
Lattice-Based Motion Planning with
Optimal Motion Primitives

by

Alexander Botros

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

c© Alexander Botros 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Emilio Frazzoli
Professor, Dept. of Mechanical and Process Engineering,
Swiss Federal Institute of Technology in Zürich (ETH Zürich)

Supervisor: Stephen L. Smith
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member(s): Andrew Heunis
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Mahesh Tripunitara
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: William Melek
Professor, Dept. of Mechanical and Mechatronics Engineering,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In the field of navigation for autonomous vehicles, it is the responsibility of a local planner
to compute reference trajectories that are then be followed by a tracking controller. These
trajectories should be safe, kinematically feasible, and optimize certain desirable features
like low travel time and smoothness/comfort. Determining such trajectories is known as
the motion planning problem and is the focus of this work.

In general, the motion planning problem is intractable, and simplifications must be
made in order to compute reference trajectories quickly and in real time. A common
strategy involves adopting a simple kinematic model for the trajectory. However, overly
simplified models can lead to references that are infeasible for the vehicle. These are hard
for a tracking controller to follow resulting in large tracking error and frequent re-planning.
In contrast, lattice-based motion planning simplifies the motion planning problem by re-
stricting the set of allowable motions. In detail, lattice-based motion planning works by
discretizing the configuration space of a vehicle into a regularly repeating grid called a
lattice. The set of all optimal feasible trajectories between vertices of this lattice are pre-
computed and a subset called a control set is selected. Trajectories of this pre-computed
subset are then joined together online to form more complex compound maneuvers. Be-
cause trajectories between lattice vertices are pre-computed, the complexities of the motion
planning problem are considered offline. While not every trajectory is available to a lattice-
based planner, every trajectory that is available is feasible and optimal.

Selecting a control set is an important step in lattice-based motion planning since the
optimality of each element of the control set does not guarantee the optimality of com-
pound maneuvers. These control sets are often selected based on intuition and experience.
Broadly, the size of a control set has a positive effect on the quality of computed trajecto-
ries, but at the expense of run time performance. A control set is said to t−span a lattice
if trajectories between lattice vertices can be approximated to within a factor of t ≥ 1 as
compound maneuvers of elements of the control set. Given an acceptable allowance t ≥ 1
on the sub-optimality of compound maneuvers in a lattice, the problem of computing the
smallest control set that t−spans the lattice is called the minimum t-spanning control set
problem. In essence, this problem seeks to optimize a trade-off between the quality of
compound maneuvers and the time required to compute them.

This work details solutions and applications of the minimum t−spanning control set
problem in autonomous vehicle navigation. In particular, we first investigate an instance
of the problem that can be solved efficiently, provide an intuitive solution, and outline the
applications of this instance in the field of any-angle path planning in a two dimensional
environment.

iv

Next, we provide a novel method to compute trajectories that optimize an adjustable
trade-off between certain desirable features. The relative importance of each of these fea-
tures may differ by user, and the techniques developed here are able to reflect these pref-
erences. The NP-completeness of the general minimum t−spanning control set problem is
established here, and we present a mixed integer linear program that encodes the problem.
The trajectories we propose in conjunction with the mixed integer linear program, result in
a method to compute a minimum t−spanning control set whose elements are kinematically
feasible and reflect the preferences of a user if those preferences are known.

Finally, we consider the problem of simultaneously learning the preferences of a single
user from demonstrations and computing sparse control sets for that user. We propose
a technique to solve this problem that leverages a separation principle: first estimate the
preferences of the user based on demonstrations, then compute a control set of trajectories
that are optimal given the estimated preferences. We show that this approach optimally
solves the problem. Combining the work of this thesis results in a method by which tailored
control sets that reflect the preferences of a user can be determined from the demonstrations
of that user. These control sets have the following beneficial attributes: 1) each element of
the control set is optimal for the estimated preferences of the user, and 2) the control set
optimizes a trade-off between the quality of compound maneuvers between lattice vertices
– as defined by the estimated preferences of the user – and time required to compute them.

v

Acknowledgements

First and foremost, thank you to my wonderful family. This includes, but is not limited to,
my wife Carolyn, son Peter, mother Sue, brother Will, sister Jenn, as well as all of their
myriad children and spouses. And my dog Watson. I would also like to thank Dr. Stephen
Smith whose patience and guidance made this work possible.

A very special thank you must be given to my good friend and collaborator Nils Wilde
who gave me music, friendship and things to think about while I studied far from home.

Finally, I would like to wholeheartedly thank NSERC for their support of my research.

To all of those I mentioned above and more, I hope I can earn the wonderful support
you’ve given me.

vi

Dedication

This thesis, like all of my research, is dedicated to my Dad Dr. Adel Botros. Life
doesn’t last long. Math does. Thank you for both.

vii

Table of Contents

List of Figures xii

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Thesis Structure & Summary of Contributions 6

1.1.1 Chapter 2: Preliminaries . 6

1.1.2 Chapter 3: The MTSCS Problem for an Any-Angle Square Lattice 7

1.1.3 Chapter 4: Tunable Trajectory Planner Using G3 Curves 7

1.1.4 Chapter 5: High-Dimensional Lattice Planning with Optimal Motion
Primitives . 8

1.1.5 Chapter 6: Learning Control Sets for Lattice Planners from User
Preferences . 9

1.2 Related Work . 9

1.2.1 Chapter 3: The MTSCS Problem for an Any-Angle Square Lattice 9

1.2.2 Chapter 4: Tunable Trajectory Planner Using G3 Curves 10

1.2.3 Chapter 5: High-Dimensional Lattice Planning with Optimal Motion
Primitives . 14

1.2.4 Chapter 6: Learning Control Sets for Lattice Planners from User
Preferences . 16

viii

2 Preliminaries 18

2.1 Graph Theory . 18

2.1.1 Shortest Path in a Weighted Graph 19

2.2 Differential Geometry & The Motion Planning Problem 22

2.3 Lattice-Based Motion Planning & The MTSCS Problem 26

2.3.1 Starting Set for a Lattice . 26

2.3.2 Lattice-Based Motion Planning with Starting Sets 30

2.3.3 Selecting a Control Set: The MTSCS problem 32

3 The MTSCS Problem for an Any-Angle Square Lattice 35

3.1 Introduction . 35

3.2 Main Result . 38

3.3 Wedge Analysis . 39

3.4 Completeness, Solution Size, & Path Error 46

3.5 Evaluation . 53

3.5.1 Computing a Control Set . 54

3.5.2 Any-Angle Path Planning . 55

3.6 Discussion . 58

4 Tunable Trajectory Planner Using G3 Curves 59

4.1 Introduction . 59

4.2 Problem Statement . 61

4.2.1 Original Optimization Problem . 61

4.2.2 Adding Comfort Constraints & Velocity 62

4.3 Approach . 64

4.4 Computing G3 Paths . 67

4.4.1 Single G3 Curves . 68

4.4.2 Connecting G3 Curves . 71

ix

4.4.3 Connecting G3 curves with a Straight Line 73

4.4.4 Connecting G3 curves with a G3 curve 75

4.5 Computing Velocity Profiles . 76

4.6 Evaluation . 79

4.6.1 Setup . 79

4.6.2 Evaluation . 80

4.7 Discussion . 89

5 High-Dimensional Lattice Planning with Optimal Motion Primitives 90

5.1 Introduction . 90

5.2 Main Results . 91

5.2.1 MTSCS Problem: MILP Formulation 94

5.2.2 Motion Planning With a MTSCS 98

5.2.3 Motion Smoothing . 102

5.3 Evaluation . 105

5.3.1 Memory . 107

5.3.2 Parking Lot Navigation . 107

5.3.3 Speed Lattice . 112

5.4 Discussion . 115

6 Learning Control Sets For Lattice Planners From User Preferences 116

6.1 Introduction . 116

6.2 Problem Statement . 118

6.3 Approach . 121

6.3.1 User model . 122

6.3.2 Estimation of the loss function . 122

6.3.3 Main Results . 123

6.3.4 Computational Complexity . 124

x

6.3.5 Computing an optimal control set: MILP Formulation 125

6.4 Evaluation . 127

6.4.1 Training Error . 128

6.4.2 Test Error . 131

6.5 Discussion . 132

7 Discussion and Future Directions 133

References 136

APPENDICES 149

A Proofs of Results in Chapter 3 150

A.1 Lemma 3.3.6 . 150

A.2 Lemma 3.3.7 . 152

A.3 Lemma 3.3.8 . 152

A.4 Lemma 3.3.9 . 153

A.5 Lemma 3.3.12 . 154

A.6 Lemma 3.3.13 . 155

A.7 Lemma 3.3.14 . 156

A.8 Lemma 3.3.15 . 159

A.9 Lemma 3.3.16 . 160

A.10 Lemma 3.3.17 . 162

A.11 Lemma 3.3.18 . 164

B Proofs of Results in Chapter 4 166

Glossary 168

xi

List of Figures

1.1 The role of the local planner in autonomous driving. 1

1.2 Two example control sets (red) and shortest trajectories from start to goal
using these control sets (blue). Shortest trajectories are shown in gold. . . 4

1.3 Block diagram illustrating how topics covered in this thesis provide an input
control set for a local planner. 6

2.1 The Weierstrass Function, image courtesy of Wolfram Mathworld, available
at https://mathworld.wolfram.com/WeierstrassFunction.html. 22

2.2 Example control set for an any-angle square lattice drawn at the origin. . . 27

2.3 (a) Config. space, lattice and start from (2.2). (b) Lattice and X as in (a)
with start set O = [o0 = (0, 0, 0), o1 = (0, 0, π/4)]. 28

2.4 Control set E =
⋃
o∈O Eo forO = {(0, 0, 0), (0, 0, π/8), (0, 0, , π/4), (0, 0, 3π/8)}

for a lattice with 16 headings. Motions were planned using Dubins’ paths. 30

3.1 Motivating Example. 36

3.2 Modification of continuous algorithm for discrete lattices. 37

3.3 (Left) The wedge W [(2, 1), (1, 1)] with boundary vertices (2, 1), (1, 1) is the
set of all vertices lying in the shaded blue region. (Right) The boundary
expressible wedge W [(2, 1), (1, 1)] . 41

3.4 Notation for upper (top) and lower (bottom) separable wedges. 44

3.5 Example of a δ-robustly feasible path. 50

3.6 Comparison of two metrics for Et
P and Ek

SOA. 55

3.7 Visual comparison of Et
p, E

k
SOA for varying k. 56

xii

3.8 Visualization of planning methods . 57

3.9 Sub-optimality of compared methods. 58

4.1 A basic G3 curve. Top: The functions σ(s) (top), κ(s) (mid), and θ(s)
(bottom). Bottom: The resulting curve in the x, y plane from start config-
uration ps to final configuration pf . Image also appears in [6] 68

4.2 (Left) Representative circle ΩD, and point (xD, yD). (Mid) Illustration of
Theorem 4.4.2. (Right) Illustration of Step 5, with partial Dubin’s path D
(blue) and corresponding G3 curve Ĝi (black). 72

4.3 (Left) Representative circles around ps and pg in reverse. (Mid) Dubins’-like
solution between start and goal states. (Right) Solution path. 74

4.4 Step 7. (Left) Illustration of overlap. start and goal configurations too close
together resulting in curve P2 terminating behind P1. (Right) Stretching
of curves P1, P2 by decreasing σmax until P1, P2 can be connected by third
curve. 76

4.5 Comparison of three users. Left: velocity (m/s) (top), time cost (mid) and
discomfort cost (bottom) for three users. Right: trajectories. 81

4.6 Example reference trajectories for a lane change maneuver given three min-
imization objectives: discomfort (top), time (bottom), and a mix between
time and discomfort (mid). Initial and final speeds are fixed at 10 m/s, cars
are drawn ever 0.75 seconds. 82

4.7 Percent savings distribution by dominant feature (top), and initial/final ve-
locity (bottom). 84

4.8 Optimal trajectories for weights between way-points of a roundabout. Cars
represent fixed way-points (position, curvature, velocity) while color gradi-
ent of each trajectory represents velocity. 85

4.9 Average maximum errors (top) and average average errors (bottom) for
Methods 1 (Ours) and 2 (Benchmark) categorized by time weight. 86

4.10 (Left) Simulated trajectories for example roundabout maneuver. Blue, green,
and red lines are reference, tracked, and driven paths. Connecting lines show
tracking error. (Right) Lateral Error over time. Methods 1 (Ours) and 2
(Benchmark). 87

5.1 Constructing a Lattice and Workspace. 93

xiii

5.2 Example motion planning using PrAC for a 2-start lattice. 99

5.3 Algorithm 5 Lines 9-13 Example. (a) Configuration q ∈ X − L, lattice
vertex q′ = Round(q), and primitive p ∈ ER(q′). (b) Motion from q to end of
p results in a loop as q, p are too close together. (c) Vertex p replaced with
neighboring vertex p′ and a motion from q to p′ is computed. 101

5.4 Comparison of smoothing algorithms for same input path (red). Blue: path
smoothed using Algorithm 6. Red: path smoothed using Algorithm 1 from
[76] (no change from input path). 105

5.5 Motion primitives for each starting vertex. 106

5.6 Scenarios (a) - (d). Red paths from proposed method, yellow from Hybrid
A*. 109

5.7 Heading along Motion for Scenario (a). Orange: Hybrid A* motion, Blue:
proposed. 110

5.8 Scenario (e). 111

5.9 Motion planning using t−spanning G3 motion primitives. Magenta: primi-
tives used, Red: final motion, Cyan: car footprint. 112

5.10 Result of highway maneuver with several obstacles. 114

6.1 Examples of a lattice control set and different motions. 127

6.2 Demonstrated and learned behaviour in the training environment. The color
of the path indicates speed, where blue corresponds to slow and red corre-
sponds to fast. 128

6.3 The t-error for all connections B̄ and the MSKCS connections Ē compared
to a naive approach with B̄naive and Ēnaive, respectively. 129

6.4 Training data: The t-error and planning time speedup for different sizes of
the MSKCS and the different user types. 130

6.5 Test data: The t-error and planning time speedup for different sizes of the
MSKCS and the different user types. 131

A.1 (Left) Graphical proof that (x3, y3) cannot appear to the left of the line
containing (x, y) and k1(x1, y1). (Right) Graphical proof that the shortest
distance to (x, y) in E does not contain (x3, y3) 151

xiv

B.1 Curvature profile of two curves in the set G. (Red): curvature of the curve
G(ps, κtop, κf ,∆ = s3). (Black): curvature of the curve G(ps, κtop, κf ,∆)
for ∆ > s3. 166

xv

List of Tables

4.1 Average cost savings. Breakdown by dominant feature and initial/final ve-
locity. 83

4.2 Average cost savings, maximum lateral error and average lateral error for
two methods (O = Ours, B = Benchmark), categorized by time weight. . . 88

4.3 Comparison of run-times. Our methods (Ours) compared against state-of-
the-art (SOTA) for each sub-routine of the procedure. 88

5.1 Scenario Results . 111

5.2 Road navigation results: HA* and proposed shown above. CG and HA2*
from [119] Table 3 for similar motion planning problem. 115

xvi

List of Abbreviations

CCR Continuous Curvature Rate 11, 12, 61

HCR Hybrid Curvature Rate 11, 12, 61

IS Integral Squared. Refers to the integral of the squared magnitude of a function along
a trajectory 80

MILP Mixed Integer Linear Programming or Mixed Integer Linear Program x, xi, 5, 8,
90, 91, 94, 95, 97, 100, 107, 108, 117, 124–126, 134

MSKCS Minimum Spanning K-Control Set xiv, 33, 34, 117, 123–125, 129–131

MTSCS Minimum t-Spanning Control Set viii–x, 5–10, 16, 18, 26, 30, 32–39, 50, 51, 55,
58, 90–94, 98, 102, 125, 133

TPBV Two Point Boundary Value 2, 12, 14, 15

xvii

Chapter 1

Introduction

As autonomous vehicles and car-like robots (which we also refer to as vehicles) become
increasingly important to modern society [42], so too does the need to develop safe, feasible,
possibly comfortable trajectories for them. In the field of motion planning, this need is
embodied by motion planning problem. At its highest level, the motion planning problem
is to compute trajectories that adhere to the kinematic and physical constraints of the
vehicle while simultaneously maximizing desirable properties like low travel times and
comfort [78]. During the course of a vehicles’ movement, it is the role of a global planner

Environment

Local
planner

Tracking
controller

Environment Environment

Reference
trajectory

Control
input

Replan?

Goal Configuration

Current configuration
& constraints

Figure 1.1: The role of the local planner in autonomous driving.

to compute an initial collision-free trajectory between start and goal configurations that
does not take into account the differential constraints of a vehicle [116]. This trajectory –
expressed as a sequence of global waypoints – is then refined by a local planner by solving

1

the motion planning problem between waypoints. The result is a reference trajectory that
can be followed by a tracking controller [108]. The tracking controller computes a control
signal that allows the vehicle to follow reference. The process of computing and following
a reference trajectory – summarized in Figure 1.1 – is performed iteratively with the local
planner computing a new reference from the vehicles’ current configuration to its current
waypoint goal in accordance with a re-planning rule [108].

This work focuses on the local planner, in particular on the motion planning problem. In
general, this problem is intractable [3] owing in part to potentially complex vehicle models
which impede the calculation of Two Point Boundary Value (TPBV) problems. That is, it
may be difficult to compute any kinematically feasible reference trajectory for the vehicle,
let alone one that maximizes desirable properties. Therefore, simplifying assumptions must
be made so that the local planner can quickly develop reference trajectories online.

Overly simplified kinematic models result in infeasible reference trajectories [34] and
large tracking error [29, 64] that may necessitate frequent re-planning. In contrast, solving
TPBV problems online for complex models is computationally impractical. Lattice-based
motion planning simplifies the motion planning problem by limiting the allowable trajecto-
ries. In detail, lattice-based planners works by discretizing the space of all possible vehicle
configurations into a countable set (or lattice) of regularly repeating configurations. Kine-
matically feasible trajectories between lattice configurations (or vertices) are pre-computed
in such a way as to maximize desirable properties. This is done in the absence of obstacles.
Finally, a subset of these trajectories called a control set is selected [76, 88, 90, 106]. The
elements of the control set – called motion primitives – can then be concatenated online
to form complex compound maneuvers that do not collide with obstacles.

Because vertex to vertex trajectories are pre-computed in lattice-based motion planning,
the complexities of the motion planning problem that arise from the kinematic model
are considered offline – thus removing the need to solve TPBV problems online. The
feasibility of a compound maneuver obtained by concatenating elements of a control set
can be guaranteed by ensuring the feasibility of each pre-computed element of the control
set. These observations are the foundation of Lattice-based motion planning, one of the
most common approaches to solving the motion planning problem [34, 106].

This work focuses two stages of lattice-based motion planning: the development of
kinematically feasible trajectories between lattice vertices that maximize desirable proper-
ties in the absence of obstacles, and the selection a control set. These two stages: lattice
trajectory generation, and control set selection are discussed here:

2

Lattice Trajectory Generation In differential geometry, a planar curve (or just curve
in this work) is a function from a non-empty interval of R – called a parametrization –
to the plane. In this thesis, a path is a curve where the chosen parameter is arc-length,
while a trajectory is a curve parameterized by time. A curve is called Ck continuous if
it is continuous up to the kth derivative with respect to its chosen parametrization. On
the other hand, the curve is called Gk continuous, or geometrically continuous, if there
exists a parametrization for which the path is Ck continuous [7]. Typically, a curve is
said to be Gk if it is Gk continuous, but not Gk+1 continuous. Geometric continuity is
a measure of smoothness of a curve independent of its parametrization but is equivalent
to the familiar notion of Ck continuity when the parameter selected is arc-length [7].
Observe that a trajectory is uniquely defined by a path together with a velocity profile
that governs movement along the path through time. That is, the velocity profile offers a
re-parametrization of a curve from arc-length to time dictated by the differential equation
ds/dt = v(s) for arc-length s, velocity profile v(s), and time t.

In this work, a method to compute trajectories between lattice vertices in the absence
of obstacles is presented. This process develops both a path and a velocity profile that
optimize a trade-off between smoothness/comfort [78] and travel time [66, 121], though
the methods developed here can be used to consider other features as well.

Every path computation technique available in literature will produce a path that is at
least G0 continuous. The paths developed in this work are G3 continuous. It will be shown
in Chapter 4 (Theorem 4.3.1) that this constitutes a necessary condition for the optimality
of a Gk-continuous path for many possible cost functions that balance a trad-off between
comfort and travel time (e.g. those used in [66, 119, 121, 122]) .

Given a set of weights representing the relative importance of comfort and travel time
for a user, the technique presented here iteratively computes and refines a path and a
velocity profile to produce a trajectory that best represents the given weights. Critically,
because these trajectories can be pre-computed and saved for use in lattice-based motion
planning, the time required to compute these trajectories is of far less importance than the
space required to store them. The methods developed in this work are largely analytical
and it will be shown that a trajectory can be easily reconstructed online from only 19 stored
constants. This is potentially far less than the number of constants required to describe a
trajectory that was derived using purely numerical means. Indeed, a numerically-derived
trajectory is described by sampled states. Therefore, to describe a trajectory of length
10 meters with samples taken every 0.1 meters, 300 values would need to be stored: 100
samples × 3 states per sample (position in R2 and velocity). In this example, storing a
numerically-derived trajectory requires ≈ 16 times more values than the proposed method.

3

In addition to generating trajectories that optimize a given trade-off between comfort
and travel time (represented as a set of weights), this thesis also describes how to incorpo-
rate user demonstrations into the lattice trajectory generation process. In essence, given
a set of user demonstrations, a set of weights is computed that best describes the demon-
strations. These weights can then be used as inputs to the trajectory generation technique
described above, resulting in lattice trajectories that take into account the preferences of
a user. Once trajectories between lattice vertices have been computed, a control set is
selected. This process is discussed here.

Control Set Selection As a motivating example, consider the motion planning problem
of computing the shortest path between start and goal configurations of the form (x, y) ∈
R2 when instantaneous changes in heading is permitted without penalization. In such
problems – called any-angle path planning problems [43, 75, 94] – shortest paths are
comprised of a sequence of collision-free straight lines. Consider a discretization of the
configuration space R2 comprised of integer-valued (x, y) pairs arranged in a square lattice.
Example control sets for this lattice (red) and paths computed using these control sets
(blue) are illustrated in Figure 1.2. It can be shown that in the absence of obstacles,
the shortest path using the control set from the left image from any start to any goal in
the lattice will be no more than a factor of

√
2 from the length of the shortest path [75].

This error factor is decreased to ≈ 1.08 using the control set in the right image [75]. It

Start

Goal

Start

Goal

Figure 1.2: Two example control sets (red) and shortest trajectories from start to goal
using these control sets (blue). Shortest trajectories are shown in gold.

4

is observed in [12, 89] that the number of primitives in a control set favorably affects the
quality of the resulting paths but adversely affects the performance of an online search.
This observation motivates the following question: The control sets illustrated in Figure
1.2 result in a maximum error factors of

√
2, 1.08, respectively, but is there any smaller

control set that will achieve the same result?

In [89], the authors introduce the notion of a t−spanning control set: a control set that
guarantees the existence of compound trajectories whose costs are no more than a factor
of t from optimal. For example, the control sets in Figure 1.2 will

√
2-span and 1.08-span

the lattice, respectively. The authors of [89] propose that an optimal control set for a
lattice is one with minimal size that, for a given value t > 1, will t−span the lattice. Such
a set would optimizing a trade-off between path quality and performance. The problem
of computing such a control set is called the Minimum t-Spanning Control Set (MTSCS)
problem.

The MTSCS problem is, in essence, a coverage problem. In particular, one may think
of a trajectory v between lattice vertices as being ”covered” by a control set if v can be
decomposed into a sequence of trajectories in the control set whose total cost is no more
than a factor of t from the cost of v. Thus the MTSCS problem seeks to compute the
smallest set that covers a lattice.

As with other coverage problems [55], there are instances of the MTSCS problem that
are efficiently solvable and others which are not. For the any-angle path planning problem
and square lattice described above, we show that the MTSCS problem can be efficiently
solved using a simple approach of iteratively adding paths to a control set if and only if
they are not yet covered.

In this thesis, we provide a proof that the MTSCS problem is, in general, NP-complete.
Motivated by this result, we develop a Mixed Integer Linear Programming or Mixed Inte-
ger Linear Program (MILP) encoding of the problem which can be solved using existing
software like Gurobi [40]. This approach constitutes the only known non brute-force ap-
proach to solving the MTSCS problem. Though our approach does not scale with the size
of the lattice, it is observed that a control set must be computed only once, offline.

Combining the two stages of lattice-based motion planning: Lattice trajectory genera-
tion and control set selection, results in a control set comprised of motion primitives that
take into account the preferences of a user, and that optimizes a trade-off between the
quality of compound maneuvers and the time required to compute them. This complete
process is outlined in Figure 1.3. From a set of demonstrations, a set of weights that best
describes these demonstrations is determined and used as input (along with the vertices of
a lattice) to the proposed trajectory generation method. From here, a set of trajectories

5

User demonstrations

User model calculator

User weights

Trajectories between

lattice vertices

MTSCS solver

Control set

Trajectory generatorLattice vertices

Local planner

Offline

Online

Figure 1.3: Block diagram illustrating how topics covered in this thesis provide an input
control set for a local planner.

is developed between lattice vertices and a control set is selected. This control set is then
used by a local planner to compute compound motions that do not collide with obstacles.
In the next section, the structure of this thesis as well as the specific contributions of each
chapter to the state of the art is described.

1.1 Thesis Structure & Summary of Contributions

The purpose of this section is to present an outline for the thesis. It will also highlight the
contributions made to the state of the art in each chapter.

1.1.1 Chapter 2: Preliminaries

In this chapter, preliminary information for all the subsequent chapters is provided. The
motion planning problem and the MTSCS problem are stated formally in this chapter.

6

Further, terms used informally thus far like trajectory, state, configuration, etc. are formally
defined.

1.1.2 Chapter 3: The MTSCS Problem for an Any-Angle Square
Lattice

This chapter addresses the MTSCS problem for an any-angle path planning problem with
a square lattice (e.g., Figure 1.2). Here, the cost of a trajectory between two lattice vertices
is taken to be the length of the vector between these vertices. The contributions of this
chapter described here.

1. An efficient algorithm to solve this instance of the MTSCS problem is presented, and
it is shown that this algorithm terminates in finite time for all values t > 1 even for
infinite lattices.

2. Bounds on the size of the control set generated using the proposed algorithm are devel-
oped. These bounds are functions only of t for the case of an infinite lattice, and of t
and the size of the lattice otherwise.

3. An upper bound on the sub-optimality of compound paths computed using the proposed
control set (in the presence of obstacles) is presented.

The methods of this chapter are compared against the state of the art control set generation
technique from [94].

1.1.3 Chapter 4: Tunable Trajectory Planner Using G3 Curves

The problem of generating a trajectory between start and goal configurations – in the
absence of obstacles – that optimizes an adjustable trade-off between travel time and
comfort is addressed in this chapter. This problem is an instance of infinite-dimensional
non-convex optimization. The contributions of this chapter are summarized below.

1. Given a set of weights representing the relative importance of comfort and travel time
for a user, a method of simplifying the resulting infinite-dimensional non-convex opti-
mization problem to one of finite dimension is proposed. Leveraging this simplification,
a method to iteratively compute and refine both path and velocity components of the
trajectory is presented.

7

2. To use the method proposed here, a technique to compute paths between start-goal
configurations is developed. These paths are adjusted via a single parameter.

3. Finally, a technique to compute a velocity profile for a given path and user weights is
proposed.

The methods in this chapter will be used in later chapters to compute trajectories between
the vertices of a lattice. A control set for this lattice will then be selected by solving the
MTSCS problem.

1.1.4 Chapter 5: High-Dimensional Lattice Planning with Opti-
mal Motion Primitives

The MTSCS problem for a general lattice is discussed in this chapter. Further, applications
of the problem for autonomous vehicles are developed. The work in this chapter is an
extension of the authors’ preliminary work in [12]. The specific contributions of this chapter
are outlined here.

1. The NP-completeness of the decision version of the MTSCS problem for a general lattice
is proved.

2. A mixed integer linear programming (MILP) formulation of the MTSCS problem for
state lattices is proposed. This represents the first known non-brute force approach to
solving the MTSCS problem.

3. An A*-based algorithm to compute feasible trajectories for difficult maneuvers in both
parking lot and highway settings is developed. The algorithm accommodates off-lattice
start and goal configurations up to a specified tolerance.

4. Finally, a novel algorithm that eliminates redundant vertices along trajectories com-
puted using a lattice is introduced. This algorithm is based on shortest paths in directed
acyclic graphs and runs in time quadratic in the number of motion primitives along the
input trajectory.

8

1.1.5 Chapter 6: Learning Control Sets for Lattice Planners from
User Preferences

This work investigates the problem of designing a motion planner that can capture user
preferences. This problem involves simultaneously learning trajectories and a control set of
fixed size given Demonstrations from a single user. These demonstrations are trajectories
between configurations as driven by a user though we do not assume that users are able to
perfectly demonstrate their preferred trajectories. This chapter presents a solution to this
problem. The work presented in this chapter can be found in [13] and was a collaborative
project with Nils Wilde, another PhD student at the University of Waterloo. Both authors
contributed equally to this work.

1.2 Related Work

In this section, we present some of the work related to the topics of this thesis. For
readability, we present the work related to each topic covered in this thesis separately.

1.2.1 Chapter 3: The MTSCS Problem for an Any-Angle Square
Lattice

Any-angle trajectory planning has broad applications from video-games [75, 81, 94], to
way-point computation for robotic navigation [65]. In [26, 72], the authors use any-angle
trajectories as part of a heuristic for an A*-based graph search algorithm. It is shown in
these papers that including any-angle trajectory costs from a start configuration to a goal
in the presence of obstacles as part of a heuristic greatly reduces the run-time of A*.

Sampling-based techniques for any-angle planning include Asymptotically Optimal
Rapidly-exploring Random Trees (RRT*) [54] and Fast Marching Tree (FMT*) [51] which
produce trajectories that asymptotically converge to optimal with the number of samples.
To improve the convergence rate of RRT*, the authors of [31] introduce Batch Informed
Trees (BIT*) which draws samples from a decaying ellipse once an initial trajectory has
been discovered. In [60], the authors present RRT-Connect, an algorithm which iteratively
constructs, and attempts to connect, two trees – one rooted at the starting configuration
and one at the goal – to decrease the time required to obtain an initial trajecotry.

