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Abstract

A theory, whatever it does, must correlate data. We commit ourselves to operational
methodology, as a means towards studying the space of Generalised Probability Theories
that are compatible with Indefinite Causality. Such a space of theories that combines the
radical aspects of Quantum Theory: its probabilistic nature and of Relativity: its dynamic
causal structure, is expected to house Quantum Gravity. In this thesis, we ask how we
may understand Indefinite Causality.

In the first half, we explore the consequences of (Indefinite) Causality on Communication
tasks. Motivated by the game with one way signalling that provided the Causal Inequality
[82], we study competing two-way signalling and provide protocols for Bidirectional Tele-
portation and Bidirectional Dense-Coding. Further, we provide a theorem for when tensor
products of processes are valid. This result has consequences for setting up of a theory of
process communication.

In the second half, we revisit the Causaloid Framework by Hardy [41, 42], a framework that
studies this space of theories and prescribes how to recover the correlations within a theory
from operational data to calculate probabilities through three levels of physical compression
– Tomographic, Compositional and Meta. We present a diagrammatic representation for
the Causaloid Framework and leverage it to study Meta-Compression through which we
characterise a Hierarchy of theories. The rungs of this Hierarchy are differentiated by the
nature of the Causal Structure of the theory. We apply the Causaloid Framework to the
space of Generalised Probability Theories pertaining to circuits, through the Duotensor
Framework [49, 46] and show that finite dimensional Quantum Theory as well as Classical
Probability Theory belong to its second rung.

To summarise, we work towards a better understanding of communication tasks when the
underlying causal structure is indefinite, and characterise the space of Generalised Proba-
bility Theories with Indefinite Causality, through the nature of their causal structures.
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Chapter 1

This Thesis in a Nutshell

in Ojibwe languages there are no words for the past or the future,
there are three words for now— already, at this time, then now;

today, nowadays now; and after a while, eventually, finally just now

—Paraphrasing of an Elder Teaching1,2

Causality permeates our life deeply; in ways we experience the world and the passage
of time, in ways we perceive and make inferences, in ways languages are structured and
cultures think and in the way you are reading this sentence. And humans have long
pondered, theorised and studied causation and time as philosophers in Metaphysics, and
more recently (in time-scales of human history) as physicists. Till before the 20th century
the notion of linear or Newtonian time was prevalent until Relativity radically shifted
how we understand time and causality in two ways. Firstly, we had to reject notions
of space and time as independent entities as they were in Newtonian space and time and
accept dynamic causality. Secondly, we adopted a more operational approach to describing
physical theories, we gave up the notion of simultaneity for two space-like separated events;
since the temporal order became dependent on the observer’s reference-frame and for events
that cannot signal to each other the temporal order becomes operationally meaningless.

In this thesis, we take inspiration from the space-time revolution and take the two ideas a
quantum further... Quantum Theory is formulated on background Newtonian space-time,

1from the poem, Black Snake by Ashley Hynd (Contemporary Verse 2, Vol. 42 No. 02 )
2This thesis in part was written on the traditional territory of the Attawandaron (Neutral), Anishinaabe

and Haudenosaunee peoples, situated on the Haldimand Tract, the land promised to the Six Nations; and
in part in the author’s homeland, India.

1



within which temporal order of events are definite. In the fundamental physical theory
of Quantum Gravity we expect for space-time itself to admit a quantum nature allowing
for indefinite temporal order of events. Towards constructing such a theory, we consider
causally neutral approaches where space and time are treated on an equal footing a priori.
Further, we adopt operational methodology, that allows us to avoid making assumptions
about the structure of space and time, and helps us find a mathematical framework that
can incorporate Indefinite Causality.

We are interested in the broad road-map towards Quantum Gravity and approach this
through operational frameworks that may accommodate theories with indefinite causal
structures. The standpoint of Quantum Foundations will heavily inform the approach we
undertake, the operational methodology we employ and the tools we utilise. This will help
us motivate the field of Indefinite Causal Structures that has gained momentum in the last
decade, which will be discussed in Section 1.3 in greater detail.

In this introductory chapter, we explain what we mean by operational methodology in
Section 1.1 followed by Section 1.2, where we briefly discuss the reconstruction program,
that was motivated by the desire to find a principled reconstruction of quantum theory,
which led to studies of Generalised Probability Theories. We then motivate the field of
Indefinite Causal Structure in Section 1.3, largely focused on the Causaloid Framework by
Hardy [41, 42], which is central to the latter half of this thesis. Here we also provide other
approaches to Indefinite Causal Structure, which start from quantum theory and generalise
them to allow for indefinite causality. These approaches may be termed as pursuing Quan-
tum Causality. We discuss how Quantum Communication theory is contingent on definite
causal structures, and ask how one may extend them to the setting of indefinite causal
structures, that motivate the first half of this thesis. Finally we provide an outline for this
thesis in Section 1.4, and share in which order the reader may approach the Chapters and
what they may expect from this thesis.

1.1 Operational Methodology

What do we mean by an operational methodology and why do we adopt it? In order
to answer this meaningfully, we first look at the broad picture by briefly discussing some
metaphysical terms at the heart of the foundations of physics.

Broadly, the question physicists are asking is what is the nature of reality, by which we
mean what it is that exists, let’s loosely call this stuff (although physical objects, particles,
matter are the terms more often used by physicists); and further physicists are concerned

2



with how this stuff relates to each other and how it moves through space and time. This
is what constitutes Ontology. The study of Ontology predates Physics and is part of the
Metaphysics branch of Philosophy. The ontology that shows up in Physics has been shaped
over centuries and till the 19th century had been heavily influenced by Classical Physics,
in terms of rigid bodies, trajectories and deterministic evolution of these bodies in time,
as well as in terms of an objective understanding of nature, both of which have been
challenged by Quantum Physics (as well as by General Relativity).

To answer the ontological questions posed, physicists use experiments to probe nature and
to test their hypothesis through the scientific method thereby expanding their knowledge
of what it is there is and how stuff behaves, which is coded into physical theories. This
knowledge of reality is what constitutes Epistemology. The study of Epistemology also
predates Physics and is studied within Philosophy. Within Physics, through experimen-
tation and theory construction we continue to move closer to the ontic answers sought by
physicists and in an ideal physical theory the epistemology and ontology would coincide
(in the limits the theory is valid within).

Therefore, a successful physical theory should be consistent with and be able
to predict the outcome of experiments (epistemology); as well as provide us a
picture of the nature of reality in the approximations it applies to (ontology).

While Classical Physics provided a crisp distinction between epistemology and ontology (for
example, Thermodynamics is the epistemological counterpart of the ontologically sound
Statistical Physics), Quantum Theory obfuscates such a distinction and the question of
whether the quantum state is ontic or epistemic leaves the research community picking sides
and different interpretations in varying degrees between realist and anti-realist positions,
positions which are all consistent with the predictively-successful mathematical framework
of quantum theory.

Among this, the operational approach has yielded a means to progress by allowing concrete
steps forward. No-go theorems, that are theory-independent and show incompatibility of
some assumptions help us make some definite statements. Three important no-go theorems
pertaining to Quantum Theory, which can be recasted as inequalities, are Bell’s theorem,
Kochen–Specker theorem, and Reeh–Schlieder theorem (in the Quantum Field Theoretic
setting); these tell us about the non-local and contextual nature of Quantum theory and
the issue of the creation of non-localised states by the action of local operators in QFT.
Further, the confluence of the operational approach of information theory to quantum
theory has led to advances in quantum information theory.
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Back to the purposes of this thesis, we are interested in a road-map towards Quantum
Gravity (QG), a theory more fundamental than General Relativity and Quantum theory
which QG should reduce to in the appropriate limits. With the already present issues
around ontology and epistemology in the predictively-successful Quantum Theory, and the
lack of a predictively-successful framework for Quantum Gravity, the operational method-
ological route – based on the assertion that “any physical theory, whatever it does, must
correlate recorded data” – lends us a stable footing.

Herein, we find a pragmatic meeting point between differing philosophical positions. Ag-
nostic of a physicist’s philosophical tendencies towards (broadly speaking) realism and
anti-realism within physics, we expect that a physical theory will at least be consistent
with experiments that produce certain classical data.

Given the difficulties around finding a mathematical framework where Quantum theory and
General Relativity meet, let alone finding a coherent ontology between the two, adopting
an operational methodology as a basis is a safe route, perhaps even a desperate attempt
to revisit the blank canvas before clouding it with assumptions that may not hold. The
upside is that whatever we can recover operationally won’t be wrong even if incomplete,
and hopefully would lead towards a point where we are ready to tack on an ontology, should
it be possible and desirable. Hardy discusses this position through the following quote:

“Operationalism played a big role in the discovery of both relativity theory
and QT. There are different ways of thinking about operationalism. We can
either take it to be fundamental and assert that physical theories are about
the behaviour of instruments and nothing more. Or we can take it to be a
methodology aimed at finding a theory in which the fundamental entities are
beyond the operational realm. In the latter case operationalism helps us put
in place a scaffolding from which we can attempt to construct the fundamental
theory. Once the scaffolding has served its purpose it can be removed leaving
the fundamental theory partially or fully constructed. The physicist operates
best as a philosophical opportunist (and indeed as a mathematical opportunist).
For this reason we will not commit to either point of view for the time being
noting only that the methodology of operationalism serves our purposes. In-
deed, operationalism is an important weapon in our armory when we are faced
with trying to reconcile apparently irreconcilable theories. A likely reason for
any such apparent irreconcilability is that we are making some unwarranted
assumptions beyond the operational realm... The operational methodology is
a way of not making wrong statements. If we are lucky we can use it to make
progress.” (Section 3, [41])
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1.2 Generalised Probability Theories

When we study special relativity we learn two physical principles that govern it:

1. The laws of physics look the same in all inertial frames of reference

2. The speed of light (in vacuum) is constant for all observers

The above principles do not invoke the mathematical objects that are used to perform
calculations. In contrast, typically one’s first encounter with quantum theory’s axioms
requires one to commit to the mathematics – complex Hilbert space structures – used
to perform calculations (for example, “a state is represented by a vector in a Hilbert
space”). This obfuscates the physics. The question of if a reconstruction of quantum
theory through a principled approach through some reasonable postulates is possible was
answered by Hardy [40], which was followed by more reconstructions through different
choice of postulates [19, 28, 75, 47]. (The reconstruction program can be traced back to
Mackey [73] building on work by John von Neumann.)

The recent reconstructions of the current century often work with finite-dimensional quan-
tum theory and operational or information-theoretic postulates. Under these reconstruc-
tions one could find common postulates for Classical Probability Theory and Quantum
Theory, where some additional postulate which differentiates between them. We will refer
to this in our discussion of the Causaloid Framework in Chapter 5.

Further, these reconstructions led to the space of Generalised Probability Theories, theories
governed by operational notion of settings and measurements, and associated probabilities.
This space of theories, often outside the bounds of nature, were able to shed light on
understanding quantum theory. For example, PR-boxes belonging to the space of GPTs
are able to maximally violate Bell’s inequality as well as the Tsirelson’s bound and further
is shown to violate Information Causality, while quantum theory violates Bell’s inequality
and obeys Tsirelson’s bound as well as Information Causality.

In this thesis, we will revisit the Causaloid Framework (Chapter 4), the space of GPTs that
may admit indefinite causal structure which we discuss in the coming sections. We will also
apply the Causaloid Framework to the Duotensor Framework, pertaining to probabilistic
circuits (GPTs expressible through circuits) (Chapter 6).
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1.3 Indefinite Causal Structure

Modern studies of indefinite causal structure in generalised probabilistic theories began
with Hardy’s Causaloid framework [41, 42]. The main motivation to study indefinite
causal structures is the expectation that in Quantum Gravity causal structures (dynamical
degrees of freedom of gravity) should subject to indefiniteness (as other dynamical degrees
of freedom do in ordinary quantum theory). Hardy motivates this through the following
quote:

“Quantum theory is a probabilistic theory with fixed causal structure. General
relativity is a deterministic theory but where the causal structure is dynamic.
It is reasonable to expect that quantum gravity will be a probabilistic theory
with dynamic causal structure.” [41]

Causaloid Framework

The Causaloid framework is based on operational methodology – it is based on the assertion
that any physical theory, whatever it does, must correlate recorded data. Imagine a person
inside a closed space, having access to stacks of cards with recorded data (procedures,
outcomes, locations); and the person is tasked with inferring (aspects of) the underlying
physical theory that governs the data. The correlation within recorded data due to the
physical theory implies that the stacks of cards are filled with (some) redundancy. The
person in the box distils away the redundancy by compressing the data. We call this
Physical Compression as it is governed by the nature of the underlying physical theory.
In this framework there are three levels of compression: 1) Tomographic Compression, 2)
Compositional Compression and 3) Meta Compression.

The Causaloid Framework considers regions in a causally neutral manner, and through the
levels of compression, causal structure emerges. What a physical theory does among other
things is help us predict quantities, in particular outcome probabilities, and the Causaloid
shares this objective. Therefore, the Causaloid Framework can be regarded as a “general
probability theory for theories with indefinite causal structure”; it may also be regarded as
a “theory to study correlated data”. The Causaloid framework includes complex Hilbert
space theory and other probabilistic theories such as real Hilbert space theory as special
cases.

Apart from interest in fundamental physics, Hardy also pointed out that the new framework
suggests useful applications for practical information processing – a quantum computer that
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takes advantage of indefinite causal structure may outperform a quantum computer that
doesn’t [44].

In Chapter 4, we present new terminology and diagrammatic language for the three levels of
physical compression to facilitate exposition, while also providing a review of the Causaloid
Framework. Further, we study the third level of physical compression to characterise
theories through a hierarchy pertaining to causal structures (Chapter 5).

1.3.1 Frameworks for Quantum Causality

The program Hardy initiated more than ten years ago has since then seen a boom across
different areas of physics and information science. While the Causaloid Framework is
very general (perhaps “too general” depending upon the purpose), other frameworks have
emerged, that begin from a complex Hilbert space perspective and relax the temporal order
of events by allowing for higher order maps that can be applied to Completely Positive
Trace Preserving (CPTP) channels.

Choi-Jamio lkowski Isomorphism

One of the obstacles in relaxing the definite causality in quantum theory is being able to
express quantum channels (mathematically represented by complete positive maps) and
quantum states (mathematically described by density matrices) in a causally neutral man-
ner. The Choi–Jamio lkowski isomorphism [22, 63] enables one to do this within quantum
information and is a mathematical correspondence between positive operators and the
complete positive maps (or gives a equivalence between density matrices and Completely
Positive Trace Preserving maps):

|i⟩ ⊗ |j⟩ ≡ |i⟩ ⟨j| (1.1)

Consider a CPTP map Φ : L(H1) → L(H2) where the dimensions of the Hilbert spaces
are dim(H1) = d1, dim(H2) = d2 . The Choi–Jamio lkowski isomorphism [22, 63] gives us
the Choi state for this CPTP map as follows, [96]:

Choi State: ρΦ = (11 ⊗ Φ)

d1∑
i,j=1

|ii⟩ ⟨jj| =
∑
ij

|i⟩ ⟨j| ⊗ Φ(|i⟩ ⟨j|) ∈ L(H1 ⊗H2) (1.2)
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The Choi state of a CPTP map is a density matrix. The Choi state is equivalent to the
CPTP map and one can find the action of the CPTP map Φ on some density matrix σ in
terms of the CPTP map’s Choi state ρΦ as follows:

Φ(σ) = Φ(
∑
i,j

σi,j |i⟩ ⟨j|) =
∑
i,j

σi,jΦ(|i⟩ ⟨j|) (1.3)

= Tr1
[
(σT ⊗ 11)ρΦ

]
(1.4)

The frameworks studying indefinite causality in generalised quantum theories often utilise
the Choi–Jamio lkowski isomorphism.

Quantum Combs

Chiribella, D’Ariano and Perinotti [18] developed an important framework for quantum
networks in complex Hilbert space for general purposes from both a constructive and a neat
axiomatic perspective (a framework based on similar mathematical content was developed
to study quantum games previously [38]). Although the framework of [18] still assumes
a definite causal order (represented by a directed acyclic graph) among the elementary
circuits, the mathematical elements that enable indefinite causal order are already present.
The framework is causally neutral in the sense that all objects (including both channels
and states) are represented through the Choi isomorphism [22] as an operator, and a com-
position rule (the link product) is given to specify how the operators compose and offer
predictions of probabilities. Given this general setup one could already talk about an op-
erational probabilistic theory without specifying a definite causal order for the elementary
circuits. Indeed, in [20] (see further developments in [85]), the original framework of [18]
was developed to include indefinite causal order, and a computation protocol that cannot
be reproduced by definite causal order computation is given. This explicit protocol con-
firms Hardy’s previous suggestion that “quantum gravity computers” outperform ordinary
quantum computers [44], and has attracted much attention from both theoreticians and
experimentalists.

Process Matrix Framework

The Process Matrix Framework by Oreshkov, Costa and Brukner [82] (see also [2, 83])
is an important framework in the study of indefinite causal structure. This framework
is devised from the outset to incorporate indefinite causal structure into complex Hilbert
space quantum theory. As in [18], the Process Matrix Framework represents objects such
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as channels and states as operators through the Choi isomorphism. A series of works based
on this framework were carried out to study the new features indefinite causal structure
brings to quantum theory (e.g., [3, 31, 36]), and we are gathering an increasingly better
understanding of “quantum causality” (see [13] for a review of related works and other
frameworks including the duotensor [47] and quantum conditional states [70]).

In the paper [82], analogous to Bell’s inequality for non-signalling scenario, a one-way
signalling scenario was considered that gave the Causal Inequality, violated by indefinite
causal orders and this motivated the work done in Chapter 2 (See next Subsection). We
will provide more details on the Process Matrix Framework in Chapter 3.

1.3.2 Communication in Theories with Indefinite Causality

Communication or signalling is the operational signature of causally related regions. In
this thesis we also were motivated to study extensions of quantum communication theory
in the context of indefinite causal structures (Chapters 2,3). We provide the context for
these Chapters below.

Guess-Your-Neighbour’s Input (GYNI) game

Games provide for studying the possibility of phenomenon in a theory-independent way.
Bounds on non-signalling resources between two parties are known through Bell’s inequality
and Tsirelson bound which can be recast as probabilities of success under given resource
in a Non-Local Game.

Similarly one can study one-way signalling between two parties through the Guess-Your-
Neighbour’s Input (GYNI) game as done in [82] by Oreshkov et al. The GYNI game helps
characterise one-way signalling within different indefinite causal structures. In the process
framework [82] one can cast this game to obtain a causal inequality which is obeyed by
definite causal orders and violated by indefinite causal orders.

The setting considered by Oreshkov et al [82] has Alice and Bob in two closed laboratories.
In the beginning of the game Alice (and Bob) receives a physical system and performs
local quantum operations on it (the causal structure inside the lab is definite) after which
Alice (and Bob) sends the physical system out of the lab. It is assumed that the labs are
isolated, only open once for physical systems to enter and once for physical systems to
leave. This assumption, and that of a causally ordered world, restricts the way in which
Alice and Bob can communicate during the game. As an example, consider that Alice
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sends a signal to Bob. Since Bob can only receive a signal through the system entering
his lab, this means that Alice must act on her system before. Therefore, Bob cannot send
a signal to Alice since they both receive a system only once, and two-way signalling is
forbidden. The constraint on signalling then only allows one-way signalling under different
causal structures.

Alice (and Bob), after receiving the system toss a coin to obtain random bits a (and b). In
addition, Bob also generates a random ‘choice” bit c. If c = 0, Alice must guess Bob’s bit
b and encode it in her output bit x, and if c = 1 Bob must guess Alice’s bit a and encode
it in his output bit y, to win the GYNI game. The aim of the game is to maximise the
probability of success, given by:

PGY NI =
1

2

∑
a,b={0,1}

(P (x = b|c = 0) + P (y = a|c = 1)) (1.5)

where P (x = b|c = 0) is the probability of Alice correctly guessing Bob’s bit given c = 0,
and similarly, P (y = a|c = 1) is the probability of Bob correctly guessing Alice’s bit given
c = 1. It can be shown that PGY NI is bounded by 0.75 with definite causal structures
(called the Causal inequality PGY NI ≤ 0.75), and is bounded by ∼ 0.85 with indefinite
causal structures as shown in the paper [82].

We were motivated by the GYNI game. In Chapter 2, we extend it to a two-way signalling
scenario with restricted channel capacity on a channel which has both tasks competing on
it, setup in a Quantum Butterfly Network. This setup can be modified to play the GYNI
game in a quantum theoretic setting. Through this setup, we are able to provide protocols
for Bidirectional Teleportation and Bidirectional Dense-Coding.

Tensor products of Processes

The introduction of indefinite causal structure into quantum theory not only brought in new
understandings, but also posed some new questions. In particular, the subtlety in taking
tensor products of objects with indefinite causal structure was known to some researchers
in the community and was explicitly mentioned in [7] and implicitly encompassed in the
construction of the combs formulation in [85]. We will look at this in Chapter 3, where
we provide a necessary and sufficient condition (Theorem 2) to characterise objects whose
tensor products need qualification. This poses a challenge to extending communication
theory to indefinite causal structures, as the tensor product is the fundamental ingredient
in the asymptotic setting of communication theory. Further, Guérin et al. [37] considered if
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maps other than the tensor product could circumvent the restriction provided by Theorem
2, through a no-go theorem, to find it would not be possible. We discuss a few options to
evade this issue. In particular, we show that the sequential asymptotic setting does not
suffer this issue.

1.4 An Outline of this Thesis

Chapter 2 and Chapter 3 can be read independently and all relevant material is presented
within each Chapter.

In Chapter 2 we provide protocols for bidirectional generalisations for quantum teleporta-
tion and dense-coding with an improvement over the communication resources required.
These results may have an impact on quantum communication theory; and were motivated
by the Guess-Your-Neighbour’s-Input game which was presented in the Process Matrix
Formalism [82] within the context of indefinite casual structures.

Chapters 3, 4, 5 and 6 are relevant to the field of indefinite causal structures.

An important result regarding the composition via tensor product of two process matrices
is presented in Chapter 3. This result is useful for the extension of quantum communica-
tion protocols to post-quantum communication protocols specifically to define asymptotic
channel capacities within the process matrix formalism.

Section 6.3 is the Culmination of Chapters 4, 5 and 6 and requires sequential reading,
though Section 6.2 can be read on its own.

We revisit the Causaloid framework by Hardy [41, 42] in Chapter 4. We present some new
terminology as well as a diagrammatic representation for the Causaloid Framework.

In Chapter 5, we utilise the diagrammatics introduced in Chapter 4 and focus on studying
Meta-Compression (the third level of physical compression) to establish a hierarchy of
causal theories pertaining to causal structure.

In Chapter 6 we apply the Causaloid Framework to the Duotensor Framework, to populate
the second rung of the hierarchy introduced in Chapter 5.

In the final Chapter, we briefly summarise our work and discuss future directions.
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where information is crisp

where coding is dense
where when we speak
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3Chapter 2: Conceptual illustration of the Classical-Quantum boundary
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Chapter 2

Bidirectional Quantum Teleportation
and Dense-Coding

Can competing quantum communication tasks on a signalling channel be optimised?
Can symmetrised communication tasks between Alice and Bob have non-trivial solutions?

Yes, we consider the Quantum Butterfly Network to answer these questions.

Entanglement can be used to aid quantum or classical communication channels to send
dense-coded classical bits [11] or teleport quantum states [10] respectively; these results
are at the heart of quantum communication. In this chapter, we extend these tasks to
bidirectional information flow where two parties (Alice and Bob) both want to send and
receive information; namely we extend it to Bidirectional Quantum Dense-Coding (BQDC)
and Bidirectional Quantum Teleportation (BQT) (which is compatible with entanglement
swapping similar to teleportation). We implement these protocols in a Quantum Butterfly
Network, where these competing tasks are implemented over a common signalling channel,
using Network Coding, in order to meaningfully study improvements in terms of resources
used. As a consequence of using Network Coding, fewer communication resources are
permitted at the bottleneck of the network. Hayashi et al. [58] have considered the
Quantum version of Network Coding in the butterfly setup to bidirectionally send two
qubits without shared entanglement. We allow shared entanglement in our butterfly setup
and propose protocols for BQDC and BQT. Further, we introduce the notion of Masked
Encoding, explore duality between BQT and BQDC, and discuss applications to the field of
quantum communication networks (including a Quantum Internet) with possible extensions
to post-quantum theories.
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2.1 From Quanta-net to Post-Quantum theories

Entanglement’s Role in Quantum Communication

It is known that quantum theory allows for long-distance correlations beyond classical
theory through entangled states. The non-locality of quantum theory can be seen through
the violation of Bell’s inequality [9] and the Tsirelson’s bound [23]. These correlations
are non-signalling in nature, that is, they cannot be used to transfer information on their
own, since that would allow for instantaneous information transfer which is physically
impossible due to (special) relativistic principles. Despite being non-signalling, entangled
states are an important resource for quantum communication and quantum network that
are able to perform tasks impossible with classical resources. Entangled states along with
communication channels can be used to enhance communication tasks, for example by
enhancing quantum channel capacity in dense-coding [11], by enhancing classical channel
to simulate a quantum channel in teleportation [10], or by substituting entanglement for
classical communication [25].1

Extending to Multi-Party

While the protocols for one-qubit teleportation, two-bit dense-coding, and entanglement-
substituted classical communications are optimal and present to us the undoubtedly im-
portant conceptual footings to employ entanglement, in practice to extend these protocols
to bipartite multi-qubit or multi-bit information transfer is not easy given the nature of
the resource theory of entanglement. However, there has been progress through several
methods: Wilde derives unit resource capacity region which categorises the statistically
achievable protocols using unit resources; namely quantum channel, classical channel and
shared entanglement [98] which we discuss in Section 2.4.3. Further there are various
protocols proposed using five-qubit cluster states, or combinations of Bell and Green-
berger–Horne–Zeilinger (GHZ) states to teleport more than one-qubit across between two-
parties or bidirectionally teleport qubits and Bell states [39, 72, 77, 33, 100, 92, 54, 55, 57],
that peel away at the multi-party teleportation problem. Of particular interest a protocol
for bidirectional teleportation for two qubits was found in [56], we will discuss how this is
related to out results: namely BQT I, Protocol 4.

1In Section 2.4 we provide a refresher to Teleportation and Dense-coding in our notations.
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Motivation I: Quantum Internet

A larger and general question remains as to how these two-party tasks can be embedded in
a larger set of communication tasks between multiple parties optimally. There are two rea-
sons to study this question, a practical and a fundamental one. Firstly, to develop quantum
communications tasks for the future where conceivably these tasks are used between many
parties through a quantum network (“quanta-net”) much like how classical communication
tasks were extended over time to the internet which handles many communication tasks
simultaneously, including routing, broadcasting etc. This is a major project with many
researchers making progress towards it.

Motivation II: Post-Quantum Communication

The second reason to study quantum multiple two-party tasks embedded in multi par-
ties, has to do with building post-quantum communication theories. The hope is that
answering these questions in the quantum realm will help provide insights with similar
multi-party tasks in post-quantum theories; that explore stronger non-signalling resources
in Generalised Probability Theories (GPTs) (some work has been done towards studying
when teleportation in GPTs is supported [6]) or that explore Indefinite Causal Structures
such as in Process theories, Quantum Combs etc. Indeed signalling or communication is
intimately linked to causality in an operational manner, to the extent that only regions
that are causally connected may communicate with or signal to each other.

Furthermore, a natural question to ask is can teleportation be extended within frameworks
of Indefinite Causal Structures, and more importantly, is it useful to do so? Some research
has been done in the literature that studies improvement in transmission for quantum
teleportation that leverage the Quantum Switch [76, 15, 16].

2.2 Problem Statement and Setup

Problem Statement: Bidirectional Signalling Protocols

In this chapter we tackle a specific communication task, that of bidirectional signalling,
which must be considered to begin addressing as to how known two-party communication
tasks can be embedded in a larger network of multiple parties. The task at hand is
the simple yet fundamental case with two bipartite communication tasks both between
Alice and Bob which generalises teleportation (or dense-coding) to two parties who both
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simultaneously wish to send a qubit (or two-bits) of information across to the other. That
is, we are interested in :

1. Bidirectional Teleportation: Alice wishes to teleport the qubit |ψ⟩ to Bob and
Bob wishes to teleport the qubit |ϕ⟩ to Alice.

2. Bidirectional Dense-Coding: Alice wants to communicate two classical-bits (or
c-bits) (a0,a1) to Bob and Bob wants to communication two c-bits (b0,b1) to Alice.

The trivial protocol to achieve this would be to introduce two EPR states (Einstein-
Podolski-Rosen states or Bell states that are maximally entangled bipartite states) between
Alice and Bob and communication channels (quantum for dense-coding and classical for
teleportation) going from Alice to Bob and Bob to Alice (see Section 2.4 for a review of
the Teleportation and Dense-coding protocols, see Figure 2.5 fot this trivial protocol), but
we learn nothing new about these tasks and essentially we simply perform teleportation or
dense-coding twice consuming double the resources (two EPR pairs and two communication
channels). Can we do better?

Setup: Quantum Butterfly Network

Alice′ Bob′

Neha

Mukul

Alice Bob

+entanglement

Instead we propose a more general setup where we introduce two new intermediary parties:
Mukul and Neha2 that mediate all communication between Alice and Bob. Alice and Bob

2Names found in India allowing for multicultural communication between Quantum Communicators.
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may communicate with Mukul, further Mukul may communicate with Neha, and finally
Neha may communicate back to Alice′ and Bob′ (the primes refer to the same party at a
future time). In this setup to discuss optimisation we may focus on the communication
channel resources between Mukul and Neha on which both signalling tasks (of Alice to
Bob and Bob to Alice) are competing. This network of four parties resembles a butterfly,
thus the name butterfly network, which we will utilise.

Motivation III: Extension of (Non-)Signalling Games

There is an additional motivation to this work with the butterfly setup, that has to do
with theory-independent games, as a means to study bounds. For example, one can pro-
vide a non-local game setting [26] for the CHSH inequality [24] that captures bounds for
non-signalling resources in different theories, such as the violation of Bell’s inequality by
Quantum Theory or the violation of Tsirelson’s bound by some Generalised Probability
Theories. The Guess-Your-Neighbour’s-Input game [82] (discussed in Chapter 1) allows
one-way signalling resources, where definite causal order provides the causal inequality
which is violated in indefinite causal order scenarios. Here we wish to focus on a two-way
signalling scenario. While we study constraints on communication channel capacities and
resources required to perform a task, we were motivated by (non-)signalling games and
the GYNI in particular. The butterfly network can be modelled to reproduce the GYNI
setting if Mukul and Neha are instructed to toss a coin that allows either Alice to commu-
nicate with Bob or Bob to communicate with Alice. Indeed we came up with the butterfly
network by thinking about the GYNI game.

Outline of the Chapter

Section 2.3 clarifies the diagrammatics and notation used. Section 2.4 is pedagogical, we
first go through the original results on teleportation [10] and dense-coding [11] restated
through our conventions and introduce the quantum communication resource theory [98].
In Section 2.5 we will learn about the Classical Butterfly Network and Network Coding
results that have helped reduce communication resources on the classical internet and we
will setup the Quantum Butterfly Network we use here.

We present bidirectional protocols for teleportation and dense-coding in our butterfly setup
in subsequent Sections 2.6 and 2.7. We discuss the types of entanglement resources that
can be shared prior to the protocol and its consequences. We also discuss the possibility
of a duality between bidirectional dense-coding and bidirectional teleportation analogous
to the duality between coherent teleportation and coherent dense-coding in Section 2.8.
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2.3 Diagrammatics and Notation

2.3.1 Diagrammatic conventions

To begin let us share the convention that will be used in this Chapter. For spatially
separated parties we give different names denoted by blue circles and for the same party at
different times we use the name with a prime (such as Alice and Alice′). Different arrows
are present to depict classical and quantum communication with certain channel capacity.
We use squiggly lines to denote shared entanglement between parties. Time in all the
diagrams goes up, similar to conventions adopted in diagrams in relativity and in contrast
to the circuit diagrams prevalent in quantum information. Each vertex can be thought of
as a space-time region similar to relativity diagrams as well as quantum circuit diagrams.

Note that we consider local operations to be free while shared entanglement and commu-
nication are not and therefore the channel capacity as well as the amount of entanglement
are resources just as in the resource theory of quantum communication [98]. Same parties
at different instances of time in the right of Fig 2.1 can be seen as having channels with
memory (unrestricted channel capacity) and while these are drawn for convenience, these
represent local operations and therefore are free resources.

Alice

Bob

Neha

Mukul
Spatially separated Parties

Classical / Quantum Channel

(Unrestricted channel capacity)

Quantum Channel (1-qubit)

Classical channel (1-cbit)

Classical channel (2-cbit)

Shared Entanglement

Nitica

Nitica′

Lucien

Lucien′

Nitica′′

Nitica′′′

Lucien′′

Lucien′′′

t

Same parties at different instances of time have memory

Figure 2.1: Diagrammatic conventions for parties, channels and entanglement
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2.3.2 Notation for Resources

We adopt the following notation similar to that by Wilde [98] for resources between parties:

1. Distributed / Shared entanglement
[qq]AB for Bell state shared between A and B
[qqq..]ABC.. for GHZ states shared between A,B,C..

2. Classical signalling: n[c→ c]A→B n-bits sent from A to B

3. Quantum signalling: n[q → q]A→B n-qubits sent from A to B

2.3.3 Summary of Protocols

The following abbreviations are used : QT (Quantum Teleportation), QDC (Quantum
Dense-Coding), CBNC (Classical Butterfly Network Coding), BQT (Bidirectional Quan-
tum Teleportation)and BQDC (Bidirectional Quantum Dense-Coding)

A summary of the protocols found in this Chapter are as follows. Note that the Protocols
4-8 are the results of this work that build upon Protocols 1-3. Among the resources, we
focus on the signalling resources between Mukul and Neha, which are highlighted in blue.

Protocol Goal Resources

1 QT |ψ⟩A→B [qq]AB, 2[c→ c]A→B

2 QDC (a0, a1)A→B [qq]AB, [q → q]A→B

3 CBNC aA→B, bB→A [c→ c]A→M , [c→ c]B→M , [c→ c]M→N ,
[c→ c]N→A′ , [c→ c]N→B′

4 BQT I |ψ⟩A→B , |ϕ⟩B→A 2[qq]AB, 2[c→ c]A→M , 2[c→ c]B→M ,
2[c→ c]M→N , 2[c→ c]N→A′ , 2[c→ c]N→B′

5 BQT II |ψ⟩A→B , |ϕ⟩B→A [qq]AN , [qq]BN , 2[c→ c]A→M , 2[c→ c]B→M ,
2[c→ c]M→N , [q → q]N→A′ , [q → q]N→B′

6 BQDC I (a0, a1)A→B, (b0, b1)B→A [qq]MN , [q → q]M→N , 2[c→ c]A→M ,
2[c→ c]B→M , 2[c→ c]N→A′ , 2[c→ c]N→B′

7 BQDC II (a0, a1)A→B, (b0, b1)B→A [qqqq]ABMN , [q → q]M→N , [q → q]A→M ,
[q → q]B→M , 2[c→ c]N→A′ , 2[c→ c]N→B′

8 BQDC III (a0, a1)A→B, (b0, b1)B→A [qq]AB, [qq]MN , [q → q]M→N , [q → q]A→M ,
[q → q]B→M , 2[c→ c]N→A′ , 2[c→ c]N→B′

Table 2.1: Summary of Communication Protocols
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2.4 Teleportation and Dense-Coding

In 1992 the protocol for dense-coding [11] and in 1993 the protocol for teleportation were
found [10]. Let us revisit them with the diagrammatic conventions provided above.

