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Abstract 

Fuel channels (FCs) are one of the most critical components in a CANDU reactor. A FC 

comprises a Pressure Tube (PT), a Calandria Tube (CT) and four garter springs and it acts as 

the pressure boundary between the “hot” heavy water reactor coolant and the “cold” moderator. 

The structural integrity of FCs is affected due to in-reactor deformation caused by irradiation 

induced creep, irradiation growth and thermal creep. The resulting dimensional changes are a 

function of reactor operating time and are exhibited as axial elongation, diametral expansion 

and wall thinning of PTs and the sagging of PTs and CTs, which in turn can lead to PT-CT 

contact at axial locations between the spacers. These changes can significantly affect PT 

integrity; for instance, diametral expansion can lead to flow bypass, which may result in the 

insufficient cooling of the natural uranium fuel and the potential of fuel dry-out. The PT-CT 

contact can lead to the formation of hydride blisters and the eventual delayed hydride cracking 

(DHC) of PTs. To ensure a reliable operation and to predict the future dimensional changes of 

the FC, a comprehensive understanding of the nature of in-reactor deformation and physically 

based models are necessary. The nuclear industry currently relies on 1D FEA and a limited 

number of Monte Carlo simulation trials to predict probability of contact and make 

risk-informed decisions. This thesis critically analyzes the current practices of the industry in 

assessing PT-CT contact risk and develops computationally efficient and robust probabilistic 

models based on advanced 3D FEM of FCs for making better risk-informed decisions.  

In this study, 1D and 3D finite element models are developed to simulate the in-reactor 

deformation of a CANDU FC using the finite element analysis (FEA) package ABAQUS, in 
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which the material deformation models of both the PT and the CT have been implemented as 

user subroutines using UMAT. The prediction comparison between the two models shows the 

need of 3D finite element models in correctly predicting the in-reactor deformations. Since the 

prediction of time to contact is influenced by various uncertainties, such as change in, (i) the 

dimensions of the FC, and (ii) the material properties and boundary conditions of the FC, 

probabilistic simulation-based methods have been developed to assess the PT-CT contact risk 

and establish adherence with provisions of the Canadian Standards Association (CSA) 

Standard N285.8. An effective calibration approach for diametral creep strain and PT-CT gap 

profile prediction is also proposed for making better future predictions of inspected channels.  

A new approach of coupling multiplicative dimensional reduction method (M-DRM) with 

polynomial chaos expansion (PCE) method is proposed which significantly reduces the 

computational cost of probabilistic finite element analysis using expensive-to-evaluate finite 

element models. The proposed method is applied for probabilistic contact assessment of 

CANDU FCs by considering 1D and 3D FE models and different PT orientations, which 

significantly influence probabilistic contact results. Important findings and insights on contact 

assessment is presented, which would benefit the nuclear industry. The low computational cost 

and predictive capability of the proposed method is suitable for carrying out full probabilistic 

assessments of CANDU reactor cores for units with 380 or 480 FCs.   
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Chapter 1 

Introduction 

1.1 Background 

Large engineering systems such as power transmission systems, transportation systems, 

communication systems, nuclear power systems etc., has played a vital role in the human 

development and societal advancement. To ensure continuous supply and availability, these 

systems must be reliable and efficient. With the progress of service time, these systems are 

subjected to deteriorations, which could affect the serviceability and reliability. Failure of 

predicting these deteriorations and taking appropriate life-cycle management actions can have a 

major impact on the safety and economy of the society. For example, the first generation of 

CANDU1 reactors in Canada have approached the end of their licensed service life of 30 years and 

are on the path of life-extension. Nuclear power plants (NPPs) are capital intensive and the 

life-extension would provide a very significant advantage by bridging the gap between the ageing 

and new plants. However, the life-extension plans must be executed through a thorough 

understanding of the ageing mechanisms affecting each component and by careful analysis of the 

safety concerns.  

The nuclear industry has many ageing management programs in which the licensees must perform 

periodic inspections and demonstrate the fitness-for-service of the components. For example, the 

 
1 CANDU® (CANada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada Ltd. 
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pressure tubes (PTs) in CANDU reactors are one of the most critical components operating under 

extreme conditions, which cause them to deteriorate. The ageing management programs for PTs 

use extensive research, testing, and modelling development to understand the impact of ageing of 

PTs. The model predictions are then used for making future decisions on inspections and 

life-extension. A well validated and an accurate model can assist Engineers in making better 

predictions on future deformations and minimizing the number of inspections. A powerful tool 

which the Scientists and Engineers mostly depend on for modelling and simulation is the finite 

element analysis (FEA). With the advent of powerful computers and accurate analysis of models 

using FEA, design and analysis has become an everyday tool in the academia and in the industry.  

However, despite these advancements, the models will never be able to completely capture the 

complex behaviour of the real world due to the presence of various uncertainties. This also poses 

a challenge to the ageing management and life-extension programs as the decisions are to be made 

under uncertainty. Probabilistic engineering or reliability analysis is the tool used in these 

scenarios for quantifying the structural safety by considering the uncertainties in input parameters. 

These tools account for the uncertainties appearing in the modeling of physical systems and then 

studies the impact of those uncertainties onto the system response. The probabilistic results can be 

then used for risk-informed decision making. The nuclear industry world-wide is moving towards 

adopting a risk-informed decision-making framework and probabilistic or stochastic assessment 

methods for reactor systems are continuously being developed to support this objective (CSA 

N285.8, 2015). Therefore, the use of probabilistic tools together with finite element (FE) model 

could give a significant advancement and improvement in making risk-informed decisions of 

nuclear components and reactor core.            
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1.2 The CANDU Reactor 

The CANDU reactor, like any other nuclear reactor is a complex technical system with various 

engineered subsystems, structures, and components (SSCs) as shown in Figure 1.1. The CANDU 

reactor core is a low-pressure cylindrical vessel (Calandria) about 6.0 m long and 7.6 m in 

diameter, which contains the heavy water moderator at about 70 C. It is penetrated by 380 or 480 

fuel channels (FCs) depending on the reactor power rating. The FCs are an essential part of the 

primary heat transport system (PHTS) in a CANDU reactor, along with other critical components 

as shown in Figure 1.2. An important attribute of the CANDU reactor is the use of the heavy water 

both as moderator and as the heat transporter, which allows a critical chain reaction to be sustained 

with natural uranium fuel. A typical FC comprises of (i) a cold-worked zirconium 2.5 wt% niobium 

(Zr-2.5Nb) PT, (ii) a Zircaloy-2 calandria tube (CT) surrounding the PT, (iii) four garter springs 

and (iv) end-fittings as shown in Figure 1.3. The PTs are the pressure vessels in CANDU reactors, 

and they are considered as the heart of the reactor, making it one of the most critical components 

of the reactor. The principal function of PTs is to support and locate the natural uranium dioxide 

fuel bundles in the reactor core and allow the pressurized heavy water primary coolant to be 

pumped through the fuel and remove its heat. The ends of each PT are attached to 403 stainless 

steel end-fittings using roll expanded joints, which then provide a flow path for primary coolant 

between the PT and rest of the PHTS through the feeder pipe attached to each end fitting. An 

important function of the CT is to prevent the gross sag of the PT due to irradiation induced 

deformation that results from its own weight, the weight of the fuel bundles and the heavy water 

coolant. The annular gap between the PT and CT is maintained using four annulus spacers or garter 

springs that prevent any contact between the PT and CT. The annulus space is filled with dry CO2 
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gas to thermally insulate the “hot” PT from the “cold” CT and to detect any leakage arising in the 

FC. 

The PTs operate under extreme conditions such as high temperatures, fast neutron fluxes 

(E > 1 MeV) and high applied stresses resulting from the high internal pressure. These operating 

conditions cause dimensional changes due to irradiation induced creep, irradiation growth and 

thermal creep (Holt, 2008). The resulting dimensional changes are a function of reactor operating 

time and are exhibited as axial elongation, diametral expansion and wall thinning of PTs and the 

sagging of PTs and CTs (Holt, 2008). The sag of PT between the spacers can eventually lead to 

contact between the PT and CT, termed as PT-CT contact. Direct contact between the PT and CT 

would result in heat transfer between the two tubes and a substantial decrease in the PT 

temperature, which in turn leads to the precipitation of hydrogen and the formation of hydride 

blisters. Blister formation will ultimately lead to delayed hydride cracking (DHC) (Byrne et al., 

1991). These changes can significantly affect PT integrity and can pose risk to reactor operation. 

Figure 1.4 illustrates the degradation mechanisms for CANDU PTs leading to break-before-leak 

or rupture. The Canadian Standards Association (CSA) Standard N285.8 requires that any such 

risk to be averted in order to maintain fitness-for-service of the FC and the reactor core (CSA 

N285.8, 2015). 



 

 5 

 

Figure 1.1: CANDU 6 reactor assembly 
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Figure 1.2: Primary heat transport system of a CANDU reactor 

 

 

Figure 1.3: A section of a FC in CANDU reactors 
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Figure 1.4: Degradation mechanisms leading to failure of a CANDU pressure tube 

 

1.3 Research Motivation 

The world is at a crucial juncture now in the fight against climate change. The United Nations 

considers the climate change as “the most systematic threat to humankind” and suggest immediate 

reduction in carbon dioxide emissions. Nuclear power plants have a vital role to play against 

climate change as they produce no greenhouse gas emissions during operation, and they have the 

potential to be the catalyst for delivering sustainable energy transitions. At the same time, these 
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systems must be highly reliable, safe and should have a comprehensive plant life management 

program. In Canada, the CANDU reactors have been operating safely for several years and are 

now undergoing life-extension programs. Early CANDU reactors were designed with limited 

knowledge about the material behaviour and ageing related degradation mechanisms. For example, 

the anisotropic material behaviour of zirconium alloys was not known during the initial 

manufacturing of the PTs. Significant improvements have been made since then in both design 

and safety measures from the operating experience, analyzing data from inspection and through 

rigorous research works.  

As mentioned in the previous section, the FCs are the most critical components in a CANDU 

reactor and the fitness-for-service of PTs must be clearly demonstrated by the licensees. Irradiation 

induced creep is a degradation mechanism which significantly affects the PT structural integrity. 

The PTs undergo significant dimensional changes and the sagging of the FC assembly could lead 

the PT to come into contact with the CT (PT-CT contact), which could then lead to delayed hydride 

cracking (DHC) of the PT (Byrne et al., 1991). For example, a PT failure occurred in 1983 at 

Pickering Unit 2 as a result of high levels of deuterium concentration in the Zircaloy-2 PT, and 

PT-CT contact (Fanjoy, 1984). Following this incident, the Zircaloy-2 tubes were all replaced with 

Zr-2.5Nb PTs, which have low deuterium pick up rate. Even with the current improvements, the 

PT integrity is severely affected by PT-CT contact and any such contact risk must be averted in 

order to maintain fitness for service of the FCs.  

Presently, the nuclear industry allows probabilistic assessment methods to assess the PT-CT 

contact risk and demonstrate adherence to CSA Standard N285.8 provisions. However, there is a 

significant research gap in the mechanistic models used for predicting the FC dimensional changes 
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and the probabilistic tools used for making risk-informed decisions. The nuclear industry currently 

relies on 1D FE model with limited number of Monte Carlo simulations for assessing the PT-CT 

contact risk. The main motivation behind this research is to critically analyze the current practices 

of the industry in assessing PT-CT contact risk and to develop computationally efficient and robust 

probabilistic models based on advanced 3D FE model of FCs for making better risk-informed 

decisions.    

1.4 Research Objectives 

The main objective of this research investigation is to develop surrogate models and probabilistic 

assessment models of in-reactor deformation of CANDU FCs. The thesis includes the development 

of finite element models of CANDU FCs and development of a general and efficient computational 

scheme for reliability and sensitivity analysis of structures, which are modeled and analyzed using 

finite element methods. The specific objectives of this research are: 

• To develop 1D and 3D finite element models of a CANDU fuel channel in ABAQUS for 

the prediction of in-reactor deformation. 

• To implement the creep deformation models of PT and CT in ABAQUS using UMAT.  

• To compare and analyze the PT-CT gap prediction capability of 1D and 3D Finite element 

models. 

• To study the diametral expansion of PTs and develop a surrogate model for predicting 

future deformations.  

• To develop calibration approaches for diametral creep and PT-CT gap profile predictions. 

• To investigate the diametral creep strain dips at the fast flux dip inter-bundle local regions.  
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• To predict the PT-CT gap and time to contact using 1D and 3D FE model and compare the 

results with the current nuclear industry practice. 

• To study the influence of uncertain variables on PT-CT gap evolution and develop a 

surrogate model for future PT-CT gap predictions. 

• To couple the multiplicative dimension reduction method (M-DRM) with polynomial 

chaos expansion (PCE) as a computationally efficient method for constructing a surrogate 

model for expensive computational models (e.g., finite element models). 

• To estimate the statistics and complete probability distribution of the structural response 

using the coupled M-DRM and PCE method and perform reliability analysis. 

• To estimate the global sensitivity analysis based on the coupled M-DRM and PCE 

expansion results. 

• To connect uncertainty analysis with deterministic FEA software using programming code. 

• To make use of coupled M-DRM and PCE method for the probabilistic contact assessment 

of CANDU fuel channels. 

1.5 Outline of the Dissertation 

Chapter 2 provides an extensive literature review on uncertainty analysis and various uncertainty 

propagation methods, followed by a review on the probabilistic finite element analysis. The 

chapter closes by discussing the life-limiting pressure tube deformations in a CANDU reactor. 

Chapter 3 presents the 1D and 3D finite element modelling details of a CANDU fuel channel in 

ABAQUS finite element package and the implementation of pressure tube and calandria tube 
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material deformation equations in ABAQUS using UMAT. The fuel channel deformations are 

predicted using both models and a comparison on PT-CT gap profile prediction is made.  

Chapter 4 presents the importance of surrogate models for replacing the expensive-to-evaluate 

finite element models. The surrogate models and calibration approaches of diametral creep and 

PT-CT gap profiles are discussed in detail and the validation of these models are conducted by 

comparing with measured data.  

Chapter 5 presents a computationally efficient method for performing structural reliability and 

sensitivity analysis by coupling the multiplicative dimensional reduction method (M-DRM) with 

polynomial chaos expansion (PCE) method. The mathematical formulation of PCE and M-DRM 

along with Gauss quadrature scheme is presented. The steps required in implementing the 

proposed method is illustrated and the method is demonstrated by applying on a simple analytical 

equation. The statistical and sensitivity analysis results obtained from the proposed method is 

compared with the results obtained from Monte Carlo simulation (MCS), along with the 

probability of failure results.   

Chapter 6 presents a computationally feasible approach for developing a surrogate model of 

assessing the evolution of PT-CT gap profiles with time and the process to perform probabilistic 

contact assessments by coupling the multiplicative dimensional reduction method (M-DRM) with 

the polynomial chaos expansion (PCE). The predictive capability of the proposed method for 

probabilistic assessments was initially examined using the surrogate model that was developed by 

using 1D FEA and MCS. The method was then applied to develop a surrogate model based on 3D 

FEA and conduct a detailed probabilistic contact assessment by considering different PT 
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orientations. Probabilistic analysis results between 1D and 3D FE models are critically compared 

and valuable insights to the nuclear industry are presented.  

Chapter 7 presents the conclusion of this study and future research recommendations. 
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Chapter 2 

Literature Review 

2.1 Uncertainty Analysis 

Uncertainty analysis in engineering is a field which is a combination of branches of engineering 

(e.g. civil, mechanical, aerospace engineering etc.) in one hand and statistics and probability theory 

on the other hand. A general framework for uncertainty analysis of an engineering system is shown 

in Figure 2.1 and each of the three steps are described.  

• Step A is the step in which the mathematical model is completely defined. For a simple 

system, the mathematical model can be an analytic expression which could be solved 

explicitly, whereas a complex model can be an FE model which should be solved 

implicitly. All the input and output parameters should be clearly identified in this step. In 

summary, this step collects all the necessary ingredients used for a classical deterministic 

analysis of the engineering system. 

• Step B consists of quantifying the sources of uncertainty in the physical system to be 

analyzed. This involves identifying all the input parameters that are not well known and 

modeling them in a probabilistic context. Based on the observations of uncertain input 

parameters, techniques such as probability paper plots, method of moments, etc., can be 

used to fit an appropriate distribution to these uncertain input parameters. The end product 

of this step is a random vector of input parameters with their respective probability 
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distributions and parameters.  When there is a spatial or temporal variability of parameters, 

it is best to model the variability as a random process or random field.  

• Step C is where we propagate the uncertainties in the input through the mechanistic model 

modeled in Step A and quantify the uncertainty in the output response. This is the core step 

in the probabilistic engineering analysis. The quantification of the output response is 

followed by the post processing methods to evaluate the failure probability or reliability of 

the physical system. Another important information which the analyst seek for is the impact 

of the random input parameters on the randomness of the output response, which is referred 

to as the global sensitivity analysis. In summary, Step C involves computing the complete 

probability distribution and moments of the random output response, failure probability 

based on a given threshold value of the output response and hierarchization of the input 

parameters based on sensitivity analysis.  

 

Figure 2.1: General framework for uncertainty analysis of a physical system (Bruno, 2007) 
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2.2 Uncertainty Propagation Methods 

Let us consider a system which can be modelled by a function 𝒚 = ℳ(𝒙), where ℳ(∙) is an 

analytical or numeric model, 𝒙 is the vector of input variables and 𝒚 is the output vector of the 

response. For simplicity, let us assume that y is a scalar and not a vector to denote the model 

response. This is the deterministic model we have. Now, when the input variables are having 

uncertainties, we will have to consider them as random variables, which makes the output response 

also a random variable.  The random response can be then expressed as 

 𝒀 = ℳ(𝑿) (2.1) 

where 𝑿 =  [𝑋1, 𝑋2, … , 𝑋𝑛]T is the vector of input random variables with respective assigned 

probability distribution and parameters.   

The main objective of any uncertainty propagation method is to capture the probabilistic content 

of the output response, 𝒀. The complete probabilistic contents of 𝒀 is contained in its probability 

density function (PDF), 𝑓𝒀(𝒚), which depends on the joint PDF,  𝑓𝑿(𝒙), of the input random 

vector, 𝑿, and the model ℳ(∙). However, an analytical computation of the PDF of the output 

response is only possible in some simple academic cases. In most of the practical cases, an 

analytical solution is not possible due to the complexity of the model ℳ(∙) and the high 

dimensionality of input random vector, 𝑿. This led to the formulation of various uncertainty 

propagation methods. Based on the specific information on the random output response provided 

by the methods, they can be categorized as shown in Figure 2.2. 

The second moment methods provide only the information on the central part of the response since 

they deal with only computing the mean and variance of the output response. However, this 
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information is not much useful while working with real world engineering applications since we 

are more interested in the tail of probability distributions for computing failure probabilities. 

 

Figure 2.2: Classification of uncertainty propagation methods 

The structural reliability methods overcome the disadvantages of second moment methods since 

they help in the investigation of the tails of the response PDF by computing the probability of 

exceedance of a prescribed threshold set by the analyst and thus computing probability of failure. 

However, the structural reliability methods do not provide the whole PDF, 𝑓𝒀(𝒚).  

The spectral methods use the tools of functional analysis to represent the complete randomness of 

the model output response in an inherent way. Except the computational cost associated with 

computing the expansion coefficients on a suitable basis of functions, these methods allow to 

perform the structural reliability analysis in a straightforward manner following the 

post-processing of the output. The major advantage of these methods is that it provides an 

approximate whole PDF 𝑓𝒀(𝒚). The post-processing of this PDF information can be used to 

compute both the statistical moments as well as failure probability, which makes it a combination 

of both previously discussed methods.  
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The use of second moment methods in PFEA is of less interest due to the disadvantages of these 

methods as already discussed. Hence, only structural reliability methods and spectral methods are 

discussed in detail here. 

2.3 Structural Reliability Methods 

Structural reliability analysis aims at computing the failure probability of an engineering system 

with respect to a prescribed failure criterion by accounting for uncertainties arising in the 

description of the model. These uncertainties in the model may be arising from the strength factors 

(e.g., material properties, geometric dimensions, etc.) or the load factors (e.g., external load). As a 

general theory, it started in the early 1950’s and the research are still active today. A 

comprehensive presentation of these topics can be obtained from the textbooks (Ditlevsen & 

Madsen, 1996; Madsen et al., 2006; Melchers & Beck, 2018).  

 The probability of failure denotes the probability that a structure fails to perform its intended 

function at a specific time, while reliability is the complement of the probability of failure. For 

each of the failure mode, the analyst sets a failure criterion by setting a threshold value for the 

output response quantity. In a mechanical context, the output response quantities can be 

displacements, stress or strain components, or quantities computed from these components (e.g., 

Von Mises stress). Hence, if the output response of a mechanistic model is given as 𝒀 = ℳ(𝑿) 

and its allowable threshold is defined as 𝑦0, the failure criterion is expressed mathematically by 

using a limit state function g(𝑿) = 𝑦0 − 𝒀. The reliability analysis can be now performed by 

formulating the limit state function is such a way that: 

• Ω𝑠 = {𝑿 ∶  g(𝑿) > 0} is the safe domain in the space of input parameters; 
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• Ω𝑓 = {𝑿 ∶  g(𝑿) ≤ 0} is the failure domain. 

The set of points {𝑿 ∶  g(𝑿) = 0} defines the limit state surface. Given the joint PDF,  𝑓𝑿(𝒙), of 

the input random vector, 𝑿, the corresponding probability of failure associated with the limit state 

function can be computed as 

 
𝑃𝑓 =  ∫  𝑓𝑿(𝒙)𝑑𝒙

Ω𝑓

=  ∫  𝑓𝑿(𝒙)𝑑𝒙
g(𝐗)≤0

 (2.2) 

Except in some academic cases, it is not possible to compute this integral analytically due to the 

high dimensionality of 𝑿. It should be also noted that, for the purpose of probabilistic FEA, the 

failure domain is defined implicitly as a function of 𝑿, which further complicates the computation 

of failure probability. Thus, numerical methods must be employed. 

2.3.1 Monte Carlo Simulation 

The Monte Carlo simulation (MCS) method is a numerical method which solves problems by 

simulating random variables. It was first presented by Metropolis and Ulam (Metropolis & Ulam, 

1949) and soon became popular and widely applicable with the evolution of computers (Sobol, 

1994). The MCS method has three basic steps: (1) select the distribution type of each input random 

variable; (2) generate random numbers based on the selected distribution; (3) compute the output 

response for each of the generated input random numbers, which is called as simulations. 

The probability of failure given in Equation (2.2) is then computed numerically using MCS as 

 
𝑃𝑓 ≈  

𝑁𝑓

𝑁
 (2.3) 
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where 𝑁 is the total number of MCS trials and 𝑁𝑓 is the number of trials for which the limit state 

function indicates a structural failure, i.e., g(𝑿) ≤ 0. The total number of MCS trials required can 

be approximated using the binomial distribution as (Ang & Tang, 2007a) 

 
𝑁 ≈  

1

(COV2 × 𝑃𝑓 )
 (2.4) 

where COV is the desirable coefficient of variation of the output response and 𝑃𝑓 is the probability 

of failure. For most of the applications in mechanical, civil, nuclear and aerospace engineering, 

the probability of failure is usually between 10-2 to 10-6 due to high level of reliability (Sudret & 

Der Kiureghian, 2002a). Suppose that the value of 𝑃𝑓 is of the order 10−4 and the required COV is 

10%, the number of required MCS trials is 105. This makes MCS method computationally 

expensive due to its slow rate of convergence.  

2.3.2 First Order Reliability Method 

The first order reliability method (FORM) is an approximate method for computing the probability 

of failure. This method was introduced as an alternative for brute Monte Carlo simulation since 

the method computes the probability of failure by means of a limited number of functional 

evaluations. In FORM, the reliability analysis is performed by transforming the correlated or 

uncorrelated input random variables, 𝑿, as the independent standard normal variables, 𝒁. In the 

context of structural reliability, this transformation of recasting the problem in the standard normal 

space is made possible through an isoprobabilistic transformation such as Rosenblatt transform 

(Hohenbichler & Rackwitz, 1981) or Nataf transform (Der Kiureghian & Liu, 1986). 
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After the transformation, FORM estimates the reliability index β, which is the shortest distance 

between limit state function and the origin of the standard normal space (Hasofer & Lind, 1974). 

The point of the failure domain closest to the origin in the standard normal space is called as design 

point. Hence, FORM can be formulated as an optimization problem for finding the design points 

subjected to the constraints of minimizing β subject to g(𝒁) = 0.  

Several algorithms are available for solving this optimization problem, e.g., Rackwitz-Fiessler 

algorithm (Rackwitz & Fiessler, 1978) or using a numerical solver in Matlab or using a solver 

command in Excel. Once the reliability index, β is obtained by solving the optimization problem, 

the probability of failure can be computed as 

 𝑃𝑓 ≈ ϕ(−β) = 1 −  ϕ(β) (2.5) 

where  ϕ(∙) is the standard normal cumulative distribution function. 

 

Figure 2.3: Reliability index based on FORM 

It should be noted that FORM relies on linearization of the limit state function around the design 

point and hence can give erroneous results while computing probability of failure. Several 

improvements are proposed to overcome these disadvantages when the limit state function is 

highly nonlinear (Koduru & Haukaas, 2010; Zhao & Ono, 1999). 



 

 21 

2.4 Spectral Methods 

The structural reliability methods such as FORM or its modifications can be used only to solve a 

specific problem of computing the probability of failure through certain approximations and 

assumptions. If the analyst is interested in computing the moments of the output response, he 

should rely on the second moment methods. Thus, the analyst should resort to each type of analysis 

separately to compute the needed information, which shows the drawbacks of these methods. 

As discussed in the MCS method, this method is capable of providing the complete representation 

of the output response. Once the simulations are performed for the required number of MCS trials, 

the corresponding output responses can be gathered in a histogram and an empirical cumulative 

distribution function (CDF) can be constructed.  However, the main drawback of this method is 

the computational cost associated with the evaluation of failure probability due to slow 

convergence rate.  

Spectral method is an efficient method which overcomes the above-mentioned drawbacks of the 

structural reliability methods. The spectral method uses the tools of functional analysis to represent 

the complete randomness of the model output response in an inherent way (Maître & Knio, 2010). 

In the present study, the spectral expansion of an output response quantity onto a bases made of 

orthogonal polynomials, commonly referred to as polynomial chaos expansion (PCE) are of 

interest. PCE is a powerful surrogate modeling (or metamodeling) technique that aims at providing 

a functional approximation of a computational model through its spectral representation on a 

carefully chosen set of polynomial function bases. PCE alleviates the high computational cost 

associated with uncertainty analysis by replacing the otherwise expensive-to-evaluate numerical 

models (e.g., a finite element code) with simple-to-evaluate surrogate models. A Monte Carlo 
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simulation using the surrogate model can be then used to obtain the complete distribution of the 

output response and then compute probability of failure. However, computation of the PCE 

coefficients is expensive when the mechanistic model is expensive-to-evaluate and involve more 

number of input random variables (Debusschere et al., 2004). Hence, an efficient method is needed 

to reduce the computational cost associated with using PCE. 

2.5 Probabilistic Finite Element Analysis 

Many engineering problems are described using partial differential equations and for simple 

geometry problems, we can arrive at classical analytical solutions. However, when we are having 

a complex geometry, we must resort to numerical techniques. One of the most widely used 

numerical approach is the finite element method (FEM), which can solve the partial differential 

equations approximately (Reddy, 2010).  FEM is based on discretizing the problem domain into 

simpler parts called finite elements and on the calculus of variational methods to minimize an 

associated error function. With the advent of FEM, it became possible to solve a wide range of 

complex problems in mechanical, civil, and various other engineering fields.  

The starting of finite element approach can be traced back to the work by Hrennikoff in 1941 

(Alexander Hrennikoff, 1941) and Courant in 1943 (Courant, 1943), where they both identified a 

common and essential characteristic of mesh discretization of a continuous domain into sub-

domains, usually called elements. The term finite was later coined by Clough in 1960 (Clough, 

1960) and since then, FEM became more and more popular in solving various engineering 

problems. In today’s world, FEM is used as a major tool in design and analysis of various complex 

engineering problems.  The progress in the computer technology has immensely aided in the 
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growth and wide usage of FEM (Haldar & Mahadevan, 2000) and this method now stands as a 

computational method which permits accurate analysis of any complex engineering problem.  

However, when dealing with real world problems, it is natural to understand that the uncertainties 

are unavoidable (Ang & Tang, 2007b). To deal with these uncertainties, the scientific and 

engineering communities developed a probabilistic or stochastic approach to engineering 

problems, which led to the development of probabilistic finite element methods (Stefanou, 2009a). 

The engineering problems are often focused on understanding the reliability of a structure during 

its lifetime and computing probability of failure, which led to probabilistic finite element analysis 

(PFEA), or also called as finite element reliability analysis (FERA) (Haukaas, 2003; Haukaas & 

Der Kiureghian, 2006, 2007). When the uncertainties are modeled as a random field, i.e., random 

variables with spatial or temporal correlation, the terminology used is stochastic finite element 

analysis (SFEA) (Ghanem & Spanos, 1991; Haldar & Mahadevan, 2000; Stefanou, 2009b).  

The PFEA is performed by connecting one of the uncertainty propagation methods with the FEA 

software. At this time, the only commercial software which has the uncertainty analysis capability 

is ANSYS, which is equipped with ANSYS Probabilistic Design System (PDS). However, the 

methods available are MCS, which makes it computationally expensive for nonlinear FEA 

problems and a response surface approach using variational approach, which is not an accurate 

method (Reh et al., 2006). Hence, for performing a reliable PFEA, the analyst should connect the 

FE software such as ABAQUS with the existing reliability packages such as NESSUS (Thacker et 

al., 2006) and COSSAN (Schuëller & Pradlwarter, 2006). These reliability software packages can 

interact with most of the commercial FEA softwares. The disadvantage of this approach is that the 

analyst may be performing reliability analysis without having a theoretical background of the 
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reliability methods and the analyst will have to purchase these reliability platforms separately. A 

comprehensive review of the reliability packages available to connect with FE softwares can be 

found in (Pellissetti & Schuëller, 2006) and in the special issue of Structural Safety (Ellingwood, 

2006). 

Another approach is to link a general purpose FEA software to a numerical computing 

environment in which the analyst has the flexibility to program more reliability algorithms. The 

advantage of this approach is that the analyst will have a strong grasp of the theory behind the 

reliability analysis method, whereas the difficulty is the requirement of advanced programing skills 

required to connect the reliability analysis module and commercial FE software.   

Once the connection between the FE software, e.g., ABAQUS and the computing environment, 

e.g., MATLAB is established, an uncertainty propagation method must be chosen to perform 

PFEA. Any method discussed in the previous section can be used for the purpose of reliability 

analysis. A generally known and an easy to implement method for FERA is the MCS, where the 

deterministic FEA code is repeatedly called to simulate the structural response (Hurtado & Barbat, 

1998). Upon completion of the simulations, MCS provides the statistical properties (mean and 

standard deviation) as well as the complete distribution of the structural response. However, the 

computational cost will be extremely high if the required time for each FEA run is not fairly small 

(Papadrakakis & Kotsopulos, 1999). FORM can be used as a replacement for MCS to compute 

probability of failure for expensive-to-evaluate FEA codes. FORM can be computationally 

efficient but the drawbacks are, its accuracy highly depends on the degree of nonlinearity of limit 

state function (Lopez et al., 2015) and the performance function may not be available in an explicit 
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form in FEA (Pellissetti & Schuëller, 2006). Also, the analyst must resort on other methods to 

compute the statistics or to obtain the complete probability distribution of the structural response.  

Using spectral methods such as polynomial chaos expansion (PCE) for PFEA overcomes the 

above-mentioned drawbacks of the structural reliability methods. PCE is a powerful surrogate 

modeling (or metamodeling) technique that aims at providing a functional approximation of a 

computational model through its spectral representation on a carefully chosen set of polynomial 

function bases. However, computation of the PCE coefficients becomes expensive when the 

mechanistic model is expensive-to-evaluate and involves more number of input random variables 

(Debusschere et al., 2004). 

