Both Strawberry Fields and PennyLane are developed by Xanadu which
is a quantum technology company in Canada.

5.3 Training variational quantum circuit

Variational quantum circuits are the core components of quantum-classical hybrid algo-
rithms for NISQ devices. They are parameterized quantum circuits and can be optimized
by classical optimization algorithms [37, 40]. A standard variational quantum circuit has
three components: initial state, a quantum circuit parameterized by variational parame-
ters, and measurement of output. Those circuits can be decomposed into Gaussian and
non-Gaussian gates to ensure the universality and nonlinear character of CV models. To
entirely operate a variational circuit, firstly, we prepare an initial state, often the vacuum
state |0⟩. The next step is applying a unitary gate sequence whose parameters are a func-
tion of some inputs x and free variable θ. The outputs of a variational circuit are the
measurements of some fixed observables in the final state. The parameters of unitary gates
are classical quantities.

5.3.1 Optimization of variational quantum circuits based on Gra-
dient descent

The goal of optimization of variational quantum circuits is similar to classical optimization,
both to estimate some unknown functions that can optimize the model’s performance. The
parameters of approximate target function are usually optimized based on some machine
learning algorithms such as the classical BP algorithm, which minimizes mean square
error and then updates gradient terms. The ability to compute gradients of variational
quantum circuits is analogous to the BP algorithm, which two are both iterative methods
for updating parameters [40]. Gradient terms can be obtained via automatic differentiation
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on PennyLane. Therefore, this could be used to compute the cost function’s gradient terms
with respect to all variables by applying gradient descent algorithms to minimize the cost
function. As a result, the variational quantum circuits would exhibit optimal performance
with optimal parameters.

The training process is a hybrid scheme that integrates a classical loop to update the
parameters and quantum processing to extract the gradients. Assume the target function
is f(x; Θ), the cost function can be defined as

C(Θ) =
1

m

m∑
i=1

(yi − f(xi; Θ))2 (5.1)

where m is the total number of samples in the data set, and xi is the ith sample with label
yi. Each step t is a gradient descent process, and each variable θi ∈ Θ is updated as

θt+1
i = θti − ηt∂θiC(Θ) (5.2)

where ηt are the learning rate that may depend on gradient terms, and the gradient term
is partial derivative with respect to individual variable θi.

In place of the standard BP algorithm in the classical machine learning, since it cannot
handle quantum information inside the quantum node, computing the gradient of quantum
nodes with respect to inputs or all variables is necessary by using a quantum device that not
only executes the quantum node but also computes its gradient. There are two approaches
for calculating derivatives of a quantum node: analytical and numerical derivatives sup-
ported by all classical simulators and quantum hardware. The analytical derivative for the
target function f(x; θ) = f(µ) with respect to µ (µ can be the input x or the variable θ)
of a quantum node is

∂µf(µ) = c(f(µ+ s)− f(µ− s)) (5.3)

where c, s are fixed and finite parameters. The analytical derivative would return the
exact derivatives, compared with the numerical derivatives which approximately calculate
derivatives, giving

∂µf(µ) ≈ f(µ+△µ)− f(µ−△µ)

2△µ
(5.4)

where △µ is a small change.

The parameters of the variational quantum circuit would be optimized by a given
optimizer such as momentum optimizer and Nesterov momentum optimizer, both of which
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are based on gradient descent [59, 42]. The momentum optimizer accumulates a velocity
vector along the direction of ongoing decrease cost as

θ(t+1) = θ(t) + v(t+1)

v(t+1) = mv(t) − ηt∇f(θ(t))
(5.5)

where m is the momentum coefficient. The Nesterov momentum optimizer is an extension
to the momentum optimizer with the present position shifted by the momentum when
calculating the gradient of the target function

v(t+1) = mv(t) − ηt∇f(θ(t) +mv(t)). (5.6)

5.3.2 Pre-processing

Fig.5.1 shows the scheme of pre-processing the Gaussian states data set before directly
feed inputs into models.

Indeed, the task that classifies two classes of quantum Gaussian discord is a supervised
hybrid optimization task executed on a variational quantum classifier. Before directly
feeding the Gaussian data set into optimizer, it is essential to separate the Gaussian states
into two classes: if the corresponding Gaussian discord is bigger than one so that label
with 1 indicated that those Gaussian states are entangled; otherwise, the Gaussian discord
is less than one so that the label would be -1 shown that such Gaussian states are either
separable or entangled.