The EPR states (Einstein-Podolski-Rosen states) also known as Bell states are maximally
entangled bipartite states and will be represented as follows:∣∣β00

〉
=

1√
2

(|00⟩ + |11⟩) (2.1)∣∣β01
〉

=
1√
2

(|00⟩ − |11⟩) (2.2)∣∣β10
〉

=
1√
2

(|01⟩ + |10⟩) (2.3)∣∣β11
〉

=
1√
2

(|01⟩ − |10⟩) (2.4)

We may write the Bell states above more succinctly as Pauli one-qubit gates applied to
second qubit of the Bell state |β00⟩. Alternatively, it can also we represented as Pauli
one-qubit gates applied to first qubit of the Bell state |β00⟩. This notation of the Bell
states is particularly useful for the protocols ahead.

|βxz⟩ = (11 ⊗XxZz)
∣∣β00

〉
= (ZzXx ⊗ 11)

∣∣β00
〉

(2.5)∣∣β00
〉

= (11 ⊗ ZzXx) |βxz⟩ = (XxZz ⊗ 11) |βxz⟩ (inverse) (2.6)

For Greenberger–Horne–Zeilinger (GHZ) states we use the notation |β000..⟩ = 1√
d
(|000..⟩+

|111..⟩)

2.4.1 Quantum Teleportation

The task of teleportation is to send qubits from one party (say Alice) to another party
(say Bob) using shared entanglement and classical communication. This is a novel result
for quantum communication theory. To appreciate this consider the following, we need
two complex numbers to describe a pure non-normalised qubit, or three real numbers to
describe a (mixed or pure) normalised qubit on a Bloch Sphere if we know the state of
our qubit. In principle this information sounds impossible to send via a finite string of
classical bits even if one knows the qubit state. But this task becomes possible with only
two c-bits if there is shared entanglement for a qubit in an unknown state! The protocol
is as follows:
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Protocol 1. Quantum Teleportation

Goal: Alice wishes to send |ψ⟩ to Bob.
Resources: [qq]AB, 2[c→ c]A→B

Bob′

Alice Bob
|ψ〉

|ψ〉

EPR

Figure 2.2: Quantum Teleportation

1. Alice has |ψA⟩ and Alice and Bob receive Bell state

|ψA⟩ ⊗
∣∣β00

AB

〉
= (α0 |0⟩ + α1 |1⟩) ⊗

∣∣β00
AB

〉
(2.7)

2. Alice performs a Bell measurement {⟨βxz
AA| |x, z ∈ {0, 1}} on |ψA⟩ and her half of

the Bell pair

|ψA⟩
∣∣β00

AB

〉
=

1

2

( |β00
AA⟩ |ψ⟩B + |β01

AA⟩ZB |ψ⟩B +

|β10
AA⟩XB |ψ⟩B + |β11

AA⟩ZBXB |ψ⟩B

)
(2.8)

3. Alice communicates the two c-bits of information (x, z) to Bob which corresponds
to the outcome to the Bell measurement {⟨βxz

AA| |x, z ∈ {0, 1}}

4. Bob applies the ZzXx to correct his half of the Bell pair to get |ψB⟩
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2.4.2 Quantum Dense-Coding

The task of dense-coding is to send 2n classical bits from one party Alice to another party
Bob using shared entanglement and n qubits. While it may seem costly to send classical
information via quantum resources, it may be desired for encryption and furthermore, this
is a novel result for quantum communication theory because of the Holevo bound. The
Holevo bound [59] upper bounds the accessible information and restricts the capacity of
a n qubit channel between two parties to n classical bits (in the absence of shared entan-
glement). Given this bound, Dense-coding is able to go over the Holevo bound due to the
presence of shared entanglement! The protocol is as follows:

Protocol 2. Quantum Dense-Coding

Bob′

Alice Bob

1Qubit

(a0, a1)

(a0, a1)

EPR

Figure 2.3: Quantum Dense-Coding

Goal: Alice wishes to send two c-bits (a0, a1) to Bob.
Resources: [qq]AB, [q → q]A→B

1. Alice and Bob receive Bell state |β00
AB⟩

2. Alice applies Xa0Za1 on her half of the Bell pair

Xa0Za1
∣∣β00

AB

〉
= |βa0a1

AB ⟩ (2.9)
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3. Alice sends her half of the Bell pair to Bob |βa0a1
BB ⟩

4. Bob performs a Bell measurement {⟨βa0a1
BB | |a0, a1 ∈ {0, 1}} on the two qubits to

recover the two bits of information (a0, a1)

2.4.3 Resource Theory of Unit Quantum Protocols

An excellent exposition of the quantum communication resource theory can be found in
the book by Wilde [98]. Here the resources are quantum communication channel capac-
ity, classical communication channel capacity and shared entanglement between spatially
separated parties, while local operations for any party (quantum and classical) are free.
X > Y (X ≥ Y ) denotes that X is a (strictly) stronger resource than Y . Let us see what
some of these resource inequalities (and equalities) look like.

Signalling is a stronger resource than shared entanglement as you can generate entangle-
ment using a quantum channel and more specifically a Bell pair using a qubit channel:

[q → q]A→B ≥ [qq]AB (2.10)

Quantum signalling is a stronger resource than Classical signalling as you can simulate
classical communication using a quantum channel but not the other way round. Specifically
if you only encode on the computational basis of a qubit channel and measure in the same
basis you can simulate a classical bit channel, therefore we have:

[q → q]A→B ≥ [c→ c]A→B (2.11)

In teleportation you use a two bit classical channel and a Bell pair to simulate a qubit
channel. The corresponding resource inequality looks like:

2[c→ c]A→B + [qq]AB ≥ [q → q]A→B (2.12)

In dense-coding you use a qubit channel and a Bell pair to simulate a two bit classical
channel. The resource inequality looks like:

[q → q]A→B + [qq]AB ≥ 2[c→ c]A→B (2.13)

Trivially one can establish duality between teleportation and dense-coding if shared entan-
glement (that is [qq]AB) was a free resource.

2[c→ c]A→B ≥ [q → q]A→B from teleportation

[q → q]A→B ≥ 2[c→ c]A→B from dense-coding

⇒ [q → q]A→B = 2[c→ c]A→B (2.14)
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Duality of Teleportation and Dense-Coding

Teleportation and Dense-Coding are indeed dual processes under this resource theory but it
can be shown in a more sophisticated manner through coherent teleportation and coherent
dense-coding. To do this we must define the Coherent bit channel as follows:

[q → qq]A→AB : |i⟩A → |i⟩A |i⟩B where i ∈ {0, 1} (2.15)

The Coherent bit channel falls between a qubit channel and shared entanglement in terms
of its resource capability:

[q → q]A→B ≥ [q → qq]A→AB ≥ [qq]AB (2.16)

In Coherent Teleportation [12] one uses two coherent channels and a Bell pair to simulate a
qubit channel. One also ends up producing two Bell states in this procedure. The resource
inequality follows:

2[q → qq]A→AB + [qq]AB ≥ [q → q]A→B + 2[qq]AB (2.17)

→ 2[q → qq]A→AB ≥ [q → q]A→B + [qq]AB (2.18)

In Coherent Dense-Coding [53] you use a qubit channel and a Bell pair to simulate two
Coherent bit-channels. The resource inequality follows:

[q → q]A→B + [qq]AB ≥ 2[q → qq]A→AB (2.19)

Now, one can establish duality between coherent teleportation and coherent dense-coding
via the coherent bit channel using Equations 2.18 and 2.19.

2[q → qq]A→AB ≥ [q → q]A→B + [qq]AB from Coherent Teleportation

[q → q]A→B + [qq]AB ≥ 2[q → qq]A→AB from Coherent Dense-Coding

⇒ [q → q]A→B + [qq]AB = 2[q → qq]A→AB (2.20)

Notice that Coherent Teleportation is weaker while Coherent Dense-coding is stronger than
their non-coherent counterparts, which is critical for this duality. Furthermore, notice that
the classical task needs to be restated in quantum resources for this resource duality to
work. We will explore duality for the Bidirectional protocols in Section 2.8.1.
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2.5 Butterfly Networks

We have revisited known results for two-party quantum protocols and the resource theory
over shared entanglement, quantum channels and classical channels in Section 2.4. How
can we extend these to multi-parties and can these provide some advantage? We focus
our attention to the problem of bidirectional flow of information between two parties Alice
and Bob in the presence of other parties. We look at the Butterfly Network (as described
in the beginning of the Chapter), wherein we have Alice and Bob wishing to communi-
cate bidirectionally and we have two intermediary parties Mukul and Neha who mediate
information between Alice and Bob.

Before considering quantum tasks we discuss an important result within Classical Networks
in this setup, that is useful for tasks performed over the internet, after which we will
elaborate on the Quantum Butterfly Network.

2.5.1 Classical Butterfly Network

The Classical Butterfly Network is often used to illustrate how Network Coding can out-
perform routing [1]. Network Coding refers to the (en)coding done at a node (such as
Mukul’s), explained by Ahlswede et al. as follows:

“In existing computer networks, each node functions as a switch in the sense
that it either relays information from an input link to an output link, or it
replicates information received from an input link and sends it to a certain
set of output links. From the information-theoretic point of view, there is no
reason to restrict the function of a node to that of a switch. Rather, a node
can function as an encoder in the sense that it receives information from all the
input links, encodes, and sends information to all the output links. From this
point of view, a switch is a special case of an encoder. In the sequel, we will
refer to coding at a node in a network as network coding.” ([1])

Here we have adapted the example from their paper [1] of six parties to a setup of four
parties where Alice/Alice′ and Bob/Bob′ are nodes refering to the same party at different
points in time. We have two parties Alice and Bob each trying to send a classical bit to
the other (a to Bob′, b to Alice′). Instead of asking for the other’s classical bit what if they
ask “Is the bit with the other the same as the one I have?” The answer to this question is
the same for both, the answer encoded as m = a⊕b, and therefore we will see an advantage.
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Protocol 3. Classical Butterfly Network Coding

Goal: Alice wishes to send a c-bit a to Bob and Bob wishes to send a c-bit b to Alice
Resources: [c→ c]A→M , [c→ c]B→M , [c→ c]M→N , [c→ c]N→A′ , [c→ c]N→B′

1. Alice sends c-bit a and Bob sends c-bit b to Mukul

2. Mukul adds them via the boolean sum m = a⊕ b and sends m to Neha

3. Neha broadcasts m to both Alice and Bob

Alice′ Bob′

Neha

Mukul

Alice Bob

a

b

m = a⊕ b

m

m

a b

a

b

b = m⊕ a

a = m⊕ b

Figure 2.4: Classical Butterfly Network

4. Alice adds her c-bit a and m:

m⊕ a = a⊕ b⊕ a = b (2.21)
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5. Bob adds his c-bit b and m:

m⊕ b = a⊕ b⊕ b = a (2.22)

Typically Mukul would require to send two c-bits to Neha, but in this particular task due
to Alice and Bob having memory, one c-bit of communication ([c → c]M→N) is saved. We
will leverage this result3 in our protocols in the following sections.

Notice that for this protocol to work Alice and Bob must trust Mukul and Neha. Addi-
tionally, this protocol is not secure, that is Mukul has access to a, b. Can there be a secure
alternative to this protocol? We will explore these concerns in the Quantum Butterfly
Network through what we will call Masked Encoding.

2.5.2 Quantum Butterfly Network

We wish to perform Bidirectional Quantum Teleportation (BQT) and Bidirectional Quan-
tum Dense-Coding (BQDC). The obvious trivial protocol for BQT would involve two Bell
pairs between Alice and Bob, two bits sent form Alice to Bob and two bits sent from Bob
to Alice (illustrated below). Similarly, the obvious trivial protocol for BQDC would involve
two Bell pairs between Alice and Bob, one qubit sent from Alice to Bob and one qubit
sent from Bob to Alice (illustrated below). Can we do better? To do this meaningfully

Bob′

Alice Bob
|ψ〉

|ψ〉

EPR

+

Alice′

Alice Bob
|φ〉

|φ〉

EPR

Bob′

Alice Bob

1Qubit

(a0, a1)

(a0, a1)

EPR

+

Alice′

Alice Bob

1Qubit

b0, b1

b0, b1

EPR

Figure 2.5: Trivial protocol for BQT (left) and BQDC (right)

we need to use a scenario where the signalling resources between Alice to Bob and Bob to
Alice can come together and be compared. The butterfly network does exactly that. The
channel between Mukul and Neha is a channel that has competing tasks that both Alice
and Bob need for signalling. Thus, we consider a Quantum version of the Butterfly Net-
work where channels can now be classical or quantum and shared entanglement between
parties is introduced:

3This adaptation of the protocol was found independently by the author a couple of decades too late,
before stumbling upon an Electrical Engineering Journal paper, that is largely absent in Quantum research
literature.
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Alice′ Bob′

Neha

Mukul

Alice Bob

+entanglement

Figure 2.6: Quantum Butterfly Network

Within the Butterfly network the trivial protocols BQT corresponds to four c-bits (and
BTDC corresponds to two qubits) to be sent from Mukul to Neha. Can we reduce this?
We show that indeed a quantum form of the Classical Butterfly Network Coding allows
us to reduce signalling resources (two c-bits for BQT and one qubit for BQDC) along the
channel from Mukul to Neha.

Note that a quantum butterfly network is also studied by Leung [71] though the context and
problem statement are different than what we wish to consider here. For one, they allow for
backward assisted communication which we do not. Also in our butterfly network, we have
only four parties, with two of these parties represented twice since we are distinguishing
temporally separate events as distinct nodes.

Resources in the Butterfly Network

In the resource theory discussed in previous sections [98] local operations are free; while
quantum communication, classical communication as well as shared entanglement are not
free. While we largely adopt the same resource theory to present our protocols, the resource
theory is more complex when considering the multi-party case, in particular the resources
within shared entanglement are more involved, thus we introduce some modifications.
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Given our particular interest in bidirectional flow of information for the purposes of dis-
cussion we focus on the channel between Mukul and Neha for resource counting (qubits or
c-bits), since the goals compete over this channel. Note that if one imagines a time-slice at
a moment after Mukul signals to Neha and before Neha receives Mukul’s signal, one will
notice that in fact the resources of interest are indeed the channel between Mukul and Neha
(remember that the channel from Alice to Alice′ / Bob to Bob′ are not real channels, they
correspond to local operations and memory over time-evolution) and shared entanglement.

Therefore, for discussion and simplicity one may consider the signalling resources over the
channels from Alice to Mukul, Bob to Mukul, Neha to Alice′ and Neha to Bob′ to be free
(but for practical purposes, for example a person with an experimental setup, all signalling
resources are to be counted).

Shared Entanglement in the Butterfly Network

Here we discuss the possible shared entanglement cases one can start with in the butterfly
setup to give us some structure over the shared resource. Given the signalling resources
over the channels from Alice to Mukul, Bob to Mukul, Neha to Alice′ and Neha to Bob′

are considered free, we reduce the possible shared entanglement cases to two cases, using
resource inequalities:

1. Shared entanglement between Alice and Bob: [qq]AB

[qq]AB ≥ [qqq]ABM ≥ ([qq]AM = [qq]BM free) (2.23)

since Alice (and Bob) can freely send qubits to Mukul, to create Bell pairs between
Mukul and Alice (Bob). If Alice and Bob have a Bell pair they can freely prepare a
GHZ state with Mukul.

2. Shared entanglement between Alice, Bob and Neha: [qq]AN , [qq]BN or [qqq]ABN

[qq]AN ≥ [qqq]AMN (2.24)

[qq]BN ≥ [qqq]BMN (2.25)

[qqq]ABN ≥ [qqq]ABMN (2.26)

[qq]AN ≥ [qq]AB′ ≥ [qq]A′B′ (2.27)

[qq]BN ≥ [qq]A′B ≥ [qq]A′B′ (2.28)

where we use the fact that Alice/Bob can freely send qubits to Mukul in Equations
2.24-2.26, and Neha can freely send qubits to Alice′/ Bob′ in Equations 2.27-2.28
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Therefore, we consider only shared entanglement of the form: [qq]AB, [qqq]ABN or [qq]AN , [qq]BN

since these appear to be sufficient.

2.6 Bidirectional Quantum Teleportation

For bidirectional teleportation, we know that in the absence of the butterfly network we
would need two Bell pairs, which is true for the butterfly network as well. Let us see
how we may utilise the CBNC (Protocol 3) to perform bidirectional teleportation in the
classical butterfly network.

2.6.1 Bidirectional Quantum Teleportation (Version I)

As a warm up, in this version we look for the easiest implementation of BQT in the
Butterfly Network where we use Network Coding and Teleportation to find an advantage.

Protocol 4. Bidirectional Quantum Teleportation (Version I)

Goal: Alice wishes to send qubit |ψ⟩ to Bob and Bob wishes to send qubit |ϕ⟩ to Alice
Resources: 2[qq]AB, 2[c → c]A→M , 2[c → c]B→M , 2[c → c]M→N , 2[c → c]N→A, 2[c →
c]N→B.

1. Alice has qubit |ψA1⟩, Bob has qubit |ϕB1⟩

2. Alice and Bob share two Bell pairs
∣∣β00

A2B2

〉
,
∣∣β00

A3B3

〉
making the global state

|ψA1⟩ ⊗
∣∣β00

A2B2

〉
⊗
∣∣β00

A3B3

〉
⊗ |ϕB1⟩ (2.29)

3. Alice does a local Bell measurement {
〈
βa0a1
A1A2

∣∣ |a0, a1 ∈ {0, 1}} on A1, A2. We can
massage the state to write it in a linear superposition over the Bell basis.

|ψA1⟩
∣∣β00

A2B2

〉
=

1

2

( ∣∣β00
A1A2

〉
|ψB2⟩ +

∣∣β01
A1A2

〉
ZB2 |ψB2⟩

+
∣∣β10

A1A2

〉
XB2 |ψB2⟩ +

∣∣β11
A1A2

〉
ZB2XB2 |ψB2⟩

)
(2.30)
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4. Bob does a local Bell measurement {
〈
βb0b1
B1B3

∣∣ |b0, b1 ∈ {0, 1}} on B1, B3. We can
again massage the state to write it in a linear superposition over the Bell basis.

|ϕB1⟩
∣∣β00

B3A3

〉
=

1

2

( ∣∣β00
B1B3

〉
|ψA3⟩ +

∣∣β01
B1B3

〉
ZA3 |ψA3⟩

+
∣∣β10

B1B3

〉
XA3 |ψA3⟩ +

∣∣β11
B1B3

〉
ZA3XA3 |ψA3⟩

)
(2.31)

Alice′ Bob′

Neha

Mukul

Alice Bob

a0, a1

a0, a1 b0, b1
m0,m1

b0, b1

m0,m1m0,m1

2EPR|ψ〉
|φ〉

|φ〉
|ψ〉

Figure 2.7: Bidirectional Quantum Teleportation (Version I)

5. At this point the quantum state of the remaining two qubits, A3 with Alice and
B2 with Bob is:

Za1
B2
Xa0

B2
|ψB2⟩ ⊗ Zb1

A3
Xb0

A3
|ϕA3⟩ (2.32)

Now all that is needed by Alice is (b0, b1) and Bob is (a0, a1), which can be sent
by using the classical coding Protocol 3 twice.

6. Alice sends the outcome (a0, a1) of her Bell measurement {
〈
βa0,a1
A1A2

∣∣ |a0, a1 ∈
{0, 1}} to Mukul.

32



7. Bob sends the outcome (b0, b1) of his Bell measurement {
〈
βb0,b1
B1B2

∣∣∣ |b0, b1 ∈ {0, 1}}
to Mukul.

8. Mukul produces two c-bits (m0,m1) with m0 = a0 ⊗ b0 and m1 = a1 ⊗ b1 and
sends them to Neha.

9. Neha broadcasts (m0,m1) to Alice and Bob.

10. Alice adds (a0, a1) from her memory to (m0,m1) to receive (b0, b1),

bi = mi ⊕ ai ∀i ∈ {0, 1} (2.33)

11. Bob adds (b0, b1) from his memory to (m0,m1) to receive (a0, a1),

ai = mi ⊕ bi ∀i ∈ {0, 1} (2.34)

12. Alice applies the gate Xb0Zb1 to qubit A3 and Bob applies the gate Xa0Za1 to
qubit B2 to complete bidirectional teleportation!

|ϕA⟩ ⊗ |ψB⟩ (2.35)

Here, we employed the Classical Butterfly Network Coding Protocol directly over the
measurement outcomes of the Bell measurements to lower the signalling costs for Mukul
to send only two c-bits (m0,m1) (as opposed to four c-bits (a0, a1, b0, b1)). This should not
be surprising and yet it is a tangible improvement.

This result is distinct from the BQT Protocol presented in by Hassanpour et al. [56].
In Hassanpour’s Protocol they use two Bell pairs as one would expect in BQT though
they do not focus on a classical channel on which the communication task compete such
as our Mukul and Neha channel. We have focused on the Butterfly network to find a
communication resource advantage not discussed in other studies.

2.6.2 Bidirectional Quantum Teleportation (Version II)

Notice that in BQT version I (Protocol 4) Alice performs a local operation on one of the
Bell state qubits (A2) while Bob′ (not Bob) performs a local operation on qubit B2. In
fact the resource [qq]AB′ is sufficient. Similarly, Bob performs a local operation on one of
the Bell state qubits (B3) while Alice′ (not Alice) performs a local operation on qubit A3.
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Thus, the resource [qq]A′B is sufficient. Further, we have discussed how in these cases it
is sufficient to consider [qq]AN instead of [qq]AB′ as well as [qq]BN instead of [qq]A′B (since
channels from Neha to Alice′ and Bob′ are considered free). Therefore, in this second
version we start with [qq]AN and [qq]BN to show a new variation for BQT wherein, the
Classical Butterfly Network Coding Protocol provides a similar advantage.

Protocol 5. Bidirectional Quantum Teleportation (Version II)

Alice′ Bob′

Neha

Mukul

Alice Bob

a0, a1

a0, a1 b0, b1
m0,m1

b0, b1

|ψ〉
|φ〉

|φ〉
|ψ〉

Figure 2.8: Bidirectional Quantum Teleportation (Version II)

Goal: Alice wishes to send qubit |ψ⟩ to Bob and Bob wishes to send qubit |ϕ⟩ to Alice
Resources: [qq]AN , [qq]BN , 2[c→ c]A→M , 2[c→ c]B→M , 2[c→ c]M→N ,
[q → q]N→A′ , [q → q]N→B′ .

1. Alice has qubit |ψA1⟩, Bob has qubit |ϕB1⟩
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2. Alice and Neha have a Bell pair
∣∣β00

A2N1

〉
and Bob and Neha have a Bell pair∣∣β00

B2N2

〉
|ψA1⟩ ⊗

∣∣β00
A2N1

〉
⊗
∣∣β00

B2N2

〉
⊗ |ϕB1⟩ (2.36)

3. Alice does a local Bell measurement {
〈
βa0a1
A1A2

∣∣ |a0, a1 ∈ {0, 1}}. We can again
massage the state to write it in a linear superposition over the Bell basis.

|ψA1⟩
∣∣β00

A2N1

〉
=

1

2

( ∣∣β00
A1A2

〉
|ψN1⟩ +

∣∣β01
A1A2

〉
ZN1 |ψN1⟩

+
∣∣β10

A1A2

〉
XN1 |ψN1⟩ +

∣∣β11
A1A2

〉
ZN1XN1 |ψN1⟩

)
(2.37)

4. Bob does a local Bell measurement {
〈
βb0b1
B2A1

∣∣ |b0, b1 ∈ {0, 1}}. We can again
massage the state to write it in a linear superposition over the Bell basis.

|ϕB1⟩
∣∣β00

B2N2

〉
=

1

2

( ∣∣β00
B1B2

〉
|ψN2⟩ +

∣∣β01
B1B2

〉
ZN2 |ψN2⟩

+
∣∣β10

B1B2

〉
XN2 |ψN2⟩ +

∣∣β11
B1B2

〉
ZN2XN2 |ψN2⟩

)
(2.38)

5. At this point the quantum state of the remaining two qubits with Neha is:

Za1
N1
Xa0

N1
|ψN1⟩ ⊗ Zb1

N2
Xb0

N2
|ϕN2⟩ (2.39)

6. Alice sends the outcome (a0, a1) of her Bell Measurement {
〈
βa0,a1
A1A2

∣∣ |a0, a1 ∈
{0, 1}} to Mukul

7. Bob sends the outcome (b0, b1) of his Bell measurement {
〈
βb0,b1
B1B2

∣∣∣ |b0, b1 ∈ {0, 1}}
to Mukul

8. Mukul produces two c-bits (m0,m1) with m0 = a0 ⊗ b0 and m1 = a1 ⊗ b1 and
sends them to Neha

9. Neha applies the gate Xm0Zm1 to qubit N1 and the same gate Xm0Zm1 to qubit
N2 as well

Zb1
N1
Xb0

N1
|ψN1⟩ ⊗ Za1

N2
Xa0

N2
|ϕN2⟩ (2.40)
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10. Neha sends qubit N2 to Alice and qubit N1 to Bob.

Zb1
BX

b0
B |ψB⟩ ⊗ Za1

A X
a0
A |ϕA⟩ (2.41)

11. Alice applies the gate Xa0Za1 to qubit A and Bob applies the gate Xb0Zb1 to
qubit B to complete bidirectional teleportation!

|ψB⟩ ⊗ |ϕA⟩ (2.42)

Here, we have a hybrid variation of the Classical Butterfly Network Coding Protocol em-
ployed till Neha followed by Neha sending over the qubits to Alice and Bob. This variation
provides the same advantage in terms the channel from Mukul to Neha: two c-bits (m0,m1)
(as opposed to four c-bits (a0, a1, b0, b1)); nonetheless it has its own advantages. Depend-
ing on what resources are available in a Quantum Network, if it is easier to have shared
entanglement with Neha instead of between Alice and Bob this variation can be useful.

Further given BQT Protocol 4 and BQT Protocol 5, one may also easily write down pro-
tocols starting with ([qq]AB and [qq]AN) or ([qq]AB and [qq]BN). The possibility of multiple
variations for BQT in the Quantum Butterfly Network that share the same advantage
from network coding will no doubt allow for flexibility at the level of implementations, but
also shed light on the compatibility of classical communication advantages transferring to
quantum communication.

We point out that both BQT Protocols 4 and 5 are compatible with entanglement swapping,
where instead of pure qubits if Alice or Bob were to send qubits which are entangled with
other systems, the entanglement will transfer to the teleported qubits as well.

Here we share the takeaways for the BQT protocols, both of which provide the communi-
cation advantage of two c-bits being sent from Mukul to Neha as opposed to four c-bits.
We proceed to BQDC in the next section.

Protocol Resources (non-free) Features

BQT I 2[qq]AB, 2[c→ c]M→N · CBNC and QT cleanly distinguished
(Protocol 4) · Requires 2[c→ c]M→N (not 4 c-bits)

BQT II [qq]AN , [qq]BN , 2[c→ c]M→N · Hybrid version of CBNC and QT
(Protocol 5) · Requires 2[c→ c]M→N (not 4 c-bits)

Table 2.2: Takeaway for Bidirectional Quantum Teleportation Protocols
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2.7 Bidirectional Quantum Dense-Coding

In Bidirectional Dense-Coding Alice a0, a1 and Bob b0, b1 want to send two bits each across
to the other. With classical channels one can employ the Classical Butterfly Network
Coding Protocol 3 but in the absence of a classical channel between Mukul and Neha one
can send information using a qubit channel and entanglement through dense-coding. We
present three protocols for BQDC, each more secure than the previous, and each providing
the advantage of requiring one qubit (not two) to be sent from Mukul to Neha.

2.7.1 Bidirectional Quantum Dense-Coding (Version I)

As a warm up, in this version we look for the easiest implementation of BQDC in the
Butterfly Network where we use Network Coding and Dense-Coding to find an advantage.

Protocol 6. Bidirectional Quantum Dense-Coding (Version I)

Alice′ Bob′

Neha

Mukul

Alice Bob

m0,m1

b0, b1

a0, a1 b0, b1

a0, a1

b0, b1

b0, b1

a0, a1

a0, a1

Figure 2.9: Bidirectional Quantum Dense-Coding (Version I)
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Goal: Alice wishes to send two c-bits (a0, a1) to Bob. Bob wishes to send two c-bits
(b0, b1) to Alice
Resources: [qq]MN , [q → q]M→N , 2[c→ c]A→M , 2[c→ c]B→M , 2[c→ c]N→A′ ,
2[c→ c]N→B′

1. Mukul and Neha share a Bell pair |β00
MN⟩

2. Alice sends (a0, a1) to Mukul and Bob sends (b0, b1) to Mukul

3. Mukul prepares two c-bits similar to Network Coding Protocol (m0,m1)

m0 = a0 ⊕ b0 and m1 = a1 ⊕ b1 (2.43)

4. Mukul encodes (m0,m1) in the Bell state by applying Xm0Zm1 on his half of the
Bell state

Xm0
M Zm1

M

∣∣β00
MN

〉
= |βm0m1

MN ⟩ (2.44)

5. Mukul sends his half of the Bell pair to Neha |βm0m1
NN ⟩

6. Neha performs a Bell measurement {⟨βm0m1
NN | |m0,m1 ∈ {0, 1}} on the two qubits

to recover the two bits of information (m0,m1)

7. Neha broadcasts (m0,m1) to Alice and Bob

8. Alice adds (a0, a1) from her memory to (m0,m1) to receive (b0, b1)

bi = mi ⊕ ai ∀i ∈ {0, 1} (2.45)

9. Bob adds (b0, b1) from his memory to (m0,m1) to receive (a0, a1)

ai = mi ⊕ bi ∀i ∈ {0, 1} (2.46)

10. Alice receives (b0, b1) and Bob receives (a0, a1). BQDC complete.

Here, we employed dense-coding within the Classical Butterfly Network Coding Protocol
which requires us to send two c-bits (m0,m1) (as opposed to four c-bits (a0, a1), (b0, b1)).
The c-bits (m0,m1) through dense-coding can be sent over one qubit (as opposed to two
qubits for (a0, a1), (b0, b1)) sent from Mukul to Neha. This should not be surprising and
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provides us with a simple protocol for BQDC that provides an advantage.

2.7.2 Bidirectional Quantum Dense-Coding (Version II)

The BQDC Protocol 6 presented above has a drawback. Unlike dense-coding where the
information encoded is sent securely from Alice to Bob, here Mukul, a third party, has
access to (a0, a1, b0, b1). Do Alice and Bob trust Mukul and Neha? If not, can Alice and
Bob recover some privacy of the information they wish to send? One way to do so would
be to use quantum encodings for (a0, a1), (b0, b1).

Further, let us consider a different shared entanglement resource – a GHZ state shared
between Alice, Bob, Neha (and Mukul) for this variation of BQDC. Note that we can
start with [qqq]ABN and use the free channel from Alice to Mukul or Bob to Mukul to
create [qqqq]ABMN . But for symmetry between Alice and Bob in the protocol we start with
[qqqq]ABMN and list other resources accordingly.

Protocol 7. Bidirectional Quantum Dense-Coding (Version II)

Goal: Alice wishes to send two c-bits (a0, a1) to Bob. Bob wishes to send two c-bits
(b0, b1) to Alice
Resources: [qqqq]ABMN

a, [q → q]M→N , [q → q]A→M , [q → q]B→M , 2[c → c]N→A′ ,
2[c→ c]N→B′

1. Before the protocol begins, Alice, Bob, Mukul and Neha share a GHZ state
|β0000

ABMN⟩

2. Alice applies Xa0Za1 on her part of the GHZ state, Bob applies Xb0Zb1 on his
part of the GHZ state

(Xa0
A ⊗Xb0

B )(Za1
A ⊗ Zb1

B )
∣∣β0000

ABMN

〉
(2.47)

=(|a0b000ABMN⟩ + (−1)m1
∣∣ā0b̄011ABMN

〉
) (2.48)

where m0 = a0 ⊕ b0 and m1 = a1 ⊕ b1
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3. Alice and Bob send their parts of the GHZ state to Mukul

|a0b000M1M2M3N⟩ + (−1)m1
∣∣ā0b̄011M1M2M3N

〉
(2.49)

Alice′ Bob′

Neha

Mukul

Alice Bob

m0,m1

a0, a1 b0, b1

a0, a1

b0, b1

b0, b1

a0, a1

Figure 2.10: Bidirectional Quantum Dense-Coding (Version II)

4. Mukul’s aim is to prepare the Bell state |βm0m1
MN ⟩ from the GHZ state. Note that

m1 is already encoded in the phase of the GHZ state. To encode m0 he applies
CNOT controlled from M2 targeted to M1, followed by a CNOT controlled from
M3 targeted to M1.

|a0b000M1M2M3N⟩ + (−1)m1
∣∣ā0b̄011M1M2M3N

〉
(2.50)

−−−−−→
C

M2→M1
NOT

|m0⟩M1
(|b000M2M3N⟩ + (−1)m1

∣∣b̄011M2M3N

〉
) (2.51)

−−−−−→
C

M3→M1
NOT

|m0b000M1M2M3N⟩ + (−1)m1
∣∣m̄0b̄011M1M2M3N

〉
(2.52)
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5. Now Mukul wishes to discard two qubits to prepare the bell state. He does so by
applying CNOT controlled from M1 targeted to M3, followed by a CNOT controlled
from M1 targeted to M2

|m0b000M1M2M3N⟩ + (−1)m1
∣∣m̄0b̄011M1M2M3N

〉
(2.53)

−−−−−−−−−−−→
C

M1→M2
NOT C

M1→M3
NOT

∣∣βm0m1
M1N

〉
|a0⟩M2

|m0⟩M3
(2.54)

6. Mukul discards M2,M3 and sends M1 to Neha. Neha has the state
∣∣βm0m1

N1N2

〉
7. Neha performs a Bell measurement {

〈
βm0m1
N1N2

∣∣ |m0,m1 ∈ {0, 1}} on the two qubits
to recover the two bits of information (m0,m1)

8. Neha broadcasts (m0,m1) to Alice and Bob

9. Alice adds (a0, a1) from her memory to (m0,m1) to receive (b0, b1)

bi = mi ⊕ ai ∀i ∈ {0, 1} (2.55)

10. Bob adds (b0, b1) from his memory to (m0,m1) to receive (a0, a1)

ai = mi ⊕ bi ∀i ∈ {0, 1} (2.56)

11. Alice receives (b0, b1) and Bob receives (a0, a1). BQDC complete.

aNote that we can start with [qqq]ABN and use the free channel from Alice to Mukul or Bob to
Mukul to create [qqqq]ABMN . But for symmetry between Alice and Bob we start with [qqqq]ABMN

We encoded the information (m0,m1) in a quantum manner in this protocol. Nonetheless,
the bitsm1 andm0 are encoded at different levels of security. Here, m1 is encoded into phase
of the GHZ (later to be reduced to Bell state) and therefore makes a1 and b1 inaccessible
to Mukul or Neha; on the other hand m0 is quantum-ly encoded by Mukul in Step 4 and 5,
and in Equation 2.54 it is evident that Mukul could retrieve the bits a0 and b0 if he wishes
to. Notice that the protocol hinges on Mukul having the three qubits (Equation 2.50): one
with information of a0, one with information of b0 and one extra qubit — while this third
qubit helps keep track of parity essential for the protocol to succeed, it also makes a0 and
b0 accessible to Mukul. We will see the third protocol which is completely secure due to a
Bell state shared between Alice and Bob.