2.6 Pressure Tube Deformations in CANDU Reactors 

This section reviews the dimensional changes of PTs resulting from the normal operating 

conditions under high temperature, pressure and fast neutron flux. These include axial elongation, 

diametral expansion, wall thinning and sag, which all affect the PT integrity. Three physical 

mechanisms are considered to be influencing in-reactor dimensional changes: (i) thermal creep – 

changes in shape due to temperature and stress only, but in the absence of fast neutron flux. 

However, the thermal creep component describes the behaviour of a material that has been 

hardened by low levels of fast neutron irradiation. (ii) irradiation creep - changes in shape at 

constant volume due to applied stress, temperature and fast neutron flux, and (iii) irradiation 

growth - changes in shape at constant volume due to fast neutron flux and temperature but in the 

absence of applied stress. These irradiation and thermally induced deformation mechanisms are 

life-limiting factors in the lifetime of a FC.  
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2.6.1 Axial elongation 

The prime reason for the axial elongation in PTs is due to the anisotropic material properties of Zr 

alloys. During the initial design of CANDU reactors, the Zr alloys were assumed to be isotropic 

and any possibility of PT elongation was considered insignificant. But with more reactor operating 

experience and studies, the contribution of irradiation creep and growth mechanisms were shown 

to be responsible in enhancing elongation (Christodoulou et al., 1996), which was a result of the 

hexagonally close packed (hcp) anisotropic crystal structure of Zr and the presence of a strong 

crystallographic texture that was the result of the manufacturing process. A constant elongation 

rate was assumed initially for maintenance planning. However, it was later observed that the 

elongation rate gradually increased with reactor operating time or more specifically with 

accumulated fast neutron fluence ((Christodoulou et al., 1996; Holt & Wong, 2002), (also see 

Figure 2.2.1 in (Holt, 2008)). Accommodation of PT elongation is achieved by supporting the 

end-fittings on sliding bearings. Earlier CANDU reactors were not designed to accommodate large 

elongation values, however more recent CANDU designs considered increased elongation margins 

(Holt & Wong, 2002). 

To accommodate PT elongation the CANDU design is such that one end of the PT is initially 

locked and the other end is kept free to axially move. When the reactor reaches about 120,000 

Equivalent Full Power Hours (EFPH) or about halfway through the design life, the free and fixed 

ends are reversed, which is termed as ‘FC reconfiguration’. This is done for the purpose of 

accommodating elongation at both ends of the channel (Holt & Wong, 2002). The plant life 

management strategies are based on the monitoring and calculations of elongation rates of each 
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FC in the reactor. A challenging factor is the variability in elongation rates of different FCs, which 

requires probabilistic tools for making cost-effective, risk-informed decisions on reconfiguration 

and maintenance planning.  Computational models can be used for predicting the elongation and 

for the purpose of probabilistic assessments. 

2.6.2 Diametral expansion 

Another significant dimensional change which can affect the PT integrity is the increase of PT 

circumference along the length of the tube, termed as diametral expansion. Irradiation creep is the 

main mechanism that contributes towards diametral expansion, while the contribution from 

irradiation growth is smaller but negative and therefore beneficial in reducing diametral expansion 

(Christodoulou et al., 1996). A typical diametral profile of a PT subjected to in-reactor deformation 

is shown in Figure 2.4. The strains in the inlet and outlet ends of the tube are lower due to the 

lower fast neutron fluxes there. An additional life limiting outcome of excessive diametral 

expansion is flow bypass that can lead to fuel dry-out and eventually limit the operating power of 

the reactor. As seen with axial elongation, diametral expansion also exhibits substantial variability 

among CANDU FCs (Griffiths et al., 2002). To maintain PT integrity, the maximum diametral 

expansion must be within allowable design limits. 
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Figure 2.4: A typical diametral profile of a PT from outlet to inlet 

2.6.3 Sag 

Both the PT and CT sag as a result of in-reactor deformation (Badie et al., 1988; Causey et al., 

1985; Kim & Sohn, 2004). Initially the PT sags due to its weight, the weight of the fuel bundles 

and the weight of the coolant. With additional operating time and when the garter springs had 

contacted the CT, the FC begins to sag further (i.e., described as “overall sag”) due to in-reactor 

deformation of the CT, as shown in Figure 2.5 (Causey et al., 1985). With additional reactor 

operating time, the PT continues to sag further between the spacers, a process that can eventually 

lead to contact between the PT and CT, termed as PT-CT contact. Direct contact between the PT 

and CT would result in heat transfer between the two tubes and a substantial decrease in the PT 

temperature, which in turn leads to the precipitation of hydrogen and the formation of hydride 

blisters. Blister formation will ultimately lead to delayed hydride cracking (DHC) (Byrne et al., 



 

 29 

1991) that severely compromises PT integrity, a risk that must be averted as much as possible. 

Excessive PT sag may also prevent the passage of fuel bundles when FCs are re-fueled. In addition 

to these risks, excessive CT sag may result in contact of CTs with horizontal reactor mechanisms 

that are perpendicular to the FCs (e.g., Liquid Injection Shutdown System or LISS nozzles). 

The overall FC sag measurements from in-service inspections provide only crude information on 

PT sag per se, namely PT sag occurring between the garter springs. More recent techniques have 

allowed the acquisition of PT sag that is observed between the spacers. This is the reason 

computational models are needed to predict important information such as PT-CT contact, time to 

contact and contact location, which are necessary inputs in adopting a more efficient inspection 

and maintenance planning, and to take end-of-life decisions. 

 

Figure 2.5: A typical sag profile of a FC after several years of operation, from (Holt, 2008)  
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Chapter 3 

Computational Modelling of In-Reactor Deformation of CANDU 

Fuel Channels 

 

3.1 Introduction 

3.1.1 Need for computational models of FC deformation 

It is clear from the previous chapters that the FC is the most critical component in a CANDU 

reactor. The FCs in the reactor core operate under extreme conditions and undergo dimensional 

changes with reactor operating time. To ensure structural integrity is maintained, it is necessary 

that these dimensional changes are known and predicted with sufficient confidence levels. For this 

purpose, computational models of FCs can be developed by using powerful numerical techniques 

such as finite element methods along with deformation equations, which are based on the 

understanding of the physical mechanisms that lead to changes in the dimensions, the geometry of 

the FC and the loading conditions during operation. When Zirconium alloys were initially used for 

the manufacturing of PTs, the following life limiting issues were not known: 

a) Anisotropic material behaviour 

b) Irradiation enhancement resulting in irradiation induced creep and growth 

c) Formation of hydride blisters leading to Delayed Hydride Cracking (DHC) 
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d) Neutron irradiation causing reduction in critical material properties (e.g., fracture 

toughness) 

Extensive research conducted over the past 40 years and the experience from operating power 

reactors has helped in gaining a broad understanding on in-reactor deformation of PTs. The data 

obtained from in-reactor testing of Zr alloys and periodic non-destructive inspections of PTs have 

helped in the understanding of various mechanisms responsible for the dimensional changes, and 

semi-empirical equations were developed for predicting these changes (Christodoulou et al., 1996; 

Holt, 2008). Utilizing these semi-empirical deformation equations, advanced computational 

techniques can be developed by incorporating these equations into finite element methods, which 

can then be used to predict important variables such as axial elongation, diametral expansion, PT 

and CT sag, PT-CT contact and time to contact. The computational models are therefore necessary 

due to the following reasons:  

• To predict the future dimensional changes in existing reactors, which will aid in the 

development of optimized inspection and maintenance planning procedures and in 

ensuring that the regulatory requirements are met. 

• To use mechanistic models for probabilistic analysis of FCs, which will aid in a risk-based 

decision making and end-of-life decisions. 

•  To simulate the behaviour of new reactor FCs operating at different operating conditions 

and to improve the future design based on the simulated results.    

The nuclear industry currently uses a beam model called as CDEPTH for predicting 

FC deformation and making risk-informed decisions (Sauvé et al., 1989). These are proprietary 
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FE codes and are hence unavailable to other investigators. Using the current understanding of the 

irradiation-induced deformation mechanisms of Zr alloys, this chapter describes the computational 

modelling of in-reactor deformation of FCs using 1D and 3D finite element analysis using 

ABAQUS FE package. 

3.1.2 Objective 

The first objective is to develop a 1D finite element method (1D FEM) model of the FC using 

beam elements. The main purpose of developing this model is to analyze the prediction accuracy 

of the beam model currently used by the nuclear industry. Since the PT and CT creep models are 

not available in the ABAQUS library, these models are incorporated using a user defined 

subroutine called UMAT. The FE model is then used to predict the axial elongation, sag and PT-CT 

gap profiles.  

The second objective is to develop a complete 3D finite element method (3D FEM) model of the 

FC using continuum shell elements, which overcomes the limitations and simplifications of a 1D 

beam model. The PT and CT creep models are incorporated using UMAT and all the life-limiting 

deformations such as axial elongation, diametral expansion, sag and PT-CT gap profiles are 

predicted.   

The final objective is to compare both 1D and 3D FEA results by analyzing the accuracy and 

efficiency of these models for predicting the deformations. Special consideration is given to the 

prediction of PT-CT contact and time to contact, as these are important inputs required for 

demonstrating fitness-for-service of the PTs and life-extension decisions.   
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3.1.3 Organization 

This chapter is organized as follows. Section 3.2 is a general section applicable to both 1D and 3D 

FEA, which presents a detailed description of the prerequisites required for the development of a 

FC FEM model such as the design, geometry, operating conditions, and material models of a 

typical CANDU FC. Section 3.3 gives a clear description on the implementation of the anisotropic 

material behaviour of Zirconium alloys and creep models of PT and CT as material models in 

ABAQUS using UMAT subroutine for both 1D and 3D FEM models. Section 3.4 presents the 

modelling details of 1D FEA and the corresponding FEA results. In Section 3.5, the modelling 

details of 3D FEA and the corresponding FEA results is discussed, after which an extended 

analysis results using different PT boundary conditions are shown. Section 3.6 discusses the 

limitations of the 3D FE model. Section 3.7 compares the prediction accuracy of PT-CT gap 

profiles for 1D and 3D finite element models, which will provide a critical insight to the nuclear 

industry. Finally, conclusions are summarized in Section 3.8.                 

3.2 Design, Operating Conditions and Material Models of a CANDU FC 

3.2.1 Design of a CANDU FC 

A typical FC in a CANDU reactor comprises a PT surrounded by a CT and separated by four garter 

springs as shown in Figure 3.1. PTs and CTs are manufactured using cold-worked zirconium 2.5 

wt% niobium (Zr-2.5Nb) and Zircaloy-2, respectively. The PT holds the natural uranium dioxide 

fuel bundles and operates at a high temperature from about 250 C at the inlet end to about 310 C 

at the outlet end depending on the power rating of the CANDU unit. The internal pressure varies 
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from about 10.5 MPa at the inlet end to about 9.9 MPa at the outlet end, resulting in a variation in 

the applied hoop stress across the length of the PT. The initially applied maximum circumferential 

stress is about 130 MPa at the inlet end to about 122 MPa in the outlet end. It should be pointed 

out however, that the applied hoop stress tends to increase due to the reduction in the wall thickness 

and the increase in the diameter of the PT. The internal pressure also generates an initial axial 

stress of about 65 MPa in the PT wall along with a small axial stress caused due to an end-load of 

approximately 2220 N resulting from the out-of-core hardware that appears to vary with time from 

tensile to compressive. The CT operates at a much lower temperature (60-80 C) due to contact 

with the heavy water moderator. The annulus gap is filled with dry CO2 gas for thermal insulation 

and allowing the detection of any leakage originating from any of the channels. The annular gap 

between the “cold” CT and the “hot” PT is maintained using the garter springs or annulus spacers, 

which also help in preventing any contact between the two tubes. 

 

Figure 3.1: A section of a FC in CANDU reactors 
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3.2.2 FC Geometry and Operating Conditions used for FEA 

This section describes the geometry, dimensions and operating conditions of the FC analyzed using 

both 1D and 3D FEA. A simple schematic of the FC analyzed as an example in this chapter is 

shown in Figure 3.2. The PT is set as 6163.5 mm in length, 113.2 mm in (outer) diameter and 

4.191 mm in thickness; the CT is set as 5944 mm in length, 131.7 mm in (outer) diameter and 

1.372 mm in thickness. The PT is divided into five spans based on the positioning of the four tight 

fitting garter springs. Spans S1, S5 and S3 are identified as the outlet, inlet and central spans, 

respectively, while Spans S2 and S4 are identified as internal spans. The initial gap between the 

PT and CT is set as 7.878 mm, which is a nominal value. The right end of the channel is assumed 

to be the inlet for the coolant and is allowed to be axially free, while the left end is assumed to be 

the outlet and it is assumed to be the fixed end. It is important to note that the back end of the PT 

is placed at the outlet end in this example. A note is due here regarding the coolant flow direction 

as an important factor affecting the deformation profile of PTs in CANDU reactors. 

Dimensional changes of PTs are affected by the coolant flow orientation relative to the tube end 

that appeared first from the hot extrusion press. The tube end emerging first as a result of hot-

extrusion is termed as the ‘front end’ and the last emerging end is termed as the ‘back end’. The 

back ends of the PT have a higher ultimate tensile and yield strength than the front ends. This 

variability in mechanical properties from back to front end and the coolant flow direction with 

respect to the end of the PT has an influence on the diametral strain profile of PTs (e.g., see Figs. 

2.1.1 and 2.1.3 in (Holt, 2008)). In contrast, when the back end is at the inlet end of the channel, 

the diametral profile has a more symmetrical shape (e.g., see Fig. 2.1.3 in (Holt, 2008)). In this 
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chapter, the analysis results are based on the back end of the PT being placed at the outlet end of 

the FC. A more detailed analysis is performed using 3D FEA by considering different boundary 

conditions to study its influence on gap. The temperature, pressure and fast flux profiles used in 

the analysis are shown in Figure 3.3.  

 

Figure 3.2: A schematic of the CANDU FC analyzed 

 

Figure 3.3: Variation of fast neutron flux, pressure, and temperature along the PT 
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3.2.3 Mechanical Deformation Models of PT and CT  

3.2.3.1 Elastic properties of PT and CT 

Both Zr-2.5Nb and Zircaloy-2 materials used for the manufacturing of PTs and CTs have  

anisotropic material properties in the axial, circumferential and radial directions of the tube, 

respectively (Holt et al., 2003). These anisotropic properties are prominent due to the 

microstructure and crystallographic texture (i.e., preferred crystallographic orientation) of 

elongated hexagonal-close-packed (hcp) α-Zr grains developed during the extrusion process 

(Bickel & Griffiths, 2007, 2008; Saibaba et al., 2013). The elastic properties of these materials are 

given in Table 3.1.  

Table 3.1: Elastic properties of PT and CT (CSA N285.8, 2015; Northwood et al., 1975; Pan et 

al., 2010) 

Elastic properties 
FC components 

Pressure tube, PT Calandria tube, CT 

 
Elastic modulus (GPa) Figure 3.4 90.8 

Poisson’s ratio 0.4 0.4 
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Figure 3.4: Variation of modulus of elasticity in the PT (temperature-dependent) 

3.2.3.2 Pressure Tube Creep Deformation Equation  

To describe the deformation behaviour of PTs under a multi-axial stress state, an ‘anisotropic 

deformation equation’ is required for anisotropic creep and growth of the material. Combined with 

the equivalent equation for the CT, such an equation can then be used as input to a finite element 

model (FEM) to predict the deformation of the fuel channel, and in particular the sag and the 

potential for PT-to-CT contact. The simplest anisotropic formulation for creep is that derived by 

Ross-Ross et al. (Ross-Ross et al., 1972) using Hill’s method (Hill, 1998). Such an equation 

contains three independent anisotropy parameters, and thus requires the measurement of three 

independent deformation rates under at least two different stress states. The parameters for such a 

model cannot, therefore, be derived solely from the elongation and diametral strain data from a 

PT.  

The first deformation equations separating creep and growth were developed in the late 1970s 

(Holt, 1979; Ibrahim & Holt, 1980). The anisotropic effects of texture were taken into account by 
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averaging the behaviour of individual crystals, assuming certain strain-producing mechanisms at 

the single crystal level in what is referred to as a ‘polycrystalline model’. This was a ‘lower bound’ 

polycrystalline model, which ignores the fact that different orientations of crystals have different 

strain tensors. The anisotropy of the polycrystal (i.e., the PT) depends on the relative contributions 

of the strain mechanisms at the single crystal level. This was derived from bent beam uniaxial 

stress relaxation tests in which the growth component does not contribute to the measured strain 

(Causey, 1974; Causey et al., 1984; Coleman et al., 1976; Fraser et al., 1973) and allowed the 

prediction of the creep anisotropy of a PT under biaxial loading. The growth anisotropy was 

derived again using a lower bound polycrystalline model, by assuming, that at the single crystal 

level, dislocations were the sinks for SIAs, and grain boundaries were the sinks for vacancies. 

Once the anisotropy of creep and growth is defined, their contributions to elongation and diametral 

strain in a given power reactor could be derived from the elongation and diametral strain data for 

that reactor, and the response of a PT to a multi-axial stress state could be predicted. 

In the mid 1980s, an ‘upper bound’ approach was used (in which all crystals are assumed to exhibit 

the same strain tensor) to study the effects of interactions between the crystals (Holt et al., 1989; 

Holt & Causey, 1997). The approach was developed mainly to explain the irradiation growth 

response of CT materials (Fidleris et al., 1985; Holt et al., 1989). The parameters of the model 

were derived by the same methodology as those for the earlier lower bound model, but including 

data for creep in shear as well as stress relaxation (Causey et al., 1984). At the same time finite 

element methods were used to calculate the sag more accurately (Sauvé, 1987). Both the upper 

and lower bound approaches can lead to systematic errors in predictions for stress tensors different 

from those for which the data are obtained to normalize the model. 
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The discontinuities of strain or stress at the grain boundaries consistent with the lower bound and 

upper bound models are due to the lack of self-consistency between the deformation of the 

individual grains and the deformation of the polycrystal. These discontinuities have successfully 

been eliminated by the adoption of a self-consistent model that was initially proposed by Woo in 

1985 (Woo, 1985) and in 1987 (Woo, 1987) and later by Causey et. al. (Causey et al., 1988) and 

Tomé et. al.(Tomé et al., 1993). Based on the work of Woo and in particular by Tomé (Tomé et 

al., 1993) a ‘self-consistent polycrystalline model’ called SELFPOLY, was developed, which 

allowed for individual crystals to deform differently, but under constraints imposed by the 

surrounding matrix of crystals with different orientations. The single crystal creep compliances 

and growth tensor are derived from in-reactor data for polycrystalline PT and PT-like materials 

tested with a range of stress tensors including uniaxial tension, biaxial tension and shear 

(Christodoulou et al., 1993; Tomé et al., 1994). For the first time the single crystal growth 

parameters could be based on growth data obtained from tests in high flux reactors (Holt et al., 

2000; Holt & Fleck, 1991). This model, which is currently in use, represents the behaviour of the 

tubes quite well over a narrow range of textures close to those of PTs. However, there are 

inconsistencies in the predicted creep anisotropy when the texture is changed significantly (Causey 

et al., 1994).  

The self-consistent approach offers a powerful tool to predict polycrystalline behaviour from 

single crystal properties taking into account material parameters such as crystallographic texture, 

elastic properties, grain morphology etc. However, the basic physical parameters in the single 

crystal level that are needed to construct reliable mechanistic models to predict the deformation of 

even a pure Zr single crystal are not known (e.g., mobility and anisotropy, configuration, and 
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elastic properties of point defects, structures of dislocation cores and the influence of impurity 

atoms on these characteristics). Therefore, reliance on a phenomenological approach is still 

required. 

The in-reactor deformation rate of PTs is based on the equation described in (Christodoulou et al., 

1996) that assume that long term steady-state deformation consists of separable, additive 

components from three physical mechanisms, namely: thermal creep, irradiation creep and 

irradiation growth. The in-reactor deformation rate is approximated as the linear sum of individual 

contributions from these mechanisms, namely: 

 휀�̇�
𝑐 = 휀�̇�

𝑡𝑐 + 휀�̇�
𝑖𝑐 + 휀�̇�

𝑖𝑔
 (3.1) 

where 휀̇ is strain rate, subscript 𝑑 indicates the tube direction (axial, transverse and radial) and 

superscripts 𝑐, 𝑡𝑐, 𝑖𝑐 and 𝑖𝑔 indicate total creep, thermal creep, irradiation creep and irradiation 

growth, respectively. As was mentioned previously, the directionality dependence is due to the 

anisotropic nature of these mechanisms (Causey, 1981; Holt et al., 2003; Ross-Ross et al., 1972), 

which contribute to length, thickness as well as diametral changes. The contributions to the total 

strain rate from each of these mechanisms are functions of operating variables such as applied 

stress from the internal pressure, temperature and fast neutron flux as given: 

 휀�̇�
𝑡𝑐 = [𝐾1𝐶1

𝑑𝜎1 + 𝐾2𝐶2
𝑑𝜎2

2]𝑒−𝑄1 𝑇⁄ + 𝐾3𝐶1
𝑑𝜎1𝑒−𝑄3 𝑇⁄  (3.2) 

 휀�̇�
𝑖𝑐 = 𝐾𝑐𝐾4(𝑥)𝐶4

𝑑(𝑥)𝜎(𝑥)𝜙[𝑒−𝑄4 𝑇⁄ + 𝐾5] (3.3) 

 휀�̇�
𝑖𝑔

= 𝐾𝑔𝐾6(𝑥, 𝜙𝑡)𝐶6
𝑑(𝑥)𝜙𝑒−𝑄6 𝑇⁄  (3.4) 

The in-reactor thermal creep component has two terms that dominate at temperatures above and 

below 570 K, respectively. The terms in the equations above are defined as follows:  
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𝐾1, 𝐾2 are constants for high temperature in-reactor thermal creep 

𝐾3 is constant for low temperature in-reactor thermal creep 

𝐾𝑐 and 𝐾𝑔 are constants defining the material creep and growth rate due to irradiation 

𝐾4(𝑥) is a function describing the variation of irradiation creep due to microstructure variations 

along the tube length 

𝑥 is the distance from the back end of the tube 

𝐾6(𝑥, 𝜙𝑡) is a function describing the variation of irradiation growth due to variation of 

microstructure along the tube length as a function of fluence  

𝐶1
𝑑, 𝐶2

𝑑 are the anisotropy factors due to texture for in-reactor thermal creep in a given direction 𝑑 

for stress exponents of 1 and 2, respectively. 

𝐶4
𝑑(𝑥), 𝐶6

𝑑(𝑥) are anisotropy factors due to texture for irradiation creep and growth, respectively, 

in a given direction 𝑑 at position 𝑥 along the tube length 

𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄6, 𝐾5 are activation temperatures and constant, respectively 

𝜎1, 𝜎2 are the effective stresses for thermal creep and stress exponents n of 1 and 2, MPa  

𝜎(𝑥) is the effective stress for irradiation creep, MPa 

𝑇 is temperature, K  

𝜙 is fast flux, 𝑛/𝑚2/𝑠 (E>1 MeV) 

𝑡 is the irradiation time, s 

The equivalent stresses 𝜎1, 𝜎2 and 𝜎(𝑥) are related to the radial, axial and transverse stress 𝜎𝑟 , 𝜎𝑎  

and 𝜎𝑡, respectively, by means of the Hill’s anisotropy constants: 

 𝜎𝑖 = [𝐹𝑖(𝜎𝑎 − 𝜎𝑡)2 + 𝐺𝑖(𝜎𝑡 − 𝜎𝑟)2 + 𝐻𝑖(𝜎𝑟 − 𝜎𝑎)2]1 2⁄  (3.5) 
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The subscript i stands for 1, 2 or 𝜎𝑖  =  𝜎(𝑥) in the case of irradiation creep. The Hill’s anisotropy 

constants for irradiation creep depend on the distance, x, from the back end of the tubes, and for a 

6m tube this dependence is given by: 

 𝐹(𝑥) = 𝐹𝑏 + (𝐹𝑓 − 𝐹𝑏) 𝑥 6⁄  

𝐺(𝑥) = 𝐺𝑏 + (𝐺𝑓 − 𝐺𝑏) 𝑥 6⁄  

𝐻(𝑥) = 1.5 − 𝐹(𝑥) − 𝐺(𝑥) 

(3.6) 

where 𝐹𝑓 , 𝐹𝑏 , 𝐺𝑓 and 𝐺𝑏 are the values of Hill’s anisotropy constants F and G at the front and 

back end of the tube. The method used to obtain the values of the Hill’s anisotropy coefficients for 

irradiation creep is described in detail in (Christodoulou et al., 1996). These are average values 

derived from the crystallographic textures of power reactor PTs using the self-consistent 

polycrystalline model, SELFPOLY (Tomé et al., 1993), based on single crystal creep compliances. 

The eigenvalues of the single crystal creep compliance tensor describing pyramidal, prismatic and 

basal climb-assisted glide of dislocations in PT materials during in-reactor deformation were 

derived in (Christodoulou et al., 1993) and they are given in (Christodoulou et al., 1996). In 

(Christodoulou et al., 1993) experimental data from internally pressurised capsules, stress 

relaxation specimens and data from the Pickering NGS were used to derive the eigenvalues of the 

single crystal creep compliance tensor. 

The anisotropy factors due to texture for in-reactor irradiation or thermal creep are given by: 

 𝐶𝑖
𝑟 = [𝐻𝑖(𝜎𝑟 − 𝜎𝑎) − 𝐺𝑖(𝜎𝑡 − 𝜎𝑟)] 𝜎𝑖⁄  

𝐶𝑖
𝑡 = [𝐺𝑖(𝜎𝑡 − 𝜎𝑟) − 𝐹𝑖(𝜎𝑎 − 𝜎𝑡)] 𝜎𝑖⁄  

𝐶𝑖
𝑎 = [𝐹𝑖(𝜎𝑎 − 𝜎𝑡) − 𝐻𝑖(𝜎𝑟 − 𝜎𝑎)] 𝜎𝑖⁄  

  (3.7) 
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where i = 1, 2 or (x). The end-to-end effect of irradiation creep and irradiation growth along the 

length of the tube is described using the coefficients given by: 

 𝐾4(𝑥) = 𝐾41 + 𝐾42𝑥 

𝐾6(𝑥, 𝜙𝑡) = (𝐾61 + 𝐾62𝑥)(1 + 𝐶 𝐵⁄ [𝜙𝑡]) 

(3.8) 

where the parameters 𝐾41 and 𝐾42 are derived from experimental tests and, 𝐾61 and 𝐾62 are 

constants derived from the average end-to-end variation in grain thickness and from a theoretical 

model for the effect of grain thickness on growth (Fidleris, 1988). The constants C and B are related 

to the dependence of growth rate on fluence.  

The growth anisotropy factors are given by  

 𝐶6
𝑎(𝑥) = 𝐺𝑎

𝑏 + (𝐺𝑎
𝑓

− 𝐺𝑎
𝑏) 𝑥 6⁄  

𝐶6
𝑡(𝑥) = 𝐺𝑡

𝑏 + (𝐺𝑡
𝑓

− 𝐺𝑡
𝑏) 𝑥 6⁄  

𝐶6
𝑟(𝑥) = −𝐶6

𝑎(𝑥) − 𝐶6
𝑡(𝑥) 

 

(3.9) 

Here b

aG , f

aG , b

tG  and f

tG are anisotropy parameters derived from polycrystalline irradiation 

growth data from Osiris (R. G. Fleck et al., 1994). The single crystal growth strain rate tensors are 

deconvoluted from the polycrystalline data using SELFPOLY and the single crystal creep 

compliance coefficients mentioned above. SELFPOLY is then used to calculate Kg, 
b

aG , f

aG , b

tG  

and f

tG . The temperature dependence of growth represented by Q (~3000 K) is derived from the 

growth data from Osiris. 

Once the growth and thermal creep parameters are established, the irradiation creep rates can be 

extracted from the power reactor data (in this case data from the pressure tubes in Pickering A 
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were used to obtain biaxial data comprising only irradiation creep). Values of Kc, Q4 (~9900 K) 

and K5 (1.1 ×·10-7) could then be derived.  

3.2.3.3 Calandria Tube Creep Deformation Equation 

The deformation equation describing the in-reactor deformation of Zircaloy-2 CTs operating at 

moderator temperature and stresses (e.g., ~340 K and axial stresses in the range of -10 to +40 MPa) 

was proposed by Fidleris in (Fidleris et al., 1985). The CTs are exposed to fast neutron fluxes 

E > 1 MeV of ~77% of the flux that the PTs experience. From creep, stress relaxation and 

irradiation growth experiments, the total in-reactor creep rate of CT material can be expressed as: 

 휀�̇�
𝑐 = 휀�̇�

𝑖𝑐 + 휀̇𝑖𝑔 (3.10) 

where 휀̇ is strain rate, subscript 𝑑 indicates the direction (axial, transverse and radial) and 

superscripts 𝑐, 𝑖𝑐 and 𝑖𝑔 indicate total creep, irradiation creep and irradiation growth, respectively. 

The irradiation creep rate is given as:  

 휀�̇�
𝑐 = 𝐾𝑐𝐶𝑑𝜎𝜙 (3.11) 

The creep constant 𝐾𝑐 is given by 𝐾𝑐 = 𝐾1𝑒−𝐵𝜙𝑡 + 𝐾2, where 𝐾1 and 𝐾2 are material constants for 

transient and steady-state creep in units (n m-2s-1× MPa × h)-1, 𝜙 is fast flux, 𝑛/𝑚2/𝑠 (E > 1 

MeV), 𝐶𝑑 is the creep anisotropy factor in direction d given in terms of Hill’s constants F, G, and 

H, as 

 𝐶𝑟 = [𝐻(𝜎𝑟 − 𝜎𝑎) − 𝐺(𝜎𝑡 − 𝜎𝑟)] 𝜎⁄  

𝐶𝑡 = [𝐺(𝜎𝑡 − 𝜎𝑟) − 𝐹(𝜎𝑎 − 𝜎𝑡)] 𝜎⁄  

𝐶𝑎 = [𝐹(𝜎𝑎 − 𝜎𝑡) − 𝐻(𝜎𝑟 − 𝜎𝑎)] 𝜎⁄  

  (3.12) 
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Here σr, σt and σa are the radial, transverse and axial components of the applied stress tensor (MPa) 

and σ is the effective stress, given by 

 𝜎 = [𝐹(𝜎𝑎 − 𝜎𝑡)2 + 𝐺(𝜎𝑡 − 𝜎𝑟)2 + 𝐻(𝜎𝑟 − 𝜎𝑎)2]1 2⁄  (3.13) 

The growth deformation rate is given by: 

 휀̇𝑖𝑔 = (𝐺1𝑒−𝐵𝜙𝑡 + 𝐺2)𝜙 (3.14) 

where 𝐵 is the transient decay constant (n m-2s-1×h)-1, and 𝐺1 and 𝐺2 are material constants for 

transient and steady-state growth, (n m-2s-1×h)-1. The exponential term (Bt) refers to the 

integrated fast neutron fluence up to the given time. The material parameters depend on 

microstructural factors, namely, K1, K2 and B on the crystallographic texture and dislocation 

density, G1 and G2 on residual stresses as well as texture and dislocation density and the Hill’s 

constants on texture. Derivation of the values of these parameters for the different types of CTs 

used in CANDU reactors were derived by fitting these expressions to the measurements of gross 

sag from these units. 

The creep parameters were based on the results from stress relaxation tests and the observation 

that the creep rate depends on the dislocation density by the relationship 휀̇𝑐 ∝ 𝜌𝑛 where n is ~0.4. 

Moreover, the dependence of the Hill’s coefficients on crystallographic texture was analysed by 

means of self-consistent model that relates the creep behaviour of a polycrystal to that of single 

crystals. This is achieved by taking into account the crystallographic texture, dislocation density, 

grain shape and the intergranular stresses generated due to the crystallographic anisotropy 

(Christodoulou et al., 1993). Three independent creep compliances describing the behaviour of 

polycrystalline samples were obtained from creep tests on a reference material. Subsequently, 
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these polycrystalline creep compliances were used to derive the single crystal creep compliances 

that are consistent with the polycrystalline behaviour of the reference material. Once this step was 

carried out, the single crystal creep compliances were used to calculate the polycrystalline creep 

compliances for the remaining materials. It should be noted that the self-consistent model was used 

in two different ways. Firstly, it was used to establish the values of single creep compliances that 

are consistent with measured values from a reference material and then used in the opposite 

direction by employing these single crystal values to calculate the polycrystal creep compliance of 

other materials. It was shown that the predicted polycrystalline creep compliances agreed well with 

the measured values. The observed behaviour was consistent with a climb-assisted glide 

mechanism in which the creep strain is accommodated mainly by prismatic slip with smaller 

contributions from basal and pyramidal slip systems. 

