
Effect of Nanoscopic Particles on the
Mesophase Structure of Diblock Copolymers

Jae Youn Lee,† Russell B. Thompson,†
David Jasnow,‡ and Anna C. Balazs*,†

Chemical Engineering Department, University of Pittsburgh,
Pittsburgh, Pennsylvania 15261; and Department of Physics
and Astronomy, University of Pittsburgh,
Pittsburgh, Pennsylvania 15260

Received January 8, 2002

Introduction. The fabrication of novel biomimetic1

photonic2 and electronic3 materials requires the ma-
nipulation of both organic and inorganic materials at
the nanometer length scale. One possible means of
achieving this level of control is to add inorganic
nanoparticles to a melt of diblock copolymers.4 The
microphase separation of the copolymers into nano-
scopic, ordered domains could be harnessed to “tem-
plate” the organization of the particles into nanoplanes,
-wires, or -spheres within the polymer matrix.5 How-
ever, as we show below, the particles are not passive
and can affect the overall morphology of the mixture.
We also show that this effect is sufficiently robust that
it can be found in both the strong and intermediate
segregation limits of the diblock melts (i.e., both low and
intermediate temperatures).

To probe the low-temperature behavior of the system,
we adapt our recent strong segregation scaling theory
(SST) for mixtures of AB diblocks and spherical par-
ticles.6 We previously investigated the case in which the
particles have a strong affinity for the A blocks and thus
are preferentially localized in the A domains.6 We now
generalize the theory to allow the particles to interact
with both the A and B blocks and subsequently find that
variations in the particle-block interaction energies can
induce phase transitions in the morphology of the
mixture. At fixed interactions, variations in particle size
can also induce similar transitions.

To investigate the behavior of the system at inter-
mediate temperature ranges and demonstrate the gen-
erality of our findings, we turn to our recently developed
theory5 that combines a self-consistent field theory
(SCFT) for the polymers with a density functional theory
(DFT) for the particles. The SCFT used in our approach
can accurately capture the behavior of block copolymers
in both the weak and intermediate segregation limits7-9

and remains the method of choice for a numerical
analysis of the potential equilibrium phases. In the
previous SCFT/DFT studies,5 we focused on cases where
the particles are preferentially localized in the A phase
of an AB diblock. In this paper, we vary the particles’
solubility within the blocks and find, in accordance with
our new scaling results, that variations in the particle
interaction energies or size can induce transitions
between the different periodic mesophases formed by
the system. Using both methods, we generate phase
diagrams to pinpoint the conditions that give rise to
such structural transitions. The findings provide new
guidelines for controlling the spatial organization of
organic/inorganic hybrid materials.

The Models. The polymer/particle mixture consists
of a volume fraction φp of solid spherical particles of
radius Rp and a volume fraction (1 - φp) of molten AB
diblocks. Each diblock consists of N segments, each of
volume F0

-1. The fraction of A segments per chain is
denoted by f. The enthalpic interaction between an A
segment and a B segment is described by the dimen-
sionless Flory-Huggins parameter, øAB. The parameters
øAP and øBP describe the enthalpic interactions between
the particles and the respective blocks. As a function of
(øABN) and f, the pure diblock melt can form a variety
of spatially periodic microstructures. Here, we restrict
our attention to the three “classical” morphologies,
lamellar, cylindrical, and spherical, and neglect the
bicontinuous phases 10-13 that exist only in narrow
ranges of composition.

Within our scaling theory (SST), we assume that the
system is in the low-temperature limit where øABN .
10. Here, the A blocks and B blocks are highly stretched
and interfacial regions separating the A and B domains
are very narrow.14 In our previous SST model,6 we
assumed that øAP ) 0 and øAB ) øBP; thus, the particles
were chemically identical to, or effectively coated by, the
A species. In the present model, we allow both øAP and
øBP to vary and, hence, can model particles that are
chemically distinct from A. Furthermore, the particles
are now distributed in both the A and B regions, not
just in the A region, as in the previous study.6 For
simplicity, we assume the particles to be uniformly
distributed within the respective domains. We let the
variable X represent the fraction of particles in the A
phase and (1 - X) equal the fraction in the B phase.
The assumption that the particles are uniformly dis-
tributed is reasonable for relatively low volume fractions
of particles. At higher volume fractions, we observed5,6

that, even if the spheres are compatible with the blocks,
large particles will segregate within the domains and
thus reduce the entropic penalty associated with the
chains stretching to get around the solids.