The classification problem shares the basic assumption that the number of training
samples for different categories is equal so that make sure we are not over-fitting the sample
data set. If the number of training samples differs slightly from category to category, it
usually has little effect. However, if the difference is significant, it can cause disturbance
to the optimization process. In the initial Gaussian data set, the number of -1 classes is
much larger than the number of 1 classes; then the optimizer will only return a learner
that will always predict new samples as negative classes; however, such a learning result is
worthless.

This situation in which the number of training samples varies greatly across categories
in a classification problem is called a class imbalance. There are two main methods to
deal with class imbalance: over-sampling and under-sampling. For the initial construed
Gaussian data set, over-sampling the positive class samples in the data set, i.e., adding
some positive cases to close the number of positive and negative samples. Otherwise,
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Original Gaussian states data set

Binary Gaussian states data set

Balanced binary Gaussian states data set D

Training data set S

Testing data set T

Model’s parameters

Accuracy

If discord > 1, label ”1”; if discord < 1, label ”-1”

Over-sampling/Under-sampling

Hold-on method

Training model

Evaluate classifier performance

Figure 5.1: Pre-processing scheme

under-sampling is to remove some negative class samples before feeding them into the
optimizer. The time overhead of the under-sampling method is much smaller than that
of the over-sampling method because the former discards many negative samples, making
the training set smaller than the initial training set.

It is important to note that the over-sampling method cannot simply repeat the ini-
tial positive samples; otherwise, it will lead to severe over-fitting. The representative
algorithm SMOTE adds additional positive samples by interpolating the positive sam-
ples in the training set [7]. Meanwhile, to avoid information loss due to under-sampling
randomly abandoning negative samples, we can apply EasyEnsemble, which uses the in-
tegrated learning mechanism [31]. The negative samples are divided into several sets for
different optimizers. There is no important information that seems to be lost globally.

To evaluate the present classification algorithm’s performance, it is essential to divide
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the original data set D into two sub-datasets: training data set S and testing data set
T . The hold-out method is the simplest method for splitting data set into two mutually
exclusive sets, as D = S∪T ,S∩T = Ø. After training the model on S and then obtaining
optimal model parameters, the performance of the model is evaluated by T , in other words,
the unseen data. It is commonly choosing 65% to 80% of D as training data set S, while
the remaining samples would be used for testing.

5.3.3 Optimization of variational quantum circuit for recognizing
Gaussian discord

The original Gaussian data set for optimizing the variational quantum circuit consists of
vacuum and thermal TMS states, symmetric BS states and asymmetric BS states. For
the vacuum case, each class of states are built by choosing 100 evenly spaced NS over the
interval [0.1, 10.01] and NI = 1000×NS; for the thermal case, we additional set Nth = 0.1.
The number of samples of the Gaussian data set is 800. The corresponding Gaussian
quantum discord can be calculated by 3.20, 3.21 and 3.23. As the first step shown in
Fig.5.1 that separates the 800 Gaussian states of the original Gaussian data set into two
classes, we obtain a binary Gaussian states data set that 188 samples with label 1 and
612 samples with label -1. Based on the hold-out method, we chose 75% of the binary
Gaussian states data set as the training data set, which contains a total of 600 samples
with 140 Gaussian states in class 1 and 460 Gaussian states in class -1.

The Fig.5.2 shows the structure of a variational quantum circuit used for optimization,
inspired by [25]. Every input data, which is the covariance matrix of a two-mode Gaussian
state |ψ⟩, is prepared as the initial state. The Gaussian gates, including beamsplitter and
displacement gates, perform the linear transformation, and cross-Kerr and cubic phase
rotation gates provide nonlinear transformation of data and thus construct a nonlinear
quantum model. For the binary classification task, we choose that this variational quantum
circuit would return the expectation value

〈
x̂π

4

〉
of the first qumode as the output value,

which is obtained by the homodyne measurement on the generalized quadrature x̂ϕ with
ϕ = π

4
. If the output value is positive, we set it as class 1; otherwise, the output value is

negative so that we set it as class -1.