In [43], the authors introduce ANYA, an algorithm that computes an optimal any-angle
collision-free trajectory between start and goal configurations. This algorithm was later

9

optimized for run-time in [44]. Closely related to the work presented in Chapter 3, [75]
illustrates the maximum error (relative to the optimal path in a lattice) incurred from using
control sets of size 4,6, and 8 in both triangular and square lattices in 2 and 3 dimensions
(in the absence of obstacles). In [21], an A*-variant called Theta* is introduced. When a
vertex v is expanded by A* and a neighbor v′ of v is determined, Theta* considers both
v and the parent of v as potential parents of v′. The authors of [21] consider control sets
of size 4, 8, and 16 noting the decreased sub-optimality of their computed paths (at the
expense of computation time) as the size of the control set is increased. Increasing the
control set size past 16 is considered in [94] in which the authors present an algorithm
which takes as input a natural number k ≥ 2 and returns a control set of size 2k. The
algorithm itself is based on the Fibonacci numbers, and the authors note that the sub-
optimality of planned paths decreases as k increases (at the expense of computation time).
In Chapter 3 it will be shown that identical sub-optimality can be obtained using control
sets of much smaller size than those proposed in [94] by solving the MTSCS problem.

1.2.2 Chapter 4: Tunable Trajectory Planner Using G3 Curves

As will be formalized in the following chapter, a trajectory is spatio-temporal construct
comprised of a path in space and a velocity profile describing the traversal of that path
through time. Related work on these topics is provided separately.

Path Planning

Path planning techniques can typically be divided into two categories: a path-fitting ap-
proach, and a curvature fitting approach. In the path fitting approach, a form of the path
is fixed up to unknown parameters. These parameters are then computed numerically by
solving optimization problems. Example path-forms include G2−splines [87], and Bezier
curves [41]. In the path fitting approach, smoothness and comfort of paths is typically
enforced by minimizing the maximum curvature rate (the rate of change of curvature with
respect to arc-length) over the trajectory. Minimizing the maximum curvature rate as
opposed to simply bounding it may result in longer than necessary paths.

Unlike the path fitting approach, the curvature fitting approach assumes a form of the
curvature profile over the path (as opposed to the path itself) up to unknown parameters.
The unknown parameters are then computed by solving a two point boundary value prob-
lem between start and goal configurations. Early work in this approach includes Dubins’

10

paths [27] – shortest paths between start and goal configurations with continuously differ-
entialble position with respect to arc-length and bounded curvature (i.e., G1 paths). These
paths, while efficient to compute, experience moments of infinite instantaneous jerk.

In [59, 112], the authors use a cubic polynomial curvature representation. However,
the resulting path does not possess sufficient degrees of freedom to account for bounds
on the curvature, resulting in potentially infeasible paths that violate physical curvature
constraints of the vehicle.

Clothoid paths [29] address feasibility issues via constraints on curvature and curvature
rate over the path resulting in paths with piece-wise constant curvature rate. A clothoid,
or Euler Spiral, is a G2 curve whose instantaneous curvature, κ is a linear function of the
curve’s arc-length, s. When the start and goal configurations are given as an (x, y) pose, a
heading θ, and a curvature κ, several methods have been proposed to generate the shortest
path from start to goal as a sequence of clothoid and straight line segments [102, 103].
When a vehicle is moving at constant speed, jerk is experienced lateral to the trajectory
and is proportional to the derivative of curvature. Therefore, if the vehicles’ path can be
described by a clothoid, then it will experience piece-wise constant jerk when travelling
at constant speed. Hence, by constraining the curvature rate, clothoid paths bound the
maximum squared jerk at constant speed rather than minimizing the integral of the squared
jerk, a widely accepted metric for discomfort [66].

Requiring that the curvature be twice differentiable with respect to arc-length, and
placing bounds on curvature, curvature rate, and second derivative of curvature results in
G3 paths whose integral of the squared jerk can be minimized. Paths that areG3 continuous
are to clothoid (G2) paths, what clothoids were to Dubin’s (G1) paths. Thus G3 paths are
one step closer to paths with infinitely differentiable G∞ curvatures – like spline and Bezier
paths – while minimizing arc-length in the presence of explicit restrictions on curvature,
and curvature rate. In [77], the authors obtain G3 paths by concatenating cubic spline
curves and straight lines. Though this approach results in G3 paths, the spline segments of
the path, which are infinitely differentiable, may result in longer than necessary arc-lengths
as is the case with regular spline paths. In fact it will shown in 4 that G3 paths such that
every sub-path is also G3 (and not Gk for k > 3) are the shortest paths for which the
integral of the squared jerk can be minimized.

In [6], the authors introduce Continuous Curvature Rate (CCR), and Hybrid Curvature
Rate (HCR) curves. These curves are G3 curves in which the derivative of curvature with
respect to arc-length, σ, is a piece-wise linear, continuous function of the arc-length s, and
the second derivative of curvature with respect to arc-length, ρ, is piece-wise constant.
Every sub-path of these paths is also G3 (not Gk for k > 3). The authors of [6] compute

11

paths between start and goal states by combining CCR/HCR curves and straight lines.

By placing bounds on σ and ρ, the paths developed in [6] have the added benefit of
bounding not only the magnitude of the jerk at constant speed, but the angular jerk (the
time rate of change of angular acceleration), and the snap (the time derivative of jerk) at
constant speed. These benefits make HCR/CCR curves particularly attractive for use in
trajectory planning.

The techniques presented in [6] have four drawbacks that are addressed in 4. First,
the authors of [6] focus on paths whose start and goal states have either 0 or maximum
curvature. Though the symmetry resulting from this assumption greatly simplifies the
mathematics of path planning, it limits the usefulness of the approach. Second, the authors
of [6] use search techniques to join HCR/CCR curves with straight lines to produce a path.
These techniques can be time consuming. Third, it is assumed in [6], that the maximum
second derivative of curvature with respect to arc-length, ρmax, along a path is known.
Because HCR/CCR curves are categorized by a piece-wise constant functions ρ(s), the
value of ρmax dictates the slope – and therefore the magnitude at any arc-length – of the
curvature rate. Observe then, that ρmax should be functions of speed as, for example, a
driver may turn the steering wheel very quickly in a parking lot, but not on a highway.
Finally, it is assumed in [6], that the velocity of the vehicle is a positive or negative constant.

The major criticism of path planning using clothoids/HCR/CCR curves is the time
required to solve their inherent TPBV problems [34]. However, for all of the reasons stated
above, HCR/CCR curves are excellent candidates for use in lattice-based motion planning
where lattice trajectories are pre-computed.

Velocity Planning

Once a candidate path has been developed, a velocity profile to describe the motion of the
vehicle along that path must be computed. This velocity profile should take into account a
trade-off between comfort and duration of travel. A common technique involves minimizing
a cost function that is a weighted sum of undesirable features [66]. In [121, 122], the
authors integrate the weighted sum of the squared offset of the trajectory from the center
of the road, the squared error in velocity from a desired profile, the squared acceleration,
the squared jerk, and the squared yaw rate. A similar technique is employed in [67]
with the addition of a penalization on final arc-length. Because the goal of the work
in 4 is to produce trajectories between lattice vertices (from which a control set will be
selected) in the absence of obstacles, obstacles such as road boundaries, pedestrians, etc.

12

are not considered. Therefore, the cost function used in 4 is similar to that employed
by [67, 121, 122], but penalizes travel time, acceleration, jerk, and yaw rate.

In [119], the authors compute a velocity profile along a fixed path by minimizing the
travel time required to traverse the path. This is done by leveraging the results of [71, 109]
in which it is shown that computing the speed that minimizes travel time along a fixed
path is a convex optimization problem. While the authors of [119] ensure the safety of
their proposed velocity profile by bounding the magnitude of the centripetal force, the
comfort of the resulting trajectory is not considered when planning the velocity profile.
The addition of comfort metrics – acceleration, jerk, and yaw rate – to the cost function
results in a non-convex optimization problem.

In [11], the authors propose a technique to compute a velocity profile for a fixed path
that optimizes an arbitrary cost function. The assumption made by the authors is that
the velocity profile is given by a single polynomial equation of the arc-length. They then
state an optimization problem whose cost is given by the cost function, and whose decision
variables are the coefficients of the velocity polynomial. This optimization problem is then
solved using sequential quadratic programming. The main drawback of this approach is
inability of polynomial functions to approximate continuous functions defined in a piece-
wise fashion that feature some constant pieces. These latter functions are common for
autonomous vehicles where a maximum velocity is reached and maintained for a duration
of time. A more common approach to velocity planning for a path is to adopt a continuous
piece-wise quadratic velocity model with potentially discontinuous, piece-wise constant,
bounded, longitudinal jerk [46, 95]. The velocity profile proposed in 4 is piece-wise cubic
in arc-length with continuous, bounded linear longitudinal jerk. We employ this model for
three reasons. First, continuous longitudinal jerk (instead of simply bounded longitudinal
jerk) allows the effect of longitudinal jerk on discomfort to be minimized as opposed to
simply bounded. This is similar to the difference between G2 and G3 paths discussed above.
Second, observe that adding a velocity profile to a path induces a re-parametrization of
that path from arc-length to time. Selecting thrice continuously differentiable velocity
profiles ensures the trajectory is C3 continuous. Finally, because quadratic polynomials
are a special case of cubic polynomials, a familiar piece-wise quadratic velocity model can
be obtained via the methods presented here if that is desired.

In the above references, velocity profiles are planned for a fixed path. That is, a path
is computed and then a velocity profile is developed for that path. As discussed above,
an approach that iteratively refines both path and velocity profile is presented in 4. The
result is a trajectory that considers velocity during the planning of the a path. In [39],
the authors propose such a technique to develop a reference trajectory, and also propose
a MPC-based tracking alogithm. However, the reference paths generated are G1, and

13

the techniques are limited to lane changes on a highway. In [113], the authors develop
comfortable trajectories for use in highway driving by computing a finite set of clothoid-
spline-like s-shaped swerve trajectories that terminate at a configuration parallel to the
center-line of the road. The trajectory with the smallest integral of the squared jerk is
then selected from this set. The shape of the trajectories in the set and the assumption
that a center-line is known limits this techniques generalizability. More recently, in [9], the
authors combine numerical optimization techniques with lattice-based motion planning to
compute trajectories for autonomous vehicles in unstructured environments like parking
lots. In this work, the authors rely on a user-specified set of maneuvers to generate their
motion primitives. Further, because the lattice trajectories are numerically derived, there
is no guarantee that they will posses the property every sub-path of the trajectorys’ path
will be G3. Further, numerically derived trajectories may require substantial storage space
once pre-computed.

1.2.3 Chapter 5: High-Dimensional Lattice Planning with Opti-
mal Motion Primitives

Broadly, trajectory planning techniques fall into one of four categories [34]: sampling based
planners, interpolating curve planners, numerical optimization approaches, and graph
search based planners.

Sampling based planners work by randomly sampling configurations in a configura-
tion space and checking connectivity to previous samples. Two common examples include
Asymptotically Optimal Rapidly-exploring Random Trees (RRT*) [54], and Probabilistic
Roadmap (PRM) [58]. These methods make use of a local planner to expand or re-wire
a tree to include new samples. Therefore, many TPBV problems must be solved online
necessitating the use of simple kinematic models [70]. Thus feasibility may not be guar-
anteed [34]. In [4], a solution to this problem is proposed by replacing the the steering
function which solves TPBV problems in RRT* with a simulation forward in time given a
reference trajectory.

Sampling-based planners, while not complete, can be asymptotically complete with a
convergence rate that worsens as the dimensionality of the problem is increased [104]. The
performance of RRT* in higher dimensions is improved in [86] where the authors pre-
compute a set of reachable configurations from which random samples are drawn. The
reachable set is, in essence, a lattice and the approach in [86] is equivalent to repeatedly
computing a single-element control set via random sampling of the lattice.

In [17], the authors state that the usefulness of sampling based techniques is considered

14

to be restricted to unconstrained motion planning problems, limiting their use in scenarios
like highway driving.

Techniques using the interpolating curve approach include fitting Bezier curves [117],
Clothoid curves [30], or polynomial splines [10] to a sequence of way-points. A typical
criticism of clothoid-based interpolation techniques is the time required to solve TPBV
problems involving Fresnel integrals [34, 93]. While TPBV problems are typically easily
solved in the case of polynomial spline and Bezier curve interpolation, it is often difficult to
impose constraints like bounded curvature on these curves owing to their low malleability
[34, 93]. In [100], the authors develop a sampling-based planner that uses a control-
affine dynamic model to facilitate solving TPBV problems. These trajectories are then
smoothed via numeric optimization in [120] in which trajectories with non-affine non-
holonomic constraints and piece-wise linear velocity profiles are developed. This work
illustrates the benefits of computing way-points using a system of similar complexity to
the desired final trajectory. However, by the very nature of the simplification, it is possible
for infeasible rough paths to be developed. This is especially true when non-holonomic
and obstacle constraints are considered as terms in a cost function for a numeric optimizer
instead of as hard constraints (e.g., [25]). A common critique of both Interpolating curve
and numerical optimization approaches is their reliance on global way-points [34, 93].
Moreover, interpolating curve techniques often face malleability and computation time
issues [34, 93].

Lattice-based planners are versatile in the problems they address from motion planning
in autonomous driving [9, 108] to manipulator robots [19], to UAVs [24, 82]. The authors of
[73, 97] demonstrate lattice adaptations made to account for the structured environments
of urban roads for use in autonomous driving, while in [24], a set of motion primitives is
computed (based on experience) for a UAV exploring mine-shafts. A method of incorpo-
rating known way-points along a trajectory to a lattice-based motion planning framework
is proposed in [107] resulting in a significant decrease in planning time. In [25, 98], the
authors use motion primitives to traverse a lattice with states given by position and head-
ing. In both these works, the authors use a rounding technique to account for off-lattice
primitive concatenations due to non-cardinal headings. Compound trajectories comprised
of several primitives are discontinuous in curvature a known source of slip and discomfort
[66]. To alleviate this curvature discontinuity, the authors of [118] use the techniques of
[25] to compute an initial trajectory which is then smoothed via numerical optimization.
This approach requires at least as much computation time as the methods proposed in
[25].

The authors of [119] compute motion primitives that minimize the integral of the
squared jerk over the trajectory but limit their results to forward motion. In [76] the

15

authors consider the control set to be the entirety of the lattice. They define and search a
graph whose vertices are the vertices of the lattice, and whose edges are all pairs of lattice
vertices for which there exists a feasible, collision-free trajectory from the first vertex to
the second. Adopting such a large control set may necessitate courser lattices with larger
error with respect to free-space optimal.

The choice of motion primitives is of particular interest in this work. Typically motion
primitives are chosen to achieve certain objectives for the paths they generate. For example,
in [84], the notion of probabilistic motion primitives is introduced which achieve a blending
of deterministic motion primitives to better simulate real user behavior. The authors of
[52] use Dispertio, a dispersion minimizing algorithm from [80] to compute a set of motion
primitives that result in trajectories with minimum dispersion. In [8], a set of motion
primitives is computed that relies on a set of user-specified maneuvers. This work is
then used in [9] to compute complex trajectories in unstructured environments. In [88],
the authors present the notion of using a MTSCS of motion primitives similar to graph
t−spanners first proposed in [85].

In [89], a heuristic for the MTSCS problem is presented which, though computationally
efficient, does not have any known sub-optimality factor guarantees. Since a control set
may be computed once, offline, and used over many motion planning problems, the time
required to compute this control set is arguably of less importance than its size.

1.2.4 Chapter 6: Learning Control Sets for Lattice Planners from
User Preferences

Closely related to the work in Chapter 6, [1] and [35] learn a human driving style from
demonstrations, using a linear cost function weighting pre-defined features, and then gen-
erating paths using a graph or lattice. In contrast to the approach presented in this thesis,
both earlier approaches do not compute a new lattice for a learned user cost function, but
instead search over a given graph or lattice, using the updated cost function. Furthermore,
they consider local features that describe the relation of the vehicle to the environment,
together with global features that are independent of the environment. In contrast, this
work only considers global features describing the driving style, i.e., the trade-off between
travel time and passenger comfort, given a situation. Instead of keeping sub-optimal tra-
jectories between lattice vertices, the proposed method recomputes all trajectories given a
learned preference and then computes a sparse control set for the lattice. Thus, during the
motion planning, the control set contains only trajectories that are optimal for the learned
user preferences.

16

Research in human robot interaction studies how the behaviour of autonomous robots
can be shaped to satisfy the preferences of users. Similar to work in learning from demon-
stration [2] or active preference learning [79, 99], a user cost function that puts weights
on a set of features is employed in this work. Given a fixed set of features, the user’s cost
function is learned by estimating the weights on the features. In [37] tunable parameters
are introduced to a motion planner suited for urban driving while the work of [15] proposes
a set of features to identify different driving behaviours of human drivers.

17

Chapter 2

Preliminaries

The purpose of this chapter is provide background information on topics relevant to this
thesis. In particular, formal definitions of terms hitherto used informally will be presented.
We will also formally state the motion planning problem and the Minimum t-Spanning
Control Set (MTSCS) problem.

2.1 Graph Theory

Following [61], a graph is an ordered pair G = (V,E), where V is a set of vertices and E
is a set of edges. In a weighted graph G = (V,E, c) a real valued function associates a
cost to each edge of the graph: c : E → R. We define a path Ps,g in the graph between
two vertices s and g in V as a sequence of edges Ps,g = (e0, . . . , ek) where ei = (vi, vi+1),
v0 = s, vk+1 = g, and vj 6= vm for all j,m ∈ {0, . . . , k + 1}. The cost of a path is defined
as c(Ps,g) =

∑
e∈Ps,g

c(e). Observe that the path Ps,g can also be uniquely defined as the

sequence of vertices Ps,g = (v1, . . . , vk+1) given above.

There are many known NP-complete problems involving graphs. One that is used in this
paper is the vertex cover problem [55]. For an undirected graph G = (V,E), a set V ′ ⊆ V
is called a vertex cover of G if for every edge (i, j) ∈ E, it holds that (i ∈ V ′) ∨ (j ∈ V ′).

Problem 2.1.1 (Vertex Cover). Given an undirected graph G = (V,E) and a natural
number K ≥ 0, determine if there exists a vertex cover V ′ of G with |V ′| ≤ K

A weighted graph G = (V,E, c) is called directed if edges in E are ordered pairs. A
weighted directed graph is called acyclic, if it contains no cycles. That is, for any vertex

18

v ∈ V it is not possible to construct a non-trivial path Pv,v. Closely related to the notion
of directed acyclic graphs is the notion of an arborescence:

Definition 2.1.2 (Arborescence). From Theorem 2.5 of [62, Section 2.2], a graph G with
a vertex s is an arborescence rooted at s if every vertex in G is reachable from s, but
deleting any edge in G destroys this property.

In essence, a graph G is an arborescence rooted at s if for each vertex v in G other
than s, there is a unique path in G from s to v. Arborescences are to directed graphs what
trees are to undirected graphs.

2.1.1 Shortest Path in a Weighted Graph

Given a weighted directed graph G = (V,E, c) as well as a pair of vertices s, g ∈ V , this
section discusses algorithms that compute paths Ps,g of minimal cost c(Ps,g). In particular,
we present the two algorithms that are used in this work.

A* Shortest Path Algorithm: The A* algorithm, introduced in [45], computes the
minimal cost path in a weighted directed graph G = (V,E, c) from a starting vertex s ∈ V
to a goal vertex g ∈ V . The algorithm – summarized in Algorithm 1 – works by maintaining
a lowest cost arborescence rooted at s and expanding that arborescence one edge at a time
until the goal vertex is reached. This is accomplished by maintaining two sets: a set Open
containing vertices that have been discovered by A* but whose edges have not yet been
expanded, and a set Closed of vertices that have been discovered and whose edges have
been expanded. The vertices of the arborescence is given by Open ∪ Closed. In each
iteration of the while loop in Line 7, a vertex current that minimizes a cost given by the
value fScore over all vertices in Open is selected (Line 8). In detail, for a vertex v ∈ Open,
fScore[v] is the sum of two values, gScore[v] and h(v) where gScore[v] is the minimum cost
path from s to v in the arborescence (and therefore in the graph), and h(v) is an estimate
of the minimum-cost path in G from v to g. Thus fScore[v] represents an estimate of the
cost of the minimum-cost path from s to g in G that passes through v. Once selected, the
neighbors of current are expanded (Line 15). If a neighbor v of current is not in Open, or
if it is in Open but can be reached with lower cost via the vertex current (Line 19), then
the gScore and fScore of v are updated (Lines 20-24). A* terminates once the goal g is
the value with the lowest fScore in Open (Line 9), or if there are no more vertices in Open
(Line 27). If g is the vertex in Open with the lowest fScore, then a path is constructed by
backwards propagation through the arborescence (Lines 10-13).

19

The function h : V → R≥0 used in computing the fScore of each vertex is called a
heuristic. The value h(v) represents an estimate of the cost of the minimal-cost path in G
from v to g. A heuristic is called admissible, if it produces an under-estimate of the cost
of the minimal-cost path in G from each vertex v ∈ V to g. It is called consistent if for all
vertices v, u with (v, u) ∈ E, it holds that h(v) ≤ c((v, u))+h(u). It was shown in [45] that
the A* algorithm presented in Algorithm 1 will always return the minimal-cost path in G
from s to g if one exists (and it will return Fail otherwise) provided that h is admissible
and consistent.

Algorithm 1 A* Graph-search algorithm

1: procedure A*(G = (V,E), s, g, h)
2: Open = {s}
3: Closed = ∅
4: cameFrom[s] =None
5: gScore[s] = 0
6: fScore[s] = h(s)
7: while Open 6= ∅ do
8: current = arg minv∈OpenfScore[v]
9: if current = g then

10: path = [current]
11: while cameFrom[current] 6= None do
12: current = cameFrom[current]
13: add current to path

14: return path in reverse order

15: for all v ∈ V , (current, v) ∈ E do
16: if v ∈ Closed then
17: continue
18: temp = gScore[current] + c(current, v)
19: if v /∈ Open or gScore[v] > temp then
20: cameFrom[v] = current
21: gScore[v] = temp
22: fScore[v] = gScore[v] + h(v)
23: if v /∈ Open then
24: add v to Open

25: remove current from Open
26: add current to Closed
27: return Fail

20

In this work, we use heuristics h(v) such that h(v) ≤ c((v, u)) + h(u) for all v, u ∈ V
thus guaranteeing consistency. Their admissibility will be discussed as they are introduced.

Shortest Path in a Directed Acyclic Graph: This section follows [20, Section 24.5,
Pages 592-595]. Given a weighted, directed, acyclic graph G = (V,E, c), a topological
ordering of G is an ordering of the vertices of V such that if (u, v) ∈ E, then u appears
before v in the ordering. Using this definition, a shortest path algorithm is summarized in
Algorithm 2. The algorithm begins my constructing a topological ordering V ′ of V (Line
2), and initializing the current best cost to get (cost) from s to each vertex v ∈ V ′ as well
as the current predecessor (cameFrom) of each vertex v ∈ V ′ (Lines 3-6). Next, each vertex
in the topological ordering (Line 7) is expanded (Line 8) and the cost and predecessor of
each neighbor is updated (Lines 9-11) if that neighbor can be reached with lower cost than
previously discovered (Line 9). Finally a path is returned by backwards propagation of the
predecessors (Lines 12-17).

Algorithm 2 Shortest Paths in a Directed Acyclic Graph

1: procedure Dag-Shortest-Paths(G = (V,E), s, g)
2: V ′ = topological ordering of V beginning with s
3: for all v ∈ V ′ do
4: cameFrom[v] = None
5: cost[v] =∞
6: cost[s] = 0
7: for all v ∈ V ′ do
8: for all u, (v, u) ∈ E do
9: if cost[v]+c((v, u)) < cost[u] then

10: cameFrom[u] = v
11: cost[u] = cost[v]+c((v, u))

12: current = g
13: path = [current]
14: while cameFrom[current] 6= None do
15: current = cameFrom[current]
16: add current to path

17: return path in reverse order

It is shown in [20, Section 24.5, Pages 592-595] that such an algorithm returns the
cost-minimizing path in G from s to g provided that it exists.

21

2.2 Differential Geometry & The Motion Planning

Problem

In differential geometry, a planar curve (or simply curve) is a k-times continuously dif-
ferentiable function C : U → R2 for some k ∈ N≥0. Here, U is an interval of R, and we
say that C is a curve parameterized by the parameter u ∈ U . In this thesis, we assume
that curves are k-times continuously differentiable, and k + 1-times differentiable almost
everywhere. This is a safe assumption for autonomous vehicle motion planning. Indeed,
functions that are k−times continuously differentiable but not k + 1-times differentiable
almost everywhere are functions whose kth derivative is continuous but almost never dif-
ferentiable. Examples of such functions include the Weierstrass Functions illustrated in
Figure 2.1 whose usefulness in motion planning is dubious.

Figure 2.1: The Weierstrass Function, image courtesy of Wolfram Mathworld, available at
https://mathworld.wolfram.com/WeierstrassFunction.html.

A kinematic model of a curve C is a vector of differential equations describing the
changes in C that arise from changes in the parameter u [115, Chapter 1]. These differential
equations must be sufficient to compute all k + 1 derivatives of C with respect to u. For
example, if the chosen parameter is arc-length, s, then a line-and-circle curve with bounded
curvature (i.e., a (k = 1)-times continuously differentiable curve comprised of straight lines
and circular arcs with bounded radius connected continuously) may be described via the
kinematic model dx(s)/ds

dy(s)/ds
dθ(s)/ds

 =

cos(θ(s))
sin(θ(s))

0

+

 0
0

κ(s)

 (2.1)

where (x, y) ∈ R2 denotes position, θ heading, and κ curvature. Here, the curvature is

22

derived as follows: for a curve C, parameterized by arc-length, the tangent vector is given
by

T (s) = (dx(s)/ds, dy(s)/ds),

and we observe that ||T (s)|| =
√

(dx(s)/ds)2 + (dy(s)/ds)2 =
√

cos(θ(s))2 + sin(θ(s))2 = 1.
Curvature is defined as the derivative of the unit tangent vector with respect to arc-length.
Therefore,

|κ(s)| =
∣∣∣∣∣∣T (s)

ds

∣∣∣∣∣∣ =

√(
d2x(s)

ds2

)2

+

(
d2y(s)

ds2

)2

=

√(
− sin(θ(s))

dθ(s)

ds

)2

+

(
cos(θ(s))

dθ(s)

ds

)2

=
∣∣∣dθ(s)
ds

∣∣∣.
Further, the sign of the curvature is taken to be the sign of dθ(s)/ds. That is, curvature
is positive for increasing heading and negative otherwise. Therefore, dθ(s)/ds = κ(s). In
the kinematic model (2.1), κ(s) may be discontinuous but is bounded for line-and-circle
curves.

Elements that appear as outputs of a kinematic model are called states. In the example
kinematic model (2.1), the states of the curve are given by x, y, θ while κ can be seen as
an input to the kinematic model. For a curve C parameterized by u ∈ U = [u0, u1] ⊆ R,
knowledge of the states at u = u0, the inputs at all values u ∈ U , and a kinematic model,
is sufficient to determine the value of the states for all u′ ∈ U , u′ ≥ u0 [18, Section 1.3]. A
tuple of all of the states and inputs of a curve is called a configuration [16, Section 3.1] (e.g.,
(x, y, θ, κ) for the kinematic model (2.1)), while the set of all possible configurations is called
a configuration space, X . Finally, for autonomous vehicles, a workspace W is a subset of R2

defining the set of allowable planar positions. The workspace may represent the obstacle-
free space R2 − Xobs for a set of obstacles Xobs, or may chosen without reference to a set
of obstacles. As mentioned in Chapter 1, a lattice is a discretization of the configuration
space. A workspace may be thought of as a bounding box for the lattice with or without
obstacles. For example, if one wishes to plan trajectories for robots in a room, then one
may think of the boundaries of the room as the workspace, or one may include the static
obstacles within the room as part of that workspace.

Intuitively, the set of states considered by a motion planner should be the smallest set
of from which all desired properties and constraints of the vehicles’ motion can be derived.
For example, if one wishes to design a curve for an autonomous vehicle in which which the
integral of the squared curvature is penalized, or the curvature is bounded, then curvature
should be included as a state in configurations of the configurations space.

23

Consider a curve Cs parameterized by arc-length s ∈ S where S is an interval of R with
left endpoint 0. Let Xs the configuration space of Cs. In this thesis, a path π is a function
π : S → Xs where π(s) is the configuration of the curve Cs at arc-length s.

In this thesis, a path is a purely spatial construct. That is, the definition of a path
does not include a description of how the path is traversed through time. Augmenting a
path from a spatial construct to a spatial-temporal construct can be achieved by including
a velocity profile for the path. For the purposes of this thesis, a velocity profile for a
path π is an m−times continuously differentiable function v : S → R for some m ∈ N≥0,
and we assume that v(s) is (m+ 1)-times differentiable almost everywhere (similar to the
assumption made for curves). Velocity v relates time t to arc-length s via the differential
equation ds/dt = |v|. Given a velocity profile v for a path π, a re-parameterization of π
from s to t may be achieved as follows: let t = T (s) be the function relating the time t
required to reach arc-length s along π given v. Then,

T : S → T : T (s) =

∫ s

0

ds

|v(s)|
.

Observing that the integrand above is positive, T (s) is a bijective function of s implying
the existence of an inverse function. Letting S = T−1, we may obtain the arc-length s
along a trajectory at a given time t via s = S(t), and the time to reach a given arc-length
via t = T (s). Therefore, given the tuple (π(s), v(s)), we may re-parameterize π in terms
of time to produce a new function π(S(t)) given in terms of time. In order to properly
describe the curve π(S(t)), however, the kinematic model of π(s) is augmented to include
v as well as its derivatives. Further, because the kinematic model is augmented, the set
of states, configurations, and configuration space must be updated accordingly. We let Xt
denote the updated configuration space. The function Π : T → Xt is called a trajectory.

For example, consider the line-and-circle path whose kinematic model is given by equa-
tion (2.1), and suppose that a velocity profile v for this path is continuous and piece-wise
linear. Then a kinematic model for the resulting trajectory could be given by

dx(t)/dt
dy(t)/dt
dθ(t)/dt
dv(t)/dt

 =

v(S(t)) cos(θ(S(t)))
v(S(t)) sin(θ(S(t)))

0
0

+

0
0

v(S(t))κ(S(t))
a(S(t))

 ,
where a is acceleration. Here, the states the are x, y, θ, v with inputs κ, a and each configu-
ration in the configuration space Xt of the trajectory is a tuple of the form (x, y, θ, κ, v, a).

Note that a path may be viewed as a trajectory with unit speed. In particular, if
v(s) = 1,∀s ∈ S, then the time and arc-length functions reduce to T (s) = s, S(t) = t

24

implying that arc-length and time are equal. In this case, Xs = Xt and Π(t) = π(s).
Therefore, the word trajectory can be used as a blanket term for both paths and trajectories
with non-unit velocity profiles.

In light of the above definitions, we now state the motion planning problem.