To describe the ordered phases, we must specify the
local volume fraction of particles in the A domains, ψA
) (φpX/(φpX + f(1 - φp))), and the local volume fraction
of particles in the B domains, ψB ) (φp(1 - X)/(φp(1 -
X) + (1 - f)(1 - φp))). Within strong segregation theory
for the ordered phases, the free energy density contribu-
tion due to the particles can be written as6

where R0 ≡ aN1/2 is the characteristic size of the polymer
and a is the statistical segment length, which is as-
sumed to be the same for both the A and B segments.
The volume of the particle is Vp ) (4π/3)Rp

3 and a0 )
1/x6. The first two terms on the right-hand side (rhs)
of eq 1 represent the ideal part of the translational
entropy of the particles in the A and B domains,
respectively. The nonideal part of the translational
entropy of the hard spheres is approximated by the
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gpart ) (φpR0
3/(VpN

3/2)) [X ln(ψA) + (1 - X) ×
ln(ψB) + XΨCS(ψA) + (1 - X)ΨCS(ψB) +

XRp
2/4R0

2fa0
2 + (1 - X)Rp

2/4R0
2(1 - f)a0

2] +

øAPN-3/2(1 - ψA)ψA(R0/(2N1/2Rp)) +

øBPN-3/2(1 - ψB)ψB(R0/(2N1/2Rp)) (1)
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Carnahan-Starling equation,15 ΨCS(ψi) ) (4ψi - 3ψi
2)/

(1 - ψi)2, where i is A or B and ψi is defined above. The
next two terms on the rhs of eq 1 describe the additional
free energy loss incurred by each block due to the
stretching in the “transverse” direction that is required
to get around the particles.6 Finally, the last two terms
are the enthaplic terms that describe the particle-
polymer interactions; the expression is normalized so
that for Rp ) R0/(2N1/2) the system describes diblocks
in a solvent.

The polymer contribution to the free energy of the
ordered phases is given by6

The first term on the rhs describes the translational
entropy of the polymers and the second term arises from
the elastic energy of the chains and the interfacial
tension between the different domains.16 The prefactors
κ and λ depend on the specific morphology (lamellar,
cylindrical, or spherical), the nature of the majority
phase (A or B), the particle density φp, the diblock
composition f,6,14 and ψA and ψB.

To calculate the phase diagram, we sum eqs 1 and 2
and minimize with respect to X for each φp and f and
for each possible structure. The result of such minimi-
zation gives us the map of the lowest-energy ordered
phases. To complete the phase diagram, we must
compare these free energies with that of the disordered
phase.

In the disordered phase, both particles and diblocks
are dispersed uniformly in space. Thus, the free energy
is modified to yield:

Within this strong segregation approximation, we can
calculate phase diagrams as a function of particle size
and the various ø’s.

In this study, we also employ our hybrid SCFT/DFT
model5 for polymer/particle mixtures. The SCFT/DFT
constitutes a powerful method for determining the
phase behavior of the system since we are not con-
strained to make a priori assumptions about the struc-
ture of the phase or the distribution of particles. In SCF
theory, pairwise interactions between differing seg-
ments are replaced by the interaction of each segment
with the average field created by the other segments.
Here, we let wA(r) denote the value at a point r of the
mean field felt by the A segments, wB(r) denote the field
for B segments, and wp(r) represent the field for
particles. Using this approach, the free energy for our
system is given by FT ) Fe + Fd + Fp. The first term,
Fe, details the enthalpic interactions:

where V is the volume of the system and æA(r), æB(r),
and æP(r) are the local concentrations of A segments, B
segments, and particles, respectively. The diblock en-
tropic free energy Fd is17

where Qd is the partition function of a single diblock
subject to the fields wA(r) and wB(r). Finally, the particle
entropic contributions to the free energy is given by

where Qp is the partition function of a single particle
subject to the field wp(r). The local particle volume
fraction, æp(r), is related to the dimensionless center of
mass distribution, Fp(r), by

The parameter R ) (4π Rp
3F0/(3 N)) denotes the particle-

to-diblock volume ratio. The last term of Fp describes
the excess (nonideal) steric free energy of the particles
through the DFT derived by Tarazona.18,19 In particular,
the Carnahan-Starling function for the excess free
energy of a hard-sphere fluid, ΨCS, is now evaluated
with the “weighted” (locally averaged) particle density,
æj p(r).18