The Fig.5.3 shows the optimization result and the cost result using Nesterov momentum
optimizer after pre-processing the data set. The cost is decreased as expected, but the
classification accuracy trends stable around 76.67%. Note that the proportion of class -1
in the Gaussian states training data set is 460/600 ≈ 0.7667 that coincides with the above
accuracy. In case this result is just a coincidence, different variational quantum circuit
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BS(θ, ϕ)

D(r1, ϕ1)

CK(κ)

V (γ1)
〈
x̂π

4

〉

D(r2, ϕ2) V (γ2)


|ψ⟩

Figure 5.2: Variational quantum circuit for optimization contains beamsplitter and dis-
placement gates to introduce linear transformation, and uses cross-Kerr and cubic phase
gates to perform nonlinear transformation.

structures or the same circuit with different outputs were tried but still returned similar
results. Those results indicate a failing training example for binary classification since the
model could only present negative output to only recognize one class in the data set.

Figure 5.3: Cost and accuracy of optimization variational circuit

5.4 QKS

The QKS algorithm is inspired by a classical machine learning algorithm called Random
Kitchen Sinks (RKS), which replaces the optimization process over the kernel by linearly
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summing many randomized nonlinear functions to estimate the kernel [51, 49, 50]. The
QKS is a hybrid algorithm designed for NISQ devices and combines the classical machine
learning approaches with quantum nodes used to achieve nonlinear transformation from
inputs to higher-dimensional feature vectors [65].

5.4.1 Kernel methods and QKS

For a given data set D = {(x1, y1), (x2, y2), ..., (xm, ym)}, yi ∈ {−1, 1}, the most basic idea
of classification problem in machine learning is to find a divisible decision boundary in the
original input space to separate different classes of samples. However, in some practical and
complex classification tasks, the original sample space may not find a decision boundary
that correctly separates the two samples classes. For such a problem, the samples could be
mapped from the input space to a higher dimensional feature space such that the samples
are linearly separable within this feature space. Kernel methods, including many classical
machine learning algorithms used for pattern recognition tasks, including classification
tasks, would perform computations over a kernel function defined in the original input
space instead of workin in the transformed feature space. Let the ϕ(x) denote the feature
vector after mapping input data point x into feature space, the kernel function between
samples xi and xj is defined as

k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩. (5.7)

The inner product of two data points in the feature space is equal to the result of their
computation in the original input space using the kernel function k(xi, xj). Using the
kernel function enables working in the higher-dimensional feature space without explicitly
transforming all of the data. More generally, the kernel matrix K for a data set D =
{x1, x2, , ..., xm} belong to input space X is semi-positive defined

K =


k(x1, x1) k(x1, x2) . . . k(x1, xm)
k(x2, x1) k(x2, x2) . . . k(x2, xm)

...
...

. . .
...

k(xm, x1) k(xm, x2) . . . k(xm, xm)

 . (5.8)

For each kernel matrix, there exists a corresponding feature mapping ϕ.

The performance of the feature space determines the accuracy of the kernel methods in
classification tasks. Indeed, we do not know what kernel function is appropriate without
knowing the feature mapping, and the kernel function only implicitly defines this feature
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space. The choice of the kernel function is significant and decides whether the input data
can be mapped to a suitable feature space to demonstrate excellent performance. One of
the popular classical kernel methods is the support vector machine (SVM), which executes
a kernel with intensive computations and effective training.

In contrast to kernel methods, the RKS algorithm works directly in a transformed
feature space, but where some of the parameters of the transformation are random. RKS
inspires the QKS algorithm, with the transformation now being generated by a random
quantum circuit. The implementations of the QKS do not need to calculate the kernel.

Linear Random Encoding Inputs as Parameters: θi = Ωxi + β

Nonlinear Transformation by Quantum Variational Circuits

Linear ML Algorithms for Classification: FLD

Figure 5.4: Quantum Kitchen Sinks algorithm. The classical nodes are marked with orange,
and the quantum node is marked with green.