Problem 2.2.1 (Motion planning problem). Input: A kinematic model K, with config-
uration space Xt, a set of obstacles Xobs, a set of magnitude constraints M on states in
the configuration space, start/goal configurations ps, pg ∈ X − Xobs, a workspace W , and
a cost function c from the set of all trajectories with kinemtatic model K to the positive
reals. Output: A trajectory Π : T → Xt where T = [0, tf] is an interval of R, and Π has
the following properties:

1. Adherence to Boundary Constraints: It holds that Π(0) = ps,Π(tf) = pg.

2. Feasibility: The kinematic model of the trajectory Π is given by K, and at all times
t ∈ [0, tf], each state in the configuration Π(t) adheres to the magnitude constraints
M. Further, at all times t ∈ [0, tf], Π(t) ∈ Xt − Xobs. That is, Π does not collide with
obstacles in Xobs. Finally, at all times t ∈ [0, tf], the x, y components of Π(t) lie within
the workspace W .

3. Optimality: Π minimizes cost c over all feasible trajectories that adhere to the bound-
ary constraints.

Assumption 2.2.2. In Chapters 5, 4, we assume that the cost function c which is an input to
the motion planning problem 2.2.1 is additive. That is, we assume that if Π1 is a trajectory
from a configuration i to a configuration j, and Π2 is a trajectory from configuration j to
configuration k, then the cost of a trajectory that first traverses Π1 and then immediately
traverses Π2 is given by c(Π1) + c(Π2). Costs of this form include any linear combination
of travel time, arc-length, smoothness, and integrals of the squared magnitude of jerk,
acceleration, yaw rate, curvature, etc. Such costs are common in motion planning for
autonomous vehicles [26, 49, 119, 121]. This assumption will be slightly relaxed in Chapter
4 to include cost functions involving a maximum.

Though the motion planning problem is, in general, intractable [3], it is often possible
for solution trajectories between start-goal pairs to be isometrically transformed to produce
solution trajectories between other start-goal pairs. In detail, given a configuration space
X , let P denote the set of solutions to Problem 2.2.1 between all start-goal configurations
in X in the absence of obstacles whereW = R2. We define an equivalence relation R ⊆ P2

as follows: two trajectories Π1(t),Π2(t) are related if there exists an orientation-preserving

25

mapping ψ in the special Euclidean group of rigid motions from Π1(t) to Π2(t). That is,
(Π1(t),Π2(t)) ∈ R if Π1(t) can be rotated and translated to obtain Π2(t).

The equivalence relation induces a partition of P into equivalence classes [Π(t)]R =
{Π′(t) : (Π(t),Π′(t)) ∈ R}. We define a motion p as one of these equivalence classes. We
define the motion p from i ∈ X to j ∈ X – written i · p = j – as the trajectory Π ∈ p that
solves Problem 2.2.1 with initial and final configurations i, j, respectively in the absence
of obstacles, and with W = R2. We also say that p is the motion associated with the
trajectory Π(t) if Π(t) ∈ p. For example, consider a left turn made by a vehicle at position
(1, 1) and with heading 0 with some velocity profile. The same left turn can be made at
position (2, 2) with heading π/4 with the same velocity profile. By rotating and translating
the reference frame, the motions of the two left turns are can be made identical.

The concept of motions is leveraged in lattice-based motion planning which we discuss
in the next section. .

2.3 Lattice-Based Motion Planning & The MTSCS

Problem

In lattice-based motion planning, the motion planning problem 2.2.1 is simplified by re-
stricting the set of available trajectories. In detail, a configuration space X from Problem
2.2.1 is discretized into a regularly repeating grid called a lattice L ⊆ X whose configu-
rations are called vertices. Lattices are selected so as to ensure that the x, y-components
of all lattice vertices lie within a given workpsace W . For a given lattice, motions p are
computed from each i ∈ L to each j ∈ L by solving Problem 2.2.1 offline in the absence
of obstacles, with for ps = i, pg = j. A subset of these motions, called a control set whose
elements are called motion primitives is then selected which represents the set of available
motions at each lattice vertex. We elaborate on this process in the following sections and
introduce the MTSCS problem.

2.3.1 Starting Set for a Lattice

In this section, we introduce the notion of a starting set O for a lattice L which is a set
of generalized lattice vertices. To fully define this notion, we begin with a motivating
example. Consider a square lattice L for an any-angle path planning problem.

For such a motion planning problem, the configuration space is given by X = R2 with
states x, y and configurations (x, y) representing position in the plane. By translation of

26

trajectories, a motion from any i ∈ L to any j ∈ L is equal to a motion from the origin
(0, 0) to j − i ∈ L. Therefore, the set B of motions between all vertices i, j ∈ L − (0, 0)
is equal to the set of motions between (0, 0) and all i ∈ L − (0, 0), and a control set E of
motion primitives can be represented as a set of motions from (0, 0) to some of the vertices
of L. This is illustrated in Figure 2.2. Here, the control set (red motions) is represented
as a set of motions originating at the origin but can be used to define the set of available
motions at any other vertex in the lattice (e.g., at i = (2, 3)).

(0,0)

i=(2,3)

Figure 2.2: Example control set for an any-angle square lattice drawn at the origin.

For a lattice defined in the previous example, we consider the origin to be a generalized
lattice vertex because defining a set of available motions at the origin (i.e., a control set) is
sufficient to define the set of available motions at any other vertex in the lattice. Further,
for each i ∈ L and each p ∈ E, it holds that i · p ∈ L. This last guarantees that motions
in the control set take lattice vertices to lattice vertices.

For lattices that are more complex than the any-angle example given above, the origin
may fail to generalize all other vertices. This can arise if the configuration space contains
states other than position and heading, or if a motion from i ∈ L to j ∈ L would result in an
off-lattice configuration when initiated at the origin. For example, consider configurations
in a configuration space of the form (x, y, θ, κ) for position (x, y) ∈ R2, heading θ ∈ [0, 2π),
and curvature κ ∈ R. Let i = (xi, yi, θi, κi), j = (xj, yj, θj, κj) and let p be a motion from i
to j. If κi 6= 0, then p will not be a motion from the origin to any configuration in X .

The above example illustrates how the origin fails to generalize all lattice vertices if
curvature is included as a state. However, this failure may persist even for configurations of

27

Figure 2.3: (a) Config. space, lattice and start from (2.2). (b) Lattice and X as in (a)
with start set O = [o0 = (0, 0, 0), o1 = (0, 0, π/4)].

the form (x, y, θ) if a motion from i ∈ L to j ∈ L would result in an off-lattice configuration
when initiated at the origin. For example, let

X =R2 × [0, 2π], L = Z2 × {iπ/4, i = 0, . . . , 7},
o0 =(0, 0, 0), W = R2,

(2.2)

denote configurations space, lattice, origin, and workspace, respectively – as in Figure 2.3
(a). If i = (1, 1, π/4) ∈ L and j = (2, 2, π/4) ∈ L, then the motion p0 from i to j is such
that o0 ·p0 /∈ L. Therefore, the simple diagonal motion p0 will not appear in any control set
E defined as motions originating at the origin. This may result in motions with excessive
oscillations.

The origin is not a generalized vertex for a lattice with states other than position
and heading or off-lattice motions. However, by including several starting vertices in a
starting set O ⊂ L (’O’ for origin), we may increase the number of lattice vertices that
are generalized by an o ∈ O. Here, elements o ∈ O are called starts. The notion of a start
generalizing a vertex is formalized now. Given a set of starts O ⊂ L, vertices i, j ∈ L, a
workspace W , and motion p from i to j, we say that i · p is a valid concatenation, if

1. Vertex i is generalized by O. That is, there exists a start o ∈ O such that o · p ∈ L.
Here, we say that o generalizes i.

28

2. Motion p starting at i is contained within the workspace. That is, if Π(t) is the trajectory
from i to j associated with the motion p then for all t′ ∈ [0, tf], the x, y-components of
Π(t′) lie within W .

In the example in Figure 2.3 (b), let O = [o0 = (0, 0, 0), o1 = (0, 0, π/4)], let p0 be the
motion from o0 to i, and let p1 be the motion from o1 to i. Then, observe that i · p1 = j is
a valid concatenation. Moreover, o0 · p0 · p1 = j is a string of valid concatenations from o0

to j containing a diagonal motion. Motivated by the examples above, an ideal set of starts
O would have the following property:

Property 2.3.1 (Property of an ideal set of starts). For every pair of vertices i, j ∈ L
with motion p from i to j, if p starting at i is contained in W , then concatenation i · p is
valid. That is, there exists a start o ∈ O such that o · p ∈ L (i.e., o generalizes i).

Obtaining a set of starts with Property 2.3.1 is simple for a class of configuration spaces
described here. For motion planning for autonomous cars and car-like robots, we typically
use a configuration space of the form

X = R2 × [0, 2π)× U0 · · · × UN , (2.3)

for position (x, y) ∈ R2, heading θ ∈ [0, 2π), and Ui ⊂ R higher order states for i = 0 . . . N .
These may include curvature, curvature rate, velocity, acceleration, jerk, etc. We make
the assumption that each state Ui is bounded. These bounds may reflect the physical
limitations of a vehicle, passenger comfort, or speed limits. This assumption allows us to
write Ui = [U0

i , U
1
i] ⊂ R for some upper and lower limits U0

i , U
1
i ∈ R. For X in (2.3),

we construct a lattice L ⊆ X by discretizing each state separately. In particular, for
α, β ∈ R>0, and n0, n1, n2,mi ∈ N for i = 0 . . . N , we let

L ={iα, i = −n0 . . . n0}
×{iβ, i = −n1 . . . n1}
×{πi/2n2−1, i = 0 . . . 2n2 − 1}

×
N∏
i=0

{U0
i + j/mi, j = 0 . . . (U1

i − U0
i)mi}.

(2.4)

This lattice samples 2n0 + 1, and 2n1 + 1 values of the x, y coordinates, respectively, with
spacing α, β between samples, respectively. It partitions heading values [0, 2π) into 2n2

evenly spaced samples, and for i = 0 . . . N , it partitions Ui into mi evenly spaced samples.

29

For X , L from (2.3), (2.4), let

O =
{

(0, 0, θ, u0, . . . uN) :

θ ∈ {jπ/2n2−1, j = 0, . . . , 2n2−2 − 1},

ui ∈ {U0
i + j/mi, j = 0 . . . (U1

i − U0
i)mi}

}
.

(2.5)

This starting set has Property 2.3.1. An example of a size-4 starting set O for a lattice
with vertices of the form (x, y, θ) with headings πi/8, i = 0, . . . 15 and O given by (2.5) is
illustrated in Figure 2.4. These motions were computed by solving the MTSCS problem
described later.

Figure 2.4: Control set E =
⋃
o∈O Eo for O = {(0, 0, 0), (0, 0, π/8), (0, 0, , π/4), (0, 0, 3π/8)}

for a lattice with 16 headings. Motions were planned using Dubins’ paths.

In the next section we detail how a set of starts O with this property is used in lattice-
based motion planning. We also introduce the MTSCS problem.

2.3.2 Lattice-Based Motion Planning with Starting Sets

In this section, we describe how a set of starts (which may or may not have Property 2.3.1)
can be used in motion planning and we formulate the MTSCS problem. In this work, we
assume that for all i, j ∈ X , there exists a trajectory Π(t) with associated motion p solving
Problem 2.2.1 from i to j in the absence of obstacles if W = R2. We assume further that
the cost of this motion, c(p) is known, non-negative, obeys the triangle inequality, and is
equal to 0 if and only if i = j. Here, the cost c(p) is the cost of the trajectory Π(t) that
solves the motion planning Problem 2.2.1 for ps = i, pg = j in the absence of obstacles
and with W = R2. This cost is left general up to Assumption 2.2.2, and may represent
arc-length, travel time, integral of the squared jerk, etc.

30

Given the tuple (X , L,O, c,W) of configurations space, lattice, starting set (with or
without Property 2.3.1), cost of motions, and workspace, respectively, the high level idea
behind motion planning using a starting set is the following. For each o ∈ O, we pre-
compute sets

Bo = {p : o · p ∈ L−O}, B =
⋃
o∈O

Bo, (2.6)

of motions from o to each vertex i ∈ L−O, and the union of those motions over all starts
o ∈ O, respectively. Critically, we make the following assumption:

Assumption 2.3.2. We assume that each motion p ∈ B is valid. Since motions in B start
at starting vertices o ∈ O, this assumption is equivalent to assuming that these motions
when starting at o are contained inW . That is, the direct motion from each o ∈ O to each
vertex in L−O is contained in W .

Observe that if O has Property 2.3.1 then by Assumption 2.3.2, for any pair of vertices
(i, j) ∈ L× (L−O) if the motion p from i to j is contained in W when starting at i, then
p ∈ B.

Once B has been computed, we – offline – select a control set E ⊆ B. In particular, for
each o ∈ O, we choose a subset Eo ⊆ Bo of motions form o to vertices in L −O. The set
E will be used to determine the set of available motions at a lattice vertex. To this end,
we offer the following definition.

Definition 2.3.3 (Relative start). For vertex i ∈ L, the relative start of i is the starting
vertex R(i) ∈ O that generalizes i for all motions p from i to vertices in L−O (if it exists).
That is, R(i) is the relative start of i if for all j ∈ L − O with motion p from i to j,
R(i) · p ∈ L.

Intuitively, the relative start of i ∈ L, is the vertex o ∈ O that is most like i. It is
in fact, the vertex in R(i) ∈ O such that any trajectory starting at R(i) is in the same
equivalence class p as trajectories starting at i. In the example presented in Figure 2.3
(b), the relative start of i is R(i) = o1 and if p0 is the motion from i to j (in this case the
diagonal red motion), then there exists a j′ ∈ L (in this case j′ = i) such that p0 is the
motion from R(i) to j′.

If L,O are given by (2.4), (2.5), respectively, then the relative start of any configuration
i = (x, y, θ, u1, . . . , uN) ∈ L is R(i) = (0, 0, θ′, u1, . . . , uN) where

θ′ =
π

2n2−1

((
2n2−1θ

π

)
mod 4

)
.

31

Using the notion of relative starts, we reduce the problem of computing a motion between
lattice vertices to computing the shortest path in a graph. Given a control set E, let

Ē = {(i, j) ∈ L2 : (i · p = j is valid) ∧
(
p ∈ ER(i)

)
},

ĒCF = {(i, j) ∈ E : (i · p = j) ∧ (p does not collide with an obstacle)}.
(2.7)

Intuitively, Ē – referred to as a connection set – is the set of all tuples i, j ∈ L such that 1)
a motion from i to j is also a motion from R(i) ∈ O to a vertex in L−O (in the absence of
obstacles), and 2) the motion p from i to j is contained in W when starting at i. The set
ĒCF – called the collision-free connection set – is the set of elements (i, j) ∈ Ē such that
the motion from i to j does not collide with an obstacle. Here, CF stands for collision-free.
Computing a motion between lattice vertices given a control set E is thus equivalent to
computing a minimum-cost path in the weighted directed graph GCF = (L, ĒCF, c) with
vertices L, edges given by the collision-free connection set ĒCF, and cost c((i, j)) equal to
c(p) where p is the motion from i to j. Similar to GCF, we let GFree = (L, Ē, c) be the graph
GCF in the absence of any obstacles (note that in the absence of obstacles, Ē = ĒCF).

2.3.3 Selecting a Control Set: The MTSCS problem

Thus far, we have described how a set of starts O and a control set E can be used in
motion planning. We now address how E can be computed beginning with two definitions.

Definition 2.3.4 (Path using E). Given the tuple (X , L,O, c,W , E) of configuration
space, lattice, starting set, cost, workspace, and control set, respectively, the path using E
from o ∈ O to j ∈ L, denoted πE(o, j) is the cost-minimizing path from o to j (ties broken
arbitrarily) in the weighted, directed graph GFree = (L, Ē, c).

Definition 2.3.5 (Distance using E). Given the tuple (X , L,O, c,W , E), the distance
using E from o ∈ O to j ∈ L, denoted dE(o, j) is the cost of the path using E from o to j.

By Assumption 2.2.2, the distance using E from o ∈ O to j ∈ L is the cost of the
compound motion from o to j comprised of sub-motions in E. Let i ∈ L − O, o ∈ O.
Observe that if E = B, then dE(o, i) = dB(o, i) = c((o, i)). That is, if E = B then the
direct motion from o to i is an available motion at o by Assumption 2.3.2 and the distance
using E = B from o to i is the cost of the trajectory that solves Problem 2.2.1 with
ps = o, pg = i in the absence of obstacles. This implies that using B as a control set will
result in trajectories with minimal cost in the absence of obstacles. However, because B can
be large, the branching factor at a vertex i ∈ L (given by |ER(i)|) during an online search

32

of the graph GCF = (L, ĒCF = B̄CF, c) may be prohibitive. We therefore wish to limit the
size of |ER(i)| in such a way that does not overly worsen dE(o, j) for all j ∈ L−O, o ∈ O.
This motivates the following definition:

Definition 2.3.6 (t-Error). Given the tuple (X , L,O, c,W , E), the t−error of E is defined
as

tEr(E) = max
o∈O

j∈L−O

dE(o, j)

dB(o, j)
.

That is, the t−error of a control set E is the worst-case ratio of the distance using E
from a start o ∈ O to a vertex j ∈ L to the cost of the direct motion from s to j taken over
all starts o ∈ O and vertices j ∈ L. The t−error is a metric for the quality of a control set.
Intuitively, the t−error is a measure of the regret incurred by selecting E as a control set
instead of B.

Definition 2.3.7 (t−Spanning Set). Given the tuple (X , L,O, c,W , E), and a real number
t ≥ 1, we say that a set E is a t−spanner of L (or that E t−spans L), if tEr(E) ≤ t.

Ideally, a control set would have both small t−error and small values of |Eo| for all
o ∈ O. Suppose t > 1 and observe trivially that E = B will t−span L. This begs the
question: is there a smaller control set E (i.e., a control set with |Eo| < |Bo| for all o ∈ O)
that will also t−span L? This question is formulated formally by the MTSCS problem [89]:

Problem 2.3.8 (Minimum t−spanning Control Set Problem). Input: A tuple (X , L,O, c,
W), and a real number t ≥ 1.
Output: A control set E =

⋃
o∈O Eo that t−spans L where maxo∈O |Eo| is minimized.

Using a solution E to Problem 2.3.8 as a control set for lattice planning has two
beneficial properties. First, the branching factor at any vertex i ∈ L during an online
search of the graph GCF is given by |ER(i)| whose maximum value maxo∈O |Eo| is minimized.
Second, for every vertex i ∈ L−O and every o ∈ O, it must hold that dE(o, i) ≤ tdB(o, i) =
tc((o, i)). Thus, Problem 2.3.8 represents a trade-off between branching factor and the
quality of computed motions. The decision version of Problem 2.3.8 is given here:

Problem 2.3.9 (MTSCS Problem – Decision Version). Given the tuple (X , L,O, c,W),
a real number t ≥ 1, and a natural number K ≥ 0, determine if there exists a control set
E =

⋃
o∈O Eo that t−spans L such that maxo∈O |Eo| ≤ K.

Very similar to the MTSCS problem is the Minimum Spanning K-Control Set (MSKCS)
problem. This problem – addressed in Chapter 6 – is extremely related to the MTSCS
problem and, in fact, has an almost identical solution.

33

Problem 2.3.10 (MSKCS Problem). Input: A tuple (X , L,O, c,W), and a natural num-
ber K ≥ 0.
Output: A control set E =

⋃
o∈O Eo such that maxo∈O |Eo| ≤ K and tEr(E) is minimized.

In essence, instead of minimizing the control set size given an acceptable error (the
MTSCS problem), the MSKCS problem minimizes the error given an acceptable control
set size. The decision version of the MSKCS problem is:

Problem 2.3.11 (MSKCS Problem – Decision Version). Given the tuple (X , L,O, c,W),
a natural number K ≥ 0 and a real number T ≥ 1, determine if there exists a control set
E =

⋃
o∈O Eo such that maxo∈O |Eo| ≤ K and tEr(E) ≤ T .

34

Chapter 3

The MTSCS Problem for an
Any-Angle Square Lattice

3.1 Introduction

In this chapter, we address the Minimum t−Spanning Control Set (MTSCS) problem 2.3.8
for a simple instance. In particular, we consider the problem of computing a MTSCS for
the tuple (X , L,O, c,Wn) with configuration space X comprised of configurations of the
form (x, y), square lattice L, starting set O with a single element located at the origin,
cost c of motions given by the Euclidean distance between the endpoints of those motions,
and workspace Wn = [−n, n]2 for a number n ∈ N≥1 ∪ {∞}. In this chapter, a motion p
that solves the motion planning problem 2.2.1 between lattice vertices i, j in the absence
of obstacles is a straight line connecting i and j, and the lattice is given by

Ln = Z2 ∩Wn = {(x, y) ∈ Z2 : x, y ∈ [−n, n]}. (3.1)

Because there is only one starting vertex o = (0, 0), a control set E can be uniquely
defined by a subset of the lattice vertices. That is, we may write E = {v1, . . . , vr} with
the understanding that the motion associated with vi ∈ E is the straight line connecting
o and vi.

In this chapter, we will provide an efficient and intuitive algorithm that solves the
MTSCS problem for the problem instance described above. We will also show that the
MTSCS is finite even if n = ∞ provided that t > 1, and we provide bounds on its
size. Further, we will provide a bound on the maximum cost error incurred from using

35

the proposed control set with respect to free-space optimal in the presence of obstacles.
Finally, we compare our technique to a state-of-the-art control set generation method in
any-angle path planning and show that the former results in exponentially smaller control
sets than the latter for the same t−error (Defined in 2.3.6).

We begin this chapter with a motivating example. Consider a continuous space version
of the MTSCS problem for the instance described above. That is, suppose we wish to
compute a set E = {li, i = 1, . . . , r} of straight lines li passing through the origin and some
configuration (xi, yi) – as in Figure 3.1 (a).

Figure 3.1: Motivating Example.

Observe that the set E partitions R2 into a set of wedges – sectors between lines
li, li+1, i = 1, . . . , r − 1. Consider one such wedge w between, say, l1 and l2. Observe
that for any (x, y) ∈ w there will always exist non-negative real numbers k1, k2 such that
k1(x1, y1) + k2(x2, y2) = (x, y) provided (x1, y1), (x2, y2) are linearly independent. This is
illuatrated in Figure 3.1 (b). Suppose that we consider w to be covered by E when each

36

(x, y) ∈ w is such that

k1||x1, y1||+ k2||x2, y2||
||x, y||

≤ t, where

(x, y) = k1(x1, y1) + k2(x2, y2),

(3.2)

for a given value t ≥ 1 and where || · || represents the Euclidean norm. A continuous
version of the MTSCS problem for the tuple (X,L,O, c) defined above is: compute a set E
of straight lines passing through the origin such that every wedge w is covered by E given
an input value t, and E is of minimal size.

It is not difficult to show that for each wedge w for a given set E, any configuration lying
on the line that bisects w will maximizes the ratio in (3.2) (see Figure 3.1 (c)). Further,
the ratio at these configurations is given by 2/

√
2+2 cos(θ) where θ is the angle inscribed by

the wedge.

Therefore an intuitive solution to the continuous MTSCS problem would be to con-
tinually bisect the plane until each wedge is sufficiently narrow so as to guarantee that
2/
√

2+2 cos(θ) ≤ t – as illustrated in Figure 3.1 (d). This is, in essence, a greedy solution: we
construct a control set E recursively by adding lines along which the error ratio in (3.2) is
maximized. From another perspective: we add lines to E that maximally reduce the angle
θ in each in each resulting sub-wedge. This intuitive greedy approach is, in fact, optimal
for the continuous MTSCS problem (the proof follows from the result of this chapter).
However, the existence of efficient algorithms for continuous problems does not guarantee
the existence of efficient algorithms for the discrete versions of those problems.

Figure 3.2: Modification of continuous algorithm for discrete lattices.

In this chapter, we show that the intuitive algorithm presented above also solves the
MTSCS for the discrete lattice (3.1) with minor modifications. In particular, we construct

37

a control set E of vertices by selecting the shortest lattice vertex for which the inequality
(3.2) fails in each wedge. This vertex v is the shortest lattice vertex such that the line
passing through the origin and v is sufficiently close to the bisecting line of the wedge to
ensure that the inequality in (3.2) fails. This is illustrated in Figure 3.2 where the red
region about the bisecting line of the wedge represents the set of vertices for which the
inequality in (3.2) fails, and v is the shortest such vertex.

In the next section, we present the algorithm that solves the MTSCS problem for the
Lattice Ln for all n ∈ N≥1 ∪ {∞}. The completeness of this algorithm is established in
Section 3.4 after technical results in Section 3.3. .

3.2 Main Result

In this section we present the main result of this chapter: an algorithm that solves the
MTSCS problem for the lattice Ln in (3.1). The approach is summarized in Algorithm 3.

Algorithm 3 Greedy MTSCS solver

1: procedure MTSCS(Ln, t > 1)
2: E = {(1, 0), (0, 1), (−1, 0), (0,−1)}
3: for v ∈ Ln in ascending order of cost do
4: if v is not t−reachable using E then
5: E = E ∪ {v}
6: Sort E in increasing order of arctan2(yi, xi)
7: if TestSet(E,Ln, t) then
8: return E

Algorithm 3 starts with a control set E given in Line 2. It then processes lattice vertices
in order of length, adding them to E if and only if the ratio of the distance using E to v
(defined in 2.3.5) to the cost of the direct motion from o to v – given by ||v|| – exceeds t.
In this case, we say that v is not t−reachable, meaning that v cannot be reached within a
factor of t of ||v||. Algorithm 3 terminates if the sub-formula TestSet returns True. We
will show later that this last ocurrs if and only if every vertex in Ln is t−reachable using
E. For now, we present the TestSet algorithm:

38

Algorithm 4 Stopping Criteria

1: procedure TestSet(E = {(x1, y1), (x2, y2), . . . , (xq, yq)}, Ln, t)
2: if n <∞ then
3: if Ln is t−spanned by E then
4: return True
5: else
6: for i = 1, . . . , q − 1 do
7: ∆x← xi+1 − xi
8: ∆y ← yi+1 − yi
9: Bw ← ∆x(∆x2 + ∆y2)−1/2

10: if Bw < 2t−2 − 1 then
11: return False
12: return True

Algorithm 4 constitutes a stopping criteria for Algorithm 3. Given a control set of
lattice vertices E that is in increasing order of the angle inscribed by these vertices and
the x−axis, Algorithm 4 verifies if the angle inscribed by neighboring vertices in E is
sufficiently small. This is analogous to the notion of a sufficiently narrow wedge described
in the previous section.

In the next section, we extend the notion of wedges used to define the intuitive algorithm
in the previous section to discrete lattices. We also present technical results that will be
used to prove the completeness of Algorithm 3.

3.3 Wedge Analysis

The proof of the correctness of Algorithm 3 relies on a system of partitioning a lattice
Ln into wedges – sectors of R2 lying between straight lines passing through the origin.
The high level idea is that vertices are iteratively added to the control set E in Line 5 of
Algorithm 3, thus splitting each wedge in the partition of Ln into sub-wedges. We show
that adding the shortest non-t−reachable vertex in each wedge to E results in a solution
to the MTSCS problem for Ln. In this section, we introduce the notion of a wedge in R2,
and prove several technical results required for the correctness of Algorithm 3. The proofs
of each technical result in this section can be found in Appendix A

Definition 3.3.1 (t-Error of a Vertex). Given lattice Ln, and a control set E ⊆ Ln, define

39

the t-error of any vertex (x, y) ∈ L as:

tE(x, y) =
dE(x, y)

||(x, y)||
.

Observe that a vertex (x, y) is t−reachable using control set E for some value t ≥ 1 if
and only if tE(x, y) ≤ t. For any vertex v = (x, y) in Ln, we may consider an equivalent
polar representation of v. That is, we may write v = (l, θ) where l = ||x, y||, and θ =
arctan2(y, x). This equivalence will be used in the remainder of this chapter.

Definition 3.3.2 (Wedge). Given a lattice Ln, let (x1, y1) = (l1, θ1) ∈ Ln, (x2, y2) =
(l2, θ2) ∈ Ln with θ1 ≤ θ2. A wedge W [(x1, y1), (x2, y2)] in Ln is defined as

W [(x1, y1), (x2, y2)] = {(x, y) = (l, θ) ∈ Ln : θ ∈ [θ1, θ2]}.

Intuitively, a wedge is the set of all lattice vertices lying between two lines: the first
passing through the origin and (x1, y1), the second passing through the origin and (x2, y2).
An example wedge is illustrated in Figure 3.3 (Left).

Definition 3.3.3 (Deletable Wedges). Given a lattice Ln and a control set E, a wedge
w ⊆ Ln is called deletable using E if every vertex in w is t−reachable using E.

Definition 3.3.4 (Boundary Expressible Wedge (BEW)). Given a lattice Ln, a wedge
w = W [(x1, y1), (x2, y2)] in Ln is a boundary expressible wedge (BEW) if, for all (x, y) ∈ w,
there exists k1, k2 ∈ N with

(x, y) = k1(x1, y1) + k2(x2, y2).

The interior of w, denoted wo, is the set of all vertices in w for which k1, k2 ∈ N>0. The
vertices (x1, y1), (x2, y2) are called the boundary vertices of w.

Figure 3.3 (Right) illustrates an example of the boundary expressible wedgeW [(2, 1), (1, 1)].
We note that for any vertex (x, y) in the wedge, there exist natural numbers k1, k2 such
that (x, y) = k1(2, 1) + k2(1, 1).

40

Figure 3.3: (Left) The wedge W [(2, 1), (1, 1)] with boundary vertices (2, 1), (1, 1) is the set
of all vertices lying in the shaded blue region. (Right) The boundary expressible wedge
W [(2, 1), (1, 1)]

Definition 3.3.5 (E-Bounded BEW). We say that a boundary expressible wedge w is
bounded by control set E is the boundary vertices of w are in E, but that E contains no
vertices in the interior of w.

In order to prove Algorithm 3, we will show that at each iteration of the loop in line 3,
the set of all lattice vertices that are not yet t−reachable from the iteratively constructed
set E, lie in a BEW w whose boundary vertices are in E, but whose interior contains not
vertices in E. We therefore prove several important Lemmas concerning these BEWs.

Lemma 3.3.6 (BEW Paths Using E). Let t ≥ 1, and w = W [(x1, y1), (x2, y2)] be a BEW
that is bounded by a control set E for a lattice Ln. For any v ∈ w if k1, k2 ∈ N such that
v = (k1x1 + k2x2, k1y1 + k2y2), then

dE(v) = k1||x1, y1||+ k2||x2, y2||. (3.3)

Further, if E∗ is any control set, then for all v ∈ w,(
dE
∗
(v) < dE(v)

)
=⇒

(
∃u ∈ E∗ ∩ wo

)
. (3.4)

Consider a BEW w with vertex v ∈ w that is bounded by a control set E for a lattice
Ln. Observe that Lemma 3.3.6 implies that if vertex u ∈ Ln is such that u, v − u /∈ w,
then dE(v) ≤ ||u||+ ||v − u||.