Nonetheless, we learn that we can perform BQDC in multiple ways with the same advantage
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(one qubit sent from Mukul to Neha as opposed to two qubits). We also learn a lot from
this Protocol 7 specifically since we can implement BQDC using a GHZ state [qqq]ABN ,
while BQT II Protocol 5 necessarily requires [qq]AN and [qq]BN . This is interesting in light
of the resource inequality:

[qq]AN + [qq]BN ≥ [qqq]ABN (2.57)

This will be relevant for our discussion of the possible duality between BQT and BQDC
in the Section 2.8.1.

2.7.3 Masked Encoding and Security

We discuss issues of security in some detail before we present the third version of BQDC.
Within the Protocols in the (Classical and Quantum) Butterfly Network, Mukul has the
task of encoding information to be sent to Neha, this leaves some information accessible to
Mukul. In the case of BQT, the accessibility of the Bell measurement outcomes that Mukul
encodes does not pose as a threat to security, since these are not the actual information
(qubits being teleported) Alice and Bob wish to share. On the other hand, in the case of
CBNC and BQDC, Mukul has access to the very information that Alice and Bob wish to
share with each other. This is undesirable from a security point of view. While Alice and
Bob require Mukul and Neha to cooperate for the success of the protocols, it would be also
be desirable that they cannot extract the information being communicated between Alice
and Bob.

We define the term Masked Encoding when the information encoded is not accessible to
the encoder, in other words, the information is masked from the encoder (here Mukul).

The information accessible to Mukul (the encoder), in the protocols involving the Butterfly
Network, is as follows:

• CBNC Protocol 3: Mukul has access to a and b

• BQT I Protocol 4: Mukul does not have access to |ψ⟩ or |ϕ⟩

• BQT II Protocol 5: Mukul does not have access to |ψ⟩ or |ϕ⟩

• BQDC I Protocol 6: Mukul has access to (a0, a1) and (b0, b1)

• BQDC II Protocol 7: Mukul has access to (a0,b0) but not (a1,b1)

• BQDC III Protocol 8 (below): Mukul does not have access to (a0, a1) and (b0, b1)
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2.7.4 Bidirectional Quantum Dense-Coding (Version III)

We have attempted to use quantum encoding in BQDC II Protocol 7 and we were (only)
partially successful in masking information from Mukul. In the protocol we present below
we build on BQDC I Protocol 6 with an additional Bell pair shared between Alice and
Bob, where we achieve masked encoding.

Protocol 8. Bidirectional Quantum Dense-Coding (Version III)

Alice′ Bob′

Neha

Mukul

Alice Bob

m0,m1

a0, a1 b0, b1

a0, a1

b0, b1

b0, b1

a0, a1

Figure 2.11: Bidirectional Quantum Dense-Coding (Version III)

Goal: Alice wishes to send two c-bits (a0, a1) to Bob and Bob wishes to send two
c-bits (b0, b1) to Alice, through masked encoding
Resources: [qq]AB, [qq]MN , [q → q]M→N , [q → q]A→M , [q → q]B→M , 2[c → c]N→A′ ,
2[c→ c]N→B′

1. Alice, Bob receive a Bell state |β00
AB⟩. Mukul and Neha receive Bell state |β00

MN⟩.
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2. Alice applies Xa0Za1 on her part of the Bell state, Bob applies Xb0Zb1 on his
part of the Bell state

(Xa0
A ⊗Xb0

B )(Za1
A ⊗ Zb1

B )
∣∣β00

AB

〉
= (|a0b0AB⟩ + (−1)m1

∣∣ā0b̄0AB

〉
) ≡ |βm0m1

AB ⟩
(2.58)

where m0 = a0 ⊕ b0 and m1 = a1 ⊕ b1

3. Alice and Bob send their parts of the Bell state to Mukul

(|a0b0M1M2
⟩ + (−1)m1

∣∣ā0b̄0M1M2

〉
) ≡

∣∣βm0m1
M1M2

〉
(2.59)

4. Mukul performs a Bell measurement {
〈
βm0m1
M1M2

∣∣ |m0,m1 ∈ {0, 1}} to get (m0,m1)

5. Mukul applies Xm0Zm1 on his part of the Bell state shared with Neha |β00
MN⟩ and

sends his half of the Bell state to Neha

6. Neha performs a Bell measurement {
〈
βm0m1
N1N2

∣∣ |m0,m1 ∈ {0, 1}} on the two qubits
to recover the two bits of information (m0,m1)

7. Neha broadcasts (m0,m1) to Alice and Bob

8. Alice adds (a0, a1) from her memory to (m0,m1) to receive (b0, b1)

bi = mi ⊕ ai ∀i ∈ {0, 1} (2.60)

9. Bob adds (b0, b1) from his memory to (m0,m1) to receive (a0, a1)

ai = mi ⊕ bi ∀i ∈ {0, 1} (2.61)

10. Alice receives (b0, b1) and Bob receives (a0, a1). BQDC complete.

Note that the shared entanglement resource in this protocol is [qq]AB and cannot be re-
placed by [qq]AB′ or [qq]A′B. We leave it as an open question if one can achive masked
encoding starting with a different shared entanglement resource.

Here we share the takeaways for the BQDC protocols, all of which share the communication
advantage of requiring Mukul to send a single qubit to Neha (as opposed to two):
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Protocol Non Free Resources Novelty

BQDC I [qq]MN , [q → q]M→N · Requires only one Bell pair
· Requires [q → q]M→N not 2[q → q]M→N

BQDC II [qqqq]ABMN , [q → q]M→N · Partially secure with GHZ state
· Requires [q → q]M→N not 2[q → q]M→N

BQDC III [qq]AB, [qq]MN , [q → q]M→N · Requires one Bell pair [qq]MN

· Secure with masked encoding with one
Bell pair [qq]AB

· Requires [q → q]M→N not 2[q → q]M→N

Table 2.3: Takeaway for Bidirectional Quantum Dense-Coding Protocols

2.8 Discussion

In this final Section, we highlight possible impact of this Chapter’s work and discuss some
interesting directions leading to avenues of future research.

2.8.1 Duality within Bidirectional Teleportation and Dense-Coding

In Subsection 2.4.3 we discussed the resource theory within which teleportation and dense-
coding are dual. A natural and interesting question to ask arises:

Is there some version of BQT and BQDC in the butterfly network that are dual?

To fully answer this question one is required to extend the resource theory to multiple
parties (including a resource theory of shared entanglement) and systematically define
achievable regions. We provide some steps towards solving this open question. We learnt
from the duality of teleportation and dense-coding that the coherent versions of protocols
are key to showing duality between them. Coherent Dense-Coding is stronger than its
classical counterpart and Coherent Teleportation is weaker. Similarly, it might be useful
to rework the protocols in this Chapter for BQT and BQDC to their Coherent versions
before duality may be analysed. While we leave this question open, to begin with we
provide the Coherent version of the Classical Butterfly Network Coding Protocol 3.
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Protocol 9. Coherent-Classical Butterfly Network Coding

Goal: Alice wishes to send one bit, |a⟩, coherently to Bob and Bob wishes to send one
bit, |b⟩, coherently to Alice
Resources: [q → q]A→M , [q → q]B→M , [q → q]M→N , [q → q]N→A′ , [q → q]N→B′

Alice′ Bob′

Neha

Mukul

Alice Bob

|a〉
|b〉

|m = a⊕ b〉

|m〉
|m〉

|a〉 |b〉

|a〉
|b〉

|b = m⊕ a〉
a = |m⊕ b〉

Figure 2.12: Coherent Classical Butterfly Network

1. Alice has |a⟩ and prepares |a⟩ |a⟩ and sends one qubit to Mukul.

2. Bob has |b⟩ and prepares |b⟩ |b⟩ and sends one qubit to Mukul.

3. The state at this step is |a⟩A |a⟩M1
|b⟩M2

|b⟩B. Mukul applies CNOT from M2 to
M1 and discards M2 to leave the state as |a⟩A |m⟩M1

|b⟩B (this is equivalent to
the boolean sum step m = a⊕ b in the classical counterpart). Mukul then sends
M1 to Neha.
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4. Neha has a qubit in state |0⟩. The state at this step is |a⟩A |m⟩N1
|0⟩N2

|b⟩B. She
applies CNOT from N1 to N2 to give |a⟩A |m⟩N1

|m⟩N2
|b⟩B. Neha then sends N1

to Alice and N2 to Bob to give |a⟩A1
|m⟩A2

|m⟩B2
|b⟩B1

.

5. Alice applies CNOT from A1 to A2.

6. Bob applies CNOT from B1 to B2.

7. Final state is |a⟩A1
|b⟩A2

|a⟩B2
|b⟩B1

.

Further, another hurdle in discussing the possible duality between BQDC and BQT is the
comparison of shared entanglement. Either one may start with a version of BQT and
BQDC which begin with the same shared entanglement resource or one must be able to
compare the resources shared by different parties. The closest that we can come to this
are BQT II and BQDC II though in the former we have two Bell pairs ([qq]AN , [qq]BN)
and in the latter we have a three party GHZ state ([qqq]ABN). One may attempt to find a
masked encoded version of BQDC II that requires [qq]AN , [qq]BN to further help study the
possible duality, but it is not clear if such a protocol would be possible.

2.8.2 Quanta-Net and the Boundary Rule

D

C

A

B

E

a0, a1

a0, a1

|ψ〉

|ψ〉

Figure 2.13: An example for a Quantum Network
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While designing tasks over a “Quanta-Net” one may be faced with decisions on optimising
a set of communication tasks of the form {classical information: for example (a0, a1)A→D,
quantum information: for example |ψ⟩B→E} given some set of resources {classical channels,
quantum channels, shared entanglement} in a multi-partite setting.

A conceptually interesting yet simple rule of thumb emerges from observing the protocols
within this Chapter, that can help prescribe between which nodes shared entanglement
would aid in performing certain quantum and classical communication tasks in a large
network. First one may draw the networks through their spatial perspective (unlike our
distinction of Alice/Alice′..., we now represent them by the same node). Given the nature
of Dense-Coding (uses entanglement to encode classical information on quantum chan-
nels) and Teleportation (uses entanglement to encode quantum information on classical
channels) and the protocols in this chapter the following observation emerges:

Boundary Rule: In the Spatial Perspective of a Network, draw a boundary
along nodes that have incoming (outgoing) quantum channels and outgoing (in-
coming) classical channels. The nodes that this boundary joins require shared
entanglement for optimal utilisation of the channel capacity.

Neha

Mukul

Alice Bob

a0, a1

b0, b1

b0, b1

a0, a1

Neha

Mukul

Alice Bob

|ψ〉 |φ〉

|φ〉 |ψ〉

Figure 2.14: Spatial Perspective: BQDC II (left) and BQT II (right)

We show the spatial diagrams (Figure 2.14) for BQT II and BQDC II which serve as
interesting examples, since for both the boundary lies along Alice-Neha-Bob (where we
shade classical channels as red and quantum channels as blue). Note that the rule does
not prescribe the nature of the shared resource (GHZ, Bell, etc), it only provides the nodes
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that would require shared entanglement. Formalising the Boundary Rule might not be
as straightforward, nonetheless it helps us get some insight in tackling difficult network
coding tasks.

2.8.3 Some final thoughts

Studying multiparty generalisations of Teleportation and Dense-coding such as those in this
Chapter may have impact on Quantum Communication tasks over a Quantum Internet.
While Classical Communication is cheaper, features such as Masked Encoding might be
lucrative for security purposes. Generalisations to resource theory of quantum communica-
tion to multiple parties may help answer the open question if there are versions of BQDC
and BQT that can be shown to be dual. Further, generalisations to post-quantum theories
(as was our initial motivation) is one path ahead for this work. Would Teleportation and
Dense-Coding analogues be supported in theories with indefinite causality?

In the following Chapters we move to studies within post-quantum theories with indefinite
causal structures as promised in the title of the thesis. We will encounter Process Matrices
(Chapter 3), the Causaloid Framework (Chapter 4, 5, 6) and the Duotensor Framework
(Chapter 6).

Chapter 2: Statement of Contribution

In this Chapter, the main contributions include protocols for Bidirectional Teleporta-
tion (Section 2.6) and Bidirectional Dense-Coding (Section 2.7) implemented within
the Quantum Butterfly Network of four parties. Namely Protocols 4-8 from Table 2.1
are contributions of this work. I took the lead on this project and the Chapter is writ-
ten solely by me. It contains unpublished material, presented at various conferences
including Quantum Networks Oxford 2017, ICQF India 2017, and YQIS Vienna 2018.
The work was done under the supervision of Lucien Hardy. It is a continuation from
the my Perimeter Scholar International (PSI) Essay (part of my Master’s degree with
U Waterloo with PSI certification from Perimeter Institute).
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Process in a world
products like yarn unfolding

must never return
lest loop time
and vanish 4

4Chapter 3, Conceptual illustration for the invalid Process Product from Equation 3.4 from Section 3.3
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Chapter 3

Tensor Products of Process Matrices

Tensor products over Quantum Channels help quantify Channel Capacities.
Similarly, can tensor products over Process Matrices help quantify Process Capacities?
We present a theorem that qualifies the restriction over tensor products of Processes.

Theories with indefinite causal structure have been studied from both the fundamental
perspective of quantum gravity and the practical perspective of information processing
as discussed in Section 1.3. Two indefinite causal structure frameworks of interest for the
results of this Chapter are the Process Matrix [82] and Quantum Combs [18]. In this Chap-
ter1, we point out a restriction in forming tensor products of objects with indefinite causal
structure within these frameworks: there exist both classical and quantum objects whose
tensor products violate the normalisation condition of probabilities, if all local operations
are allowed. We obtain a necessary and sufficient condition (Theorem 2) for when such
unrestricted tensor products of multi-partite objects are (in)valid. This poses a challenge
to extending communication theory to indefinite causal structures, as the tensor product is
the fundamental ingredient in the asymptotic setting of communication theory. We discuss
a few options to evade this issue. In particular, we show that the sequential asymptotic
setting does not suffer the violation of normalisation.

1This Chapter is reproduced with modifications from the paper with the same title on work done with
Ding Jia [67]
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3.1 Towards a Theory of ‘Process Communication’..

In the previous Chapter we focused on Quantum Communication tasks such as Telepor-
tation as well as Dense-Coding (motivated from wanting to perform two-way signalling
game for theories with indefinite causal structure). Such tasks fall under the purview
of Communication theory, at the heart of which lies the physical theory through which
communication happens. Going from Classical Communication theory to Quantum Com-
munication required embracing qubits as the unit of information. Going from Quantum
Communication (with definite causal structure) to Quantum Communication with indef-
inite causal structure (let’s call this Process Communication) will require understanding
the role of (indefinite) causality in communication.

The main motivation of the present work is to pave the way to develop communication
theory for frameworks with indefinite causal structure, specifically for the notion of asymp-
totic capacities. In the usual Shannon asymptotic setting one takes multiple copies of the
communication resource such as a channel or a state to define capacity. The result in this
paper shows that this setting cannot be extended to quantum theory with indefinite causal
structure with straightforward application of tensor products that imposes no restrictions
on the allowed local operations. The reason is evidently precisely the indefiniteness of
order of events that can lead to causal inconsistencies mathematically seen through the
violation of normalisation of probabilities. Further, Guérin et al. [37] considered if maps
other than the tensor product could circumvent the restriction provided in this Chapter,
through a no-go theorem, to find it would not be possible. Nonetheless, there is a silver
lining, we show that if one carefully distinguishes the parallel and sequential asymptotic
settings, then the sequential asymptotic setting can be extended to objects with indefinite
causal structure salvaging some of the techniques from the Shannon asymptotic setting for
developing communication theory for frameworks with indefinite causal structure.

Outline of the Chapter

The major results of this Chapter (Theorem 2, Corollary 2.1, Corollary 2.2) are based on
a lemma (Proposition 1) whose content is phrased and proved by Oreshkov and Giarmatzi
[83] in the process matrix framework. Note that the present work can equally be carried
out in other frameworks such as the Quantum Combs framework [18, 20]. For convenience
of directly applying the lemma (Proposition 1) we base the study within the process matrix
framework. We provide examples for the certain invalid process products and subsequently
discuss the implications of these results.
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3.2 Processes

In this Section, we recall the relevant part of the Process Matrix Framework [82, 2, 83] and
introduce the nomenclature needed to present our result [66].

Process Matrix Framework

The process matrix framework has two types of objects: closed labs and processes. The
closed labs have one input and one output restriction and mathematically can be rep-
resented by channels (or Completely Positive Trace-Preserving or CPTP maps). These
closed labs are postulated to locally obey quantum theory with definite causal structure.
Globally the causal structure can be indefinite modelled through the processes. A process
(W ) is a linear map from labs (channels) describing local physics to real numbers describ-
ing probabilities of observation outcomes. Both channels and states can be seen as special
cases of processes.

We use A,B,C, · · · to denote the parties where local physics takes place. A party A is
associated with an input system a1 with Hilbert space Ha1 and an output system a2 with
Hilbert space Ha2 . Through the Choi isomorphism [22] processes can be represented as
linear operators. A process W associated with parties A,B,C, · · · is represented as a linear
operator W a1a2b1b2c1c2··· ∈ L(H), where H := Ha1 ⊗ Ha2 ⊗ Hb1 ⊗ Hb2 ⊗ Hc1 ⊗ Hc2 ⊗ · · · .
We will sometimes combine the input and output Hilbert spaces and write the process as
W abc··· for simplicity.

Here is an example of how a Bipartite Process will look like with parties A and B with
associated Hilbert spaces for input systems a1, b1 and output systems a2, b2:

b2

B

W

b1a1

a2

A

Figure 3.1: Bipartite Process
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Physical Conditions on Processes

Similar to states and channels, it is assumed that processes yield positive and normalised
outcome probabilities for physical reasons, and can also act on subsystems of local parties.
These imply that the process obey the conditions below where the first is a positivity
condition and the second is a normalisation of probability condition.

W ≥ 0 Positivity (3.1)

TrW = dim(Ha2 ⊗Hb2 ⊗Hc2 ⊗ · · · ) =: dO Normalisation (3.2)

In addition we have:

Proposition 1 (Oreshkov and Giarmatzi [83], rewritten using the language of this chap-
ter). A multi-partite process obeys the normalisation of probability condition if and only
if in addition to the identity term it contains at most terms which are type a1 on some
party A.

Types

To understand this proposition we need to introduce the notion of types. A process W ab···

can be expanded in the Hilbert-Schmidt basis {σx
i }d

2
x−1

i=0 of the x subsystem operators L(Hx)
as

W ab··· =
∑

i,j,k,l,···

wijkl···σ
a1
i ⊗ σa2

j ⊗ σb1
k ⊗ σb2

l ⊗ · · · , wijkl··· ∈ R. (3.3)

For example, for qubit systems the Pauli basis contains four elements where σ0 = 11, and
the Pauli operators σi, i = 1, 2, 3. We set the convention to take σx

0 to be 11 for any
subsystem x with dimension d. We refer to terms of the form σx

i ⊗ 11rest for i ≥ 1 as a type
x term, σx

i ⊗ σy
j ⊗ 11rest for i, j ≥ 1 as a type xy term etc. The identity term is referred to

as a trivial term to be of trivial type.

Restricting attention to some party A, we say that a term is one of the following types on
party A regardless of what type it is on the systems of other parties:
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Term Type

11 Trivial
a1 In-type
a2 Out-type

a1 or a1a2 Includes In-type
a2 or a1a2 Includes Out-type

Table 3.1: Types of Process Terms

On two parties A and B, terms are of type:

• Signalling A→ B if it is a2b1 or a1a2b1 since A’s output is correlated with B’s input

• Signalling B → A if it is a1b2 or a1b1b2 since B’s output is correlated with A’s input

Coming back to Proposition 1, we can interpret it as allowing for at most signalling channels
of the form given above.

3.3 Conditions for forming Process Products

In this section we introduce process products and prove our main results.

Combining Parties

A party {A′, a′1, a
′
2} and a party {A′′, a′′1, a

′′
2} can be combined into a new party {A, a1, a2} =

{A′A′′, a′1a
′′
1, a

′
2a

′′
2} if all channels from a1 to a2 can be applied by A. Here A′A′′ is a

shorthand notation for combining parties A′ and A′′, and xy is a system whose Hilbert
space is Hx ⊗Hy.

Tensor Product on Channels

Such products of parties are implicitly used when one forms tensor products of channels.
A channel M is a two-party resource that mediates information between some party A′

and some party B′. Given any other channel N mediating information between A′′ and
B′′, the tensor product M ⊗ N is a channel associated with A = A′A′′ and B = B′B′′,
where all channels from a1 to a2 can be applied by A and all channels from b1 to b2 can be
applied by B.
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Tensor Product on Processes

Such tensor products are crucial in information theory, as one often studies tasks in the
asymptotic setting, where the same resource is used arbitrarily many times. Out of inter-
ests, for example in quantum gravity we want to study information communication theory
of processes with indefinite causal structure [64]. In order to consider the asymptotic setting
for processes we need to define products of processes and check if they are valid processes.
Analogous to channel products, for two processes W a′b′··· and Za′′b′′··· with the same num-
ber of parties, we tentatively define their product as P ab··· = W a′b′··· ⊗ Za′′b′′···. It takes in
channels of parties A,B, · · · and outputs probabilities where A = A′A′′, B = B′B′′, · · · .
The situation for two parties is illustrated in Figure 3.2.

The adaptation of the asymptotic setting in the processes framework needs some qualifica-
tions. First, in the context of processes a party represents a localised region of space-time.
If multiple copies of a process are used, this introduces multiple copies of the parties. The
most natural way to introduce asymptotic setting is to assume that the same parties share
multiple copies of the process. Second, as we show below, not all processes allow such
sharing.

b′2
B′

Z

b′1a′′1

a′′2
A′′

b′2
B′

W

b′1a′1

a′2
A′

b2
B

W
b1a1

a2

A

P

Figure 3.2: Process product for two bipartite processes 2

Following this construction, the asymptotic setting of a two-party process W ab would
require a process W ab⊗n = W a′b′ ⊗W a′′b′′ · · · that is an n-fold tensor product. The product
parties A = A′A′′ · · · and B = B′B′′ · · · each represents a localised region of spacetime
where all channels are allowed.

2Tikz image made by Ding Jia and reproduced from our work [66]
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Example of Invalid Process Product

This asymptotic setting without restriction on the allowed local operations holds without
problems for quantum theory with definite causal structure. However, a simple example
shows that if arbitrary local operations are allowed, process products are not always valid
processes. Consider the process:

W xy =
dO
2

(ωx1 ⊗ ρx2y1
∼ ⊗ ωy2 + ωx2 ⊗ ρx1y2

∼ ⊗ ωy1), (3.4)

where dO is the dimension of the outputs, ω is the maximally mixed state and ρ∼ :=
(11 + σ3 ⊗ σ3)/4 is a maximally correlating state that can represent a classical identity
channel in the {|0⟩ , |1⟩} basis. This process can be viewed as an equal-weight classical
mixture of a channel from x to y and another one from y to x. Suppose A′ and B′ share
a process W a′b′ of this form, and A′′ and B′′ also share a process W a′′b′′ of the same form.
The operator W ab := W a′b′ ⊗W a′′b′′ for the two parties A = A′A′′ and B = B′B′′ is not

a valid process. ρ
a′2b

′
1∼ ⊗ ρ

a′′1 b
′′
2∼ includes a term σ

a′2
3 ⊗ σ

a′′1
3 ⊗ σ

b′1
3 ⊗ σ

b′′2
3 , which leads to a type

a1a2b1b2 term and according to Proposition 1 renders the process W ab invalid. Intuitively,

ρ
a′2b

′
1∼ ⊗ ρ

a′′1 b
′′
2∼ creates a causal loop and violates the normalisation of probability condition.

Understanding Invalidity

Note that although W a′b′ and W a′′b′′ cannot be composed directly, it is possible to have a
global process P ab that reduces to the two individual processes upon partial tracing. For
example, let A and B have a process of the same form as (3.4). This is a process on the
combined parties. The reduced processes Tra′′b′′ W

ab and Tra′b′ W
ab are exactly W a′b′ and

W a′′b′′ .

The restriction of process products has an analogy with the “non-separability” of entangled
states in quantum theory. If ρxy is entangled, then ρxy ̸= ρx ⊗ ρy. Similarly for some
processes W ab ̸= W a′b′ ⊗W a′′b′′ . The difference is that for processes tensor products not
only may not recover the original process, but may even be invalid.

Note that the processes in the example can be viewed as classical because one can regard it
as a classical mixture of classical resources. One can also substitute Choi states of quantum
channels for those of classical channels to obtain an example of quantum process that is
restricted in forming products. The invalidity of arbitrary products is a feature of quantum
as well as classical resources.
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We also note that even for channels there exists a similar subtlety in forming products
[7, 27, 69, 14]. Given a channel M from A′ to B′ and another one N from A′′ to B′′, the
product M⊗N from A′B′′ and B′A′′ allows a causal loop and does not preserve probability.
Because channels exist in ordinary quantum theory with definite causal structure, one may
be tempted to say that the subtlety in forming products is not a new issue brought about by
indefinite causal structure theories. It is however debatable whether the above construction
is allowed by a theory with definite causal structure. For example, in the general framework
of quantum networks [18] this kind of construction is explicitly forbidden by the first
quantum combs tensor product rule. The rule requires the preservation of relative ordering
of the original systems, and is well-motivated in the context of definite causal structure. In
any case the restriction of tensor products is more manifest for processes than for channels.
For M and N although one can not combine local parties as A′B′′ and B′A′′, one can always
combine them as A′A′′ and B′B′′ to form a valid tensor product channel. On the other
hand, it will be clear from the results below that there are processes W and s for which
neither way of combination leads to a valid process.

3.3.1 Restriction on Process Product: a Theorem

The first main result of this Chapter, is the following necessary and sufficient condition
characterising when two general multipartite processes cannot (and can) be composed into
a valid product process when arbitrary local operations are allowed.

Theorem 2. The product P = W ⊗Z of two processes W and Z is not a valid process
if and only if there exists a nontrivial term of W and a nontrivial term of Z that obey
two conditions:

1. On any party, where one term is trivial, the other is either trivial or includes the
out-type.

2. On any party, where one term is the in-type, the other term includes the out-type.

Proof. Suppose W and Z satisfy the conditions and consider the tensor product of the
two nontrivial terms. By Proposition 1, to prove that P is invalid we need to show
that P contains a nontrivial term that is not type a1 for any party A. Conditions 1)
and 2) guarantee that this is satisfied for the product term we consider.
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Conversely, suppose P is not a valid process. By Proposition 1, P contains a nontrivial
term that is not type a1 for any party A. This term must arise out of a tensor product
of nontrivial terms over sub-parties A′, A′′. On any A this term of P is type trivial,
a1a2 or a2. We consider each case in turn. For any A where this term is trivial, it
must come from a tensor product of terms that are trivial on A. Write this kind of
tensor product as (0, 0), where 0 denotes the trivial type and (., .) denote unordered
term pairs over A′, A′′. Next, for any A where this term is type a1a2, it must come
from a tensor product of the kind (0, 12), (1, 12), (1, 2), (2, 12) or (12, 12), where 1 and
2 denote in- and out-type respectively. Finally, for any A where this term is type a2,
it must come from a tensor product of the kind (0, 2) or (2, 2). To sum up, on any A,
this term of P comes from a tensor product of the kind (0, 0), (0, 12), (0, 2), (1, 12),
(1, 2), (2, 12), (2, 2) or (12, 12). This implies conditions 1) and 2).

A useful special case is the condition on two-party processes. Intuitively, the fulfillment
of the two conditions in the corollary below give rise to causal loops, which violate the
normalised probability condition for processes and hence lead to invalid products.

Corollary 2.1. A product P ab = W a′b′ ⊗ Za′′b′′ of two-party processes is not a valid
process if and only if: 1) Both W and Z have signalling terms; 2) The Hilbert-Schmidt
terms of W and Z put together contain signalling terms of both directions.

Proof. Suppose W and Z obey the two conditions. Then we can pick a signalling
term from W of one direction and a signalling term from Z of the other direction. We
show that this pair of terms satisfy conditions 1) and 2) in Theorem 2, and hence the
product is not a valid process. Neither term is trivial on either of the two parties, so
1) of Theorem 2 is fulfilled. 2) is also fulfilled because the terms signal in different
directions.

Conversely, suppose P is not valid. By Theorem 2, there is a nontrivial term from
W and a nontrivial term from Z that obey 1) and 2) of Theorem 2. By Proposition
1, both terms are in-type on some party. By 2) of Theorem 2 they must be in-type
on different parties, and they include the out-type on the parties where they are not
in-type. In other words, they are signalling terms to different directions. This proves
conditions 1) and 2) of the statement.

A product of more than two processes can be constructed iteratively, and the validity of
the product process must be checked at each step. If a set of processes cannot form a valid
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product in one sequence of construction, changing the sequence of construction will not
make it valid. This is because the invalid term will always be present.

Corollary 2.1 allows us to straightforwardly identify those two-party processes for which
the Shannon asymptotic setting without restriction on local operations is (in)valid.

Corollary 2.2. The n-fold tensor product W ab⊗n = W a′b′ ⊗W a′′b′′ · · · of a process
W ab with itself is not a valid process if and only if it contains signalling terms of both
directions.

The above results show that the asymptotic setting without restriction on local operations
does not hold for all processes. They suggest two ways to make sense of the asymptotic
setting. One can either restrict attention to those processes that have valid products (as
characterised by Theorem 2), or try to find a restricted set of local operations for which
the products do not violate the normalisation condition of the framework. One option is
to only allow non-signalling channels within each product party [27]. We show below that
there is another perhaps more justified option, which allows more general local operations
and has a clear physical interpretation. This is the sequential asymptotic setting.

Asymptotic Sequential Case

In general, the asymptotic setting can correspond to at least two physical settings. The
first is the parallel setting, where two parties share many copies of a resource at the same
time (Figure 3.2 depicts this type of tensor product, when time is taken to point upwards,
and W and Z are taken to exist at “the same time step”). The second is the sequential
setting, where two parties share one copy of a resource at many time steps. In the sequential
setting, the local operation a party performs decomposes into operations at different time
steps, and these operations follow a definite time sequence. This physical interpretation
imposes a natural restriction on the local operations, which can be generalised to processes
if different copies of the process appear in a definite temporal order. In this sequential
setting, the tensor products of processes obey the normalisation condition.

N-fold Sequential Setting

Suppose n copies of a process W appear in a definite temporal order W a′b′ ≺ W a′′b′′ ≺
· · · ≺ W a(n)b(n)

. A can apply local operations to systems a′, a′′, · · · , a(n), and B to systems
b′, b′′, · · · , b(n) that obey this temporal order. The local operations that A and B can apply
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to compose with and close all open systems to obtain probabilities are the so-called n-combs

[18]. For A, such an n-comb takes the formM
a′2a

′′
2 ···a

(n)
2

a′1a
′′
1 ···a

(n)
1

and for B it takes the formN
b′2b

′′
2 ···b

(n)
2

b′1b
′′
1 ···b

(n)
1

,

where the systems obey the temporal order a′1 ≺ a′2 ≺ a′′1 ≺ a′′2 ≺ · · · ≺ a
(n)
1 ≺ a

(n)
2 and

b′1 ≺ b′2 ≺ b′′1 ≺ b′′2 ≺ · · · ≺ b
(n)
1 ≺ b

(n)
2 .

According to the “universality of quantum memory channels” theorem, the combsM andN

can be decomposed into a sequence of memory channels, e.g., M = M(1)
e1a′2
a′1

M(2)
e2a′′2
e1a′′1

· · ·
M(n)

a
(n)
2

en−1a
(n)
1

, where M(i) are channels at time steps i with ei as memory systems that

correlate the channels. Similarly, N = N(1)
f1b′2
b′1

N(2)
f2b′′2
f1b′′1

· · ·N(n)
b
(n)
2

fn−1b
(n)
1

. Then probability

from composing the copies of W with M and N obey the normalisation condition:

M(⊗W )N =[M(1)
e1a′2
a′1

W
a′1b

′
1

a′2b
′
2
N(1)

f1b′2
b′1

][M(2)
e2a′′2
e1a′′1

W
a′′1 b

′′
1

a′′2 b
′′
2
N(2)

f2b′′2
f1b′′1

] · · ·

[M(n)
a
(n)
2

en−1a
(n)
1

W
a
(n)
1 b

(n)
1

a
(n)
2 b

(n)
2

N(n)
b
(n)
2

fn−1b
(n)
1

] = 1 (3.5)

Within each square bracket there is a channel (including states and deterministic effects
as special cases) operating on the memory systems, because a process composed with local
channels with memory yields a channel [82]. In the end the composition of channels yields
the number 1. If one substitutes sub-normalised operators in place of the combs to represent
quantum instruments, then it is easy to see that the probabilities must be in the interval
[0, 1] and sum to one. Therefore the sequential asymptotic setting generalises to quantum
theory with indefinite causal structure. Intuitively, the sequential setting avoids the “causal
loop” in (3.4) that violates the normalisation condition by not allowing signalling from a
system at a future time step to a system at a past time step.

3.4 Conclusions

We showed that for processes we cannot take tensor products unrestrictedly, if arbitrary
channels are allowed as local operations in a product party. Is this a defect of the process
matrix framework itself? One interpretation is that the processes are descriptions of the
environment of an entire family of parties [14, 7], and the need to take tensor products of
arbitrary processes with indefinite causal structure do not actually arise. Another option
is to allow for tensor products of arbitrary parties but restrict the allowed operations in
the local parties such that the normalisation condition of processes is preserved [27]. The
sequential asymptotic setting we presented above is an example of this kind. A further
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option is to adopt a more general framework that does not impose a normalisation condition
for the matrices/operators that carry the information of the indefinite causal structure.
Oreshkov and Cerf’s operational quantum theory without predefined time provides an
example [81]. We think an important question is to clarify whether these perspectives are
compatible with attempts to create processes in the laboratory, because if one can create
a process with signalling Hilbert-Schmidt terms in both directions, it is conceivable that
one can create more to act jointly on them, and there is no apparent reason why local
operations on the joint parties must be restricted.