The QKS is shown in the Fig.5.4 where the input data is classical linear randomly en-
coded into the quantum variational circuit gate parameters. The quantum variational cir-
cuit performs nonlinear transformations of data. We expect to obtain a higher-dimensional
feature vector by running the fixed quantum circuit many episodes and stacking those clas-
sical outputs of the variational circuit whose parameters are randomly encoded with the
same input data. This process matches the fundamental idea of kernel methods, which map
the input data into a large Hilbert space of quantum system to perform practical compu-
tations on such quantum feature space. Those feature vectors are post-processing by some
linear classical machine learning algorithms used for classification. For the quantum Gaus-
sian discord classification task, the bipartite Gaussian states in the data set are described
by the covariance matrix. For each Gaussian state, we randomly encode the correlations
into circuit parameters and set them as the initial state of the quantum variational circuit.
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5.4.2 Classical processes in QKS

To avoid the classical parts in the hybrid algorithm being too powerful, we could require
that the classical components of QKS are linear. As a result, we can assume that the power
of the algorithm is only added by the nonlinear transformation of the quantum node.
The first linear process encodes each input data into the desired number of parameters
in quantum variational circuits and repeats for finite episodes. Then, the Fisher linear
discriminate (FLD) would use the output of measurements in quantum variational circuits
to classify two classes of quantum Gaussian discord.

Classical linear encoding

The first step in QKS is to randomly encode input data as the gate parameters of the
quantum variational circuit. Here, we deal with the four entries a, b, c, d of the covariance
matrix in standard form in each Gaussian state as classical input data. In other words,
each input data is described by a vector in a four dimensional space. To explain the linear
encoding process, we could assume that a data set D = {x1, x2, ..., xm} contains m samples
and each sample has form xi = (ai, bi, ci, di). Then, a (p× 4)-dimensional weight matrix Ω
and a p-dimensional bias vector β could be used to encode input data into desired p gate
parameters, giving as

θi = Ωxi + β

⇒


θi1
θi2
...
θip

 =


w11 w12 w13 w14

w21 w22 w23 w24
...

...
...

...
wp1 wp2 wp3 wp4



ai
bi
ci
di

+


β1
β2
...
βp

 . (5.9)

To ensure all information of the input data encoding into gate parameters, all elements
in the weight matrix are designed to be non-zero. The weight matrix Ω is randomly
generated following the normal distribution with zero mean and standard deviation σ, and
the randomly generated bias vector β has uniform distribution

Ω ∼ N (0, σ2)

β ∼ U(0, 2π).
(5.10)

FLD

Fisher linear discriminant (FLD), also named Linear discriminant analysis (LDA), is a
classic linear supervised machine learning algorithm for binary classification, which learns
and classifies data using the measurements of quantum variational circuits [29]. Strictly
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speaking, LDA and FLA are slightly different in that the former assumes the same full-
rank covariance matrix for both classes. The primary goal of FLD is to identify the
best projection line for separating data from two classes. In the other word, the work is
projecting the samples X onto a line with undermined direction v in order to produce a
scalar y

y = vTX. (5.11)

To best separate two classes, the optimized projection line determined by direction vector
v could be obtained by making the scatter in the same class as smaller as possible and
making the projected means of different classes as far away from each other as possible, see
Fig.5.5. A more mathematical expression maximizes the ratio of the measure of separation
between classes to total within-class variance.

Figure 5.5: 2D scheme of FLD applied on binary classes data. The green ”+” and red ”-”
respectively represent +1 class and -1 class. The blue solid line is the target projection
line. The green solid circle and red solid circle are the projected means for +1 class and
-1 class, respectively.

Assume a m-sample data set X = {(xi)|xi ∈ Rd} (i = 1, 2, ...,m), each sample is a
d-dimensional vector, and n1 samples come from −1 class and n2 samples belong to +1
class. The projection of xi onto a projection line with direction v is given by yi = vTxi.
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The means of two classes in the original feature space are

µ1 =
1

n1

∑
i∈class−1

xi,

µ2 =
1

n2

∑
i∈class+1

xi.
(5.12)

The means of two classes after projection are

µ̃1 =
1

n1

∑
i∈class−1

yi =
1

n1

∑
i∈class−1

vTxi = vTµ1,

µ̃2 =
1

n2

∑
i∈class+1

yi =
1

n2

∑
i∈class+1

vTxi = vTµ2.
(5.13)

The |µ̃1 − µ̃2| is the distance between the projected means as well as a measure of separation
between two classes. The scatters for projected samples of two classes have expressions

s̃21 =
∑

i∈class−1

(yi − µ̃1)
2,

s̃22 =
∑

i∈class+1

(yi − µ̃2)
2.

(5.14)

Obviously, the scatter is similar as variance with additional multiplied by total number of
samples.