The remainder of this chapter uses the following notation. Given a BEW, w =
W [(x1, y2), (x2, y2)] with (x1, y1) = (l1, θ1), (x2, y2) = (l2, θ2), and a vertex (x, y) ∈ w,

41

we let

mw(x, y) =
k2l2
k1l1

, θw = θ2 − θ1, Bw = cos(θw),

In essence, mw(x, y) represents the slope of the vertex (x, y) relative to the boundary
vertices of the wedge w. Observe that if (x1, y1) = (1, 0), (x2, y2) = (0, 1) then mw(x, y)
reduces to the familiar definition of a the slope of the vertex (x, y). With these definitions
in mind, we make the following observations:

Lemma 3.3.7. Let w be a BEW on a lattice Ln that is bounded by a control set E. Let
u, v be two vertices in w. Then mw(u) ≥ mw(v) if and only if u lies above the line passing
through v and the origin.

Lemma 3.3.8 (t−Error for BEWs). Let t ≥ 1, and consider lattice Ln with control set E
and BEW w = W [(x1, y1), (x2, y2)]. If w is bounded by E, then the t−error of any point
(x, y) ∈ wo is given by

tE(x, y) =
1 +mw(x, y)√

1 +mw(x, y)2 + 2mw(x, y)Bw

. (3.5)

If, on the other hand, (x1, y1) ∈ E, and (x2, y2) /∈ E is t−reachable using E, then

tE(x, y) ≤ 1 + tmw(x, y)√
1 +mw(x, y)2 + 2mw(x, y)Bw

, ∀(x, y) ∈ wo. (3.6)

Finally, if (x2, y2) ∈ E and (x1, y1) /∈ E is t−reachable using E, then

tE(x, y) ≤ t+mw(x, y)√
1 +mw(x, y)2 + 2mw(x, y)Bw

, ∀(x, y) ∈ wo. (3.7)

Lemma 3.3.8 provides expressions for the t-error of BEWs. We next use this result to
investigate potentially non t−reachable vertices using a set E that lie in a BEW that is
bounded by E.

Lemma 3.3.9 (t-Reachable Vertices in a BEW using E). Let t > 1 and consider a lattice
Ln with control set E ⊆ Ln and BEW w = W [(x1, y1), (x2, y2)] that is bounded by E. Then
the following are true:

1. If Bw ≥ (2t−2 − 1), then every vertex in w is t−reachable using E. If n =∞, then this
requirement is necessary as well as sufficient.

42

2. If not every vertex in w is t−reachable using E, then the set of all non t−reachable
points (x, y) in w using E is exactly equal to

w̄ ={(x, y) ∈ w : mw(x, y) ∈ (mw,mcirt)}, where

mw =
t
(
t(1−Bw)−

√
(Bw − 1)(Bwt2 + t2 − 2)

)
t2 − 1

− 1,

mw =
t
(
t(1−Bw) +

√
(Bw − 1)(Bwt2 + t2 − 2)

)
t2 − 1

− 1.

(3.8)

The well-definedness of the expressions in (A.8) is discussed in the following Remark:

Remark 3.3.10. In Lemma 3.3.9, we observe that if not every vertex in BEW w is t-
reachable using control set E, then by the first result of this lemma, it must hold that
Bw > 2t−2 − 1. We observe, critically, that in this case the arguments under the square-
root in (A.8) are positive. Moreover, it is trivial to show that mw ≥ 1,mw ≤ 1 using the
identity Bw > 2t−2 − 1.

Lemma 3.3.9 will not only help establish the correctness of Algorithm 4, but also allows
us to classify wedges in a way whose convenience will become apparent. This classification
is presented in the following definition.

Definition 3.3.11 (Wedge Separability). Let t > 1, and E a control set of Ln. Consider a
BEW w = W [(x1, y1), (x2, y2)] that is bounded by E, and the shortest vertex in the interior
of w, given by v = (x1 + x2, y1 + y2) with l1 = ||x1, y1||, l2 = ||x2, y2||. Then,

• If mw(v) ∈ (mw,mw) – that is, if v is not t−reachable using E by Lemma 3.3.9 – then
w is called shortest separable.

• If mw(v) ≥ mw, we say that w is upper separable. In this case, by Remark 3.3.10, we
note that mw(v) = l2/l1 ≥ mw ≥ 1 implying that l2 ≥ l1. If k is the smallest natural
number such that l2/kl1 ≤ mw, we say that k is the upper separability factor of w.

• Finally, if mw(v) ≤ mw, w is said to be lower separable. By Remark 3.3.10, we note that
mw(v) = l2/l1 ≤ mw ≤ 1 implying that l2 ≤ l1. If k is the smallest natural number such
that kl2/l1 ≥ mw, we say that k is the lower separability factor of w.

Observe, trivially, that any BEW w that is bounded by a control set E is either
deletable, shortest separable, upper separable or lower separable. Thus the classification

43

Figure 3.4: Notation for upper (top) and lower (bottom) separable wedges.

system presented in the previous definition is exhaustive for such wedges. Observe further
that a wedge that is shortest separable using E can be thought of as being both upper
and lower separable with upper/lower separability factor k = 1. The remainder of this
chapter uses the following notation for wedges that are not deletable using E: for a BEW
w = W [(x1, y1), (x2, y2)] that is bounded by a control set E, let

v1
w = (x1 + x2, y1 + y2),

vrw =

{
(rx1 + x2, ry1 + y2) if w is upper separable,

(x1 + rx2, y1 + ry2) if w is lower separable.
, ∀r ≥ 1

wreach =

{
W [vk−1

w , (x2, y2)] if w is upper separable with factor k,

W [(x1, y1), vk−1
w] if w is lower separable with factor k.

wunreach =

{
W [(x1, y1), vk] if w is upper separable with factor k,

W [vkw, (x2, y2)] if w is lower separable with factor k.

wbetween =

{
W [vkw, v

k−1
w] if w is upper separable with factor k,

W [vk−1
w , vkw] if w is lower separable with factor k.

(3.9)

An example using this notation can be found in Figure 3.4. We present three technical
results.

44

Lemma 3.3.12 (BEW Closed Under Splitting). Let w = W [(x1, y1), (x2, y2)] be a BEW
that is bounded by a control set E for a lattice Ln. The wedges w1 = W [(x1, y1), v1

w] and
w2 = W [v1

w, (x2, y2)] are both BEWs that are bounded by E ∪ {v1
w}, and w1 ∪ w2 = w.

Further, if w is upper or lower separable, then the wedges wunreach, wbetween are BEWs and
wunreach is bounded by E ∪ {vkw}.

As the title of the previous lemma suggests, if a BEW is split in two via the addition
of v1

w or vkw, then one or both the resulting sub-wedges will be BEWs. It will be shown
in the next lemma, that any sub-wedge that is not a BEW when split in this way, will be
deletable. Thus, at each iteration of Algorithm 3, each vertex that is not yet t−reachable
using the computed control set will lie in a BEW bounded by the control set.

Lemma 3.3.13. Let t ∈ (1,
√

2), and let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded
by a control set E for a lattice Ln. If w is upper (or lower) separable using E, then

Bwbetween
≥ 1

t
. (3.10)

Lemma 3.3.14. Let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded by a control set
E on a lattice Ln. If w is not deletable using E, let v denote the shortest non t−reachable
vertex in w using E. The the following hold:

1. If w is shortest separable using E, then v1
w = v.

2. If w is either upper or lower separable using E and vkw is not t−reachable using E, then
v = vkw and every vertex in wreach ∪ wbetween is t−reachable using E ∪ {vkw}.

3. If w is either upper or lower separable using E and vkw is t−reachable using E, then w
is deletable using E ∪ {v}.

For the remainder of this chapter, let Er denote the control set at the beginning of
iteration r of the for loop in Line 3 of Algorithm 3.

Lemma 3.3.15. If v ∈ Ln is not t−reachable using Er, then v lies in a BEW that is
bounded by Er for any r ≥ 0.

Lemma 3.3.16. Let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded by a control set
E. If w is either upper or lower separable using E, let θ denote the angle inscribed by the
wedge wbetween ∪ wreach. Then

cos(θ) ≥ 2

t2
− 1. (3.11)

45

Further, if mw(vkw) /∈ (mw,mw), let v denote the shortest vertex in w that is not t−reachable
using E. Then

min(cos(θ1), cos(θ2)) ≥ 2

t2
− 1, (3.12)

where θ1, θ2 are the angles inscribed by the wedges w1 = W [(x1, y1), v],W [v, (x2, y2)], re-
spectively.

The above lemma implies that if vkw is added to a control set bounding w, then the
green and pink sub-wedges in Figure 3.4 become deletable using the resulting control set.
Further, this lemma implies that if vkw is not the shortest non t−reachable vertex in w
using a control set that bounds w, then adding the shortest non t−reachable vertex to the
control set results in w being deletable using that control set.

Lemma 3.3.17 (Distance Invariance). Let t ∈ (1,
√

2), and let Er denote the control
set at the beginning of iteration r of the for loop in Line 3 of Algorithm 3. Let w =
W [(x1, y1), (x2, y2)] be a BEW wedge that is bounded by Er. Then the following are true:

1. If w is shortest separable using Er, then for any other control set E ′ with v1
w /∈ E ′, it

holds that dE
′
(v1
w) ≥ dE

r
(v1
w).

2. If w is upper or lower separable using Er and mw(vkw) ∈ (mw,mw), then for all vertices
u ∈ wunreach, u 6= v, ||u||+ ||vkw − u|| ≥ dE

r
(vkw).

Lemma 3.3.18 (Base Case For Inductive Proof). Let t > 1 and Ln a lattice. Let E t denote
the set of all minimal t−spanning control sets of Ln, and let E = {(0, 1), (1, 0), (−1, 0), (0,−1)}.
If t ≥

√
2 then E ∈ E t. Furthermore, if t <

√
2 then E ⊆ E∗ for all E∗ ∈ E t.

3.4 Completeness, Solution Size, & Path Error

In this section, we use the technical results of the previous section to prove the completeness
of Algorithm 3. We also present bounds on the size of the control set returned by the
algorithm and bound the maximum error incurred from computed motions with respect to
free-space optimal.

Theorem 3.4.1 (Completeness). The Algorithm 3 is complete. That is, it returns a
solution to Problem 2.3.8 for lattice Ln in finite time for all t > 1 and for all lattices
Ln, n ∈ N ∪ {∞}.

46

Proof. At each iteration r of the for loop in Line 3 of Algorithm 3, let Er = {(x1, y1), (x2, y2)
, . . . , (xq, yq)} denote the computed control set at the beginning of this iteration. Assume
without loss of generality that the elements in Er, (xi, yi) = (li, θi) are written in order of
θi, i = 1, . . . , q. Let vr denote the vertex in Ln that is added to Er in Line 5 and let

N r = {W [(xi, yi), (xi+1, yi+1)], i = 1, . . . , q − 1} ∪ {W [(xq, yq), (x1, y1)]},
N r

BEW = {w ∈ N r : w is a BEW}
N r

= {w ∈ N r
BEW : w is not deletable}

Observe that
⋃
w∈N r w = Ln and that wedges w in N r

are bounded by Er. By Lemma

3.3.15, vr must lie in a wedge wr ∈ N r
. Let wr,o denote the interior of wr.

We begin by showing that Algorithm 3 returns a t−spanning control set if it terminates.
Observe that it is sufficient to show that Algorithm 4 returns a value True given a control
set Er if and only if Er is a t−spanning control set of Ln. If n < ∞, this result holds
trivially by Lines 2-4 of Algorithm 4. If n = ∞, then Algorithm 4 returns true given a
control set Er if and only if cos(θ) ≥ 2t−2−1 for each w ∈ N r (Lines 7-12) where θ denotes
the angle inscribed by w. By Lemma 3.3.16, each w ∈ N r − N r

BEW meets this criteria.
Therefore Algorithm 4 returns True given Er if and only if each w ∈ N r

BEW meets this
criteria. Since each wedge is N r −N r

BEW is deletable using Er (Lemma 3.3.15), and each
wedge w ∈ N r

BEW is deletable using Er if and only if cos(θ) = Bw ≥ 2t−2 − 1 (Lemma
3.3.9) we conclude that Algorithm 4 returns true given Er if and only if Er is a t−spanning
control set of Ln.

We now show that Algorithm 3 terminates in finite time. Observe that this holds if
n < ∞ since, in the worst case, E = Ln will t−span Ln for all t ≥ 1, and Ln is of finite
size. Therefore, since it was show that Algorithm 4 returns True given a control set E if
and only if E is a t−spanning control set of Ln, it must hold that a value of True will be
returned given E = Ln in finite time. Assume n =∞. Given an arbitrary iteration r, and
an arbitrary wedge w = W [(x1, y1), (x2, y2)] ∈ N r, let r+r1, r+r2, . . . , denote a sequence of
iterations such that vr+ri ∈ w for all i ≥ 1. Then it suffices to show that for all such wedges
in N r, there exists a natural number N < ∞ such that w is deletable using Er+rN . At
iteration r+r1, w is split into sub-wedges w1 = W [(x1, y1), vr+r1], w2 = W [(vr+r1), (x2, y2)].
If vkw 6= vr+r1 (where k is the upper/lower separability factor if w is upper/lower separable
and 1 if it is shortest separable), then w is deletable using Er+r1 (Lemma 3.3.14) which
completes the proof. Otherwise, vr+r1 = vkw. By the law of cosines, if Bw′ = max(Bw1 , Bw2),

47

then

Bw′ =

mw(vkw)Bw+1√

2mw(vkw)Bw+mw(vkw)2+1
, if l2 ≥ l1

mw(vkw)+Bw√
2mw(vkw)Bw+mw(vkw)2+1

, otherwise,
(3.13)

where l1 = ||x1, y1||, l2 = ||x2, y2||. The first case accounts for upper separable wedges w
using Er+r1 and shortest separable wedges where l2 ≥ l1, while the second case accounts
for lower separable and shortest separable wedges where l2 < l1. Minimizing Bw′/Bw with
respect to mw(vkw) and observing that mw(vkw) ≤ mw if l2 ≥ l1 and mw(vkw) ≥ mw if l2 < l1,
it is easily verified that

Bw′

Bw

≥ t, ∀t ∈ (1,
√

2]

Since it is assumed that t > 1, we can conclude that when Algorithm 3 adds a vertex to a
wedge w, the value of Bw of each sub-wedge of w is increased by a factor 1 + ε for some
ε > 0. Therefore, on iteration r + ri, each sub-wedge w′ ⊆ w,w′ ∈ N r+ri will be such that
Bw′ ≥ (1 + ε)riBw. Setting rN = dln((2t−2 − 1)B−1

w) ln(1 + ε)−1e yields Bw′ ≥ 2t−2 − 1
implying that w′ is deletable using Er+rN where rN <∞ which completes the proof.

The arguments above prove that Algorithm 3 will return a t−spanning control set in
finite time. It will now be shown that this set E is of minimal size. Let E∗ denote the set
of all solutions to Problem 2.3.8, and let E∗ ∈ E∗. To show |E| ≤ |E∗| it suffices to show
that there exists an injection f : E → E∗. We define this function recursively on r. For
each i ∈ E0 where E0 is given in Line 2, let f(i) = i. Observe that this is a valid mapping
from E to E∗ since E0 ⊆ E∗ for all E∗ ∈ E∗ by Lemma 3.3.18. Next, for all r > 0 if vertex
vr is added to Er in Line 5 with vr ∈ wr ∈ N r

, then

1. If wr is shortest separable, vr = v1
wr (Lemma 3.3.14). Let f(vr) = vr. Note vr ∈ E∗. If

not, then dE
∗
(v1
wr) ≥ dE

r
(v1
wr) ≥ t||v1

wr || (Lemma 3.3.17) and E∗ is not a t−spanning
control set. Observe that v1

wr ∈ wr,o.

2. If wr is upper/lower separable and vkwr ∈ (mwr ,mwr), then vr = vkwr (Lemma 3.3.14).
There must exist a vertex u ∈ E∗ ∩

(
wrreach ∪ wrbetween

)
. Indeed, there must exist u ∈

E∗ ∩ wr,o such that the path using E∗ to vkwr passes through u (Lemma 3.3.6). If u ∈
wr−

(
wrreach∪wrbetween

)
= wrunreach, then dE

∗
(vkwr) ≥ ||u||+||vkwr−u|| ≥ dE

r
(vkwr) ≥ t||vwr

k ||
(Lemma 3.3.17) and E∗ is not a t−spanning control set. Let f(vr) = u and recall that
u ∈ wr,o.

3. If w is upper/lower separable and vkwr /∈ (mw,mw), then by Lemma 3.3.6, there must
exist a vertex u ∈ wr,o ∩ E∗ since v is not t-reachable using Er. Let f(vr) = u.

48

To show that f is injective, observe that f maps vr ∈ wr to a vertex u ∈ wr,o where
wr ∈ N r

. Therefore, to show injectivity, it suffices to show that u /∈ ws,o for any wedge
ws ∈ N s

on any iteration s > r.

If wr is shortest separable, then f(vr) = vr = v1
wr . Since v1

wr lies on the boundary of
the wedges W [(x1, y1), v1

wr],W [v1
wr , (x2, y2)] ∈ N r+1

BEW (Lemma 3.3.12), vr will never appear
in the interior of any ws ∈ N s

BEW on any other iteration s > r. Therefore, vr will never
appear in the interior of any ws ∈ N s ⊆ Nw

BEW.

If wr is upper/lower separable with vkwr ∈ (mwr ,mwr), then f(vr) = u for u ∈ wrreach ∪
wrbetween. Since wrreach ∪ wrbetween is deletable using Er ∪ {vr} (Lemma 3.3.14), (wrreach ∪
wrbetween) ∩ ws,o = ∅ for any ws ∈ N s

on any iteration s > r implying that u /∈ ws,o.

Finally, if wr upper/lower separable using Er with vkwr /∈ (mwr ,mwr), then wr is
deletable using Er ∪ {vr} (Lemma 3.3.14) implying that wr ∩ws,o = ∅ for any ws ∈ N s

on
any iteration s > r implying that u /∈ ws,o

Therefore, f is an injective function from E to E∗ implying that |E| ≤ |E∗| implying
in turn that E is a t−spanning control set of minimal size.

We now present a bound on the size of the control set returned by Algorithm 3.

Theorem 3.4.2 (Control Set Size). Let E denote the size of the control set returned by
Algorithm 3 given a lattice Ln and value t > 1. Then,

|E| =

Θ
(√

t
t−1

)
, if n =∞,

min
(
O
(√

t
t−1

)
, O(n2)

)
, otherwise.

(3.14)

Proof. We begin by showing that |E| = Ω((t − 1)−1/2) if n = ∞. Assume that E =
{(x1, y1), (x2, y2), . . . , (xq, yq)} where, without loss of generality, the elements in E, (xi, yi) =
(li, θi) are written in order of θi, i = 1, . . . , q. By the first result in Lemma 3.3.9 and
Lemma 3.3.16, if E is a t−spanning control set, then for each (xi, yi), (xi+1, yi+1) ∈ E,
cos(θi+1 − θi) ≥ 2t−2 − 1. Therefore,

|E| ≥ π

arccos
(

2
t2
− 1
) = Θ

(√
t

t− 1

)
,

implying that |E| = Ω((t − 1)−1/2). Next we show that |E| = O((t − 1)−1/2) for all n ≤
∞. Consider the set E ′ = {(x1, y1), (x3, y3), . . . , (x2bq/2c+1, y2bq/2c+1)}. Then, cos(θ2j+1 −
θ2j−1) < 2t−2 − 1 for all j = 1, . . . bq/2c. Indeed, if this were not the case, then the wedge

49

W [(x2j−1, y2j−1), (x2j+1, y2j+1)] would be deletable using E−{(x2j, y2j)} By the first result
of Lemma 3.3.9, and Lemma 3.3.16 implying that E is not of minimal size. This is a
contradiction of the result of Theorem 3.4.1. Therefore,

|E ′| ≤ π

arccos(2t−2 − 1)
= Θ

(√
t

t− 1

)
.

Observe that |E| = O(|E ′|). Therefore, |E| = O
(√

t
t−1

)
and |E| = Θ

(√
t
t−1

)
if n = ∞.

Finally, suppose n <∞. As t approaches 1, the control set size will approach (24/π2)n2 +
O(n log(n)) = O(n2) [105].

Next, we will present a bound on the error incurred by using a MTSCS to plan a path.
We begin a definition.

Definition 3.4.3 (δ-Robustly Feasible Path). Let Bv(r) ⊂ R2 denote an open ball of
radius r centered at v ∈ R2. Given a set of obstacles Xobs = {O1, . . . , Om} and a value
δ > 0, a path π : [0, sf] → R2 with final arc-length sf is said to be δ-robustly feasible if
Bπ(s)(δ) ∩Oi = ∅ for all s ∈ [0, sf] and for all Oi ∈ Xobs.

An illustrative example of a δ−robustly feasible path is illustrated in Figure 3.5

Figure 3.5: Example of a δ-robustly feasible path.

50

The lattice Ln in (3.1) is defined for integer vertices implying that the distance between
a lattice vertex and its closest neighbor in the lattice is 1. However, this distance 1 lattice
unit is given without actual units of measurement. For actual units of measurement, say
meters, 1 lattice unit may represent 1 meter, half of a meter, etc. We define the fineness
of a lattice ∆ as the measurement of 1 lattice unit given units of measurement. Observe
that if a lattice Ln has fineness ∆, then for any configuration v ∈ X , it must hold that
there is a lattice vertex a distance of no more than

√
2∆ from v. Using these definitions,

we present an error bound on path length.

Theorem 3.4.4 (Path Error). Let Xobs be a set of obstacles, let δ > 0, and let π∗ denote
the shortest δ-robustly feasible path from a start vertex ps to a goal vertex pg in the lattice
Ln. For a lattice Ln defined in (3.1) with fineness ∆, let E be a MTSCS for Ln with a
value t ∈ (1,

√
2]. Finally, let πE be the shortest path in the graph GCF = (Ln, ĒCF, || · ||)

from ps to pg where ĒCF is defined in (2.7) for the control set E. If

δ ≥ 2
√

2∆

then
c(πE)

c(π∗)
≤ t

(
1 +

2
√

2∆

δ − 2
√

2∆

)
(3.15)

In [50, Theorem 2], a similar bound is presented with condition δ > 3
√

2∆ and error
ratio r = (1 + 2

√
2∆/(δ−3

√
2∆)). Observe that the error ratio in 3.15 outperforms r for small

values of t and larger values of ∆, but fails to outperform r for larger values of t.

Proof. The proof of this Theorem is a modified version of the proof of [50, Theorem 2],
altered to accommodate t−factor sub-optimality. We begin with a sub-claim: Let π be a
straight line segment connecting lattice vertices v1, v2 with length l, and let πEt be the path
between v1, v2 obtained using a MTSCS E in the absence of obstacles. Let lE be the length
of πEt , and observe lE ≤ tl. Finally, let D denote the maximum lateral error between π
and πEt . Then

D ≤ l

2

√
t2 − 1. (3.16)

Indeed, let v denote the configuration in πEt at which D is realized. Maximizing D subject
to the constraints dE(v1, v) + dE(v, v2) = lE ≤ tl, we obtain that D is maximized by a
straight line segments connecting v1 to v and v to v2 and dE(v1, v) = dE(v, v2) = tl/2. The
result 3.16 follows from Pythagoras.

51

Next we make another sub-claim: if π is a line segment connecting v1, v2 with length
l < 2δ, if Bδ(v1)∩O = ∅,Bδ(v2)∩O = ∅,∀O ∈ Xobs, and if D denotes the maximum lateral
error between π and a configuration v, then(

D ≤
√
δ2 − (l/2)2

)
=⇒ (v ∩O = ∅,∀O ∈ Xobs) . (3.17)

This result follows immediately from Pythagoras noting that the intersection point of two
circles with equal radii δ whose centers are l apart will occur a distance of

√
δ2 − (l/2)2

from the line connecting the centers of the circles.

Observe that if c(π∗) ≤ δ − 2
√

2∆, then let L be the straight line segment connecting
ps, pg with length l and observe that L lies within a ball of radius δ of ps since l ≤ c(π∗) < δ.
Therefore, the path πE will have a maximum value of D of

D ≤ c(π∗)

2
< δ,

for all t ∈ (1,
√

2], implying that πE does not collide with an obstacle. In this case,
c(πE)/c(π∗) ≤ t and 3.16 holds. Otherwise, if c(π∗) > δ − 2

√
2∆, we partition π∗ into

N segments π∗i with endpoints xi, xi+1 for i = 0, . . . , N − 1. For simplicity, let x0 =
xs, xN = xg. We form this partition in such a way as to ensure that the first N − 1
segments have length δ− 2

√
2∆ and the final segment has length ≤ 2(δ− 2

√
2∆). That is,

there are bc(π∗)/(δ − 2
√

2∆)c − 1 segments of length δ − 2
√

2∆ and 1 segment of length
≤ 2(δ − 2

√
2∆) for a total of N = bc(π∗)/(δ − 2

√
2∆)c segments.

By the definition of the lattice fineness ∆, for each segment π∗i , i = 0, . . . , N−2 between
xi, xi+1, it must hold that there are lattice vertices x′i, x

′
i+1 with ||xi− x′i||, ||xi+1− x′i+1|| ≤√

2∆. Therefore, letting π′i be the line segment connecting x′i, x
′
i+1 with length l′i, and

πEi the path using E between x′i, x
′
i+1 with length lEi , we can conclude that l′i ≤ δ and

dE(x′i, x
′
i+1) ≤ tl′i. The first holds because the length of the path π∗i is δ − 2

√
2∆ and l′i

is at most li + 2
√

2∆. While the second holds by the definition of a t−spanning control
set. Observe that the maximum lateral error between π′i and π∗i is

√
2∆. Therefore, the

maximum lateral error DE between πEi and π∗i is bounded by
√

2∆ + D where D is the
maximum lateral error between πEi and π′i. From (3.16),

DE ≤
√

2∆ +
l′i
2

√
t2 − 1 ≤

√
2∆ +

δ

2

√
t2 − 1.

The configurations xi, xi+1 lie on the path π∗i which has strong δ-clearance. Therefore,
Bδ(xi) ∩ O = Bδ(xi+1) ∩ O = ∅, ∀O ∈ Xobs. Further, the maximum lateral error between

52

all configurations lying on the path πEi is given by DE above. Since the length of π∗i is
δ − 2

√
2∆ which is at least the length of the line segment connecting xi, xi+1, we can

conclude by (3.17), that

√
2∆ +

δ

2

√
t2 − 1 ≤

√
δ2 − (δ − 2

√
2∆)2/4 =⇒ πEi ∩O = ∅,∀O ∈ Xobs.

The left hand side of the implication holds for all t ∈ (1,
√

2] provided that δ ≥ 2
√

2∆.
This analysis shows that πEi does not collide with an obstacle for any i = 0, . . . , N − 2. A
similar analysis can be used to show that the final segment is also collision free, observing
that the length of the final segment is at most 2(δ − 2

√
2∆) but the maximum difference

between the length of π∗N−1 and l′N−1 is
√

2∆ instead of 2
√

2∆ since both π∗N−1 and π′N−1

terminate at the same lattice vertex. We may therefore conclude that the path πE formed
by connecting segments πEi does not collide with an obstacle. Therefore the shortest such
path has cost no more than the path constructed above. Thus,

c(πE) =
N−1∑
i=0

c(πEi) ≤ t
N−1∑
i=0

c(π′i)

= t

(
c(π′0) + c(π′N−1) +

N−2∑
i=1

c(π′i)

)

≤ t

(
c(π∗0) + c(π∗N−1) + (N − 1)2b+

N−2∑
i=1

c(π∗i)

)
= t(c(π∗) + 2(N − 1)b).

(3.18)

Recalling that N = bc(π∗)/(δ − 2
√

2∆)c completes the proof.

3.5 Evaluation

In this section, we compare our work against the state of the art in any-angle path planning.
The Algorithms described here were encoded in Python 3.7 (Spyder). Results were obtained
using a desktop equipped with an AMD Ryzen 3 2200G processor and 8GB of RAM running
Windows 10 OS.

53

3.5.1 Computing a Control Set

We start by comparing our technique against a current state of the art control set generation
method [94] which we denote SOA (state of the art). In this work, the authors propose
a method to compute a control set of size 2k for an input value k ∈ N≥2 that is based on
the Fibonacci numbers. In detail, the technique begins like Algorithm 3 with a set E as in
Line 2. It then adds vertex v1 (given in (3.9)) to each wedge repeatedly until a control set
of size 2k+2 is reached. This technique over-emphasizes wedges that already feature low
t−errors and provides no stopping criteria other than set size.

Let Ek
SOA denote the set returned by the SOA algorithm for a given input k, and let Et

P

denote the set returned by Algorithm 3 for an infinite lattice and value t > 1. We compare
Ek

SOA, E
t
P via two metrics. First, given a value k ∈ N≥2, we compute the smallest value

of t for which Ek
SOA is a t−spanning control set of the lattice. We use this value of t as

input to Algorithm 3 to compute Et
P and compare |Ek

SOA|/|Et
P |. Though we perform this

comparison numerically, an analytic bound on the ratio can be obtained. Indeed, it can
be shown that for any k ∈ N≥0, the longest vertex in Ek

SOA will be (k, 1) and the smallest
value of t such that Ek

SOA is a t−spanning control set is

t̄ =

√
2
√
k2 + 1√

k2 + 1 + k − 2
.

Therefore, by Theorem 3.4.2,

|Ek
SOA|
|E t̄

P |
= Ω

(
2k+2
√
t̄− 1√
t̄

)
= Ω

(
2k

3k

)
.

This result implies that Ek
SOA will be exponentially larger than Et

P for the same error.
Figure 3.6 (top) summarizes our findings. A visual comparison of the two control sets
Ek

SOA, E
t
P can be found in Figure 3.7 for values of k ranging from 1 to 10. While the

control sets are equal for k = 1, 2, the a notable difference arises for larger values of k.
Observe that Et

P is more akin to the intuitive control set for continuous space given in
Figure 3.1 (d) than Ek

SOA

Next we compare tEr(Ek
SOA) = tSOA and tEr(Et

P) = tP given a fixed control set size.
Here the t−error of a control set is defined in Definition 2.3.6. In detail, for a fixed value
k ∈ N≥2, compute the lowest value of t such that Ek

SOA t−spans the lattice. Next we
compute the smallest value of t such that Et

P t−spans the lattice subject to the constraint
|Et

P | ≤ 2k. The results can be seen in Figure 3.6 (bottom).

54

Figure 3.6: Comparison of two metrics for Et
P and Ek

SOA.

3.5.2 Any-Angle Path Planning

In this section, we compare lengths of paths computed using the proposed control set
against commonly used methods for any-angle path planning.