In the SCFT, wA(r), wB(r), and wp(r) are determined
by locating saddle points in the free energy functional
F subject to the incompressibility constraint: æA(r) +
æB(r) + æP(r) ) 1. This yields a system of equations that
is solved numerically and self-consistently to give pos-
sible equilibrium solutions. To obtain these solutions,
we implement the combinatorial screening technique of
Drolet and Fredrickson.20 We make an initial random
guess for the fields and calculate all the densities and
the free energy at each step; the fields are then
recalculated and the entire process is repeated until
changes in the diblock densities at each step become
sufficiently small. In addition, we also minimize our free
energy with respect to the size of the simulation box,
as proposed by Bohbot-Raviv and Wang.21

Results and Discussion. Our aim is to determine
how the preferential affinity of the particles for the A
or B blocks and the size of the particles affect the phase
behavior of various diblock/particle mixtures. To analyze
these effects, we first calculated phase diagrams using
the SST as a function of the particle interaction param-
eters for the entire range of the diblock compositions
(i.e., values of f ranging from 0 to 1) and repeated these
calculations for different particle sizes. In plots that
were constructed with this SST, we fix øAP ) 0 and vary
øBP to from -1 to +1, allowing us to investigate both
cases øAP < øBP and øAP > øBP. The values of the other
variables are fixed at N ) 300, φp ) 0.15, øAB ) 1. Figure
1 shows the plots calculated from the SST for the
following cases: in part a, Rp ) 0.18R0 and in part b,
Rp ) 0.06 R0.

Figure 1a illustrates the dramatic effects of varying
øBP for the larger particles. Consider the point f ) 0.3.
An increase in øBP from -1 to +1 drives a transition
from the cylindrical phase to the lamellar morphology.
By increasing øBP, the particles are driven from the

gpoly ) N-3/2 [((1 - φp)/N) ln(1 - φp) +

3(1 - φp)
2/3øAB

1/3(2N)-2/3λ2/3
κ

1/3 ] (2)

gdis ) (φpR0
3/(VpN

3/2)) [ln(φp) +

ΨCS(φp) + (1 - φp)Rp
2/4R0

2a0
2] +

øAPN-3/2f(1 - φp)φp(R0/(2N1/2Rp)) +

øBPN-3/2(1 - f)(1 - φp)φp(R0/(2N1/2Rp)) +

N-3/2((1 - φp)/N) ln(1 - φp) +

øABN-3/2f(1 - φp)
2(1 - f) (3)

Fe ) (1/V) ∫ dr [øABNæA(r)æB(r) + øBPNæB(r)æP(r) +

øAPNæA(r)æP(r)] (4)

Fd ) (1 - φP) ln[V(1 - φP)/Qd] -

(1/V) ∫ dr [wA(r)æA(r) + wB(r)æB(r)] (5)

Fp ) (φP/R) ln(VφP/QpR) - (1/V) ∫ dr [wp(r)F p(r)] +

(1/V) ∫ dr Fp(r)ΨCS[æj p(r)] (6)

æP(r) ) (4R/(3πRp
3)) ∫|r′|<R dr′ Fp(r + r′) (7)

4856 Communications to the Editor Macromolecules, Vol. 35, No. 13, 2002



unfavorable B domain, and enhance the effective A
composition of the chains (feff), promoting the formation
of the lamellar structure. Conversely, at f ) 0.75,
increasing øBP promotes a transition from the lamellar
phase to the cylindrical structure. Again, increasing the
effective repulsion between the B blocks and particles
drives the spheres into the more favorable A domains,
thereby increasing feff and promoting the formation of
the cylindrical mesophase.

In Figure 1a, the phase boundaries between the
lamellar and cylindrical regions display a pronounced
sigmoidal shape. This effect is also present in Figure
1b, but to a much smaller extent. Consequently, at fixed
f, øAP, and øBP, composites that exhibit one structure for
the small particles can exhibit a different morphology
for the larger particles. This can be seen, for example,
by comparing parts a and b of Figure 1 at f ) 0.25 and
øBP ) 0.75; for small particles, the system is in the
cylindrical phase, while the large particle system ex-
hibits a lamellar structure.