3.3 Implementation of PT and CT material models in ABAQUS 

Along with the FC geometry, loading and boundary conditions, the material response to the fast 

neutron flux, applied pressure and temperature has to be properly modelled using the respective 

material deformation models. ABAQUS has a built-in library of phenomenological models that 

describe the deformation of many common materials, but it does not include models of specific 

materials that deform in an anisotropic fashion such as the in-reactor creep of Zr alloys. However, 

ABAQUS allows the incorporation of code describing a user-defined deformation model as a user 

defined subroutine called UMAT (ABAQUS). The UMAT is coded in FORTRAN programming 

language, and it describes the deformation model of each of the materials involved in the 

calculation. An elastic-viscoplastic analysis is used to model material response due to elastic 
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deformation and inelastic deformation due to creep of PT and CT. The anisotropic material 

behaviour was accounted for by using a linear elastic orthotropic model, and the creep equations 

of both the PT and CT were coded in the UMAT to simulate both the elastic and creep material 

responses. An explicit integration scheme was then used to solve the rate form of the deformation 

equation of PT and CT.  

3.3.1 Explicit Integration Scheme 

In addition to coding the material deformation models in UMAT, the user is also required to 

program a time-integration scheme for solving the rate form of those models. The goal is to 

compute the updated strain and stress at the end of each time increment. These updated values are 

then used in the equilibrium equations to solve for the element nodal displacements. An explicit 

time-integration scheme was used, and the stability condition was satisfied by taking appropriate 

smaller time steps. The implementation of this scheme in UMAT is as follows: 

The classical additive decomposition of strain approach similar to that used in metal plasticity 

problems was used, where the total strain increment is expressed as the sum of the elastic strain 

increment and of the plastic strain increment. As the problem at hand experiences creep 

deformations, using the classical additive decomposition of strain approach, the total strain 

increment is expressed as the sum of the elastic strain increment and of the creep strain increment: 

 ∆휀𝑑
𝑇 = ∆휀𝑑

𝑒 + ∆휀𝑑
𝑐 (3.15) 

where ∆휀 is the strain increment, subscript 𝑑 indicates the direction (axial, transverse and radial) 

and superscripts 𝑇, 𝑒 and 𝑐 indicate total, elastic and creep.  
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For each time increment, ∆𝑡, (note that the unit of time increment in this problem is in equivalent 

full power hours, EFPH) the creep rate was computed using Equation (3.1) for the PT and Equation 

(3.10) for the CT. The creep strain increment for a particular time increment can be then computed 

as: 

 ∆휀𝑑
𝑐 = 휀�̇�

𝑐  ∆𝑡 (3.16) 

Knowing the total strain increment, the elastic strain increment and stress increments can be 

computed as: 

 ∆휀𝑑
𝑒 = ∆휀𝑑

𝑇 − ∆휀𝑑
𝑐 (3.17) 

 

 ∆𝜎𝑑 = 𝐷 ∆휀𝑑
𝑒 (3.18) 

where 𝐷 is the orthotropic linear elastic matrix in plane stress condition. 

Suppose the stress tensor at the start of a time step 𝑡𝑛 was (𝜎𝑑)𝑡𝑛
, the updated stress (𝜎𝑑)𝑡𝑛+∆𝑡 

after the time increment ∆𝑡 can be computed as: 

 (𝜎𝑑)𝑡𝑛+∆𝑡 = (𝜎𝑑)𝑡𝑛
+ ∆𝜎𝑑 (3.19) 

 

3.3.2 Computational Procedure in ABAQUS using the UMAT 

For the specific problem at hand, the end objective of FEA is to compute the nodal displacements. 

In the process of solving for the displacements, the finite element formulation in ABAQUS (or 

any other finite element package) requires the computation of stress tensor at the Gauss integral 

points using the respective constitutive models, which are provided here by the UMAT. The 

UMAT includes the elastic and the in-reactor creep deformation equations of both the PT and CT. 
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The FC creep deformation analysis is completed in two steps. The first step (Step 1) involves the 

incremental application of internal pressure and all the gravitational loads using the appropriate 

material density of each FC component, which deforms the FC elastically (This step is described 

in detail for 1D and 3D FEM models in later sections). The second step (Step 2) involves the 

calculation of the deformation increment due to in-reactor creep and growth of the FC, which is 

the permanent component of the total deformation. The flowchart of the UMAT subroutine for in-

reactor deformation of FCs is shown in Figure 3.5 and is briefly described here:  

1) At the start of a time step 𝑡𝑛, the ABAQUS main program provides the UMAT with the stress 

tensor 𝜎𝑡𝑛
, the total strain, the total strain increment, the time increment ∆𝑡, and other problem 

specific information such as temperature and flux in this example.  

2) After entering the UMAT subroutine, the UMAT code first checks for the material name 

(‘MAT1’ for Zr-2.5Nb material of PT and ‘MAT2’ for Zircaloy-2 material of CT) and then for 

the step number (1 or 2). Based on these inputs, the corresponding models (i.e., elastic or creep) 

in the UMAT code are used to compute the strain increment.  

3) An explicit integration scheme is used to update the stress at the end of each time increment as 

 (𝜎𝑑)𝑡𝑛+∆𝑡 = (𝜎𝑑)𝑡𝑛
+ ∆𝜎𝑑. 

4) The updated stress tensor is passed to ABAQUS main code for solving for the nodal 

displacements. 
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Figure 3.5: Flowchart of UMAT subroutine implementation for FC deformation modelling 
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3.4 1D Finite Element Analysis of a CANDU FC 

3.4.1 Modelling details 

The main aim of developing a 1D beam model is to make a model as close as the FE beam model 

currently used by the nuclear industry, called as CDEPTH (Sauvé et al., 1989). The developed 1D 

beam model can be then used as a suitable replacement to the beam model currently used by the 

nuclear industry and to analyze the prediction accuracy of this model. Figure 3.6 shows the 

CDEPTH FE beam model of a FC taken from Sauvé et al. (Sauvé et al., 1989). These are 

proprietary FE codes and are hence unavailable to other investigators.   

 

Figure 3.6: The CDEPTH FE beam model of a fuel channel (Sauvé et al., 1989) 
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Therefore, in this section, a similar 1D FEM beam model of the CANDU FC was developed in 

ABAQUS software using the geometric details given in section 3.2.2, as shown in Figure 3.7. 

PIPE31 element was chosen from the Abaqus finite element package element library to model 

both the PT and CT. A PIPE31 element is a 2-noded linear Timoshenko beam element capable of 

modeling the combined effect of axial and bending deformation and is best suited to model thick 

or thin-walled hollow circular sections. Apart from generating axial and bending stresses, the pipe 

elements also generate the hoop stresses due to internal pressure. A total of 239 pipe elements were 

used to model the fuel channel assembly of which 121 elements were used to model the PT and 

118 elements to model the CT. The contact between the garter springs and the CT (GS-CT contact) 

were modeled using ITT31 elements, which are best suited to use with pipe elements and to model 

tube-to-tube contact. They are into contact when the GS-CT gap is reduced to zero. The initial 

PT-CT gap is taken as 7.878 mm, which is a nominal value.  

Figure 3.7 shows the loading conditions and boundary conditions used in the analysis. 

The following loading conditions are used: 

a) End slopes of nominal values are applied to both ends of the PT 

b) An axial force, 𝐹 = −2220𝑁 applied at the inlet of the PT 

c) Uniformly distributed loads of 𝑞𝑃𝑇 = −0.605 𝑁
𝑚𝑚⁄  and 𝑞𝐶𝑇 = 0.109 𝑁

𝑚𝑚⁄  applied on 

the PT and CT, respectively. 𝑞𝑃𝑇 includes weight of PT, fuel bundles and D2O; whereas 

𝑞𝐶𝑇 includes weight of CT and buoyancy force.  

d) Temperature and pressure profiles are applied on the PT (Figure 3.3). 

e) Fast neutron flux profiles applied on the PT (Figure 3.3). 

f) Fast neutron flux profile applied on the CT is assumed to be 77% of the PT. 
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The boundary conditions are: 

a) The left end of PT is fixed (outlet end) whereas the right end (inlet end) of PT is axially 

free.  

b) Both ends of the CT are fixed. 

 

Figure 3.7: A structural beam model representing the FC used in the analysis 

Using the 1D FE model and the corresponding UMAT, the analysis was performed up to 

220 kEFPH (thousand effective full power hours), which is the design life of a CANDU reactor. 

3.4.2 Output of 1D FEA    

A typical output of the 1D FEA of the FC is the axial elongation of the PT and the overall sag (or 

total vertical displacement) of PT and CT at any specified time.  
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3.4.2.1 Axial elongation 

The axial elongation of PT obtained from 1D FEA is plotted as a function of the neutron fluence 

in Figure 3.8, along with the data obtained from Figure 2.2.1 in (Holt, 2008). The slight bend in 

the predicted elongation is because the elongation rate increases gradually with time as was shown 

in (Christodoulou et al., 1996; Holt, 2008). From Figure 3.8, it is also evident that the calculated 

elongation is approximately equal to the average of that observed from in-service measurements, 

thus validating the prediction capability of the model.  

 

Figure 3.8: Predicted elongation as a function of fast neutron fluence using 1D FEA (averaged 

along the length of the PT) compared to experimental data from (Holt, 2008) 

3.4.2.2 FC Sag 

Figure 3.9 shows the PT sag profile, which continues to increase with time as expected. The 

maximum sag due to the application of gravitational loads is approximately 10 mm. The sag 
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continues to increase with reactor operating time, reaching a maximum of 56 mm by the FC 

end-of-life.  

 

Figure 3.9: Predicted PT sag profiles at various points in time in the service life of the FC using 

1D FEA (kEFPH = thousand equivalent full power hours) 

3.4.2.3 PT-CT gap 

The prediction of PT-CT gap is one of the main results obtained by using FEA for in-reactor 

deformation. The PT-CT gap along any axial location on the PT axis can be computed using the 

PT and CT sag profiles. Figure 3.10 shows the PT-CT gap profiles for various time points and as 

expected, the gap continues to reduce with time. The initial locations of the four garter springs are 

indicated by black down arrows shown at the top of this figure. The spans S1-S5 are also shown. 

A red arrow at the right side of the figure shows the garter spring thickness, which is the PT-CT 

gap at the contact location of the garter springs with the CT.  
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Figure 3.10: Predicted PT-CT gap profiles at various time points in the service life of the FC 

using 1D FEA (PT back end placed at the outlet) 

3.4.3 Limitations of 1D FEA  

The 1D FE model can predict the axial elongation with good accuracy. However, the main 

limitation of 1D beam models is its incapability in simulating diametral expansion and wall 

thinning of the PT. Apart from sag, the diametral expansion also influences the PT-CT gap 

significantly. Therefore, a beam model is incapable of predicting the diametral expansion, which 

in turn introduces error in PT-CT gap predictions. These limitations indicate the need of a 3D FE 

model for predicting all the life-limiting deformations in a CANDU FC.  
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3.5 3D Finite Element Analysis of a CANDU FC 

3.5.1 Modelling Details 

The 3D FEM model of the CANDU FC was developed in ABAQUS software using the geometric 

details given in section 3.2.2. To accurately model the deformation behaviour of the PT and CT, 

the SC8R continuum shell element was chosen as a suitable element type from the ABAQUS 

element library. It is an 8-noded hexahedron continuum shell element, which considers the 

topology of the element as continuum (similar to continuum solid elements), but its kinematic and 

constitutive behaviors are similar to conventional shell elements. Therefore, this element type has 

the following advantages:  

(1) The bending behaviour (sag) of both the PT and CT can be accurately modelled using a 

smaller number of elements that reduce the computational cost,  

(2) the model takes into account the 3D nature of the problem by considering the wall 

thickness of both the PT and CT (i.e., the presence of nodes at both inner and outer 

diameter) thus significantly increasing the accuracy of the gap and contact predictions, 

which was otherwise not possible using a conventional shell element, and  

(3) the model allows for the change in the thickness of the finite element due to Poisson effect, 

which significantly improves the prediction of diametral expansion and gap along the 

length of the PT.   

Conventional shell elements were used to model garter springs as rigid elements. A short section 

of the meshed PT, CT and a garter spring is shown in Figure 3.11.  
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Figure 3.11: A section of the 3D FEM model representing the PT, CT and garter spring 

Convergence tests were conducted to determine the optimal size of the finite elements. For this 

purpose, convergence of maximum sag of PT and CT subjected to gravitational loads was used. 

Figure 3.12 and Figure 3.13 show the results of a monotone convergence with increased mesh size 

used for modelling the PT and the CT, respectively. The PT is modelled with 7808 finite elements 

with a maximum aspect ratio of 2.7, whereas the CT is modelled with 7680 finite elements with a 

maximum aspect ratio of 2. 
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Figure 3.12: Convergence test result for finding the optimum number of elements for the 

modelling of a PT 

 

Figure 3.13: Convergence test result for finding the optimum number of elements for the 

modelling of a CT 



 

 61 

The following loading conditions were used in the analysis:  

a)  end slopes of the PT (the end-slopes were incorporated in the model by assigning a rigid 

body reference node at the centre of ends of the PT. ABAQUS allows these rigid nodes to 

be pinned with the nodes at the ends of the PT. The end-slopes were then applied by 

assigning respective end-slope values to a rotational degree of freedom in the downward 

direction to these nodes leading to a tilt at the ends.), 

b)  a compressive force applied axially at the inlet end of the PT, F = −2200 N resulting from 

the out-of-core hardware that appears to vary with time from tensile to compressive,  

c)  gravitational loads were applied by assigning appropriate densities to the PT material using 

the PT weight (~56 kg), the weight of fuel string (300kg) and the weight of D2O (~ 4.6 kg). 

Similarly, an appropriate material density was applied to the CT material to account for the 

weight of the CT and the buoyancy force acting on the CT, and 

d)  fast neutron flux (E > 1 MeV), pressure and temperature profiles applied on the PT as shown 

in Figure 3.3. The fast neutron flux profile applied on the CT is assumed to be 77% of the 

fast neutron flux profile applied on the PT. This value is based on the analysis of properties 

of a CT removed from Pickering Unit 2 after 86,880 EFPH and an accumulated fast neutron 

fluence of 6 × 1025 n/m2 (Ells et al., 1985). The PTs in Pickering Unit 2 were exposed to a 

maximum fast neutron flux of ~ 2.5 × 1017 n/m2/s. Therefore, the accumulated fast neutron 

fluence of the PT would be 7.8 × 1025 n/m2 and the ratio 6.0/7.8 ~ 0.77. 

The boundary conditions are:  

a) the right side of the PT (inlet end) is axially free, and 

b) the left side of the PT (outlet end) is fixed in all directions  
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c) both ends of the CT are fixed in all directions 

The following key assumptions were made in the 3D modelling: 

• The principal axes of the tubes are coincident with the axes of anisotropy due to the 

observed in-reactor deformation. 

• An orthotropic material in plane stress condition is considered.  

• The deformation of garter springs was considered insignificant compared to the 

deformation of PT and CT (Previous studies show that the assumption of garter springs as 

rigid is valid (Leitch, 2004)).  

• Tight-fitting garter springs 

• The width of garter spring was considered insignificant 

The contact between the CT and garter springs was modelled using the pressure-overclosure 

relation and a frictionless contact was assumed. This relation defines the amount of contact 

pressure generated in the normal direction for a certain amount of overclosure (or penetration). At 

the start of the analysis, the overclosure is zero since there is no contact between the garter springs 

and CT. With the application of gravitational loads and creep deformation, the PT starts to sag and 

applies a contact pressure on CT through the garter springs. The garter springs come into contact 

with CT at different time points and exert different pressure. 

Using the developed 3D FE model and the corresponding UMAT, the analysis was performed up 

to 220 kEFPH. 
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3.5.2 3D Finite Element Analysis Output 

This section deals with a detailed discussion of the FEA results of the in-reactor FC deformation 

analysis. The analysis is carried out in terms of axial elongation, diametral expansion, wall thinning 

and sag of both the PT and CT results. A typical deformed shape of the FC following 3D FEA is 

shown in Figure 3.14 along with reported logarithmic strain measure in circumferential direction. 

The sag results are further post-processed to obtain PT-CT gap. As was mentioned previously, five 

spans are defined in a FC configuration with four spacers. The span S1 is the outlet span defined 

between the outlet end and the first spacer; likewise, the span S5 is the inlet span defined between 

the fourth spacer and the inlet end. Spans S2 and S4 are internal spans, while S3 is the central span.  

 

Figure 3.14: Deformed geometry of a FC following 3D FEA at 161615 kEFPH (The left end is 

the outlet end of PT) 
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3.5.2.1 Fuel Channel Sag 

The prediction of PT and CT sag is one of the crucial outputs obtained from the FEA. The FC sag 

is the total vertical displacement of both tubes due to the initial gravitational loads and the 

in-reactor creep. The predicted sag profiles of PT and CT are shown in Figure 3.15 and Figure 

3.16, respectively. Initially, the PT starts to sag due to gravitational loads. In time, the garter 

springs come into contact with the CT initiating the sag of the CT. Therefore, the PT sag is equal 

to CT sag plus the (Initial PT-CT gap – GS diameter) at the contact locations. Namely, PT sag will 

be greater than that of the CT, since the PT starts to sag before the CT. In the example here, the 

initial PT-CT gap is 7.878 mm, the GS diameter is 4.83 mm and their difference is 3.048 mm. As 

a result, at contact locations PT sag is equal to CT sag + 3.048. This can be verified in Figure 3.15 

and Figure 3.16. With additional reactor operating time, the overall sag continues to increase due 

to in-reactor creep and growth.  

 

Figure 3.15: Predicted profiles of PT sag at various times in the operating life of the FC 
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Figure 3.16: Predicted profiles of CT sag at various times in the operating life of the FC 

3.5.2.2 Axial elongation of PT 

The total strain rate and the strain rate contribution from individual deformation mechanisms can 

be extracted from the UMAT. Figure 3.17 shows the axial strain rate along the pressure tube 

computed at three different operating intervals. It is interesting to observe that the axial strain rate 

profile resembles the variation of the fast neutron flux experienced by the PT (Figure 3.3). The 

axial deformation rate varies along the PT length and increases gradually with reactor operating 

time. However, the total length of the PT at any given time (namely, the total axial strain) is the 

weighted sum of all the local axial creep rates along the length of the tube times the elapsed time. 

Note that the ripples at 4 different axial locations are due to the presence of the garter springs. The 

average value of the axial deformation rate at 50, 150 and 220 kEFPH can be calculated from these 

profiles and they are 1 × 10-7, 1.17 × 10-7 and 1.3 × 10-7 /h, respectively. Given that 7 kEFPH is 
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approximately the number of full power hours in one calendar year, the axial rates mentioned 

above correspond to strain increments of 7 × 10-4, 8.2 × 10-4 and 9.1 × 10-4, respectively. In terms 

of axial elongation, these stain increments correspond to 4.3, 5 and 5.6 mm/year, namely values 

consistent with those that are observed in current CANDU units.  

The contribution of the individual deformation mechanisms towards the total axial strain rate at 

150 kEFPH is shown in Figure 3.18. As expected, the most significant contribution towards axial 

elongation is from irradiation creep, followed by irradiation growth, whereas there is a very small 

contribution from thermal creep.  

 

 

Figure 3.17: Predicted axial strain rates at three different operating intervals 
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Figure 3.18: Contributions of each deformation mechanism towards the axial strain rate at 150 

kEFPH 

Figure 3.19 shows the comparison of the calculated axial elongation (solid red line) as a function 

of fast neutron fluence compared to the data (dotted lines) obtained from Fig. 2.2.1 in (Holt, 2008). 

The slight upward bend in the calculated elongation is because the elongation rate increases 

gradually with time as was shown in (Christodoulou et al., 1996; Holt, 2008; Holt & Wong, 2002). 

It is also evident that the calculated elongation is approximately equal to the average of the values 

observed from in-service measurements.  
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Figure 3.19: Calculated axial elongation compared to experimental data from (Holt, 2008) 

3.5.2.3 Diametral Expansion of PTs 

Diametral profiles of the PT at different time intervals are presented in Figure 3.20. The diameter 

exhibits a peak toward the outlet end, which is characteristic of tubes with their back end located 

at the outlet. The diameter of the PT tends to a nominal value (ID = 104.818 mm) at the ends of 

the tubes, as expected. The position of the four spacers is clearly evident in this figure. The 

diameter at a given axial location along the length of the PT increases linearly with time as is 

shown in Figure 3.21, which shows the variation of the diameter with time at five axial locations 

of the PT. These axial locations are approximately in the middle of each of the five spans and they 

are measured from the outlet end. The diametral deformation rate at each location is then 

determined as the slope of the best fit straight line as presented in Table 3.2. The calculated peak 

diametral rate is approximately 1.4 × 10-7 /h. This value compares well with (albeit somewhat 

lower than) the peak rate obtained from Figure 2.1.1 in (Holt, 2008) at 130 kEFPH, i.e. 1.5 × 10-7 

/h. 
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Figure 3.20: Predicted diametral PT profiles at different time intervals (the PT back end was 

placed at the outlet end) 

 

 

Figure 3.21: Predicted diametral expansion vs. time at five axial locations along the PT (the axial 

location is measured from the outlet end) 
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Table 3.2: Average diametral deformation rate calculated over the design life of a CANDU unit 

(220 kEFPH). 

Axial location from the outlet end 

(m) 

Diametral rate × 10−2 

(mm/kEFPH) 

 

Coefficient 

of correlation 

 

     0.74 (outlet span S1) 0.86 0.999954 

     1.93 (internal span S2) 1.45 0.999561 

     2.9 (central span S3) 1.3 0.998906 

     4.0 (internal span S4) 1.06 0.998001 

     5.3 (inlet span S5) 0.52 0.999236 

 

The contribution of individual deformation mechanisms towards the total diametral strain rate at 

150 kEFPH is shown in Figure 3.22. Irradiation creep has the most significant contribution to the 

diametral strain, while thermal creep has only a very small effect. Irradiation growth has a negative 

contribution to the diametral strain, which is beneficial because it reduces the peak diametral strain 

rate by about 13% (i.e., from about 1.6 × 10-7 /h to about 1.4 × 10-7 /h, see Figure 3.20 above). 
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Figure 3.22: Contributions of each deformation mechanism to the diametral strain rate at 

150 kEFPH 

3.5.2.4 Wall Thinning of PTs 

In-reactor deformation of FCs occurs at constant volume, namely the sum of strains in the three 

main PT directions adds to zero. Therefore, as the diametral expansion and axial elongation are 

positive, this results in a gradual decrease of the wall thickness with time, as shown in Figure 3.23. 

Note that the shape of wall thickness profiles appears to be the mirror image of the diametral 

profiles.   
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Figure 3.23: Predicted wall thickness profiles at various time intervals in the operating life of the 

FC (PT back end placed at the outlet) 

Figure 3.24 shows the variation of wall thickness with time at five different axial locations along 

the PT. In general, the wall thickness shows a gradual non-linear temporal variation. The absolute 

wall thickness reduction rate increases slightly with time as shown in Figure 3.25 (note that the 

rate is negative). In general, the variation in rate is very close to linear. The apparent small increase 

in the absolute value of the thickness rate is due to the dependence of the irradiation growth rate 

on fast fluence. While the thickness rate exhibits this slight increase with fluence, the elongation 

rate exhibits a somewhat lower rate in the early stages of the operating life. 
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Figure 3.24: Predicted wall thickness vs. time at different axial locations along the pressure tube 

(axial locations measured from the outlet end) 

 

 

Figure 3.25: Calculated wall thickness rate vs. time at different axial locations along the pressure 

tube (axial locations measured from the outlet end) 
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3.5.2.5 PT-CT Gap 

The prediction of PT-CT gap is one of the main results obtained by using FEA for in-reactor 

deformation. The PT-CT gap along any axial location on the PT axis can be computed using the 

PT and CT sag profiles. Accurate computation of the gap profile is made possible by taking into 

account the wall thickness of both PT and CT, the vertical displacement (sag) of outer nodes of PT 

and inner nodes of CT is used. The gap profiles at various reactor operating intervals are shown in 

Figure 3.26. It can be clearly seen that the gap is reducing over time as a result of the increasing 

PT sag. The red arrow on the right side of the figure shows the garter spring thickness, which is 

the PT-CT gap at the contact location of the garter springs with the CT. As the unit reaches its 

end-of-life time (i.e., times > 200 kEFPH), Span S5 (inlet span) turns out to be the most critical 

one since the gap is minimum in this region. The gap results can also be used for establishing the 

time to contact or time to reach a specific value of minimum gap for the purpose of deciding the 

optimum time for in-service inspections. 

The profile of PT-CT gap from outlet to inlet is fairly asymmetric due to the following reasons: 

(1) the anisotropy in the mechanical properties of the Zr-2.5 Nb alloy, which varies from the back 

end to the front end, (2) an increment in the coolant temperature from inlet to outlet, (3) a decrease 

in the internal pressure from the inlet to the outlet, (4) the different lengths of the five spans, and 

(5) the different boundary conditions at the outlet and inlet ends, which influence the axial 

movement of the FC. 



 

 75 

 

Figure 3.26: Predicted PT-CT gap profiles at various time intervals in the operating life of the FC 

(PT back end placed at the outlet) 

3.5.3 3D FEA Results Based on Different FC Configurations 

The example analyzed in the previous section was based on two criteria: 1) the outlet end of the 

PT is fixed, and inlet end is free, 2) the PT back end is placed at the outlet end. It must be clearly 

mentioned here that this arrangement of boundary conditions and PT orientation is not the same 

for all FCs in a reactor core. They vary from unit to unit and affect the maintenance and operating 

history of FCs in CANDU reactors. Moreover, the FCs are “reconfigured” to accommodate the 

axial elongation at both ends of the PT, a process that takes place approximately at halfway of 

operating life. Each of these factors can significantly affect the PT-CT gap, the location of contact 

and the time to contact. Therefore, the FEM must be able to model all these scenarios. This section 
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discusses the results based on different combinations of boundary conditions and shows the 

differences in gap predictions.  

To determine the difference in gap profiles based on various boundary conditions, the following 

analyses were conducted:  

a) The gap profile at 175 kEFPH was predicted by keeping the outlet end fixed and the inlet 

end free (similar to the previously described analysis).  

b) The gap profile at 175 kEFPH was predicted by keeping the inlet end fixed and the outlet 

end free.  

c) The gap profile at 175 kEFPH was predicted by keeping the outlet end fixed and the inlet 

end free up to 120 kEFPH and then changing the boundary conditions to simulate the inlet 

end fixed and the outlet end free for the rest of 100 kEFPH operating time (i.e., 

reconfiguration was done at 120 kEFPH).  

It is important to note that the back end of the PT was placed at the outlet end for all these analyses.  

Figure 3.27 shows the comparison of gap profiles at 175 kEFPH for these three cases. The changes 

made to the boundary conditions have a significant effect on the gap profile. The outlet span (S1) 

becomes the most critical span instead of the inlet span in the case of free-end outlets and 

reconfigured FCs as they approach end-of-life. This example shows the influence of boundary 

conditions on PT-CT gap and the importance of considering the configuration of a FC in PT-CT 

gap computations, location of contact and time to contact. 
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Figure 3.27: Comparison of predicted PT-CT gap profiles at 175 kEFPH for three different 

boundary conditions (PT back end is always at the outlet) 

3.6 Limitations of 3D FEM Model 

The current 3D FEM model predicts only the mean diameter and doesn’t give a significant ovality 

at locations other than the locations of the spacers. The ovality in pressure tubes is obtained due to 

the variation in flux and temperature along the circumference of the tube and also due to local 

deformation at spacer locations. With diametral expansion, the fuel bundle sits at the bottom part 

of the tube. Therefore, the bottom part of the tube is exposed to more flux and temperature 

compared to the upper part, which introduces variation in diametral strain along the circumference 

and contribute to ovality, which gives minimum, mean and maximum diameter. To incorporate 

this behavior in the FE model, the relation between time and variation in flux and/or temperature 
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must be understood, which can be then coded in UMAT. The current model considers constant 

temperature and flux distribution around the circumference which deforms all the material points 

equally, and therefore no diametral strain variations along the circumference. Therefore, the model 

predicts only the mean diameter. 

Due to the mean diameter estimation, the PT-CT gap is computed only from 6-o’clock position. 

However, the inspection results have shown that the minimum gap is not always at the 6-o’clock 

position. As already mentioned, when the variation in diameter along the circumference is 

accounted for, the minimum gap is possible at location other than 6 o’clock position. As this 

variation in diameter is not accounted for, the minimum gap is possible only at 6 o’clock position 

and all the PT-CT gap results discussed in this thesis were computed only from 6-o’clock position.  

3.7 Comparison between 3D and 1D FEA Results 

This section discusses the difference between the 1D and 3D FEA results for PT-CT contact 

assessment. The nuclear industry currently relies on 1D FEM for modelling the deformation 

response of FCs and making end-of-life decisions. A significant advantage of the 1D model over 

the 3D model is the computational cost. A 1D FEA can be completed in about 18 minutes, whereas 

a 3D FEA can take up to 3 hours. Therefore, it is important to compare both these models and to 

check for any significant differences in the deformation predictions. 

As already discussed in section 3.4.3, the 1D beam model cannot predict diametral expansion and 

wall thinning, which is a major drawback in obtaining a comparison of predictions with all the 

data obtained from the in-service gauging of the tubes. Figure 3.28 shows the comparison of gap 

profiles at 220,000 EFPH predicted by the 1D and 3D FEM models. It is important to note that the 
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1D FEM substantially underestimates the gap along the whole length of the tube. The nuclear 

industry should take into account this aspect, particularly at a time when there are plans to extend 

the operating life of reactors well beyond the initial design target of 210,000 EFPH. Making 

end-of-life, and beyond, decisions based on 1D FEM results may therefore not be the most reliable 

of methods. 

 

Figure 3.28: Predicted PT-CT gap profiles at 220 kEFPH using 1D and 3D FEM models (PT 

back end placed at the outlet end) 

The underestimation of the gap profile can be further shown by predicting the time to reach a 

minimum gap of 1 mm. The 1D and 3D models predicted a time of 299 kEFPH and 261 kEFPH, 

respectively. Namely, the 1D model over-predicts the time by 38 kEFPH, which is equivalent to 

about 5.5 calendar years (assuming that one calendar year is about 7 kEFPH, or that a CANDU 

unit operates at roughly 80% full power over a calendar year). These results show the disadvantage 
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of using 1D FEM results to make end-of-life decisions. Therefore, it is evident that a 3D model is 

required for accurately predicting the in-reactor FC deformation when end-of-life decisions are 

required.   

3.8 Conclusions 

This chapter discusses the computational modelling of in-reactor FC deformation using 1D and 

3D FEM models in ABAQUS and the implementation of elastic and creep deformation models 

describing the in-reactor behaviour of PT and CT materials by means of UMAT subroutines in 

ABAQUS. The 1D FEM beam model was developed as a similar FE beam model used by the 

nuclear industry. The 3D FEM model can capture the complex nature of in-reactor deformation 

and can accurately predict the in-reactor dimensional changes. The use of continuum shell 

elements significantly improves the prediction of PT and CT sag, and most importantly the 

prediction of PT-CT gap by taking into account the tube thickness and diametral expansion of PT. 

The 3D FEA results obtained using different boundary conditions showed the capability of the 

model to correctly predict the FC dimensional changes in any FC configuration. 

The following observations are made based on the FEA results: 

• A full 3D FEM model is required for accurately modelling in-reactor deformation and 

predicting PT-CT gap, contact location and time to contact. 

• A comparison between the 1D and 3D FEA results showed a significant underestimation 

of gap by the 1D model. Making end-of-life decisions based on 1D FEM results would 

therefore be a less reliable estimate.  