We begin with a value k ∈ N≥2 from which we compute the set Ek
SOA described in the

previous section. The minimum value of t for which ESOA is a MTSCS of the lattice is
computed, and used as input for Algorithm 3 for an infinite lattice. Ek

SOA and Et
P were

then used to define graphs in which a shortest path was computed between start and
goal vertices. In this section, we use the basic A* algorithm in Algorithm 1 with the
heuristic of a vertex given by the euclidean distance between the vertex and the goal in
the absence of obstacles. We label the

We compare our methods against five common algorithms: three sampling algorithms

55

Figure 3.7: Visual comparison of Et
p, E

k
SOA for varying k.

– asymptotically optimal Rapidly exploring Random Trees (RRT*) [54], Batch Informed
Trees (BIT*) [32], and RRT Connect [63] – and two line-of-sight based algorithms –
ANYA [43] and its improved version labelled here as iANYA [44]. Figure 3.8 compares
the proposed method against the three sampling planners for one such planning problem.
Here near-optimality was reached by the proposed method with a value of t ≈ 1.001. The
fastest algorithm, on average by far, is RRT Connect, exploring very few configurations
before a connection is made. However, once this connection is made, the path is returned.
The remaining two algorithms are asymptotically optimal and constitute any-time plan-
ners. That is, an initial path is quickly computed and then refined up to a specified time
cut-off. For a fixed time, we compare the proposed method against RRT*, BIT*, ANYA,
and iANYA.

In detail, 500 instances of the motion planning problem were generated by randomly

56

selecting an obstacle set Xobs and start-goal lattice vertices. These we problems were then
solved using A* in conjunction with control sets Ek

SOA, E
t
P . The run time of the former

was measured and used as a time cut-off for the any-time sampling planners.

10 5 0 5 10

10

5

0

5

10

(a) Proposed

10 5 0 5 10

10

5

0

5

10

(b) RRT*

10 5 0 5 10

10

5

0

5

10

(c) BIT*

10 5 0 5 10

10

5

0

5

10

(d) RRT Connect

Figure 3.8: Visualization of planning methods

Figure 3.9 summarizes our findings. Algorithm iANYA – shown in black – serves as
a baseline since it is known to be optimal. As k increases (and therefore as the run-time
cut-off increases), BIT* converges to optimal faster than RRT*. This is not surprising since
BIT* makes use of a heuristic to guide random sampling. Notably, the proposed algorithm

57

out-performs both RRT* and BIT* given a fixed run time cut-off. Further, the proposed
method reaches near optimal for a value k = 4. In terms of run time, the proposed method
outperformed ANYA up to a value of k = 5 on average. However, the proposed method
was outperformed both in path length and runtime by iANYA for all values of k ≥ 1. Even
with k = 1, iANYA required on average 12% less time than the proposed method.

Figure 3.9: Sub-optimality of compared methods.

3.6 Discussion

In this work, we showed that the MTSCS problem can be efficiently solved for a certain
class of problem with lattices of the form (3.1). Notably, for any value t > 1, there exists
a finite MTSCS even for an infinite lattice. Bounds on the size of the MTSCS as well
as on the error incurred were presented. The resulting control sets have notable benefits
over the current state of the art including exponentially smaller sizes for the same t−factor
sub-optimality, and smaller t−factor sub-optimality given fixed control set size. However,
for any-angle path planning in a 2-dimensional workspace, our methods fail to outperform
iANYA, an algorithm enjoying both optimalality and run time efficiency. However, as
graph-search methods improve, the proposed control sets could play a pivotal roll in future
any-angle path planning.

58

Chapter 4

Tunable Trajectory Planner Using G3

Curves

4.1 Introduction

In this chapter, we present a technique to compute trajectories between start and goal con-
figurations. The trajectories we compute are C3-continuous with respect to time implying
that they are thrice continuously differentiable.

We focus on configurations of the form (x, y, θ, κ, σ, v, α) where (x, y) ∈ R2 represents
position in the plane, θ the heading, κ the curvature, σ the curvature rate, v the velocity,
and α the velocity rate (all derivatives taken with respect to arc-length). In particular,
we seek to compute trajectories that optimize a trade off between comfort and travel
time [66, 121], though the methods developed here can be used to consider other features
as well.

Comfort of a trajectory is related to the acceleration, the rate of change of yaw, and
jerk (the derivative of the acceleration) experienced by a vehicle sliding along it [49, 121].
A common metric for comfort is the integral of the square of the jerk (IS jerk) over the
trajectory [66]. When a vehicle is moving at constant speed, jerk is experienced lateral to
the trajectory and is proportional to the derivative of curvature—called the sharpness—
of the vehicle trajectory. It is important to note that the smoothness and comfort of
the resulting vehicle motion depends on both the reference trajectory and the tracking
controller. However, by planning trajectories with low jerk, less effort is required from the
controller to track the reference and ensure comfort [64], particularly at high speeds [102].

59

Often, trajectory planning is treated as a two part spatio-temporal problem [57]. The
first sub-problem deals with computing a path from start to goal, while the second ad-
dresses how this path should be converted into a motion by computing a velocity profile.
Optimizing a travel time/comfort trade off over a set of paths and velocity profiles en-
sures the resulting trajectory’s adherence to desirable properties like short travel time, and
comfort.

The problem just described is an instance of infinite dimensional optimization in which
a non-convex cost (discussed later) is minimized over two continuous functions: path and
velocity profile. On one extreme, one could attempt to compute both functions simultane-
ously. However, because of the nature of the problem, conventional techniques like convex
optimization [36], or sequential quadratic programming, cannot be used without first mod-
ifying the problem. On the other extreme, one could consider a simplified version of the
problem by completely decoupling path and velocity: first minimizing cost over one func-
tion, then the other. This latter approach is widely used [100, 119], but does not consider
the influence of the choice of path on the velocity profile (or vice-versa). For example, if
a user strongly prefers short travel time to comfort, then an algorithm which first selects
a cost-minimizing path, and then computes a velocity given that path would compute a
trajectory with the shortest possible path, and highest feasible velocity. However, it has
been observed that such a trajectory is sub-optimal when attempting to minimize travel
time. This is because short paths typically feature higher values of curvature which require
lower values of velocity to maintain safety.

We propose a hybrid of these two approaches: we decouple the problem but repeatedly
solve the path and velocity profiles in an iterative fashion. In particular, we consider a
simplification of the original optimization problem that limits the set of admissible paths
to one in which individual elements can easily be distinguished from each other via a single
parameter ρ̄ ∈ R>0. This is done by considering only those paths whose second derivative
of curvature is piece-wise constant, taking only values in {0,±ρ̄}. We also propose a
modification of the techniques employed by [11] to discretize the set of admissible velocity
profiles into N+1 ≥ 5 way-points for longitudinal jerk. Thus, the two continuous functions,
path and velocity profile, over which the our cost is minimized are replaced with N + 2
constants. We then repeatedly select paths by selecting values for ρ̄, and compute the N+1
remaining parameters that minimize cost given the selected path. We thus iteratively refine
both path and velocity profile. For clarity, the contributions of this chapter are repeated
here from Section 1.1.3.

1. Given a set of weights representing a trade off between comfort and travel time, we pro-
pose a method of simplifying the resulting infinite-dimensional non-convex optimization

60

problem to one of finite dimension, allowing us to iteratively refine both the path and
velocity.

2. To use the technique proposed here, we develop a method to compute paths between
start-goal configurations whose second derivative of curvature is piece-wise constant
taking values only in {0,±ρ̄} given a value ρ̄ ∈ R>0.

3. Finally, we present a modification of the technique from [11] that allows us to compute
a cost-minimizing velocity profile given a path.

4.2 Problem Statement

We begin with a review of the optimization problem that motivated the development of the
Continuous Curvature Rate and Hybrid Curvature Rate paths presented in [6]. These are
G3 continuous paths in which the derivative of curvature with respect to arc-length σ is a
piece-wise linear continuous function of arc-length and the second derivative of curvature
with respect to arc-length ρ is piece-wise constant. We will then augment the problem to
account for comfort resulting in a new problem that is the focus of this chapter. A note
on notation: we use (·)′ to denote differentiation with respect to arc-length s along a path,

while ˙(·) represents differentiation with respect to time t.

4.2.1 Original Optimization Problem

Recall from the Introduction: A curve is called Gk-continuous, or geometrically continuous,
if it is k−times continuously differentiable with respect to arc-length [7]. Typically, a path
is said to be Gk if it is Gk continuous, but not Gk+1 continuous.

The set of all G3 curves in 2D space is the set of all solutions to the following differential
equation [6]

x′

y′

θ′

κ′

σ′

 =

cos(θ)
sin(θ)
κ
σ
0

+

0
0
0
0
ρ

 , (4.1)

where (x, y) ∈ R2, θ ∈ [0, 2π), κ ∈ R, σ ∈ R denote the instantaneous position, heading,
curvature, and curvature rate along the curve, respectively. Note, σ is the derivative of

61

curvature with respect to arc-length (called the sharpness, or curvature rate), while ρ
represents the second derivative of curvature with respect to arc-length. Observe that the
model in (4.1) does not assume that ρ is continuous. Thus model (4.1) can be used to
describe G3 curves whose curvature rates are piece-wise linear functions of arc-length. The
goal of path planning using G3 curves is to obtain paths of minimal final arc-length sf , from
start configurations (xs, ys, θs, κs, σs) to a goal configurations (xg, yg, θg, κg, σg), subject to
boundary constraints:

x(0) = xs, y(0) = ys, θ(0) = θs, κ(0), = κs,

x(sf) = xg, y(sf) = yg, θ(sf) = θg, κ(sf) = κg,

σ(0) = σ(sf) = 0.

(4.2)

and physical constraints:

κ(s) ∈ [−κmax, κmax], ∀s ∈ [0, sf],

σ(s) ∈ [−σmax, σmax], ∀s ∈ [0, sf],

ρ(s) ∈ [−ρmax, ρmax], ∀s ∈ [0, sf],

(4.3)

where κmax, σmax, ρmax > 0 are known. To summarize, if velocity is restricted to positive
values, then the work of [6] seeks to solve the following optimization problem (OP):

min
ρ

sf

s.t. constraints (4.1), (4.2), (4.3)
(4.4)

Observe that at constant speed, minimizing arc-length as in (4.4), is equivalent to mini-
mizing travel time.

4.2.2 Adding Comfort Constraints & Velocity

The constraints (4.3) involve the positive constants κmax, σmax, ρmax. As in [29] and [6]
we assume that these values are known and reflect maximum physical limits of a vehicle.
That is, κ−1

max is the minimum turning radius of the vehicle, σmax is the maximum curvature
rate given limitations on the vehicle’s steering actuator, etc. Observe that by (4.1), any
function ρ uniquely defines path, denoted πρ from a fixed start. For the purposes of this
chapter, we assume known initial and final velocities vs, vg, (resp.) and zero initial and
final acceleration. This ensures smooth concatenation of trajectories, and is common in
trajectory generation [46]. Under these assumption, a continuous velocity profile is uniquely
determined by v′′, denoted β.

62

The functions ρ and β will serve as the variables of an OP that balances travel time
and discomfort. Any choice of (ρ, β) uniquely defines a trajectory given by the tuple
(πρ, vβ) where πρ is a feasible solution to (4.4), and vβ is the velocity profile associated
with β. If ρ and β are parameterized by arc-length, we write (πρ(s), vβ(s)), whereas we
write (πρ(t), vβ(t)) if ρ and β are parameterized by time.

Observe that computing a velocity profile for aG3 curve πρ induces a re-parametrization.
Further, by (4.1) the third derivative of position with respect to the new parametrization
variable t is a C∞ function of θ, κ, σ, v, v′, β. Therefore, in order for the trajectory with
path πρ and velocity profile v to be a thrice continuously differentiable (w.r.t. t), we require
that β be continuous functions of t.

Using a technique similar to [66, 67, 121, 122], we penalize a trade off between travel
time and comfort:

C(πρ(t), vβ(t)) =

∫ tf

0

(waCa + wJCJ + wyCy + wt)dt,

Ca = |aN(t)|2 + |aT (t)|2, Cy =

∣∣∣∣dθ(t)dt

∣∣∣∣2,
CJ = JN(t)2 + JT (t)2.

(4.5)

Here, Ca, CJ , Cy represent the squared magnitude of the acceleration a = v̇ (expressed
using normal and tangential components aN , aT), the squared magnitude of jerk (expressed
using normal and tangential components JN ,JT), and the squared magnitude of yaw
rate for the trajectory (πρ(t), vβ(t)). These costs are weighted with constants wa, wJ , wy
representing the relative importance of each feature to a user. We refer to the terms∫ tf

0
wmCm,m ∈ {a,J , y, t} as the integral squared (IS) acceleration, IS jerk, IS yaw, and

time cost, respectively.

A method similar to optimize the velocity profile v, for a given fixed path is provided
later. In order to use this method, we require that the limits of integration in the definition
of the cost be fixed. Noting that the final arc-length of a given path πρ(t) is fixed, we re-
parameterize the cost (4.5) in terms of arc-length s. Letting n, τ represent the unit normal
and unit tangent vectors, respectively, we observe that the acceleration vector a, and the
jerk vector J are given by

a = aNn+ aTτ = |κ|v2n+ aTτ

J = ȧ = (3vaT |κ|+ v3σ̄)n+ (ȧT − κ2v3)τ ,
(4.6)

where σ̄ = (|κ|)′. The expression for J was obtained by differentiating a with respect to
time (using the Frenet-Serret formula to integrate the normal and tangent vectors, see [101])

63

and observing ṁ = m′(ds/dt) = m′v for any statem. Finally, letting α = v′, β = α′, b = ȧT ,
we observe

aT = αv, ȧT = b = v(βv + α2). (4.7)

Combining (4.5), (4.6), and (4.7), and integrating with respect to s instead of t yields:

C(πρ(s), vβ(s)) =

∫ sf

0

waC̃a + wJ C̃J + wyC̃y + wtC̃tds,

C̃a = v3|κ|2 + α2v,

C̃J = v3(3α|κ|+ σ̄v)2 + v(βv + α2 − κ2v2)2,

C̃y = |κ|2v,
C̃t = v−1.

(4.8)

We now use this cost together with the constraints developed earlier to state the new OP
that is the focus of this chapter:

min
ρ(s),β(s)

C(πρ(s), vβ(s))

s.t. constraints (4.1), (4.2), (4.3), (4.7)[
v′β(s) α′(s)

]T
=
[
α(s) β(s)

]T
vβ(0) = vs, vβ(sf) = vf , α(0) = α(sf) = 0,

vβ(s) ∈ (0, vmax], a(s) ∈ [−amax, amax],

b(s) ∈ [−bmax, bmax], ∀s ∈ [0, sf].

(4.9)

Let R×B be the set of all (ρ(s), β(s)) whose associated trajectories are feasible solutions
to (4.9). In the next section, we describe our solution approach in detail. Though this
work focuses on optimizing a trade-off between travel time and comfort, the techniques
developed herein can be extended to account for other trajectory features as well. This
can be accomplished by simply adding and/or removing features in the cost function (4.9).
The techniques developed here require only that the integrand of the cost be polynomial
in v(s), α(s), β(s) and not explicitly contain ρ (i.e., ∂C/∂ρ = 0).

4.3 Approach

The optimization problem in (4.9) is an instance of infinite dimensional, non-convex opti-
mization. The non-convexity of (4.9) is due to the cost CJ (and C̃J). Furthermore, the

64

non-holonomic constraints (4.1) require the evaluation cubic Fresnel integrals for which
there is no closed form solution. For these reasons, we propose an approach that simplifies
(4.9). In this section we present the high-level idea behind our technique, beginning with
a motivating Theorem.

Theorem 4.3.1 (Optimal G3 paths). If (ρ∗, β∗) is a solution to the OP (4.9), then

1. The function ρ∗(s) is piece-wise constant.

2. The optimal path πρ∗(s) is G3−continuous.

3. The previous two results persist if the cost function in (4.9) is replaced with any other
cost function C ′ provided that ∂C ′/∂ρ = 0.

4. Even if the magnitude constraint ρ(s) ∈ [−ρmax, ρmax],∀s ∈ [0, sf] is removed from (4.9),
the path of the optimal trajectory will be G3-continuous.

With the constraint ρ(s) ∈ [−ρmax, ρmax],∀s ∈ [0, sf] in place, the first result of this
Theorem follows directly from the observation that ρ does not appear explicitly in the
cost of (4.9), and appears linearly in the constraints. Thus the Hamiltonian is linear in ρ,
and the first result follows from Pontryagin’s Minimum Principle [53, Chapter 12]. Since
the σ∗(s) – the function σ(s) for the optimal path – is continuous but ρ∗(s) is not, we
can conclude that πρ∗(s) is G3-continuous and the second result holds. Observing that
the above proof can be applied to any cost function with ∂C ′/∂ρ = 0 implies the third
result. The final result of this Theorem follows by observing that σ(s)∗ – the function σ(s)
for the optimal path – must be continuous even if the constraint ρ(s) ∈ [−ρmax, ρmax] is
removed from (4.9). Indeed, minimizing the Hamiltonian with respect to σ (by Pontryagin’s
Minimum Principle), we see that the result is a continuous function of arc-length by the
Weierstrass-Erdmann corner conditions [68, Section 3.1.1].

Theorem 4.3.1 implies that a path that solves (4.9) is a G3 path with possibly discon-
tinuous, piece-wise constant function ρ(s). However, there are many such paths connecting
start and goal path states. Therefore, the first part of our technique is to simplify the OP
(4.9) by considering only those G3 curves πρ̂ such that there exists a constant ρ̄ ≤ ρmax for
which πρ̂ solves (4.4) when ρmax is replaced with ρ̄. That is, we approximate a solution to
(4.9) by solving

min
ρ̄≤ρmax

(
min
β(s)∈B

C(πρ̂(s), vβ(s))

)
,

s.t., ρ̂(s) ∈ R, solves (4.4) for ρmax = ρ̄.

(4.10)

65

In words, (4.10) approximates the OP in (4.9) by replacing the continuous function ρ(s)
with a constant ρ̄. The path associated with ρ̄ is a shortest G3 path πρ̂(s) such that ρ̂(s) is
bounded in magnitude by ρ̄. From the results in [6], we observe that ρ̂ is a function taking
values only in {±ρ̄, 0}. This approach has two major advantages: first, we have replaced
the continuous function ρ(s) in (4.9) with constant ρ̄ while still maintaining the optimal
form of the G3 path (piece-wise constant in ρ̂). Second, by tuning ρ̄, we can still produce
G3 curves with both sharp (typically favored by users who value short travel times) and
gradual curvature functions (favored by users who value comfortable trajectories).

The second part of our technique involves simplifying (4.10) yet further by replacing
the continuous function β(s) with a decision vector. Similar to [11], we discretize the
arc-length along the path πρ̂ into N + 1 ∈ N≥5 fixed points {s0, ..., sN}. We then replace
the continuous function β(s) with the decision vector B = [bi, i = 0, . . . , N] where bi is
the longitudinal jerk at arc-length si. These way-points bi can then be used to produce
a continuous, piece-wise linear function β(s) by connecting sequential values bi, bi+1 with
straight lines. In our implementation we use N = 10, which works well in practice.

Thus far, our approach has simplified (4.9) by replacing the two continuous functions
ρ, β with N +2 constants ρ̄, bi, i = 0, . . . , N . The final stage of our technique is to compute
the cost-minimizing values of these constants. The high level idea is to iteratively select
values of ρ̄, compute the associated path πρ̂(s) for each selection, and then compute the
cost minimizing vector B given the fixed path. For each ρ̄, the decision vector B can be
efficiently computed as the integrand of the cost C in (4.10) is a polynomial expression of
v, α, β for a fixed path, facilitating the use of second order optimization techniques (Section
4.5).

Unfortunately, the same techniques can not be applied to compute ρ̄. Even infinitesimal
changes to the value ρ̄ can result in large changes to the curvature and curvature rate
profiles of the resulting path as well as the final arc-length. The resulting change in cost is
then exacerbated when a velocity profile is computed that responds to the new curvature
and curvature rate. This adversely affects the calculation of first and second derivatives
of cost with respect to ρ̄, hindering the use of derivative-based optimization techniques.
The phenomenon is analogous to the case of Dubins’ paths when infinitesimally changing
the maximum curvature completely alters the structure of the path from, say, two curves
connected by a straight line to three curves. For this reason, we appeal to sampling-based,
derivative-free optimization techniques to compute the optimal value of ρ̄.

In order to use the methods described above, we require two sub-techniques: The
first solves (4.4) for any given values σmax, κmax, and ρmax = ρ̄ (Section 4.4). The second
computes the optimal way-points α(si) for any fixed path (Section 4.5).

66

4.4 Computing G3 Paths

In this section, we describe how to compute G3 paths that solve (4.4) for known values of
ρmax. The solution ρ(s) to (4.4) is piece-wise constant, taking values only in {0,±ρmax}
[6], a direct result of Pontryagin’s Minimum Principle [53, Chapter 12]. We begin with an
investigation of single G3 curves, following closely the work presented in [6]. However, in
[6], it is assumed that the initial and final curvatures of all paths are either 0 or maximum
in magnitude. Therefore, it is necessary to re-derive all relevant equations to remove this
assumption. We then present a technique to connect G3 curves to form G3 paths.

67

Figure 4.1: A basic G3 curve. Top: The functions σ(s) (top), κ(s) (mid), and θ(s)
(bottom). Bottom: The resulting curve in the x, y plane from start configuration ps to
final configuration pf . Image also appears in [6]

4.4.1 Single G3 Curves

This section uses the definitions and notation presented in [6] to outline the general form
of a G3 curve.

An example G3 curve performing a left-hand turn is presented in Figure 4.1. The
maximum curvature of this maneuver is κtop where |κtop| ≤ κmax. The curve begins at a
path state ps = (xs, ys, θs, κs, σs = 0) at an arc-length of s = 0 along the path. From s = 0

68

to s = s1, the second derivative of curvature ρ, is set to its maximum value ρmax. Thus
the curvature rate σ is given by the function σ(s) = ρmax · s. The functions κ(s), θ(s) are
therefore quadratic and cubic (resp.), and can be calculated by (4.1).

At s = s1, the curvature rate has reached its maximum allowable value σmax, and can
go no higher, thus the function ρ is set to 0, and σ(s) = σmax. As a result, for s1 ≤ s ≤ s2,
the function κ(s), θ(s) are linear and quadratic (resp.). At s = s2, the value of ρ is set
to −ρmax, and the curvature rate decreases from σmax, allowing the curvature to reach a
value κtop at s = s3. At s = s3, the path state is given by p(s3). From s = s3 to s = ∆,
the curvature of the curve is held constant at κtop. Thus the curve remains at a constant
distance κ−1

top from its center of curvature xc for all s3 ≤ s ≤ ∆. The circle ΩI is the circle
centered at xc with radius κ−1

top.

At s = ∆, the value of ρ is set to −ρmax, and the curvature rate follows the linear
function σ(s) = −ρmax(s − ∆) until s = s4 when σ(s) = −σmax. Upon reaching its
minimum allowable value, σ(s) remains constant at −σmax for s4 ≤ s ≤ s5. At s = s5, the
value of ρ is set to ρmax, allowing the curvature to descend to its final value κf at s = s6.
When s = s6, the path state is given by p(s6) which lies a distance of r away from xc. The
circle ΩO is centered at xc with radius r. We use a subscript f to represent a path state
at the end of a G3 curve. This is to differentiate these states from ones with a subscript g
which represents the goal path states at the end of a G3 path (the concatenation of one or
more curves with straight lines).

To perform a right-hand turn, a similar analysis to that above is employed. The re-
sulting function σ(s) will appear as a mirror images about the horizontal axis to that
presented in Figure 4.1. We now illustrate how the switching arc-lengths si, i = 1, . . . , 6
of the function ρ(s) may be calculated. While similar, the switching arc-lengths presented
in [6] assume that κs, κf ∈ {0,±κmax}. Because this is not an assumption that we make,
it is necessary to re-derive these values.

Given the parameters ρmax, σmax, κtop,∆, the values of si, i = 1, . . . , 6 such that κ(0) =

69

κs, κ(s3) = κtop, κ(s6) = κf , are given by:

s1 =

σmax
ρmax

, if |κtop − κs| > (σmax)2

ρmax√
|κtop−κs|
ρmax

, otherwise

s2 =

{
|κtop−κs|
σmax

, if |κtop − κs| > (σmax)2

ρmax

s1, otherwise

s3 = s1 + s2,

s4 = ∆ +

σmax
ρmax

, if |κtop − κf | > (σmax)2

ρmax√
|κtop−κf |
ρmax

, otherwise

s5 = ∆ +

{ |κtop−κf |
σmax

, if |κtop − κf | > (σmax)2

ρmax

s4, otherwise

s6 = s4 + s5 −∆.

(4.11)

Also similar to [6], the curvature function of a G3 curve with ρ(s) switching arc-lengths
given by (4.11) and with with initial curvature κs, is given by

κ(s) =

κs ± 0.5ρmaxs
2, s ∈ [0, s1]

κ(s1)± ρmaxs1(s− s1), s ∈ [s1, s2]

κ(s2)± 0.5ρmax(s− s2)(s2 + 2s1 − s), s ∈ [s2, s3]

κtop, s ∈ [s3,∆]

κtop ∓ 0.5ηρmax(s−∆)2, s ∈ [∆, s4]

κ(s4)∓ ηρmax(s4 −∆)(s− s4), s ∈ [s4, s5]

κ(s5)∓ 0.5ηρmax(s− s5)(s5 − 2∆ + 2s4 − s).

(4.12)

Here, the top sign of each ”±,∓” is used if κtop ≥ κs, while the bottom sign is used
otherwise and η = 1 if σ(s1)σ(s4) < 0 and η = −1 otherwise. The value η = 1 is used
in circumstances where the curvature function increases to κtop and then decreases to κf ,
or decreases to κtop and then increases to κf . On the other hand, a value η = −1 is used
when the curvature function is either monotonically increasing or decreasing over the entire
curve.

By (4.1), the path state vector p along a G3 curve whose curvature is given by (4.12),

70

can be parameterized in terms of arc-length as:

p(s) =

x(s)
y(s)
θ(s)
κ(s)

 =

xs +

∫ s
0

cos(θ(τ))dτ
ys +

∫ s
0

sin(θ(τ))dτ
z0 + z1s+ z2s

2 + z3s
3

κ(s)

 , (4.13)

where z0, z1, z2, z3 are obtained by integrating κ(s) in (4.12). As Figure 4.1 implies, the
point xc, and radius r, are given by

xc =

[
xc
yc

]
=

[
x(s3)− κ−1

top sin(θ(s3))
y(s3) + κ−1

top cos(θ(s3))

]
, (4.14)

r = ||(x(s6), y(s6))− (xc, yc)||. (4.15)

Assuming that ρmax, σmax are known, we observe from the preceding arguments that the
initial path states ps, the top and final curvatures κtop, κf (resp.), and the arc-length ∆
are enough to uniquely define a G3 curve. Thus we denote a G3 curve G(ps, κtop, κf ,∆)
as the set of path states p(s) given by (4.13) from s = 0 to s = s6. A G3 path πρ, solving
(4.4) is therefore a concatenation of such curves and straight lines where ρ(s) is a function
that takes only values in {±ρmax, 0}.

As (4.11) implies, the final arc-length of this curve is given by s6. LetG
sj
i (ps, κtop, κf ,∆),

be the value of path state i at arc-length sj. In the next section, we present our technique
for solving (4.4) by concatenating G3 curves and straight lines.

4.4.2 Connecting G3 Curves

This section proposes a technique to connect G3 curves using a straight line via a reduction
of the G3 curve path planning problem (4.4) to a Dubin’s-like path planning problem with
two different minimal turning radii. The latter problem can be solved quickly by calculating
the common tangents of two circles with different radii. For fixed values ps, κtop, κf = 0,
consider the set of curves

G = {G(ps, κtop, κf = 0,∆) : ∆ ≥ s3}. (4.16)

Observe that members of G are G3 curves with final curvature 0. This is to facilitate
connecting G3 curves using straight lines while preserving curvature continuity. The as-
sumption that σ(s6) = 0 ensures that G3 curves can be connected with straight lines while
preserving continuous curvature rate.

71

Figure 4.2: (Left) Representative circle ΩD, and point (xD, yD). (Mid) Illustration of
Theorem 4.4.2. (Right) Illustration of Step 5, with partial Dubin’s path D (blue) and
corresponding G3 curve Ĝi (black).

For each pair (ps, κtop) we can construct a set G in (4.16), containing the curveG(ps, κtop, κf =
0,∆ = s3) as an element. Upon reaching curvature κtop, the curvature of this curve imme-
diately increases or decreases to κf . The curvature profile of such a curve can be found in
Figure B.1.

For fixed values ps, κtop, κf = 0, the value of s3 given in (4.11) is independent of ∆,
implying that every curve in G shares the same switching arc-length s3. The same holds
for the center xc given in (4.14). Therefore, the values ps, κtop, κf = 0, which are shared
by all curves in G, are sufficient to determine s3 and xc. Finally, note that each curve in
G is coincident with every other curve in G for all s ≤ s3. This phenomena can be see in
Figure 4.1: the duration ∆ − s3 that a curve spends at constant curvature κtop does not
affect the portion of the curve between ps and p(s3). The following Lemma illustrates the
relationship between ∆ and Gs6

θ (ps, κtop, κf ,∆).

Lemma 4.4.1 (Final Heading). For each set of curves G defined in 4.16, there is a unique
solution ∆ to the equation Gs6

θ (ps, κtop, κf ,∆) = θf such that G(ps, κtop, κf ,∆) has mini-
mum arc-length over ∆:

∆ = s3 + (θg −Gs6
θ (ps, κtop, κf ,∆ = s3))κ−1

top. (4.17)

where s3 is given by (4.11) for the curve G(ps, κtop, κf ,∆).

The proof of Lemma 4.4.1 can be found in Appendix B. Lemma 4.4.1 implies that
the final headings of elements in G varies linearly with their values of ∆. This Lemma
motivates the following key Theorem that will be heavily leveraged later.

72

Theorem 4.4.2 (Reducing Theorem). Given a set of curves G in (4.16), let xf , yf , θf
denote the final x, y, and θ values of any curve G(ps, κtop, 0,∆) ∈ G. Also, let m denote
the slope of a line induced by θf , i.e., m = tan θf . The shortest distance from the point xc
defined in (4.14) to the line passing through (xf , yf) whose slope is m is a constant with
respect to ∆.

The proof of Theorem 4.4.2 can be found in Appendix B. The result of Theorem 4.4.2
is shown in Figure 4.2 (Mid). In this figure, the red dots correspond to the points on the
lines containing the final path states of each curve in G that are closest to xc. Observe that
they lie on a circle centered at xc. This theorem has the following major consequence that
allows us to reduce a G3 path planning problem to a Dubin’s-like path planning problem if
ps,pg, κtop, σmax, ρmax are fixed, and only ∆ may vary. This interim result is the foundation
of our proposed G3 path planning technique. We begin with a definition.