To further evaluate and visualize the effect of particle
size, we turn to the results of the SCFT/DFT calcula-
tions. We now fix Nh ) 1000, where Nh ) F0

2a0
6N is the

invariant polymerization index, (which corresponds to
N ≈ 300 using a and F0 for polystyrene 22) and set øABN
) 20, placing our system in the intermediate segrega-
tion regime. In addition, f ) 0.35 and φp ) 0.15. To
emphasize the effect of particle size, we set øAP ) øBP )
0.02 so the particles are nonselective. Figure 2 shows
the density profiles for the A blocks and particles for

two different particle sizes: Rp ) 0.1R0 and Rp ) 0.3R0.
We observe a phase transition from the cylindrical
morphology (Figure 2a) to the lamellar morphology
(Figure 2b) as the particle radius is increased. This
finding agrees qualitatively with our observations from
the scaling theory. Associated with the observed phase
transition is a significant shift in the particle distribu-
tion, as shown in Figure 3. Despite the nonselective
block-particle interaction, the particle concentration is
much higher in the A domain for the larger particles
than for the smaller particles. The small particles
distribute more or less uniformly over both the A and
B domains, with a slightly higher concentration at the
AB interface. This latter observation coincides with
theoretical predictions for the behavior of a neutral
solvent added to diblock copolymers.23,24 The small
excess of the Rp ) 0.1R0 particles at the interface is
presumably driven by the enthalpic gain in reducing the
interfacial tension, γ, between the A and B blocks. A
closer look at the particle distributions reveals that the
larger particles are mostly positioned at the AB inter-
face, indicating that the enthalpic gain obtained from
reducing γ wins over the loss of the particles’ transla-
tional entropy. Plots of the particle center distributions
(not shown here) reveal that large particles at the
interface bulge out equally into both domains yet
disproportionately expand each domain since the diblock
is not symmetric (i.e., f ) 0.35). As a result, the effective
asymmetry in block composition diminishes, and hence
promotes the phase transition from the cylindrical to
the lamellar morphology.

To summarize our analysis of the effect of particle size
and interaction energy on the phase boundaries, in
Figure 4 we plot results from the SCFT/DFT that reveal
the stable morphologies at fixed values of f, φp, øAB, and
øAP for different values of Rp and øBP. Circles represent
cylindrical morphologies and squares indicate lamellar
structures. Qualitatively similar results are obtained in

Figure 1. Phase diagrams obtained from the SST as a
function of øBP and the block composition f. The following
letters mark the different phases: spherical is denoted by (S),
cylindrical by (C), and lamellar by (L). Two-phase regions (2Φ)
are also shown. Here, øAB ) 1, øAP ) 0, N ) 300, and φp ) 0.15
and in part a, Rp ) 0.18R0, and in part b, Rp ) 0.06R0.

Figure 2. Two-dimensional density plots for the diblock/
particle systems obtained from the SCFT/DFT theory. Plots
are for øABN ) 20, øAP ) øBP ) 0.02, Nh ) 1000, f ) 0.35, and
φp ) 0.15. Plots on the left represent the distribution of the A
blocks and plots on the right represent the distribution of the
centers of mass of the particles. Light regions indicate a high
density, while dark regions indicate low densities. The image
in part a shows that the system displays a cylindrical phase
when Rp ) 0.1R0 and the image in part b shows that the
mixture forms a lamellar phase when the particle size is
increased to Rp ) 0.3R0.

Macromolecules, Vol. 35, No. 13, 2002 Communications to the Editor 4857



the low-temperature limit using the SST model. The plot
in Figure 4 shows Rp and øBP dependent phase transi-
tions that motivate the qualitative arguments presented
above.

These results indicate that the morphologies of organic/
inorganic hybrid materials can be tailored by adding

particles of specific sizes and chemistry. The results also
highlight the fact that in such complex mixtures, it is
not simply that the ordering of the copolymers templates
the spatial organization of the particles. The particle
concentration is not a “passive scalar” and can affect
the self-assembly of the chains. From knowledge of
interactions in copolymer/particle mixtures, we can
facilitate the fabrication of nanostructured composites
with the desired morphologies and properties.
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Figure 3. One-dimensional density profiles for diblock/
particle systems obtained from the SCFT/DFT theory. The
parameters are identical to those used in Figure 2. Solid lines
represent φA, the dot-dashed lines mark φB, and the dashed
lines represent φp. The circles placed at the interfaces indicate
the size of the particles relative to the block domains.

Figure 4. Equilibrium morphologies of diblock/particle sys-
tems are plotted as a function of the particle radius Rp and
øBP. Calculations were performed with the SCFT/DFT theory.
Filled circles represent cylindrical morphologies and squares
indicate lamellar morphologies. Here, øABN ) 20, øAP ) 0, Nh
) 1000, f ) 0.35, and φp ) 0.15.
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