• The boundary conditions significantly influence the PT-CT gap profiles. 
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In short, the developed 3D FEM can accurately simulate the dimensional changes of CANDU 

FCs and can be a useful tool for the nuclear industry in making confident and cost-effective 

decisions.  
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Chapter 4 

Development of Surrogate Models and Calibration Methods for the 

3D prediction of In-Service Deformation in CANDU FCs 

 

4.1 Introduction 

4.1.1 Need for Surrogate Model and Calibration 

The ageing mechanisms of CANDU FCs limit the useful operating life and the maximum power 

output of CANDU power reactors. For optimising the plant life management (PLiM) of existing 

power reactors, the prediction of future in-reactor deformation of PTs using physically based 

models is necessary. As shown in the previous chapter, a 3D FEM model can be used to predict 

the in-reactor deformation with sufficient confidence level. However, these models are 

computationally expensive, and it becomes cumbersome to use these models frequently, especially 

as a quick access tool for making decisions in the industry. The nuclear industry often prefers to 

have models which are readily accessible, and which predict the quantity of interest using a simple 

equation or model (e.g., use of closed form equations to predict peak stress at a blunt flaw). These 

closed form equations or models are developed based on the understanding of physical 

mechanisms and parameters influencing the quantity of interest and through proper validation. A 

similar approach can be used to develop simple-to-evaluate surrogate models by utilizing the 

simulation results of an expensive-to-evaluate 3D FEM model. Once the surrogate model is 

validated and verified, it can replace the computationally expensive 3D FEM model. Therefore, 

surrogate models can be used as approximate models which could mimic the behaviour of the FEM 
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model as close as possible while being computationally cheap to evaluate. The surrogate models 

can be then used for the purpose of predictions, calibration of FEM models and performing 

probabilistic analysis, which would give a significant reduction in the computational cost of 

performing these analyses.  

4.1.2 Objective 

The main objective of this chapter is to develop surrogate models for diametral creep in PTs and 

surrogate models of PT-CT gap profiles. The first objective is to study the diametral creep 

behaviour from 3D FEA leading to diametral expansion of PTs and to utilize the understanding in 

developing a calibration and surrogate modelling approach by accounting for the observed 

variability in diametral strains due to material uncertainties. The surrogate model predictions are 

then validated by comparing against inspection data. The second objective is to investigate and 

predict the diametral creep strain using 3D finite element analysis with realistic flux profile inputs. 

The third objective is to develop a surrogate model of PT-CT gap by studying the influence of 

important variables (creep factor and end-slopes) on PT-CT gap. The surrogate models are then 

validated and are checked for the application of calibration purpose.    

4.1.3 Organization 

The organization of this chapter is as follows. Section 4.2 discusses the calibration of 3D FE 

models for diametral creep predictions of PTs by introducing a scale parameter to account for the 

material uncertainty. Section 4.3 presents the investigation and calibration result of diametral creep 

strain predictions with realistic flux inputs. Section 4.4 presents the development of a surrogate 

model for diametral creep in PTs, which can be used to replace the 3D FE model. Section 4.5 
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presents the surrogate model development of PT-CT gap and the use of surrogate model in 

calibrating for PT-CT gap. Finally, conclusions are summarized in Section 4.6.   

4.2 Calibration of 3D FE Model for Diametral Creep Predictions in PTs 

4.2.1 General 

The previous chapters discussed the issues due to diametral expansion in PTs and the prediction 

of these life-limiting dimensional changes using 3D FEA. However, the deterministic 3D FE 

model does not account for the observed variability in the measured diametral strains. Previous 

studies have shown that in addition to variations in operating conditions, the observed deformation 

rates are significantly influenced by as-fabricated microstructural variables, which are mainly 

crystallographic texture and grain thickness (Bickel & Griffiths, 2007, 2008; Walters et al., 2015). 

The variability in these microstructural variables is due to variations in temperature and pressure 

occurring during PT manufacturing (Bickel & Griffiths, 2007, 2008; Walters et al., 2015), and they 

are also factors that affect the evolution of the microstructure in response to the irradiation damage 

occurring during operation (Griffiths et al., 2002). These variables affect both the anisotropy as 

well as the magnitude of the observed strain and are responsible for the tube-to-tube variability in 

deformation rates of PTs operating within the same reactor (Griffiths et al., 2002). Moreover, the 

crystallographic texture and grain structure also vary gradually from one end of the tube to the 

other due to the temperature and pressure changes occurring during the extrusion process, thus 

affecting the deformation profile along the length of the tube (Bickel & Griffiths, 2008).  
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The parameters accounting for these microstructural factors in the PT deformation equation are 

obtained such that the model predicts the average deformation behaviour. Therefore, the 3D FE 

model predicts only the mean behaviour of the tube deformation and needs an approach to calibrate 

the FE model to make comparisons against the measured diameter. A well calibrated model can 

be used to make future predictions and can be used as an efficient tool for assisting in optimized 

inspections. For example, CSA N285.4 Standard requires the dimensional examination of 

maximum internal diameter, the location of the maximum internal diameter, the maximum change 

in internal diameter since the previous examination, and the rate of change in diameter (CSA 

N285.4, 2010). The capability of a calibrated FE model for predicting these changes is analyzed 

in this section.   

4.2.2 Calibration Approach 

A CANDU reactor has 380 or 480 FCs depending on the reactor power rating. Each of these FCs 

have different operating conditions depending on the location inside the reactor core. The CSA 

N285.4 Standard requires the PTs to be inspected at regular intervals. As the large-scale 

inspections are difficult and capital intensive, only a handful of PTs are inspected from each quarter 

of the reactor (A reactor is divided into four quarters). An analyst should confirm that the diametral 

strain rate is as expected and safe to operate until next inspection. A 3D FE model can be used to 

model these channels and predict the dimensional changes. However, it is important to study how 

the material variability is influencing the diametral strains. This can be studied by comparing the 

3D FE predictions with the inspection data and use the understanding of prediction variability for 

making probabilistic decisions on uninspected population of FCs. A calibration approach can be 
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used in these scenarios to quantify the variability in predictions and measured quantities, as 

discussed next.   

The measured diametral data from 4 PTs (Hereby called as PT1, PT2, PT3 and PT4) located at 

various locations in a single quarter of the reactor core at 161615 EFPH were available. In this 

section, these FCs are analyzed using 3D FE model and the diametral strain at 161615 EFPH is 

predicted. The corresponding operating conditions of these FCs were used in the analysis. As 

already mentioned, the 3D FE model can simulate only the mean behaviour of a tube and the 

material uncertainty is not accounted for. Therefore, the diametral strain predicted by the 3D FE 

model using mean parameters is hereby called as a “nominal model”. The nominal model accounts 

for the contribution of operating conditions such as fast flux, temperature and internal pressure to 

the diametral strain. Therefore, any difference between the measured diametral strain and the 

predicted diametral strain by the nominal model is assumed to be from the material variability.  

For example, Figure 4.1 shows the comparison of measured diametral strain vs 3D FEA predicted 

diametral strain for PT1. It is clear that the 3D FEA overpredicts the diametral strain for this 

channel. The difference is due to the deviation of the microstructural parameters from the average. 

To make future predictions, the 3D FE model must be calibrated such that it correctly predicts the 

diametral strain of a given FC. For this purpose, a simple and effective approach is used here by 

introducing a factor called as a “scale factor”, which is defined as the ratio of the maximum 

measured diametral strain to the maximum 3D FEA nominal diametral strain. For a calibrated 

model, the scale factor is multiplied with the nominal diametral strain at all axial locations, such 

that the nominal model is scaled by the multiplied factor, which significantly reduces the error at 

all axial locations and a zero error at the maximum diametral strain location which is of prime 
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interest. Therefore, the scale factor can be considered as a factor accounting for the material 

uncertainties.   

Figure 4.2 shows the comparison of measured, nominal and calibrated diametral strain for PT1. 

The scale factor was calculated as 0.8 for this channel. The calibrated model gives a very good 

agreement with the measured diametral strain. The scale factors obtained for PT2, PT3 and PT4 

are given in Table 4.1 and the diametral strain comparison plots are given in Appendix A.  

 

Figure 4.1: Comparison of measured diametral strain against 3D FEA predicted nominal 

diametral strain of PT1 at 161615 EFPH 
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Figure 4.2: Comparison of measured, nominal, and calibrated diametral strain of PT1 at 161615 

EFPH 

Table 4.1: Scale factor obtained for each FC following calibration 

Fuel Channel Scale factor 

PT1 0.795 

PT2 0.87 

PT3 0.94 

PT4 0.981 

 

4.2.2.1 Time invariant check 

A scale factor can aid in calibrating a 3D FE model prediction and therefore give good agreement 

with the measured data. However, it is important to check the validity of using this approach for 

making future predictions (i.e., to check whether the scale factor is dependent or invariant with 

time). For this purpose, a PT (Hereby called as PT5) with the availability of multiple diametral 

measurements was used. The diametral strain measurements are available at four different time 
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intervals (101,100 EFPH, 124,944 EFPH, 148,273 EFPH and 176,575 EFPH, respectively). The 

nominal prediction was initially made using 3D FEA at 101,100 EFPH and the model was then 

calibrated by finding the scale factor. A scale factor of 0.96 was obtained for this PT at 101,100 

EFPH. The nominal and calibrated predictions against the measured data is shown in Figure 4.3.  

The same scale factor was then used to make predictions of diametral strains at other operating 

intervals (i.e., at 124,944 EFPH, 148,273 EFPH and 176,575 EFPH, respectively) as shown in 

Figure 4.4. It is observed that the scale factor is time invariant as the same scale factor gives very 

close predictions at other time intervals. Therefore, a once calibrated 3D FE model can be 

confidently used to make future predictions.  

 

Figure 4.3: Comparison of measured, nominal, and calibrated diametral strain of PT5 at 101,100 

EFPH 
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Figure 4.4: Comparison of measured and calibrated diametral strain of PT5 at various time 

intervals 

 

4.3 Investigation and Calibration of Diametral Creep with Realistic Flux 

Profile Inputs 

4.3.1 Introduction 

By referring to the measured diametral profiles in the previous section (eg., Figure 4.3), it can be 

observed that the diametral profiles has dips along the axial locations. These dips are generated 

because of dips in flux profiles at these respective locations as a result of gaps in the fuel bundle 

arrangement. The previous FEA results were based on a smooth flux profile input which resulted 

in a smooth diametral profile prediction. Even though a smooth diametral profile result would 

suffice for the prediction and calibration purpose, this section specifically investigates the 

diametral creep strain at the dips using 3D FEA and realistic flux profile inputs. The flux profiles 
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are considered as a direct descriptor of diametral creep strains and are found to be scaled 

proportionally. However, the creep strain dip amplitudes at these local dip regions do not scale 

proportionally with flux.  In this section, the 3D FEA results are used to analyze the scale of flux 

dip and diametral creep strain dip at these local regions. The predicted profiles are then calibrated 

and compared with measured data using the same approach as discussed in previous section.  

4.3.2 Generation of Realistic Flux Profiles 

The arrangement of fuel bundles in a FC is shown in Figure 4.5. A typical FC has 12 fuel bundles, 

each with a length of 49.53 cm. As shown in Figure 4.5, the arrangement of fuel bundle is not 

continuous as there are gaps at the inter-bundle regions. This gap is called as stack-to-stack gap, 

which is the distance from a fuel stack end in one bundle to the nearest fuel stack end in an adjacent 

bundle. The absence of the fuel at these gaps causes a dip in fast neutron flux at these respective 

locations called as fast flux dip, which in turn introduces a dip in diametral creep profiles.  

 

Figure 4.5: Fuel bundle arrangement inside a fuel channel 

In this study, the same fuel channels discussed in section 4.2.2 are analyzed and the realistic flux 

profile generation of PT2 and PT3 are discussed in detail here. The reactor operator provides only 

the fast flux data obtained from bundle average power at 12 or 13 axial locations along the PT. 
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The flux data obtained from bundle average power for PT2 and PT3 are shown in Figure 4.6 along 

with the measured diametral creep strain profiles. It is clear from this figure that the low density 

of flux profile data compared to creep data requires careful modeling of a complete flux profile. 

In Figure 4.6, the vertical solid lines show the mid-bundle location of each fuel bundle and the 

dotted lines show the ends of each fuel bundle.  In CANDU FCs, there are two general types of 

fast flux profile, an M-profile and a cosine profile. From Figure 4.6, PT2 has an M shaped flux 

profile whereas PT3 has a cosine shaped flux profile. The M shaped flux profiles are generated at 

the centre of the reactor core, whereas the cosine shaped flux profiles are generated when moving 

further away from the reactor core centre. An M shaped profile is formed generally due to the 

presence of reactor mechanisms (these mechanisms are for reactor control or for parts of the 

shutdown system) normal to the channel that absorb neutrons.   

 

Figure 4.6: Flux data obtained from bundle average power and measured diametral creep strain 

at 161615 kEFPH for PT2 and PT3 
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A realistic flux profile is now generated from the available 13 flux data. The fast flux should be 

smoothly varying across fuel bundles. Therefore, an approach is used to construct a realistic fast 

flux profile by first fitting a sixth-degree polynomial to the mid-bundle flux data to create a smooth 

flux profile and then the flux dips were introduced at respective locations. A report from the 

nuclear industry was available which detailed the modelling of flux dips. The fast flux dip is taken 

as ~85% for the bundle joints with a stack-to-stack width of 1.437 cm. Although the stack-to-stack 

gap is only 1.437 cm (or 0.7185 cm in each bundle), the flux dip appeared to be significantly wider, 

over ~5 cm at the end of each bundle. Figure 4.7 shows variation in the fast flux dip as a function 

of the distance from the bundle joints. Based on this model, it is computed that the fast flux reaches 

to 100% at a distance of ~10 cm from the bundle joints. 

From the smoothly varying flux profiles generated using the fitted polynomial, a realistic fast flux 

profile was generated by introducing the dips at the respective locations of the bundle joints as 

shown in Figure 4.8 and Figure 4.9 for two different flux profile shapes. These flux profiles were 

used as an input to the FE model. Note that the analysis in Section 4.2.2 was based on a smooth 

flux profile obtained using the polynomial fit.  
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Figure 4.7: Fast flux dip in pressure tubes 

 

 

Figure 4.8: Comparison of smooth and realistic flux profile of PT2 
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Figure 4.9: Comparison of smooth and realistic flux profile of PT3 

4.3.3 FEA using realistic flux profile inputs 

3D FEA is used to predict the diametral creep of PT2 and PT3 using realistic flux profile inputs. 

The 3D meshed cross section of the FC with finer mesh at the flux dip locations is shown in Figure 

4.10. A Python script was developed to write the Abaqus input file for carefully discretizing and 

meshing the PT by considering the axial locations of each of the bundle joints, such that the flux 

dips are assigned to the appropriate nodes. A finer mesh of 4mm is used at the flux dip locations 

to accurately capture the diametral creep at these local regions. A total of 12 fuel bundles are 

arranged axially in the PT with each fuel bundle having a length of 49.53 cm. The current FE 

model had more than three times the number of elements when compared to the FE model used in 

the previous section, and therefore a higher computational cost.  
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Figure 4.10: 3D finite element model of the fuel channel with finer mesh at the flux dip locations 

4.3.3.1 Creep Strain Prediction at Flux Dip Locations 

As was mentioned in section 4.2.2, the parameter values accounting for the microstructural factors 

in the PT deformation equation are such that the model predicts the average deformation 

behaviour, which was called as a “nominal model”. The nominal model results are used to estimate 

the creep strain reduction at the flux dip locations. Figure 4.11 shows the nominal model diametral 

creep strain prediction of PT2 and Figure 4.12 shows a magnified figure of the maximum diametral 

strain location. Similarly, Figure 4.13 shows the nominal model diametral creep strain prediction 

of PT3 and Figure 4.14 shows a magnified figure of the maximum diametral strain location. By 

taking the second dip (at around axial location of 4.95 m) in Figure 4.12, the diametral strain at 

the dip location is ~ 2.875. In the absence of a flux dip, the diametral strain at this location is ~ 3.2. 

Therefore, the strain dip at this location can be estimated as 0.898 (89.8%). Similarly, by taking 
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the second dip (at around axial location of 4.4 m) in Figure 4.14, the diametral strain at the dip 

location is ~ 2.13. In the absence of a flux dip, the diametral strain at the same location is ~2.38 

from the smooth curve. Therefore, in the absence of a flux dip, the diametral strain at this location 

is ~ 2.38 and the strain dip at this location can be computed as 0.895 (89.5%).  

Even though the flux dip at the bundle joints is ~15%, the diametral creep does not drop by the 

same scale. From the FE results, the maximum diametral creep strain dip is ~10%. This trend was 

observed at all the flux dip locations with diametral creep strain dip varying around 10%. This is 

due to the effect that the material at the flux dip is restricted from freely reducing the diameter by 

the adjacent material points that is exposed to higher values of flux that result at higher diametral 

reductions. The FE model clearly captures this short-range effect at the inter-bundle locations. 

Therefore, the non-scale creep strain dip amplitudes at the local flux dip regions are because of 

material continuity. 

 

Figure 4.11: Nominal diametral strain prediction using 3D FEA and realistic flux profile input of 

PT2  
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Figure 4.12: Magnified view at maximum diametral strain location of PT2 

 

 

Figure 4.13: Nominal diametral strain prediction using 3D FEA and realistic flux profile input of 

PT3 
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Figure 4.14: Magnified view at maximum diametral strain location of PT3 

4.3.3.2 Calibration with Diametral Creep Strain Dip 

For calibration, the same approach as used in section 4.2.2 was used and the scale factors were 

computed to be the same as reported in Table 4.1. Figure 4.15 and Figure 4.16 shows the measured 

and the calibrated model predictions obtained by multiplying a scale factor to the diametral strain 

of the nominal model with dips. The calibrated model gives a very good agreement with the 

measured diametral strain and captures well the diametral creep along most of the axial locations. 

Another important finding is on the diametral strain at inter-bundle locations. As was observed for 

the measured data, the FE model successfully predicts the local diametral creep dips and 

demonstrates it to be not in scale with the flux dip.  
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Figure 4.15: Comparison of measured diametral strain against calibrated diametral strain of PT2 

at 161615 EFPH by accounting for flux dip 

 

 

Figure 4.16: Comparison of measured diametral strain against calibrated diametral strain of PT3 

at 161615 EFPH by accounting for flux dip 
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4.4 Development of a Surrogate Model for Diametral Creep in PTs 

4.4.1 Regression model using 3D FEA 

The main inspiration for developing a regression model for diametral creep in PTs is based on the 

observations from Figure 3.21 and Table 3.2, which shows a linear trend for diametral expansion 

with operating time along five axial locations. These axial locations were approximately in the 

middle of each of the five spans and they were measured from the outlet end. In this section, the 

analysis is extended to check the generality of this trend along the entire PT length. If the linear 

trend is observed at all axial locations, a regression model can be developed using linear regression 

of diametral strain vs operating time, and the slope would be giving the diametral strain rate at 

each axial location. For this purpose, the prediction from 3D FEA were initially used. The 

following steps were used to develop and verify the regression model of diametral strain as a 

function of operating intervals: 

i. Fit a line using linear regression for diametral strain vs operating interval up to 150 kEFPH 

for each axial location.  

ii. Save the respective slope (strain rate) and intercept values obtained at each axial location 

in a matrix form. These are the coefficients for the regression model. 

iii. Use the regression model and predict the diametral strain or diameter for future time points.  

iv. Compare the regression model prediction of the diametral strain at a future time point with 

the FEA prediction.  

Each step given above was performed to check the development of a regression model. Initially, 

linear regression was performed for each axial location for an operating interval up to 150 kEFPH 
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using the 3D FE model. The R-square values at respective axial locations are shown in Figure 4.17 

and these values confirm high degree of linearity at all axial locations of the PT. The slope obtained 

following the linear regression analysis can be considered as the diametral strain rate along each 

axial location as shown in Figure 4.18. As expected, the slope along the PT length takes the shape 

of the diametral strain and the peak diametral strain rate is about 1.46 x 10-7 at around 1.6 m. 

Therefore, the regression model for the diametral strain can be modelled as 

 휀(𝑥, 𝑡) = 𝑏(𝑥) ∗ 𝑡 +  𝑏2(𝑥, 𝑡𝑟𝑒𝑓) (4.1) 

where 휀 is the diametral strain, 𝑥 is the axial location, 𝑡 is the operating interval in EFPH, 𝑏1 is the 

slope and 𝑏2 is the intercept of the nominal profile at a time 𝑡𝑟𝑒𝑓 < 𝑡. A nominal profile is the 

diametral strain profile obtained from 3D FEA using the mean deformation equation (i.e., no 

parameter to account for material uncertainty). It is important to mention here that the coefficients 

in the model are directly dependent on the operating conditions of a PT, mainly fast flux and 

temperature. The shape of the diametral profile is highly influenced by these parameters. 

Therefore, each PT in the reactor core will have the same regression model form but with different 

coefficient values along the length of the PT. The prediction capability of the regression model for 

a future time point is analyzed next.  
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Figure 4.17: R-square values obtained following linear regression at axial locations 

 

 

Figure 4.18: Slope obtained from linear regression of diametral strain and operating time 

The diametral strain was predicted using the linear regression model for 220 kEFPH. The diameter 

was then computed from diametral strain and compared with the FEA prediction as shown in 

Figure 4.19. The error in prediction was computed as the difference in prediction between the 

regression model and 3D FEA (𝐸𝑟𝑟𝑜𝑟 =  𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 −  𝐹𝐸𝐴 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟). 

The error for three different time interval predictions is plotted in Figure 4.20. The prediction error 
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increases with increase in time interval for a regression model using linear regression. This shows 

that the diametral increase is not strictly linear and not increasing at the same strain rate. The 

mechanism leading to the deviation from linearity is the irradiation growth strain rate dependence 

on fluence. The growth rate in PTs is negative and decreases with fluence. Since the regression 

model couldn’t account for the negative growth rate with time, this model always overpredicts the 

diametral strain by a small factor. To minimize the prediction error, a nonlinear form of regression 

model was developed as: 

 휀(𝑥, 𝑡) = 𝑏1(𝑥) ∗ 𝑡2  + 𝑏2(𝑥) ∗ 𝑡 +  𝑏3(𝑥, 𝑡𝑟𝑒𝑓) (4.2) 

where 휀 is the diametral strain, 𝑥 is the axial location, 𝑡 is the operating interval in EFPH, 𝑏1, 𝑏2 

and 𝑏3 are the coefficients obtained from nonlinear regression of the nominal profile at a time 

𝑡𝑟𝑒𝑓 < 𝑡. The same procedure of computing the coefficients for linear regression was performed 

using nonlinear regression up to 150 kEFPH, which gave an R-square value approximately equal 

to one. Using the obtained coefficients, the nonlinear form of regression model was used to predict 

the diameter at various time intervals and the corresponding error is shown in Figure 4.21. 

Compared to linear regression model, the nonlinear form of regression model significantly reduces 

the prediction error at all axial locations. Unlike linear model, the nonlinear model prediction error 

remains almost constant with increase in time interval, showing that the nonlinear model accounts 

for nonlinearity introduced by irradiation growth. Therefore, the nonlinear form of regression 

model was used as an appropriate model for diametral creep modelling. 
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Figure 4.19: Comparison of diameter predicted using the regression model and the FEA at 

220 kEFPH 

 

 

Figure 4.20: Error in diameter prediction between linear regression model and FEA at various 

time intervals 
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Figure 4.21: Error in diameter prediction between nonlinear regression model and FEA at 

various time intervals 

4.4.2  Surrogate Model Accounting for Material Uncertainty 

A significant advantage in the developing process of regression model is that it requires to run the 

3D FE model only up to a small operating time (e.g., up to 100 kEFPH or less) to obtain the fitting 

parameters. Once a regression model is developed based on the given operating conditions, it can 

be used to replace the 3D FE model for making future predictions. As described in section 4.2, the 

diametral strain is affected by material uncertainties and hence required a calibration approach. 

Therefore, for developing a regression model for practical use, it should be able to account for 

these uncertainties. The introduction of scale factor into the regression model will give a complete 

model, which can be then considered as a surrogate model. As the diametral strains along the entire 

axial location is multiplied by the same scale factor, the regression model in Equation (4.2) can be 

expressed in a calibrated form as: 
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 휀𝑐𝑎𝑙(𝑥, 𝑡) = 𝑆𝐹 ∗ [𝑏1(𝑥) ∗ 𝑡2  + 𝑏2(𝑥) ∗ 𝑡 +  𝑏3(𝑥, 𝑡𝑟𝑒𝑓)] (4.3) 

where 휀𝑐𝑎𝑙 is the calibrated diametral strain, 𝑆𝐹 is the scale factor, 𝑥 is the axial location, 𝑡 is the 

operating interval in EFPH, 𝑏1, 𝑏2 and 𝑏3 are the coefficients obtained from nonlinear regression 

of the nominal profile at a time 𝑡𝑟𝑒𝑓 < 𝑡. The scale factor can be calculated for any inspected 

channel by comparing the measured data with the nominal prediction. For uninspected channels, 

a probabilistic approach can be used by using the probability distribution of scale factor for making 

risk-informed decisions.  

The predictive capability of the surrogate model was validated by applying it to PT5, the PT which 

was used to validate the calibrated 3D FE model prediction in section 4.2.2.1. Nonlinear regression 

was performed up to 101,100 EFPH and the coefficients were saved in a matrix form. The scale 

factor was obtained as 0.96 as described in section 4.2.2.1. The surrogate model was then 

developed using the model in Equation (4.3) and the diametral strains were predicted for future 

time intervals and compared to the measured as shown in Figure 4.22. The nonlinear form of 

surrogate model gives a very good approximation of the diametral strains, and this shows the 

efficiency of the surrogate model. This simple form of surrogate model can now replace the 

computationally expensive 3D FE model for making diametral creep predictions.  
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Figure 4.22: Comparison of measured and surrogate model predicted diametral strain of PT5 at 

various time intervals 

 

4.5 Development of a Surrogate Model for PT-CT Gap  

4.5.1 General 

This section discusses the development of a surrogate model for PT-CT gap based on 3D FEA. 

The 3D FE model described in Chapter 2 is a deterministic model with nominal values of model 

parameters, and therefore predicts the nominal gap profile. However, the PT-CT gap is influenced 

by various uncertainties emanating from material properties and boundary conditions. The 

variability assessment in these parameters is established by comparing the predictions with data 

obtained from the in-service gauging of FCs and the statistical study of material inspection data 

(Nadeau, 2012; Nadeau et al., 2007). It is important to understand how the variability in these 

parameters influence the PT-CT gap. Using 3D FEA, this section studies the nature of PT-CT gap 
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evolution and the contribution of uncertain parameters towards the gap evolution. Based on the 

findings, a surrogate model is developed as a function of these uncertain parameters. The surrogate 

model is validated and the applicability of these models for PT-CT gap calibration is studied.   

4.5.2 Variables Affecting PT-CT Gap 

PT-CT gap is affected by several model parameters (Holt, 2008), which include the FC 

dimensions, loading history, material properties, coefficients of the various mechanisms in the 

analytical expressions describing PT and CT creep, and boundary conditions such as end slopes at 

the inlet and outlet ends of the channel. However, some variables do not exhibit any significant 

variation from their nominal design values, and so they are not likely to contribute to the risk of 

PT-CT contact in any appreciable manner. For example, the elastic modulus of zirconium alloys, 

weight of nuclear fuel and length of FC are modelled as deterministic constants due to insignificant 

variations. In this manner, most variables can be removed from the probabilistic analysis, except 

the two groups described next.  

The first group involves variables related to the deformation equations describing the in-reactor 

deformation of CT and PT alloys. A simplified approach is used to model the variation in 

deformation rates due to the unavailability of statistical information of various parameters involved 

in the creep deformation equation. A scaling factor called the creep factor is used to scale the 

overall creep strain computed by the nominal deformation equation (Nadeau, 2012). In the FE 

model, the creep factor was incorporated in the UMAT subroutine, and the scaling was performed 

by multiplying the creep strain increment computed by the corresponding deformation equation 

with the creep factor at each time increment. 
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The second most influential variable is the slope of the FC centre line at the inlet and outlet ends 

of the channel. Note that inlet and outlet ends are modelled as fixed ends with respect to the 

bending of FC, but the end slopes are not necessarily zero due to tilting of the end fittings caused 

by fueling operation (Nadeau, 2012). The end-slopes were applied by assigning respective 

end-slope values to the rotational degree of freedom in the downward direction to the rigid nodes 

at the centre of the PT ends, leading to a tilt at the ends. 

4.5.3 Understanding the Nature of PT-CT Gap 

This section focuses on evaluating the nature of gap variation and its dependence on the input 

variables using 3D FEA. The decrease in PT-CT gap as a function of time at various fixed axial 

locations (on the PT axis) for a nominal model is shown in Figure 4.23. It is interesting to note that 

after about 40 kEFPH the gap versus time is almost linear. Therefore, for an FE model with no 

uncertainty accounted, a similar linear regression model given in Equation (4.1) is applicable. The 

PT-CT time to contact (i.e., zero gap) at any given location is the time at which the PT first contacts 

the CT, and it can be estimated by extrapolating the linear portion of the gap versus time curve. It 

is clear from Figure 4.23 that the time to contact at the given axial locations exceeds 220 kEFPH.  
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Figure 4.23: Predicted reduction in PT-CT gap as a function of time at various axial locations 

from the outlet end 

 

As discussed in the previous section, the PT-CT gap is most sensitive to the creep factor and end 

slopes of the FC and the nature of variation of the gap with these two variables is investigated. As 

shown in Figure 4.24, the PT-CT gap at a given time and location can be modelled as a linearly 

decreasing function of the creep factor, while the end slope at both ends is fixed at 0.002 radians 

(downward). Similarly, Figure 4.25 shows that the gap decreases linearly with the end slope as 

well, when the creep factor is fixed at 1. This trend in gap evolution was observed for all axial 

locations and time.  
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Figure 4.24: Predicted PT-CT Gap vs. creep factor at a fixed location (x =5.267 m) and time 220 

kEFPH (the two end-slopes are fixed at 0.002 rad) 

 

 

Figure 4.25: Predicted PT-CT Gap vs. end slope at a fixed location (x =5.267 m) and time 220 

kEFPH (the creep factor is fixed at 1) 
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4.5.4 Surrogate model development 

The inspiration for the development of the surrogate model was drawn from the Dimensional 

Reduction Method (DRM), which can be used to approximate any complex and multivariate 

function by a sum of univariate functions of the form (Zhang & Pandey MD, 2014): 

 
𝐺(𝑥, 𝑡) ≈ 𝑏0 + 𝑏1(𝑥, 𝑡)𝐴1 + 𝑏2(𝑥, 𝑡)𝐴2 + ⋯ + 𝑏𝑛(𝑥, 𝑡)𝐴𝑛 

or,        𝐺(𝑥, 𝑡) ≈  𝑏0 + ∑ 𝑏𝑖(𝑥, 𝑡)𝐴𝑖
𝑛
𝑖=1  

(4.4) 

where 𝐺(𝑥, 𝑡) is the PT-CT gap at an axial location 𝑥 and time 𝑡, 𝑏𝑖(𝑥, 𝑡), 𝑖 = 0, 1, … 𝑛, are the 

surrogate model coefficients to be determined in a suitable manner and 𝐴1, … , 𝐴𝑛 are 𝑛 random 

parameters used in the FEM. 