Definition 4.4.3 (Representative Circle). Given a set of curves G in (4.16), and using the
same notation as Theorem 4.4.2, the representative circle ΩD of a curve in G, is the circle
centered at xc = (xc, yc) containing the point (xD, yD) where

xD =

{
(mxf−yf+m−1xc+yc)

m+m−1 , if θf 6= π/2

xf , otherwise

yD =

{
−m−1(xD − xc) + yc, if θf 6= π/2

yc otherwise.

(4.18)

That is, for the straight line containing (xf , yf) whose slope is tan θf , the representative
circle is the circle centered at xc containing the point on the line closest to xc. Observe
that Theorem 4.4.2 implies that all curves in a set G have coincident representative circles.
An example representative circle, and corresponding points (xD, yD) is show in Figure 4.2
(Left). In this figure, the black curve is G(ps, κtop, κf = 0,∆ = s3). Theorem 4.4.2 implies
that every G3 curve in a given set G in (4.16) has the same representative circle. This fact
is leveraged in the following section.

4.4.3 Connecting G3 curves with a Straight Line

We are now prepared to present our algorithm for computing G3 paths that solve (4.4)
given a known value of ρmax. The high-level idea is to begin by constructing two G3 curves
originating from both start configuration and goal configuration (with reverse orientation),
and then to connect these curves using either a straight line or another curve. For simplicity,

73

let p1 = ps,p2 = pg, and let p3 denote pg with reverse orientation. That is, p3 =
(xg, yg, θg + π,−κg).

Figure 4.3: (Left) Representative circles around ps and pg in reverse. (Mid) Dubins’-like
solution between start and goal states. (Right) Solution path.

Step 1: For each of the possible start and goal curve orientations: (R,L), (R,R), (L,R),
(L, L) where R is a right-hand turn and L a left, perform the following steps, and then
discard all but the choice with minimum final arc-length.

Step 2: Let Gi = G(pi, |κtopi| = κmax, κfi = 0,∆i = s3i), i = 1, 3 be two curves originating
from p1,p3, respectively, whose top curvature reaches its maximum allowable magnitude
κmax (with sign given by the chosen orientation), and where s3i is given by (4.11). This
step is illustrated by the black curves in Figure 4.3 (Left) for orientation (R,L). Let Gi
denote the two sets of curves from (4.16) with Gi ∈ Gi.

Step 3: Compute the points (xDi
, yDi

), i = 1, 3 for curves Gi on the representative circles of
each curve. This step is illustrated in Figure 4.3 (Left). Here, the dotted circles represent
the representative circles of each curve, and the red dots on these circles represent the
points (xDi

, yDi
), i = 1, 3.

Step 4: Compute the Dubin’s-type path D that consists of two curves and a straight
line connecting (xDi

, yDi
), i = 1, 3 with minimum turning radius on each curve rDi

=
||(xDi

, yDi
) − (xci , yci)||. This step is illustrated in Figure 4.3 (mid). Note that curves

74

Gi, i = 1, 3 may have different values of rDi
, resulting in a Dubin’s problem with different

minimum turning radii. This may not have a solution of the form described here, which
will be addressed this in the next section.

Step 5: Compute the angle θf inscribed by the straight portion of D and the horizontal

axis. Compute the value of ∆̂i from (4.17) such that the curves Ĝi = G(pi, κtopi, κfi , ∆̂i) ∈
Gi i = 1, 3 have final headings θf , θf + π, respectively. By Theorem 4.4.2, curves G, Ĝi

have coincident representative circles which, by construction, have radii rDi
the minimum

turning radii of D. Therefore, the final states (xfi , yfi , θfi , κi = 0, σfi = 0) of the curves

Ĝi are on the path D. This is illustrated in Figure 4.2 (Right). Connect the curves
Ĝi = G(pi, κtopi, κfi = 0,∆i) with a straight line. This step is illustrated in Figure 4.3

(Right). Solid black, and dotted black lines represent Ĝi, Gi, respectively.

Step 6: (Looping) If σmax, ρmax are too small compared to κmax, then one or both of the
curves Gi in Step 2 will loop [6]. A curve G(ps, κtop, κf ,∆) with initial and final headings
θs, θf (resp.), will loop if |θf − θs| < Gs6

θ (ps, κtop, κf ,∆ = s3). If such looping occurs on
curve i = 1, 3, we decrease the magnitude of the top curvature κtopi, and return to Step
2. Minimum arc-length is guaranteed by computing the smallest magnitude values of κtopi

that ensure a connection in Step 5.

4.4.4 Connecting G3 curves with a G3 curve

Two problems may arise in Steps 1-6 above. The first, we call overlap. Overlap arises
when the endpoints of the two curves Ĝi, i = 1, 3 computed in Step 5 cannot be connected
with a straight line that preserves orientation. The phenomenon is illustrated in Figure 4.4
(Left), and can occur if the centers xci of the representative circles of the curves Gi in Step
2 are too close together (< r1 + r3 where ri is the radius (4.15) for the curve Ĝi). Observe
that overlap is a result of σmax, ρmax being small relative to κtopi: by the time the curvature

of curve Ĝi changes from κtopi to 0, the final configuration has already passed that of
the second curve and cannot be connected with a straight line that preserves orientation.
Therefore, if overlap occurs we attempt to find a curvature other than 0 that can be used
to connect Ĝi. This is summarized here:

Step 7: (Overlap) If overlap occurs, we cut the curves Ĝi, i = 1, 3 at s = ∆i. That
is, let Ĝcut

1 = G(pi, κtopi, κfi = κtopi,∆i), and we attempt to connect Ĝcut
1 , i = 1, 3 with a

75

third G3 curve. If no such third curve exists, we slowly decrease the value of σmax, and
go back to Step 1. Figure 4.4 (right) illustrates an example where σmax is decreased until
Ĝcut
i , i = 1, 3 can be connected with a third curve. Minimum arc-length is preserved by

finding the largest feasible value of σmax that allows for such a connection.

The second problem arises if no Dubins’ solution can be found in Step 4. Similar to overlap,
this arises if the centers xci are too close together. For this reason, we again decrease the
value of σmax and return to Step 1. At the end of Steps 1-7, the process described above
will have computed a G3 curve Pρmax(s) that solves (4.4).

Remark 4.4.4. Critically, observe that to store a solution path between start and goal
states computed using the above methods it is sufficient to store only the values ρmax, the
top curvature κtopi and the value ∆i for each of the potentially three curves, and the final

curvatures of the first and last curves (i.e., 0 if Ĝ1, Ĝ2 can be connected with a straight
line, and κtopi otherwise). Indeed, from (4.1), (4.11), (4.12) the resulting path can easily
be obtained from these 9 values.

Figure 4.4: Step 7. (Left) Illustration of overlap. start and goal configurations too close
together resulting in curve P2 terminating behind P1. (Right) Stretching of curves P1, P2
by decreasing σmax until P1, P2 can be connected by third curve.

4.5 Computing Velocity Profiles

In this section we describe how to compute a longitudinal jerk profile β(s) that minimizes
the cost function in (4.10) over a fixed G3 path πρ(s). Similar to the procedure outlined

76

in [11], we approximate the continuous optimization problem by a discrete problem that
asymptotically approaches the continuous version.

As discussed above, a velocity profile on a fixed path is equivalent to a re-parametrization
of the path from arc-length to travel time. As such, a velocity profile along a G3 path must
be at least twice differentially continuous to produce a C3 trajectory. For this reason, we
offer a method by which a continuous piece-wise cubic velocity profile may be computed.

Given a fixed path πρ(s) with final arc-length sf , the high-level idea is to select N + 1
arc-lengths si from s0 = 0 to sN = sf where N ≥ 4, and then to select N + 1 values β(si).
The value of β(s) between sequentially sampled arc-lengths si, si+1 is then given by the
linear function passing through β(si), β(si+1).

Let s = [s0, . . . , sN] denote N + 1 arc-lengths with s0 = 0, sN = sf . Further, let
B = [b0, b1, . . . , bN] denote a vector of N + 1 real numbers. This vector will serve as values
of β(s) at fixed arc-lengths s0, s1, . . . , sN . Given any vector B, we may compute a velocity
profile, vB(s), longitudinal acceleration profile αB(s), and longitudinal jerk profile βB(s)
recursively as follows:

vB(s) =vB(si) + αB(si)(s− si)

+
bi(s− si)2

2
+

(
bi+1 − bi
si+1 − si

)
(s− si)3

6
,

αB(s) =αB(si) + bi(s− si) +

(
bi+1 − bi
si+1 − si

)
(s− si)2

2
,

βB(s) =bi +

(
bi+1 − bi
si+1 − si

)
(s− si),

(4.19)

for all s ∈ [si, si+1] and for all i = 0, . . . , N − 1. Observe that no bounds are placed on
dβB(s)/ds. Therefore, for sufficiently small values of si+1−si, i = 0, . . . , N−1 and large values
of dβB(s)/ds, the equations in (4.19) can be used to model continuous piece-wise quadratic
velocity profiles with piece-wise constant β(s). Using the notation

S1(i) = 1/6(si−1 − si)2,

S2(i) = 1/6(si−2 − si)(si−2 + si−1 − 2si),

S3(j, i) = 1/6(sj−1 − sj+1)(sj + sj−1 − 3si + sj+1),

S4(i) = 1/2(si − si−1),

S5(i) = 1/2(si+1 − si−1),

77

we compute vB, αB, βB at each value si as linear combinations of the vector B:

vB(si) = vs + biS1(i) + bi−1S2(i) +
i−2∑
j=1

bjS3(j, i),

αB(si) = biS4(i) +
i−1∑
j=1

bjS5(j), βB(si) = bi.

(4.20)

We set b0 = 0, bN = 0. This is to ensure that when two trajectories are concatenated by a
local planner, the resulting β-profile is continuous. Finally, we compute bN−2, bN−1 in terms
of bi, i = 1, . . . , N−3 to ensure that α(sf) = 0, v(sf) = vf . This is done by solving the linear
system of equations vB(sN) = vf , α

B(sN) = 0, for bN−1, bN−2 where vB(sN), αB(sN) are
given by (4.20). Equation (4.20) also facilitates the development of linear inequalities for
the vectorB to encode the constraints 0 ≤ vB(si) ≤ vmax, |αB(si)| ≤ αmax, |βB(si)| ≤ βmax.

Let B′ = [b1, . . . , bN−3] denote a decision vector of way-point values of longitudinal
jerk. From B′, we compute B = [b0, b1, . . . , bN] by setting b0 = bN = 0, and computing
bN−1, bN−2 by solving a system of linear equations to ensure the boundary constraints of the
velocity profile. To select a decision vector, we solve the following optimization problem:

min
B′∈[−βmax,βmax]N−3

C(πρ(s), vβB(s))

s.t.,∀si ∈ s,
0 ≤vB(si) ≤ vmax,

|αB(si)| ≤ αmax,

|βB(si)| ≤ βmax.

(4.21)

For a fixed path πρ(s), the integrand of C(πρ(s), vβB(s)) in (4.8) reduces to a non-convex
polynomial expression of vB(s), αB(s), βB(s). Thus, together with the explicit definitions
of vB(s), αB(s), βB(s) in terms of B in (4.19), (4.20), first and second order derivatives of
the cost with respect to B′ can be easily computed (though these expressions are omitted
for brevity). The optimization problem in (4.21) is an instance of non-convex, non-linear
optimization with linear constraints, and can be solved quickly in practice using solvers
like IPOPT [110] or SNOPT [33].

Remark 4.5.1. Paths computed using our methods require only 9 constants to describe
(see Remark 4.4.4). Moreover, the velocity profiles here require only N + 1 ≥ 5 additional
constants. We typically use N = 10 (which works well in practice) for a total of 19
constants to describe a trajectory. This is typically far less than what is required to

78

describe numerically derived paths in the absence of analytic expressions. For example,
a 10 meter trajectory with (x, y, θ, v) samples spaced every 0.1 meters would require 20
times more space to store than the proposed method.

4.6 Evaluation

We now demonstrate the benefits of our approach. We begin by illustrating how the
techniques developed here can be used to anticipate the driving styles of several archetypal
users, namely, a comfort-favoring (comfort) user who prefers low speed and high comfort,
a moderate user who favors a mix of speed and comfort, and a speed-favoring (speed) user.
Next, we compare the theoretical cost of paths generated using the proposed method to
those from [6]. As implied by Theorem 4.3.1, any path that solves (4.9) is a G3 path. It is
for this reason that we compare our methods for generating trajectories to those proposed
in [6], the current state-of-the-art G3 path generation technique.

Finally, we measure tracking error and final cost of our proposed trajectories using
Matlab’s seven degree-of-freedom simulator with default road friction and input noise, and
built-in Stanley controller [47]. Our methods were encoded entirely in Python 3.7 (Spyder),
and IPOPT was used in Python to solve the OP in (4.21) to calculate velocity. The results
were obtained using a desktop equipped with an AMD Ryzen 3 2200G processor and 8GB
of RAM running Windows 10 OS.

4.6.1 Setup

Unit-less Weighting The features in the cost function (4.8) represent different physical
quantities. In order for our cost function to represent a meaningful trade-off between these
features for given weights, a scaling factor is included in the weight [48]. Similar to the
scaling techniques in [38], we let Ĉm,m ∈ {a, t, y,J } denote the cost of the trajectory that
solves (4.9) given weight wm = 1, wn = 0, ∀n ∈ {a, t, y,J }, n 6= m. We then scale the
weights as

ŵm =
wm

Ĉm

∑
m∈{a,J ,y,t}

Ĉm, m ∈ {a,J , y, t}.

This scaling process1 has the following benefits: if all features are weighted equally, then the
scaled cost of each feature ŵmĈm are equal. Also, it may be that for some m ∈ {a,J , y, t},

1NOTE: The scaling process described here is not included in the timing of our algorithm reported in
Table 4.3

79

the feature cost Cm is very sensitive to changes in the trajectory in a neighborhood of the
optimal trajectory. For example, IS jerk is the integral of a fifth order polynomial of v
in (4.8) and is therefore highly sensitive to changes in v at high speeds, In these cases,
if the scaling factor used any but the optimal value Ĉm for each feature, it would risk of
over-reducing the weight on this feature.

Parameter Bounds For all experiments, the curvature parameter limits are given by [6]:

κmax = 0.1982m−1, σmax = 0.1868m−2 ρmax = 0.3905m−3. (4.22)

while the limits on velocity, acceleration, and instantaneous jerk are given, respectively,
by [5]

vmax = 100km/hr, amax = 0.9m/s2, bmax = 0.6m/s3. (4.23)

4.6.2 Evaluation

Qualitative Analysis To qualitatively evaluate our methods, we analyse the trajectories
for three archetypal users: a speed user, who prefers low travel time over comfort, an
intermediate user who values comfort and speed equally, and a comfort user who emphasizes
comfort over speed. To simplify the comparison of these users, we combine the scaled but
unweighted features IS acceleration, IS jerk, and IS yaw into a discomfort cost, and compare
this to time cost for each user:

discomfort cost =
∑

m∈{a,J ,y}

ŵmĈm, time cost = ŵmĈt.

Given the simplistic nature of the speed, intermediate, and comfort archetypes, the ex-
pected form of their favored trajectories is apparent: the speed user wishes to minimize
travel time at the expense of comfort. Therefore, she will favor trajectories featuring short
paths and high velocities. The comfort user, on the other hand, prefers comfortable tra-
jectories over short travel times. Finally, the intermediate driver should favor a balance of
the two other users. In this experiment, the start-goal configurations for each user are:

ps = [0, 0, 0, 0], pf = [30, 105, 0, 0.1695],

with vs = 12m/s, vg = 13m/s. The weights for each user are:

speed User wt = 0.9, wy = wJ = wa = 0.033,

Intermediate User wt = wy = wJ = wa = 0.25

comfort User wt = 0.01, wy = wJ = wa = 0.33.

(4.24)

80

0 5 10 15 20

0.05

0.15

0.25

0.35

0

200

400

5

15

25

0 20

0

20

40

60

80

100

120

Goal
y

Intermediate

User
Speed User

Start
x

Comfort User

Time(s)

Time Cost

Cumulative Discomfort Cost

Velocity

Intermediate User

Comfort User

Speed User

Figure 4.5: Comparison of three users. Left: velocity (m/s) (top), time cost (mid) and
discomfort cost (bottom) for three users. Right: trajectories.

Thus, the speed user places a high weight on time, and a small weight on IS yaw rate, IS
Jerk, and IS acceleration (i.e., small weight on discomfort), while the comfort user places a
low weight on time, and the intermediate user places an equal weight on all features. The
results are illustrated in Figure 4.5. The left image illustrates the velocity profile (top),
discomfort cost (mid), and time cost (bottom) for the speed (red), intermediate (blue), and
comfort (green) drivers. The right image illustrates the resulting trajectories for each user
with color representing velocity. The shortest trajectory is that of the speed user. Observe
that her path is short and velocities high, reflecting her preference towards short travel
times. The longest trajectory is that of the comfort user, and we note that her trajectory
features consistently low velocities and a long path. This tendency towards longer path
length, allows the comfort user to change velocities over a longer time period allowing
her to reach lower velocities with lower acceleration and jerk. This is reflected in the low
discomfort cost of the comfort user. The middle trajectory is that of the intermediate user,
who decreases her velocity on the turn to minimize jerk/acceleration, but then speeds up
again on the straight portion of the path.

A further example of the three archetypes is given in Figure 4.6 in which a lane change
maneuver is preformed from (0, 0, 0, 0) to (50, 6, 0, 0) with an initial and final velocity of

81

Figure 4.6: Example reference trajectories for a lane change maneuver given three min-
imization objectives: discomfort (top), time (bottom), and a mix between time and dis-
comfort (mid). Initial and final speeds are fixed at 10 m/s, cars are drawn ever 0.75
seconds.

10 m/s. Cars are drawn ever 0.75 seconds, with the dotted vertical lines representing
horizontal position of the top-most car at each time step. The comfort driver has an
average speed of 9.4 m/s and completes the maneuver in 5.30 seconds, while the mixed
and speed drivers have average speeds and final times of (10.09 m/s, 4.91 seconds), and
(10.80 m/s, 4.55 seconds), respectively. Observe that the car following the red trajectory
arrives at the goal almost a full time-step ahead of the blue-trajectory car.

Path Evaluation We now evaluate the quality of the paths generated using our technique.
To this end, we isolate the effect of the path on the final cost by comparing two methods
for generating trajectories:

82

• Ours : Paths and velocity profiles are computed using the methods detailed in this
chapter.

• Benchmark : velocity profiles are computed using the techniques outlined here, but
paths are computed from [6].

We define the % Savings as the difference in cost (given in (4.8)) for trajectories generated
using Benchmark and Ours as a percentage of the cost of Benchmark-based trajectories.

Avg. Percent Savings (%)

Dominant
Feature

IS Time 20.00 (20.7)
IS Yaw 26.24 (24.8)
IS Acceleration 30.26 (24.2)
IS Jerk 64.09 (26.7)
Blended 42.06 (25.0)

Initial/Final
Velocity

Low (0, vmax/3] 39.41 (29.9)
Med (vmax/3, 2vmax/3] 38.57 (29.0)
High (2vmax/3, vmax] 33.50 (27.8)

Table 4.1: Average cost savings. Breakdown by dominant feature and initial/final velocity.

For this experiment, 1300 start-goal pairs were randomly generated with initial and final
curvatures ranging from −κmax to κmax, initial and final velocities (taken to be equal)
ranging from 0 to vmax, initial and final x, y-values ranging from −20m to 20m, and weights
ranging from 0 to 1. Initial and final velocities were chosen to reflect the Euclidean distance
between start-goal pairs, and pairs with no feasible solution were disregarded. The results
of these experiments are tabulated in Table 4.1. Here, a feature (IS time, IS yaw, IS
acceleration, IS jerk) is said to be dominant if the corresponding weight is greater than
0.5. If no weight is greater than 0.5, the features are said to be blended. It was found that
the average percent savings was 36.35% across all experiments. Moreover, if the velocity
is not optimized using our method, but is assumed to be constant instead, we see see a
43.3% savings. As Table 4.1 implies, the largest savings is typically found when IS jerk is
the dominant feature. This implies that the techniques presented here have greater value
for users who prefer comfort to low travel times, but can still reduce costs by 20% on
average for such users. A detailed view of the distribution of the percent savings for the
experiments is given in Figure 4.7. Observe that the instances where the percent savings
are substantial (> 50%) are not infrequent. In particular, in 34% of experiments, the

83

savings was at least 50%, while in 17% of experiments, the savings was at least 70%, and
10% of experiments had a savings of at least 80%.

Low Speed High SpeedMedium Speed

Speed

0

20

40

60

80

100

P
e
rc

e
n
t

S
a
v
in

g
s

Accel Time Yaw Jerk Blended

Dominant Feature

0

20

40

60

80

100

P
e
rc

e
n
t

S
a
v
in

g
s

Figure 4.7: Percent savings distribution by dominant feature (top), and initial/final velocity
(bottom).

Tracking Error and Simulation Cost The above results imply that the methods pro-
posed herein can be used to compute reference trajectories that result in substantial cost
reduction if tracked perfectly by a vehicle. However, it is highly unlikely that any reference
will be perfectly tracked. While we do not propose a tracking controller in this chapter (nor
does this chapter propose a local planner), we will address two important questions. First

84

Figure 4.8: Optimal trajectories for weights between way-points of a roundabout. Cars
represent fixed way-points (position, curvature, velocity) while color gradient of each tra-
jectory represents velocity.

will the imperfections in the vehicles controller negate the theoretical cost savings? Second,
even if there is still a reduction in cost using our method, does this come at the expense of
the tracking error? That is, are reference trajectories generated using our method harder
to track than the Benchmark method? In this section, we use a basic out-of-the-box feed-
back controller that has not been optimized, and we do not re-plan reference trajectories.
This is to illustrate that even with a sub-optimal controller, there is still substantial cost
savings. Moreover, there is typically even a reduction in the tracking error.

In this section. We again consider the methods ”Ours” and ”Benchmark” defined above.
The experiments in this section were carried out using MATLAB’s seven degree of freedom
driving simulator in its autonomous driving toolbox. All car dimensions, force coefficients,
and noise parameters were left at their default values. The reference trajectories were
tracked using MATLAB’s Stanley controller with default gains. Here, the maximum error
is the maximum lateral error, and the average error is the integral of the lateral error
normalized to arc-length of the path. We consider three maneuvers between start goal pairs

85

A
v
e
ra

g
e
 E

rr
o
r

(m
)

Time weight

M
a
x
im

u
m

 E
rr

o
r (

m
)

Method

1

2

Figure 4.9: Average maximum errors (top) and average average errors (bottom) for Meth-
ods 1 (Ours) and 2 (Benchmark) categorized by time weight.

chosen to coincide with possible way-points of a roundabout. Dimensions and velocities
for this problem are in accordance with U.S. department of transportation guidelines [96,
Chapter 6]. The single-lane roundabout, illustrated in Figure 4.8, has lane radius (middle
circle) of 45 ft, The initial way-point for this experiment is on a connecting road 65 ft
away from the center of the roundabout. We assume an initial velocity of 17 mph. At the
second and third way-points, the velocity is assumed to be 14 mph which increases to 17
mph at the final way-point. Trajectories between these way-points were planned for 50
weights: 5 values of the time weight wt, (0, 0.25, 0.5, 0.75, 1) and 10 randomly selected
values of the other weights for each value of wt (ensuring that the sum of the weights
equaled 1). Trajectories and their lateral errors for one example weight (wJ = 1, wt =
wa = wy = 0) is shown in Figure 4.10. The left-most images illustrate the trajectories
obtained using the two methods. Blue, red, and green paths represent theoretical, tracked,
and driven paths, respectively. Short line segments between red and green paths connect
driven configurations with the reference configurations being tracked at each time step.
Observe that the high peaks in error (right-most images) experienced by cars following
a Benchmark reference trajectory, are spread more evenly along the trajectory for cars
tracking Ours trajectories. This is because paths generated using Ours will have more

86

Figure 4.10: (Left) Simulated trajectories for example roundabout maneuver. Blue, green,
and red lines are reference, tracked, and driven paths. Connecting lines show tracking
error. (Right) Lateral Error over time. Methods 1 (Ours) and 2 (Benchmark).

gradual changes in curvature given the example weight. For each value of wt, the values
of maximum error and average error of each experiment are tabulated in Figure 4.9, and
Table 4.2. Observe that (as implied by the example in Figure 4.10), savings in every metric
is highest for weights that favor comfort over time. Observe further, that the maximum
lateral tracking error can be reduced by approximately 0.8m on average for certain weights.
The roundabout radius and velocities were scaled upwards (again following the guidelines
of [96]). However, the results were very similar to those reported above.

87

Time weight (wt) Cost Savings (%) Max Err (m) Avg Err (m)

O B O B

0 35.8 2.05 2.82 0.13 0.14
0.25 18.7 2.11 2.83 0.13 0.14
0.5 13.7 2.33 2.85 0.13 0.14
0.75 8.9 2.40 2.85 0.14 0.14

1 1.0 2.75 2.77 0.15 0.15

Table 4.2: Average cost savings, maximum lateral error and average lateral error for two
methods (O = Ours, B = Benchmark), categorized by time weight.

Run-time The focus of this work was on improving the quality of computed trajectories
given user weights. As such, we did not focus on optimizing for run time. However, we
believe that with proper software engineering, one could substantially reduce the run-time
of our procedure though it may still exceed the state-of-the-art (SOTA). Run-times for

Run-times (s)

Sub-routine SOTA source SOTA (C) Ours (Python)

Calculate a path (Step 1) [6] 6.8× 10−5 4.3× 10−3

Optimize velocity (Step 2) [46] 2.2× 10−4 1.2× 10−2

Total (recursive Step 1 & 2) [6] & [46] 1.2× 10−3 8.5× 10−2

Table 4.3: Comparison of run-times. Our methods (Ours) compared against state-of-the-
art (SOTA) for each sub-routine of the procedure.

each of the two steps in our procedure are compared with those of the SOTA in Table 4.3
which also includes the total time. Reference [46] as the SOTA for velocity profile planning
given a path due to its use of third order trapezoidal methods. Trapezoidal methods (and
variants thereof) are a widely used method for velocity profile planning [28, 92]. Variants of
this method use higher-order velocity models than those employed by [46], improving the
quality at the expense of computation time. We therefore use computation times reported
in [46] as a lower bound on trapezoidal velocity method variants. We observe that the
SOTA is on the order of 100 times faster than the methods proposed here. However, our
algorithm is encoded entirely in Python which tends to run 10-100 times slower than C for
iterative procedures like ours.

88

4.7 Discussion

We consider the problem of computing trajectories between start and goal states that
optimize a trade off between comfort at time. We offer a simplified approximation of
optimization problem (4.9) that replaces the two continuous functions with N+2 constants.
Methods to compute paths given one of these constants, and a velocity profile given this
path and the N + 1 remaining constants are also provided. The resulting technique is
verified with numerical examples.

89

Chapter 5

High-Dimensional Lattice Planning
with Optimal Motion Primitives

Research in the chapter was published in the proceedings of the IEEE International Con-
ference on Intelligent Robots and Systems (IROS) 2019 [12].

5.1 Introduction

In this chapter, we address the Minimum t−Spanning Control Set (MTSCS) problem 2.3.8
and incorporate a MTSCS in a local planner. For clarity, the contributions of this chapter
are repeated here from Section 1.1.4.

1. We prove that the decision version of the MTSCS problem 2.3.9 is NP-hard.

2. We propose a mixed integer linear programming (MILP) formulation of the MTSCS
problem 2.3.8. This represents the first known non-brute force approach to solving the
MTSCS problem. The result is a control set of minimal size that generates motions
that are continuous in all states and have bounded t−factor sub-optimality. Though
this formulation does not scale for large lattices, we observe that control sets need only
be computed once once, offline.

3. We present an A*-based algorithm to compute feasible motions for difficult maneuvers
in both parking lot and highway settings. The algorithm is an amalgamation of two
other established algorithms: Bi-Directional A* [14, 114], and weighted A* [91] but can
accommodates off-lattice start and goal configurations up to a specified tolerance.

90

4. We provide a novel algorithm that eliminates redundant vertices along motions com-
puted using a lattice. This algorithm is based on shortest paths in directed acyclic
graphs and eliminates excessive oscillations, a common critique of lattice-based motion
planning [76]. The algorithm runs in time quadratic in the number of motion primitives
along the input motion.

5.2 Main Results

In this section we present a MILP formulation of Problem 2.3.8, and algorithms to com-
pute and smooth motions using the control sets returned by Problem 2.3.8. This section
references the notation established in Section 2.3. We begin with a motivating theorem.

Theorem 5.2.1 (NP-Hardness of the MTSCS Problem 2.3.9). The decision version of the
Minimum t−Spanning Control Set problem in 2.3.9 is NP-hard.

Proof. We prove this result by offering a reduction from the Vertex Cover Problem in
2.1.1. Given an instance of the Vertex Cover problem, that is, a graph G′ = (V ′, E ′) with
V ′ = {v′1, . . . , v′n}, E ′ = {e′1, . . . , e′m}, and a natural number K, we construct an instance
of Problem 2.3.9 by constructing the tuple (X , L,O, c,W) and real number t ≥ 1. We will
show that G′ has a vertex cover of size no more than K if and only if L has a MTSCS of
size no more than K + 2|E ′|.

We begin by defining the configuration space X . Let X be the set of configurations of
the form (x, y) ∈ R2 denoting position. Next, let O = {o = (0, 0)} be the starting set with
a single start. For any configurations i, j we let i · j be the vector addition of i and j. That
is, if i = (ix, iy), j = (jx, jy), then i · j = (ix + jx, iy + jy). We construct a lattice L for the
configuration space in time polynomial in |E ′|+ |V ′| as follows:

1. For each graph vertex v′i ∈ V , define a lattice vertex:

vi = (vxi , y
y
i) =

(
cos

(
(i− 1)π

3m

)
, sin

(
(i− 1)π

3m

))
.

This is illustrated in Figure 5.1 (b) for the input graph in Figure 5.1 (a).

91

2. For each graph edge (v′i, v
′
j) let vi = (vxi , v

y
i), vj = (vxj , v

y
j) be the lattice vertices associ-

ated with v′i, v
′
j, respectively. We define six lattice vertices:

vi−j = (vxi − vxj , v
y
i − v

y
j)

vj−i = (vxj − vxi , v
y
j − v

y
i)

vi+j = vi · vj = (vxi + vxj , v
y
i + vyj).

This step is illustrated in Figure 5.1 (c).