For communication theory, our results imply that communication tasks defined in the
asymptotic limit are not meaningful for processes characterised by Theorem 2 when local
operation is unrestricted for the combined parties A = A′A′′ · · · , B = B′B′′ · · · , · · · .
Similarly caution needs to be taken for asymptotic entanglement theory of processes [64].
On the other hand, such issues do not affect one-shot capacities, or asymptotic capacities
in the sequential setting. It is possible that some other physically motivated restrictions
on local operations yield additional well-defined capacities.

The restriction induces some interesting questions for further research. To what extent
does the restriction generalise to indefinite causal structure theories in general [41, 42]?
For the particular example we used to demonstrate the restriction, there exists a global
process that reduces to the two individual processes. When is this true in general?

Chapter 3: Statement of Contribution

In this Chapter, the main contribution (Section 3.3) includes a theorem for qualifying
when tensor product of process matrices are invalid (Theorem 2). This work was co-
authored with Ding Jia published in PRA [66, 67]. The project was proposed by Ding
Jia and research was done together, Ding largely formalised the theorem. The Chapter
has been adapted and re-written from the paper to best fit this thesis.
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Person in the box
sorts, composes and then glues

jigsaw data through redundant clues
physical theory emerges

in all its beauty and hues3

3Chapter 4, illustration for the person “thinking inside the box”, on a background of generated Penrose
tiling [35] as a dedication to Roger Penrose for his use of a diagrammatic approach in Physics.
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Chapter 4

Revisiting the Causaloid Framework

Can a person in a box with all possible operational data uncover the underlying theory?
They compress data through three levels — Tomographic, Compositional and Meta

We revisit the Causaloid framework and present new diagrammatics.

The Causaloid framework introduced by Hardy [41, 42] suggests a research program aimed
at finding a theory of Quantum Gravity. On one side General Relativity (GR) while
deterministic, features dynamic causal structures; on the other side Quantum Theory (QT)
while having fixed causal structures, is probabilistic in nature. It is natural to then expect
Quantum Gravity (QG) to house both of the radical aspects of GR and QT, and therefore
incorporate indefinite causal structure1. The Causaloid framework is based on operational
methodology – it is based on the assertion that any physical theory, whatever it does, must
correlate recorded data. Imagine a person inside a closed space, having access to stacks
of cards with recorded data (procedures, outcomes, locations); and the person is tasked
with inferring (aspects of) the underlying physical theory that governs the data. The
correlation within recorded data due to the physical theory implies that the stacks of cards
are filled with (some) redundancy. The person in the box distils away the redundancy by
compressing the data. We call this Physical Compression as it is governed by the nature
of the underlying physical theory. In this framework there are three levels of compression:
1) Tomographic Compression, 2) Compositional Compression and 3) Meta Compression.

In this Chapter, we present a new diagrammatic language for physical compression to
facilitate exposition of the Causaloid framework, and also provide a review of the Causaloid
Framework. In Chapter 5, building upon the work from [41] we will study Meta compression

1one can find a broader motivation for the field of indefinite causal structure in Section 1.3
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and find a hierarchy of theories characterised by Meta Compression for which we will
provide a general form. In Chapter 6, we will show that (finite-dimensional) Quantum
theory and Classical Probability theory belong to the second rung of this hierarchy, through
the application of the Causaloid Framework to the framework of Duotensors [49, 47],
following which we discuss ideas around how one may construct theories for the higher
rungs of the hierarchy through theories of circuits joined by hyperdwires (hyper-edges that
connect d nodes). Finally, we discuss the broad implications of this work for Indefinite
Causality.

Outline of the Chapter

Before going further, it is important to note that this Chapter is a descendant to the papers
by Hardy that introduced the Causaloid Framework [41, 42], where [42] is a compact version
of longer [41]. Therefore, it is inevitable to require exposition of the main aspects of those
papers as we present the new diagrammatic representations and before we may discuss the
new research contributions that can be found primarily in Chapter 5. While this Chapter
can be read by itself, nonetheless we encourage referring to the papers [41, 42] liberally
in order for the best comprehension experience. To this end, in Sections of this Chapter
one is pointed to the corresponding relevant Sections from the papers [41, 42], in case the
reader wishes to supplement their reading.

The Chapter is structured in the following way. In Section 4.1 we will discuss original and
newer motivations to take the Causaloid approach. In Section 4.2, we first cover the setup
of the Causaloid framework: operational data, the person inside the box, how regions are
defined and lastly what we are interested in — predicting certain probabilities; this portion
is a condensed version based on Sections 2, 3, 5, 12-15 of [41] and Section 3 of [42]. In
the subsequent Section 4.3 we review the fleshed out framework through the three levels
of physical compression — namely Tomographic, Compositional and Meta Compression;
where we introduce a new diagrammatic representation for physical compression (building
upon Sections 16-19 of [41] and Section 4 of [42]). The new diagrammatics will become
quite useful as we will see in the following Chapters 5 and 6. We end the Chapter with a
succinct synopsis of the three levels of physical compression. The next Chapter will build
on the diagrammatics introduced in this Chapter, where we will study Meta Compression
through the sufficiency of d-region Compositional compression, that defines a hierarchy of
physical theories.
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4.1 Why the Causaloid Approach?

In this Section we discuss the original motivations by Hardy behind setting up the Causaloid
Framework [41, 42] as well as our motivations for revisiting this approach.

4.1.1 Towards Quantum Gravity...

A theory of Quantum Gravity would reduce to General Relativity on the one hand and
Quantum Theory on the other. General Relativity is a theory in which causal structure is
dynamical, and the notion of simultaneity is operationally meaningless for space-like sep-
arated events. In Quantum Theory, any quantity that is dynamical is subject to quantum
indefiniteness (for example, if a particle can go through one slit or another, then it can
be indefinite as to which slit it goes through). It follows that we would expect indefinite
causal structure in a theory of Quantum Gravity.

The question arises how one may find a mathematical basis for such a theory of Quantum
Gravity. Hardy points out that an even handed approach is desired given the conceptual
novelties brought in by both Quantum Theory (probabilistic nature) and General Relativity
(dynamical causality) that are difficult to accommodate in the mathematical structures of
the other. Such an even handed approach is possible if one steps outside the confines
of the mathematical formulations of either theory. He proposes a general framework to
accommodate them: The Causaloid framework ([41, 42]).

“Hence we adopt the following strategy. We will pick out essential concep-
tual properties of each theory (QT and GR) and try to find a mathematical
framework which can accommodate them.” (Section 1, [41])

4.1.2 Letting go of states evolving in time

In order to accommodate theories that may have indefinite causal structure, as a starting
point in the Causaloid framework no causal structure is assumed a priori between different
regions (defined subsequently). This is done since it is vital to not rely on the picture of
states evolving in time for two reasons. Firstly, the notion of states evolving in time even
when possible to recover (such as in General Relativity) or when time is extrinsic to the
state being described (such is the case in Quantum Theory) necessarily requires treating
space and time on an unequal footing. Hardy conveys this as captured in the following
quote:
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“The most obvious issue that arises when attempting to combine QT with GR
is that QT has a state on a space-like surface that evolves with respect to
an external time whereas in GR time is part of a four dimensional manifold
whose behaviour is dynamically determined by Einstein’s field equations. We
can formulate GR in terms of a state evolving in time - namely a canonical
formulation [4, 5]. Such formulations are rather messy (having to deal with the
fact that time is not a non-dynamical external variable) and break the elegance
of Einstein’s manifestly covariant formulation. Given that Einstein’s chain of
reasoning depended crucially on treating all four space-time coordinates on an
equal footing it is likely to be at least difficult to construct QG if we make the
move of going from a four dimensional manifold M to an artificial splitting into
a three dimensional spatial manifold Σ and a one dimensional time manifold
R...” (Section 11, [41])

But secondly and more importantly, if we try to stick to dynamically determined space-
like surfaces that obey some space-time quantum uncertainty, the notion of space-like and
time-like separation may itself break down. The quote continues:

“... But there is a further reason coming from quantum theory that suggests
it may be impossible. If the causal structure is dynamically determined then
what constitutes a space-like surface must also be dynamically determined.
However, in quantum theory we expect any dynamics to be subject to quantum
uncertainty. Hence, we would expect the property of whether a surface is space-
like or not to be subject to uncertainty. It is not just that we must treat space
and time on an equal footing but also that there may not even be a matter-
of-fact as to what is space and what is time even after we have solved the
equations (see [62, 94]). To this end we will give a framework (which admits
a formulation of quantum theory) which does not take as fundamental the
notion of an evolving state. The framework will, though, allow us to construct
states evolving through a sequence of surfaces. However, these surfaces need
not be space-like (indeed, there may not even be a useful notion of space-like).”
(Section 11, [41])

Therefore the Causaloid framework without assumptions on causal structure provides quite
a general framework. We will see that the (in)definite causal structure is encoded in the
second level or Compositional Compression. Note, that if a theory supports states evolving
in time it would be possible to recover it, should one desire. Hardy proposes formalism
locality as an alternate way to formulate a given theory without the evolution of states, as
we will see in Chapter 6.
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4.1.3 Operational Methodology, Data and Probabilities

If the generality of Causaloid Framework stems from stripping us off a priori assumptions
of causality and the ontology of space-time is left open, then one may ask what lends us a
stable footing that we rely on within this framework? The Causaloid Framework is based
on the assertion that any physical theory, whatever it does, must correlate recorded data.

This falls under the purview of operational methodology, wherein we find a pragmatic
meeting point between differing philosophical positions. Agnostic of a physicist’s philo-
sophical tendencies towards (broadly speaking) realism and anti-realism within physics,
we expect that a physical theory will at least be consistent with experiments that produce
certain classical data - such as the setup and observations recorded, say, on a piece of
paper. The classical data will have correlations given the underlying physical theory and
the goal is to then focus on systematically understanding the correlations within this data.
These correlations allow us to compress the recorded data.

Given the difficulties around finding a mathematical framework where Quantum theory and
General Relativity meet, let alone finding a coherent ontology between the two, adopting
an operational methodology as a basis is a safe route, perhaps even a desperate attempt
to revisit the blank canvas before clouding it with assumptions that may not hold. The
upside is that whatever we can recover operationally won’t be wrong even if incomplete,
and hopefully would lead towards a point where we are ready to tack on an ontology,
should it be possible and desirable. Hardy discusses this as encapsulated in the following
quote:

“Operationalism played a big role in the discovery of both relativity theory
and QT. There are different ways of thinking about operationalism. We can
either take it to be fundamental and assert that physical theories are about
the behaviour of instruments and nothing more. Or we can take it to be a
methodology aimed at finding a theory in which the fundamental entities are
beyond the operational realm. In the latter case operationalism helps us put
in place a scaffolding from which we can attempt to construct the fundamental
theory. Once the scaffolding has served its purpose it can be removed leaving
the fundamental theory partially or fully constructed. The physicist operates
best as a philosophical opportunist (and indeed as a mathematical opportunist).
For this reason we will not commit to either point of view for the time being
noting only that the methodology of operationalism serves our purposes. In-
deed, operationalism is an important weapon in our armory when we are faced
with trying to reconcile apparently irreconcilable theories. A likely reason for
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any such apparent irreconcilability is that we are making some unwarranted
assumptions beyond the operational realm... The operational methodology is
a way of not making wrong statements. If we are lucky we can use it to make
progress.” (Section 3, [41])

What a physical theory does among other things is help us predict quantities, in particular
outcome probabilities, and the Causaloid shares this objective. Therefore, the mathematics
probability theory obeys will inform how compression works. Therefore the Causaloid
Framework can be regarded as a “general probability theory for theories with indefinite
causal structure”; it may also be regarded as a “theory to study correlated data”.

4.1.4 Diagrammatics: Old Framework, New Clothes

This brings us to the point where we address why we decide to revisit this framework. The
Causaloid Framework, by providing key insights and motivations, has been an important
contribution guiding the study of indefinite causal structures, often cited for such reasons;
and yet, there has been only a handful of papers (for example [74]) specifically building
upon the Causaloid framework. This is due to two main reasons.

Firstly, since the introduction of the Causaloid framework, other operational frameworks
have come up that can be used to study indefinite causality, such as Quantum Combs
[18], Process Matrices [82] and Causal Boxes [86] to name a few. These frameworks are
constructed with some assumptions that aid in their direct applicability where they can
be seen as generalisations of quantum information processes. This feature leads to the
possibility of more specific results that is harder to achieve in the more general Causaloid
Framework. Though, depending on the goal in mind a bug can become a feature, and the
generality of the Causaloid serves the purpose of being able to accommodate any theory
that studies correlated data. To this end, in this work we study further the third level
of compression — Meta Compression, to find any broad statements that can be made for
physical theories, and in fact it will provide us with a way to categorise theories into a
hierarchy.

Secondly, the Causaloid Framework is quite abstract requiring introduction of its own ter-
minology. Perhaps, it explains the sociological phenomenon where researchers studying
indefinite causal structures have heard of it, but often do not know much about it. We
present a diagrammatic representation for the framework that will perhaps make it some-
what easier for the interested person to be able to understand and work with it. The
diagrammatics will prove to be quite powerful, we will see how the duotensors [47] relate
to the Causaloid framework, primarily through diagrams.
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4.2 Causaloid Framework

In this Section we are now ready to cover the setup of the Causaloid framework: recording
operational data, the person inside the box, how regions are defined and lastly what we
are interested in — predicting probabilities. Note that this portion is based on material
from Sections 2, 3, 5, 12-15 of [41] and Section 3 of [42].

4.2.1 Thinking inside the box

As discussed in the previous Section, the Causaloid Framework relies on operational
methodology. The way the Causaloid framework is set up is prescribed as follows. We
will assume that the data obtained from experiments - procedures, settings, outcomes and
any other descriptions such as location - is recorded onto cards. Of course since this is clas-
sical data it could be instead written on a computer or stored in other ways, nonetheless we
may use the idea of cards to setup this framework for the purpose of exposition. A concern
around the physicality of classical data — its storage, transportation and processing, may
arise. To this end an assumption of low key physical devices is made as follows:

“The indifference to data principle: It is always possible to find physical
devices capable of storing, transporting, and processing data such that (to
within some arbitrarily small error) the probabilities obtained in an experiment
do not depend on the detailed configuration of these devices. Such physical
devices will be called low key.” (Section 3, [41])

Now, imagine a person inside a closed space, having access to stacks of cards with recorded
data (procedures, outcomes, locations) corresponding to all possible runs of the experiment;
and the person is tasked with inferring (aspects of) the underlying physical theory that
governs the data. The correlation within recorded data due to the physical theory implies
that the stacks of cards are filled with (some) redundancy. The person in the box distils
away the redundancy by compressing the data.

The person is not able to look outside the box for extra information and must therefore
define all concepts using only the information provided through the cards. In Hardy’s
words this enforces “a particular kind of honesty”, and the person is forced to stick to an
operational methodology.

Note that there may not be an actual person in a box, rather this gedanken setup is to
serve the purpose of helping us emulate operational methodology.
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4.2.2 Organising Stacks of Cards

Each card records a small amount of proximate data. We may think of the cards represent-
ing something analogous to space-time events. One piece of data recorded on any given
card will be something we will regard as representing or being analogous to space-time
location.

We will consider examples where the data recorded on each card is sorted in the form —
(x - Location, a - Actions, s - Observation) (or in short (x,a,s)), where each of the pieces
of information are categorised as follows:

1. Location: The first piece of data, x, is an observation and represents location. It
could be some real physical reference frame such as a GPS system or it could be some
other data that we are simply going to regard as representing location.

2. Actions: The second piece of data, a, represents some actions. For example it might
correspond to the configuration of some knobs we have freedom in setting.

3. Observations: The third piece of data, s, represents some further local observations,
such as the outcome that is obtained.

Given this form of recorded data, we can organise the cards into the following sets.

• The stack, denoted by Y , is the set of cards from a single run of an experiment.

• The procedure, denoted by F , corresponds to all cards that are consistent with
given function of the settings, where we rewrite actions a as a function F (x) de-
pending on location x (thus the data is of the form (x, F(x), s)). F here stands for
the procedure set of cards, the Function F (x) as well as the procedure given by the
description of actions, and it will be clear from context which meaning is implied.

• The full pack, denoted by V , is the set of all logically possible cards when all
possible procedures are taken into account. It is possible that some cards never
actually occur in any stack because of the nature of the physical theory but they are
included anyway.

The procedure F can be thought of as “what was done”. The stacks Y (particular run of
procedure giving some outcome) can be thought of as “what was seen”.

Given the definitions of the sets we have the following relations between them:

Y (Outcome
∣∣ Procedure) ⊆ F (Procedure) ⊆ V (Full pack) (4.1)
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4.2.3 Operational Regions

V is the complete set of logical possible cards (the stacks). We talked about subsets of
V with respect to a - Actions (given by subset Procedure F ), and with respect to s -
Observations (given by subset Outcome Y ); now we look at subsets with respect to x -
Locations which we call regions. The region RO is specified by the set of cards from V
having x ∈ O. We define Rx to be an elementary region consisting only of the cards having
x on them.

Within regions there can be many possible sets of actions (associated with procedures F ,
F ′,...) . In a region we consider having an independent choice of which action (procedure)
to implement. This captures the notion of “space-time”2 regions as places where we have
local choices. When we have a particular run of the experiment given some procedure we
end up with a stack Y of data that can be sorted by regions. Then we find a picture of
what happened, laid out in a kind of “space-time”.

x : location
a: actions

s : observations

YR1 ⊆ FR1 ⊆ R1

Figure 4.1: Operational Region R1

For a region R1 (shorthand for RO1) we define YR1 as the cards from the stack Y that are
attributed to region R1:

YR1 = Y ∩R1 (4.2)

Similarly, we define procedure in R1 as FR1- the cards from the set F that are attributed
to the region R1

FR1 = F ∩R1 (4.3)

Clearly YR1 ⊆ FR1 ⊆ R1. Given (YR1 , FR1 ) we know “what was done” (FR1 ) and “what
was seen” (YR1 ) in region R1.

2Here, we use the phrase space-time in a non-specific manner. It may be seen as some general notion of
spatio-temporal regions that may be distinct from the more specific space-time as known within relativity.
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4.2.4 Statement of objective

The objective of the Causaloid Framework is to be able to predict the conditional proba-
bilities of the form

prob(YR1|YR2 , ..., YRn , FR1 , FR2 , ..., FRn) (4.4)

without any assumptions of the causal structure, given that Ri, i ∈ {1, 2, ..., n} are n
disjoint regions. Operationally, one may interpret the probability as the relative frequencies
of the number of cards

N(YR1 , YR2 , ..., YRn , FR1 , ..., FRn)

N(YR2 , ..., YRn , FR1 , ..., FRn)
(4.5)

when N(.) (the number of cards satisfying the condition within it) becomes large, at least
for the denominator.

An important question arises, to begin with are these probabilities even well-defined and if
yes, how can we use the Causaloid Framework to efficiently calculate this? Let us address
the first part of the question here; the next Section is dedicated to answer the latter. To
understand the issue around well-defined probabilities consider three consecutive polarisers
(associated with three regions) placed at some angle specified as part of procedure of their
respective regions, the outcome notes if a photon passes through or is absorbed. Then the
probability of the outcome of the third polariser conditioned on the outcome of the first,
as well as the procedures of both of them, given by,

prob(Ythird polariser|Yfirst polariser, Ffirst polariser, Fthird polariser) (4.6)

is not well defined without consideration of the second polariser and the framework will
not be able to predict any value for this conditional probability.

Therefore, to be able to work around such issues we restrict ourselves to a large region R
that would contain a large number of (but not all) cards from the full pack V for which
all probabilities

prob(YR|FR, C) (4.7)

are well-defined given some conditioning C on cards outside R. In the context of the
example of the polariser the region R may be considered to be the room in which the
experiment takes place and the conditioning C may be all the requirements to avoid “noise”
in the experiments. At the level of theory encompassing everything this conditioning may
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be argued either to take the form of “boundary conditions” (where R is open and associated
with the “Open Causaloid”, see Section 22 of [41]) or not be required (where R is closed
and associated with the“Universal Causaloid”, see Section 30 and 35 of [41])

For the rest of the Chapter we always consider this large region R which is called a “pre-
dictively well-defined region” and assume the conditioning is taken into account and more
concisely we simply write

prob(YR|FR) (4.8)

4.3 Three levels of Physical Compression of Data

In this Section, we review how to distil the redundancy in recorded data (cards) through
three levels of physical compression to form a “theory of correlated data”. By compression
we mean the process of organising the data recorded on the cards, and reducing the set
of data to the minimum; where the minimum required data can be used to predict any
desired probabilities. We call it physical compression, since it is contingent on the physical
theory that correlated the data. The levels of compression are as follows:

Pre-Compression: The zeroth level of compression introduces the notion
of generalised states and preparations, in absence of assumptions of causal
relations between regions, and sets up the stage for the following levels.

Tomographic Compression: The first level of compression pertains to phys-
ical compression over single region and here the compression matrices (Λ) and
compression sets (Ω) are introduced. Fiducial states are also introduced. This
level is closely related to the concept of tomography and its relation to Gener-
alised Probability Theories (GPTs) will be discussed.

Compositional Compression: The second level of compression pertains to
physical compression over disjoint regions through their composition. Here, the
notion of causal adjacency is introduced. It captures strong causal connections
between regions when non-trivial Compositional Compression occurs.

Meta Compression: The third and final level pertains to compression over
Tomographic and Compositional Compression, since there may be some uni-
versal, region independent rules related to the mathematical structure of the
theory, which gives the Causaloid Λ, seen as a specification of the physical
theory itself. Here, the Causaloid product ⊗Λ that generalises temporal and
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spatial products is introduced. This is used to take the product over regions
and is the culmination of the compression process.

This review of the levels of compression closely follows concepts explained in Sections 16-19
of [41] and Section 4 of [42]; additionally here we present a new diagrammatic representation
for the Causaloid framework. The terminology of three levels of compression (Tomographic,
Compositional and Meta) is new to this work.

4.3.1 Zeroth level: Pre-Compression

Recall the classical data recorded on cards in an operational manner. A physical theory
will capture the correlations in this data and express them through physical concepts.
While some of these physical concepts may be theory dependent, the concept of a physical
state is central to most (if not all) physical theories. Before we may discuss the three
levels of compression, we must focus on how we may represent states in this framework in
relation to the data. The definition of states is often either based on a notion of preparation
that happens in the past to give the state we have in the present; or based on a notion
of measurement that happens in the future of the state that the measurement outcomes
tell us something about. Thus these rely on a causal structure that is assumed to be
fixed, in so far as the order of events being such that preparation happens in the past and
measurement happens in the future. Since we are interested in the absence of assumptions
on the underlying causal structure between elementary regions, we need a general notion
of physical state, preparations and measurements. Hardy presents the notion of a physical
state as follows:

The state (in general) associated with a (generalised) preparation is that
thing represented by any mathematical object that can be used to calculate the
probability for every outcome of every measurement that may be performed on
the system.

Of course the above definition is minimal that centres the operational role of a state while
being agnostic of the ontological status of the state. This is ideal since we are building
up from operational data. Let us now apply this notion of state to the stacks of cards.
Consider a region R1 inside the predictively well-defined region R (note that R1 need not
be an elementary region). Since R = R1 ∪ (R−R1) we can write:

p = prob(YR|FR) (4.9)

= prob(YR1 ∪ YR−R1|FR1 ∪ FR−R1) (4.10)
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Hardy regards (YR−R1 , FR−R1) which happens in R − R1 as a generalised preparation for
region R1. The generalised preparation for R1 is considered to “prepare” a state which is
defined soon below. Further, Hardy regards (YR1 , FR1) which happens in R1 as a measure-
ment associated with the actions and outcomes seen in R1. The measurement outcomes
for the measurement in R1 will be labelled by α1, where α1 belongs to the (possibly very
big) set ΓR1 . That is we have:

(YR−R1 , FR−R1) ⇐⇒generalised preparation for R1 (4.11)

(Y α1
R1
, Fα1

R1
) ⇐⇒measurement in R1 (4.12)

Then we can also label the probabilities with α1 denoting the probabilities associated with
measurement outcomes labelled α1 as follows:

pα1 = prob(Y α1
R1

∪ YR−R1 |Fα1
R1

∪ FR−R1) = p
α1

(4.13)

We will introduce the diagrammatic representation alongside the mathematical definition,
similar to Equation 4.13 throughout this Section.

Note that in Equation 4.13 above, the choice of joint probabilities between outcomes is
intentional as compared to the conditional probability prob(YR1|YR−R1 , FR1∪FR−R1) which
we desire though it introduces more problems. Due to the normalisation in Bayes formula
working with conditional probabilities will require dealing with nonlinearities which Hardy
points out will “represent an insurmountable problem when we have dynamic causal struc-
ture”. One can always use the Bayes formula towards the end to calculate the conditional
probabilities when required.

Now let us see the definition of state by Hardy in the context of the Causaloid framework:

The state (in Causaloid Framework) for R1 associated with a generalised
preparation inR−R1 is defined to be the thing represented by any mathematical
object which can be used to predict pα1 for all measurements in R1 labelled by
the index α1.

We could simply write the state P(R1) as a vector that lists all the probabilities pα1 since
it satisfies the above definition:

P(R1) =


...
pα1

...

 =
P

where α1 ∈ ΓR1 (4.14)

76



where α1 belongs to the set ΓR1 (or simply Γ1) which labels all actions and outcomes and
we expect the size of the set Γ1 to be quite big (and possibly infinite).

The objective is to be able to recover the probabilities pα1 and to do so we define another
vector Rα1 which represents the measurement (Y α1

R1
, Fα1

R1
) in region R1 such that

pα1 = Rα1(R1) · P(R1) (4.15)

p
α1

=

α1
R

P

(4.16)

where the vector Rα1(R1) has 1 in position α1 and 0’s in all other positions. The inner
product of the two vectors gives us pα1 and the above equation may be thought of being
some generalisation of the Born rule, under the generalised notions of states P(R1) and
measurements R(R1) given above. Note that Equation 4.15-4.16 is linear in P(R1) and
R(R1) and that in Equation 4.16 the line with a filled black dot represents the inner
product.

4.3.2 First level: Tomographic Compression

Now we are prepared to tackle the first level of compression. Here we continue considering
a single region R1. While through Equation 4.14 we were able to calculate (well defined)
probabilities pα in terms of the generalised preparation of state for R1 and measurements
in R1, notice that the vector P(R1) can be quite long and the set ΓR1 can be quite big.
A physical theory will (we expect) have some structure for state space that allow for the
specification for fewer probabilities (or in other words fewer procedures and outcomes) to
be able to predict any pα1 . For example, we encounter this in Quantum Theory through
the process of Tomography.

Therefore we may replace P(R1) with a list of the smallest subset of probabilities from pα1

that allows us to predict any pα1 by means of linear relations. To do so we pick a set of
fiducial measurements (Y l1

R1
, F l1

R1
) labelled by l1 ∈ ΩR1 (or simply Ω1) where ΩR1 ⊆ ΓR1 and

the (new representation of the) state (compared to Equation 4.14) becomes:
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p(R1) =


...
pl1
...

 =
p

where l1 ∈ ΩR1 (4.17)

Note that the choice of the set of fiducial measurements need not be unique, and one may
pick any one such set but the size of the set ΩR1 (or the length of p(R1)) will be the same
over any such choice which is the minimum possible size such that p(R1) continues to
satisfy the definition of a state. The sets ΩRO

(for some region RO) play an important role
in the Causaloid Framework and its size will be informed by the system and underlying
physical theory. Of course if no such subset can be found we can always resort to having
p(R1) = P(R1) and ΩR1 = ΓR1 (which will give no compression).

Now that we have the compressed state p(R1) we need a way to calculate any general pα
from it, and require a linear formula analogous to Equation 4.15. Let us express this as:

pα1 = rα1(R1) · p(R1) (4.18)

p
α1

=

α1
r

p

(4.19)

The exact form of rα1(R1) can be found from the recorded data and will contain real
numbers, nonetheless we can provide the form for some of these. Given the fiducial mea-
surements (Y l1

R1
, F l1

R1
) in R1, rα1(R1) for α1 = l1 would simply be

rl1 =



0
0
...
1
...
0


for all l1 ∈ ΩR1 (4.20)

where 1 is in the l1
th position and all other entries are 0’s since this is the only way to

ensure pl1 = rl1(R1) · p(R1). The fiducial measurements thus form a basis.
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Now we can see that the general vector rα1(R1) can be expressed as a linear combination
over the basis of measurements spanned by rl1(R1). This linear relation can be defined by
introducing the compression matrix Λl1

α1
as follows:

rα1 =
∑

l1∈ΩR1

Λl1
α1

rl1 (4.21)

r
α1

= rΛ
α1 l1

(4.22)

We can take the inner product of Equation 4.21 with some general p to find a similar
relation for probabilities:

rα1 · p =
∑

l1∈ΩR1

Λl1
α1

rl1 · p

⇒ pα1 =
∑

l1∈ΩR1

Λl1
α1
pl1 (4.23)

p
α1

= pΛ
α1 l1

(4.24)

It is evident from the definition of the compression matrix Λl1
α1

in Equation 4.21 that its
components can be fixed using the entries of r-vectors:

rα1|l1 = Λl1
α1

:= Λ
αR1 ∈ ΓR1 lR1

∈ ΩR1

(4.25)

where rα1|l1 is the lth1 component of rα1 .

Note that Λl1
α1

will (often) be a very rectangular matrix since we expect that |ΓR1| ≥ |ΩR1|
where |.| gives you the size of the sets. From the definition for the Λ matrix we also have:

Λl1
l′1

= δl1l′1
for l′1, l1 ∈ ΩR1 (4.26)

where δl1l′1
equals 1 if the subscript and superscript are equal and is 0 otherwise.

This concludes the details for the first level compression. Let us recapitulate for assimila-
tion. The person in the box in pre-compression phase, first organises the recorded data by
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regions R, procedures F and outcomes Y and finds the state P associated with regions.
By the structure of the underlying physical theory the state P can be compressed to p and
the measurements Rα1 can be compressed to rα1 where the relation of rα1 to rl1 is captured
by the Λ matrix:

pα1 = Rα1(R1) · P(R1) (4.27)

= rα1(R1) · p(R1) (4.28)

=
∑

l1∈ΩR1

Λl1
α1

rl1(R1) · p(R1) (4.29)

or diagrammatically we have,

p
α1

=

α1
R

P

=

α1
r

p

=

Λ
α1 l1 r

p

(4.30)

While this might look like some heavy handed machinery, the utility of fiducial measure-
ments and states (and thus, the first level compression) will become evident when we start
considering more regions.

Tomographic Compression and Generalised Probability Theory

The first level compression is deeply related to Generalised Probability Theories (GPTs). In
the GPT framework one can characterise physical theories by finding the relation between
the number of distinguishable states for a system - N and the number of measurement
outcomes required - K, to fully characterise the states of the system (when we do not
include the normalisation condition), through the function K(N) = N r where r is theory
dependent [40]. For finite-dimensional Classical Probability Theory r = 1 while for finite-
dimensional Quantum Theory r = 2. If the underlying theory qualifies as a GPT the
first level compression may be thought of as channel tomography and then the size of the
fiducial measurement set is related to K(N) as follows (where the channel input is denoted
by Ki(Ni), and channel output is denoted by Ko(No)):

|ΩR1| = KiKo = N r
i N

r
o where

{
r = 1 for Classical Probability Theory
r = 2 for Quantum Theory

(4.31)
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Therefore, we will call the first level compression as Tomographic Compression. We will
also synonymously call the Omega sets ΩR1 for a region as Tomographic Sets and the
Lambda matrices for a region Λ as Tomographic Matrices. We will see more of Omega sets
and Lambda matrices in the coming sections and they play a central role to the framework.

Note that we have focused on linear relations. One may ask why non-linear relations
for physical compression are not considered. The answer may be tied to the nature of
Probability theory. Hardy explains:

“We have just employed linear physical compression here. It is possible that if
we employed more general mathematical physical compression (allowing non-
linear functions) we could do better. This does not really matter since we are
free to choose linear physical compression as the preferred form of physical
compression. In fact, it can easily be proven that if we are able to form mix-
tures of states (as we can in quantum theory) then we cannot do better than
linear physical compression (this is not surprising since probabilities combine
in a linear way when we form mixtures).”

4.3.3 Second level: Compositional Compression

We have worked with Tomographic Compression that pertains to a single region, and the
natural next question to ask is how do physical theories correlate data between multiple
disjoint regions. For purposes of exposition let us explain using two regions and extending
the following to multiple regions will be straight-forward (discussed at the end of this
subsection). Let us consider a composite region consisting of two disjoint regions R1 and
R2 such that R1 ∩ R2 = ϕ and R1, R2 ⊂ R where R is a larger predictively well-defined
region. Since we are considering two regions the generalised preparations of states of one
region will depend on the labels of the other region. Let α1 be the label for measurement
outcomes in R1 and α2 be the label for measurement outcomes in R2. Then for R1 we have

(Y α2
R2
, YR−R1−R2 , F

α2
R2
, FR−R1−R2) ⇐⇒ generalised preparation for R1 (4.32)

(Y α1
R1
, Fα1

R1
) ⇐⇒ measurement in R1 (4.33)

and similarly for R2 we have

(Y α1
R1
, YR−R1−R2 , F

α1
R1
, FR−R1−R2) ⇐⇒ generalised preparation for R2 (4.34)

(Y α2
R2
, Fα2

R2
) ⇐⇒ measurement in R2 (4.35)
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For the composite region R1 ∪R2, the joint probabilities of interest are given by:

pα1α2 = Prob(Y α1
R1

∪ Y α2
R2

∪ YR−R1−R2|Fα1
R1

∪ Fα2
R2

∪ FR−R1−R2) = p

α1

α2

(4.36)

Given the only compression in our arsenal yet is the first, consider that we can either
apply Tomographic compression to region R1 and to region R2, or apply Tomographic
compression to the composite region R1 ∪R2. Will these two scenarios be equivalent? We
find out.

When we apply Tomographic compression to the region R1 followed by Tomographic com-
pression on R2 we get:

pα1α2 = rα1(R1) · pα2(R1) (4.37)

=
∑
l1∈Ω1

Λl1
α1

rl1(R1) · pα2(R1) (4.38)

=
∑
l1∈Ω1

Λl1
α1
pl1α2 (4.39)

=
∑
l1∈Ω1

Λl1
α1

rα2(R2) · pl1(R2) (4.40)

=
∑
l1∈Ω1

∑
l2∈Ω2

Λl1
α1

Λl2
α2

rl2(R2) · pl1(R2) (4.41)

=
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2

rl2(R2) · pl1(R2) (4.42)

=
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2
pl1l2 (4.43)

where we have repeated use of Equation 4.21 for tomographic compression (from 4.37 to
4.38 and from 4.40 to 4.41). Pay close attention to the regions in brackets for the r and p
vectors! pα2(R1) is the state for region R1 labelled by generalised preparation label α2 in
region R2 and similarly pl1(R2) is the state for region R2 labelled by fiducial preparation
label l1 in region R1, post Tomographic Compression. Finally notice that we use:

l1l2 ∈ Ω1 × Ω2 (4.44)
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here × denotes the Cartesian product between the elements of the two sets Ω1 and Ω2, for
example {1, 4, 9} × {1, 2} = {11, 12, 41, 42, 91, 92}.