The results presented in Figure 4.24 and Figure 4.25 showed a linear variation of PT-CT gap at a 

given axial location and time. To investigate the generalization of this observation, the PT-CT gap 

was recorded for various combinations of creep factor and end-slopes at a particular time interval 

and axial location. Figure 4.26 shows a 3D plot of the PT-CT gap after 220 kEFPH operating time 

and an axial location of 5.267 m from the outlet. 
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Figure 4.26: Predicted PT-CT gap as function of the creep factor and end slopes (3D surface), at 

PT axial location x = 5.267 m and 220 kEFPH operating time 

 

It is interesting to note that these results can be accurately described by a quadratic surface, which 

can be expressed by the following equation: 

 G(𝑥, 𝑡) = b0 + b1 ∗ C + b2 ∗ S + b3 ∗ C2 +  b4 ∗ C ∗ S + b5 ∗ S2 (4.5) 

Here the variables C and S are the creep factor and end slope, respectively. For location x = 5.267 

m and time t = 220 kEFPH, a quadratic surface was fitted to the FEM results using multiple linear 

regression. An R-square value of 1.00 was obtained for the quadratic fit, whereas 0.93 was 

obtained for a linear fit. This indicates an excellent goodness-of-fit for the quadratic surface. Only 

25 FE simulations were required to effectively fit the surface and develop an accurate surrogate 

model. The derived values of the coefficients of the gap model were b0 = 7.838, b1 =

−4.62, b2 = −759.2, b3 = 0.1402, b4 = 430 and b5 = 228.3. It is important to note here that a 

quadratic fit indicates that the gap varies non-linearly when the creep factor and end-slopes take 
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extreme values, as compared to a perfect linear fit when one of the variables is fixed to the average 

value. Since the gap varies along the length of the PT, the PT-CT gap model coefficients will also 

vary as a function of axial location. Using a similar approach as shown in Figure 4.26, a quadratic 

surface was fitted to PT-CT gap values for each of the 235 axial locations along the PT axis and 

the coefficients were recorded in a matrix form as a function of axial location.  

The surrogate model in Equation (4.5) requires both end slopes to be the same and therefore 

couldn’t be used for practical applications. To consider the individual influence of each end slope 

on the gap profile, additional FEA simulations were run by varying one end slope at a time and 

fixing the other at a constant value as shown in Figure 4.27 and Figure 4.28. The outlet end slope 

mainly influences the gap at Span S1 and S2. Similarly, the inlet end slope has a significant 

influence on Span S5 and S4. Both end slopes have minor influence on the middle span. The effect 

of end slope at the inlet (𝑆𝑖) and at the outlet (𝑆𝑜) on the gap can be expressed as the superposition 

of the effect of individual slopes. Equation (4.5 can be then rewritten as: 

 G(𝑥, 𝑡) = b0 + b1 ∗ C + b21 ∗ 𝑆𝑜 + b22 ∗ 𝑆𝑖  + b3 ∗ C2 +  b41 ∗ C

∗ 𝑆𝑜 +  b42 ∗ C ∗ 𝑆𝑖 +  b51 ∗ 𝑆𝑜
2 + b52 ∗ 𝑆𝑖

2 

(4.6) 
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Figure 4.27: Gap profiles for various values of outlet end slope at 220 kEFPH (CF = 1 and 

𝑺𝒊 = 0.002 rad) 

 

Figure 4.28: Gap profiles for various values of inlet end slope at 220 kEFPH (CF = 1 and 

𝑺𝒐 = 0.002 rad) 
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4.5.4.1 A Study on Model Coefficients 

The first four coefficients in Equation (4.6) are plotted as a function of the axial location at a fixed 

time of 220 kEFPH in Figure 4.29. The magnitude of variation in the model coefficients reflects 

the effect of a particular variable on the PT-CT gap. For example, the end slope coefficients 

(i.e., b21 𝑎𝑛𝑑 b22) in the inlet and outlet spans are considerably higher, and their values in the 

internal spans are close to zero. This suggests that the end slopes mostly affect the gap in the outer 

(inlet and outlet) spans.  

Similarly, the variation of creep coefficient shows that creep has a pronounced effect on the gap 

in the outer spans and a modest effect in the central span. The PT-CT gap in the inlet span (the 

right most span), being axially free, is the most sensitive to the creep factor as well as the end 

slopes of the FC. 

 

Figure 4.29: Variation of the first four coefficients in Equation (4.6) of the PT-CT gap model as 

a function of the axial location (at a fixed time of 220 kEFPH) 
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The Coefficients of the Surrogate Gap Model as a Function of Time 

It was shown in the previous section that the PT-CT gap can be expressed as an additive 

combination of the creep factor and end slopes. Since the sag and gap profiles change with time, 

the coefficients of the surrogate model would also change with time. Thus, the surrogate model of 

PT-CT gap can be expressed in a more general form as  

 G(𝑥, 𝑡) = b0(𝑥, 𝑡) + b1(𝑥, 𝑡) ∗ C + b21(𝑥, 𝑡) ∗ 𝑆𝑜 + b22(𝑥, 𝑡) ∗ 𝑆𝑖  

+ b3(𝑥, 𝑡) ∗ C2 +  b41(𝑥, 𝑡) ∗ C ∗ 𝑆𝑜 +  b42(𝑥, 𝑡) ∗ C ∗ 𝑆𝑖

+  b51(𝑥, 𝑡) ∗ 𝑆𝑜
2 + b52(𝑥, 𝑡) ∗ 𝑆𝑖

2 

(4.7) 

Model coefficients versus axial location plots, similar to Figure 4.29, were computed again for 

different time intervals ranging from 50 kEFPH to 220 kEFPH. For reasons of brevity, only the 

coefficients that have the most significant effect on the gap profile will be further discussed in 

detail here. Results of this analysis are presented in Figure 4.30. From Figure 4.30, coefficient 

b1 (i.e., the coefficient related to the creep factor) is a strong function of reactor operating time. 

The gap in the outlet and inlet spans S1 and S5, as well as in the central span S3 is strongly 

influenced by the creep factor. The values of this coefficient in the two internal spans, S2 and S4, 

are comparatively less affected by the creep factor for the type of FC analyzed here. For other 

types of FC configurations, the effect of the creep factor can be however different. 

Regarding the dependence of coefficients b21 and b22 (i.e., the coefficients related to end-slopes) 

on axial location and time, a significant variation of the gap due to changes in the end slopes is 

observed in spans S5 and S1, as expected. Since the profiles of b21 for various times (from 50 to 

200 kEFPH) are almost identical in all the spans, b21 can be considered as time invariant. 
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However, the axial variation of b22 is significant in span S5 indicating the strong dependence of 

the minimum gap in this span on the inlet end slope (𝑆𝑖).   

The variation of coefficients b41 and b42 accounts for the combined contribution of the creep 

factor and end-slopes. As expected, the combined effects are significant in the outer spans with 

the largest variation observed in Span S5. Coefficient b42, which expresses the combined effect of 

the creep factor and inlet end-slope on the minimum gap, contributes the most in the inlet span. It 

is the contribution of coefficients b41 and b42 that accurately approximates the gap profile when 

the various parameters acquire extreme values.        

The next question is in regard to the nature of variation of the coefficients with time. Since all the 

coefficients showed a similar trend, only the results based on b41 and b42 are discussed here. These 

coefficients plotted versus time for two axial locations along the PT are shown in Figure 4.31. 

Only two axial locations were chosen in Figure 4.31 because these coefficients appear to be 

independent of operating time and axial location for the inner spans. 

It is evident from this figure that coefficient b42 in the inlet span (solid red line) varies as a function 

of both axial location and time, whereas this coefficient is zero in the outlet span (solid blue line). 

In contrast, coefficient b41 varies less with time and axial location in the outlet span (dotted blue 

line) but it is also zero in the inlet span (dotted red line). This is indicative of the variability in the 

gap in the outer spans being larger compared to that in the inner spans. Another important 

observation is that the coefficient b42 in the inlet span appears to increase exponentially with time, 

indicating the increased likelihood of PT-CT contact in this span. 
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Figure 4.30: Variation of some coefficients in Equation (4.7) with axial location and time 

 

 

Figure 4.31: Variation of coefficients b41 and b42 with time at three different PT axial locations 
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4.5.4.2 Surrogate Gap Model Verification 

The coefficients in Equation (4.7) obtained through the quadratic fitting were saved in a matrix 

form as a function of the PT axial location and time. This surrogate model can then replace the full 

3D FEM model in the ABAQUS code. To evaluate the accuracy of the proposed surrogate model, 

PT-CT gap profiles at (i) 150 kEFPH with C = 0.822, 𝑆𝑜 = 0.001 rads and 𝑆𝑖 = 0.002 rads and, 

(ii) 220 kEFPH with C =  1.212, 𝑆𝑜 = 0.003 rads and 𝑆𝑖 = 0.005 rads, were predicted by the 

surrogate model and compared to those calculated by the 3D FEM code as shown in Figure 4.32. 

The maximum gap error was computed as 0.063 mm in the central span whereas the gap error for 

the minimum gap was 0.009 mm. This confirms that there is a strong agreement between the 

surrogate formulation and the predictions using the full 3D FEM code. 

 

Figure 4.32: PT-CT Gap profiles predicted at two different times by the surrogate model and the 

FEM model 
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4.5.4.3 Comparison of Results from 1D and 3D Surrogate Models 

In this section, the time to reach a minimum gap of 1 mm is predicted by using different surrogate 

models and compared to the ABAQUS 3D FEM result. The creep factor, outlet end slope and inlet 

end slope were set as 1.1, 0.002 and 0.004, respectively. The following surrogate models were 

used: 

1) Model 1 - The current surrogate model with quadratic fit based on 3D FEM 

(Equation (4.7)) 

2) Model 2 - The surrogate model with linear fit based on a 1D FEM (Equation 7 in (Pandey 

et al., 2018)) 

3) Model 3 - The surrogate model with linear fit based on a 3D FEM (This model was 

developed using the same approach as given in (Pandey et al., 2018) using 3D FEM 

results). 

The results are shown in Table 4.2. Models 1 and 3 slightly over predict and under predict the time 

to reach 1mm gap, but the prediction error is low. However, Model 2, which is based on the 1D 

FEM, significantly over-predicts this time. This shows the disadvantage of using a 1D FEM in 

PT-CT contact analyses. Given that 7 kEFPH is approximately the number of EFPH in one 

calendar year, the 1D model overpredicts the time to contact by 38 kEFPH or almost 5.5 calendar 

years.  

A further analysis using Model 1 and Model 3 showed a better prediction of minimum gap using 

Model 3, especially when the variables take extreme values. The error in Model 3 is primarily due 

to the use of linear form of surrogate model. However, the advantage of Model 1 is that it has the 

time parameter in the surrogate model form, whereas Model 1 is more accurate in gap prediction 
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but does not include the time parameter.    

Table 4.2: Time predicted to reach 1 mm minimum gap by three different models 

Model 
Time predicted to reach 1mm 

gap (kEFPH) 

Prediction error 

(%) 

Result using the 3D ABAQUS 

FEM 
261 N/A 

Model 1 265 + 1.53 

Model 2 299 +14.56 

Model 3 255 -2.30 

 

4.5.5 Use of Surrogate Model in Calibration of FEM Model 

For practical purposes, the FEM must be calibrated by comparing the FEM predictions with 

inspection results. Once the FEM of a given FC is calibrated, it can be used successfully to predict 

future behaviour and optimize inspection and maintenance schedules or make end-of-life 

decisions. For example, the acceptance standard for PT-CT contact in CSA N285.4 requires to 

meet the condition that no PT-CT contact predicted to exist at the end of the next periodic 

inspection interval, considering the as-found annulus spacer locations (CSA N285.4, 2010). A well 

calibrated model would be of great advantage to demonstrate these conditions are met, and it would 

aid in optimizing the inspection intervals.  

The development of the 3D FEM model in Chapter 3 was based on the mean behaviour of FC 

deformation and the predictions agreed well with the measurements (Figure 3.19 and Figure 3.20), 

an observation that provides a degree of validation of the FEM approach. However, there is 

significant variability in the in-reactor behaviour of FCs, which is responsible for the observed 



 

 124 

variation in the measured gap and diametral profiles. Therefore, the calibration of the FEM must 

involve the identification of the factors that are mainly responsible for the observed behaviour and 

the determination of their variability range. Two main issues were identified while calibrating the 

FE model:  

1) The determination of the appropriate parameter values in the FEM that require adjustment 

until a satisfactory agreement of the prediction with measurements is obtained. For 

instance, the parameters that were adjusted were chosen such that the predicted PT-CT gap 

fit reasonably well compared to inspection results.  

2) The 3D FEA is a computationally expensive task (a single run takes up to 3 hours). 

Therefore, the calibration process must be completed with a minimum number of FEA 

runs. 

As is discussed next, a computationally efficient approach was developed to overcome both of 

these issues in order to successfully calibrate the FEM model.  

4.5.5.1 Calibration using the Surrogate Model 

The first issue stated above was solved by choosing the creep factor and the two end slopes as 

appropriate parameters to be adjusted for calibrating for the gap profile. The second issue was 

solved by replacing the 3D FEM model by the surrogate model, which requires only a few FEM 

model runs in the process of developing. The calibration procedure is as follows: 

1) Compare the PT-CT gap obtained from the surrogate model to the inspection gap data at 

three axial locations, namely, location of minimum gap with the highest weightage, 

location were the inlet and outlet slopes are reasonable influenced.  



 

 125 

2) Find the optimized values of the creep factor, the inlet slope and the outlet slope by 

minimizing the gap error at the three selected axial locations. 

3) Input the optimized parameter values to the 3D FEM model and verify the accuracy of the 

gap prediction by comparing with the inspected gap data.  

4.5.5.2 Calibration Example of a FC 

The aim here is to calibrate and verify the PT-CT gap profile obtained from the calibrated 3D FEM 

model with those obtained from the in-service inspection of a FC. Note that the garter spring 

locations and the operating conditions of the FC analyzed for validation here are different than the 

one analyzed in Chapter 3 as an example. The details of the FC used for calibration are as follows: 

1) The PT inlet is on the left and outlet is on the right. 

2) The back end of the PT is placed at the outlet 

3) The reactor unit was reconfigured at 124,944 EFPH 

4) Prior to reconfiguration, the inlet end (left end) was fixed and the outlet end (right end) 

was axially free. After reconfiguration, the boundary conditions are reversed.   

Two sets of inspection data were available. The first set included the PT-CT gap profile at 148,273 

EFPH and the second set included the PT-CT gap measurements at 176,575 EFPH. The FEM 

model was initially calibrated for the PT-CT gap profile at 148,273 EFPH using the steps described 

above. Using the surrogate model for calibration, the optimum values of the creep factor, inlet end 

slope (left end) and the outlet end slope (right end) were obtained as 0.99, -0.004 rad and 0.000 

rad. The three minimization points chosen, and the calibrated gap profile are shown in Figure 4.33. 

The calibrated model (i.e., the model which uses the creep factor, 0.99, inlet end slope -0.004 and 
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outlet end slope 0.000) was then used to predict the gap profile and diametral profile at 176,575 

EFPH using the 3D FEM in ABAQUS as shown in Figure 4.34 and Figure 4.35. The predicted 

values are in good agreement with the measurements obtained from inspection and also accurately 

predict the minimum gap.  

This is a powerful tool for the nuclear industry as the approach will help in confidently predicting 

future gap profiles. This will assist in reducing the expensive inspection tasks, which would be a 

significant economic benefit for the industry.  

 

Figure 4.33: Gap minimization points and the calibrated gap profile at 148,273 EFPH using the 

surrogate model 
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Figure 4.34: Comparison of the inspected and predicted gap profiles using the calibrated 

3D FEM model at 176,575 EFPH 

 

 

Figure 4.35: Comparison of the measured and predicted diametral profile using the calibrated 

3D FEM model at 176,575 EFPH 
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4.6 Conclusions 

This chapter presented the development of surrogate models and calibration approaches for 

diametral creep and PT-CT gap profiles. The 3D FE model of in-reactor deformation of FCs is a 

computationally expensive model, and therefore a surrogate model is of significant advantage. The 

material uncertainty in diametral creep was captured by introducing a parameter called as “scale 

factor”, which was successful in calibrating the 3D FE model. A more detailed analysis was then 

performed using 3D FEA and realistic flux profile inputs for investigating the diametral creep 

strain at the flux dip locations. It was concluded that even though the flux dip at the bundle joints 

is ~15%, the diametral creep drop by only ~10% because of material continuity, which agrees well 

with measured creep strain data.  

A surrogate model was then developed by using a nonlinear relation between the diametral strain 

and the axial location and time. Together with the nonlinear form and scale factor, a calibrated 

surrogate model was developed which predicts the future deformation with good accuracy. This 

surrogate model, which is computationally cheaper than a 3D FEA, can be used as an easy-to-use 

and efficient tool by the industry.  

Similarly, a surrogate model was developed for the prediction of PT-CT gap profile. The surrogate 

model is a quadratic function of two variables that substantially affect the deformation profiles, 

namely the creep factor and end slopes. This form of the surrogate model can capture the non-

linear behaviour of the evolution of the PT-CT gap occurring when the creep factor and end slopes 

acquire extreme values. The surrogate model coefficients depend on the axial location along the 

PT axis and the operating time. These coefficients are saved as a function of location and time in 

a matrix form for subsequent use. A computationally efficient approach using a surrogate model 
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was developed for the calibration of the 3D FEM to incorporate the variability observed in FC 

in-service measurements. The calibration approach was successfully validated by accurately 

predicting the PT-CT gap and diametral expansion using the calibrated model. A calibrated 3D 

FEM can be successfully used to predict future dimensional changes and make risk-informed 

decisions on inspection and maintenance schedules as well as obtain end-of-life predictions. 

Similarly, fuel channels with different operating conditions can be analysed to develop a database 

of the best suited surrogate models for the performance of probabilistic assessments of an entire 

CANDU reactor core in a computationally efficient and inexpensive way.  

The development of the model is supported by the following observations made from carrying out 

finite element analyses of the problem: 

• The PT-CT gap at a given axial location and time is a linear function of the creep factor if the 

end-slopes are maintained at their average values. 

• The PT-CT gap at a given axial location and time is also a linear function of the end slopes if 

the creep factor is maintained at its average value. 

• The PT-CT gap at a given axial location and time becomes a non-linear function of the creep 

factor and end slopes when these parameters approach extreme values.  

The surrogate model based on a 1D FEM appears to significantly over-predict (by 14.6 %) the 

time for PT-CT contact. Given that 7 kEFPH is approximately the number of EFPH in one calendar 

year, the 1D model overpredicts the time to contact by 38 kEFPH or almost 5.5 calendar years.   
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Chapter 5 

Coupled Multiplicative Dimensional Reduction and Polynomial 

Chaos Expansion Method 

 

5.1 Introduction 

5.1.1 General 

The uncertainty propagation methods are methods of propagating the uncertainty in the input 

parameters through a model (e.g., analytical or numerical) and computing the random model 

output. The uncertainty propagation using FE models paved the way for the integration of 

reliability analysis with the FEA, which is often termed as probabilistic finite element analysis 

(PFEA), stochastic finite element analysis (SFEA) or finite element reliability analysis (FERA). 

These methods are now becoming more popular in the engineering practice. The basic issues in 

the context of PFEA or SFEA are: (1) to minimize the functional evaluations, especially when the 

evaluation of the model is expensive, such as in a nonlinear FEA; (2) to accurately estimate the 

probability distribution of the output response, especially when the response function is defined in 

an implicit form as in the case of an FEA.           

Regarding the first issue, the primary concern is the computational cost associated with the 

reliability analysis. We can use a very well understood and easy to implement method called Monte 

Carlo Simulation (MCS) but this will require an enormous amount of FEA simulations to be run. 
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This leads to an immense computational cost, especially when we solve expensive-to-evaluate FE 

problems. Hence, the practical application of PFEA using MCS is not a viable choice.  

Regarding the second issue, it is of great interest that the entire probability distribution of the 

response be obtained, and the tail of the distribution is also known for computing failure 

probability. This becomes easy if the structural systems contain only a small number of random 

variables and the limit state functions are formulated analytically, i.e., in an explicit form. 

However, in the FEA, the output response is obtained through an implicit relation with the input 

random variables. Thus, even if we are able to compute the statistics of the response, i.e., mean, 

standard deviation, etc., we do not have enough knowledge about the entire probability distribution 

of the response. This means that we do not have knowledge of the tail of the probability 

distribution, which has the information about the failure probability. 

Spectral methods such as polynomial chaos expansion (PCE) has proved to be a replacement for 

the traditional structural reliability methods. PCE alleviates the high computational cost associated 

with uncertainty analysis by replacing the otherwise expensive-to-evaluate numerical models (e.g., 

a finite element code) with simple-to evaluate surrogate models. However, computation of the 

PCE coefficients is expensive when the mechanistic model is expensive-to-evaluate and involve 

more number of input random variables (Debusschere et al., 2004). Hence, an efficient method is 

needed to reduce the computational cost associated with using PCE.    

5.1.2 Objectives 

The main objective of this chapter is to develop a general and efficient computational scheme for 

reliability and sensitivity analysis of structures, which are modeled and analyzed using 
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expensive-to-evaluate finite element models by considering the uncertainties in geometry, material 

properties, loads, etc. To achieve this objective, multiplicative dimensional reduction method 

(M-DRM) is coupled with polynomial chaos expansion (PCE) method, which significantly reduces 

the computational cost of PCE coefficient computation, and therefore the construction of surrogate 

model using PCE. The Monte Carlo Simulation (MCS) can be then performed using the surrogate 

model for obtaining the statistics and the entire probability distribution of the output response of 

interest.   

5.1.3 Organization 

The organization of this chapter is as follows. Section 5.2 firstly presents the necessary background 

on PCE, the formulation for developing a surrogate model using PCE and the limitations in using 

this method for probabilistic FEA due to the computational cost associated with PCE coefficient 

computation. Section 5.3 presents the mathematical formulation of M-DRM and its potential use 

in minimizing the computational effort of a multidimensional integral. Section 5.4 shows how 

M-DRM can be combined with PCE (coupled M-DRM and PCE method) to achieve a significant 

reduction in the computational cost of PCE coefficient computation and therefore use it as an 

efficient method for surrogate model development of expensive-to-evaluate FE models for 

performing probabilistic FEA. Section 5.5 presents the Gauss quadrature scheme, which is an 

important tool required before applying the coupled M-DRM and PCE method. Section 5.6 

illustrate the implementation of the proposed method through a simple example and the obtained 

probabilistic results are compared against the MCS results for validation. Finally, conclusions are 

summarized in Section 5.7.  
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5.2 Polynomial Chaos Expansion 

5.2.1 Background 

The term polynomial chaos was first introduced by Wiener in 1938 to model stochastic processes 

with Gaussian random variables (N Wiener, 1938). In his work, he used Hermite polynomials to 

serve as orthogonal basis and the validity of this approach was later proved by Cameron and Martin 

(Cameron & Martin, 1947). After drawing inspiration from the theory of Wiener-Hermite 

polynomial chaos, Ghanem and Spanos introduced polynomial chaos expansion into stochastic 

mechanics by 1991 (Ghanem & Spanos, 1991). They considered a boundary value problem by 

modeling the input parameters as random fields and employed Hermite polynomials as a complete 

base to represent these random fields. The output random quantities of interest were the 

displacement and stress fields. Following their work, this approach was successfully applied to 

other practical engineering problems (Ghanem, 1998; Le Maˆıtremaˆıtre et al., 2002). Thus, the 

use of PCE has been closely associated with spatial variability and was considered as a separate 

topic with respect to structural reliability for a while, until it was illustrated for the first time by 

Sudret and Der Kiureghian (Sudret & Der Kiureghian, 2002b).  

Albeit the mathematical soundness of Hermite polynomials with Gaussian distribution, difficulties 

arose in applications involving the convergence and probability approximations for non-Gaussian 

problems (Orszag & Bissonnette, 1967).  The work by Xiu helped in overcoming these difficulties. 

In his work, he generalized the result of Cameron-Martin to various continuous and discrete 

probability distributions using the so-called Askey-scheme of orthogonal polynomials (Xiu & 

Karniadakis, 2002). This is proposed in literature as generalized polynomial chaos and based on 
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this framework, it depends on the probability distribution of an input variable to select the 

representative orthogonal polynomial. Fast and optimal convergence can be obtained by choosing 

a proper basis for each random variable and the effectiveness of using the generalized polynomial 

chaos was later demonstrated (Xiu & Em Karniadakis, 2002; Xiu & Karniadakis, 2003).   

Once a suitable basis is chosen based on the distribution of random variables, the next step is to 

compute the PCE coefficients through a numerical technique. It should be noted that the basic idea 

of PCE is the polynomial decomposition of the uncertain variables, where the uncertainty is 

concentrated in the polynomials and the unknown coefficients of the decomposition become 

deterministic.  

In the initial works of PCE coefficient computation, Ghanem used the Galerkin method which 

minimized the error of a finite-order expansion by an orthogonal projection (Ghanem & Spanos, 

1991). This method is called the stochastic Galerkin approach and has been called “intrusive” in 

the sense that it requires the governing equations to be altered for each problem. It was used to 

solve elliptic stochastic partial differential equations. Once the variational form of the equations 

are given, the stochastic problem is solved by a Galerkin strategy in a tensor product Hilbert space, 

which is formed based on a tensor product of approximation space in deterministic finite element 

analysis (i.e., element basis functions) and the space of random variables with finite second 

moments (i.e., polynomial chaos basis).  Hence, this method requires the modification of the basic 

governing equations, which is not practical while solving finite element problems using softwares 

or when dealing with complicated forms of mechanistic models. Another disadvantage of this 

method is that it requires additional efforts to compute derived quantities (e.g., stress components 
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and strain components) by projecting them onto the PC basis (Bruno, 2007). This led to the 

development of non-intrusive methods to compute the PCE coefficients. 

Instead of depending on a Galerkin type computation, the non-intrusive methods allow the analyst 

to compute the PCE coefficients from a series of calls to the deterministic model. The advantage 

of this method is that it requires no need to modify the deterministic code and hence is best suitable 

with analysts using finite element softwares as a black-box. Two main non-intrusive methods in 

the literature are namely projection and regression, in which the projection method is of interest.   

One of the widely used projection scheme is the tensor Gauss quadrature. Although the tensor 

product construction makes the mathematical analysis more accessible, the total number of 

function evaluation grows exponentially fast with respect to the number of input variables, which 

is known as the curse of dimensionality (Debusschere et al., 2004; Hosder et al., 2007). This makes 

the computation of PCE coefficients expensive while considering a full tensor product quadrature 

(Debusschere et al., 2004). An alternative for a full tensor product quadrature, called the sparse 

quadrature scheme was originally introduced by Smolyak (SA Smolyak, 1963) and was proposed 

to solve the curse of dimensionality by Gerstner and Griebel (Gerstner & Griebel, 1998). Even 

with the use of Smolyak quadrature, the cost of this technique strongly increases with the number 

of input parameters (Blatman & Sudret, 2010b). Hence, PCE currently lacks a computationally 

efficient method for the meta-model construction.  

5.2.2 Mathematical Setting of PCE 

Let us consider a mechanistic model represented by a deterministic mapping 

 𝒚 = ℳ(𝒙) (5.1) 
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where𝒙 =  [𝑥1, 𝑥2, … , 𝑥𝑛]T ∈ ℝ𝒏, 𝑛 ≥ 1 is the vector of the input variables and 𝒚 =

 [𝑦1, 𝑦2, … , 𝑦𝑚]T ∈ ℝ𝒎, 𝑚 ≥ 1 is the vector of output response of quantities of interest. Now, let 

us consider that the input vector 𝒙 is uncertain, which requires the introduction of probabilistic 

framework. 

Let (𝛺, ℱ, 𝒫) be a probability space, where 𝛺 is the sample space containing set of all possible 

outcomes, ℱ is the set of events, where each event is a set containing zero or more outcomes and 

𝒫 is the probability measure assigned to each event, i.e., a function which maps from events to 

probabilities. From now on, the random variables will be denoted by upper case letters, 𝑋, and 

their realizations will be denoted by the corresponding lower case letters, 𝑥. Consequently, bold 

upper case letters (e.g., 𝑿 =  [𝑋1, 𝑋2, … , 𝑋𝑛]T) will be used to denote random vectors and bold 

lower case letters (e.g., 𝒙 =  [𝑥1, 𝑥2, … , 𝑥𝑛]T) will be used to denote their realizations, respectively. 

Let us also denote by 𝑓𝑿(𝒙) its joint PDF and by 𝒫𝑿 the associated probability measure such 

that 𝒫𝑿(𝑑𝒙) = 𝑓𝑿(𝒙)𝑑𝒙.  

The mechanistic model response as a random vector 𝒀 can be then expressed as: 

 𝒀 = ℳ(𝑿) (5.2) 

To properly characterize the random properties of 𝒀, suitable function spaces must be defined. For 

the sake of simplicity, let us consider that we have only one quantity of interest and hence a scalar 

output response, 𝑌 = ℳ(𝑿). Let us suppose that its random response is a second-order random 

variable: 

 E[𝑌2] < +∞ (5.3) 
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Let us denote ℋ = ℒ𝑓𝑿(𝒙)
2 , the Hilbert space of square integrable real-valued functions (i.e., the 

basis functions) of 𝑿 with respect to the weight function 𝑓𝑿(𝒙), equipped with the inner product: 

 
〈𝑢, 𝑣〉ℋ = ∫ 𝑢(𝒙)𝑣(𝒙)𝑓𝑿(𝒙)𝑑𝒙

ℝ𝒏

 (5.4) 

Equation (5.3) is equivalent to: 

 E[ℳ2(𝑿)] = 〈ℳ, ℳ〉ℋ < +∞ (5.5) 

Consequently, considering model responses that are second-moment random variables is 

equivalent to considering models that belong to the Hilbert space, ℋ. In polynomial chaos 

expansion, the Hilbert space is spanned by square integrable real-valued functions of 𝑿 with 

respect to the weight function 𝑓𝑿(𝒙), called the polynomial chaos basis functions. The weight 

function is equivalent to the probability distribution function (PDF) of the respective random 

variable. Hence, one of the important steps in PCE is to set up the suitable PC basis based on the 

distribution of the random variables. Once the PC basis is set up, the output response 𝑌 can be 

represented as (Soize & Ghanem, 2005): 

 
𝑌 = ∑ 𝑎𝑗Ψ𝑗(𝑿)

∞

𝑗=0

 (5.6) 

where Ψ𝑗(𝑿) are the basis functions and 𝑎𝑗 are the coordinates of 𝑌 in this basis, called as PCE 

coefficients. The aim of PCE is to compute these coefficients to develop a surrogate model of the 

mechanistic model given in Equation (5.2) using Equation (5.6). In PCE, it is important to note 

that the basis terms Ψ𝑗(𝑿) are always orthonormal polynomials and it is the properties of 

orthonormal polynomials which are utilized to efficiently compute the PCE coefficients. 
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5.2.3 Construction of polynomial chaos basis 

5.2.3.1 Univariate orthonormal polynomials 

The primary step in PCE is to set up a suitable basis based on the distribution type of random 

variables. For the sake of simplicity, let us assume that the input random variables are independent. 

The joint probability distribution can be then written as the product of marginal distributions as: 

 
𝑓𝑿(𝒙) = ∏ 𝑓𝑋𝑖

(𝑥𝑖),      𝑥𝑖 ∈ 𝔗𝑋𝑖
 

𝑛

𝑖=1

 (5.7) 

where 𝔗𝑋𝑖
 is the support of 𝑋𝑖. For any two functions 𝜉1, 𝜉2 and for each single random variable 𝑋𝑖, 

we can define a functional inner product by the following integral:  

 
〈𝜉1, 𝜉2〉𝑖 = ∫ 𝜉1(𝑥)𝜉2(𝑥)𝑓𝑋𝑖

(𝑥)𝑑𝑥
𝔗𝑋𝑖

 (5.8) 

Equation (5.8) is nothing but the expectation E[𝜉1(𝑋𝑖)𝜉2(𝑋𝑖)] with respect to the marginal 

distribution 𝑓𝑋𝑖
(𝑥). Two such functions are said to be orthogonal with respect to the probability 

measure 𝒫(𝑑𝑥) = 𝑓𝑋𝑖
(𝑥)𝑑𝑥 if 

 
E[𝜉1(𝑋𝑖)𝜉2(𝑋𝑖)] = ∫ 𝜉1(𝑥)𝜉2(𝑥)𝑓𝑋𝑖

(𝑥)𝑑𝑥
𝔗𝑋𝑖

= 0 (5.9) 

Utilizing this property, one can build a family of orthogonal polynomials {𝜙𝑘
(𝑖)

, 𝑘 ∈ ℕ} satisfying 

       〈𝜙𝑗
(𝑖)

, 𝜙𝑘
(𝑖)〉𝑖 = E[𝜙𝑗

(𝑖)(𝑋𝑖)𝜙𝑘
(𝑖)(𝑋𝑖)]

= ∫ 𝜙𝑗
(𝑖)(𝑥)𝜙𝑘

(𝑖)(𝑥)𝑓𝑋𝑖
(𝑥)𝑑𝑥 = 𝛼𝑗

𝑖

𝔗𝑋𝑖

𝛿𝑗𝑘 

(5.10) 
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where 𝛿𝑗𝑘 is the Kronecker symbol equal to 1 when 𝑗 = 𝑘 and 0 otherwise, and 𝛼𝑗
𝑖 corresponds to 

the squared norm of 𝜙𝑗
(𝑖)

, defined as: 

 
𝛼𝑗

𝑖 = ‖𝜙𝑗
(𝑖)

‖
𝑖

2

= 〈𝜙𝑗
(𝑖)

, 𝜙𝑗
(𝑖)〉𝑖 (5.11) 

To implement PCE effectively, we need family of orthogonal polynomials which are orthogonal 

with respect to the probability distribution functions. It was Weiner who first formulated the chaos 

polynomial with the standard Normal variables and Hermite polynomials as a finite dimensional 

Wiener polynomial chaos (N Wiener, 1938). However, the use of Hermite polynomials with 

distribution functions other than standard Normal distribution gives a slower convergence rate of 

mean and second order moment. This means that more expansion terms are required to minimize 

the error in mean and second order moment. The faster convergence rate of standard Normal 

distribution is due to the reason that the weighting function of Hermite polynomials is the same as 

the probability density function of standard Normal variables. 