For well separating two classes, the FLD is to find the optimized direction v of projection
line, which can maximize an objective function

J =
|µ̃1 − µ̃2|2

s̃21 + s̃22
. (5.15)

Firstly, we need to transform the expression of objective function as a function of v so that
J = J(v) with the help of scatter matrix. The ”within-class” scatter matrix is:

SW = S1 + S2

=
∑

i∈class−1

(xi − µ1)(xi − µ1)
T +

∑
i∈class+1

(xi − µ2)(xi − µ2)
T (5.16)
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where S1, S2 are the scatter matrices for two classes before projection. Meanwhile, we can
re-write the scatter of −1 class s̃21 by substituting yi = vTxi and µ̃1 = vTµ1, giving

s̃21 =
∑

i∈class−1

(vTxi − vTµ1)
2

=
∑

i∈class−1

vT (xi − µ1)(xi − µ1)
Tv

= vTS1v.

(5.17)

Similarly, we can obtain s̃22 = vTS2v so that the denominator of objective function, which
is the ”within-class” scatter matrix after projection, could re-write as

s̃21 + s̃22 = vTS1v + vTS2v

= vTSWv.
(5.18)

The original ”between-class” scatter matrix is defined as

SB = (µ1 − µ2)(µ1 − µ2)
T . (5.19)

Furthermore, the separation of two projected means would be expressed as

(µ̃1 − µ̃2)
2 = (vTµ1 − vTµ2)

2

= vT (µ1 − µ2)(µ1 − µ2)
Tv

= vTSBv.

(5.20)

As a result, the objective function is expressed in terms of v, SB and SW as

J(v) =
vTSBv

vTSWv
. (5.21)

To maximize the objective function J(v), the straight-forward approach is to derive it
with respect to v, and find which v making derivation equals to zero.

∂J(v)

∂v
=

2SBv(vTSWv)− 2SWv(vTSBv)

(vTSWv)2
= 0 (5.22)

Now, we could solve SBv(vTSWv) − SWv(vTSBv) = 0 by firstly dividing by vTSWv and
then the equation rises to an eigenvector problem as

S−1
W SBv = λv (5.23)

46



if SW is not singular matrix so that S−1
W exists. Finally, the optimized direction v of the

projection line is found in a closed formula

v ∝ S−1
W (µ1 − µ2). (5.24)

The FLD would project the anonymous data to the optimal projection line determined
by training, and the projected data would return into one dimension. More generally,
FLD projects samples into a lower-dimensional space, usually smaller than the original
dimension of samples’ feature space. The FLD could be referred to as a classical and
supervised dimension reduction algorithm.

5.4.3 Variational quantum circuit in QKS

The quantum variational circuit, which performs various nonlinear data transformations
employing a quantum system, is a key element of the QKS. We implemented different
quantum variational circuits to find out which one performs better, see Fig.5.6. Each
input data as bipartite Gaussian state |ψ⟩ is prepared as the initial state of the first two
modes, and the third mode is in a vacuum state |0⟩. Those quantum variational circuits
should contain non-Gaussian gates to ensure nonlinear transformations. Each output of
this quantum variational circuit stacks the expectation value ⟨x̂⟩ of three modes to get
a 3-dimensional feature vector, which is obtained by homodyne measurement on position
quadrature observable x̂.

5.4.4 QKS Simulation

The parameters of the variational quantum circuit, which is also the model parameters,
are obtained by randomly encoding each input data. The number of parameters generated
by the encoding should be the same as the number of parameters needed in the circuit.

We evaluate the QKS algorithm’s performance based on the system’s two key hyper-
parameters: standard deviation σ and the number of episodes E. The standard deviation
σ is used to generate random weight matrices following normal distribution in the classical
linear encoding process. We repeat E times for each data point that encodes input data
into circuit parameters and measures the quantum variational circuit’s classical outputs;
thus, we obtain a (3×E)-dimensional feature vector. The number of episodes E would de-
termine the feature space dimension after feeding data into quantum nodes. The encoding
parameter {Ωe, βe} of each episode should be constant for the training and testing process.
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CK(κ)
x̂0, p̂0

BS(θ, ϕ)
x̂1, p̂1

|0⟩ x̂2, p̂2

|ψ⟩

(a) Cross-Kerr gate mixes the first two modes, and then beamsplitter gate mixes the second and
third modes with three circuit parameters κ, θ, ϕ.