Observe that each vertex is distinct. Indeed, vertices of the form vi lie in the first quadrant
along the unit circle, while vertices of the form vi+j lie in the first quadrant and have
minimum length

√
3 > 1. Further, vertices of the form vi−j, vj−i lie in the third or fourth

quadrant and are all distinct since no two non-diametral secant lies of an upper-half circle
are equal. Next, we define the cost of each motion. Let cm denote the cost of the motion
from o to the lattice vertex m where m can take the form i, i− j, i+ j. Further, let

cm =

1 if m is of the form i,

0.1 if m is of the form i− j
1.91 if m is of the form i+ j.

Finally, we define a workspace W such that motions between vertices of the form vi+j will
exit the workspace. This can be done in time polynomial in |E|+ |V | as follows: define a
line segment L1 connecting configurations (1.5, 0) and (1.5 cos(π/3), 1.5 sin(π/3)). Define
another line segment L2 connecting configurations (2.5, 0) and (2.5 cos(π/3), 2.5 sin(π/3)).
These lines are illustrated in Figure 5.1 (d). Next, determine where the lines connecting
the origin and vertices of the form vi+j intersect the line segment L1. This splits L1 into
sub-segments Li1, i = 1, . . . , |E ′|. In each segment Li1, determine two points on the line,
one 1/4 of the way along Li1, and the other 3/4 of the way along. Connect each point to
the origin via a straight line and determine where this straight line intersects L2. These
steps are illustrated in Figure 5.1 (d). Finally, connect L1 and L2 is a saw-tooth manner by
connecting the determined points in L1 with their corresponding points in L2 as in Figure
5.1 (e). Since the minimum distance of vertices of the form vi+j from the origin is

√
3,

line segments connecting two such vertices will necessarily pass through the boundary of
W . Further, since vertices of the form vi lie a distance of 1 from the origin, line segments
connecting two such vertices will necessarily lie entirely in W . Finally, let t = 1.1.

Let pm denote the motion from the origin to vm for any vm ∈ L. Then c(pm) = cm.
Observe that if E is a MTSCS of the lattice above, then E must contain every motion of

92

Figure 5.1: Constructing a Lattice and Workspace.

the form pi−j. Indeed, if pi−j /∈ E for some vertex of the form vi−j, then dE(vi−j)/ci−j ≥
0.2/0.1 = 2 > 1.1 = t since all motions have cost at least 0.1 and ci−j = 0.1 for all motions
of the form pi−j. Observe further that if E contains motions of the form pi+j from the
origin to a vertex of the form vi+j, then a new MTSCS (of equal size) can be constructed by
replacing pi+j with either pi or pj. Indeed, vi+j cannot lie on a path using E to any other
vertex vr+s since the required motion would exit the workspace by construction. Moreover,
vi+j cannot lie on a path using E to any vertex of the form vk or vr−s since this would imply
that dE(vk)/ck ≥ (1.91 + 0.1)/1 = 2.1 > 1.1 = t and dE(vr−s) ≥ (1.91 + 0.1)/0.1 = 21 >
1.1 = t implying that E is not a MTSCS. Finally, if E ′ = E − {pi+j} ∪ {pi}, then because
vi+j = vi · vj, dE

′
(vi+j) = (ci + dE(vj))/ci+j ≤ (1 + 1 + 0.1)/1.91 = 2.1/1.91 < 1.1 = t

implying that vi+j is reachable within a factor of t using E ′. Therefore, without loss of
generality, we may assume that a MTSCS E contains all motions of the form pi−j (of which

93

there are 2|E ′|) and no motions of the form pi+j (since these can be replaced with motions
of the form pi without increasing the solution size).

Finally, observe that a set E containing all of the motions of the form pi−j and no
motions of the form pi+j is a MTSCS of L if and only if for all vi+j ∈ L, either pi ∈ E
or pj ∈ E. Indeed, suppose pi ∈ E. Then because pj−i ∈ E and vi · vj−i = vj, we have
dE(vj)/cj ≤ (ci + cj−i)/cj = (1 + 0.1)/1 = 1.1 ≤ t and vj is reachable within a factor of
t using E. Further, since vi · pj = vi+j, and vj is reachable within a factor of t using E,
dE(vi+j)/ci+j ≤ (ci + dE(vj))/ci+j ≤ (1 + 1.1 × 1)/1.91 < 1.1 = t and vi+j is reachable
within a factor of t using E. Therefore, if pi ∈ E and vi+j ∈ L then vi, vj, vi+j are all
reachable within a factor of t using E. If this holds for all vi+j ∈ L, then L is t−spanned
by E. On the other hand, if vi+j ∈ L and vi, vj /∈ E then E is not a MTSCS of the lattice.
Indeed, if vi, vj /∈ E, then because the cost of the minimal-cost motion is 0.1 and E contains
no motions of the form pi+j, it must hold that dE(vi+j)/ci+j = (dE(vi) + dE(vj))/ci+j ≥
(1 + 0.1 + 1 + 0.1)/1.91 > 1.1 = t implying that vi+j is not reachable within a factor of t
using E, and E is not a MTSCS.

We have shown that there exists a MTSCS E of the lattice L of the following form:
every motion of the form pi−j, pj−i (of which there are 2|E ′| such motions) is in E, and
where no motions of the form pi+j are in E. Further, such a set is a MTSCS if and only
if for each vertex of the form vi+j of which there are |E ′|, either pi ∈ E or pj ∈ E. To
complete the proof, let E be a MTSCS of the form just described, and let V ⊂ V ′ be given
by V = {v′i ∈ V ′ : pi ∈ E}. Then,

E is a MTSCS of L of the form described above

⇐⇒ ∀vi+j ∈ L, pi ∈ E ∨ pj ∈ E
⇐⇒ ∀(v′i, v′j) ∈ E ′, vi ∈ V ∨ vj ∈ V
⇐⇒ V is a vertex cover of G.

(5.1)

Noting that |E| = |V| + 2|E ′| completes the proof. That is, there exists a vertex cover
V of G′ = (V ′, E ′) with |V| ≤ K if and only if there exists a MTSCS E of L with
|E| ≤ K + 2|E ′|.

5.2.1 MTSCS Problem: MILP Formulation

Theorem 5.2.1 is motivation to provide a MILP formulation of Problem 2.3.8. Let (X , L,O, c)
denote configuration space, lattice, start set, and cost of vertex-to-vertex motions in L, re-
spectively. For any motion p ∈ B (where B is given in (2.6)), let

Sp = {(i, j) : i, j ∈ L, i · p = j is a valid}.

94

Thus Sp is the set of all pairs (i, j) ∈ L2 such that p the motion from i to j and i · q is
valid. By definition of valid concatenations, there exists o ∈ O and j′ ∈ L such that p is
the motion from o to j′ implying that (o, j′) ∈ Sp.

Let E =
⋃
o∈O Es be a solution to Problem 2.3.8. Let GFree = (L, Ē, c) be the weighted

directed graph with edges Ē given in (2.7). For each o ∈ O and each (i, j) ∈ Ē, we make a
copy (i, j)o of the edge. This allows us to treat edges differently depending on the starting
vertex of the path to which they belong. For each v ∈ L−O, a path using E from o to v,
πE(o, v), may be expressed as a sequence of edges (i, j)o where (i, j) ∈ Ē. For each o ∈ O
we construct a new graph

T o = (L−O ∪ {o}, Eo
T), (5.2)

whose edges Eo
T are defined as follows: let

T̃ o =
⋃

v∈L−O

πE(o, v).

Thus T̃ o is the set of all minimal cost paths from o to vertices v ∈ L − O in the graph
GFree. These paths can be expressed as a sequence of edge copies (i, j)o where (i, j) ∈ Ē.
For each v ∈ L − O, and for each o ∈ O, if T̃ o contains two paths πE1 , π

E
2 from o to v,

determine the last common vertex j in paths πE1 , π
E
2 , and delete the copy of the edge in

πE2 whose endpoint is j from T̃ o. Let the remaining edges be the set Eo
T . The graph T o in

(5.2) is an Arborescence rooted at o (defined in Definition 2.1.2) which we will leverage in
our MILP formulation. This is shown in the following Lemma:

Lemma 5.2.2 (Arborescence Lemma). Let E =
⋃
o∈O Es be a solution to Problem 2.3.8,

and GFree = (L, Ē, c) be the weighted directed graph with Ē given in (2.7). For each o ∈ O,
if T o is given by (5.2), then T o is an arborescence rooted at o. Further, ∀v ∈ L − O,
dE(o, v) is the length of the path in T o to v.

Proof. Let o ∈ O. To show that T o is an arborescence rooted at o, observe first that
there is a path in T o from o to all v ∈ L − O. Indeed, if E solves Problem 2.3.8, then E
t−spans L. In particular, there must be at least one path, πE(o, i) using E from o to each
v ∈ L − O implying that πE(o, v) ∈ T̃ o. Since Eo

T only deletes duplicate paths from T̃ o,
there must still be a path in T o from o to v. Furthermore, by construction of the edge set
Eo
T , duplicate paths (with equal cost) are deleted thus ensuring the uniqueness of paths

from o to each v ∈ L − O completing the proof that T o is an arborescence rooted at o.
Finally, the cost of the path in T o from o to v is defined as the cost of the path πE(o, v)
which is the distance using E from o to v by definition.

95

Lemma 5.2.2 implies that E is a t−spanner of L if and only if ∀o ∈ O there is a
corresponding arborescence T o rooted at o whose vertices are L − O ∪ {o}, whose edges
(i, j)o are copies of members of Sp for some p ∈ E, and such that the cost of the path from
o to any vertex v ∈ L−O in T o is no more than a factor of t from the optimal path from o
to v. Indeed, the forward implication follows from Lemma 5.2.2, while the converse holds
by definition of a t−spanner. From this, we develop four criteria that represent necessary
and sufficient conditions for E to be a t−spanning control set of L:

Usable Edge Criteria: For any motion p ∈ B from a start o ∈ O to a vertex in L−O,
for any start o′ ∈ O, and for any (i, j) ∈ Sp, the copy (i, j)o

′
may belong to a path in T o

′

from o′ to a vertex i ∈ L if and only if p ∈ Eo. That is, a tree T o
′

may posses an edge
(i, j)o

′
if and only if the motion p from i to j is in the control set (i.e., if p ∈ Eo where

o = R(i), the relative start of i).

Cost Continuity Criteria: For any o ∈ O, p ∈ B, (i, j) ∈ Sp, and (i, j)o a copy of (i, j),
if (i, j)o lies in the path in T o to vertex j then c(πE(o, j)) = c(πE(o, i)) + c(p). That is, the
cost of the path from o to j in T o is equal to the cost of the path from o to i plus the cost
of the motion from i to j.

t−Spanning Criteria: The length of the path in T o to any vertex j ∈ L−O can be no
more than t times the length of the direct motion from o to j.

Arborescence Criteria: The set T o must be an arborescence for all o ∈ O.

We now present how to encode these four criteria. Let |L| = n and all the vertices are
enumerated as 1, 2, ..., n with o ∈ O taking the values 1, . . . ,m for m ≤ n. For any control
set E ⊆ B where E =

⋃
o∈O Eo, define m(n−m− 1) decision variables yop, p = m+ 1, ..., n

yop =

{
1, if p ∈ Eo
0, otherwise.

Thus y0
p is the decision variable indicating whether the motion p from o to some j′ ∈ L is

in the set Eo. For each pair (i, j) ∈ L2, and each o ∈ O let

xoij =

{
1 if (i, j)o ∈ T o

0 otherwise.

That is, xoij = 1 if (i, j)o (the copy of the edge (i, j) for start o ∈ O) lies on a path from o
to a vertex in the lattice. If a tuple (i, j) with motion p from i to j is such that i · p is not

96

valid – that is, if the motion p starting at i is not contained in the workspace, or if i is not
generalized by O, then we set xoij = 0 for all o ∈ O. Let zoi denote the length of the path
in the tree T o to vertex i for any i ∈ L, cij the cost of the direct motion from i to j for any
i, j ∈ L, and let L′ = L−O. The criteria above can be encoded as the following MILP:

min K (5.3a)

s.t. ∀o ∈ O (5.3b)

yop ≤ K, ∀p ∈ B (5.3c)

xo
′

ij − yop ≤ 0, ∀o′ ∈ O, ∀(i, j) ∈ Sp,∀p ∈ B (5.3d)

zoi + cij − zoj ≤M o
ij(1− xoij), ∀(i, j) ∈ L2 (5.3e)

zoj ≤ tcoj, ∀j ∈ L′ (5.3f)∑
i∈L

xoij = 1, ∀j ∈ L′ (5.3g)

xoij ∈ {0, 1}, ∀(i, j) ∈ L× L′ (5.3h)

yop ∈ {0, 1}, ∀p ∈ B, (5.3i)

where M o
ij = tcoi + cij − coj. The objective function (5.3a) together with constraint (5.3c)

minimizes maxo∈O |Es| as in Problem 2.3.8. The remainder of the constraints encode the
four criteria guaranteeing that E is a t−spanning set of L:

Constraint (5.3d): Let p be a motion in B from o ∈ O to some vertex j′ ∈ L. If
p /∈ Eo, then yop = 0 by definition. Therefore (5.3d) requires that xo

′
ij = 0 for all (i, j) ∈ Sp

and o′ ∈ O implying that for all pairs (i, j) such that p is the motion from i to j, the copy
(i, j)o

′
cannot appear in the tree T o

′
. Alternatively, if yop = 1, then xo

′
ij is free to take values

1 or 0 for any (i, j) ∈ Sp and o′ ∈ O. Thus constraint (5.3d) encodes the Usable Edge
Criteria.

Constraint (5.3e): Constraint (5.3e) takes a similar form to [23, Equation (3.7a)].
Note that M o

ij ≥ 0 for all (i, j) ∈ L2, o ∈ O. Indeed, ∀t ≥ 1, M o
ij ≥ coi + cij − coj, and

coi + cij ≥ coj by the triangle inequality. Replacing M o
ij in (5.3e) yields

zoi + cij − zoj ≤ (tcoi + cij − coj)(1− xoij). (5.4)

If xoij = 1, then (i, j)o is on the path in T o to vertex j and (5.4) reduces to zoj ≥ zoi + cij
which encodes the Cost Continuity Criteria. If, however, xoij = 0, then (5.4) reduces to
zoi − zoj ≤ tcoi − coj which holds trivially by constraint (5.3f) and by noting that zoj ≥
coj,∀j ∈ L by the triangle inequality.

97

Constraint (5.3g): Constraint (5.3g) together with constraint (5.3e) yield the Ar-
borescence Criteria. Indeed for all o ∈ O, by Theorem 2.5 of [62], T o is an arborescence
rooted at o if every vertex in T o other than o has exactly one incoming edge, and T o con-
tains no cycles. The constraint (5.3g) ensures that every vertex in L′, which is the set of
all vertices in T o other than those in O, have exactly one incoming edge, while constraint
(5.3e) ensures that T o has no cycles. Indeed, suppose that a cycle existed in T o, and that
this cycle contained vertex i ∈ L′. Suppose that this cycle is represented as

i→ j → · · · → k → i.

Recall that it is assumed that the cost of any motion between two different configurations in
X is strictly positive. Therefore, (5.3e) implies that zoi < zoj for any (i, j) ∈ L2. Therefore,

zi < zj < · · · < zk < zi,

which is a contradiction.

5.2.2 Motion Planning With a MTSCS

The previous section illustrates how to compute a control set E =
⋃
o∈O Eo given the tuple

(X , L,O, c). We have also presented – see Section 2.3.2 – a description of how such a control
set may be used during an online search of the weighted directed graph GCF = (L, ĒCF, c)
from start vertex ps ∈ L to goal vertex pg ∈ L. While any graph-search algorithm could
be used to compute minimal cost paths in the graph GCF, in this section we propose one
alternative: an A* variant, Primitive A* Connect (PrAC) for path computation in GCF.
The algorithm follows the standard A* Algorithm 1 closely but with some variations.

Weighted fScore: In the standard A* algorithm given in Algorithm 1, two costs
are maintained for each vertex i: the gScore, g(i) – called the cost to get – representing
the current minimal cost to reach vertex i from the starting vertex ps and the fScore,
f(i) = g(i) +h(i) – called the cost to go – which is the sum of the gScore and an estimated
cost to reach the goal vertex pg by passing through i given heuristic h. At each iteration,
the current expanded vertex is the one that minimizes f over all vertices in an open set.
Thus equal weight is placed on the cost to get to each vertex, g(i), and the cost to go from
this vertex to pg, h(i). We implement the tunable fScore from [91]: Given a value λ ∈ [0, 1],
we let a = 0.5λ, b = 1 − 0.5λ, and we define a new cost function f ′ = ag(i) + bh(i). If
λ = 1, then both cost to get and cost to go are weighted equally, resulting in the standard
A* algorithm. However, as λ approaches 0, more weight is placed on the cost to go
resulting in expanding vertices with smaller heuristic values. This promotes exploration

98

Iteration 3 Iteration 4

Start Start

GoalGoal
Two-Start

Control Set

Iteration 1 Iteration 2

Start

Goal

Start

Goal

Visited

Expanded

Primitive from s0

Primitive from s1

Final motion

Figure 5.2: Example motion planning using PrAC for a 2-start lattice.

over optimization. While using a value λ < 1 eliminates optimality guarantees, it also
empirically improves run-time performance.

Optimality may be guaranteed via the Anytime Repairing A* algorithm presented in
[69] which begins with a small value of λ to quickly produce an initial solution and then
increases λ towards 1 which improves upon their initial guess. While PrAC could be easily
modified to adopt this framework, it has been found empirically that optimality is often
reclaimed once the path is smoothed via the smoothing algorithm presented in the next
section. In practice, using λ = 1 works well for maneuvers where ps and pg are close
together, like parallel parking, while small values of λ work well for longer maneuvers like
traversing a parking lot.

Observe that setting λ = 0 results in an algorithm which expands those vertices which
maximally take the current vertex to the goal. This is a technique used often in motion
planning on highways [119].

Expanding Start and Goal Vertices: We employ the bi-directional algorithm from
[14, 114]. In detail, we expand vertices neighboring both start and goal vertices and attempt
to connect these vertices on each iteration. In essence, we double the expansion routine
at each iteration of the while loop in Line 7 of Algorithm 1: once from ps to pg and once
from pg to ps with reverse orientation. We maintain two trees, one rooted at the start
vertex ps, denoted Ts, the other at the goal, Tg whose leaves represent open sets Os, Og,
respectively. We also maintain two sets containing the current best costs g(ps, i) to get
from ps to each vertex i ∈ Ts, and from pg to each vertex j ∈ Tg (traversed in reverse),
g(pg, j), respectively. Given an admissible heuristic h′, we define a new heuristic h as

h(i) = min
j∈Og

h′(i, j) + g(pg, j), ∀i ∈ Os

h(j) = min
i∈Os

h′(j, i) + g(ps, i), ∀j ∈ Og

(5.5)

On each iteration of the A* while loop in Line 7 of Algorithm 1, let i ∈ Os be the vertex
that is to be expanded, let j ∈ Og be the vertex that solves (5.5) for i, and let p denote

99

the pre-computed motion from i ∈ L to j ∈ L. We expand vertex i by applying available
motions in ER(i) ∪ {p} where ER(i) is the set of available motions at the relative start of i.
The addition of p to the available motions improves the performance of the algorithm by
allowing quick connections between Ts, Tg where possible. In the same iteration, we then
swap Ts and Tg and perform the same steps but with all available motions in reverse. This
is illustrated in Figure 5.2. Expanding start and goal vertices has proven especially useful
during complex maneuvers like backing into a parking space.

Off-lattice Start and Goal Vertices: For a configuration v ∈ X and a lattice L
given by (2.4), let Round(v) denote a function that returns the element of L computed by
rounding each state of v to the closest discretized value of that state in L. For lattice L with
start set S given by (2.5) and control set E obtained by solving the MILP in (5.3), it is likely
that the start and goal configurations ps, pg ∈ X do not lie in L. This is particularly true in
problems that necessitate frequent re-planning. While increasing the fidelity of the lattice
or computing motions online between lattice vertices and ps, pg (e.g., [76]) can address
this issue, both these methods adversely affect the performance of the planner. Instead
we propose a method using lattices with graduated fidelity, a concept introduced in [90].
We compute a control set Eoff of primitives from off-lattice configurations lattice vertices.
These can be traversed in reverse to bring lattice vertices to off-lattice configurations. The
technique is summarized in Algorithm 5 which is executed offline. The algorithm takes as
input L,E, and a vector of tolerances for each state Tol = (xtol, ytol, θtol, u0,tol, . . . , uN,tol).
It first computes a set Q ⊂ X such that for every configuration in v ∈ X there exists a
configuration q ∈ Q that can be translated to q′ ∈ X where each state of q′ is within the
accepted tolerance of v (Line 2). For each element of Q, we determine the lattice vertex
q′ = Round(q), and the set of available actions at the relative start of q′, ER(q′) . For each
primitive in ER(q′), we compute a motion from q to a lattice vertex close to the endpoint
of p and store it in a set Eq (Lines 7-13). In Lines 9, 10 the vertex p is modified to p′ that
is no closer to q than p. This is to ensure that the motion added to Eq in Line 13 does not
posses large loops not present the primitive p. These loops can arise if the start and end
configurations of a motion are too close together. An illustrative example of this principle
is given in Figure 5.3.

100

Algorithm 5 Generate Off-Lattice Control Set

1: procedure OffLattice(L,E, Tol)
2: Eoff ← ∅

Q←{2ixtol, i = 0, . . . , α/2xtol}
× {2iytol, i = 0, . . . , β/2ytol }
× {2iθtol, i = 0, . . . , (π−θtol)/θtol}

×
N∏
i=0

{U0
i + 2jui,tol, j = 0, . . . (U1

i −U0
i)/2uitol}.

3: for q ∈ Q do
4: (xq, yq, θq, u0,q, . . . , uN,q)← q
5: Eq ← ∅
6: q′ ← Round(q)
7: for p ∈ ER(q′) do
8: (xp, yp, θp, u0,p, . . . , uN,p)← p
9: for x ∈ {xp, xp + sign(xp − xq)α} do

10: for y ∈ {yp, yp + sign(yp − yq)β} do
11: p′ ← (x, y, θp, u0,p, . . . , uN,p)
12: Compute motion from q to q′

13: Add motion of lowest cost over all p′ to Eq

14: Add Eq to Eoff

15: return Eoff

Figure 5.3: Algorithm 5 Lines 9-13 Example. (a) Configuration q ∈ X − L, lattice vertex
q′ = Round(q), and primitive p ∈ ER(q′). (b) Motion from q to end of p results in a loop as
q, p are too close together. (c) Vertex p replaced with neighboring vertex p′ and a motion
from q to p′ is computed.

101

Theorem 5.2.3 (Completeness). If λ = 1, then PrAC returns the cost-minimizing path
in GCF = (L, ĒCF, c).

Proof. Given the assumptions of the Theorem, we may view PrAC as standard A* where
the expansion of Tg serves only to update the heuristic. That is, PrAC reduces to standard
A* with a heuristic given by (5.5) for all i ∈ Os. At each iteration of A*, h is improved
by expanding Tg. By the completeness of A* for admissible heuristics and finite branching
factor (which is the case here for finite control sets), it suffices to show that h is indeed
admissible. At each iteration of A*, let i be the vertex in Os that is to be expanded.
Let π be the optimal path from i to pg in GCF. Then π must pass through a vertex
r in Og. This result holds by the completeness of A* with initial configuration pg with
paths traversed in reverse. Then by the triangle inequality, c(π) ≥ c(πĒCF(i, r)) + g(pg, r).
Finally, because h′ is an admissible heuristic, c(πĒCF(i, r)) + g(pg, r) ≥ h′(i, r) + g(pg, r) ≥
minj∈Og h

′(i, j) + g(pg, j) = h(i). Therefore, h(i) ≤ c(π) which concludes the proof.

5.2.3 Motion Smoothing

Given the tuple (X , L,O, c, E), of configuration space, lattice, start set, cost function, and
MTSCS, respectively, let GCF = (L, ĒCF, c) be the weighted directed graph with edge set
ĒCF is the collision-free subset of Ē given in (2.7). We now present a smoothing algorithm
based on the shortcut approach that takes as input a path in GCF, here πE(ps, pg), between
start and goal configurations ps, pg. This path is expressed as a sequence of edges in ĒCF.
Thus, πE(ps, pg) = {(ir, ir+1), r = 1, . . . ,m − 1} for some m ∈ N≥2 where (ir, ir+1) ∈ ĒCF

for all r = 1, . . . ,m − 1 and i1 = ps, im = pg. Algorithm 6 summarizes the proposed
approach.

Algorithm 6 takes as input a collision-free path πE(ps, pg) between start and goal con-
figurations in the graph GCF – such as that returned by PrAC – as well as a set of obstacles
Xobs, and cost function of motions c. It also takes a function Ψ : R≥0 → R≥0 which is
used to penalize reverse motion. That is, given two configurations i, j ∈ X with a motion
p from i to j, we say that the cost of the motion p is c(p), while the cost of the reverse
motion p′ from j to i that is identical to p but traversed backwards is c(p′) = Ψ(c(p)).

The set V in Line 2 represents the set of all configurations in L that are endpoints of
the edges (ir, ir+1) ∈ πE. Critically, configurations in V are in the order in which they
appear along πE. In Lines 3-6, the distance to each vertex in V is set infinity except for
i1 = p2 and the predecessor of i1 is set to None. Next, the algorithm process each vertex
iu, u = 1, . . . ,m − 1 along the path πE(ps, pg) and each vertex iv, v = u + 1, . . .m lying

102

Algorithm 6 Smoothing Lattice Motion

1: procedure DagSmooth(πE(ps, pg),Xobs, c,Ψ)
2: V = {ir}mr=1

3: for i ∈ V do
4: dist(i) =∞
5: dist(i1) = 0
6: Pred(i1) =None
7: for u from 1 to m− 1 do
8: for v from u+ 1 to m do
9: p1 = motion from iu to iv

10: p2 = motion from iv to iu
11: c = min(c(p1),Ψ(c(p2))), p = arg min(c(p1),Ψ(c(p2)))
12: c = max(c(p1),Ψ(c(p2))), p = arg max(c(p1),Ψ(c(p2)))
13: if dist(iu) + c ≤ dist(iv) then
14: if CollisionFree(p,Xobs) then
15: dist(iv) = dist(iu) + c
16: Pred(iv) = iu
17: else
18: if dist(iu) + c ≤ dist(iv) then
19: if CollisionFree(p,Xobs) then
20: dist(iv) = dist(iu) + c
21: Pred(iv) = iu

return Backwards chain of predecessors from im

103

farther along the path than iu (Lines 7-8). For each such pair iu, iv, the algorithm attempts
to connect iu to iv via either a forward motion p1 from iu to iv with cost c(p1) or via a
motion p2 from iv to iu traversed backwards with cost Ψ(c(p2)) (Lines 9-21). In particular,
the algorithm first attempts to connect iu to iv using the motion in {p1, p2} with least cost
c (Lines 13-16). If this cannot be done without colliding with an obstacle (verified by the
CollisionFree function), then the algorithm attempts to connect iu to iv using the other
motion.

Were we to form a graph with vertices V and with edges (iu, iv) ∈ V 2 where v > u and
where the motion from iu to iv is does not collide with an obstacle, then this graph would
be a directed, acyclic graph (DAG). Indeed, were this graph not acyclic, then the path
πE(ps, pg) would contain a cycle implying that a configuration would appear at least twice
in πE(ps, pg). This is impossible by construction of the PrAC algorithm which maintains
two trees rooted at ps, pg, respectively (no cycles are present). This motivates the following
observation and Theorem:

Observation 5.2.4. The nested for loop in lines 7-8 of Algorithm 6 is constructing a
directed, weighted, acyclic graph and solving the minimum path problem from ps to pg on
that graph.

Theorem 5.2.5. Let πE1 be the input path to Algorithm 6 between configurations ps, pg
with cost c(πE1). Let πE2 be the path returned by Algorithm 6 with cost c(πE2). Then
c(πE2) ≤ c(πE1). Moreover, assuming that the function CollisionFree runs in constant
time, Algorithm 6 runs in time quadratic in the number of vertices along πE1 .

Proof. By Observation 5.2.4, Algorithm 6 constructs a DAG containing configurations
ps, pg as vertices. It also solves the minimum cost path problem on this DAG. Indeed, note
that Lines 13-21 are identical to the shortest path in a DAG Algorithm 2. By construction
of the DAG vertex set in Line 2, all configurations along the original path πE1 are in V .
Further, for all r = 1, . . . ,m − 1, either the motion from ir to ir+1 is collision free, or the
motion from ir+1 to ir traversed backwards is collision free since πE(ps, pg) is a collision-free
path. Thus πE1 is an available solution to the minimum path problem on the DAG. This
proves that the minimum cost path can do no worse than c(πE1). Finally, then V is the
set of endpoints of edges in πE1 . Therefore, V ⊆ L. Because all motions between lattice
vertices have been pre-computed in B, Lines 9, 10 can be executed in constant time, and
the nested for loop in lines 7-8 will run in time O(m)2 where m is the number of vertices
on the path πE1 .

Algorithm 6 is similar to Algorithm 1 in [76] with one critical difference. The latter
algorithm adopts a greedy approach, connecting the start vertex i1 in the path πE to

104

Control Set

Figure 5.4: Comparison of smoothing algorithms for same input path (red). Blue: path
smoothed using Algorithm 6. Red: path smoothed using Algorithm 1 from [76] (no change
from input path).

the farthest vertex ik ∈ πE that can be reached without collisions. This process is then
repeated at vertex ik until the goal vertex is reached. While this greedy approach also runs
in time quadratic in the number of vertices along the input path, the cost of paths returned
will be no lower than the cost of paths returned by Algorithm 6 proposed herein. A simple
example is illustrated in Figure 5.4. Using the control set in Figure 5.4, an initial path is
computed from i1 = ps to i6 = pg (red). This path remains unchanged when smoothed
using the proposed Algorithm in [76]. However, Algorithm 6 will return the less costly blue
path.

5.3 Evaluation

We verify our proposed technique against two state of the art techniques in two common
navigational settings. All algorithms were encoded in Python 3.7 (Spyder). Results were
obtained using a desktop equipped with an AMD Ryzen 3 2200G processor and 8GB of
RAM running Windows 10 OS. Start and goal configurations were not constrained to be
lattice vertices. We assume that all obstacles are known to the planner ahead of time and
are stationary, and that the environment is noiseless. As such, the results that follow can
be thought of as a single iteration of a full re-planning process. The workspace used in this
section is W = R2.

105

Figure 5.5: Motion primitives for each starting vertex.