Xiu and Karniadakis used the Askey scheme of polynomials, which are an important class of 

orthogonal polynomials to extend the idea to other classical distributions (Xiu & Karniadakis, 

2002). Hermite polynomials are a subset of the Askey scheme. Each subset of the orthogonal 

polynomials in the Askey scheme has a different weighting function in its orthogonality 

relationship. It has been realized that some of these weighting functions are identical to certain 

probability distribution functions as shown in Table 5.1. 
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Table 5.1: Relation between orthogonal polynomials and random variable distributions 

Type of 

distribution 
Weight or PDF Support 

Orthogonal 

polynomials 
Orthonormal basis 

Normal 
1

√2𝜋
𝑒−𝑥2

2⁄  (−∞, ∞) Hermite  𝐻𝑒𝑘
(𝑥) 𝐻𝑒𝑘

(𝑥) ∕ √𝑘! 

Uniform 1
2⁄  [−1,1] Legendre  𝑃𝑘(𝑥) 𝑃𝑘(𝑥) ∕ √

1

2𝑘 + 1
 

Beta 
(1 − 𝑥)𝑎(1

+ 𝑥)𝑏 
[−1,1] Jacobi    𝐽𝑘

𝑎,𝑏(𝑥) 𝐽𝑘
𝑎,𝑏(𝑥) ∕ 𝐶Jacobi 

Exponential 𝑒−𝑥 [0,∞) Laguerre 𝐿𝑘(𝑥)  𝐿𝑘(𝑥) ∕
Γ(𝑘 + 1)

𝑘!
 

Gamma Γ(𝑥, 𝑎 + 1,1) [0,∞) 
General Laguerre  

𝐿𝑘
𝑎 (𝑥) 

𝐿𝑘
𝑎 (𝑥)

∕
Γ(𝑘 + 𝑎 + 1)

𝑘!
 

where the normalization constant of Jacobi polynomial is 𝐶Jacobi =
2𝑎+𝑏+1

2𝑘+𝑎+𝑏+1

Γ(𝑘+𝑎+1)Γ(𝑘+𝑏+1)

Γ(𝑘+𝑎+𝑏+1)Γ(𝑘+1)
 

 

It should be noted that the family of polynomials are only orthogonal and are usually not 

orthonormal. To use them as a suitable basis, the normalization is enforced and a family of 

orthonormal polynomials, {𝜓𝑗
(𝑖)

}
𝑗=0

∞

 is obtained from Equations (5.10) and (5.11) as: 

 

𝜓𝑗
(𝑖)

=
𝜙𝑗

(𝑖)

√𝛼𝑗
𝑖

     𝑖 = 1, … , 𝑛,     𝑗 ∈ ℕ (5.12) 

If a random variable following a particular distribution is not listed in Table 5.1, it is possible to 

employ a non-linear mapping such that the generalized PCE can be still applied (Der Kiureghian 
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& Liu, 1986; Rosenblatt, 1952). For example, a Lognormal random variable can be recast as a 

function of standard normal variable, which then allows to use Hermite polynomials. 

5.2.3.2 Multivariate Polynomials  

In most of the mechanistic models, the output response will be a function of multiple input random 

variables, 𝑿 =  [𝑋1, 𝑋2, … , 𝑋𝑛]T. Hence, we will need to construct an 𝑛-dimensional polynomial 

chaos which will require the tensor product of univariate orthonormal polynomials to build a 

suitable basis. For this purpose, let us define multi-indices 𝝀 ∈ ℕ𝑛, which are an ordered list of 

integers. 

 𝝀 = (𝜆1, . . . , 𝜆𝑛),        𝜆𝑖 ∈ ℕ (5.13) 

One can now associate a multivariate polynomial 𝚿𝝀 to any multi-index 𝝀 by 

 
𝚿𝝀(𝒙) = ∏ 𝜓𝑗

(𝑖)

𝒏

𝒊=𝟏

(𝑥𝑖) (5.14) 

where 𝚿𝝀  = {Ψ𝜆𝑖
, 𝜆𝑖 ∈ ℕ}  is obtained from the tensor product of the univariate polynomials 

{𝜓𝑗
(𝑖)

, 𝑗 ∈ ℕ} defined according to the 𝑖-th marginal distribution. By virtue of Equation (5.10) and 

the tensor product construction in Equation (5.14), the multivariate polynomials in the input vector 

𝑿 are also orthonormal. Hence, this set of multivariate polynomials span the Hilbert space, ℋ =

ℒ𝑓𝑿(𝒙)
2 , which is the space of square integrable real-valued functions of 𝑿 with respect to the joint 

PDF 𝑓𝑿(𝒙), equipped with the inner product: 

 
〈Ψ𝜆, Ψ𝜂〉 = E[Ψ𝜆(𝑿)Ψ𝜂(𝑿)] = ∫ Ψ𝜆(𝒙)Ψ𝜂(𝒙)𝑓𝑿(𝒙)𝑑𝒙 =

𝔗𝑿

𝛿𝜆𝜂 (5.15) 
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where 𝑓𝑿(𝒙) is the joint PDF as given in Equation (5.7) and 𝛿𝜆𝜂 is the Kronecker symbol equal to 

1 when 𝜆 = 휂 and 0 otherwise.  

5.2.4 Polynomial Chaos Representation of Model Response 

From Equation (5.14), we have a complete basis of multivariate polynomials which are 

orthonormal with respect to the joint PDF of the input random variables. Let us assume that the 

mechanistic model response 𝑌 has a finite variance as given in Equation (5.3), i.e., 𝑌 ∈

ℒ2(𝛺, ℱ, 𝒫). Consequently, we can represent 𝑌 = ℳ(𝑿) using the chaos representation as (Soize 

& Ghanem, 2005): 

 
𝑌(𝑿) = ∑ 𝑎𝜆Ψ𝜆(𝑿)

∞

𝜆=0

 (5.16) 

Equation (5.16) can be viewed as an intrinsic representation of the random response 𝑌 in an 

abstract space through an orthonormal basis, Ψ𝜆(𝑿), and the coefficients, 𝑎𝜆 as the projections of 

𝑌 on each of these basis.  

Instead of using the multi-index 𝝀 for expressing the polynomial chaos representation, one can 

also write Equation (5.16) using a condensed notation as: 

 
𝑌(𝑿) = ∑ 𝑎𝑘Ψ𝑘(𝑿)

∞

𝑘=0

 (5.17) 

where 𝑘 ∈ ℕ. Throughout the discussion, this condensed form of PCE will be used. 

5.2.4.1 Illustration example 

The following example illustrates the polynomial chaos representation of a two-dimensional 

function 𝑌 = ℳ(𝑋1, 𝑋2) by assuming both the random variables as standard Normal variables. 
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From Table 3.1, the Hermite polynomials are the best suitable polynomials for a standard Normal 

variable. Let the family of orthogonal basis functions for 𝑋1 be defined as {𝜙𝑘( 𝑋1), 𝑘 ∈ ℕ} and 

for 𝑋2 be defined as {𝜙𝑙( 𝑋2), 𝑙 ∈ ℕ}. By using Equation (5.14) for tensor product of the basis 

functions and using Equation (5.16) for chaos representation, a surrogate model for 𝑌 =

ℳ(𝑋1, 𝑋2) can be written as 

 ℳ(𝑋1, 𝑋2) = 𝑎00𝜙0( 𝑋1)𝜙0( 𝑋2) + 𝑎10𝜙1( 𝑋1)𝜙0( 𝑋2)

+ 𝑎01𝜙0( 𝑋1)𝜙1( 𝑋2) + 

                          𝑎20𝜙2( 𝑋1)𝜙0( 𝑋2) + 𝑎11𝜙1( 𝑋1)𝜙1( 𝑋2)

+ 𝑎02𝜙0( 𝑋1)𝜙2( 𝑋2) + 

                          𝑎30𝜙3( 𝑋1)𝜙0( 𝑋2) + 𝑎21𝜙2( 𝑋1)𝜙1( 𝑋2)

+ 𝑎12𝜙1( 𝑋1)𝜙2( 𝑋2) + 

                          𝑎03𝜙0( 𝑋1)𝜙3( 𝑋2) + 𝑎40𝜙4( 𝑋1)𝜙0( 𝑋2) + ⋯ 

(5.18) 

The above equation is expressed as in Equation (5.16) using multiple indices to denote the 

corresponding one-dimensional polynomials associated with them. Using the set of Hermite 

polynomials, {1, 𝑋, 𝑋2 − 1, 𝑋3 − 3𝑋, … } and Equation (5.17), we can write the terms in 

Equation (5.18) in a simplified form as 

 Ψ0(𝑋1, 𝑋2) = 1                    Ψ1(𝑋1, 𝑋2) = 𝑋1               Ψ2(𝑋1, 𝑋2) = 𝑋2 

Ψ3(𝑋1, 𝑋2) = 𝑋1
2 − 1          Ψ4(𝑋1, 𝑋2) = 𝑋1𝑋2           Ψ5(𝑋1, 𝑋2) = 𝑋2

2 − 1    

Ψ6(𝑋1, 𝑋2) = 𝑋1
3 − 3𝑋1      Ψ7(𝑋1, 𝑋2) = 𝑋2(𝑋1

2 − 1)            …         

(5.19) 

Using the terms in Equation (5.19), we can express Equation (5.18) as 
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ℳ(𝑋1, 𝑋2) = ∑ 𝑎𝑘Ψ𝑘(𝑋1, 𝑋2)

∞

𝑘=0

 (5.20) 

This equation is expressed as in Equation (5.17). Except in the difference in the indexing 

convention, the surrogate models in Equation (5.18) and (5.20) is identified. For example, 

𝑎30𝜙3( 𝑋1)𝜙0( 𝑋2) in Equation (5.17) is identified as the term 𝑎6Ψ6(𝑋1, 𝑋2) in Equation (5.19). 

5.2.5 Truncation Scheme 

The representation of a random response using Equation (5.17) is exact when infinite series is 

considered. However, this is not possible for practical implementation and hence a finite 

dimensional polynomial chaos has to be built by truncating the series up to a certain degree. The 

total number of terms (𝑁) retained in the expansion can be determined with the dimensionality (𝑛) 

of input variables, 𝑿, and the truncation order (𝑝) of the expansion as: 

 
𝑁 =

(𝑛 + 𝑝)!

𝑛! 𝑝!
 (5.21) 

A PCE of degree 𝑝 = 2 usually provides satisfactory results for moment and sensitivity analysis, 

whereas a degree 𝑝 = 3 is often necessary when performing a reliability analysis (Blatman & 

Sudret, 2010a; Sudret, 2008).  Hence, the truncated form of PCE can be written as:   

 

𝑌 = ℳ(𝑿) ≃ �̃� = ℳ̃(𝑿) = ∑ 𝑎𝑘Ψ𝑘(𝑿)

𝑁

𝑘=0

 (5.22) 

5.2.6 Computation of PCE Coefficients 

Once the truncated PC basis is established, the coefficients {𝑎𝑘, 𝑘 ∈ ℕ} has to be computed. In 

this study, a non-intrusive method called the projection method is of interest. Non-intrusive 
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methods rely on the repeated run of the computational model for selected realizations of random 

vector, 𝑿, which is similar as in Monte-Carlo simulation. The computation of PC coefficients using 

the projection approach exploits the orthonormality of the PC basis.   

Multiplying Equation (5.22) by Ψ𝑙(𝑿) and by taking its expectation: 

 

E[ℳ̃(𝑿)Ψ𝑙(𝑿)] = E [∑ 𝑎𝑘Ψ𝑘(𝑿)

𝑁

𝑘=0

Ψ𝑙(𝑿)] (5.23) 

This can be written as 

 

∫ ℳ̃(𝒙)Ψ𝑙(𝒙)
𝔗𝑿

𝑓𝑿(𝒙)𝑑𝒙 = ∫ [∑ 𝑎𝑘Ψ𝑘(𝒙)

𝑁

𝑘=0

Ψ𝑙(𝒙)] 𝑓𝑿(𝒙)𝑑𝒙
𝔗𝑿

 (5.24) 

Due to orthonormality condition as indicated in Equation (5.15), only the term when 𝑘 = 𝑙 will be 

retained. Noting that the inner product of an orthonormal basis with itself is equal to one, the right-

hand side of the equation gets reduced to: 

 
𝑎𝑘 ∫ Ψ𝑘

2(𝒙)𝑓𝑿(𝒙)𝑑𝒙
𝔗𝑿

= 𝑎𝑘〈Ψ𝑘 , Ψ𝑘〉 = 𝑎𝑘 (5.25) 

Hence, by using Equation (5.24) and (5.25), the PCE coefficients can be computed as: 

 
𝑎𝑘 = ∫ ℳ̃(𝒙)Ψ𝑘(𝒙)

𝔗𝑿

𝑓𝑿(𝒙)𝑑𝒙 = 〈Ψ𝑘 , ℳ̃〉           (𝑘 = 0, 1, … , 𝑁) (5.26) 

One should note that the calculation of PCE coefficients requires to evaluate an 𝑛-dimensional 

integration.  This multidimensional integral may be computed using various quadrature schemes, 

which differ in the choice of the selected integration points (i.e., the mechanistic model 

evaluations). 



 

 146 

5.2.6.1 Post-processing using PCE coefficients 

One of the major advantages of the PCE method is that once all the PCE coefficients are 

determined, the mean and variance of the response can be approximated in a straightforward 

manner as follows:  

 𝜇𝑌 ≡ 𝑎0 (5.27) 

 

𝜎𝑌
2 ≡ ∑ 𝑎𝑘

2

𝑁

𝑘=1

 (5.28) 

Another advantage is the possibility to derive the global sensitivity indices of the model response 

to the input variables in an easy manner (Sudret, 2008). Of particular interest is the total sensitivity 

index, which quantifies the influence of the variability of each input random variable on the overall 

variance of the response function. This is estimated by means of: 

 
𝑆𝑖

𝑇 =
1

𝜎𝑌
2 ∑ 𝑎𝝀

2

𝝀∈𝔗𝑖
∗

 (5.29) 

where 𝔗𝑖
∗ ≡ {𝝀 ∈ ℕ𝑛, 0 ≤ |𝝀| ≤ 𝑝, 𝛼𝑖 ≠ 0} denotes the set of all indices with a non-zero 𝑖-th 

component. 

5.2.6.2 Computational Cost of PCE Coefficients 

One of the easiest quadrature scheme is based on the random sampling, in which Monte Carlo 

simulation is widely used. Despite its easy to implement nature, MCS relies upon a large number 

of model evaluations to compute the integration. A well-known drawback of simulation based 

method for high dimensional integration is the low convergence rate, which makes the method 

computationally very expensive (Dubourg, 2011). Improvements to MCS were made by 
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introducing advanced methods such as Latin Hypercube sampling. A significant reduction in 

model evaluations was possible but can be still expensive for the purpose of PFEA of expensive-

to-evaluate FE models (Hosder et al., 2007).   

An alternate to the simulation method is the use of multivariate Gauss quadrature techniques, 

which are computationally less expensive when compared to simulation-based methods. 

Considering an 𝐿-point scheme, a full tensor Gauss quadrature can be used to approximate the 

multidimensional integration defining each PCE coefficients as: 

 

𝑎𝑘 ≈ ∑ …

𝑁

𝑖1=1

∑ [(∏ 𝑤𝑖𝐿

𝑛

𝐿=1

) . Ψ𝑘(𝑥𝑖1
, … , 𝑥𝑖𝑛

). ℳ̃(𝑥𝑖1
, … , 𝑥𝑖𝑛

)]

𝑁

𝑖𝑛=1

 (5.30) 

where 𝑤𝑖𝐿
 and  𝑥𝑖𝐿

 are an 𝐿th Gauss weight and point of random variable 𝑋𝑖, respectively.  It is 

important to note that, considering an 𝐿-point scheme to evaluate an 𝑛-dimensional integration 

results in 𝐿𝑛 evaluations of the model ℳ̃, which means that the total number of model evaluations 

exponentially increases with respect to the dimensionality of 𝑿. This is called curse of 

dimensionality, which leads to intractable computational cost for PCE surrogate model 

construction (Debusschere et al., 2004). Improvements such as use of Smolyak algorithm was 

introduced to moderate the curse of dimensionality of full tensor Gauss quadrature but the 

computational cost still increases strongly with the number of input parameters (Blatman & Sudret, 

2010a). 

5.2.7 Using PCE for Probabilistic FEA 

The advantage of PCE when compared to other uncertainty propagation methods is that one can 

get a surrogate model of the computationally expensive mechanistic model and then the full 
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probabilistic characteristics of the output response by performing MCS using the 

simple-to-evaluate surrogate model. One can also perform reliability analysis using MCS on the 

surrogate model. However, if there are multiple input random variables, the computational cost of 

PCE surrogate model construction becomes high for computationally expensive FE codes (e.g., 

non-linear FEM problems) due to high number of repetitive calls of FE codes to compute the PCE 

coefficients. For an efficient probabilistic finite element analysis, it is important to reduce the 

model evaluations significantly. This is not possible while using the currently available PCE 

coefficient computation techniques.  

5.3 Multiplicative Dimensional Reduction Method (M-DRM)  

5.3.1 Background 

The computation of PCE coefficients involves an 𝑛-dimensional integration. For this reason, PCE 

cannot be considered as an efficient method for reliability analysis of expensive-to-evaluate FE 

codes which leads to intractable computational cost for PCE surrogate model construction. Several 

methods have been introduced in literature to overcome the computational cost associated with 

computing an 𝑛-dimensional integration. The point estimate method (Rosenblueth, 1975) and the 

Taylor series approximation can deal with this problem but the limitations of these methods are 

that both the uncertainty of random input and the nonlinearity of random output with respect to 

random input must be small (Rahman & Xu, 2004). A more efficient method is the 

high-dimensional model representation (H-DMR) (Li, Rosenthal, et al., 2001; Rabitz et al., 1999) 

or also called as dimensional reduction method (Rahman & Xu, 2004; Xu & Rahman, 2004) in 

which a function is decomposed in terms of functions increasing dimensions. Using DRM, a 
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multivariate function can be expressed as a sum of lower order functions in an increasing hierarchy, 

thus called as additive DRM (A-DRM). Another way of representation is by using multiplicative 

DRM (M-DRM) in which a multivariate function is expressed as product of lower order functions. 

In general, it is truncated to one dimensional functions and the evaluation is further simplified by 

using the cut-point H-DMR method (Rahman & Xu, 2004). Using this formulation, the number of 

function evaluations can be significantly reduced to 𝑛𝐿 from 𝐿𝑛 .  

In M-DRM, the response function 𝑌 = ℳ(𝑿) is evaluated with respect to a fixed input point, 

known as the cut point with coordinates 𝒄 (Li, Rosenthal, et al., 2001) 

 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛) (5.31) 

where 𝑐1, 𝑐2, … , 𝑐𝑛 corresponds to the mean value of each random variable 𝑋1, 𝑋2, … , 𝑋𝑛. Thus, an 

ith cut function is obtained by fixing all the input random variables, except 𝑋𝑖 at their respective 

cut point coordinates, which are generally chosen as the mean values (𝑐1, 𝑐2, … , 𝑐𝑛) such that 

 ℳ𝑖(𝑥𝑖) = ℳ(𝑐1, … , 𝑐𝑖−1, 𝑥𝑖 , 𝑐𝑖+1 … , 𝑐𝑛) (5.32) 

Chowdhury et al. (Chowdhury et al., 2009) used HDMR as a response surface approximation to 

solve finite element problems, where each cut function was discretely calculated at finite number 

of points. He then used an interpolation method using moving least squares approximation to 

compute the output response at a point off the cut points and came up with the approximate 

response surface. This approach was later combined with FE model by Rao et al. for probabilistic 

characterization of inner containments of nuclear reactors (Rao et al., 2009, 2010) and to solve 

fuzzy FE analysis of structures where Lagrange interpolation functions were used to approximate 

the response surface (Balu & Rao, 2012). Balomenos and Pandey used M-DRM to directly 

compute fractional moments of the response and then derived the distribution of the response 
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without the need of expensive FE simulations (Balomenos & Pandey, 2016). They used this 

approach with FE models of reinforced concrete slab (Balomenos et al., 2015a) and nuclear 

containment wall segments (Balomenos & Pandey, 2017) for probabilistic analysis. This chapter 

presents a new approach where M-DRM is coupled with polynomial chaos expansion (PCE), 

which significantly reduces the computational cost associated with PCE coefficient computation 

and hence the construction of PCE surrogate model. 

5.3.2 Mathematical Setting of M-DRM 

The key idea in additive DRM (A-DRM) is to express a high-dimensional function as a sum of 

functions of lower order in an increasing hierarchy as (Chowdhury et al., 2009; Li, Wang, et al., 

2001; Rabitz et al., 1999; Xu & Rahman, 2004)  

 
𝑌 = ℳ(𝑿) = ℳ0 + ∑ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

+ ∑ ℳ𝑖𝑗(𝑥𝑖 , 𝑥𝑗)+. . .

1≤𝑖<𝑗≤𝑛

 (5.33) 

For a sufficiently smooth function, the influence of higher order terms are negligible than the 

univariate terms, ℳ𝑖(𝑥𝑖). This results in a simple representation of response function by retaining 

only up to the univariate functions (Rahman & Xu, 2004): 

 
𝑌 = ℳ(𝑿) ≈ ∑ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

− (𝑛 − 1)ℳ0 (5.34) 

where ℳ𝑖(𝑥𝑖) is a one-dimensional cut function as defined in Equation (5.32) and ℳ0 defines the 

response when all the random variables are fixed to their mean values, i.e., 

 ℳ0 = ℳ(𝑐1, 𝑐2, … , 𝑐𝑛) =  𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5.35) 
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M-DRM follows the same approach with A-DRM, but the response function is first transformed 

logarithmically, i.e., log[ℳ(𝑿)], which derives the multiplicative approximation of the response 

function as  

 
𝑌 = ℳ(𝑿) ≈ ℎ0

(1−𝑛)
× ∏ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

 (5.36) 

Thus, the above equation gives an approximate model of the input-output relation in a product 

form. This approximate model can be used in polynomial chaos expansion to reduce the 

computational cost of PCE surrogate model construction.  

5.4 Combining the M-DRM with PCE 

The high computational cost of PCE surrogate model construction was due to the 𝑛-dimensional 

integration involved in the computation of PCE coefficients. A full tensor Gauss quadrature 

method requires 𝐿𝑛 model evaluations for an 𝐿-point scheme with 𝑛 input random variables, which 

gives an exponential increase in model evaluations with increase in input random variables. This 

computational cost can be significantly reduced when M-DRM is coupled with PCE.  

Consider a mechanistic model of the random response expressed as: 

 𝑌 = ℳ(𝑿) (5.37) 

Using M-DRM, the mechanistic model given above can be approximated as: 

 
𝑌 = ℳ(𝑿) ≈ ℎ0

(1−𝑛)
× ∏ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

 (5.38) 
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where ℳ0 = ℳ(𝑐1, 𝑐2, … , 𝑐𝑛), i.e., model evaluated at cut point with all mean values of input 

random variables and ℳ𝑖(𝑥𝑖) = ℳ(𝑐1, … , 𝑐𝑖−1, 𝑥𝑖, 𝑐𝑖+1 … , 𝑐𝑛), i.e., model evaluated by fixing all 

the input random variables, except 𝑋𝑖 at their respective mean values.  

From Equation (5.26), the coefficients of PCE can be computed as: 

 
𝑎𝑘 = ∫ ℳ̃(𝒙)Ψ𝑘(𝒙)

𝔗𝑿

𝑓𝑿(𝒙)𝑑𝒙 = 〈Ψ𝑘 , ℳ̃〉           (𝑘 = 0, 1, … , 𝑁) (5.39) 

Substituting the M-DRM approximation of mechanistic model from Equation (5.38) into Equation 

(5.39), the PCE coefficients can be approximated as: 

 
𝑎𝑘 ≈ ∫ [ℎ0

(1−𝑛)
× ∏ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

] Ψ𝑘(𝒙)
𝔗𝑿

𝑓𝑿(𝒙)𝑑𝒙          (𝑘 = 0, 1, … , 𝑁) 

= ℎ0
(1−𝑛)

× ∫ [∏ ℳ𝑖(𝑥𝑖)

𝑛

𝑖=1

] Ψ𝑘(𝒙)
𝔗𝑿

𝑓𝑿(𝒙)𝑑𝒙          (𝑘 = 0, 1, … , 𝑁) 

(5.40) 

Referring to Equation (5.14), recall that a multivariate polynomial Ψ𝑘 with an index 𝑘 is defined 

as a tensor product of marginal univariate polynomials {𝜓𝑗𝑖
, 𝑗 ∈ ℕ}  defined according to the 𝑖-th 

marginal distribution of the respective individual random variables as 

 
Ψ𝑘(𝒙) = ∏ 𝜓𝑗𝑖

𝑛

𝑖=1

(𝑥𝑖) (5.41) 

Noting this relation, Equation (5.40) can be written as 

 
𝑎𝑘 ≈ ℎ0

(1−𝑛)
× ∏ (∫ ℳ𝑖(𝑥𝑖)

𝔗𝑋𝑖

𝜓𝑗𝑖
(𝑥𝑖)𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖)

𝑛

𝑖=1

          (𝑘 = 0, 1, … , 𝑁) (5.42) 
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The integral in the above equation for PCE coefficient computation has now reduced to 

one-dimensional integrals with respect to each random variables. Each of these integrals can be 

now computed using an 𝐿-point Gauss quadrature scheme and the PCE coefficients in Equation 

(5.42) can be computed as: 

 

𝑎𝑘 ≈ ℎ0
(1−𝑛)

× ∏ (∑ ℳ𝑖𝐿
(𝑥𝑖𝐿

)𝜓𝑗𝑖
(𝑥𝑖𝐿

)

𝑙

𝐿=1

𝑤𝑖𝐿
)

𝑛

𝑖=1

          (𝑘 = 0, 1, … , 𝑁) (5.43) 

where 𝑤𝑖𝐿
 and  𝑥𝑖𝐿

 are an 𝐿th Gauss weight and point of random variable 𝑋𝑖, respectively. This 

computation requires 𝑛𝐿 model evaluations for all the cut functions and an additional model 

evaluation to compute ℎ0. Thus, only 𝑛𝐿 + 1 mechanistic model evaluations are required in total 

for PCE coefficient computation. For example, a problem with 10 random variables and 5-point 

Gauss quadrature will require only 51 model evaluations, whereas a full tensor Gauss quadrature 

will require 510 model evaluations. Hence, the computational cost of the PCE surrogate model 

construction can be significantly reduced and the colossal difference in the required model 

evaluations between the two method proves the advantage of the new method. 

Note that while combining the M-DRM and PCE methods, multivariate polynomials were not 

constructed, and only univariate polynomials were used for computing the PCE coefficients. The 

multivariate polynomials corresponding to each coefficient are then built based on the already 

known multi-indices used to compute these coefficients. After obtaining all the coefficients and 

multivariate polynomials, the final surrogate model can be constructed using Equation (5.17). 
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5.5 Gaussian Quadrature Scheme for One-Dimensional Integration 

A univariate quadrature rule approximates the unidimensional integrals by a weighted sum of 𝐿 

weight values, 𝑤𝑖𝐿
 and integration points, 𝑥𝑖𝐿

 as: 

 

∫ 𝑔(𝑥) 𝑊(𝑥)𝑑𝑥 = ∑ 𝑤𝑖𝐿
. ℳ(𝑥𝑖𝐿

)𝑊(𝑥𝑖𝐿
)

𝐿

𝑖=1

 (5.44) 

The integration scheme for various distributions is shown in Table 5.2. The value of the integration 

points and weights depends on the integrand and the quadrature selected. For example, for the case 

of a normal random variable, the Gauss-Hermite integration scheme can be used. The 

Gauss-Hermite quadrature involves the approximation of an integral of the form (Beyer, 1987; 

Kythe & Schäferkotterr, 2004; Zwillinger, 2011) 

 
∫ 𝑓(𝑥)𝑑𝑥 =  ∫ 𝑒−𝑥2

ℳ(𝑥)𝑑𝑥 (5.45) 

Where based on Table 5.2, the Gauss-Hermite integral is approximated as  

 
∫ 𝑒−𝑥2

ℳ(𝑥)𝑑𝑥 ≈ ∑ 𝑤𝐿ℳ(𝑥𝐿)
𝑙

𝐿=1
 (5.46) 

where 𝑙 is the number of evaluation points and 𝑤𝐿 (𝐿 = 1, . . . , 𝑙) are known as Gauss-Hermite 

weights. The basic idea is that the function ℳ(𝑥𝐿) is evaluated at a few chosen evaluation points 

𝑥𝐿 and then the integral is approximated as a weighted sum.  

The Gauss coordinates (𝑧𝐿) and Gauss weights (𝑤𝐿), of the five-order rule (𝐿 = 5) of Gauss-

Hermite, Gauss-Legendre and Gauss-Laguerre quadrature, are summarized in Table 5.3. If more 

orders (𝑙 > 5) of Gauss coordinates (𝑧𝐿) and Gauss weights (𝑤𝐿) based on other orthogonal 
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polynomials are required, they can be found from literature (Beyer, 1987; Kythe & Schäferkotterr, 

2004; Zwillinger, 2011).  

From Table 5.2, Gauss-Hermite quadrature can be used for a normal distribution. For a standard 

normal distribution, the probability density function (PDF) is expressed as  

 
𝑓(𝑧) =

1

√2𝜋
𝑒

(−
𝑧2

2
)
 

(5.47) 

A standard Normal random variable 𝑍 can be then transformed into a Normal random variable 𝑋 

using the following equation (Ang & Tang, 2007a).  

 𝑋 = 𝜇 + 𝜎𝑍 (5.48) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the Normal distribution.  

The Gauss-Hermite coordinate, 𝑥𝑖𝐿
, for each normal random variable 𝑋𝑖 can be related to the 

Gauss-Hermite coordinate, 𝑧𝑖𝐿
, for the standard normal variable 𝑍𝑖 via the following 

transformation 

 𝑥𝑖𝐿
= 𝜇𝑖 + 𝜎𝑖 × 𝑧𝑖𝐿

 (5.49) 

where 𝜇𝑖 is the mean value, 𝜎𝑖 is the standard deviation and 𝑧𝑖𝐿
 is the Gauss-Hermite coordinate 

of each input normal random variable. 