CK(κ1)
x̂0, p̂0

TMS(ϕ)
x̂1, p̂1

|0⟩ K(κ2) x̂2, p̂2

|ψ⟩

(b) Cross-Kerr gate mixes the first two modes, and Kerr gate simultaneously acts on the vacuum
mode followed by TMS gate to mix the second and third modes with three circuit parameters
κ1, κ2, ϕ. (Set the TMS gate’s squeezing parameter r = 1)

CK(κ1) BS(θ1, ϕ1)
x̂0, p̂0

CK(κ2) BS(θ2, ϕ2)
x̂1, p̂1

|0⟩ x̂2, p̂2

|ψ⟩

(c) The first cross-Kerr gate mixes the first two modes, followed by the second cross-Kerr gate
mixing the second and third modes. Then, the first beamsplitter gate mixes the first two modes,
followed by the second beamsplitter gate mixing the second and third modes. There are six circuit
parameters κ1, κ2, θ1, ϕ1, θ2, ϕ2.

CP (γ1)
TMS(ϕ1)

x̂0, p̂0

CP (γ2)
TMS(ϕ2)

x̂1, p̂1

|0⟩ CP (γ3) x̂2, p̂2

|ψ⟩

(d) Three cubic phase gates act on three modes. Then, the first TMS gate mixes the first two
modes, followed by the second TMS gate mixing the second and third modes with five gate
parameters γ1, γ2, γ3 and ϕ1, ϕ2. (Set the both two TMS gates’ squeezing parameters r = 1)

Figure 5.6: Various variational quantum circuits as the kitchen sinks. The initial state of
the first two modes is prepared as bipartite Gaussian state |ψ⟩, and the third mode is in a
vacuum state |0⟩
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The initial Gaussian states data set for recognizing Gaussian discord was similar to the
data set used to optimize variational quantum circuit, which evenly chose NS, but with
additional over-sampling step to get a balanced binary Gaussian states data set. After
applying SMOTE algorithm, the initial Gaussian states data set contains a total of 1224
Gaussian states in which there is an equal number of samples in class -1 and class 1. 70%
of the initial Gaussian states data set is holding as the training data set, which consists of
420 Gaussian states in class -1 and 436 Gaussian states in class 1. The size of test data
set is 368 with 192 Gaussian states in class -1 and 176 Gaussian states in class 1.

Applying the FLD to classify the initial Gaussian states dataset, the classification
accuracy was approximately 98%. However, when E = 5 and choosing 10 evenly spaced σ
over the interval [0.1, 10.0], the best classification accuracy obtained by implementing first
three variational quantum circuits shown in Fig.5.6a, 5.6b and 5.6c were all below 80%,
but the fourth circuit (see Fig.5.6d) returned the best accuracy around 95%. Those results
indicate two facts: this present Gaussian state data set is too simple to demonstrate QKS’s
capability in the classification task, and the fourth variational quantum circuit is a strong
candidate to implement QKS for recognizing Gaussian discord.

To show the power of QKS in the Gaussian discord classification tasks, we re-constructed
the Gaussian states data set, which contains both vacuum and thermal TMS, symmetric
BS and asymmetric BS states and ”scramble” those states’ one mode by an angle ϕ using
phase rotation transformation

V
′

= (SR(ϕ)⊕ I)V(SR(ϕ)⊕ I)† (5.25)

where V is the standard form of covariance matrix shown in 2.16, and SR(ϕ) is the sym-
plectic transformation of phase rotation, see 2.38. We set that the rotational angle is
ϕ = π

4
, and randomly choose NS, NI , Nth from the uniform distribution. Based on the

pre-processing scheme Fig.5.1, we implement the SMOTE algorithm and hold-out method
to get a balanced Gaussian state data set, and 70% of the balanced data set are used as
training data set. The size of the training data set is 989 with 493 Gaussian states in class
1 and 496 Gaussian states in class -1; the test data set contains 425 Gaussian states with
214 Gaussian states in class 1 and 211 Gaussian states in class -1.