The diagrammatic form for Equations 4.37-4.43 are given by:

p

α1

α2

=

r

p

α1

α2

=

r

p
α2

Λ
α1 l1

(4.45)

= p

α2

Λ
α1 l1

=

p

r
α2

Λ
α1 l1

(4.46)

=

p

r

Λ
α1

Λ
α2

l1

l2

= pp

Λ
α1

Λ
α2

l1

l2

(4.47)

If instead one chooses to tomographically compress R2 first and R1 later then the analogous
calculation to Equations 4.37-4.43 will include the following step in place of 4.42:

pα1α2 =
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2

rl1(R1) · pl2(R1) (4.48)

but the order of first level compression to disjoint regions does not matter and comparing
Equation 4.42 and Equation 4.48 we have:

pl1l2 = rl1(R1) · pl2(R1) = rl2(R2) · pl1(R2)

such that pα1α2 =
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2
pl1l2 (4.49)

Let us now consider the second option, directly applying tomographic compression to the
composite region

R1,2 = R1 ∪R2 (4.50)
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The state for R1,2 is any mathematical object that can be used to calculate all pα1α2 by
means of linear relations. The state for R1,2 after performing Tomographic Compression
on the composite region is defined as as:

p(R1,2) =


...

pk1k2
...

 , where k1k2 ∈ Ω1,2 (4.51)

where Ω1,2 is tomographic set for R1,2. For some choice, the fiducial measurements are
given by:

rk1k2 =


0
...
1
...
0

 for all k1k2 ∈ Ω1,2 (4.52)

where, the k1k
th
2 element is 1 and the rest are 0. The state and fiducial measurements can

then be used to calculate probabilities using the generalised Born rule:

pα1α2 = rα1α2(R1,2) · p(R1,2) (4.53)

=
∑

k1k2∈Ω1,2

Λk1k2
α1α2

rk1k2(R1,2) · p(R1,2) (4.54)

Equivalently and diagrammatically we have

p

α1

α2

= r

α1

α2

p

= pr

p

Λ

α1

α2

k1

k2

(4.55)

We are ready to compare how the compression is quantified in both cases, by comparing
the Ω sets and Λ matrices. We have Λl1

α1
Λl2

α2
where l1l2 ∈ Ω1 × Ω2 when tomographi-

cally compressing each region separately. And we have Λk1k2
α1α2

where k1k2 ∈ Ω1,2 when
tomographically compressing the composite region.
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Λ

α1

α2

k1

k2

where k1k2 ∈ Ω1,2,

Λ
α1

Λ
α2

l1

l2

where l1l2 ∈ Ω1 × Ω2

It is evident that any compression achieved by Λl1
α1

Λl2
α2

will at least be achieved by Λk1k2
α1α2

,
since it can take the form Λk1k2

α1α2
= Λk1

α1
Λk2

α2
. In fact, Λk1k2

α1α2
will sometimes provide further

compression that cannot be found by tomographic compression of region R1 and tomo-
graphic compression of region R2. Therefore we have the following result which is central
to this framework:

Ω1,2 ⊆ Ω1 × Ω2 (4.56)

We may finally define second level or Compositional Compression for composite regions as
the compression that is found over and above first level or Tomographic Compression of
constituent regions. We define the Compositional Lambda matrix as follows:

rl1l2 =
∑

k1,k2∈Ω1,2

Λk1k2
l1l2

rk1k2 (4.57)

r

l1

l2

= prΛ

l1

l2

k1

k2

(4.58)

where Λk1k2
l1l2

encodes Compositional Compression. Here, l1, l2 ∈ Ω1 × Ω2 are the labels
after tomographic compression of each constituent region, conventionally we will use l’s for
labelling tomographic compression. Compositional Compression is nontrivial when Ω1,2 is
a proper subset of Ω1×Ω2 and conventionally we will use k’s for compositional compression.

Compositional Compression for multiple disjoint regions can be implemented through an
extension of the examples discussed above. Multi-region compression will go through the
following label changes

l1l2 . . . ln ∈ Ω1 × Ω2 × · · · × Ωn −→ k1k2 . . . kn ∈ Ω1,2...n (4.59)
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and the associated Lambda matrix, which encodes Compositional Compression takes the
form

Λk1k2...kn
l1l2...ln

(4.60)

This concludes the details for the second level compression. Let us recapitulate the steps
in applying Compositional Compression. The person in the box is interested in n-regions,
each associated with the label αi where i specifies the region. Therefore the person is
interested in probabilities of the form pα1...αn . They perform tomographic compression
on each region. Then they perform compositional compression on the composite region.
Mathematically:

pα1α2...αn = rα1α2...αn · p (4.61)

=
∑

l1l2...ln∈Ω1×Ω2×···×Ωn

Λl1
α1

Λl2
α2
. . .Λln

αn
rl1l2...ln · p (4.62)

=
∑

l1l2...ln∈Ω1×Ω2×···×Ωn

Λl1
α1

Λl2
α2
. . .Λln

αn

∑
k1k2...kn∈Ω1,2,...,n

Λk1k2...kn
l1l2...ln

rk1k2...kn · p (4.63)

and diagrammatically:

p

α1

α2

...
αn

= r

α1

α2

...
αn

p

= r

l1

l2

...

ln

α1

α2

...
αn

p

Λ

Λ

Λ

(4.64)

=

l1

l2

...

ln

α1

α2

...
αn

Λ

Λ

Λ

r

p

Λ

k1

k2

...
kn

(4.65)
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Similar to rα1|l1 , we can show that the components of the Lambda matrices can be specified
through entries of the r-vectors.

rl1l2...ln|k1k2...kn :=Λk1k2...kn
l1l2...ln

=

l1

l2

...

ln

Λ

k1

k2

...
kn

(4.66)

rα1α2...αn|k1k2...kn :=
∑

l1l2...ln
∈Ω1×Ω2×···×Ωn

Λl1
α1

Λl2
α2
. . .Λln

αn
Λk1k2...kn

l1l2...ln
=

l1

l2

...

ln

α1

α2

...
αn

Λ

Λ

Λ

Λ

k1

k2

...
kn

(4.67)

Causal Adjacency and Ω1,2

Let us take a moment to discuss the implications of Equation 4.56. In what physical
situations do we expect to (not) see nontrivial Compositional Compression? If two regions
are spatially separated and causally disconnected, then we cannot reduce the number of
parameters required to describe them, such as the tensor product in quantum theory, or
spatially separated events in relativity - in this case we have Ω1,2 = Ω1 × Ω2. Even if a
causal connection is possible but is mediated through other regions then these other regions
can break the correlations between the two regions of interest. Consider for example three
quantum gates applied sequentially (like the polariser example from before), then the
correlations between the first and third gate will depend on the nature of the second
gate (if the second polariser is replaced by a cardboard and new light is sent out then
correlations between the first and third polarisers will be broken). In this case as well we
have Ω1,2 = Ω1 × Ω2.

On the other hand if we have strong causal connections between two regions that are not
contingent on other regions (for example two consecutive quantum gates, which we can
replace by a new composite quantum gate), then we will see that Ω1,2 will be a proper
subset of Ω1 × Ω2. We will then say that the two regions are causally adjacent (which we
will denote by R1 ▷◁ R2).

When many regions are of interest we can use Compositional Compression between different
composite regions to map out causal adjacency. Therefore, Compositional Compression
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provides us the “mathematical signature for causal structure”. We will see some more
involved examples of Compositional Compression and a visualisation tool for Omega sets
in the following Chapter 5 where we set up the hierarchy and consider multiple regions,
and again later in Chapter 6 we see some explicit examples pertaining to the Duotensor
Framework (and in turn finite dimensional Quantum Theory).

4.3.4 Third level: Meta Compression

The previous two levels of compression pertain to the compression of single and multiple
regions (which lie within a larger predictively well-defined region R), that are encoded
combinatorially through the Omega sets and quantitatively through the Lambda matrices.
But are the Lambda matrices for different regions independent of each other? A physi-
cal theory will in fact often have some structure that will correlate the Lambda matrices
itself. The third level of compression will capture this compression of the Lambda matri-
ces, through what is called the Causaloid, one of the central mathematical objects in the
Causaloid approach, owing the framework its name. It is defined by Hardy as -

The causaloid for a predictively well-defined region R made up of elementary
regions Rx is defined to be that thing represented by any mathematical object
which can be used to obtain rαO(RO) for all measurements αO in region RO for
all RO ⊆ R.

To begin, let us find a mathematical object that specifies the Causaloid for a predictively
well-defined region R, utilising the two levels of compression. The smallest component
region of R consists of elementary regions Rx, such that ∪xRx = R. R can be expressed
as consisting non-elementary regions RO which itself consist of elementary regions. The
region RO can be specified in terms of elementary regions in the following way:

RO =
⋃
i∈O

Ri where O = {x, x′, ..., x′′} (4.68)

Of course RO can reduce to a elementary region if O = {x}. Now let us discuss the general
region RO through tomographic and compositional compression. In the pre-compression
level the general measurement in region RO is labelled by αO, which decomposes into local
measurements at each elementary region part of O:

αO = αxαx′ · · ·αx′′ (4.69)
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Each region RO is associated with tomographic compression. Each composite region RO
(say for RO = RO′∪RO′′∪...) is associated with compositional compression. But remember
that we discussed that tomographic compression of a composite region is equivalent to
tomographic compression of its constituents along with compositional compression on the
composite region. In light of this it is in fact sufficient to consider tomographic compression
of all elementary regions Rx and compositional compression over all composite regions RO.
The tomographic compression of elementary region is given by:

Λlx
αx

(x,Ωx) (4.70)

where the Lambda matrix is a function of (x,Ωx) – the region and the Omega set given
that it may not be unique. Similarly, the compositional compression over non-elementary
regions RO is given by

ΛkO
lO

(O,ΩO) (4.71)

where, similar to the label αO, the tomographic Omega set label lO for the fiducial mea-
surements of the composite region will also decompose into the fiducial measurements of
the constituent elementary regions, while the compositional Omega set label kO will not.
That is:

lO ≡ lxlx′ · · · lx′′ ∈ Ωx × Ωx′ × · · · × Ωx′′ and kO ≡ kxkx′ · · · kx′′ ∈ ΩO (4.72)

Note that if O = {x}, then there is no compositional compression, since we are considering
a single tomographically compressed region, and thus only a single Omega set Ωx is relevant:

Λkx
lx

= δkxlx since lx, kx ∈ Ωx (4.73)

It is worth noting that fully specifying the Lambda matrix ΛkO
lO

(O,ΩO) would include
specifying the region and a choice of Omega set, but it is easy to transform the Lambda
matrix from one set of Omega choice to another using the following relation:

Λ
k′O
lO

(O,Ω′
O) =

∑
kO

[ΛkO
k′O

(O,ΩO)]−1ΛkO
lO

(O,ΩO) (4.74)

where
ΛkO

k′O
(O,ΩO) k′O ∈ Ω′

O (4.75)

is a square matrix whose inverse exists, given two choices of Omega sets ΩO,Ω
′
O. Note

that the matrix is square since |ΩO| = |Ω′
O|. Also note that k′O and kO both belong to
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(different) subsets of Ωx × Ωx′ × · · · × Ωx′′ since there is always a lO for every k′O and kO.
Similar argument gives the relation for transformation of tomographic Lambda matrices
Λlx

αx
(x,Ωx) pertaining to elementary regions. The transformation rule of Lambdas tells

us that considering any one choice of Omega set for each region O is sufficient for the
specification of the Causaloid.

Given these details we can write down one mathematical object that surely specifies the
causaloid (denoted by Λ):

Λ =

[
Λlx

αx
(x,Ωx) : for a Ωx for each elementary Rx

ΛkO
lO

(O,ΩO) : for a ΩO for each non-elementary RO ⊆ R

]
(4.76)

Clearly this satisfies the definition of the Causaloid since the lambda matrices can be used
to calculate any r-vector using the results stated in previous subsections. From Equations
4.25 and 4.66 we have

rαx|lx = Λlx
αx

and rαO |lO =
∑
lO

Λlx
αx

Λlx′
αx′

· · ·Λlx′′
αx′′

ΛkO
lO

(4.77)

This specification of the Causaloid is independent of any physical theory. But when con-
sidering a particular physical theory the specification of the Causaloid can be compressed
given some structure. In such a scenario we expect to be able to calculate some Λ matrices
from others and thus, we can take some subset of the Λ matrices. Let us label such a
subset by i, then we have

Λ = [Λ(i) : i = 1 to I | rules ] (4.78)

where rules prescribe us the rules for deducing all Λ’s from the given subset of Λ(i)’s. The
subset may not be unique, but it will tell us some key aspects of the physical theory. The
role of the Causaloid is captured in the following words by Hardy:

“We will call Λ the causaloid (because it contains information about the propen-
sities for different causal structures). This is the central mathematical object
in this paper. For any particular physical theory the causaloid is fixed... In
fact, once we know the causaloid we can perform any calculation possible in the
physical theory. Consequently, the causaloid can be regarded as a specification
of a physical theory itself.” (Section 4.4, [42])

We may regard going from Equation 4.76 to 4.78 as a kind of physical compression. We
name this third level of compression as Meta Compression since it does not look like the
first two levels and it acts on sets of Lambda’s, which is called the Causaloid Λ. In the
coming Chapter 5 we will study Meta Compression in further detail, providing a class of
identities for Compositional Lambdas that will provide a way to classify physical theories.
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The Causaloid Product

Let us discuss products. Within Quantum theory there are three basic ways of putting two
operators together in quantum theory: ÂB̂ (sequential, temporal and causally adjacent),
Â?B̂ (temporal but not causally adjacent), and Â ⊗ B̂ (spatially separate). One of the
goals of the Causaloid Framework, with interest in studying indefinite causality, is to be
able to treat space and time on an equal footing and thus to treat these different kinds of
products on an an equal footing. To this end the causaloid product is defined. While this
is in a general framework, the causaloid product can be shown to unify the different types
of products within quantum theory.

Given rα1 measurement vector in RO1 (or simply R1) and rα2 measurement vector in RO2

(or simply R2) such that RO1 ∩RO2 = ϕ. The causaloid product ⊗Λ is defined as:

rα1α2(O1 ∪ O2) = rα1(O1) ⊗Λ rα2(O2) (4.79)

or simply
rα1α2 = rα1 ⊗Λ rα2 (4.80)

where the labels α implicitly specify the regions. Diagrammatically we represent the causa-
loid product with the symbol ⊗Λ:

r

α1

α2

=

r

r

α1

α2

⊗Λ (4.81)

The way to expand the causaloid product is given by Lambda matrices which in turn are
given by the causaloid. The component form for Equations 4.79-4.81 using Equation 4.66
is given by:

rα1α2|k1k2 =
∑

l1l2∈Ω1×Ω2

(rα1 |l1)(rα2|l2)Λk1k2
l1l2

(4.82)

Diagrammatically we can see that the causaloid product may be expanded as follows:

r

r

α1

α2

⊗Λ = prΛ

l1

l2

k1

k2

Λ
α1

Λ
α2

(4.83)
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This can be massaged into a more illuminating form for the purposes of identifying the
kinds of different products the unified causaloid product can reduce to:

rα1α2|k1k2 =
∑

l1l2∈Ω1×Ω2

(rα1|l1)(rα2|l2)Λk1k2
l1l2

(4.84)

=
∑

l1l2∈Ω1,2

(rα1|l1)(rα2 |l2)δk1k2l1l2
+

∑
l1l2∈Ω1×Ω2−Ω1,2

(rα1 |l1)(rα2|l2)Λk1k2
l1l2

(4.85)

= (rα1|k1)(rα2|k2) +
∑

l1l2∈Ω1×Ω2−Ω1,2

(rα1|l1)(rα2|l2)Λk1k2
l1l2

(4.86)

where we first expand the sum into two terms over different sets since Ω1,2 + (Ω1 × Ω2 −
Ω1,2) = Ω1 × Ω2, and in the second step we use the relation

Λk1k2
l1l2

= δk1k2l1l2
for l1, l2 ∈ Ω1,2 (4.87)

There are two special cases for Equation 4.84 given Equation 4.56.

1. No Compositional Compression Ω1,2 = Ω1 × Ω2 such that |Ω1,2| = |Ω1||Ω2|.

2. Non-trivial Compositional Compression Ω1,2 ⊂ Ω1 × Ω2 such that |Ω1,2| < |Ω1||Ω2|.

It follows that
if Ω1,2 = Ω1 × Ω2 then rα1α2 = rα1 ⊗ rα2 (4.88)

where ⊗ stands for the ordinary tensor product. Hence the ordinary tensor product is a
special case of the causaloid product.

We will see in the Chapter 6 through the duotensor formalism, that in (finite-dimensional)
quantum theory, typically Ω1,2 = Ω1 × Ω2 corresponds to the products Â ⊗ B̂ as well as

Â?B̂. Since the total number of real parameters after taking the product is equal to the
product of the number from each operator we have |Ω1,2| = |Ω1||Ω2|.
Non trivial Compositional compression occurs (|Ω1,2| < |Ω1||Ω2|) when two regions are
causally adjacent, such that what happens in one region depends, at least partially, on
what is done in the other region in a way that cannot be tampered by other regions in R.
In quantum theory when we take the product ÂB̂, the total number of real parameters in
the product is equal to the number in Â (or B̂), giving the special case |Ω1,2| = |Ω1| = |Ω2|.
Therefore, the causaloid product is expected to bring together all types of different products
a physical theory will have to offer, which can be calculated once the causaloid is specified.
This concludes the discussion of the three levels of compression.
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4.3.5 Synopsis: Three Levels of Physical Compression

We presented new diagrammatics for the Causaloid Framework’s three levels of physical
compression. Here we provide a short and handy synopsis for quick reference.

We considered a large region R which is predictively well-defined. We focus on disjoint
regions R1, R2, ... within R. We expect the framework to help us predict probabilities.
Using the generalised Born rule given linearly in terms of states and measurements gives
probabilities.

Generalised

Born Rule:
p

α1

α2

...
αn

Probabilities = r

α1

α2

...
αn

p

Measurement

State

Inner Product

The r measurement vector can be compressed. Tomographic Compression concerns a single
region and Compositional Compression concerns multiple disjoint regions.

Tomographic and

Compositional

Compression:

r

α1

α2

...
αn

=

l1

l2

...

ln

α1

α2

...
αn

Λ

Λ

Λ

Tomographic

rΛ

Compositional

k1

k2

...
kn

The label change between these levels of compression is given by:

α1, α2, . . . αn ∈ Γ1 × Γ2 × . . .Γn

−→ l1, l2, . . . ln ∈ Ω1 × Ω2 × . . .Ωn

−→ k1, k2, . . . kn ∈ Ω1,2,...n

Given the first two levels of Compression, we get the set of Lambdas for any region in R
which helps us specify the Causaloid Λ, which may be considered as “a specification of a
physical theory itself”.
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The Causaloid: Λ =
lxαx

Λ

Elementary regions

∀Rx ,

l1

l2

...

ln

Λ ∀RO

Non-elementary regions

k1

k2

...
kn

(4.89)

The third level or Meta Compression provides us with rules to be able to calculate any
Lambda Matrix given a reduced set which gives a shorter specification of the Causaloid.
The Causaloid in turn helps us define the Causaloid Product ⊗Λ, that unifies different
kinds of spatio-temporal products within a theory, and gives us any general r-vectors.

Causaloid

Product:
p

α1

α2

...
αn

=

r

r

r

α1

α2

...
αn

p

⊗Λ

Causaloid

Product

This brings us full circle. The framework prescribes a way to organise recorded data using
the structure of physical theories, by distilling down to a compressed version and studying
correlations.

The work presented in this Chapter was born out of a motivation to revisit the Causa-
loid Framework, a seminal work that paved the way for many works on indefinite causal
structures. To this end, we presented a diagrammatic representation for the three levels of
physical compression, along with a review of the framework. We bear the hope that this
diagrammatic review will make this framework more accessible to those interested, who
are engaged studying indefinite causal structures.

In the coming Chapters, we will utilise the diagrammatics presented here, to study Meta-
Compression further giving us a Hierarchy (Chapter 5); and to diagrammatically apply the
Causaloid Framework to the Duotensor Framework, placing it into the second rung of the
Hierarchy (Chapter 6).
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Chapter 4: Statement of Contribution

In this Chapter, I provide an accessible review of the Causaloid Framework by Lucien
Hardy [41][42] for anyone interested in becoming familiar with this framework. The
main contribution of this Chapter are new diagrammatics defined in Section 4.3, as
well as updated nomenclature around the three levels of compression. This was largely
worked on by myself and the next two Chapters build upon the new diagrammatics.
The Chapter is solely written by me, based on mentioned sections the papers [41][42] by
Lucien Hardy. This Chapter contains unpublished work that was presented at various
conferences (QISS HK 2020, Q-Turn 2020 [90], APS 2021 [91], Quantizing Time 2021
[89], QPL 2021) as the work developed.
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“Why so meta?”,
said the sets

to the matrices
at the intersection of
Cartesian products

“Well, we ran out of data to compress!” 3

3Chapter 5, illustration for Equation 5.63 using visualisation tools from Section 5.3
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Chapter 5

A Hierarchy through
Meta-Compression

Physical Compression gives the specification of a theory: the Causaloid Λ
What can we learn about the causal structure through Meta-Compression of Λ?

We study Meta-Compression and characterise a hierarchy of theories

Meta Compression, the third level of physical compression from the Causaloid Framework
(CF), gives us a reduced set of Lambda matrices required to specify the Causaloid Λ and
some rules that tell us how to calculate all Lambda matrices from this reduced set. We
propose a way to categorise families of physical theories into a Hierarchy, by studying Meta
Compression and characterising the Causaloid Lambda. The rungs of the Hierarchy are
given by what we call ΛOd

-sufficiency. We will utilise CF’s diagrammatic representation
from Chapter 4 to do so. A known Hierarchy for Generalised Probability Theories (GPTs)
[99, 40, 93] , that differentiates Classical Probability Theory from Quantum theory, is
contingent on Tomographic Compression. The Hierarchy, presented here, is different, it is
contingent on Compositional Compression that captures the causal structure and places
Quantum theory as well as Classical Probability theory on the same rung in this respect,
as we see in Chapter 6.
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Outline of the Chapter

In Section 5.1 we define the Hierarchy through characterising the Causaloid Lambda
through ΛOd

-sufficiency. In Section 5.2 we show an example of Lambda matrix relations
by Hardy from [41]. We will fully characterise such relations. In order to do so, we present
a Toolkit to work with Cartesian products of Omega sets and subsets thereof, that will be
crucial to formalise our results. Then we begin giving the form for Lambda matrices one
rung of the Hierarchy at a time, in Sections 5.4-5.6. The Section 5.4 is the trivial rung
where no Compositional Compression occurs. Section 5.5, the second rung, will consider
a tripartite region and consists of detailed causal relations and Lambda matrix as well as
Omega set results. In Section 5.6 we see how to continue the characterisation for the higher
rungs, and will provide a general form for the Omega sets. In Section 5.7 we discuss the
road ahead: what we have learnt by revising the Causaloid Framework and the directions
in which the current work may be applied.

5.1 Defining the Hierarchy

As before, we consider the predictively well-defined region R made of (disjoint) elementary
regions Rx, and a general region RO where the region can be composed of elementary
regions O = {x, x′, ...x′′} such that RO = Rx ∪Rx′ ∪ ...Rx′′ . We will say that the size |.| of
a region labelled by O is the number of elementary regions it consists of, for example |O =
{x, x′, x′′, x′′′}| = 4. The size of R will be the number of elementary regions it consists of,
which we will say is n. We will now introduce a shorthand for Lambda matrices particularly
useful for the hierarchy we will define. Recall that the specification of the causaloid from
Equation 4.76 includes Tomographic Compression matrices for single elementary regions
Λlx

αx
and Compositional Compression matrices for non-elementary regions ΛkO

lO
. We can

refer to the Compression matrices through a shorthand using the size of their associated
region while leaving out the information of indices:

ΛO1 = ΛO1 := any Λlx
αx

= Λkx
αx

where |O = {x}| = 1 (5.1)

ΛOd
= ΛOd := any ΛkO

lO
or ΛkO

αO
where |O = {x, x′, ...x′′}| = d > 1 (5.2)
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Then we can re-specify the causaloid:

Λ = { all ΛOd
, ∀1 ≤ d ≤ n} (5.3)

= ΛO1 , ΛO2 , ΛO3 , . . . , ...
ΛOn ...

(5.4)

Now we are ready to define the Hierarchy. We ask when and under what conditions is d-
(elementary)-region compositional compression sufficient to provide all possible m-region
compositional compression matrices for n ≥ m > d. That is under what conditions does
Meta compression lead to the specification of the causaloid to become:

Λ ≡ ΛOd
= { all ΛOd′

, ∀1 ≤ d′ ≤ d | rules } where d < n

= ΛO1 , ΛO2 , . . . , ...
ΛOd ...

rules (5.5)

If d-(elementary)-region compositional compression is sufficient to calculate all higher re-
gion compositional compression, for the smallest possible d, then we say that the physical
theory is ΛOd

-sufficient1 and thus, belongs to the dth rung of the Hierarchy. The Causaloid
after Meta Compression for a ΛOd

-sufficient physical theory is denoted by ΛOd
(in so far

that the region R is large enough to well represent a physical theory). In such a case it
would be possible to find functions of the form:

ΛOm(ΛO1 ,ΛO2 , . . . ,ΛOd
) and ΩOm(ΩO1 ,ΩO2 , . . . ,ΩOd

) where d < m ≤ n (5.6)

We will provide concrete steps to calculate other Lambda matrices (the rules). We pro-
vide tools to work with Omega sets and present a formula for how the n-region Omega
sets are determined in terms of d-region Omega sets when we have d-(elementary)-region
compositional compression sufficiency.

1Usage: ΛOd
-sufficiency (noun), ΛOd

-sufficient (adjective)
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5.2 Proof of concept a la Hardy

To begin understanding the kind of conditions one can find to calculate a Lambda matrix
from others, we will first go over an example provided by Hardy in Section 23, [41], as a
proof of concept, before we are ready to dive into the deep end of the pool.

Consider three regions R1, R2, R3 ∈ R. We begin after taking Tomographic Compression
into account. Now, we start with rl1l2l3 · p upon which compositional compression is first
applied to region R2 ∪R3 and then applied to region R1 ∪R2.

rl1l2l3(R1 ∪R2 ∪R3) · p(R1 ∪R2 ∪R3) (5.7)

= rl2l3(R2 ∪R3) · pl1(R2 ∪R3) (5.8)

=
∑

k′2k3∈Ω2,3

Λ
k′2k3
l2l3

rk′2k3(R2 ∪R3) · pl1(R2 ∪R3) (5.9)

=
∑

k′2k3∈Ω2,3

Λ
k′2k3
l2l3

rl1k′2k3(R1 ∪R2 ∪R3) · p(R1 ∪R2 ∪R3) (5.10)

=
∑

k′2k3∈Ω2,3

Λ
k′2k3
l2l3

rl1k′2(R1 ∪R2) · pk3(R1 ∪R2) (5.11)

=
∑

k1k2∈Ω1,2

∑
k′2k3∈Ω2,3

Λk1k2
l1k′2

Λ
k′2k3
l2l3

rk1k2(R1 ∪R2) · pk3(R1 ∪R2) (5.12)

=
∑

k1k2∈Ω1,2

∑
k′2k3∈Ω2,3

Λk1k2
l1k′2

Λ
k′2k3
l2l3

rk1k2k3(R1 ∪R2 ∪R3) · p(R1 ∪R2 ∪R3) (5.13)

where pl1 is the tomographically compressed state for region R2 ∪R3, and pk3 is the state
for region R1 ∪R2 after compositional compression was done on R2 ∪R3. This calculation
is reminiscent of a calculation we saw earlier (Equation 4.37-4.43) since arguments of
regions are shifted around in a similar way. One can also perform these calculations
diagrammatically but we skip the same for now. Effectively we have:

rl1l2l3 · p =
∑

k1k2∈Ω1,2

∑
k′2k3∈Ω2,3

Λk1k2
l1k′2

Λ
k′2k3
l2l3

rk1k2k3 · p (5.14)

Since this is true for any p we have

rl1l2l3 =
∑

k1k2∈Ω1,2

∑
k′2k3∈Ω2,3

Λk1k2
l1k′2

Λ
k′2k3
l2l3

rk1k2k3 (5.15)
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We also have through the definition of three region compositional compression on R1 ∪
R2 ∪R3

rl1l2l3 =
∑

j1j2j3∈Ω1,2,3

Λj1j2j3
l1l2l3

rj1j2j3 (5.16)

where we use j as indices instead of k. We will stick to the convention of using l, k, j, i, ..
for ΛO1 ,ΛO2 ,ΛO3 ,ΛO4 ... to be able to differentiate the compositional compression applied
to different number of regions as relevant. We will also continue to solely use k indices to
refer to general compositional compression if differentiating by the size of the region is not
relevant. Comparing the Equations 5.15 and 5.16 gives us the following Lambda relations
conditional on some Omega relations.

If Ω1,2,3 = Ω1,2× Ω̸2,3 and Ω2,3 = Ω2, ̸3× Ω̸2,3 then Λk1k2k3
l1l2l3

=
∑

k′2∈Ω2 ̸3

Λk1k2
l1k′2

Λ
k′2k3
l2l3

(5.17)

where the notation Ω ̸2,3 means that we form the set of all k3 for which there exists an
element in k2k3 ∈ Ω2,3 with matching k3 (for example if Ω2,3 = {12, 13, 24, 34} then Ω ̸2,3 =
{2, 3, 4}). We will discuss this notation further in Section 5.3. This gives us an example of
how Lambda matrices can be related to each other given some conditions on the Omega
sets are met. By no means are these the most general conditions on the Omega sets to find
relations between the Lambda matrices and thus we ask can we do better? Hardy leaves
us with a research program:

“It should be possible to characterise all possible relationships between lambda
matrices so we know how much freedom we have in specifying the causaloid.
These constraints are likely to give us deep insight into the possible nature of
physical theories.” (Section 23, [41])

We attempt to characterise precisely these relationships between Lambda matrices and
Omega sets through studying the Hierarchy and share the insights these provide us with
in the remainder of this Chapter.

5.3 Toolkit for Working with Omega Sets

Now we will provide some simple mathematical tools based on set theory applied to product
sets. These tools will help us work with Omega sets, and will be used in the following
Subsections to help study the Hierarchy.
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5.3.1 Projections

We will now formally define the projection map which we used in Equation 5.17. Consider
the indices k1k2 . . . kn ∈ Ω1,2,...,n where Ω1,2,...,n = Ω1 × Ω2 × · · · × Ωn. There may be a
situation where we only want to discuss the indices k1, k2, . . . , kn−1, what Omega set would
these indices belong to? The projection map Pm(.) goes from some number of regions to
a smaller set, where the mth region is removed, notated as follows:

Pm : Ω1,2,...,m,...,n → Ω1,2,..., ̸m,...,n (5.18)

In the case when we apply the projection map to a set which can be factorised into a
Cartesian product of sets, the projection map will yield a new set that can also be factorised:

Pi : Ω1 × . . .× Ωi . . .× Ωn → Ω1 × . . .× Ωi−1 × Ωi+1 . . .× Ωn (5.19)

Here are some examples of application of the projection map:

P1 : {(1, 1), (1, 2), (2, 1), (2, 3), (4, 2)} → {( ̸ 1, 1), (̸ 1, 2), (̸ 2, 1), (̸ 2, 3), ( ̸ 4, 2)} = {1, 2, 3}
P2 : {(1, 1), (1, 2), (2, 1), (2, 3), (4, 2)} → {(1, ̸ 1), (1, ̸ 2), (2, ̸ 1), (2, ̸ 3), (4, ̸ 2)} = {1, 2, 4}

It must be pointed out that the projection map causes loss of information. Consider some
set Ω1,2 ⊆ Ω1×Ω2. If we apply the projection map P1 we have Ω̸1,2 and if we apply P2, we
have Ω1, ̸2. Observe that generally Ω1,2 ̸= Ω1, ̸2 ×Ω ̸1,2. In fact, we find that they are strictly
related in the following way (a result which will become important later, see 5.5.1):

Ω1,2 ⊆ Ω1,̸2 × Ω̸1,2 ⊆ Ω1 × Ω2 (5.20)

5.3.2 Filling

The filling map FO(.) is in some sense the opposite of the projection map, it takes some
Omega set Ωi,j and pads it with Tomographic Omega sets for additional regions specified
to make it a valid Omega set for the composite region labelled by O, where i, j ∈ O:

FO : Ωi,j → Ω1 × . . .× Ωi,j × . . .× Ωn where i, j ∈ O = {1, 2, . . . , n} (5.21)

For example:

F{1,2,4,5,7} : Ω2,4 → Ω1 × Ω2,4 × Ω5 × Ω7 (5.22)

The filling map will be useful when trying to take intersections of sets that do not have
matching regions such as Ω1,2 and Ω2,3. In this case we will fill both sets to O = {1, 2, 3}
and then take the intersection FO(Ω1,2) ∩ FO(Ω2,3).
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5.3.3 Permutations and Order

When considering some predictively well-defined region R consisting of elementary regions
Rx, the label x is an integer and sets an arbitrary convention for the order of the regions.
The order of the regions and this convention do not have any physical bearing, nonetheless
it is useful to represent calculations, and one would like to stick to a certain convention
when performing any calculations. The standard convention we define is the order of labels
in increasing x such that for some Omega set Ωi,j,...,n, we have i < j < · · · < n.

It may so happen that upon applying projection and filling maps on Omega sets, one may
end up with a set where the standard convention cannot be followed, for example a term
such as Ω1,4, ̸5×Ω2, but it may be desirable to be able to bring back the set to the standard
order for the purpose of representing the calculation. In such a case the ordering map O(.)
(not to be confused with the label for a composite region O which shows up as a subscript
for regions) will become useful.

The ordering map O(.) is a permutation map that permutes back the regions of an Omega
set back to the standard ordering of R1, R2, ..., Rn. If the regions are some permutation σ
of {1, 2, . . . , n} then the ordering map is the application of its inverse, namely σ−1:

O : Ωσ(1,2,...,n) → Ω1,2,...,n (5.23)

From our example if Ω1,4, ̸5 = {(1, 2), (1, 4), (5, 6)} and Ω2 = {3, 7} then:

O(Ω1,4, ̸5 × Ω2) = {(1, 3, 2), (1, 3, 4), (5, 3, 6), (1, 7, 2), (1, 7, 4), (5, 7, 6)} (5.24)

where one can see the elements 3, 7 of Ω2 in the second position between elements of Ω1

and Ω4. Note that O(Ω1,4, ̸5 × Ω2) = O(Ω2 × Ω1,4,̸5) since the elements of a set are not
ordered.

5.3.4 Visualising Omega Sets

While sets themselves are not ordered and do not have much structure, the Causaloid
Framework works extensively with Cartesian products of sets and their subsets, the re-
lations between these sets are crucial. It would thus be beneficial to provide a way to
visualise Omega sets and action of the maps (Pm(.),FO(.),O(.)) discussed until now. This
will aid with grasping the main results of this work in a better manner.