Another frequently used probability distribution in Engineering problems is the Lognormal 

distribution, which takes only positive values. If a random variable 𝑋 follows a Lognormal 

distribution, then ln(𝑋) follows a normal distribution. The PDF of a Lognormal distribution is 

expressed as (Ang & Tang, 2007a) 

 
𝑓(𝑥) =

1

𝑥휁√2𝜋
𝑒

(−
[ln(𝑥)−𝜆]2

2𝜁2 )
 (5.50) 
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where 𝜆 is the shape parameter and 휁 is the scale parameter of the Lognormal distribution. These 

parameters are related to Normal distribution parameters via the following relations 

 

𝜆 = ln(𝜇) − (
1

2
휁2)  𝑎𝑛𝑑 휁 = √ln (1 +

𝜎2

𝜇2
) (5.51) 

Therefore, a relation between the Standard Normal random variable 𝑍 and the Lognormal random 

variable 𝑋 can be expressed as 

 
𝑍 =

ln(𝑋) − 𝜆

휁
 (5.52) 

Using Equation (5.52), the Gauss-Hermite coordinate, 𝑥𝑖𝐿
, for each Lognormal random variable 

𝑋𝑖  can be related to the Gauss-Hermite coordinate for 𝑧𝑖𝐿
 for the standard normal variable 𝑍𝑖 via 

the following transformation  

 𝑥𝑖𝐿
= 𝑒(𝜆𝑖+𝜁𝑖𝑧𝑖𝐿

)
 (5.53) 

where 𝜆𝑖 is the shape parameter, 휁𝑖 is the scale parameter and 𝑧𝑖𝐿
 is the Gauss-Hermite coordinate 

of each input Lognormal random variable. 

Equation (5.45) and Equation (5.53) can be used to compute the function evaluation points 𝑥𝑖𝐿
 for 

each random variable 𝑋𝑖 upon knowing the distribution parameters of Normal and Lognormal 

distributions. After evaluating the function output ℳ(𝑥𝐿) at each evaluation point 𝑥𝐿, they are 

multiplied with the corresponding Gauss-Hermite weights 𝑤𝐿 and are then summed to obtain the 

approximation of the integral shown in Equation (5.46). Gaussian quadrature is therefore a 

powerful tool to significantly reduce the computational cost of a unidimensional integral. 
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Table 5.2: Gaussian integration formula for one-dimensional integration 

Distribution 

Support 

domain 

Gaussian 

quadrature 

Numerical integration formula 

Uniform [𝑎, 𝑏] Gauss-Legendre ∑ 𝑤𝐿 [
1

2
𝜉 (

𝑏 − 𝑎

2
𝑧𝐿 +

𝑎 + 𝑏

2
)]

𝑙

𝐿=1
 

Normal (−∞, ∞) Gauss-Hermite ∑ 𝑤𝐿[𝜉(𝜇 + 𝑧𝐿𝜎)]
𝑙

𝐿=1
 

Lognormal (0, ∞) Gauss-Hermite ∑ 𝑤𝐿{𝜉[exp(𝜇 + 𝑧𝐿𝜎)]}
𝑙

𝐿=1
 

Exponential (0, ∞) Gauss-Laguerre ∑ 𝑤𝐿 [𝜉(
𝑧𝐿

𝜆⁄ )]
𝑙

𝐿=1
 

Weibull (0, ∞) Gauss-Laguerre ∑ 𝑤𝐿 [𝜉 (휃𝑧𝐿

1
𝛿⁄

)]
𝑙

𝐿=1
 

 

Table 5.3: Weights and coordinates of the five order Gauss-Hermite quadrature rule 

Gaussian rule 𝐿 1 2 3 4 5 

Gauss-Hermite 𝑤𝐿 0.011257 0.22208 0.53333 0.22208 0.011257 

 𝑧𝐿 -2.85697 -1.35563 0 1.35563 2.85697 

Gauss-

Legendre 
𝑤𝐿 0.23693 0.47863 0.56889 0.47863 0.23693 

 𝑧𝐿 -0.90618 -0.53847 0 0.53847 0.90618 

Gauss-

Laguerre 
𝑤𝐿 0.52176 0.39867 0.07594 0.00361 0.00002 

 𝑧𝐿 0.26356 1.4134 3.5964 7.0858 12.641 
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5.6 Probabilistic FEA using the proposed method 

Coupled M-DRM and PCE method will give a significant reduction in the computational cost 

associated with PFEA of expensive-to-evaluate FE models because: (1) it significantly reduces the 

number of mechanistic model evaluations; (2) approximately estimates the probability distribution 

of the output response. The implementation of the proposed method for PFEA is given in Figure 

5.1, which describes how to develop a surrogate model and perform a PFEA using the proposed 

method. A more detailed description on the steps that must be followed to implement the proposed 

method is also given below.  

Step 1: Define the n random variables 𝑿 =  [𝑋1, 𝑋2, … , 𝑋𝑛]T. Choose the appropriate Gaussian 

quadrature based on the type of distribution followed by each random variable. e.g., for a normally 

distributed random variable, choose the Gauss-Hermite quadrature. Gauss quadrature scheme for 

other type of distributions can be found in Table 5.2. 

Step 2: Choose the number of points of the Gauss quadrature scheme. A 5-point scheme is usually 

adequate (Balomenos et al., 2015a; Zhang & Pandey, 2013b). The weights, 𝑤𝑖𝐿
, and the 

coordinates, 𝑧𝑖𝐿
, of a five-point Gauss-Hermite quadrature rule is given in Table 5.3, along with 

other Gaussian rules.  

Step 3: For the chosen Gaussian quadrature of each random variable, compute the corresponding 

quadrature coordinates, e.g., use Equation (5.45) for the Gauss-Hermite to calculate the Gauss 

quadrature coordinates, 𝑥𝑖𝐿
, from 𝑧𝑖𝐿

. Each of these 𝑥𝑖𝐿
 values along with the fixed mean values of 

the other random variables forms the M-DRM input grid. Equations associated with other 

distributions can be found in (Zhang & Pandey, 2013a). 
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Step 4: Input the first 𝑥𝑖𝐿
 value along with the fixed mean values of the other random variables to 

the FEA software, run the analysis and obtain the corresponding output response ℳ𝑖𝐿
(𝑥𝑖𝐿

). Repeat 

the same process by changing each of the 𝑥𝑖𝐿
 values listed in the input grid. At the end, set all input 

random variables to their mean value and run one additional FEA to calculate the response ℳ0. 

The collection of these output responses forms the output grid.  

Step 5: Select the truncation order, p, of the PCE and choose the appropriate orthogonal 

polynomials based on the distribution type of each random variable given in Table 5.1.  

Step 6: Multiply each of the  ℳ𝑖𝐿
(𝑥𝑖𝐿

) obtained from step 4 with its associated Gauss quadrature 

weight, 𝑤𝑖𝐿
 and the corresponding univariate polynomial obtained from step 5 and use Equation 

(5.43) to calculate each of the PCE coefficients. 

Step 7: Evaluate the mean and the variance using Equations (5.27) and (5.28) and perform a 

sensitivity analysis using Equation (5.29).  

Step 8: Build the multivariate polynomials corresponding to each coefficient based on the already 

known multi-indices used to determine these coefficients.  

Step 9: Construct the final surrogate model using Equation (5.17).  

Step 10: Run a MCS using the surrogate model and perform the probabilistic/stochastic analysis.  
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Figure 5.1: Flowchart to conduct PFEA using the proposed method 



 

 161 

5.6.1 Application Example 

For the illustration purpose of the proposed method, an analytical response function with two 

random variables is considered. Feeder pipes connect the inlet and outlet headers to the reactor 

core in CANDU nuclear power plants. A degradation mechanism known as flow accelerated 

corrosion (FAC) causes wall thinning, which affects the structural integrity of these feeder pipes. 

Flow accelerated corrosion causes general thinning as well as local thinning. For simplicity, a 

general thinning case is assumed here. According to the Design by Analysis rules of NB-3221 of 

ASME Boiler and Pressure Vessel (ASME B&PV) Code, the general primary membrane stress 

must meet the 𝑆𝑚 limit, where 𝑆𝑚 is the maximum allowable stress intensity for the material at the 

design temperature (ASME, 2015). The material used for the fabrication of feeder pipes is SA 106 

Carbon Steel and the maximum allowable stress intensity, 𝑆𝑚 =  119 MPa (Abdelsalam & Vijay, 

2010). The general primary membrane stress (i.e., the hoop stress) in the pipe due to internal 

pressure can be computed as 

 
𝜎ℎ =

𝑃𝑖𝑛𝑡𝑟

𝑡
 (5.54) 

where 𝑃𝑖𝑛𝑡 is the internal pressure and 𝑡 is the wall thickness of the pipe. The internal pressure has 

a coefficient of variation of 0.15 (Gupta & Choi, 2003) and wall thickness has a coefficient of 

variation of 0.0745, which was computed based on the inspection data. The implementation of the 

proposed method and the computations involved in each module as given in Figure 5.1 is described 

in detail next. Note that the FEA module is now replaced by the analytical equation given in 

Equation (5.54).  
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5.6.1.1 M-DRM Module 

The first step in the implementation of coupled M-DRM and PCE method is to define the 

distribution type and parameters of the random variables. This is given in Table 5.4.  

Table 5.4: Statistics of random variables related to hoop stress in pipes 

Random variable Distribution Mean Standard Deviation 

𝑃𝑖𝑛𝑡 Lognormal 10.4 1.56 

𝑡 Normal 3.9124 0.2905 

 

The next step in the implementation of coupled M-DRM and PCE method is to form the input grid. 

Using a 5-point (𝐿 = 5 ) Gauss quadrature, an input grid is generated to evaluate the model 

response. The Gauss Hermite formula is used since random variables follow normal and lognormal 

distribution. The total number of model evaluations are 𝑛𝐿 + 1 = (2 × 5) + 1 = 11. For each of 

the evaluation point, only one random variable value is changed while other random variables are 

fixed to their mean value, which forms 10 model evaluations. The 11th or final model evaluation 

is reserved for the mean case where the function evaluation is carried out by fixing all input random 

variables to their mean values. The input grid and the output grid are given in Table 5.5. This 

complete the computations in the M-DRM module.  
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Table 5.5: Input grid for model evaluation and the corresponding output grid 

Random 

variable 

Model 

evaluations 

Gauss Hermite 

points (𝑧𝑗) 

𝑃𝑖𝑛𝑡(MPa) 𝑡(mm) 𝜎ℎ(MPa) 

𝑃𝑖𝑛𝑡 

1 -2.8570 6.7162 3.9124 45.0404 

2 -1.3556 8.4020 3.9124 56.3459 

3 0 10.2849 3.9124 68.9735 

4 1.3556 12.5899 3.9124 84.4312 

5 2.8570 15.7501 3.9124 105.6241 

𝑡 

6 -2.8570 10.4 3.0825 91.3243 

7 -1.3556 10.4 3.5186 78.7152 

8 0 10.4 3.9124 69.7452 

9 1.3556 10.4 4.3062 62.4158 

10 2.8570 10.4 4.7423 55.7191 

Fixed mean 

values 
11 N/A 10.4 3.9124 69.7452 

 

5.6.1.2 PCE Module 

After completing all the required model evaluations and obtaining the output, the next step is to 

compute the PCE coefficients. For this, the multivariate polynomial basis must be constructed. 

Since the random variables have Normal and Lognormal distribution, the Hermite orthogonal 

polynomials can be used as appropriate basis functions. Truncating the order of polynomial chaos 

to 3, i.e., 𝑝 = 3, the total number of terms retained in the expansion can be computed using 

Equation (5.21) as 10. For PC basis construction, let us denote the first random variable, 𝑃𝑖𝑛𝑡 as 

𝑋1 and the second random variable 𝑡 as 𝑋2. The corresponding set of univariate Hermite 

polynomials for each random variable are {1, 𝑋1, 𝑋1
2  − 1 } and {1, 𝑋2, 𝑋2

2  − 1 }, respectively. The 

multivariate orthogonal polynomial chaos basis can be now constructed using the tensor product. 

To use it as a proper basis, the orthogonal polynomials must be factorized with their respective 
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squared norms. Using the function evaluation values and the constructed PC basis, the PCE 

coefficients can be computed using Equation (5.30). PC basis construction and the obtained PCE 

coefficients are given in Table 5.6.  

The analytical equation for hoop stress given in Equation (5.54) can be now replaced using the 

PCE surrogate model expressed using Equation (5.17) as  

 
𝜎ℎ ≈ 70.1946 + 10.4707𝑋1+ . . . −0.0347 (

1

√3!
(𝑋2

3 − 3𝑋2)) (5.55) 

Table 5.6: Two-dimensional Hermite polynomials and computed PCE coefficients 

k 𝝀 𝑝 = ∑ 𝜆𝑖

2

𝑖=1
     Orthonormal Chaos Polynomials [Ψ𝑘(𝑿)] 

PCE 

Coefficients  

0 {0,0} 0 Ψ0(𝑿) = 𝜓0(𝑋1)𝜓0(𝑋2) = 1                       70.1946 

1 {1,0} 1 Ψ1(𝑿) = 𝜓1(𝑋1)𝜓0(𝑋2) = 𝑋1                     10.4707 

2 {0,1} 1 Ψ2(𝑿) = 𝜓0(𝑋1)𝜓1(𝑋2) = 𝑋2                    -6.0521 

3 {2,0} 2     Ψ3(𝑿) = 𝜓2(𝑋1)𝜓0(𝑋2) =
1

√2
(𝑋1

2 − 1)      0.7809 

4 {1,1} 2  Ψ4(𝑿) = 𝜓1(𝑋1)𝜓1(𝑋2) = 𝑋1𝑋2                 -0.9028 

5 {0,2} 2  Ψ5(𝑿) = 𝜓0(𝑋1)𝜓2(𝑋2) =
1

√2
(𝑋2

2 − 1)   0.4571 

6 {3,0} 3      Ψ6(𝑿) = 𝜓3(𝑋1)𝜓0(𝑋2) =
1

√3!
(𝑋1

3 − 3𝑋1) 0.0388 

7 {2,1} 3     Ψ7(𝑿) = 𝜓3(𝑋1)𝜓0(𝑋2) =
1

√2
𝑋2(𝑋1

2 − 1) -0.0673 

8 {1,2} 3     Ψ8(𝑿) = 𝜓3(𝑋1)𝜓0(𝑋2) =
1

√2
𝑋1(𝑋2

2 − 1) 0.0682 

9 {0,3}    3             Ψ9(𝑿) = 𝜓0(𝑋1)𝜓3(𝑋2) =
1

√3!
(𝑋2

3 − 3𝑋2)       -0.0347 
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5.6.1.2.1 Computation of response statistics 

Using the obtained PCE coefficients, the mean and standard deviation can be computed in a 

straightforward manner using Equation (5.27) and Equation (5.28). For the sake of comparison, 

MCS of the actual analytical function given in Equation (5.54) is also performed with 100,000 

simulations and the statistics were computed. The statistics obtained from each method is 

summarized in Table 5.7. The results indicate the numerical accuracy and computational efficiency 

of the proposed method.  

Table 5.7: Comparison of statistics of hoop stress based on MCS and proposed method 

Method used 
Total model 

evaluations 

Mean of 𝜎ℎ 

(MPa) 

Standard deviation of 𝜎ℎ 

(MPa) 

Coefficient of 

variation 

M-DRM+PCE 11 70.1946 12.1963 0.1736 

MCS 106 70.1982 12.1897 0.1736 

 

5.6.1.2.2 Sensitivity Analysis 

Another significant advantage of PCE is the straightforward computation of the sensitivity indices 

using the PCE coefficients and Equation (5.29) (Table 5.8). It is observed that the variance of the 

internal pressure mostly contributes to the variance of the hoop stress. Therefore, the response 𝜎ℎ 

is most sensitive to the input random variable 𝑃𝑖𝑛𝑡, contributing 74.53% of its variance to the 

variance of  𝜎ℎ. This higher correlation was also validated from MCS with 100,000 simulations as 

shown in Figure 5.2. The difference 1 − ∑ 𝑆𝑗𝑗 = 0.0056, which shows a negligible interaction 

between the random variables.   
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Table 5.8: Sensitivity indices 

Random variable (𝑗) Sensitivity index (𝑆𝑗) 

𝑃𝑖𝑛𝑡 0.7453 

𝑡 0.2491 

 

 

Figure 5.2: Scatter plot and linear fit of internal pressure versus hoop stress 

5.6.1.2.3 Response Probabilistic Result 

Monte Carlo simulation (MCS) with 100,000 simulations was performed using the surrogate 

model to get the complete probability distribution. The probability of failure 𝑃𝑓 is estimated by 

plotting the probability of exceedance (POE) as shown in Figure 5.3. It is observed that the coupled 

M-DRM and PCE method provides a highly accurate approximation for almost the entire range of 

the output response distribution.  For instance, the probability of failure of a degraded feeder pipe 

can be defined as the probability of hoop stress exceeding the maximum allowable stress intensity 

of 119 MPa. The probability of failure was computed as 8.72 × 10−4 using coupled M-DRM and 



 

 167 

PCE method, which is close to the estimated value using MCS (8.9 × 10−4). This shows the 

efficiency of the proposed method.  

 

 

Figure 5.3: Comparison of probability of exceedance of hoop stress 

5.6.2 Accuracy and Limitations of the Coupled Approach 

The accuracy of the calculations can be affected by: (1) the consideration of only up to univariate 

functions in the M-DRM representation and (2) the truncation order (𝑝) of the PCE. 

For case (1), the coupled approach considers only terms up to the univariate functions in the 

M-DRM representation. For an accurate representation of the response function, the higher order 

terms must also be considered as shown in Equation (5.33). Therefore, an error is introduced from 

ignoring the higher order terms in the M-DRM representation. For case (2), an exact representation 
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of the surrogate model using PCE is possible only when infinite terms are used. However, for 

practical implementations, the PCE is built by truncating the series up to a certain degree as give 

in Equation (5.22). Therefore, an error is introduced by truncating the series up to a certain degree 

for PCE. The error in the coupled approach could be therefore expressed as a sum of both the 

errors from case (1) and case (2). 

The coupled approach has limitations for approximating highly non-linear functions or model 

responses. This is because the coupled approach considers only terms up to the univariate functions 

in the M-DRM representation. However, previous applications involving M-DRM has shown that 

for applications involving structural problems, the influence of higher order terms is negligible 

compared to the univariate terms (Balomenos et al., 2015b; Balomenos & Pandey, 2016). 

Therefore, the coupled approach can be reasonably applied to structural problems. For 

approximating highly non-linear model responses, the bivariate functions in the M-DRM 

representation can be included. However, this will increase the computational cost of performing 

PFEA, but still efficient when compared to the full tensor Gauss quadrature approach.  

5.7 Conclusions 

This chapter presents a computationally efficient method for performing structural reliability and 

sensitivity analysis by coupling the multiplicative dimensional reduction method (M-DRM) with 

polynomial chaos expansion (PCE) method. The computational cost associated with computing 

the PCE coefficients is significantly reduced by combining the PCE method with M-DRM, which 

in turn gives a computationally efficient method for developing surrogate models of 

expensive-to-evaluate finite element models. The coupling of M-DRM with PCE makes the PCE 
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coefficient computation formulation simple and requiring only one dimensional integrals to be 

solved. M-DRM is used in concurrence with the Gauss quadrature scheme, which gives a set of 

selected values of random variables to calculate the output response. During each M-DRM trial, 

one random variable value is changed while the other random variable values are kept at mean 

values. Each output response is collected as an output grid. The PCE coefficients are then 

computed using the output grid and the appropriate orthogonal polynomials.  The method uses the 

advantage of PCE in computing statistical parameters such as mean and standard deviation, and 

for performing sensitivity analysis in a straightforward manner using the PCE coefficients. The 

surrogate model is then developed using the known PCE coefficients and the multivariate 

polynomials to perform MCS and obtain the complete probability distribution of the output 

response of interest.  

The method was demonstrated by applying the proposed method on a simple analytical equation. 

The statistical and sensitivity analysis results obtained from the proposed method was compared 

with the results obtained from Monte Carlo simulation (MCS), which showed a very close 

agreement. The probability of failure results also showed a very good agreement which confirms 

the efficiency and accuracy of the proposed method.  

The proposed method can be extremely powerful while using it for probabilistic finite element 

analysis (PFEA) due to the requirement of a very small number of FE evaluations. For an 𝐿 point 

Gauss quadrature scheme and 𝑛 random variables, only 𝑛𝐿 + 1 mechanistic model evaluations are 

required in total for PCE coefficient computation and in developing a surrogate model. Therefore, 

the proposed method gives a colossal reduction in the computational cost for performing PFEA 

when compared with MCS.    
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Chapter 6 

Probabilistic Finite Element Analysis of CANDU Fuel Channels 

6.1 Introduction 

In CANDU reactors, a contact between the “hot” Pressure Tube (PT) and the “cold” Calandria 

Tube (CT) could cause the development of hydride blisters that may lead to delayed hydride 

cracking (DHC) of PTs (Byrne et al., 1991). An example of a blister in Zr-2.5Nb PT material is 

shown in Figure 6.1. To maintain PT integrity, contact between these two tubes must be avoided. 

Under normal operating conditions (NOCs), the PT-CT contact can occur as a result of in-reactor 

deformation due to irradiation induced creep, irradiation growth and thermal creep of the FC 

assembly. Prabhu et. al. described in detail the in-reactor deformation of CANDU FCs and the 

prediction of PT-CT contact using finite element models (Prabhu et al., 2020, 2022b), and the need 

of surrogate models in probabilistic contact assessments (Prabhu et al., 2020). Since the prediction 

of time to contact is influenced by various uncertainties, such as change in, (i) the dimensions of 

the FC, and (ii) the material properties and boundary conditions of the FC, probabilistic 

simulation-based methods are necessary to assess the PT-CT contact risk and establish adherence 

with provisions of the Canadian Standards Association (CSA) Standard N285.8. However, the 

direct use of FEM models is not a computationally feasible and reliable choice for probabilistic 

assessments of an entire reactor core with 380 or 480 FCs. For example, the nuclear industry 

currently uses 1D FEM models with a limited number of MCSs for making risk-informed and 

life-extension decisions. The limitations of 1D FEM beam models were discussed in Chapter 3 

and it was shown that a 1D FEM model significantly underpredicts the gap and a 3D FEM model 
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is necessary to accurately predict the PT-CT gap. Also, the probabilistic results based on a limited 

number of MCSs couldn’t be used with sufficient confidence for risk-informed decisions. 

Therefore, a viable approach is sought for performing the probabilistic contact assessment of 

CANDU FCs and of an entire reactor core using 3D FEA in a computationally efficient manner.  

 

Figure 6.1: Example of a blister in Zr-2.5Nb PT material (blister depth = 0.25 mm from outside 

surface to lower end of darker region) (Nadeau, 2012) 

6.1.1 Objective 

The main objective of this chapter is to perform PFEA of CANDU FCs using the coupled 

multiplicative dimensional reduction method (M-DRM) and the polynomial chaos expansion 

(PCE) method. The first objective is to apply the proposed method using 1D FEA and validate the 

obtained statistical and probabilistic results against the MCS results. After validation, the proposed 

method is used for probabilistic contact assessment. The second objective is to perform a detailed 

probabilistic contact assessment utilizing the 3D FEA and the proposed method by considering 

different PT orientations in a CANDU reactor. The final objective is to compare the probabilistic 

analysis results based on 1D and 3D FEM models to make aware and demonstrate to the nuclear 
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industry on the associated error in probability of contact prediction using a 1D FEM model, which 

is the current industry practice.  

6.1.2 Organization 

The organization of the chapter is as follows. Section 6.2 presents the uncertain parameters and 

the corresponding distribution of these parameters influencing the PT-CT gap profiles, which will 

be used for probabilistic FEA using both 1D and 3D FE models. Section 6.3 discusses the 

application of MCS and coupled M-DRM and PCE method using 1D FEM model for probabilistic 

FEA of CANDU FCs, where MCS is used as a benchmark to check the accuracy of the coupled 

M-DRM and PCE method. Section 6.4 presents the deterministic 3D FEA results on PT diametral 

expansion and PT-CT gap profile based on different PT orientations. Section 6.5 discusses the 

application of coupled M-DRM and PCE method using 3D FEM model for probabilistic FEA of 

CANDU FCs by considering different PT orientations. Finally, section 6.6 summarizes the 

conclusions. The surrogate model development in Chapter 4 utilized the understanding of the 

nature of the PT-CT gap evolution due to irradiation induced creep phenomena.  

6.2 Uncertain Variables Influencing Gap Profile 

Most of the model variables such as FC geometry, loading history, weight of nuclear fuel and 

coolant, etc. can be modeled as deterministic constants due to insignificant variations from their 

nominal design values. However, there are certain variables which exhibit significant variation and 

influence the PT-CT contact risk appreciably as discussed next.  
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The first variable is associated with the deformation equation describing PT deformation. A 

simpler approach is used to model the observed variability due to in-reactor creep given that the 

statistical distribution of the equation parameters describing the creep component is not available. 

A factor that multiplies the parameter describing the creep component is used to scale the 

calculated total strain using the creep deformation equation. This factor, identified here as the 

creep factor, is then modelled as a normally distributed random variable (Nadeau, 2012). In the 

FE model, the creep factor was incorporated in the UMAT subroutine, and the scaling was 

performed by multiplying the creep strain increment computed by the corresponding deformation 

equation with the creep factor at each time increment.    

The second and third variables that significantly influence the gap profile are the end-slopes of 

the PT at the inlet and outlet ends. The end-slopes are formed due to the tilting of the end-fitting 

caused during the installation process, which results in a non-zero value at both ends. The 

variability of end-slopes leads to uncertainties and are therefore treated as normal random variables 

(Nadeau, 2012). The end-slopes were applied by assigning respective end-slope values to the 

rotational degree of freedom in the downward direction to the rigid nodes at the centre of the PT 

ends, leading to a tilt at the ends. 

Hence, the gap profile is mostly sensitive to the creep factor (𝐶), the slope at the outlet end (휃𝑜𝑢𝑡) 

and the slope at the inlet end (휃𝑖𝑛) of the FC. The parameters and the distribution type of these 

random variables are given in Table 6.1. Note that statistical information in Table 6.1 is based on 

gap data from CANDU 6 units. The same procedure in this chapter can be extended to other units 

(e.g., Pickering and Darlington) with the availability of statistical information for those respective 

units. 
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Table 6.1: Distribution type and parameters of random variables influencing PT-CT gap profile 

Random variable Distribution Mean Standard Deviation 

𝐶  Normal 0.87 0.122 

    휃𝑜𝑢𝑡 Normal 0.0017 0.00125 

  휃𝑖𝑛 Normal 0.0042 0.002 

 

6.3 Probabilistic FEA of CANDU FCs using 1D FEA 

6.3.1 General 

In this section, the probabilistic FEA is performed using MCS and coupled M-DRM and PCE 

method using 1D FEM model. The 1D FEM model used in this section has the same geometry and 

operating conditions as discussed in Chapter 3. Therefore, the results discussed in this section are 

based entirely on the use of the same 1D FEM model. This section primarily has two aims: 

1) To check the accuracy of coupled M-DRM and PCE method for probabilistic contact 

assessments by validating the results against MCS.  

2) To use the probabilistic results based on 1D FE results to compare against 3D FE results.   

6.3.2 Monte Carlo Simulation 

MCS is performed here for probabilistic FEA using 1D model to use as a benchmark. The 1D FE 

model is computationally cheaper (18 minutes for a simulation) compared to 3D FE model (2.5 

hours for a simulation) and is therefore used for MCS. A total of 103 simulations were performed. 

For performing probabilistic FEA, the uncertain input parameters must be updated for each FE 

simulation. The random variables used in the simulation are the creep factor, which must be 
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updated for each simulation in UMAT and the two end slopes, which must be updated in the 

deterministic FE code. For this purpose, a link was created between Python, ABAQUS and 

MATLAB. A ‘mat’ file was initially created using MATLAB containing the set of uncertain 

parameter values required for each simulation. Python programming was used to develop the 

deterministic FE model and the input random values of end slopes were updated using Python by 

accessing the values from the mat file. The Python code also updates the values of creep factor in 

the UMAT, which is a FORTRAN file (‘.for’ file). Once the parameters are updated, the Python 

code calls the ABAQUS for performing deterministic FEA and the results are stored in an output 

file which has an output database format (.odb). Upon completing the FE analysis, the Python code 

then calls MATLAB which accesses the .odb file and post processes the vertical displacement 

values of PT and CT for computing PT-CT gap profile. This procedure is repeated as many times 

as MCS is required, producing the same number of gap profiles as the number of trials.  

6.3.3 Application of Coupled M-DRM and PCE Method 

Here coupled M-DRM and PCE method is applied using 1D FEA to evaluate the accuracy and 

efficiency for probabilistic contact assessment of CANDU FCs. Although the Python code was 

used to repeatedly run the required number of trials using ABAQUS, the proposed method can be 

also implemented without the use of any programming for linking, since it requires only a small 

number of trials. The user can manually change the values of random variables for each simulation, 

as it requires minimal effort. This is advantageous as the proposed method can be used by a user 

who is not much familiar with advanced programming, which makes it an easy and applicable 

method.      



 

 176 

6.3.3.1 Surrogate Model Form 

The PT-CT gap values vary with axial location along the PT as well as with time. Thus, the 

surrogate model of the gap profile and in turn the PCE coefficients required for the construction 

of the surrogate model must also be expressed as a function of both the axial location and time. By 

referring to Equation (5.17), the surrogate model for the gap profile can be written as follows: 

 

𝐺(𝑿, 𝑑, 𝑡) ≈ ∑ 𝑎𝑘(𝑑, 𝑡)Ψ𝑘(𝑿)

𝑁

𝑘=0

 (6.1) 

where 𝑿 = [𝐶, 휃𝑜𝑢𝑡 , 휃𝑖𝑛 ] is the vector of random variables, 𝑑 is the axial location, 𝑡 is the time, 

𝑎𝑘(𝑑, 𝑡)’s are the PCE coefficients and Ψ𝑘(𝑿)’s are the multivariate polynomials.   

6.3.3.2 Input and Output Grid Generation 

The first step in implementing the proposed method is to define the parameters and type of 

distribution of the random variables, which is described in section 6.2. The next steps in the 

proposed model is to form the input and output grid. Using a 5-point (𝐿 = 5 ) Gauss quadrature, 

an input grid was generated to evaluate the model responses. The Gauss Hermite formula is used 

since random variables follow a normal distribution. The total number of model evaluations is 

𝑛𝐿 + 1 = (3 × 5) + 1 = 16. The input grid is given in Table 6.2. For each evaluation point, only 

one value of a given random variable is changed while other random variables are fixed to their 

mean value, which forms 15 model evaluations. The 16th final model evaluation is reserved for the 

mean case where the function evaluation is carried out by fixing all input random variables to their 

mean values. But it should be noted that the model evaluations 3, 8 and 13 are the same as the 
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mean case and hence they need to be evaluated only once, which reduces the total FE evaluations 

from 16 to 13.  

The 13 1D FE evaluations were executed by using each of the input grid values and the 

corresponding PT-CT gap outputs were collected. Note that the results discussed in this section 

are from 1D FEA runs for a PT back end placed at the fixed outlet end (BEO). As mentioned 

before, the gap values vary along the length of the PT and with time. Thus, the FE gap output was 

recorded at 118 axial locations along the axis of the PT and these values were stored in a matrix 

form corresponding to various time frames. Therefore, the output grid for this problem is a function 

of axial location and time. This completes all the steps in the M-DRM module. 

Table 6.2: Input grid for model evaluation 

Random 

variable 

FEM 

evaluation 

𝑧𝑗 𝐶 휃𝑜𝑢𝑡(rad) 휃𝑖𝑛(rad) 

𝐶 

1 -2.8570 0.5214 0.0017 0.0042 

2 -1.3556 0.7046 0.0017 0.0042 

3 0 0.87 0.0017 0.0042 

4 1.3556 1.0354 0.0017 0.0042 

5 2.8570 1.2185 0.0017 0.0042 

휃𝑜𝑢𝑡 

6 -2.8570 0.87 -0.00187 0.0042 

7 -1.3556 0.87 5.46E-06 0.0042 

8 0 0.87 0.0017 0.0042 

9 1.3556 0.87 0.0034 0.0042 

10 2.8570 0.87 0.0053 0.0042 

 11 -2.8570 0.87 0.0017 -0.0015 

 12 -1.3556 0.87 0.0017 0.0015 

휃𝑖𝑛 13 0 0.87 0.0017 0.0042 

 14 1.3556 0.87 0.0017 0.0069 

 15 2.8570 0.87 0.0017 0.0099 

Fixed mean 

values 
16 NA 0.87 0.0017 0.0042 

Note: 𝑧𝑗 denotes the Gauss Hermite points   
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Referring to Table 6.2, every five FE model evaluations are grouped in such a way that only one 

random variable value is changed by keeping other random variables values fixed at their mean. 