We chose the variational quantum circuit shown in Fig.5.6d as the kitchen sinks. The
three cubic phase gates with circuit parameters γ1, γ2, γ3 introduce nonlinear transforma-
tion for each mode. Two TMS gates mix the three modes which we set the squeezing
parameters r for both equal to one and the squeezing phase angles ϕ1, ϕ2 ∈ [0, 2π) as cir-
cuit parameters. As shown in 5.9, we randomly initialized the weight matrix following the
normal distribution and the bias vector following the uniform distribution to encode the
input data points into those five circuit parameters.
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The classification accuracy as the function of standard deviation σ and the number of
episodes E are shown in Fig.5.7. We narrow the range of σ to determine the best-performing
interval. When the σ were evenly spaced over the interval [0.1, 10.0], the best classification
was 97.33% when σ = 0.1 and E = 10, see Fig.5.7a, which is a significant improvement
over the baseline 70.12% when only use FLD. For a narrower interval [0.1, 5.0], the best
classification achieved was 98.64% when σ = 0.1 and E = 10, see Fig.5.7b. When the σ
were not evenly spaced over the interval [0.001, 1.5], the QKS algorithm can achieve the
best accuracy up to 98.59% when σ = 0.01 and E = 10, see Fig.5.7c. We can observe that
for the Gaussian discord classification task using QKS, the optimal σ is small somewhere
around the interval [0.01, 0.1] and the optimal E = 10. The resolution of the resulting
figure is low since the simulation process is constrained by classical computers, so the
simulation process for different hyper-parameters usually takes a long time.

Based on the simulation results, we proved the QKS algorithm’s power by successfully
solving the Gaussian discord binary classification task. Even though we implemented
the variational quantum circuit with only 3-qumode, we showed that the classification
accuracy is significantly improved compared with the case that only uses the classical
linear classification algorithm.
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(a) σ are evenly spaced over the interval [0.1, 10.0].

(b) σ are evenly spaced over the interval [0.1, 5.0].

(c) σ are not evenly spaced over the interval [0.001, 1.5].

Figure 5.7: QKS simulation results: the classification accuracy as the function of standard
deviation σ and the number of episodes E. (a) The σ are evenly spaced over the interval
[0.1, 10.0]. (b) The σ are evenly spaced over the interval [0.1, 5.0]. (c) The σ are not evenly
spaced over the interval [0.001, 1.5].
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Chapter 6

Conclusion

In chapter 2, we reviewed relevant concepts of the CV quantum computing systems, includ-
ing the standard Gaussian states, a family of universal CV gates and different measurement
types for CV systems.

Chapter 3 focused on the derivation process of quantum discord, which is the dis-
crepancy between two quantum analogues of classical equivalent expressions of mutual
information. We then explored the quantum discord in the CV systems and presented two
approaches to obtain the analytical solutions of Gaussian quantum discord.

In chapter 4, we overviewed classical machine learning, the neural network in deep learn-
ing and how to update parameters of neural networks by back-propagating algorithm. We
presented the results that recognized the Gaussian quantum discord by back-propagating
with the double hidden layers neural network.

Chapter 5 began with expanding classical machine learning to quantum machine learn-
ing. PennyLane, a machine learning library on Python, is used to simulate variational
quantum circuits. We then presented how to implement the supervised hybrid optimiza-
tion of a variational quantum circuit for recognizing Gaussian discord. We also introduced
the typical pre-processing that balances the original data set and then separates the data
set into training and testing data set before directly feeding inputs in the models. We
showed the capability of a hybrid quantum-classical machine learning algorithm called
QKS, which is belonged to quantum kernel methods. The variational quantum circuits,
the core of QKS, significantly improve the classification accuracy over the classical linear
classifier so that work out the Gaussian discord classification task.
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6.1 Future Directions

We just have contributed the theoretical work to simulate the QKS algorithm in classical
computers for recognizing the Gaussian discord. To evaluate the QKS performance on the
Gaussian discord classification task, the Gaussian state data set, containing the covariance
matrices of a family of Gaussian states as inputs and corresponding Gaussian discord as
labels, are artificially set based on experience and calculations. However, such Gaussian
states data set does not provide a comprehensive picture of the quantum nature of the
Gaussian states.

We can further test the capability of QKS for realizing Gaussian discord by experiment.
The superconducting parametric cavity has showed its power to develop CV quantum
computing by experimentally implementing the QKS algorithms to classify a synthetic
data set [24]. One direction is to experimentally generate the Gaussian state to obtain
a more practical Gaussian state data set, and also implement the variational quantum
circuits following the experiment setup in [24].
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