Any Omega set of an elementary region will have some elements, we use integers as elements
but in principle they can be any label. We can place the elements visually on a line.
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Consider the example Ω1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Visually we have:

Ω1 ≡ (1) (2) (3) (4) (5) (6) (7) (8) (9) (5.25)

but clearly the order of placing the elements does not matter. Now consider if we use the
filling map F{1,2}(Ω1) = Ω1 × Ω2 where Ω2 = {1, 2, 3}. We can visually represent products
of elementary Omega sets on a grid, which will always look like a rectangular block:

Ω1 × Ω2 ≡

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(5,1)

(5,2)

(5,3)

(6,1)

(6,2)

(6,3)

(7,1)

(7,2)

(7,3)

(8,1)

(8,2)

(8,3)

(9,1)

(9,2)

(9,3)

(5.26)

the ordering map will change the axis of the grid to match the standard convention but does
not add any insight visually. Moving to projections, the possible projection maps on two
regions visually simply reduce a grid back to a line P1 = Ω2 and P2 = Ω1, thus justifying
the name. Further sets of the form Ω1,̸2 × Ω̸1,2 are products and will always visually take
the form of a block (under some shuffling of rows and columns if need be, which is a valid
operation for sets). We now revisit Equation 5.20 and the three sets Ω1,2, Ω1,̸2 × Ω ̸1,2 and
Ω1 × Ω2. Let’s say Ω1,2 = {(4, 2), (5, 1), (5, 2), (5, 3), (6, 2)}, then a visual kind of proof for
Equation 5.20 looks like:

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(5,1)

(5,2)

(5,3)

(6,1)

(6,2)

(6,3)

(7,1)

(7,2)

(7,3)

(8,1)

(8,2)

(8,3)

(9,1)

(9,2)

(9,3)

Ω1,2 Ω1,̸2 × Ω ̸1,2 Ω1 × Ω2

Figure 5.1: Visual form of Ω1,2 ⊆ Ω1, ̸2 × Ω̸1,2 ⊆ Ω1 × Ω2

This concludes the guide to our toolkit, let us begin applying it!
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5.4 ΛO1-Sufficiency

Physical theories belonging to the lowest rung of the Hierarchy (d = 1) will have Tomo-
graphic Compression and trivial Compositional Compression. We are interested in finding
functions following the form given in Equation 5.6 for d = 1:

ΛOm(ΛO1) and ΩOm(ΩO1) for m > 1 (5.27)

In absence of any Compositional Compression we will have Ω1,2,...,m(ΩO1) = Ω1×Ω2×. . .Ωm

and the Lambda matrices will take the form:

Λk1k2...
l1l2...

= Λk1
l1

Λk2
l2
· · · = δk1l1 δ

k2
l2
. . .

Λk1k2...
α1α2...

= Λk1
α1

Λk2
α2
. . . (5.28)

and so on, where in the latter equation we incorporate Tomographic Compression to give
ΛOm(ΛO1). ΛO1-Sufficiency is easy to specify due to the absence of causally adjacent
regions, and makes the physical theory a simple one, one where causality does not play a
role in correlating regions, perhaps meaning such physical theories do not have a concept
of time.

5.5 ΛO2-Sufficiency

Physical theories belonging to the next rung of the Hierarchy (d = 2) will have Tomographic
Compression and non-trivial Compositional Compression. We are interested in finding
functions following the form given in Equation 5.6 for d = 2:

ΛOm(ΛO1 ,ΛO2) and ΩOm(ΩO1 ,ΩO2) for m > 2 (5.29)

Let us begin by finding the general form when m = 3 for ΛO3(ΛO1 ,ΛO2). Consider a general
tripartite composite region of R1, R2, R3 within the predictively well-defined R. Of interest
are probabilities that after Tomographic compression are as follows:

pα1,α2,α3 = Prob(Y α1
R1

∪ Y α2
R2

∪ Y α3
R3

∪ YR−R1−R2−R3|Fα1
R1

∪ Fα2
R2

∪ Fα3
R3

∪ FR−R1−R2−R3)

=
∑

l1∈ΩR1

∑
l2∈ΩR2

∑
l3∈ΩR3

Λl1
α1

Λl2
α2

Λl3
α3

rl1,l2,l3 · p (5.30)

Now for three regions there are three ΛO2 for regions R1 ∪ R2, R2 ∪ R3 and R1 ∪ R3

respectively2 and a single ΛO3 for region R1∪R2∪R3. Let us apply all of these to rl1l2l3 ·p
2In general for m regions we will have

(
m
2

)
= n(n−1)

2 number of ΛO2s.
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in the order of Compositional Compression to the region R1∪R2, followed by, to the region
R2 ∪R3, followed by, to the region R1 ∪R3, finally followed by Compositional compression
to all three regions R1 ∪R2 ∪R3:

rl1l2l3(R1 ∪R2 ∪R3) · p(R1 ∪R2 ∪R3) (5.31)

= rl1l2(R1 ∪R2) · pl3(R1 ∪R2) (5.32)

=
∑

k′1k
′
2∈Ω1,2

Λ
k′1k

′
2

l1l2
rk′1k′2(R1 ∪R2) · pl3(R1 ∪R2) (5.33)

=
∑

k′1k
′
2∈Ω1,2

Λ
k′1k

′
2

l1l2
rk′2l3(R2 ∪R3) · pk′1

(R2 ∪R3) (5.34)

=
∑

k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk2k′3(R2 ∪R3) · pk′1

(R2 ∪R3) (5.35)

=
∑

k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk′1k′3(R1 ∪R3) · pk2(R1 ∪R3) (5.36)

=
∑

k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k3(R1 ∪R3) · pk2(R1 ∪R3) (5.37)

=
∑

k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k2k3 · p (5.38)

=
∑

j1j2j3∈Ω1,2,3

∑
k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λj1j2j3
k1k2k3

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rj1j2j3 · p (5.39)

where we have used regions arguments for r and p carefully, similar to what we have seen
before. In short we have:

rl1l2l3 · p =
∑

j1j2j3∈Ω1,2,3

∑
k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λj1j2j3
k1k2k3

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rj1j2j3 · p (5.40)

By definition of three region compositional compression we also have

rl1l2l3 · p =
∑

j1j2j3∈Ω1,2,3

Λj1j2j3
l1l2l3

rj1j2j3 · p (5.41)

where we use j indices for ΛO3 matrices. Both Equation 5.40 and Equation 5.41 are true
for all p. Comparing them we get:∑
j1j2j3∈Ω1,2,3

Λj1j2j3
l1l2l3

rj1j2j3 =
∑

j1j2j3∈Ω1,2,3

∑
k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λj1j2j3
k1k2k3

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rj1j2j3

(5.42)
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Equation 5.42 combined with tomographic compression as seen in Equation 5.30 can be rep-
resented diagrammatically as follows (where the dashed line passes over Λ (not through)):

α1 l1Λ

α2 l2Λ

α3 l3Λ

Λ
j2

j1

j3

r =

α1 l1Λ

α2 l2Λ

α3 l3Λ

Λ
k′1

k′2

Λ
k′3

Λ k1

k3

k2 Λ
j1, j2, j3

r

(5.43)

The above Equations 5.30-5.43 are always true in the Causaloid Framework irrespective
of the Hierarchy, but when we have ΛO2-Sufficiency we expect that Λj1j2j3

k1k2k3
will reduce to

δj1k1δ
j2
k2
δj3k3 . This is the case since any ΛO3 would be decomposable into ΛO2 ,ΛO1 and since

we have applied all possible ΛO2 ,ΛO1 , no more compression would be possible. Let us
incorporate this into Equation 5.42 to get:∑

j1j2j3∈Ω1,2,3

Λj1j2j3
l1l2l3

rj1j2j3 =
∑

j1j2j3∈Ω1,2,3

∑
k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

δj1k1δ
j2
k2
δj3k3Λ

k1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rj1j2j3∑

k1k2k3∈Ω1,2,3

Λk1k2k3
l1l2l3

rk1k2k3 =
∑

k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k2k3 (5.44)

Therefore with ΛO2-Sufficiency Equation 5.42 combined with tomographic compression as
seen in Equation 5.30 diagrammatically reduces to:

α1 l1Λ

α2 l2Λ

α3 l3Λ

Λ
k2

k1

k3

r =

α1 l1Λ

α2 l2Λ

α3 l3Λ

Λ
k′1

k′2

Λ
k′3

Λ k1

k3

k2 r (5.45)

We now explore how Equation 5.42 reduces to simpler forms of Λk1k2k3
l1l2l3

and Ωk1k2k3
l1l2l3

under
all possible different causal relations between the regions R1, R2 and R3 if we have ΛO2-
Sufficiency. This will fully characterise the tripartite composite region for which Hardy
gave an example as we saw in Subsection 5.2.
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5.5.1 Tripartite Region: Causal Relations Results

If two regions, say R1 and R2 are causally adjacent then we use the notation R1 ▷◁ R2 as a
specification of their causal relation. If they aren’t causally adjacent we simply writeR1, R2.
Recall when R1 and R2 are not causally adjacent then the compositional compression does
not provide any additional compression, and we have Ω1,2 = Ω1 × Ω2 and Λk1,k2

l1,l2
= δk1l1 δ

k2
l2

after tomographic compression has already been applied.

Let us provide a table for all possible tripartite causal relations and the corresponding
forms for ΛO2 matrices which we will use to simplify Equation 5.42 (and consequently
Equation 5.45) to calculate Λk1k2k3

l1l2l3
(ΛO1 ,ΛO2) and Ω1,2,3(ΩO1 ,ΩO2) in terms of the causal

relations between R1, R2, R3. (While we work with elementary regions, the calculations in
this Section will hold for three tomographically compressed composite regions as well.)

Causal Relations Λk1k3
k′1k

′
3

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2

1 R1, R2, R3 δk1k′1
δk3k′3

δk2k′2
δ
k′3
l3

δ
k′1
l1
δ
k′2
l2

2 R1 ▷◁ R2 δk1k′1
δk3k′3

δk2k′2
δ
k′3
l3

Λ
k′1k

′
2

l1l2

3 R2 ▷◁ R3 δk1k′1
δk3k′3

Λ
k2k′3
k′2l3

δ
k′1
l1
δ
k′2
l2

4 R1 ▷◁ R3 Λk1k3
k′1k

′
3

δk2k′2
δ
k′3
l3

δ
k′1
l1
δ
k′2
l2

5 R1 ▷◁ R2 and R2 ▷◁ R3 δk1k′1
δk3k′3

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2

6 R1 ▷◁ R3 and R2 ▷◁ R3 Λk1k3
k′1k

′
3

Λ
k2k′3
k′2l3

δ
k′1
l1
δ
k′2
l2

7 R1 ▷◁ R2 and R1 ▷◁ R3 Λk1k3
k′1k

′
3

δk2k′2
δ
k′3
l3

Λ
k′1k

′
2

l1l2

8 R1 ▷◁ R2 and R2 ▷◁ R3 and R1 ▷◁ R3 Λk1k3
k′1k

′
3

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2

Table 5.1: Form for ΛO2 given Causal Relations between R1, R2, R3

1. Causal relation R1, R2, R3:

It is clear from our study of ΛO1-sufficiency that when R1, R2 and R3 are not causally
adjacent then no compositional compression occurs and we have,

Λk1k2k3
l1l2l3

= δk1l1 δ
k2
l2
δk3l3 where Ω1,2,3 = Ω1 × Ω2 × Ω3 (5.46)

2. Causal relation R1 ▷◁ R2:

For R1 ▷◁ R2, and R3 not causally adjacent to either R1 or R2 we calculate the form for
Lambda matrix starting from Equation 5.42:
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∑
k1k2k3∈Ω1,2,3

Λk1k2k3
l1l2l3

rk1k2k3 =
∑

k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k2k3 (5.47)

=
∑

k1k3∈Ω1×Ω3

∑
k2k′3∈Ω2×Ω3

∑
k′1k

′
2∈Ω1,2

δk1k′1
δk3k′3
δk2k′2
δ
k′3
l3

Λ
k′1k

′
2

l1l2
rk1k2k3 (5.48)

=
∑

k1k2∈Ω1,2

Λk1k2
l1l2

rk1k2l3 (5.49)

which gives us:

Λk1k2k3
l1l2l3

= Λk1k2
l1l2

δk3l3 where Ω1,2,3 = Ω1,2 × Ω3 (5.50)

There are two similar cases to R1 ▷◁ R2 that also have two regions causally adjacent and
thus have similar calculations to Equations 5.47-5.49. We omit the calculations and provide
the results below.

3. Causal relation R2 ▷◁ R3

Λk1k2k3
l1l2l3

= δk1l1 Λk2k3
l2l3

where Ω1,2,3 = Ω1 × Ω2,3 (5.51)

4. Causal relation R1 ▷◁ R3

Λk1k2k3
l1l2l3

= Λk1k3
l1l3

δk2l2 where Ω1,2,3 = O(Ω1,3 × Ω2) (5.52)

where above we use the ordering map O(.), which reorders the indices k1k3k2 back to the
standard order k1k2k3. We have formally defined the ordering map O(.) in Subsection 5.3.

5. Causal relation R1 ▷◁ R2 and R2 ▷◁ R3

Let us now consider the scenario when two pairs of regions are causally adjacent (we will
see an example in Section 6.3.6). We simplify Equation 5.42 to find the following:∑

k1k2k3∈Ω1,2,3

Λk1k2k3
l1l2l3

rk1k2k3 =
∑

k1k3∈Ω1,3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k2k3 (5.53)

=
∑

k1k3∈Ω1×Ω3

∑
k2k′3∈Ω2,3

∑
k′1k

′
2∈Ω1,2

δk1k′1
δk3k′3

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
rk1k2k3 (5.54)

=
∑

k2k3∈Ω2,3

∑
k1k′2∈Ω1,2

Λk2k3
k′2l3

Λ
k1k′2
l1l2

rk1k2k3 (5.55)
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There is a subtle point to be made here. When we have a Lambda matrix of the form
Λk1k2

l1l2
, where l1l2 ∈ Ω1 × Ω2 then k1k2 spans Ω1,2 since there is a l1l2 for every k1k2 given

that Ω1,2 ⊆ Ω1 × Ω2. This is not true for the term Λk2k3
k′2l3

that shows up in Equation 5.55.

While k2k3 do belong to Ω2,3, they do not span it since k′2 belongs to the set Ω ̸1,2 and
therefore restricts k2 which must belong to the set Ω̸1,2 as well as Ω2,̸3.

Now a question arises as to what form does Ω1,2,3 take? We may be tempted to say that
since k1 ∈ Ω1, ̸2, k3 ∈ Ω̸2,3 and k2 ∈ Ω̸1,2 ∩ Ω2,̸3 then Ω1,2,3 should be equal to Ω1, ̸2 ×
(Ω̸1,2 ∩ Ω2, ̸3) × Ω̸2,3, but this is not true. In the same way that for some Λk1k2

l1l2
, k1 belongs

to Ω1, ̸2 and k2 belongs to Ω̸1,2 but k1k2 belongs to Ω1,2 and not Ω1,̸2 × Ω̸1,2, our temptation
would generally not hold true, since Equation 5.20 gives us Ω1,2 ⊆ Ω1,̸2 × Ω̸1,2. Instead, we
must think of k1k2k3 indices together and use the filling map. Clearly k1k2k3 must belong
to F{1,2,3}(Ω1,2) as well as F{1,2,3}(Ω2,3), that is k1k2k3 ∈ F{1,2,3}(Ω1,2) ∩ F{1,2,3}(Ω2,3).
We may even show as a consequence of Equation 5.20 that (Ω1,2 × Ω3) ∩ (Ω1 × Ω2,3) ⊆
Ω1, ̸2 × (Ω̸1,2 ∩ Ω2, ̸3) × Ω ̸2,3. Therefore we have the following result:

l1

l2

l3

Λ k2

k1

k3

=

l1

l2

l3

Λ
k1

k′2

Λ k3

k2 ≡ Λk1k2k3
l1l2l3

=
∑
k′2

Λk2k3
k′2l3

Λ
k1k′2
l1l2

, k′2 ∈ Ω ̸1,2 (5.56)

where Ω1,2,3 = F{1,2,3}(Ω1,2) ∩ F{1,2,3}(Ω2,3)

= (Ω1,2 × Ω3) ∩ (Ω1 × Ω2,3) (5.57)

The above result may remind us of the proof of concept example by Hardy (Equation 5.17 )
presented before but what we have here is more general. Instead of choosing some ΛO2s and
finding a condition under which it is equivalent to ΛO3 (Equation 5.17 ), we have started
without assuming any causal relations for three regions (Equation 5.42) and worked our
way down to give the most general form for Ω1,2,3 for some causal relations.

The following two cases similarly also have two pairs of regions being causally adjacent
and thus have similar calculations to Equations 5.53-5.55. We omit the calculations and
provide the results below.

6. Causal relation R1 ▷◁ R3 and R2 ▷◁ R3

Λk1k2k3
l1l2l3

=
∑
k′3

Λk1k3
l1k′3

Λ
k2k′3
l2l3

, k′3 ∈ Ω̸2,3 (5.58)

where Ω1,2,3 = (O (Ω1,3 × Ω2)) ∩ (Ω1 × Ω2,3) (5.59)
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Here we have used the ordering map O(.), which reorders the indices k1k3k2 back to the
standard order k1k2k3.

7. Causal relation R1 ▷◁ R2 and R1 ▷◁ R3

Λk1k2k3
l1l2l3

=
∑
k′1

Λk1k3
k′1l3

Λ
k′1k2
l1l2

, k′1 ∈ Ω1, ̸2 (5.60)

where Ω1,2,3 = (O (Ω1,3 × Ω2)) ∩ (Ω1,2 × Ω3) (5.61)

Same as above the ordering map O(.), reorders the indices k1k3k2 back to k1k2k3.

8. Causal relation R1 ▷◁ R2, R2 ▷◁ R3 and R1 ▷◁ R3

Finally we come to the most general scenario where all three regions are causally adjacent
with each other. Equation 5.42 cannot be simplified further and we have:

Λk1k2k3
l1l2l3

=
∑

k′1,k
′
2,k

′
3

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
, k′1, k

′
2, k

′
3 ∈ Ω1,2 × Ω̸2,3 (5.62)

where Ω1,2,3 = (Ω1,2 × Ω3) ∩ (Ω1 × Ω2,3) ∩ (O (Ω1,3 × Ω2)) (5.63)

Having studied all possible causal relations, let us tabulate our results – the forms Ω1,2,3

and Λk1k2k3
l1l2l3

(ΛO1 ,ΛO2).

Causal Relations Ω1,2,3 Λk1k2k3
l1l2l3

(ΛO1 ,ΛO2)

1 R1, R2, R3 Ω1 × Ω2 × Ω3 δk1l1 δ
k2
l2
δk3l3

2 R1 ▷◁ R2 Ω1,2 × Ω3 Λk1k2
l1l2

δk3l3
3 R2 ▷◁ R3 Ω1 × Ω2,3 δk1l1 Λk2k3

l2l3

4 R1 ▷◁ R3 O(Ω1,3 × Ω2) Λk1k3
l1l3

δk2l2
5 R1 ▷◁ R2 and R2 ▷◁ R3 (Ω1,2 × Ω3) ∩ (Ω1 × Ω2,3)

∑
k′2

Λk2k3
k′2l3

Λ
k1k′2
l1l2

6 R1 ▷◁ R3 and R2 ▷◁ R3 O (Ω1,3 × Ω2) ∩ (Ω1 × Ω2,3)
∑

k′3
Λk1k3

l1k′3
Λ

k2k′3
l2l3

7 R1 ▷◁ R2 and R1 ▷◁ R3 O (Ω1,3 × Ω2) ∩ (Ω1,2 × Ω3)
∑

k′1
Λk1k3

k′1l3
Λ

k′1k2
l1l2

8
R1 ▷◁ R2 and R2 ▷◁ R3

and R1 ▷◁ R3

(Ω1,2 × Ω3) ∩ (Ω1 × Ω2,3)

∩ O (Ω1,3 × Ω2)
∑

k′1k
′
2k

′
3

Λk1k3
k′1k

′
3
Λ

k2k′3
k′2l3

Λ
k′1k

′
2

l1l2

Table 5.2: Ω1,2,3 and Λk1k2k3
l1l2l3

(ΛO1 ,ΛO2) given Causal Relations between R1, R2, R3

To complete the specification of ΛO3(ΛO1 ,ΛO2) we include tomographic compression:

Λk1k2k3
α1α2α3

(ΛO1 ,ΛO2) =
∑

l1l2l3∈Ω1×Ω2×Ω3

Λl1
α1

Λl2
α2

Λl3
α3

Λk1k2k3
l1l2l3

(ΛO1 ,ΛO2) (5.64)
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5.5.2 Going beyond Tripartite Regions: ΛOm
(ΛO1

,ΛO2
), ΩOm

(ΩO1
,ΩO2

)

We have shown how to characterise ΛOm(ΛO1 ,ΛO2) and ΩOm(ΩO1 ,ΩO2) for m = 3. How
do we go about doing the same for higher m? We will provide the strategy that can be
used to do all calculations. To begin with we find the Equation analogous to Equation 5.43
by applying all possible ΛO2 matrices (there would be

(
m
2

)
of such matrices) followed by

ΛOm . If we have ΛO2-sufficiency we have Λk1k2...km
l1l2...lm

= δk1l1 δ
k2
l2
. . . δkmlm giving us an Equation

analogous to Equation 5.45. Depending upon causal relations – absence or presence of
causal adjacency between each pair of regions – one may simplify the equation further to
get the form for ΛOm(ΛO1 ,ΛO2) and ΩOm(ΩO1 ,ΩO2).

It is time to address an important point that we had deferred until now. We discussed
that we must apply all

(
m
2

)
of ΛO2 matrices. Does the order of applying these matrices

matter? Did the order matter in the tripartite region case? It turns out that the order
only affects the details around summations of the form for ΛOm(ΛO1 ,ΛO2), such that some
order may yield simpler calculations but one may apply any order of ΛO2 matrices as long
as each one of them is applied once. On the other hand the form for ΩOm(ΩO1 ,ΩO2) will
be independent of the order of application of ΛO2 . We will call this property associativity
of compositional compression:

Associativity of Compositional Compression: When applying more than
one compositional compression matrix, the total compression, seen through the
effective Lambda matrix and associated Omega set, is independent of the order
of application of the compositional matrices.

We are ready to provide an important result of this work:

Since ΩOm is independent of the order of application of ΛO2 , we are able to present the
general form for ΩOm(ΩO1 ,ΩO2) when we have ΛO2-sufficiency:

ΩOm =

(m
2 )⋂

i ̸=j∈Om

O (FOm (Ωi,j)) where Om = {1, 2, . . . ,m} (5.65)

where we have used the filling and ordering maps associated with a region with label
Om = {1, 2, . . . ,m} with size |Om| = m

One can then for every pair of regions Ri, Rj which are not causally adjacent replace Ωi,j

with Ωi × Ωj to simplify the form.
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As an example of the application of the strategy, if we havem = 4 for four regionsR1, R2, R3

and R4 such that R1 ▷◁ R2 and R2 ▷◁ R3 and R3 ▷◁ R4 then one can go through the steps
to find:

Λk1k2k3k4
l1l2l3l4

=
∑

k′1k
′
2k

′
3

Λk3k4
k′3l4

Λ
k2k′3
k′2l3

Λ
k′1k

′
2

l1l2
where k′1k

′
2k

′
3 ∈ Ω1,2 × Ω̸2,3 (5.66)

Ω1,2,3,4 = (Ω1,2 × Ω3 × Ω4) ∩ (Ω1 × Ω2,3 × Ω4) ∩ (Ω1 × Ω2 × Ω3,4)

= (Ω1,2 × Ω3,4) ∩ (Ω1 × Ω2,3 × Ω4) (5.67)

5.6 ΛOd
-Sufficiency

We have shown how to characterise ΛOm(ΛO1 ,ΛO2) and ΩOm(ΩO1 ,ΩO2). How do we
go about doing the same for a general rung of the Hierarchy? We augment the strat-
egy provided so that we may be able to calculate the forms for ΛOm(ΛO1 , . . . ,ΛOd

) and
ΩOm(ΩO1 , . . . ,ΩOd

) for d ≤ m when we have ΛOd
-sufficiency.

To begin with we find the Equation analogous to Equation 5.43 by applying all possible
ΛOd

matrices (there would be
(
m
d

)
of such matrices) followed by ΛOm . If we have ΛO2-

sufficiency we have Λk1k2...km
l1l2...lm

= δk1l1 δ
k2
l2
. . . δkmlm giving us an Equation analogous to Equation

5.45. Depending upon causal relations – absence or presence of causal adjacency between
every d region composite – one may simplify the equation further to get the form for
ΛOm(ΛO1 , . . . ,ΛOd

) and ΩOm(ΩO1 , . . . ,ΩOd
).

Since ΩOm is independent of the order of application of ΛOd
due to associativity of

compositional compression, we conjecture that the general form for ΩOm(ΩO1 , . . .ΩOd
)

when we have ΛOd
-sufficiency is:

ΩOm =

(m
d)⋂

∀ Od⊆Om

O (FOm (ΩOd
))

where Od ⊆ Om such that |Od| = d and Om = {1, 2, . . . ,m} (5.68)

where we have used the filling and ordering maps associated with a region with label
Om = {1, 2, . . . ,m} with size |O = {1, 2, . . . ,m}| = m and Od is any region such that
Od ⊆ Om and |Od| = d.

This concludes our work regarding the Hierarchy. We will apply the Causaloid Framework
to the Duotensor Framework in the coming Chapter.
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5.7 The Road Ahead...

The work presented in the current as well as previous Chapter was born out of a motiva-
tion to revisit the Causaloid Framework, a seminal work that motivated many works on
indefinite causal structures. To this end, we presented a diagrammatic representation for
the three levels of physical compression (Chapter 4), along with a review of the framework.
We bear the hope that this diagrammatic review will make this framework more accessible
to those interested, who are engaged in studying indefinite causal structures.

“Although correlations with indefinite causal structure had been defined in
more general settings (e.g., Hardy’s causaloid and Oreshkov and Giarmatzi’s
general processes), their quantitative features have not been studied in detail.”
(Jia, [65])

Further, the other crucial contribution of this work is substantiating how to handle corre-
lations when a causal structure is not assumed, through the study of Meta Compression
in detail. This led to the presentation of a Hierarchy for physical theories.

What does the Hierarchy signify physically? To answer this let us go back to the space of
Generalised Probabilistic Theories (or GPTs). An existing hierarchy through the value of r
in K = N r (Sorkin’s Hierarchy [93], and the introduction of this relation by Wootters [99])
can be ascribed to Tomographic Compression (Section 4.3.2) in terms of the Causaloid
Framework, though it has been studied earlier in the context of GPTs [40] and can be at-
tributed to tomographic properties of states, transformations etc. The hierarchy presented
in this work, pertains to the space of GPTs with indefinite causal structure (of which defi-
nite causal structure is a special case) and can be ascribed to Compositional Compression
and in turn the causal structure. We will see in the next Chapter that Quantum Theory
(QT) and Classical Probability Theory (CPT) will belong to the same rung in terms of
this work’s hierarchy.

Therefore we may think of the space of GPTs with indefinite causal structure structured
by two independent hierarchies. We schematically show this in Figure 5.2.

Through the progress, our work leaves us with many open questions:

• How one may fill the space of GPTs through the hierarchy presented in this work?

• How the techniques from studies of GPTs may translate possibly to this hierarchy,
and how this hierarchy can further tell us about the space of GPTs.
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QTCPT

r = 1 r = 2

d = 2

Tomographic Compression, K = Nr

Compositional Compression

ΛOd
-sufficiency

Figure 5.2: The space of Generised Probability Theories with respect to the two Hierarchies

• Do known frameworks for indefinite causal structures fall within this Hierarchy and
if so where?

• How does (indefinite) causality manifest in the Hierarchy? How does Meta Compres-
sion look like for a theory with dynamic causal structure such as relativity? Since
the Causaloid is an operational framework, we would need an operational formalism
for relativity (such as [50]) to achieve this.

• We will see that the duotensor framework has Omega sets that satisfy Ω1,2 = Ω1,̸2 ×
Ω̸1,2; can we find physical examples of Omega sets that satisfy Ω1,2 ⊂ Ω1, ̸2× Ω̸1,2 and
if so, when?

Revisiting the Causaloid Framework has led us down a road that leaves us with the large
research program of pursuing the characterisation of indefinite causality. We invite the
interested to join us in researching the answers to these questions.

The next Chapter focuses on studying the rungs of the Hierarchy through the application
of the Causaloid Framework to the Duotensor Framework (which includes finite quantum
theory), and in turn will help us learn how the framework can be used practically.
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Chapter 5: Statement of Contribution

In this Chapter, the main contribution is towards providing a hierarchy of physical the-
ories with respect to Meta Compression by providing the definition of ΛOd

-sufficiency,
building upon Chapter 4. The project was initiated by me and the problem state-
ment of characterising Meta Compression was presented by Lucien Hardy. The results
around characterising the hierarchy throughout the Chapter are my contribution. The
Chapter is solely written by me and contains unpublished work that was presented
at various conferences (QISS HK 2020, Q-Turn 2020 [90], APS 2021 [91], Quantizing
Time 2021 [89], QPL 2021) as the work developed.
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Duotensor met the Causaloid
in the land of diagrams

thus populating
the second rung
of the hierarchy3

3Chapter 6, illustration for the duotensor circuit and the corresponding Causaloid diagram considered
in Section 6.3.6
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Chapter 6

The Hierarchy’s Second Rung:
Duotensors meet the Causaloid

Meta Compression with ΛOd
sufficiency provides us with a Hierarchy for physical theories.

Which rungs do Quantum theory (QT), Classical Probability Theory (CPT) belong to?
We show using the Duotensor Framework that QT and CPT are ΛO2 sufficient.

Meta Compression, the third level of physical compression in the Causaloid framework,
provides a compressed specification of the Causaloid Λ given some rules (Chapter 4). We
characterised Meta Compression through ΛOd

sufficiency which gave us some general rules
for the rungs of a Hierarchy for physical theories (Chapter 5). A natural question arises,
where do existing theories, such as Quantum theory (QT) and Classical Probability Theory
(CPT) live within this Hierarchy? In this Chapter, we apply the Causaloid Framework
to operational circuits pertaining to generalised probability theories with directed wires
called the duotensors [49], which can be used to describe finite-dimensional QT and CPT
as special cases. We (diagrammatically) identify the three levels of physical compression,
of the Causaloid framework, in the Duotensor Framework and provide the structure of the
identified Lambda matrices as well as a more specific manifestation of the Meta Compres-
sion rules. This application is possible since the Duotensor Framework is formulated in a
manner having formalism locality (shortened to f-locality), a concept introduced by Hardy
in [46], which allows us to do calculations pertaining to a region by using mathematical
objects only pertaining to said region. We show that duotensors are ΛO2 sufficient, thus
populating the second rung. In contrast to Tomographic Compression which separates
QT and CPT through the value of r in K = N r (refer to Section 4.3.2 and for more
context Hardy’s QT from five reasonable axioms paper [40], Sorkin’s Hierarchy [93], and
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the introduction of this relation by Wootters [99]), the Hierarchy is more concerned with
Compositional Compression and places QT and CPT together in this respect.

We also briefly discuss how one may generalise the structure of the duotensors circuits to
be composed with what we will call hyperdwires instead of wires, these are hyper-edges
that connect d regions. Such generalisation would be ΛOd

sufficient by construction and
can be used to populate the higher rungs of the hierarchy. We speculate upon what we
may learn from such generalisations, once constructed and lay out some future directions.

6.1 Applying the Causaloid Framework

The Causaloid framework aims to help us find the structure of a (potentially unknown)
theory given sufficient operational data as a means of theory construction. To do so it starts
from regions that are on equal footing to avoid making assumptions on causality within
the theory. Eventually we would like to use the Causaloid Framework to help us find clues
towards the structure of Quantum Gravity. This is undoubtedly a challenging research
program. To prepare for this challenge can we learn how to apply the Causaloid Framework
to existing theories, such as Quantum Theory and Classical Probability Theory? Indeed
one could start from operational data but that would entail relearning a lot of research that
has led to these well established theories. Additionally, we would have to start from scratch
for each such theory. Instead we propose to start from formulations of these theories that
make the application of the Causaloid Framework possible at a suitable intermediate step
that circumvents starting from operational data. Further, since the space of Generalised
Probability Theories (GPTs) house both finite dimensional QT and CPT, among other
theories (such as the PR-Box world), applying the Causaloid Framework to a framework
of GPTs with directed wires called the Duotensor Framework is ideal for this purpose.

In the past two Chapters we focused on reviewing and providing a diagrammatic lan-
guage for the Causaloid Framework (Chapter 4) and studying Meta Compression, thereby
characterising the hierarchy (Chapter 5). The application of the Causaloid Framework to
existing physical theories will help us learn a few things- how to identify the levels of physi-
cal compression (and thus the central mathematical object – the Causaloid Λ) through the
mathematical objects of a theory; how the hierarchy plays into these identified mathemat-
ical objects corresponding to Tomographic and Compositional Λ matrices; and finally we
learn some insights about the physical theory itself, through its place in the hierarchy and
since the Causaloid Λ can be seen as the specification of the physical theory itself. Once
we are able to see how the Causaloid Framework applies to existing theories, we discuss
some preliminary ideas in Section 6.4 towards a future research project of constructing
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frameworks for the higher rungs, in order to populate the hierarchy with the application
of the Causaloid framework in mind.

6.1.1 Formalism-local and Operational Formulations

To apply the Causaloid Framework to some formulation of a theory, as opposed to starting
with operational data, we must meet certain conditions on the formulation of said theory.
Let us see why. Recall that in the Causaloid Framework we work with operational data
(obtained through some experiments) in the form of piles of cards. In lieu of these cards
with data we require formulations that are operational in nature. This means that the
Causaloid Framework is compatible with theories formulated in an operational manner.
Since physical theories are validated experimentally, having operational formulations of a
theory are certainly useful as evident from the field of Quantum Information (which serves
as an operational formulation of Quantum theory).

Further, in the Causaloid Framework, piles of cards are organised into elementary region
sets Rx, which have cards with the same location x, such that arbitrary regions are on
an equal footing prior to compositional compression. Any calculations for probabilities
of a region RO can be done through the use of mathematical objects pertaining to some
predictively well-defined region R which contains RO. This was crucial since this allowed
for performing calculations pertaining to a region without referring to regions outside it,
specially when the causal relations between these regions are not presumed a priori. Indeed,
the Causaloid framework would not carry full generality when applied to formulations of
theories that involve evolution of states in time, that restrict the kind of RO one can
consider. Therefore, we require formulations of existing theories that have, what Hardy
calls, the property of formalism locality (f-locality))1 as defined by him in [49] as follows:

“Formalism Locality (F-Locality): A formalism for a physical theory is
said to have the property of “formalism locality” if we can do calculations
pertaining to any region of space-time employing only mathematical objects
associated with that region.” (Section 1, [49])

It must be emphasised though that f-locality is not a property of a theory but rather of
its formulation. Formulations of theories with evolution of state in time, where the state
is stretched over a large (or infinite) spatial surface, such as in standard quantum theory
aren’t f-local. Similarly, formulations of theories through boundary conditions where the

1Usage: formalism locality or f-locality (noun), formalism local or f-local (adjective)

120



boundary lies far from regions of which quantities need be calculated (such as scattering
amplitudes calculations in studies of Quantum Field Theories) aren’t f-local either. One
may even argue that non-f-local formulations of theories aren’t truly compatible with a
strict operational methodology, in so far that experiments can be conducted in arbitrary
localised regions of space-time and referring to regions outside where and when an exper-
iment occurs would inevitably require some assumptions on the structure of causality in
the theory (assumptions we are not ready to make), which may not be evident from within
the localised experiment region itself.