The influence of each of the random variables on the output gap profile can be visualized by 

plotting the gap profile results corresponding to each of the grouped five FE model evaluations. 

Figures 6.2, 6.3 and 6.4 show the gap profile variations at 200 kEFPH for each of the five FEM 

evaluations. The effect of the creep factor is significant across all five spans. The outlet slope 

mostly influences the gap at spans 𝑆1 and 𝑆2, and with a slight effect on the central span, 𝑆3. The 

inlet slope has the most influence on spans 𝑆4 and 𝑆5, and with a slight effect on the central span, 

𝑆3. Since the minimum gap is occurring at span 𝑆5, the inlet slope has the most influence on it, 

followed by the creep factor. The outlet slope has no influence on the minimum gap. A 

quantification of these observations is discussed in a later section by performing sensitivity 

analysis. 
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Figure 6.2: Predicted gap profiles from 1D FEA for selected values of creep factors at 

200 kEFPH, (inlet slope and outlet slope fixed at mean values and PT with BEO) 

 

 

Figure 6.3: Predicted gap profiles from 1D FEA for selected values of outlet slopes at t = 

200 kEFPH, (creep factor and inlet slope fixed at mean values and PT with BEO) 
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Figure 6.4: Predicted gap profiles from 1D FEA for selected values of inlet slopes at t = 

200 kEFPH, (creep factor and outlet slope fixed at mean values and PT with BEO) 

6.3.3.3 Computation of PCE Coefficients 

After completing all the FE model evaluations, the PCE coefficients were computed using the 

stored output gap values. Since the random variables are normally distributed, the Hermite 

orthogonal polynomials were used as appropriate univariate basis functions. Truncating the order 

of polynomial chaos to 3, the total number of terms retained in the expansion can be computed as 

20. Using the gap values and the constructed PC basis, the PCE coefficients were computed using 

Equation (5.30) as a function of axial location and time. These coefficients were then saved in a 

data file in a matrix form.  
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6.3.3.4 Final Surrogate Model based on 1D FE Model 

By utilizing the saved data file of PCE coefficients as a function of location and time, the final 

surrogate model of the PT-CT gap was developed using Equation (6.1). This surrogate model is a 

function of the random variables, 𝐶, 휃𝑜𝑢𝑡 and 휃𝑖𝑛 and can predict the PT-CT gap by using the 

values of these random variables into the surrogate model expression as an input. This equation 

can be then treated as a substitute for the ABAQUS 1D FE model. 

To assess the prediction capability of the proposed surrogate model, the gap profiles at 

(i) t = 220 kEFPH, C = 0.964, 휃𝑜𝑢𝑡 = 0.0032 rad and 휃𝑖𝑛 = 0.0036 rad and, (ii) t = 180 kEFPH, 

C = 0.867, 휃𝑜𝑢𝑡 = 0.0031 rad and 휃𝑖𝑛 = 0.0012 rad were predicted using the surrogate model and 

compared the results to those predicted by the 1D FEA in ABAQUS as shown in Figure 6.5. An 

exceptionally close agreement between the surrogate model prediction and that from the 1D FEA 

can be seen across all five spans, with a maximum difference of 0.025 mm in the inlet (right most) 

span.  
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Figure 6.5: Comparison of gap profiles predicted by the surrogate model and the 1D FEA at 

different time intervals and parameter values 

6.3.4 Comparison of Statistical Results 

In this section, the statistical and probabilistic results obtained based on MCS and the coupled 

M-DRM and PCE method is compared. Using the proposed method, the mean and standard 

deviation can be computed in a straightforward manner by using Equation (5.27) and Equation 

(5.28). Table 6.3 shows the comparison of statistics obtained from both MCS and coupled M-DRM 

and PCE method at the minimum gap location for various time points. Figure 6.6 shows the 

comparison of mean, mean + 2 standard deviation and mean – 2 standard deviation at time 200 

kEFPH at all 111 axial locations along the PT. The results from Table 6.3 and Figure 6.6 indicate 

the numerical accuracy and computational efficiency of the proposed method. 
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To further analyze the efficiency of the method, a semi-log plot of the cumulative distribution 

function (CDF) of the minimum gap was plotted as shown in Figure 6.7. A point on this plot gives 

the probability of the minimum gap falling below a deterministic minimum gap threshold. It is 

observed that the proposed method provides a highly accurate approximation for almost the entire 

range of minimum gap, indicating that it is a sufficiently accurate method to be used instead of the 

time-consuming MCS using FE models. 

Table 6.3: Statistics of the minimum gap obtained using MCS and coupled M-DRM and PCE 

method 

Method used Time 

(kEFPH) 

Mean of 

minimum 

gap (mm) 

Standard deviation 

of minimum gap 

(mm) 

Coefficient of 

variation 

(cov) 

Total number 

of function 

evaluations 

MCS 50 4.8564 1.7200 0.3541 1000 

M-DRM + PCE 50 4.8678 1.7364 0.3567 13 

MCS 100 4.1127 1.9081 0.4640 1000 

M-DRM + PCE 100 4.1058 1.9024 0.4633 13 

MCS 150 3.4955 1.0292 0.2944 1000 

M-DRM + PCE 150 3.4907 1.0296 0.2950 13 

MCS 200 2.7400 0.5591 0.2041 1000 

M-DRM + PCE 200 2.7480 0.5534 0.2014 13 
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Figure 6.6: Comparison of statistics from MCS and M-DRM + PCE method across the PT axial 

location at 200 kEFPH 

 

Figure 6.7: Comparison of CDF of the minimum gap at 220 kEFPH using MCS and the proposed 

method based on 1D FEA 
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6.3.5 Computational Time 

The coupled M-DRM and PCE method provides an enormous saving of computational time. For 

instance, each deterministic 1D FEA takes approximately 18 minutes to run the analysis up to 220 

kEFPH on a computer with Intel Xeon 3.5 GHz Processor and 16Gb of RAM. Therefore, MCS 

with 1000 simulations requires 12.5 days (i.e., 18000 minutes) to complete, whereas the proposed 

method requires only 13 simulations, which are completed in less than 3.9 hours. The proposed 

method also includes the computation of PCE coefficients and performing MCS using the 

surrogate model, which requires around 15 minutes. Therefore, the total time required for the 

proposed method is 4.15 hours (i.e., 249 minutes), which is merely 1.38% of the time taken by the 

MCS. This shows the computational efficiency and the significant advantage of using this method 

for probabilistic FEA.  

6.3.6 Probabilistic Contact Assessment using 1D Surrogate Model 

In probabilistic contact assessment, the interest is in computing the probability of PT coming in 

contact with CT (i.e, PT-CT gap being zero). Being validated, the surrogate model developed using 

the proposed method can be used for probabilistic contact assessment. MCS using 106 trials were 

run using the surrogate model, which requires only a few seconds to complete. The minimum gap 

was recorded for each simulation for various reactor operating time intervals. A semi-log CDF plot 

of minimum gap is shown in  Figure 6.8. Therefore, from these CDF curves, the probability of 

contact (POC) is the point where the curve meets zero on the X-axis. The POC increases with 

reactor operating time and at 220 kEFPH, the POC is ~1.9×10-4 for a PT with the BEO.   
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An important observation to be conveyed to the nuclear industry here is regarding the number of 

MCS trials required to obtain a confident result. As mentioned before, the nuclear industry 

currently uses 1D FEA with limited number of MCS (1000 trials) for assessing probability of 

contact. By comparing Figure 6.7 (CDF with 1000 MCS trials) and Figure 6.8 (CDF with 1 million 

MCS trials ), it can be observed that an MCS with 1000 simulations is not showing any probability 

of contact (i.e., zero probability) at 220 kEFPH. The lowest value of minimum gap based on 1000 

MCS is ~1mm. However, MCS with 1 million simulation gives a probability of contact of 

~1.9×10-4 at 220 kEFPH. This shows that a probabilistic result based on 1000 simulations couldn’t 

be used as a reliable estimate, which the nuclear industry must be aware of.  

 

Figure 6.8: CDF at various time intervals during service of FCs (Based on 1D FEA for PTs with 

the BEO) 
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6.4 3D FEA Based on Different PT Orientations 

In Chapter 3, the focus was on PTs with the back end placed at the outlet. It must be emphasized 

here that there are two distinct orientations of the PTs within the population of FCs in a reactor 

core and the deformation behaviour is influenced from the change in orientation with respect to 

coolant flow. As a consequence of the hot-extrusion process, the end of the PT emerging first from 

the extrusion press is labeled as the ‘front end’ and the end appearing last is referred to as the ‘back 

end’. The extrusion process leads to differences in the material properties, microstructure and 

crystallographic texture of the PT along its length (Choubey et al., 1996; R. Fleck et al., 1984), 

which in turn result in an asymmetrical strain profile when the back end is placed at the outlet 

(BEO) and a more symmetrical strain profile when the back end is placed at the inlet (BEI). Figure 

6.9 shows the measured diametral strain at the mid-bundle location of two PTs with different 

orientations. The term used to describe this behaviour is “end-to-end material variation”. It is 

important to properly analyse the influence of the PT orientation with respect to the coolant flow 

on the profile of the PT-CT gap and the time of contact since they depend strongly on this aspect.   

In this section, the 3D FEA is extended by considering the difference in orientations of the coolant 

flow with respect to the manufacturing direction of the PT. To determine this effect, two analyses 

were conducted:  

1) The PT back end placed at the outlet (Same as in Chapter 3) 

2) The PT back end placed at the inlet 

The FC geometry and the operating conditions are the same as used in Chapter 3 and for both these 

cases, the boundary conditions were that the outlet end is kept fixed, and the inlet end free.  A 
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separate UMAT file was created based on the deformation model for a PT with BEI. The 3D FEA 

was run up to 220 kEFPH.  

 

Figure 6.9: Comparison of diametral strain profiles in CANDU PTs with back end at the outlet 

and back end at the inlet 

6.4.1 Deterministic 3D FEA Results 

The FC deformation obtained from the FEA output contains the overall sag, axial elongation, 

diametral expansion and wall thinning of the PT and CT at a given operating time. The axial 

elongation is less affected by the change in PT orientation and therefore is of no interest. The 

present section looks in more detail at the diametral expansion and the PT-CT gap profile 

predictions based on different PT orientations using 3D FEA. 

6.4.1.1 Diametral expansion 

Figure 6.10 shows the inner diameter prediction of PTs with two different orientations at 

220 kEFPH. As expected, the 3D FEA predicts an asymmetric profile when the PT has the BEO 
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and a symmetrical profile when the PT has the BEI. This difference in the diametral profile could 

significantly influence the PT-CT gap profile predictions, which is discussed next. 

 

Figure 6.10: Predicted diameter profiles for two different PT orientations with respect to coolant 

flow at 220 kEFPH 

6.4.1.2 Gap profile 

The influence of PT orientation on the PT-CT gap profile is shown in Figure 6.11. It is evident that 

the PT-CT gap at the end spans is significantly influenced by the orientation of the tube with 

respect to the coolant flow, whereas the gap at the inner spans is almost the same. Span S5 is 

affected mostly in both cases, whereas the gap is substantially less when the PT has the BEI. This 

is consistent with the higher diametral expansion at axial locations of Span S5 of a PT with the 

BEI, as shown in Figure 6.10. Therefore, the likelihood of PT-CT contact during the reactor 

lifetime is higher for PTs with the BEI that is the free end of the channel. The evolution of gap 
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profiles with reactor operating time for a PT with BEI is shown in Figure 6.12. As expected, the 

PT-CT gap at Span 5 is always less for PT with BEI than the gap for PT with BEO (Referring to 

Figure 3.26) and vice versa at Span1, at all operating intervals.  

 

Figure 6.11: Comparison of predicted PT-CT gap profiles at 220 kEFPH for two distinct PT 

orientations with respect to coolant flow 
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Figure 6.12: Predicted PT-CT gap profiles at various time intervals in the operating life of the FC 

(PT back end placed at inlet) 

 

6.5 Probabilistic FEA of CANDU FCs using 3D FEA 

6.5.1 General  

A single 3D FEA simulation takes approximately 2.5 hours to complete, and therefore the 

computational cost for PFEA using MCS would be colossal, even by using a limited number of 

trials. Therefore, coupled M-DRM and PCE method is applied for performing probabilistic FEA 

of CANDU FCs using 3D FEA. The analysis considers different PT orientations (i.e., PT with 

BEO and BEI) and a detailed probabilistic contact assessment is conducted. The 3D FE model 

used in this section has the same geometry and operating conditions as discussed in Chapter 3. 
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Therefore, the results discussed in this section are based entirely on the use of the same 3D FE 

model. 

6.5.2 Application of Coupled M-DRM and PCE Method for 3D PFEA 

6.5.2.1 Implementation of the Method 

As the random variables (creep factor, outlet end slope and inlet end slope) are the same for 1D 

and 3D FEA, the initial steps in applying coupled M-DRM and PCE method using 3D FEA are 

the same as discussed in section 6.3. The surrogate model would be of the form as given in 

Equation (6.1) and the input grid as given in Table 6.2. As mentioned in section 6.3.3, the total 

number of FE evaluations required are 13. Therefore, the 13 3D FE evaluations were executed by 

using each of the input grid values and the corresponding PT-CT gap outputs were collected. Note 

that the output grid results shown in this section are from 3D FEA runs for a PT back end placed 

at the fixed outlet end. The same procedure was performed for the analysis of a PT with its back 

end at the free inlet end. As the gap values vary along the length of the PT and with time, the FE 

gap output was recorded at 228 axial locations along the axis of the PT. These values were stored 

in a matrix form corresponding to various time frames. This completes all the steps in the M-DRM 

module. 

Referring to Table 6.2, every five 3D FE model evaluations are grouped in such a way that only 

one random variable value is changed by keeping other random variables values fixed at their 

mean. The influence of each of the random variables on the output gap profile can be visualized 

by plotting the gap profile results corresponding to each of the grouped five 3D FE model 
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evaluations. Figures 6.13, 6.14 and 6.15 show the gap profile variations at 200 kEFPH for each of 

the five 3D FEM evaluations. 

 

Figure 6.13: Predicted gap profiles from 3D FEA for selected values of creep factors at 

200 kEFPH, (inlet slope and outlet slope fixed at mean values and PT with BEO) 
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Figure 6.14: Predicted gap profiles from 3D FEA for selected values of outlet slopes at t = 

200 kEFPH, (creep factor and inlet slope fixed at mean values and PT with BEO) 

 

Figure 6.15: Predicted gap profiles from 3D FEA for selected values of inlet slopes at t = 

200 kEFPH, (creep factor and outlet slope fixed at mean values and PT with BEO) 
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After completing all the required 3D FE simulation, the PCE coefficients were computed using 

the stored output grid gap values. Since the random variables are normally distributed, the Hermite 

orthogonal polynomials were used as appropriate univariate basis functions. Truncating the order 

of polynomial chaos to 3, the total number of terms retained in the expansion can be computed as 

20. Using the gap values and the constructed PC basis, the PCE coefficients were computed using 

Equation (5.30) as a function of axial location and time. These coefficients were then saved in a 

data file in a matrix form. 

6.5.2.2 Final Surrogate Model based on 3D FE Model 

The final surrogate model of the PT-CT gap was developed by utilizing the saved data file of PCE 

coefficients as a function of location and time and by using Equation (6.1). This surrogate model 

is a function of the random variables, 𝐶, 휃𝑜𝑢𝑡 and 휃𝑖𝑛 and can predict the PT-CT gap by using the 

values of these random variables into the surrogate model expression as an input. This equation 

can be then treated as a substitute for the ABAQUS 3D FE model. 

To assess the prediction capability of the proposed surrogate model, the gap profiles at 

(i) t = 220 kEFPH, C = 1.2, 휃𝑜𝑢𝑡 = 0.0029 rad and 휃𝑖𝑛 = 0.0048 rad and, (ii) t = 170 kEFPH, 

C = 0.855, 휃𝑜𝑢𝑡 = 0.0022 rad and 휃𝑖𝑛 = 0.0023 rad were predicted using the surrogate model and 

compared the results to those predicted by the 3D FEA in ABAQUS as shown in . An exceptionally 

close agreement between the surrogate model prediction and that from the 3D FEA can be seen 

across all five spans, with a maximum difference of 0.069 mm in the inlet (right most) span. 
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Figure 6.16: Comparison of gap profiles predicted by the surrogate model and the 3D FEA at 

different time intervals and parameter values 

6.5.2.3 Gap statistics 

As discussed in Chapter 5, the mean and standard deviation can be determined in a straightforward 

manner from the PCE coefficients. The mean, (mean + two standard deviations) and (mean – two 

standard deviations) of gap profiles at 200 kEFPH are presented in Figure 6.17 for both PT 

orientations. This figure shows the variability introduced by the creep factor and the end slopes to 

the PT-CT gap profiles at a particular operating time. Compared to other spans, the variability is 

higher at the inlet (right most) span with the highest variability occurring between 5 and 5.5 m 

along the PT axial location. This is also the region where the minimum gap occurs and therefore 

it is the PT-CT region where contact is most likely. 
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Figure 6.17: Mean and Variability of the gap profile at 200 kEFPH for PTs with the BEO and the 

BEI 

6.5.2.4 Sensitivity Analysis 

The sensitivity analysis is performed using Equation (5.29) to quantify the influence of the creep 

factor and the end-slopes on the gap profile. Figure 6.18 shows the sensitivity indices determined 

at 220 kEFPH. The outlet slope has a dominant effect on Spans S1 and S2 and no effect on Spans 

S4 and S5. Similarly, the inlet slope has a dominant effect on Spans S4 and S5 and no effect on 

Spans S1 and S2. The creep factor has a profound effect on Span S3 but a lesser effect on all the 

other spans.  

To further understand the influence of these variables on PT-CT gap, sensitivity indices were 

plotted for each variable as a function of time. Figure 6.19 shows an increase in the influence of 
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creep factor as a function of reactor operation time. The highest influence is happening in Span 

S3. Figure 6.20 and Figure 6.21 shows the influence of the end slopes. They have a significant 

effect on the outer spans and lesser on the intermediate spans. Since Span S5 is the area where the 

probability of a minimum gap is high, it is of special interest. The inlet slope has the highest effect 

(above 88%) in this span, followed by the creep factor (less than 12%). This shows that the inlet 

slope is the most important variable influencing the minimum PT-CT gap. This information is 

important in preventing PT-CT contact by either improving the design in future units such that the 

end slopes are kept to a minimum or identifying the channels that exhibit high end slope values in 

existing CANDU units. 

 

Figure 6.18: Sensitivity indices of the creep factor, outlet slope and inlet slope at 220 kEFPH for 

a PT with the BEO 
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Figure 6.19: Comparison of creep factor sensitivity index at various time interval for a PT with 

the BEO 

 

Figure 6.20: Comparison of outlet slope sensitivity index at various time interval for a PT with 

the BEO 
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Figure 6.21: Comparison of inlet slope sensitivity index at various time interval for a PT with the 

BEO 

6.5.3 Probabilistic Contact Analysis using the Surrogate Model 

The whole purpose of developing a surrogate model was to significantly reduce the computational 

cost of performing probabilistic assessments by replacing the expensive-to-evaluate 3D FE model 

with a simpler-to-evaluate surrogate model. The predictive capability of the proposed method was 

initially validated using the surrogate model developed using 1D FEA and MCS with 103 trials. 

Therefore, the 3D surrogate model developed by means of the approach proposed here was used 

to perform a probabilistic contact assessment. In probabilistic contact assessment, the interest is in 

computing the probability of PT coming in contact with CT (i.e, PT-CT gap being zero). One 

million Monte Carlo simulations were performed using the surrogate model and the minimum gap 

obtained from the gap profiles were saved for each simulation. Note that the surrogate model is a 
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simple analytical polynomial chaos expression, and the entire simulation can be completed in a 

few seconds, which demonstrates how powerful this method is and the significant advantage its 

use provides. The minimum gap was recorded for various time intervals. An experimental CDF of 

minimum gap at 150 kEFPH and 220 kEFPH is presented in Figure 6.22. The minimum gap 

decreases with the operating time and the CDF after 220 kEFPH is substantially higher at low gap 

values indicating a significantly higher probability of PT-CT contact as the reactor approaches 

end-of-life. 

 

Figure 6.22: Cumulative distribution function (CDF) of minimum gap at two different time 

intervals for a PT with the BEO 

 

For better understanding of the probability of contact (POC) as a function of reactor operating 

time, the semi-log CDF plots at given time intervals was plotted as shown in Figure 6.23. A point 
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on this curve gives the probability of minimum gap becoming less than the minimum gap values 

on the X-axis. A contact between PT and CT occurs when the minimum gap becomes zero. 

Therefore, from these curves, the POC is the point where the curve meets zero gap on the X-axis. 

The POC increases with reactor operating time and at 220 kEFPH, the POC is ~2.2×10-3 for a PT 

with the BEO. These probability curves capture the uncertainty associated with PT-CT contact and 

will be very important in making risk-based decisions as the reactor approaches end-of-life. These 

curves not only give the POC but they also provide the probability of gap falling below any 

minimum gap value of interest. For example, Figure 6.24 shows the probability of minimum gap 

falling below 2mm at the various operating intervals and as expected, the probability of gap 

reduction increases with operating interval. 

 

Figure 6.23: Probability of gap reduction at various time intervals during service of FCs (for PTs 

with the BEO) 
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Figure 6.24: Probability of gap falling below 2mm at various time intervals during service of FCs 

(for PTs with the BEO) 

 

POC predictions were also compared for PTs with different orientations and based on 1D and 3D 

FEA as shown in Figure 6.25. The POC is high for PTs with the BEI (~1.7×10-2 at 220 kEFPH) 

compared with PTs with the BEO (~2.2×10-3 at 220 kEFPH). It appears that nuclear operators 

should pay increased attention when channels have PTs with their free back end in the inlet. 

Another important observation is the effect of 1D and 3D FEA on the predicted probability of 

reaching minimum gap. The current practice by the nuclear industry is to rely on performing 1D 

FEA using MCS for making risk-based decisions. However, as is shown in Figure 6.25, 1D FEA 

significantly underestimates the POC (~1.9×10-4 at 220 kEFPH) compared to the 3D FEA 

(~2.2×10-3 at 220 kEFPH) and is therefore not a reliable estimate for end-of-life or life-extension 

decisions. The methodology proposed here is therefore a powerful tool for the nuclear industry to 
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use for the assessment of reactor units for which their operating life is being extended well beyond 

the initial design life of 210 kEFPH (Prabhu et al., 2022).   

 

Figure 6.25: Comparison of the probability of gap reduction curves at 220 kEFPH for different 

PT orientations and type of FE analysis 

 

6.6 Conclusions 

This chapter presents a computationally feasible approach for developing a surrogate model of 

assessing the evolution of PT-CT gap profiles with time and the process to perform probabilistic 

contact assessments by coupling the multiplicative dimensional reduction method (M-DRM) with 

the polynomial chaos expansion (PCE). An important advantage of the proposed method is that it 

requires a significantly smaller number of FE execution runs in the development of the surrogate 

model. Prior to developing the surrogate model, a deterministic FE model of a fuel channel (FC) 
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was simulated using ABAQUS and the results of diametral expansion and gap profile predictions 

with different pressure tube (PT) orientations were discussed. Using the proposed method, the time 

consuming ABAQUS FEA runs of PT-CT gap predictions were replaced by the simple-to-evaluate 

surrogate model. The surrogate model is expressed as an additive form of polynomials, which are 

functions of the creep factor, inlet slope and outlet slope. The model coefficients depend on the 

axial location along the longitudinal axis of the pressure tube and the reactor operating time, and 

they were saved as a matrix file for a probabilistic contact assessment of FCs.  

A very close agreement was achieved from the comparison between the gap profiles predicted by 

the 1D FEA and the corresponding surrogate model as well as 3D FEA and its corresponding 

surrogate model, proving the validity of the method. The results from the sensitivity analysis 

showed that the inlet slope of the free end of the channel has the strongest effect on the minimum 

PT-CT gap. The predictive capability of the proposed method for probabilistic assessments was 

initially examined using the surrogate model that was developed by using 1D FEA and MCS. It 

was shown that the surrogate model agrees well with the results from the 1D FEA+MCS. 

Subsequently, using surrogate models that were developed based on 3D FEA simulations, the CDF 

curves were obtained for both PT orientations. It was shown that these models are significant in 

making risk-based end-of-life decisions. The results indicate that the probability of PT-CT contact 

is high for PTs with their back at the free inlet end when compared to PTs with their back placed 

at the fixed outlet end. The results also show that the current practice of nuclear industry in using 

1D FEA for probabilistic FEA using 1000 MCS is not a reliable estimate for making end-of-life 

or life extension decisions. The 1D FEA results are under-estimating the minimum gap and 1000 

MCS trials are not enough to obtain reliable estimates of probabilistic results.  
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In summary, the low computational cost and predictive capability of the proposed method is 

suitable for carrying out full probabilistic assessments of CANDU reactor cores for units with 380 

or 480 FCs. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Summary 

Chapter 3 presented the 1D and 3D finite element (FE) modelling details of a CANDU fuel channel 

(FC) in ABAQUS finite element package and the implementation of pressure tube (PT) and 

calandria tube (CT) material deformation models in ABAQUS using UMAT. The FC deformations 

were predicted using both models and a comparison on PT-CT gap profile prediction showed the 

advantage and need of a 3D FE model in making better predictions.  

Chapter 4 presented the importance of surrogate models for replacing the expensive-to-evaluate 

finite element models. The surrogate models of diametral creep and PT-CT gap profiles had a 

nonlinear form, and the calibration and validation of these models were conducted by comparing 

with measured data.  

Chapter 5 presented a computationally efficient method for performing structural reliability and 

sensitivity analysis by coupling the multiplicative dimensional reduction method (M-DRM) with 

polynomial chaos expansion (PCE) method. The mathematical formulation of PCE and M-DRM 

along with Gauss quadrature scheme were presented. The steps required in implementing the 

proposed method was illustrated and the method was demonstrated by applying on a simple 

analytical equation. The statistical and sensitivity analysis results, along with probability of failure 

results obtained from the proposed method was compared with the results obtained from Monte 

Carlo simulation (MCS), which showed a very good agreement.   
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Chapter 6 presented a computationally feasible approach for developing a surrogate model to 

assess the evolution of PT-CT gap profiles with time and the process to perform probabilistic 

contact assessments by coupling the multiplicative dimensional reduction method (M-DRM) with 

the polynomial chaos expansion (PCE). The predictive capability of the proposed method for 

probabilistic assessments was initially examined using the surrogate model that was developed by 

using 1D FEA and MCS, which showed a good agreement. The method was then applied to 

develop a surrogate model based on 3D FEA and a detailed probabilistic contact assessment by 

considering different PT orientations was conducted. A critical comparison between the 

probabilistic analysis results of 1D and 3D FE models showed the downsides of using a 1D FEA 

with a limited number of Monte Carlo simulations (MCSs) for probabilistic contact analysis. These 

findings and insights are critical to the nuclear industry. 

7.2 Conclusions 

This thesis presents 1D and 3D finite element analysis (FEA) of a CANDU fuel channel (FC) to 

predict the in-reactor deformations due to irradiation induced creep and develops computationally 

efficient and robust surrogate and probabilistic models based on the FEA of FCs for making better 

risk-informed decisions. The current industry practices in assessing PT-CT contact risk is critically 

analyzed, and significant improvements and contributions are made towards assessing the contact 

risk with confidence. Important conclusions based on this research are categorized into three main 

categories:  
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1) Findings regarding the FEA of CANDU FCs 

• A full 3D FE model is required for accurately modelling in-reactor deformation and 

predicting PT-CT gap, contact location and time to contact. 

• A comparison between 1D and 3D FEA results showed a significant underestimation 

of gap by the 1D model. Making end-of-life decisions based on 1D FEM results would 

therefore be a less reliable estimate.  

• Irradiation creep has the most significant contribution to the diametral strain, while 

thermal creep has only a very small effect. Irradiation growth has a negative 

contribution to the diametral strain, making it a beneficial mechanism. 

• Even though the flux dip at the fuel bundle joints is ~15%, the diametral creep drop by 

only ~10% due to material continuity.  

• The boundary conditions and PT orientations significantly influence the PT-CT gap 

profiles. 

2) Findings regarding surrogate models and probabilistic results of CANDU FCs 

• A nonlinear form of surrogate model along with a scale factor is required for calibrating 

diametral creep, which efficiently captures the fluence dependence on irradiation 

growth strain rate changes and the variations introduced by material variability.    

• The PT-CT gap at a given axial location and time is a linear function of the creep factor 

if the end-slopes are maintained at their average values, and vice versa.  

• The PT-CT gap at a given axial location and time becomes a non-linear function of the 

creep factor and end slopes when these parameters approach extreme values. 
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• A nonlinear form of surrogate model captures the PT-CT gap profiles efficiently.   

• The probability of PT-CT contact is high for PTs with their back at the free inlet end 

when compared to PTs with their back placed at the fixed outlet end. 

• The surrogate model based on a 1D FEM significantly over-predict (by 14.6 %) the 

time for PT-CT contact. Given that 7 kEFPH is approximately the number of EFPH in 

one calendar year, the 1D model overpredicts the time to contact by 38 kEFPH or 

almost 5.5 calendar years.   

• The current practice of nuclear industry in using 1D FEA for probabilistic FEA using 

1000 MCS is not a reliable estimate for making end-of-life or life extension decisions. 

The error is introduced from the simplification of modelling using 1D FE model and 

by using a small number of MCS.  

• For a PT with back end placed at outlet, the probability of contact (POC) using 1D FEA 

surrogate model is ~1.9×10-4 compared to the 3D FEA of ~2.2×10-3 at 220 kEFPH. The 

nuclear industry must be aware of this prediction error using 1D FEA and should 

therefore rely on probabilistic results from 3D FEA for making confident risk-informed 

decisions.   

3) Findings with respect to coupled M-DRM and PCE method 

• The coupled M-DRM and PCE method can be considered as a computationally efficient 

method for performing probabilistic finite element analysis of expensive-to-evaluate 

finite element models.  
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• Combining M-DRM with PCE gives a significant reduction in computational cost 

involved in computing the PCE coefficients and thereby in the surrogate model 

construction.  

• The surrogate model can be used to obtain the complete probability distribution and the 

straightforward post-processing using PCE coefficients gives the statistics of the output 

response of interest and the sensitivity indices of the random variables influencing the 

output response without any additional computational cost. 

• The coupled M-DRM and PCE method requires only a few function evaluations and 

therefore can be performed using any deterministic FEA software without the use of 

advanced programming, making the approach flexible and easy-to-implement.   

7.3 Recommendations for Future Research 

The following are the recommendations for future research: 

• The 3D finite element model can be updated by considering through thickness elements 

for pressure tube. Instead of using shell elements which is based on plane stress condition, 

solid elements can be considered for accounting the full triaxial stress state. However, the 

solid elements could significantly increase the computational cost of the analysis. 

• The variation of flux and temperature along the circumference of the pressure tube with 

diametral expansion can be considered to further improve the predictions of diametral 

strain along the circumference as well as PT-CT gap predictions at locations other than at 

6 o’clock position.  
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• The proposed coupled approach considers only uncorrelated random variables. The 

analysis can be extended to investigate the application to correlated random variables. 

• The developed surrogate models of diametral creep and PT-CT gap doesn’t include the 

operating conditions (fast flux and temperature) in the model. The analysis can be extended 

further to include the operating condition parameters into the surrogate model to make it 

more universal.  

• Additional analysis can be performed up on availability of in-reactor inspection data to 

obtain the distribution of certain parameters. For example, the scale factor was obtained 

for five fuel channels used in the calibration and development of surrogate model of 

diametral creep. More analysis would give the distribution of this factor and therefore can 

be used for probabilistic analysis.   
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Appendix A 

 

Figure A.1: Comparison of measured, nominal, and calibrated diametral strain of PT2 at 

161615 EFPH 

 

Figure A.2: Comparison of measured, nominal, and calibrated diametral strain of PT3 at 

161615 EFPH 
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Figure A.3: Comparison of measured, nominal, and calibrated diametral strain of PT4 at 

161615 EFPH 

 