The Causaloid Framework is setup operationally and in a f-local manner. Therefore, to
apply it to an existing theory while circumventing starting from data would require us to
find or construct a formalism-local operational formulation of said theory. Part of Hardy’s
long standing research program (summarised in [46]) since the Causaloid papers [41, 42],
has been towards formulating existing theories in an operational and f-local manner, be
it for Quantum theory ([46, 47]), for Quantum Field theory (this is briefly done in Part
V, [50]), or for General Relativity ([50]), so that they may be leveraged to construct an
operational, f-local path towards Quantum Gravity. For the purposes of this work we apply
the Causaloid Framework to the Duotensor Framework, as mentioned before.

6.1.2 Outline of the Chapter

The remaining Chapter is structured as follows. Section 6.2 introduces the reader to the
basics of the Duotensor Framework based on the paper [49]. Section 6.3 will contain
the main contribution of this Chapter, where we will identify the three levels of physical
compression from the Causaloid Framework in the Duotensor Framework. Since both the
Causaloid and Duotensor Framework support diagrammatic representations, we will apply
the Causaloid Framework diagrammatically. We make use of the modified version of (Tikz)
duotenzor package [45] to produce the many diagrams in this Chapter. Here, we will also
see the Lambda matrix relations and Omega set relations that we derived in Chapter 5
when solved further given the duotensorial structure. In Section 6.4 we will discuss how
one may generalise the duotensors and in Section 6.4.2 we discuss open questions around
how the hierarchy may relate to existing literature around causal indefiniteness.

6.2 Duotensor Framework

We are now ready to give a primer for the Duotensor Framework [46, 49], set up to treat
probabilistic circuits. The duotensor framework consists of operations, which come from
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the operational description of some experiment. Operations have input and output wires
that join them to other operations. Operations with only outputs are called preparations
and operations with only input are analogous to measurements called results. Finally
operations with both inputs and outputs may be thought of as transformations. But the
framework unifies all of these under operations in the spirit of keeping regions on a causally
equal footing. These operations together when joined are referred to as fragments. A
fragment with no open input or output wires is called a circuit. Fragments (the operational
description) are then associated with duotensors (the mathematical objects), which gives
us a way to calculate probabilities. Duotensors are a lot like tensors but additionally have
two kinds of inputs and two kinds of outputs (diagrammatically denoted with black or
white dots) that led to the name “duo”-tensors.

The duotensors pertain to Generalised Probability Theories that can be set up in circuit
form with directed wires. One can “upload” physical theories in to the Duotensor Frame-
work if the physical theory can be expressed though operations and wires and satisfies
the two assumptions of the Duotensor Framework (Section 12, [49]). Finite dimensional
Quantum theory when “uploaded” to the Duotensor Framework gives the Operator Tensor
Formulation of Quantum theory [47, 48].

In this Section we review the operational descriptions within the Duotensor Framework,
how probabilities are set up and finally how to calculate them using duotensorial expres-
sions, based on Section 2 to Section 7 of [49]. Alongside, through use of footnotes, we
also identify how a concept of the Duotensor Framework (DF) will relate to the Causaloid
framework (CF), connecting to the work to be presented in Section 6.3. We use footnotes
to avoid the mixing of concepts of the Duotensor and Causaloid Frameworks for new read-
ers, while also catering to the curiosity of more eager readers who are (somewhat) familiar
to the duotensors. The reader may also safely choose to ignore these footnotes as we will
go through them at length in the coming Section.

6.2.1 Operational descriptions

The Duotensor Framework is an operational framework. We begin by describing the ex-
periments – through apparatus, knob settings, system types, outcome sets etc. – which
are depicted using operations joined by wires2.

2This will correspond to CF’s Pre-Compression stage of Physical Compression
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Operations

An operation3 - A (denoted by capital letter in sans serif font), corresponds to one use of
some apparatus. It is specified using the following features:

1. Input and Outputs: These can be thought of as apertures through which systems enter
and exit the apparatus once. These systems passing in and out are operationally
specified through system types a, b, . . . (note the sans serif font). We will denote
inputs by w−(A) and outputs by w+(A). These types will affect composition of
operations.

2. Settings: denoted by s(A) is part of the specification of the operation. It consists
of knob settings and other adjustable parameters of the apparatus, that can affect
outcomes.

3. Outcomes: denoted by o(A) is a set associated with the operation. All elements of
o(A) are possible meter readings, detector clicks etc. that tell us what “happened”
in the operation A. We will be interested in the probabilities of such outcomes.

Therefore, the full specification of operation A, is given by {s(A), o(A),w−(A),w+(A)}.
The operation A is represented diagrammatically by a box with inputs and outputs with
system types, and symbolically with subscripts (superscripts) for inputs (outputs). Note
that the integer to the system type in the symbolic notation helps identify apart two
distinct input/output which may have the same type (for example here b2, b4), while in
the diagrammatic notation such distinction is unambiguous from the diagram.

A

a b c

b d

⇐⇒ Ab4d5
a1b2c3

(6.1)

Wires

We use wires4 to join different operations when a system exits from an aperture of some
operation and enters the aperture of another. Wires are governed by the following rules:

3Operations will correspond to CF’s Elementary Regions
4Wires tell us which regions are Causally Adjacent ▷◁.
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1. One wire: Since wires are operational equivalent of the passage of some system
therefore a wire can connect to only one input and one output, consequently only
one wire may connect an input and output

2. Type matching: Since wires represent some system therefore joining an output and
input is possible only if their types match, (in the example below wire of type b joins
A operation’s output to B operation’s input).

3. No closed loops5: Since wires are directed from outputs to inputs, it is demanded
that when we go from one operation to another via wires that we never reach the
same operation again. This rules out closed time-like loops.

Wires are represented diagrammatically by a line and symbolically are seen through re-
peated indices - when a subscript of some operation and superscript of another are the
same. Consider the example of a wire joining two operations A and B:

A

B

a b c

b da

d c

⇐⇒ Ab4d5
a1b2c3

Bd7c8
a6b4

(6.2)

Note that the symbolic notation contains integer subscripts on the system input and output
types, since repeated indices represent the wires, and the type and integer should match.
In the diagrammatic notation since the wires are evident within the diagrams, integer
subscripts aren’t necessary.

Fragments

Fragments6 are formed by wiring together some operations while obeying all wiring rules,
and are quite versatile. They are denoted by capital alphabets in sans serif font, such

5In principle one may relax this as long as the probabilities are well-defined. We will utilise such an
exception, with no physical repercussions, in order to apply CF to DF, to be introduced in Equation 6.63.

6A fragment made of more than one operation will correspond to CF’s composite regions
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as fragment F. For example, the composition of A and B is a fragment, say F = AB
(here we are suppressing the subscripts and superscripts of the fragments for brevity).
Fragments in general will have some open outputs and inputs after wiring together the
operations and will be associated with settings s(F), outcomes o(F), similar to operations.
The inputs and outputs of the operations that make it, will either remain open w−(F),
w+(F) or become associated with internal wiring w(F) of the fragment. For example for
the fragment F = AB, the inputs and outputs of A,B, w−(A), w+(A), w−(B), w+(B) will
give the inputs and outputs for fragment F: w−(F), w+(F) and additionally some internal
wiring w(F) (in this case it is the wire with system type b). We will denote w−(F), w+(F),
w(F) together as wall(F). The setting and outcome sets need not be Cartesian products of
the operations the fragment is made of7. A fragment may be a part of a bigger fragment.
Fragments may therefore be regarded as the circuit equivalent of arbitrary regions of space-
time. A fragment may be made up of disjoint fragments. An operation is a special case of
a fragment. Another special case of a fragment is a circuit, explained below.

Circuits

Circuits8 are fragments with no open inputs or outputs left after wiring its operations.
Thus, for a circuit C, we have w−(C),w+(C) as empty specifications and wall(C) ≡ w(C).
Similar to fragments a circuit may consist of disjoint circuits. Circuits play an important
role in calculating probabilities.

6.2.2 Probabilities

A fragment is something that “happens”. The probability associated with this fragment
happening is defined as the probability some outcome happens, given settings and wiring.

Prob(A) = Prob(xA ∈ o(A)|s(A),wall(A)) (6.3)

One may similarly define conditional probabilities for two disjoint (or non-overlapping)
Fragments A,B by the following expression

Prob(A|B) = Prob(xA ∈ o(A)|s(A),wall(A), xb ∈ o(B), s(B),wall(B)) (6.4)

Immediately, we must ask when are these probabilities well conditioned?

7This is due to CF’s Compositional Compression Structure
8Circuits will correspond to CF’s predictively well-defined regions
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Well Conditioned Probabilities:

The probability Prob(A|B)is well conditioned

if Prob(A|BC) = Prob(A|BD) for all C,D (6.5)

In such a case, we can see that Prob(A|B) is fully determined by the fragments A,B. While
probabilities are not always well conditioned, the framework provides us with a condition
that guarantees well-conditioned probabilities.

Assumption 19 The probability, Prob(A), for any circuit, A is well condi-
tioned. The probability is determined by s(A),wall(A), o(A) and is independent
of operational descriptions belonging outside the circuit.

Using Bayes rule and the above Assumption one can show (detailed steps available on page
11, [49]) that for two circuits A,B we have

Prob(AB) = Prob(A)Prob(B) (6.6)

While the Assumption applies to circuits we do want to also be able to work with fragments.
To this effect the notion of equivalence relations is introduced. We say, roughly speaking,
that two objects are equivalent if they share the same probabilistic properties. To define
equivalence relations the p(.) function is introduced as follows:

p(αA + βB + ...) = αProb(A) + βProb(B) + ... (6.7)

where α, β are real numbers and A,B are circuits. Clearly this implies that p(A) = Prob(A).
Similarly we have p(AB) = p(A)p(B) from Equation 6.6. We are now ready to define what
is meant by Equivalence denoted by the symbol ≡.

Equivalence: We say two expressions are equivalent

expression1 ≡ expression2

if p(expression1F) = p(expression2F) (6.8)

for any fragment F such that expression1F and expression2F are some linear
sum of circuits as required by the function p(.).

9Therefore circuits correspond to predictively well-defined regions.
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Equality implies equivalence but not the other way around, making equivalence a weaker
concept. Equivalence will be very useful (as we shall see later) since it allows us to com-
pare objects even if they are not associated with well conditioned probabilities as long
as they combine with some fragment to give well conditioned probabilities. One impor-
tant equivalence we will make of is Prob(A) ≡ A for any circuit A, since the fragment
F that can make a circuit into a circuit is another circuit and using 6.6 we can write
p(AF) = p(A)p(F) = p(Prob(A)F).

6.2.3 Duotensors

In this part, we show how to go from operations to duotensors, which may be considered as
going from the operational descriptions - the physics, to the corresponding mathematics.
We begin with an operation A with only one output (called a preparation) and an operation
B with only one input (called an result), each with system type ‘a’ which can be joined
together with a wire to give the simplest circuit. Then we give the duotensor associated
with this circuit. To do so, the concepts of fiducial results and fiducial preparations are
introduced, side by side due to the similarity of their structures (up to direction of time).

Fiducial Results:
An operation that has only inputs is
called an result. Consider the result Ba1

with input of system type a.
Xa1
a1

, where a1 = 1 to Ka, is a fiducial
set of results for system type a if we can
write

Ba1 ≡ Ba1X
a1
a1

(6.9)

for any result Ba1 .
Ba1 is a duotensor that supplies the coef-
ficients, which has Ka real (possibly neg-
ative) entries.

Fiducial Preparations:
An operation that has only outputs is
called a preparation. Consider the prepa-
ration Aa2 with output of type a.

a2X
a2 , where a2 = 1 to Ka, is a fiducial

set of preparations for system type a if
we can write

Aa2 ≡ a2A a2X
a2 (6.10)

for any preparation Aa2 .
a2A is a duotensor that supplies the coef-
ficients, which has Ka real (possibly neg-
ative) entries.

Let us unpack Equations 6.9 and 6.10. These are hybrid equations - they contain operations
A,B, denoted with sans serif font; as well as duotensors A,B denoted with the usual math
font. The sans serif indices of operations signify system type, while math font indices of
duotensors run over the Ka entries in this example. The usual convention of summing over
repeated indices (of the same font) is used.
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The fiducial set of results (or preparations) for a given system type (here a) is minimal,
such that no set of fewer than Ka results (or preparations) can have this property. Such a
fiducial set can always be found since in the worst case there would be one fiducial result
(or preparation) for each possible result (or preparation). In general though the fiducial set
of results (or preparations) will be much smaller than the set of results (or preparations) 10.
The fiducial set of results or preparations are the bridging elements of the hybrid equations
which map the physics (operations) to the mathematics (duotensors).

Further, we can write each element of Equations 6.9 and 6.10 in diagrammatic form:

Xa1
a1

⇐⇒
a

a (6.11)

Ba1 ⇐⇒ Ba (6.12)

Then the diagrammatic form for Equa-
tion 6.9 would be:

B

a
≡

B

a

a

(6.13)

a2X
a2 ⇐⇒

a

a
(6.14)

a2A ⇐⇒ A a (6.15)

Then the diagrammatic form for Equa-
tion 6.10 would be:

A

a ≡
A

a
a (6.16)

Equations 6.13 and 6.16 are hybrid diagrams corresponding to the hybrid equations 6.9
and 6.10. Hybrid diagrams have wires running vertically for the operational description
and have links running horizontally for the duotensors. Horizontal links represent the
summation over the corresponding index (here a).

Black and White Dots

Notice the black and white dots used in the diagrammatic representation – these play an
important role. A duotensor, generally, can have four kinds of indices – subscripts and pre-
subscripts corresponding to results and, superscripts and pre-superscripts corresponding to
preparations. The reason for four indices is that there are two independently chosen basis
sets associated with every index - a fiducial set of effects and a fiducial set of preparations.
Diagrammatically the two basis sets are depicted using black or white dots, the convention

10Fiducial results and preparations will relate to CF’s tomographic compression.
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is depicted below:

Dd = D , eE = E , eF = F , Gd = G (6.17)

A rule is imposed on composing duotensors. Only white and black dots may be matched
together as seen implicitly before in Equations 6.13 and 6.16. Symbolically repeated indices
between (pre-)subscript and (pre-)superscript can be summed over as long as they lie on
the same side of the duotensors (along with matching types and fonts), this is the symbolic
equivalent of the black and white dots matching rule. This additional structure with the
black and white dots (or the four indices) that distinguishes these from tensors lends the
duotensors their name. In the above example, Dd can be matched with Gd, while eE can
be matched with eF . The horizontal link interrupted by a black and a white dot indicate
that we sum over the index, and can be replaced with a line = = :

B

a

a

=

B

a

a

(6.18)
A

a
a =

A
a

a (6.19)

We will soon discuss the available conventions for using white and black dots as well as how
one may flip colours (or symbolically hop them over to the other side) using the hopping
metric. For the purpose of the work to be presented in the Section 6.3, we always use
black dots for fiducial results (such as Xa1

a1
) and fiducial preparations (such as a2X

a2), thus
unambiguously leaving the duotensors with white dots.

The simple circuit

We can combine operation A and operation B giving the simplest possible circuit. We use
the Equations 6.13 and 6.16 to expand the circuit (notice equivalence symbol ≡):

A

B
a ≡

A
a

B
a

a =

A
a

B
a

a (6.20)

the above diagrams symbolically give:

Aa1Ba1 ≡ a′1A a′1
Xa1 Xa1

a1
Ba1 (6.21)

We are now ready to define the hopping metric, which essentially tells us how the two inde-
pendently chosen basis sets associated with every index (lending duotensors their structure)
talk to each other.
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Hopping metric: denoted by 11, is a duotensor, defined using the p(·) function

a := p

 a

a

a
 ⇔ a′1

ga1 := p(a′1X
a1Xa1

a1
) (6.22)

and its inverse is represented by .

⇔ a′1ga1 (6.23)

While has real non-negative entries, has possibly negative real entries.

Identity: One can also introduce and . Since is the inverse of we have:(
= ⇔ a1g

a′′1 a′1ga′′1 := a′1
a1
δ
)

and
(

= ⇔ a′′1ga′1 a′′1
ga1 := δa1a′1

)
(6.24)

This implies that both and are equal to the identity. Therefore one can introduce
pairs of black and white dots, or delete them:

= = (6.25)

Back to the simple circuit, using the definition of the hopping metric we can reduce Diagram
6.20 to:

A
a

B
a

a ≡ A a B (6.26)

The hopping metric can be used to flip the colour of dots, as shown in :

A := A , B := B (6.27)

Relations 6.27 applied to 6.26 gives:

A a B = A B
a = A B

a := A B
a (6.28)

Using 6.20, 6.26, 6.28 we get the equivalence between the operational side (in this case
the simple circuit, but can be generalised to fragments) on the left hand side with the
associated duotensor on the right hand side:

A

B
a ≡ A B

a
(6.29)

11The hopping metric will be important for CF’s compositional compression.
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We can go further to give an equality relation. Recall that Prob(C) ≡ C for any circuit C.
The duotensor is in fact equal to the probability associated with the circuit:

A B
a

= Prob


A

B
a

 , Prob(Aa1Ba1) = a1A a1B = Aa1 Ba1 (6.30)

Note the similarity of structure of the duotensor and the circuit, which will hold true for
general circuits as well, once we have full decomposibility. Hardy points out:

“It is striking that the probability for a circuit is given by a duotensor calcu-
lation that looks the same as the circuit itself... In the diagrammatic case we
need only rotate the diagram through 90◦ and change the font from sans serif
to normal maths font. In the symbolic case we need only change the font.”
(Section 6.9, [47])

Full Decomposability

Operations will not always have single inputs and outputs, how do we map multiple inputs
and outputs to fiducial sets of results and preparations? We require some extra structure
to find the corresponding duotensor calculations for a general operation. The following
assumption addresses this issue:

Assumption 2: Operations are fully decomposable: Any operation is
assumed to be equivalent to a linear combination of operations each of which
consists of a fiducial set of results for each input and a fiducial set of prepara-
tions for each output. Hence, this assumption is equivalent to the statement
that any operation, Dd4e5...f6

a1b2...c3
, can be written, in diagrammatic notation, as

D

a b
. . .

c

d e
. . .

f

≡ D.... . .
...

. . .c

c

b

b

a

a
. . .

d

d

e

e

f

f
. . .

(6.31)
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and correspondingly in symbolic notation as,

Dd4e5...f6
a1b2...c3

≡ Xa1
a1
Xb2
b2
· · ·Xc3

c3
d4e5...f6Da1b2...c3 d4X

d4
e5X

e5 · · · f6Xf6 (6.32)

Physically, this assumption has to do with recognising that inputs and outputs are associ-
ated with physical systems entering and exiting the operation and thus is a statement on
the statistics of a composite system. It is shown in [47, 48] that for the space of generalised
probabilistic theories, full decomposibility is equivalent to tomographic locality12, which
states that the state of a composite system can be determined from the statistics collected
by making measurements on its components.

What is a duotensor?

Upon discussing full decomposability we are ready to discuss general duotensors with
multiple horizontal wires corresponding to preparations and/or results. As mentioned
earlier, duotensors can have four kinds of indices - (pre-)subscripts (on the left side of the
duotensor box) and (pre-)superscripts (on the right side of the duotensor box). We also
saw how to use the hopping metric to flip the colours (or hop the indices to the other
side). With multiple wires from a duotensor in general one may have any combination of
coloured dots, consider the example of an operation O:

O (6.33)

This can become messy. Therefore we share three possible conventions to represent duoten-
sors, each with its own significance. Let’s consider the operation O (from above) and how
to represent its associated duotensor in the different conventions:

1. All white dots A duotensor with all white dots provides the weights in the sum over
fiducial elements.

O ≡ O (6.34)

2. All black dots A duotensor with all black dots corresponds to the fiducial probabilities
when fiducial preparations (results) are placed on each input (output) of an operation.
Capping the inputs and outputs of O with fiducial elements gives:

12The assumption of full decomposibility will provide a specific form for CF’s tomographic lambda
matrices and omega sets.
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Oa
b

c
d

= Prob

 O
a

a b
b

c
c

d
d


3. Standard form is when we have all the indices on the right hand side so we have

only superscripts and subscripts. The standard form only invokes the use of fiducial
results (but not fiducial preparations). Diagrammatically this corresponds to having
all white dots on the left and all black dots on the right

O (6.35)

One can connect duotensors up in standard form without using the hopping metric
since black dots will always be put next to white dots.

These conventions tell us what do the black and white dots signify. It is clear that a
duotensor with all black dots corresponds to the probability of the particular fiducial
result(s) and/or preparation(s) to have happened, and thus must be non-negative (and
real). On the other hand a duotensor with all white dots corresponds to coefficients that
weigh the probabilities to give probabilities for any result(s) and/or preparation(s) to have
happened, and are real but may be negative, depending on the theory. While classical
probability theory gives non-negative entries, quantum theory in general requires negative
entries.

Similar to the steps shown in the simple circuit going from operations to duotensors one
may use all the tools provided to work with any fragment or circuit. Examples can be
found in [49, 47]. Further, Quantum theory can be formulated through the duotensors
in a f-local manner by mapping operations with operators that are associated with the
space of Hermitian operators on complex Hilbert spaces, that give further structure to the
duotensors, seen in detail in [47].

We now move on to the application of the Causaloid framework to the Duotensor Frame-
owrk (Section 6.3) where we will stick to the convention of all white dots for duotensors of
operations and all black dots for fiducial elements. We will also make use of the hopping
metric and identity duotensors as required.
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6.3 Causaloid meets Duotensors

We are now ready to apply the Causaloid Framework’s three levels of physical compression
to the Duotensor Framework. We will progressively identify descriptions and objects of
the Duotensor Framework with those from the Causaloid Framework, and in the process
use everything we have learnt so far from Chapter 4 until now. Since we will refer to both
frameworks we will often make use of the shorthand DF (for the Duotensor Framework)
and CF (for the Causaloid Framework). We consider a circuit R to serve as exposition of
the identification process and then provide results that are true for general circuits. The
identification process has the following six steps:

1. Operational Data: We begin by identifying how operational descriptions (opera-
tions, wires, settings, outcomes) from DF would translate to the organisation of data
in CF, including identification of elementary regions.

2. Probabilities: We identify well-conditioned probabilities for circuits (Assumption
1) with the notion of predictively well-defined regions in CF, as well as use the p(.)
function for probabilities associated with regions.

3. Zeroth level: Then we consider a general circuit for exposition and identify proba-
bilities pα1 for some region R1 as well as R(R1) and P(R1).

4. First level: Here, we identify fiducial measurements that give the Tomographic
Lambda matrices and Omega sets. These have a specific form due to DF’s full
decomposability (Assumption 2).

5. Second level: We will consider two regions of the circuit for exposition and identify
the Compositional Lambda matrix and Omega set, which have a specific form in
terms of the hopping metric and identity maps, due to the structure of wires.

6. Third level: Finally we consider three regions. As an example we consider the
causal relation R1 ▷◁ R2 and R2 ▷◁ R3 (that corresponds to Case 5 from Section 5.5).
We will see that the sums in the expression for ΛO3(ΛO2 ,ΛO1) will vanish. We will
also see specification for the Causaloid for the Duotensor Framework which we show
to be ΛO2-sufficient.

The identification process will primarily be done using diagrammatics of both frameworks
- those introduced in Chapter 4 for CF and those of DF from [49], reviewed in Section
6.2. The identifications for the circuit R will then be used to provide the general form for
Lambda matrices and Omega sets for the Duotensor Framework, thus showing us that it
is ΛO2 sufficient.
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6.3.1 Operational Data

In CF, recall from Section 4.2.2 and 4.2.3 we have operational data recorded on cards in
the form (x - Location, a - Actions, s - Observation) according to which cards are organised
into sets of cards regions (through locations), procedures (through actions) and outcomes
(through observations). We are circumventing the step of starting from operational data,
therefore we identify how the operational descriptions from DF (Section 6.2.1) can be
parsed to fit the data format of CF.

1. Location: In DF the notion of location is not explicit but captured through opera-
tions which happen in a localised region of space-time. Note that the same operation
can be used multiple times, in such a case one may distinguish them with an integer
subscript or using a different letter. We will consider each instance of an operation to
represent an elementary region (representing cards attributed to a single location).
In terms of notations, each operation will be assigned with a position label (an inte-
ger), such that operations {A,B,C, . . . } are associated with regions ({R1, R2, R3, ...})
(where we use the position of the letter in the alphabet as the region label)

Operations A,B,C, . . . ⇐⇒ Elementary regions R1, R2, R3, . . . (6.36)

It follows that fragments that are composed of more than one operation will represent
composite regions and thus a fragment say F = AB will be associated with the region
R1 ∪ R2. Further, for CF’s predictively well-defined region R, we use the symbol R
(which as we see will correspond to a circuit).

2. Actions: CF’s notion of actions for some region, say R1, corresponds to DF’s settings
s(A) and input and output wire types w(A), of the operation A. These will map to
the procedure set FR1 which may also be denoted by FA.

s(A),w−(A),w+(A) ⇐⇒ Procedure FR1 = F ∩R1 (6.37)

An issue arises for the above identification for fragments. While CF’s procedure is
local on the elementary regions, fragments in DF have internal wiring that live on
pairs of operations, which do not seem locally describable. Hardy discusses this issue
in [43] through the notion of connections as part of “Object Oriented Operational-
ism”. Nonetheless, this does not hinder the application of CF to DF done through
elementary regions for which the identification holds.
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3. Observations: CF’s notion of observations for some region, say R1, given the ac-
tions, corresponds to DF’s outcomes o(A) of the operation A, given the setting, inputs,
outputs (and wiring). This will provide the outcome sets YR1 or YA.

o(A) ⇐⇒ Outcome YR1 = Y ∩R1 (6.38)

The above identification can also be used for fragments.

It is important to note that while in DF’s operational description one is provided with
settings and outcomes, if one were to obtain operational data as required by CF, one
would have to repeat the operation/fragment/circuit multiple times until all settings are
“chosen” and all outcomes “happen”.

6.3.2 Probabilities

In the Causaloid framework, as well as the Duotensor framework, one important objective
is to be able to calculate probabilities (an objective shared by operational theories and in
particular generalised probability theories). It is important to be able to tell when calcu-
lations give well-defined probabilities. Recall from CF’s Section 4.2.4 that for a composite
region R =

⋃
xRx , one either considers conditions C such that prob(YR|FR, C) is well-

defined or carefully choose the composite region R such that prob(YR|FR) is predictively
well-defined without any conditioning. While fragments do not have well-conditioned prob-
abilities, DF’s Assumption 1 guarantees that circuits will. Therefore, if one is interested in
some operations (elementary regions) one may consider circuit(s), which we denote with R,
that contain these operations as the predictively well-defined region R. Since probabilities
of circuits are multiplicative one may simply focus also on the circuit(s) that contain the
operations (regions) of interest.

For example, if one is interested in the probabilities for some operation M (region R13),
one can start with prob(YR|FR) where the predictively well-defined region R is given by
the circuit R = MNOP which contains the operation M:

M

m o

, prob(YR|FR) = prob


M

O

N

P

m
o

m

p
n


(6.39)
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6.3.3 Level Zero: Pre-Compression

We are ready to identify the levels of physical compression (analogous to the steps from
the Section 4.3). For exposition we will consider an example circuit R (which serves as
the predictively well-defined region) here, throughout until the end of Meta Compression.
Consider a region R1 associated with an operation A that is within the circuit R (we
have arbitrarily chosen an operation A with one input and two outputs for the purposes
of exposition but one may easily consider instead an operation with different number of
input(s) and output(s)). The operation A of interest and the rest of the circuit, denoted
by the fragment F13, compose to give the circuit R = AF:

A F

b c

a

(6.40)

Since we are interested in probabilities associated with this circuit recall that from DF we
have that a circuit is equivalent to its associated probability, that is:

A F

b c

a

≡ Prob


A F

b c

a


(6.41)

This distinction between equality and equivalence is important to note going forward.
Through the prescription of CF we are interested in the probabilities:

pα1 = Prob(Y α1
R1

∪ YR−R1|Fα1
R1

∪ FR−R1) (6.42)

= Prob(xA ∈ o(A), xf ∈ o(F)|s(A),w−(A),w+(A), s(F),wall(F)) (6.43)

13It is not a coincidence that the fragment F resembles a Quantum Comb [18], since they are indeed
closely related concepts. Unlike general Process Matrices that allow causal indefiniteness, DF’s fragments
have a definite causal structure
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= p
α1

= Prob


α1 A F

b c

a


(6.44)

where we identify DF’s equivalent object. Notice the α1 label in Equation 6.44, we explain
this in a moment. Let us recall (Section 4.3.1) CF’s notion of a state:

The state for R1 associated with a generalised preparation in R−R1 is defined
to be the thing represented by any mathematical object which can be used to
predict pα1 for all measurements in R1 labelled by the index α1.

where (YR−R1 , FR−R1) is generalised preparation for region R1, and (YR1 , FR1) is a measure-
ment associated with the actions and outcomes seen in R1. The measurement outcomes
for the measurement in R1 will be labelled by α1 which gave us CF’s generalised Born rule:

p
α1

=

α1
R

P

(6.45)

Note that when we refer to CF we will use generalised preparation (where causal structure
is not assumed) which should be disambiguated with the DF’s concept of preparation.
DF comes equipped with a definite causal structure where results and preparations are
distinguished. α1 introduced on the right hand side of Equation 6.44 labels the outcome
and setting for the operation A, which is not explicitly drawn in DF, but we will draw it
explicitly to aid identification with CF. We can now identify the components (measurement
vector R(R1), state P(R1)) from CF’s generalised Born rule 6.45 with the elements in
Equation 6.44.

α1
R

=
α1 A

b c

a

,

P

= F

b c

a

(6.46)
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Mapping Vectors to Fragments and Duotensors

Let us try to understand this identification. Clearly an operation (elementary region) is
a particular kind of fragment. We explain how we can identify both R(R1) and P(R1)
with fragments. We have worked with tomographic compression of two separate regions
(Equation 4.49) where we can show pα1α2 = rα1(R1)·pα2(R1) = rα2(R2)·pα1(R2) and in the
case where two regions make a predictively well-defined region such as we have here for A
and F then the object that represents the state given by the generalised preparation of one
region can be seen as the measurement vector for the other region! Therefore it is in fact
expected that fragments/operations can be identified as either (generalised preparation or
measurement) as required by the context of which region we are writing in terms of, and
the inner product corresponds to joining of wire(s) (which is why we do not need to provide
the internal structure of the fragment F). In fact the role of state vector is only for the
purposes of scaffolding and we later only focus on r-vectors to do calculations, as captured
by Hardy as follows:

“It is these r-type vectors that we use in real calculations. The state vector, p,
is akin to scaffolding - it can be dispensed with once the structure of the r-type
vectors is in place...” (Section 4.2, [46])

Further, let us address something implicit in the above equations. Recall that R and P
(and subsequently r and p) are prescribed to be vectors. On the other hand fragments (and
subsequently duotensors) have more tensorial of a structure. How can we equate them,
and more importantly why are they represented with different kinds of objects? To equate
them one can “flatten” a tensor (or duotensor) into a vector (at the cost of losing some
structure). By “flattening” we mean taking the components of the tensor and arranging
them in a column as the components of a vector. In this example Abc

a flattens into R and
Fa
bc flattens into P. It is natural that the same object is represented by different objects

in the two Frameworks. CF deals with operational data that is organised and studied to
find the correlations a physical theory provides; and thus it is expected to a priori not
have the full structure in its description of the state and measurement of a region. The
structure is recovered through the levels of compression. DF on the other hand has a more
specific structure inbuilt even at the level of operational description, through the notion
of systems that enter and exit. One may thus think of the Causaloid Framework working
with a number (the size of the vector) while the Duotensor Framework comes equipped
with a physically meaningful factorisation (through system types) of the same number.

This concludes the Pre-Compression phase.

139



6.3.4 Level One: Tomographic Compression

CF’s Tomographic compression (defined in Section 4.3.2), through a fiducial set of mea-
surements on the region R1, replaces the uncompressed state and measurement vector P
and R with the vectors p and r of size |ΩR1| (corresponding to the size of the fiducial
measurement set). Fiducial measurement vectors rl1 can be linearly combined using the
tomographic compression matrix Λl1

α1
where α1 ∈ ΓR1 and l1 ∈ ΩR1 , such that ΩR1 ⊆ ΓR1 ,

to give rα1 and thus pα1 . Recall the following equation:

p
α1

=

α1
r

p

=

Λ
α1 l1 r

p

(6.47)

DF’s fiducial results (Xa
a) and fiducial preparations (b2X

b2 , c2X
c2) together play the role

of CF’s fiducial measurements. Let us see how. We expand the circuit R using hybrid
diagrams that involve fiducial results and preparations on operation A:

Prob


Aα1 F

b c

a


= Prob


A

α1

a

b
c F

b c

a


(6.48)

= Prob


A

α1 b
c

a
F

b c

a


(6.49)

We slightly tweak the DF diagrammatics and bend the fiducial results wires coming out on
the left back to the right side. Therefore we will have duotensors with wires on the right
for both preparations and results. This is purely towards aiding the identification with the
CF diagrammatics. In Equation 6.48 we have used the following duotensor manipulations
where we introduced black and white dots since = = :
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Aa b
c

b c

a

= A
a

b
c

b c

a

= A
b

ca

b c

a

(6.50)

We compare Equation 6.47 (CF) with Equation 6.48 (DF), thus identifying rα1 :

α1
r

≡ A
α1

a

b
c

b c

a

(6.51)

We continue by expanding rα1 =
∑

Ω1
Λl1

α1
rl1 and comparing it to Equation 6.49,

Λ
α1 l1 r

≡ A
α1 b

ca

b c

a

(6.52)

to identify Λl1
α1

with a duotensor with white dots, that provides coefficients, as well as rl1
with black dots corresponding to fiducial preparations and results:

→ Λ
α1 l1 ≡ A

α1

a

b
c ,

l1 r

≡
b

b

c

c

a
a

(6.53)

The state p that lists the probabilities for fiducial measurements pl1 is associated with the
fragment F (same as for P) since it continues to satisfy the definition of the state and one
can always truncate P to contain only the entries where α1 = l1 to get p:

p

≡ F

b c

a

(6.54)
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Let us discuss the role of DF’s Assumption 2: full decomposability for CF’s first level of
physical compression. Tomographic Compression captures the number of measurements
required to do Tomography of the region, here R1. Full decomposability goes further, it
tells us the number of fiducial preparations required for tomography of each of the outputs
of an operation and number of fiducial results required for tomography of each of the
inputs of an operation, thus giving additional structure. Full decomposability translates
to tomographic locality in the space of GPTs.

Given full decomposibility, Omega sets, here ΩR1 , can be factorised in terms of DF’s inputs
and output. For A from our example we see that.

l1 ∈ Ω1 −→ l−a , l
+
b , l

+
c ∈ Ω−

a × Ω+
b × Ω+

c

where l−a ∈ Ω−
a = {1, . . . , Ka} , l+b ∈ Ω+

b = {1, . . . , Kb} , l+c ∈ Ω+
c = {1, . . . , Kc} (6.55)

where we use + for Omega sets of preparations and − for Omega sets of results as a way to
distinguish them which will become useful to discuss Compositional Compression in DF,
though strictly from the standpoint of CF we may not be able to discern between them
from the data of a single region. Let us incorporate the form for the Omega set to update
the Causaloid Diagrams of our example of the Duotensor Framework. We see that:

Λ
α1 l1

= Λ
α1

l+b , l
+
c

l−a
,

l1 r =
l+b , l

+
c

l−a
r (6.56)

⇒
Λ

α1 l1 r

p

=

Λ
α1

l+b , l
+
c

l−a
r

p

(6.57)

For a general operation O (Region R15) (or fragment) we will have the Omega set
factorise:

ΩR15 =

(
×

i∈w−(O)

Ω−
i

)
×
(
×

o∈w+(O)

Ω+
o

)
(6.58)
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6.3.5 Level Two: Compositional Compression

Compositional Compression is physical compression for composite regions over and above
Tomographic Compression of the constituent regions (Section 4.3.3). To see Compositional
Compression we will consider two elementary regions, operation A (region R1) and opera-
tion B (region R2), corresponding to a ΛO2 matrix. We are interested in probabilities pα1,α2

for the composite region R1 ∪R2 (Equation 4.36, reproduced below). We will discuss ΛOd

in the Meta Compression section where we will use concepts we learnt in Chapter 5.

pα1α2 = Prob(Y α1
R1

∪ Y α2
R2

∪ YR−R1−R2|Fα1
R1

∪ Fα2
R2

∪ FR−R1−R2) = p

α2

α1

(6.59)

The operation A (region R1) and the operation B (region R2) live in the circuit R from
before. We have simply expanded the fragment F in terms of the operation B and some
fragment G (for rest of the circuit):

A F

b c

a

=

A

B

G

b c

a

b c

d

(6.60)

Comparing both sides it is clear that the composition of the operation B and the fragment
G gives the fragment F or F = GB, such that R = FA = GAB.

We can identify pα1,α2 with the predictively well-defined probabilities of the circuit R,
indexed with α1 and α2 (analogous to Equation 6.44). Further, we can expand A and B in
terms of fiducial preparations and results, analogous to Equations 6.48-6.49, which capture
Tomographic Compression. Therefore we have:
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p

α2

α1

= Prob

 Aα1

Bα2

G

b c

a

b c

d


= Prob

 A

B

α1

α2

b
c

a

b

c

d

G

b c

a

b
c

d


(6.61)

The Equation above will help us identify Λl1
α1

, Λl2
α2

, rl1 and rl2 (analogous to Equation

6.51-6.53). Next, we would like to identify Compositional Compression through Λk1,k2
l1,l2

. To
do so we need to further specify the fragment G, to tell us if A and B are causally adjacent.
In the case that A and B are not causally adjacent, there would be no Compositional
Compression, such that Λk1,k2

l1,l2
= δk1l1 δ

k2
l2

and thus rk1k2 = rl1l2 = rl1 ⊗ rl2 .

But we would like to see the case where we do have some non-trivial Compositional Com-
pression. Therefore, let us consider that A and B are causally adjacent (R1 ▷◁ R2), and
redraw the circuit connecting the relevant wires between A and B:

Prob

 A

B

α1

α2

b
c

a

b

c

d

G

b c

a

b
c

d


→ Prob

 A

B

α1

α2

b
c

a

b

c

d

G

a

b c

d


(6.62)

In order to identify the Lambda matrix Λk1,k2
l1,l2

, we need to manipulate the expression in
6.62 through the use of what we call the identity circuit, which we define below.
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Identity Circuit: denoted by I (capital I in sans serif font), is a special circuit,
consisting of a single operation with one input and one output of the same type
(1), associated with a single fiducial result or measurement (K1 = 1), where
the output connects back to the input.

Identity Circuit: 1 (6.63)

Such a circuit with an arbitrary system type would clearly violate one of DF’s rules of
wiring: the no closed loop condition, primarily since it may lead to inconsistencies, thereby
not allowing probabilities to be defined. For the identity circuit the system type, denoted
by 1 instead of a letter, has only a single fiducial result or preparation, thus giving K1 = 1,
thus the type 1 can be seen as the smallest non-null subset for any system type s. This
renders the setting and outcome set of the operation empty since there will be no degrees
of freedom. Therefore, we do not draw an actual operation. The system type 1 does not
correspond to any real system rather it just is, a vestige of something that happened. The

probability of the identity circuit is also well-defined: Prob

(
1

)
= 1. Therefore, we

make the exception despite the no closed loop rule.

Let us now modify the expression in 6.62 by inserting an identity circuit, I, for each wire
that connects the two regions R1 and R2, in order to help us identify ΛO2 and rk1,k2 . The
sole purpose of the insertion of the identity circuit(s), I, is to make sure that the elements
of the Omega set Ω1,2 can be compared to Ω1 × Ω2.

Prob

 A

B

α1

α2

b
c

a

b
c

d

G

a

b c

d


= Prob

 A

B

α1

α2

b
c

a a

b
c

dd

G

a

d

1 1


(6.64)

In DF’s Equation 6.6 we saw that for circuits Q,R, . . . we have Prob(QR...) = Prob(Q)Prob(R)....
Therefore, we justify Equation 6.64 as follows:

Prob(RII) = Prob(R)Prob(I)Prob(I) = Prob(R) since Prob(I) = 1 (6.65)
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Recall from Section 4.3.3, that the diagram from the Causaloid Framework with the two
levels of compression for regions R1 and R2 is as follows:

Λ
l2α2

Λ
l1α1

Λ
k1, k2

r

(6.66)

We are now ready to proceed with the identification process. Comparing the right hand side
expression of 6.64 (DF) to CF’s expression 6.66 we identify the Tomographic compression
matrices (same as in Section 6.3.4),

Λ
α2 l2 ≡ B

α2

b
c

d
=
(

d2Bb2c2

)
α2

(6.67)

Λ
α1 l1 ≡ A

α1

a

b
c =

(
b1c1Aa1

)
α1

(6.68)

which are duotensors with white dots, and we identify the Compositional compression
matrix as follows,

l2

l1

Λ
k1, k2

≡

a

d

1

1

1

1

b

b

c

c

=
d′2
d2
δ b1g

b2
c1g

c2 1g1
1g1

a′1
a1
δ (6.69)

where we have also written the symbolic equivalents as well. The diagrammatics are defi-
nitely easier to help understand the identifications. The Compositional compression matrix
Λk1,k2

l1,l2
is composed of the hopping metric duotensor of the type(s) being compressed and

the inverse of type 1, as well as identity duotensor for uncompressed types (defined
in Equations 6.22, 6.23 and 6.24). The map from the tomographic indices l1, l2 to the com-
positional indices k1, k2 correspond to going from black to white dots in the DF diagram.
This will be true for Compositional Lambda matrices in the Duotensor Framework.
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We, lastly, identify the compositionally compressed measurement vector rk1,k2 ,

k1, k2
r ≡

a

d

a

d

1

1

1

1

1

1 ≡ d′2
Xd′2

1g
1

1g
1 X

a′1
a′1

(6.70)

which is composed of fiducial preparations and fiducial results as well as the hopping metric
with system type 1. Compare this to the tomographically compressed measurement

vector rl1,l2 which we identify from Equation 6.61 (prior to Compositional Compression):

r

l2

l1

≡

b

b

c

c

a

a

b

b

c

c

d

d

≡ d2X
d2 Xc2

c2
Xb2
b2 b1X

b1
c1X

c1 Xa1
a1

(6.71)

which consists solely of fiducial results and fiducial preparations. Thus, we see that the
hopping metric, as seen in Equation 6.69, is vital to Compositional Compression of adjacent
regions and thus plays a role in determining the causal structure. In this respect, it is similar
to the metric in General Relativity. This completes the identification process.

Let us now see the form of the Compositional Omega set Ω1,2 (for region R1 ∪ R2) and
compare it to the Tomographic Omega set Ω1×Ω2 (for regions R1 and R2) for our example
circuit R. We also see how the factorisability of the Tomographic Omega set due to full
decomposibility (Equation 6.55) factors into the Compositional Omega set.
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Tomographic Omega sets for the regions R1 and R2 using full decomposability is given by

l1 ∈ Ω1 −→ l−a , l
+
b , l

+
c ∈ Ω−

a × Ω+
b × Ω+

c (6.72)

l2 ∈ Ω2 −→ l−b , l
−
c , l

+
d ∈ Ω−

b × Ω−
c × Ω+

d (6.73)

where l−a ∈ Ω−
a = {1, . . . , Ka} and so on. The − and + denote if the set corresponds to

inputs or outputs respectively. The Cartesian product of these two Omega sets gives:

l1, l2 ∈ Ω1 × Ω2 −→ l−a , l
+
b , l

+
c , l

−
b , l

−
c , l

+
d ∈ Ω−

a × Ω+
b × Ω+

c × Ω−
b × Ω−

c × Ω+
d (6.74)

The Composition Omega set for the region R1 ∪R2 is given by,

k1, k2 ∈ Ω1,2 −→ l−a ,1
+,1+,1−,1−, l+d ∈ Ω−

a × {1} × {1} × {1} × {1} × Ω+
d (6.75)

where {1} is a set with single element corresponding to the system type 1 (from the identity
circuit), allowing for the sets Ω1,2,Ω1 × Ω2 to be comparable. Notice, that we continue to
use the tomographic compression set indices for the inputs/outputs given that the system
types are not affected by Compositional compression. More importantly notice that Ω1,2

also supports a factorised form. This clearly gives us the size of the Omega sets,

|Ω1 × Ω2| = KaK
2
bK

2
cKd , |Ω1,2| = KaKd (6.76)

The Causaloid diagram 6.66 can be redrawn to incorporate the factorised Omega sets

Λ
l2α2

Λ
l1α1

Λ
k1, k2

r
=

Λ
l+d

l−b , l
−
c

α2

Λ
l+b , l

+
c

l−a

α1

Λ

1,1, l−a

l+d ,1,1

r

(6.77)

Further, the Lambda matrix Λk1,k2
l1,l2

itself can be factorised, diagrammatically we have,

l+d

l−b , l
−
c

l+b , l
+
c

l−a

Λ

1,1, l−a

l+d ,1,1 =

l+d l+d

l−c 1

l−b 1

l+b 1

l+c 1

l−a l−a

Λ Λ
(6.78)

symbolically we have Λk1,k2
l1,l2

= Λ
l−a ,1+,1+,1−,1−,l+d
l−a ,l+b ,l+c ,l−b ,l−c ,l+d

= δl
−
a

l−a
Λ1+,1−

l+b ,l−b
Λ1+,1−

l+c ,l−c
δ
l+d
l+d

(6.79)
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where the Lambda matrices of the form Λ1+,1−

l+s ,l−s
correspond to a wire of system type s, shared

between the two regions R1 (operation A) and R2 (operation B), or equivalently correspond
to the internal wiring of the fragment for the composite region R1∪R2 (fragment D = AB).

The diagrammatic form for Λ1+,1−

l+s ,l−s
for the wire type s shared between any two regions is:Λ1+,1−

l+s ,l−s
=

l−s 1−

l+s 1+
Λ =

1

1

s

s

 , 1+,1− ∈ {1, 1} , l+s , l−s ∈ Ω+
s × Ω−

s (6.80)

We now generalise the form of ΛO2 for any two elementary regions:

For a fragment J = KL made of two general operations K and L (region R8 ∪ R9) we
will have the Compositional Compression matrix take the form:

Λk8,k9
l8,l9

=

 ∏
i∈w−(J)

δ
l−i
l−i

 ∏
o∈w+(J)

δl
+
o

l+o

 ∏
s∈w(J)

Λ1+,1−

l+s ,l−s

 (6.81)

The Omega sets take the form:

Ω1 × Ω2 = O

( ×
i∈w−(J)

Ω−
i

)
×
(
×

o∈w+(J)

Ω+
o

)
×

×
s∈w(J)

Ω−
s × Ω+

s

 (6.82)

|Ω1 × Ω2| =

 ∏
i∈w−(J)

Ki

 ∏
o∈w+(J)

Ko

 ∏
s∈w(J)

K2
s

 (6.83)

Ω1,2 = O
((
×

i∈w−(J)

Ω−
i

)
×
(
×

o∈w+(J)

Ω+
o

)
×
(
×
s∈w(J)

{1−} × {1+}
))

(6.84)

|Ω1,2| =

 ∏
i∈w−(J)

Ki

 ∏
o∈w+(J)

Ko

 (6.85)

where in Equation 6.84, for every s ∈ w(J) instead of its associated Omega set we
put the set consisting of a single element {1} (coming from the identification with the
Identity Circuit).
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6.3.6 Level Three: Meta Compression

To complete the application of Causaloid Framework to the Duotensor Framework, we
have to identify the last level of physical compression, Meta Compression, which specifies
the Causaloid Λ, the central mathematical object of the Causaloid Framework that can be
seen as a specification of the physical theory itself.

Further, in Chapter 5, we introduced a hierarchy based on Meta Compression where ΛOd
-

sufficiency provided the rungs of the hierarchy. In this Section we wish to strengthen our
main claim of this Chapter, that the Duotensor Framework falls on the second rung of the
Hierarchy and is ΛO2-sufficient. We provide the outline of how we will go about showing
this claim. This section is the culmination of the many concepts introduced in Chapters
4, 5 and the current Chapter.

Recall from Equation 5.5 that for ΛO2-sufficiency the Causaloid Λ is given by

Λ ≡ ΛOd
= { all ΛO1 , all ΛO2 | rules } (6.86)

= ΛO1 , ΛO2 rules (6.87)

In the previous Section 6.3.5, we characterised the general form of ΛO2 which may be
written (symbolically and diagrammatically) as,

ΛO2

(
ΛO1 , {δl

−
s

l−s
, δl

+
s

l+s
,Λ1+,1−

l+s ,l−s
: ∀ s }

)
where s is any possible type (6.88)

= ΛO2

 ΛO1 , {
l+s

,
l−s

,

l−s 1−

l+s 1+
Λ : ∀ s }

 (6.89)

= ΛO2

 ΛO1 , { s
,

1

1

s

s

: ∀ s }

 (6.90)

in terms of the identity duotensors and hopping metric (and inverse) duotensors (along
with ΛO1 in the case where Compositional Compression is done without prior Tomographic
Compression).
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Further, recall that ΛO2-sufficiency is guaranteed if we can have the form of ΛOd
be,

ΛOd
(ΛO1 ,ΛO2) for d > 2 (6.91)

Therefore to show ΛO2-sufficiency of the Duotensor Framework, combining the form of ΛO2

(Equations 6.88, 6.89, 6.90) with the form of ΛOd
from Equation 6.91, we need to show

that the following is true,

ΛOd

(
ΛO1 , {δl

−
s

l−s
, δl

+
s

l+s
,Λ1+,1−

l+s ,l−s
: ∀ s }

)
where s is any possible type (6.92)

= ...
ΛOd

...

 ΛO1 , {
l+s

,
l−s

,

l−s 1−

l+s 1+
Λ : ∀ s }

 (6.93)

= ...
ΛOd

...

 ΛO1 , { s
,

1

1

s

s

: ∀ s }

 (6.94)

thus showing that any ΛOd
can be written down in terms of the identity duotensors and

hopping metric (and inverse) duotensors (along with ΛO1).

We will explicitly show that Equations 6.92, 6.93, 6.94 are true for d = 3 by considering
a tripartite region with given causal structure in DF, going through the identification
process of Lambda matrices (as shown in Sections 6.3.4 and 6.3.5) and using the results
from Section 5.5. We then show that it will hold true for a general value of d by providing
some simple arguments. Now that we have shared our goal and the means by which we
will show this, let us get right to it.

Consider three operations A,B and C corresponding to three elementary regions within the
circuit R in DF. This is the same circuit R as before, where R = ABCH = ABG = AF.

A

B

C

H

a

b c

d

e

=

A

B

Gb c

a

d

= A F

b c

a

(6.95)
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Here the causal relations between the operations (elementary regions) are: A ▷◁ B (or
R1 ▷◁ R2) and B ▷◁ C (or R2 ▷◁ R3) which corresponds to Case 5 from Section 5.5.1, where
we showed that if we have ΛO2-sufficiency and the causal relations stated before then the
following Causaloid equation for Lambda matrices holds true:

α3 l3
Λ

α2 l2
Λ

α1 l1
Λ

Λ
k2

k3

k1

=

α3
Λ

α2
Λ

α1
Λ

l3

l2

l1

Λ

k′2

k1

Λ

k2

k3

(6.96)

We will identify the Lambda matrices Λk1,k2,k3
l1,l2,l3

, Λ
k1,k′2
l1,l2

and Λk2,k3
k′2,l3

to check if Equation 6.96

(or equivalently Λk1k2k3
l1l2l3

=
∑

k′2
Λk2k3

k′2l3
Λ

k1k′2
l1l2

) holds for our DF example. To identify Λk1,k2,k3
l1,l2,l3

,

we do expansions of fiducial preparations and fiducial results of the circuit R and insertions
of identity circuits, hopping metric (and its inverse) and identity duotensors (analogous to
those seen in Section 6.3.5):

Prob


A

B

C

α1

α2

α3

b
c

a

b

c

d

d

e

H

a

b c

d

e



= Prob


A

B

C

α1

α2

α3

b
c

a a

b

c

d

d

ee

H

a

e

1 1

1


(6.97)
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To identify Λ
k1,k′2
l1,l2

and Λk2,k3
k′2,l3

, we do expansions of fiducial preparations and fiducial results

and insertions of identity circuits, hopping metric (and its inverse) as before with some
additional identity duotensors:

Prob


A

B

C

α1

α2

α3

b
c

a

b

c

d

d

e

H

a

b c

d

e



= Prob


A

B

C

α1

α2

α3

b
c

a a

b

c

dd

d

ee

H

a

e

1 1

1



(6.98)
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We can identify Λk1,k2,k3
l1,l2,l3

from the right hand side expression of 6.97,

l3

l2

l1

Λ
k2

k3

k1

≡

e

1

1

d

d

a

1

1

1

1

b

b

c

c

= e′3
e3
δ d2g

d3 1g1 b1g
b2

c1g
c2 1g1

1g1
a′1
a1
δ (6.99)

We can identify Λk2,k3
k′2,l3

from the right hand side expression of 6.98,

l3

k′2

Λ
k2, k3

≡

e

1

1

1

1

d

d

= e′3
e3
δ d′2

gd3 1g1
1
1δ

1
1δ (6.100)

Similarly we can identify Λ
k1,k′2
l1,l2

from the right hand side expression of 6.98,

l2

l1

Λ
k1, k

′
2

≡

a

d

1

1

1

1

b

b

c

c

=
d′2
d2
δ b1g

b2
c1g

c2 1g1
1g1

a′1
a1
δ (6.101)

From the DF structure of these three Lambda matrices, it is clear diagrammatically that

Λk1k2k3
l1l2l3

=
∑

k′2
Λk2k3

k′2l3
Λ

k1k′2
l1l2

, or symbollically as well,

e′3
e3
δ d2g

d3 1g1 b1g
b2

c1g
c2 1g1

1g1
a′1
a1
δ = (

d′2
d2
δ b1g

b2
c1g

c2 1g1
1g1

a′1
a1
δ)(e

′
3
e3
δ d′2

gd3 1g1
1
1δ

1
1δ) (6.102)
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where we have used the symbolic form provided in Equations 6.99,6.100 and 6.101. Further
the Tomographic Compression matrices Λl1

α1
,Λl2

α2
and Λl3

α3
will be the same in both these

cases. Therefore Equation 6.96 is satisfied.

Thus, we have shown that for this example the Lambda matrix for three regions can be
written in terms of Lambda matrices for two regions. Now we will show something stronger,
that the Lambda matrix for three regions can be written through hopping metric, its inverse
and identity duotensors. Let us go through the following elaborate steps, towards this goal.

We have seen that the Tomographic as well as Compositional Compression Omega sets fac-
torise, such as in Equation 6.77. The Causaloid diagram 6.96 can be redrawn to incorporate
the factorised Omega sets,

l3

l2

l1

Λ

k′2

k1

Λ

k2

k3

=

l3

l2

l1

Λ

k′2

k1

Λ

k2

k3

(6.103)

where the Omega sets are of the form,

l1, l2, l3 ∈ Ω1 × Ω2 × Ω3

=l−a , l
+
b , l

+
c , l

−
b , l

−
c , l

+
d , l

−
d , l

+
e ∈ Ω−

a × Ω+
b × Ω+

c × Ω−
b × Ω−

c × Ω+
d × Ω−

d × Ω+
e (6.104)

k1, k
′
2 ∈ Ω1,2

=l−a ,1
+,1+,1−,1−, l+d ∈ Ω−

a × {1} × {1} × {1} × {1} × Ω+
d (6.105)

k2, k3 ∈ (Ω̸1,2 × Ω3) ∩ Ω2,3

=1−,1−,1+,1−, l+e ∈ {1} × {1} × {1} × {1} × Ω+
e (6.106)

k1, k2, k3 ∈ Ω1,2,3

=l−a ,1
+,1+,1−,1−,1+,1−, l+e ∈ Ω−

a × {1} × {1} × {1} × {1} × {1} × {1} × Ω+
e (6.107)
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Here we have used Equation 5.57 in Equation 6.106. We can solve Equation 6.103 further,
by substituting the factorised forms for the Lambda matrices:

Λ
k1,k′2
l1,l2

= Λ
l−a ,1+,1+,1−,1−,l+d
l−a ,l+b ,l+c ,l−b ,l−c ,l+d

= δl
−
a

l−a
Λ1+,1−

l+b ,l−b
Λ1+,1−

l+c ,l−c
δ
l+d
l+d

(6.108)

Λk2,k3
k′2,l3

= Λ1−,1−,1+,1−,l+e
1−,1−,l+d ,l−d ,l+e

= δ1
−

1−δ1
−

1−Λ1+,1−

l+d ,l−d
δl

+
e

l+e
(6.109)

Substituting 6.108 and 6.109 into Equation 6.103, and upon simplifying we get:

Λk1k2k3
l1l2l3

=
∑
k′2

Λk2k3
k′2l3

Λ
k1k′2
l1l2

(6.110)

=
∑

k′2∈{1}×{1}×Ω+
d

Λ1−,1−,1+,1−,l+e
1−,1−,l+d ,l−d ,l+e

Λ
l−a ,1+,1+,1−,1−,l+d
l−a ,l+b ,l+c ,l−b ,l−c ,l+d

(6.111)

=
∑

k′2∈{1}×{1}×Ω+
d

(δ1
−

1−δ1
−

1−Λ1+,1−

l+d ,l−d
δl

+
e

l+e
)(δl

−
a

l−a
Λ1+,1−

l+b ,l−b
Λ1+,1−

l+c ,l−c
δ
l+d
l+d

) (6.112)

= δl
−
a

l−a

 ∑
{1}×{1}

δ1
−

1−δ1
−

1−Λ1+,1−

l+b ,l−b
Λ1+,1−

l+c ,l−c

∑
Ω+

d

Λ1+,1−

l+d ,l−d
δ
l+d
l+d

 δl
+
e

l+e
(6.113)

⇒ Λk1k2k3
l1l2l3

= δl
−
a

l−a
Λ1+,1−

l+b ,l−b
Λ1+,1−

l+c ,l−c
Λ1+,1−

l+d ,l−d
δl

+
e

l+e
(6.114)

This can be shown diagrammatically as follows,

l3

l2

l1

Λ

k′2

k1

Λ

k2

k3

=

l+e l+e

l−d 1

l+d 1

l−c 1

l−b 1

l+b 1

l+c 1

l−a l−a

Λ Λ

Λ

(6.115)

where dotted wires signify that the wire goes over (and not through) the Lambda matrix.

Notice that the sum in the equation Λk1k2k3
l1l2l3

=
∑

k′2
Λk2k3

k′2l3
Λ

k1k′2
l1l2

which holds true in CF

for the given causal relations, vanishes in the simplified form of DF. In fact this is true
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irrespective of the causal relations, in DF the sum will always vanish. This is an important
result, because we are able to show that Λk1,k2,k3

l1,l2,l3
satisfies the form:

ΛO3

 ΛO1 , {
l+s

,
l−s

,

l−s 1−

l+s 1+
Λ : ∀ s }

 (6.116)

(6.117)

An Observation At this point, after the heavy lifting we have done, a simple,
almost trivial sounding observation, needs to be made. A wire, by definition
of the operational description of the Duotensor Framework, can only connect
at most two disjoint regions. The wires are also at the heart of Compositional
Compression (as seen in this Section). Therefore, any ΛOd

for d > 2 will be
expressible using the two region DF elements (the hopping metric, its inverse
and identity duotensors). Thus, the Duotensor Framework is ΛO2-sufficient,
belonging to the second rung of the hierarchy (as defined in Chapter 5), and
thereby finite-dimensional Quantum theory and Classical Probability theory
are ΛO2-sufficient as well.

To complete the identification process we identify rk1,k2,k3 . Since Λk1k2k3
l1l2l3

=
∑

k′2
Λk2k3

k′2l3
Λ

k1k′2
l1l2

we have (j1, j2, j3 ≡ k1, k2, k3) ∈ Ω1,2,3 where strictly speaking, indices j1, j2, j3 belong to
the ΛO3 and indices k1, k2, k3 belong to ΛO2 . Therefore, for both the diagrams (the one
with ΛO3 and the one with ΛO2) the same identification of measurement vector rk1,k2,k3
holds, given below,

k1, k2, k3

r ≡

a

1

1

1

e

a

e

1

1

1

1

1

1

≡ e′3
Xe′3

1g
1

1g
1

1g
1 X

a′1
a′1

(6.118)
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6.4 Populating Higher Rungs

The Causaloid Framework contains the space of generalised probabilistic theories includ-
ing those with indefinite causal structure. As a means to characterise this space we in-
troduced the Hierarchy in Chapter 5 which places theories on different rungs based on
Meta-Compression. The Duotensor Framework lives on the second rung of the hierarchy.
We would like to explore the space of generalised probabilistic theories that live on higher
rungs, in order to explore causal indefiniteness. In this Section, we propose the research
program of constructing theories formulated in an operational and f-local manner that
would populate the higher rungs, and what we may learn from them. We provide some
ideas of how one would go about such a construction.

6.4.1 Hyperdwired Circuits

The operations in the Duotensor Framework can be represented through nodes of Directed
Acyclic Graphs, or DAGs in short, and the wires would serve as directed edges connecting
the nodes. DAGs are particularly useful in studies of causality as they can be used to
represent the direction of time when closed time loops are not allowed (thus the Acyclic-
ness). This connects back to the condition on wires in DF such that if one starts from an
operation and follows the wires, they do not come back to the same operation. DAGs have
been used to draw graphs for causal connections between regions, such as in the gedanken
EPR paradox experiment. But it also means that Causal DAG pictures come with specific
assumptions on notions of time and causality which is restrictive for the purposes of our
pursuit to study indefinite causal structures – assumptions that the Causaloid framework
does not make. This observation is captured by Jia:

“...although many causal frameworks are based on DAGs, there are reasonable
frameworks that are naturally associated with hypergraphs rather than graphs,
such as Hardy’s causaloid framework of indefinite causal structure” (Jia, [65])

The Hierarchy comes into play here as it distinguishes causal frameworks based on fixed
DAGs (which fall on a single rung) from other causal frameworks, such as those based
on hyper-edges. At the heart of DAGs and the Duotensor Framework are edges or wires.
Therefore, we would like to construct theories with operations composed with hyper-edges.
We propose that one may attempt to do so by generalising the Duotensor Framework, which
is formulated operationally and in a f-local manner. We would keep the assumptions of
well conditioned probabilities and full decomposability intact but modify the structure of
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operations and wires. Instead of operations with inputs and outputs, we propose operations
to have d kinds of connections (d-puts). Operations could then be connected to other
operations through hyperdwires (or hyper-edges with d nodes). These generalisations would
be constructed such that they continue to be operational and formalism local, and thus
be amenable to the application of the Causaloid Framework. The modified structure for
operations and hyperdwires will be captured through Compositional Compression and in
turn Meta Compression affecting their place in the hierarchy, such that theories with
hyperdwires for some d would be constructed to be ΛOd

-sufficient.

We do not expect the entire space of such constructions to be physical, belonging to the
world. One may ask what would the construction of them then achieve? The study
of Generalised Probability Theories led to reconstruction of quantum theory from few
information theoretic postulates, that could discern between quantum theory and classical
probabilistic theory, which shed new insights on our understanding of quantum theory.
Similarly, we expect the study of theories constructed with hyper-edges would shed some
light on indefinite causality which may become relevant for the regime of quantum gravity.

We present some ideas for the construction for d = 3 which we call the triotensors, followed
by some ideas for the case d = 4 which we will call quadrotensors.

Triotensors

The triotensors would correspond to having hyper-edges that connect three operations.
Instead of outputs and inputs, there would be three kinds of “puts”, and instead of fiducial
preparations and results, there would be three kinds of fiducial sets, each associated with
two kinds of basis (corresponding to the black and white dots), therefore they would have
six indices. Thus the name triotensors.

Since inputs and outputs corresponded to apertures through which systems came in and
out, a sense of causality was established through them. With three kinds of “puts” the
notion of causality will have to be interpreted differently, and there may be a few possibili-
ties: one may conservatively attribute the three “puts” to a past and two future directions
(or two past and one future direction), or allow for a completely different kind of causality.

One important step would be to define the generalisation of the hopping metric, here we
show a possibility of representing the hopping metric with all black dots

a

a
a

(6.119)
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The Compositional Compression for three regions would provide compression through the
hopping metric, similar to what we saw in the duotensors, while two region Composi-
tional Compression would essentially yield no compression. The Lambda matrix would be
constructed as follows

l1

l2

l3

Λ
k1, k2, k3

≡

a

a

a

1

1

1 (6.120)

where the associated Lambda matrix and Omega set would be,

Λk1,k2,k3
l1,l2,l3

= Λ1,1,1
l1,l2,l3

(6.121)

Ω1,2,3 = {1}, {1}, {1} , Ω1 = Ω2 = Ω3 = Ωa (6.122)

When the Duotensor Framework is adapted to Quantum theory, an operation is replaced
by an operator, where each set of fiducial preparations and results is associated with the
space of Hermitian operators on the complex Hilbert space (whose dimension is dependent
on the system type). It seems that a quantum version of the triotensors may run into
some mathematical issues, since if we associate some vector space with each of the three
fiducial sets, there may be difficulty finding a map that takes three vector spaces to give
a real positive number, though such a map would be required since we would like to
calculate probabilities. However, a generalisation of classical probability theory through
the triotensors would not be affected by this issue and would thus be possible.

Quadrotensor

The quadrotensors, would correspond to having hyper-edges that connect four operations.
Instead of outputs and inputs, there would be four kinds of “puts”, and instead of fiducial
preparations and results, there would be four kinds of fiducial sets, each associated with
two kinds of basis (corresponding to the black and white dots), therefore they would have
eight indices. Thus the name quadrotensors.

With four kinds of “puts” the quadrotensors could possibly be interpreted/constructed to
have two past and two future directions (that is two independent directions of time). This
could be quite interesting to study as one could model a definite causal structure on two
arrows of time that would emerge as indefinite causality on a single arrow of time.
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The mathematical obstacles towards a quantum generalisation for the triotensors would go
away when attempting a quantum generalisation of qudrotensors, since one may be able
to choose vectors spaces to associate with the four fiducial sets, such that a map on four
vector spaces yields a positive real number (since we are interested in probabilities). A
natural choice for such vector spaces would be the quaternions, that extend from complex
numbers.

6.4.2 Beyond the Hierarchy

There may indeed be theories that do not fit into the hierarchy, here we discuss open
questions that we would like to address or tackle in the future.

In this Chapter we discussed applying the Causaloid Framework to existing theories, such
as Quantum theory, though we did not talk about the other obvious candidate – Gen-
eral Relativity (GR). Since GR exhibits dynamic causal structures, it would an interesting
project to attempt application of the Causaloid Framework to GR. For this an operational
and f-local formulation of GR is required. Hardy presented such a formulation called Op-
erational General Relativity in [50]. Thus, a possible future direction would be to apply
the Causaloid Framework to Operational General Relativity, and study GR’s Composi-
tional Compression and Meta Compression. Given that Compositional Compression in
the Duotensor Framework was expressed in terms of the hopping metric and inverse, one
wonders if we would see some similar appearance of the metric tensor while studying Com-
positional Compression in GR.

The other obvious direction to take would be to characterise existing frameworks, such as
the Process Matrix Framework, Quantum Combs, Processes (the category theory kind),
that study causal indefiniteness and ask if the hierarchy is a meaningful characterisation
for them and if not, then what would be a good way to study how they relate to the space
of GPTs with indefinite causality.
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Chapter 6: Statement of Contribution

In this Chapter, the main contribution (Section 6.3,6.4) includes applying the Causa-
loid Framework (Chapter 4) to other operational and formalism-local frameworks such
as the Duotensor Framework by Lucien Hardy [46]. We find that the Duotensor Frame-
work populates the second rung of the Hierarchy presented in Chapter 5. The project
was initiated by Lucien Hardy and the work was done together. The Chapter is solely
written by me and contains unpublished work that was discussed in its nascent stages
at various conferences (QISS HK 2020, Q-Turn 2020 [90], APS 2021 [91], Quantizing
Time 2021 [89], QPL 2021) as the work developed.
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Chapter 7

Conclusion

In this thesis, we began by considering bidirectional communication tasks and provided
protocols for bidirectional quantum teleportation and bidirectional dense-coding. An open
problem is to extend the quantum communication resource theory to multi-party scenarios
and to find if Bidirectional Quantum Teleportation and Bidirectional Dense-Coding can be
dual through such a resource theory. Further, we considered tensor products of processes
to provide a theorem for when such tensor products are (in)valid.

In the second half, we considered an operational approach to study indefinite causality
in the space of GPTs, by revisiting the Causaloid Framework and providing a diagram-
matic representation. Further, we studied Meta-Compression, the third level of physical
compression in the Causaloid Framework, and were able to characterise a hierarchy of the-
ories pertaining to Causal Structure. Further, we applied the Causaloid Framework to the
Duotensor Framework, thus showing the applicability of the Causaloid Framework, and
we showed that the Duotensor Framework belongs to the second rung of our Hierarchy.
Where would General Relativity fall into this hierarchy, as well as other frameworks for
indefinite causality? We wish to study this in future work.

Many open questions emerge upon the introduction of this hierarchy, and we hope that the
indefinite causal structure community may join us in revisiting the Causaloid Framework
to explore open problems. We invite the interested to help us work towards these problems.

I would like to thank the reader for their time, their interest and for making it to the end
of this thesis. We hope you may take with you a few insights and ideas.
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