106

5.3.1 Memory

The control set E we used was computed by solving the MILP (5.3) for a lattices described
in the following sections. In each case, motions between lattice vertices were computed
using the techniques outlined in Chapter 4. In section 5.3.2, we compute paths between
start-goal configurations in parking lot scenarios. As such, we do not plan velocity profiles.
As discussed in Chapter 4, in order to store a motion without a velocity profile, only
three values must be saved to memory as the motion can be easily re-generated from these
values. In Section 5.3.3, we compute full trajectories: paths and velocity profiles. In this
case, trajectories can be easily generated using only 19 saved values (see Chapter 4).

5.3.2 Parking Lot Navigation

We begin by validating the proposed method against a common technique: Hybrid A*
[25] in a parking lot scenario. Though Hybrid A* is not a new algorithm, more recent
state of the art approaches use Hybrid A* to plan an initial motion which is then refined
(e.g. [118]). We are therefore motivated to compare the run-time and path quality of the
approach proposed in this chapter to Hybrid A* whose run-time is a lower bound of all
state of the art algorithms using it as a sub-routine.

Lattice Setup & Pruning

The configuration space used here is X = R2×[0, 2π)×R3 with configurations (x, y, θ, κ, σ, ρ)
representing position (x, y), heading θ, curvature κ, curvature rate σ, and the rate of change
of curvature rate with respect to arc-length, ρ. Motion primitives were generated using the
MILP in (5.3) for a 15× 20 square lattice with 16 headings and 3 curvatures, and a value
of t = 1.1 (10% error from optimal). Trajectories were generated using the methods out-
lined in Chapter 4 with weights wt = wy = wa = wJ = 0.25 representing an intermediate
user. To account for the off-lattice start-goal pairs, we used a higher-fidelity lattice with
64 headings and 30 curvatures. Lattice vertex values of σ, ρ were set to 0. This results in
a start set O with 12 starts given by (2.5). The cost c of lattice motions is given by (4.8)
with unit speed. Bounds on κ, σ, ρ were set as:

κmax = 0.1982m−1, σmax = 0.1868m−2 ρmax = 0.3905m−3. (5.6)

which are considered comfortable for a user [6], particularly at low speeds typical of parking
lots. The spacing of the lattice x, y-values was chosen to be rmin/4 for a minimum turning

107

radius rmin = 1/κmax. Finally, if the arc-length of the motion from o ∈ O to a vertex j
was larger than 1.2 times the Euclidean distance from o to j for all o ∈ O, then j was
removed from the lattice. This technique which we dub lattice pruning is to keep the
lattice relatively small, and to remove vertices for which the optimal motion requires a
large loop. The value of 1.2 comes from the observation that the optimal motion from
the start vertex o = (0, 0, 0, κmax) to j = (rmin, rmin, π/2, κmax) is a quarter circular arc of
radius rmin. The ratio of the arc-length of this maneuver to the Euclidean distance from
o to j is π/(2

√
2) ≈ 1.11. Thus using a cutoff value of 1.2 admits a sharp left and right

quarter turn but is still relatively small.

Adding Reverse Motion

The motion primitives returned by the MILP in (5.3) are motions between a starting vertex
o ∈ O, and a lattice vertex j ∈ L − O. As such, they are for forward motion only. To
add reverse motion primitives to the control set Eo for each o ∈ O, we reflect the states
x, y, θ of each motion p starting at o about the line perpendicular to the heading of o
while maintain the states κ, σ, ρ the result is a mirror image of the motion p that can
be traverse backwards starting at o. We then rounded the final configurations of these
primitives to the closest lattice vertex. For each (x, y)−value of the final configurations,
we select a single configuration (x, y, θ, κ, σ, ρ) that minimizes arc-length. This is to keep
the branching factor of an online search low. Finally, to each o = (0, 0, θ, κ, 0) ∈ O we
add three primitives to Eo: (0, 0, θ,±κmax, 0), (0, 0, θ, 0, 0) with a reverse motion penalty.
These primitives reflect the cars ability to stop and instantaneously change its curvature.
The resulting primitives can be found in Figure 5.5

Scenario Results

We verified our results in four parking lot scenarios (a)-(e). The first four scenarios illus-
trate our technique in parking lots requiring forward and reverse parking. The results are
illustrated in Figure 5.6. Here, we have compared out approach to Hybrid A* using an
identical collision checking algorithm, and using the same heuristic (that proposed in [25]).
Though the motions may appear similar, they are actually quite different. This difference
is illustrated in Figure 5.7 which illustrates the heading θ of the vehicle along the motion
proposed herein vs that of Hybrid A*. Heading profiles for the other scenarios are not
included for brevity, though results are similar. To evaluate the quality of the motions
predicted, we use three metrics: the integral of the square jerk (IS Jerk), final arc-length,
and runtime. These three metrics are expressed as ratios of the value obtained using the

108

Figure 5.6: Scenarios (a) - (d). Red paths from proposed method, yellow from Hybrid A*.

methods of [25] to those of the proposed. The results are summarized in Table 5.1. The
major difference between the two approaches can be seen in the IS Jerk Reduction. That
is, the ratio of the IS Jerk using the methods of [25] to those of the proposed. This is
due to the fact that the motion primitives we employ are each G3 curves with curvature
rates bounded by what is known to be comfortable. Observe that the value of IS Jerk
obtained using our approach is up to 16 times less than that of [6]. In fact, using a Hybrid
A* approach may result in motions with infeasibly large curvature rates resulting in larger
tracking errors and increased danger to pedestrians.

Despite the bounds on curvature rate, the final arc-lengths of curves computed using
our approach are comparable to those of Hybrid A*. Furhter, though Dubins’ paths (which
are employed by Hybrid A*) take on average two orders of magnitude less time to compute
thanG3 curves, the runtime performance of our method often exceeds that of Hybrid A*. In

109

Figure 5.7: Heading along Motion for Scenario (a). Orange: Hybrid A* motion, Blue:
proposed.

fact, our proposed method takes, on average 6.9 times less time to return a path, exceeding
the average runtime speedup of the method proposed in [119]. Moreover, the methods in
[119] do not account for reverse motion, and also assume that a set of way-points between
start and goal configurations is known.

The only scenario in which Hybrid A* produces a motion in less time than the proposed
method is Scenario (c) in which Hybrid A* produced a path with no reverse motion (which
accounts for the speedup). However, in order to produce this motion, the curvature of the
motion must change instantaneously multiple times resulting in an IS Jerk that is 16.3
times higher than the proposed method. The low run-time of the proposed method may
due to the length of primitives we employ. It has been observed that Hybrid A* often takes
several iterations to obtain a motion of comparable length to one of our primitives. This
results in a much larger open set during each iteration of A*.

The final scenario we investigated is a parallel parking scenario (scenario (e)) which
is illustrated in Figure 5.8. Though the motion computed with Hybrid A* may appear
simpler, it requires a curvature rate that is 16.7 times larger than what is considered
comfortable. It should also be noted that several other parallel parking scenarios in which

110

Figure 5.8: Scenario (e).

Scenario IS Jerk Reduction Length Reduction Runtime Speedup

(a) 7.7 0.99 5.26
(b) 9.91 1.01 18.40
(c) 10.14 0.96 0.61
(d) 16.32 2.21 7.30
(e) 16.71 0.63 3.00

Table 5.1: Scenario Results

the clearance between obstacles was decreased. While the proposed method returned a
path in each of these scenarios, Hybrid A* failed to produce a path in the allotted time.

A complex parking lot navigation scenario can be found in Figure 5.9. The solution
uses the same motion primitives used in this section.

111

Figure 5.9: Motion planning using t−spanning G3 motion primitives. Magenta: primitives
used, Red: final motion, Cyan: car footprint.

5.3.3 Speed Lattice

In this experiment, we generate a full trajectory (including both path and speed profile)
for use in highway driving using our approach. Here, we use only forward motion as reverse
motion on a highway is unlikely.

In addition to developing G3 paths, Chapter 4 also details a method with which a tra-
jectory with configurations (x, y, θ, κ, σ, ρ, v, a, β) may be computed. Here, v, a, β represent
velocity and longitudinal acceleration, and longitudinal jerk respectively. The approach is
to compute profiles of ρ and β that result in a trajectory that minimizes a user-specified cost
function. This cost function is a weighted sum of undesirable trajectory features including
the integral of the square (IS) acceleration, IS jerk, IS curvature, and final arc-length. The
key feature of this approach is that both path (tuned by ρ) and velocity profile (tuned by
β) are optimized simultaneously, keeping path planning in-loop during the optimization.
As in the previous set of examples, computing trajectories via the methods outlined in
Chapter 4 require orders of magnitude more time than simple Dubins’ paths.

However, pre-computing a set of motion primitives where each motion is itself computed
using the methods of Chapter 4 ensures that every motion used in PrAC is optimal for the
user. Moreover, because we include velocity in our configurations – and therefore in our
primitives – we do not need to compute a velocity profile.

112

Lattice Setup & Pruning

Motion primitives were generated (5.3) for a 24 × 32 grid. Dynamic bounds for comfort
were kept at (5.6). The x component of the lattice vertices were sampled every rmin/6
meters while the y components were sampled every rmin/12. Headings were sampled every
π/16 radians (32 samples). We also assumed values of κ = σ = α = 0 on lattice vertices.
To account for off-lattice start-goal pairs, we use a higher-fidelity lattice with 128 headings,
and 10 headings between −κmax,κmax . Finally, five evenly spaced velocities were sampled
between 15 and 20 km/hr.

Scenario Results

The highway scenario was chosen to closely resemble the roadway driving scenario in [119].
The results of this sceario can be found in Figure 5.10, while performance analysis is
summarized in Table 5.2. The metrics used to measure performance are the arc-length of
the proposed motion, the smoothness cost of the motion, the maximum curvature obtained
over the motion, and a runtime speedup normalized to Hybrid A* (HA*). The final
column of the Table indicates weather a velocity profile was included during the motion
computation. In Table 5.2, two values of smoothness cost are given in the form of a
tuple (Smoothness1, Smoothness2). The first value of the tuple refers to the definition of
smoothness from [25]: sampling N configurations along a motion, we let xi denote vector
of x, y-components of the ith configuration. Letting ∆xi = xi − xi−1, the first metric of
smoothness is given by:

Smoothness1 =
N−1∑
i=1

|∆xi+1 −∆xi|2.

The second value of the tuple refers to the definition of smoothness used in [119]. Here,
smoothness is given by

Smoothness2 =

∫ sf

0

κ(s)2ds,

the integral of the squared curvature along the motion to final arc-length sf . The first two
methods appearing in the Table are computed directly from the motions in Figure 5.10,
while the second two come from [119] for an identical experiment. Here, CG refers to the
method proposed in [119], while HA2* refers to the implementation of Hybrid A* as it
appears in [119].

The authors of [119] report an average runtime speedup of 4.5 times as compared
to Hybrid A* for the path planning phase (without speed profile). On average, PrAC

113

computed a full motion, including a speed profile 4.7 times faster than the time required
for Hybrid A* to compute a path. Furthermore, the use of PrAC with G3 motion primitives
significantly reduced the smoothness cost in both of its possible definitions.

20

30

40

0 10 20 30 40 50 60

Start

Goal

Car Footprint

Proposed
Hybrid A*

Arc-length (m)

C
u

rv
a

tu
re

 (
1

/m
)

Proposed
Hybrid A*
Threshold

0 10 20 30 40 50 60

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Curvature
Velocity

Arc-length (m)

C
u

rv
a

tu
re

 (
1

/m
)

0 10 20 30 40 50 60
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

V
e
lo

ci
ty

 (
m

/s
)

Figure 5.10: Result of highway maneuver with several obstacles.

114

Method Length
(m)

Smoothness
Cost

Max Curvature
(m−1)

Runtime
Speedup

Velocity

HA* 65.0 (1.35, 0.77) 0.198 1 No
Proposed 64.6 (0.17, 0.28) 0.158 4.7 Yes

CG 65.8 (- , 0.44) 0.189 4.5 No
HA2* 65.6 (- , 0.88) 0.196 1 No

Table 5.2: Road navigation results: HA* and proposed shown above. CG and HA2* from
[119] Table 3 for similar motion planning problem.

5.4 Discussion

The results of the previous section illustrate the effectiveness of the proposed technique.
Indeed, feasible, smooth motions were computed between start and goal locations in both
parking lot and highway settings. By adding reverse motion primitives, complex problems
like navigating an obstacle-rich parking lot, or parallel parking were solved. Moreover, if
the motion primitives already include velocity as a state, then a velocity profile may be
easily computed. This work has not proposed a controller to track the reference paths we
compute nor does it propose a framework for re-planning. These are left for future work.
Further, lattices were constructed based on intuition and experimentation. In future,
integrating formal lattice generation techniques may improve the quality of the resulting
trajectories.

115

Chapter 6

Learning Control Sets For Lattice
Planners From User Preferences

The research in this chapter was conducted in collaboration with Nils Wilde, another PhD.
student at the University of Waterloo. This work was published in the proceedings of The
14th International Workshop on the Algorithmic Foundations of Robotics (WAFR) 2020
[13]. The authors A. Botros and N. Wilde contributed equally to the presented work.

6.1 Introduction

In Chapter 5, we illustrate how to compute a minimum t−spanning control set of a lattice
given the tuple (X , L,O, c,W) of configuration space, lattice, start set, cost of vertex-
to-vertex motions in L, and workspace, respectively. However, this approach assumes
that the cost c(p) for all motions between lattice vertices is known. In Chapter 4, we
propose a technique to generate trajectories between vertices of a lattice that optimize
a cost function that reflects the relative importance of travel time to comfort for a user.
However, in Chapter 4, we assume that the weights representing the users preferences is
known. Further, we assumed Assumption 2.2.2: that the cost function c for motions was
additive.

In this chapter, we address the problem of learning motion primitives from user Demon-
strations when the weights of the user are not known. This problem involves simultaneously
learning the set Ē (given in (2.7)) of pairs of lattice vertices that should be connected by
motion primitives, and the actual motions in E that connect lattice vertices in Ē in such

116

a way that is optimal for a user. An intuitive approach would be to apply a separation
principle. In detail: for the tuple (X , L,O,W),

1. Determine the cost function c of a single user from demonstrations.

2. Use the cost function c to compute the motions in B, i.e., the motions from each start
o ∈ O to each vertex v ∈ L that solve the motion planning problem 2.2.1. This could
be accomplished using, say, the techniques outlined in Chapter 4.

3. Select a control set E ⊆ B and its associated set of connecting vertices Ē.

The main contribution of this Chapter is a proof that this intuitive approach is, in fact,
an optimal solution to the problem of simultaneously learning connections Ē and their
associated motions E given demonstrations from a single user. To address the third step
of the afore mentioned process: the selection of the control set E, we propose to use a
solution to the Minimum Spanning K-Control Set (MSKCS) problem 2.3.10. That is, we
compute a control set E =

⋃
o∈O Eo such that maxo∈O |Eo| is bounded by an input value

K. This in turn bounds the branching factor during an online search. The secondary
contributions of this Chapter are a MILP reformulation of the MSKCS problem when the
cost c is no longer assumed to be additive, and a proof of the NP-hardness of its decision
version 2.3.11. This chapter relaxes the additive cost Assumption 2.2.2 slightly to include
maximum values (this will be discussed in Assumption 6.2.1 which replaces Assumption
2.2.2 in this chapter).

To estimate solutions to the motion planning problem 2.2.1 for a user-specific cost, we
consider that the quality of a motion is evaluated by a user who has preferences with respect
to that motion. In autonomous driving, some users may prefer the vehicle to drive more
aggressively, making sharp turns and maintaining high speeds, while others may prefer
slower speeds and smoother turns [35, 37]. To find motions that reflect user preferences,
we assume that users evaluate a vehicle’s behaviour based on a weighted sum of features,
similar to [35, 99].

The preferred behaviour of an autonomous vehicle often depends on situational context,
like type of road or obstacles. Thus, a control set of motions that reflect the user preferences
might only be applicable in certain scenarios. Complete planners that encompass many
scenarios often use specialized lattices [1, 22, 35]. Our methodology is not limited to a
specific scenario like driving on a highway or navigating in close proximity to an obstacle:
for any of these scenarios we can learn a respective control set that captures the user
preferences. Thus, we only consider global features such as travel time or maximum jerk,
which are common in autonomous driving [35].

117

6.2 Problem Statement

In this chapter, we will be decoupling the problem of computing a control set E into
a problem of computing a set of connections Ē from (2.7) and a motion realizing those
connections. To this end, instead of using a given control set E to define the connections
in Ē (as in (2.7)), we will be using a given Ē to define E. Since O is not assumed to have
Property 2.3.1, care must be taken in defining E from Ē. In this chapter, we assume that
all (i, j) ∈ Ē are such that there exists o ∈ O and j′ ∈ L with i · p = j =⇒ o · p = j′.
That is, no connections (i, j) are in Ē with motion p form i to j such that i · p is not valid.

Different users might have individual preferences for motions, which can be described by
a respective cost function c. For each start o ∈ O and each configuration j ∈ X , let poj be
a motion from o to j. Suppose poj is the motion associated with the trajectory Πij(t) that
solves the motion planning problem 2.2.1 given a cost c1 and ps = o, pg = j. Though poj may
be the optimal motion from o to j for a user whose user-specific cost is given by c1, it may be
sub-optimal for a user with cost c2 6= c1. We model users who evaluates a motion poj from
o ∈ O to j ∈ X as a weighted sum of features φ(poj) =

[
φ1(poj) φ2(poj) . . . φn(poj)

]
:

c(poj,w) = w · φ(poj), (6.1)

where w is a vector of weights
[
w1 w2 . . . wn

]
. Similar user cost functions have been

used in [2, 74, 79, 99]. The features are assumed to take non-negative real values and
can represent properties such as travel time, integral of the squared magnitude of jerk,
maximum curvature, maximum acceleration, etc. Without loss of generality, we assume
that w ∈ [0, 1]n. Given a user weight w, we denote the cost of the optimal motion from
any o ∈ O to j ∈ X with respect to the weights w and the optimal motion as

c∗oj(w) = min
poj

w · φ(poj), p
∗
oj(w) = arg min

poj
w · φ(poj), (6.2)

respectively. Using these definitions, let Bw be the set B given in (2.6) where motions p
from o ∈ O to lattice vertices j ∈ L − O are given by p∗oj(w). That is, Bw is the set of
all optimal motions given w from all starts o ∈ O to all lattice vertices j ∈ L − O. If O
has Property 2.3.1, then for each pair of lattice vertices i, j ∈ L, j /∈ O there exists a start
o ∈ O such that the optimal motion from i to j given weights w is equal to the optimal
motion p∗oj′ from o to some vertex j′ ∈ L − O. That is, the optimal motion from i to j
given weights w is an element of Bw if O has Property 2.3.1. Otherwise, only those pairs
(i, j) such that there exists o ∈ O, j′ ∈ L with i · p = j =⇒ o · p = j′ will exhibit this
behavior.

118

Next, let Ē ⊆ L × (L − O) be a set of connections. Then, given weights w ∈ [0, 1]n,
we may define the associated control set given weights w as

Ew = {p∗oj(w) : (o, j) ∈ Ē}. (6.3)

Observe that Ew is the set optimal motions given w between all lattice vertices i, j such
that there exists (o, j′) ∈ Ē with i · p∗oj′ = j.

A set of connections Ē induces an unweighted directed graph GĒ = (L, Ē). Let P Ē
oj

be any path in the graph GĒ from a start o ∈ O to j ∈ L. Then for each edge e in the
path P Ē

oj , e must lie in Ē implying that there is an associated motion in Ew connecting the

endpoints of e. Therefore, the path P Ē
oj defines a compound motion from o to j comprised

of sub-motions in Ew.

Let (p1, p2, . . .) be the sequence of motions associated with the edges (e1, e2, . . .) in a
path P Ē

oj . We extend the cost function c for single motions to a cost function u of paths:
For each feature φl there exists a feature function, let

fl(P
Ē
oj) = fl({φl(p1), φl(p2), . . . }). (6.4)

Here fl depends of the motions (p1, p2, . . .) associated with the edges (e1, e2, . . .) ∈ P Ē
oj . We

consider only a class of feature functions. Explicitly, we make the following assumption:

Assumption 6.2.1 (Additive or Maximizing Feature Functions). For a graph GĒ, let P =
{e1, e2, . . . , er} be a path with edges ei ∈ Ē and P1 = {e1, . . . , ei}, P2 = {ei+1, . . . , er}. We
assume that for each feature φl, the feature function fl is either

additive: fl({φl(P1), φl(P2)}) = φl(P1) + φ2(Pl), or

maximizing : fl({φl(P1), φl(P2)}) = max(φl(P1), φ2(Pl)).

Additive or maximizing feature functions encompass a wide range including the integral of
the squared magnitude of jerk, travel time, maximum acceleration, etc.

The user cost function of a path in the graph GĒ is then given by the weighted sum of
all features

u(P Ē
oj ,w) = w1f1(P Ē

oj) + · · ·+ wnfn(P Ē
oj). (6.5)

Note that u is a generalization of the cost function c, i.e., c evaluates a single motion while
u is a function of a set of motions whose associated edges form a path in GĒ. Note further
that for any motion p – not just paths P Ē

oj – we can evaluate a user-cost u(p,w) using
(6.5) by evaluating the features and feature functions for p. The user cost function u is

119

similar to a reward function in reinforcement learning. However, it is challenging for users
– especially non-experts – to specify weights for such a reward function [99]. Summarizing
all weights in a row vector w and all features in a column vector f(P Ē

oj) allows us to write

u(P Ē
oj ,w) = wf(P Ē

oj). Given weights w, we define the optimal path in the graph GĒ from
a starting vertex o ∈ O to j ∈ X as

πĒ,w(o, j) = arg min
P Ē
oj

u(P Ē
oj ,w). (6.6)

Thus πĒ,w(o, j) is an extension of the path using E from Definition 2.3.4 to include weights
and non-additive cost.

Given a set of connections Ē, and weights w, we observe that the control set Ew may
be defined using (6.3). Therefore, to construct a control set it suffices to compute the tuple
(Ē,w). Let B̄ be the connection set associated with Bw. That is, B̄ is the set of all pairs
(i, j) ∈ L2 such that there exists a motion p∗oj′(w) ∈ Bw with i · p∗oj′(w) = j. Therefore,

based on our cost function, the user-optimal behavior between all connections in B̄ can
be described by a control set given by the tuple (B̄,w∗) where w∗ denotes the true user
weights. That is, user-optimal behavior is achieved between all connections (i, j) ∈ B̄ by
selecting a control set given by the tuple of all connections B̄, and perfect knowledge of
the true user weight w∗. Users cannot provide w∗ directly, and we learn about w∗ from
demonstrations. The true user weights may be dependent on the situation (e.g. highway
vs city driving). This work focuses on a single situation but could be extended to account
for multiple situations with the result being several control sets, one for each situation.
For a given situation, we treat w∗ as a hidden parameter which we have to estimate.

Consider a path πĒ,w1(o, j) from a start o ∈ O that is optimal for a control set (Ē,w1),
and a second weight w2. The cost of path πĒ,w1 can be evaluated by w2, which we write
as:

uoj(Ē,w1|w2) = w2 · f(πĒ,w1(o, j)) = u(πĒ,w1(o, j),w2). (6.7)

We read this as the cost from o to j using control set (Ē,w1), evaluated by weights w2,
i.e., the cost of the path that is optimal given weights w1, for a user whose weights are w2.
This concept is similar to the regret of optimization problems [56]. Based on this notation,
we can now pose the main problem statement:

Problem 6.2.2 (User control set). Given the tuple (X , L,O,W) – of configuration space,
lattice, start set, and workspace, respectively – hidden user preferences w∗, and a budget
on the allowable branching factor, K ∈ Z>0, find a control set given by (Ē,w), with

120

Ē =
⋃
o∈O Ēo ⊆ B̄,w ∈ [0, 1]n such that

(Ē,w) = arg min
Ē′,w′

max
j∈L−O
o∈O

uoj(Ē
′,w′|w∗)

c∗oj(w
∗)

s.t. max
o∈O
|Ē ′o| ≤ K, w′ ∈ [0, 1]n.

(6.8)

The control set (Ē,w) minimizes the maximum ratio of path costs evaluated by w∗ to
the cost of the optimal direct trajectory from o to j, given a budget of K connections. In
essence (Ē,w) is the control set with the minimal t-error and is therefore the most robust
control set. This motivates this motivates the following observation:

Observation 6.2.3. Given weights w and a connection set Ē, let Ew be given in (6.3).
Further, consider the tuple (X , L,O, u(·,w),W) where the cost of motions p between lattice
vertices is given by u(p,w) from (6.5). Then the t−error given in (2.3.6) for the control
set Ew is

tEr(Ew) = max
o∈O

j∈L−O

uoj(Ē,w|w)

c∗oj(w)
.

Indeed, from (6.7), (6.6), and Definition 2.3.5:

uoj(Ē,w|w) = u(πĒ,w(o, j),w) = dE
w

(o, j). (6.9)

The last inequality holds because πĒ,w(o, j) the minimum cost path from o to j in the
graph whose edges are those tuples in Ē and whose cost is u(·,w). This is precisely the
definition of the distance using Ew form o to j. Further, c∗oj(w) is defined in (6.2) as the
cost of the optimal direct motion from o to j given w. Thus, c∗oj(w) = uoj(B̄,w|w) where
B̄ is the set of all connections (i, j) ∈ L× (L−O) – including the direct connection from
o to j. Therefore, c∗oj(w) = uoj(B̄,w|w) = dB

w
(o, j), and (6.9) reduces to the definition of

the t−error in Definition 2.3.6 for a lattice with vertex-to-vertex costs u(·,w).

6.3 Approach

Problem 6.2.2 consists determining a control set (Ē,w) that minimizes the maximum
ratio between path cost and optimal cost. We introduce a model for how users provide
demonstrations and then analyse how the unknown parameter w∗ in equation (6.8) can
be substituted by an estimate of the user weights given data. We show that the optimal
solution is a pair (Ē,w) where w is the best available estimate of w∗ and Ē can be
computed via a mixed-integer linear program. This allows for a simple, yet effective method
for solving Problem 6.2.2.

121

6.3.1 User model

We consider a user with a preference w∗. Let d be a demonstrated motion from a start
o ∈ O to a goal configuration j ∈ X. We do not require j to be a lattice vertex as we
can still evaluate features f(d) and thus assign a cost u(d,w) as in (6.5). We denote
dw
∗

the minimal-cost demonstration from o to j given weights w∗. Users cannot perfectly
demonstrate dw

∗
. Thus we use the features of demonstrations to formulate a probabilistic

user model:

Assumption 6.3.1 (User Model). A user with a preference w∗ provides a demonstration d
from o to j with features f(d) where the density p(f(d)|w∗) is:

p(f(d)|w∗) ∼ N (f(dw
∗
),σ). (6.10)

Similar user models have been used in [74, 83]. Thus, users provide demonstrations
such that the features follow a normal distribution centred at the features of the optimal
demonstration. That is the user demonstrations are unbiased and, given a large enough
data set, the average features of demonstrations equal the optimal features. Following
(6.5), two demonstrations with equal features have the same cost for any user and thus
are indistinguishable with respect to the cost function. Hence, we consider only features
of demonstrations. Let D = (d1, d2, . . .) be a sequence of demonstrations. We then find
the conditional expectation of w given D by taking the Bayesian posterior:

Ew[w|D] =
1

|D|
∑
d∈D

E[w|f(d)]p(f(d)) =
1

|D|
∑
d∈D

∫
w∈[0,1]n

w p(f(d)|w) p(w)dw. (6.11)

Finally, we can approximate the integral by summing over a set of N samples:

Ew[w|D] ≈ 1

|D|
∑
d∈D

1

N

N∑
i=1

wi p(f(d)|wi) p(wi). (6.12)

6.3.2 Estimation of the loss function

We now use the user model to find a solution to Problem 6.2.2, given a set of user demon-
strations D. We consider two approaches. The first is taking the conditional expectation
over equation (6.8), given D:

(Ē,w) = arg min
Ē′,w′

Ew

 max
j∈L−O
o∈O

uoj(Ē
′,w′|w∗)

c∗oj(w
∗)

∣∣∣D

s.t. max
o∈O
|Ē ′o| ≤ K, w′ ∈ [0, 1]n.

(6.13)

122

The second approach is to use the expectation ŵ = E[w|D] to compute (¯̄E,w), also known
as the plug-in estimator [111]:

(Ē,w) = arg min
Ē′,w′

max
j∈L−O
o∈O

uoj(Ē
′,w′|ŵ)

c∗oj(ŵ)

s.t. max
o∈O
|Ē ′o| ≤ K, w′ ∈ [0, 1]n.

(6.14)

While it is an approximation, (6.14) approaches the desired Problem 6.2.2 as |D| → ∞.
Thus, this work focuses on solving (6.14).

6.3.3 Main Results

In this section, we present the main theorem of this paper that proposes a solution to
the minimization problem in (6.14). The high-level idea is: given demonstrations D, the
expected user weight ŵ is computed. This user weight is used to calculate motions that
minimize the user cost for all connections in B̄. Finally, a set Ē =

⋃
o∈O Ēo ⊆ B̄ such that

maxo∈O |Ēo| ≤ K is found to produce a control set (Ē, ŵ). We make an observation about
the cost function u, that motivates our main results.

Observation 6.3.2 (Weight Choice). For any set of connections Ē, any vertices o ∈ O,
j ∈ L−O, and any pair of weights w,w′ ∈ [0, 1]n, it must hold that

uoj(Ē,w|w) ≤ uoj(Ē,w
′|w). (6.15)

Indeed, from the definition of paths πĒ,w(o, j) in (6.6), and the definition of user costs
evaluated by other weights in (6.7), we observe that

uoj(Ē,w|w) = u(πĒ,w(o, j),w) ≤ u(πĒ,w1(o, j),w) = uoj(Ē,w
′|w).

Intuitively, this observation is saying that a path from o to j that is optimal for a user will
be evaluated as more favorable for that user than a path from o to j that is optimal for a
user with different weights.

Theorem 6.3.3 (Problem Solution). The tuple (Ē, w̄) is a solution to minimization prob-
lem (6.14) if and only if w̄ = ŵ, and Ē is such that Eŵ (given in (6.3)) is a solution to
the MSKCS problem 2.3.10 with input (X , L,O, u(·, ŵ)) and K. Here, the cost of a motion
p between lattice vertices is given by u(p, ŵ) in (6.5).

123

Proof. Observe that Observation 6.3.2 implies that the optimal value for w̄ in equation
(6.14) is given by ŵ for any set of connections Ē ′. Indeed, for any weights w′ ∈ [0, 1]n,
equation (6.15) implies that uoj(Ē

′,w′|ŵ) ≥ uoj(Ē
′, ŵ|ŵ). Thus, for any Ē ′, the pair

(Ē ′,w′) must result in paths whose cost is at least (Ē ′, ŵ). This allows us to simplify
equation (6.14) to

Ē = arg min
Ē′

max
j∈L−O
o∈O

uoj(Ē
′, ŵ|ŵ)

c∗oj(ŵ)
.

s.t. max
o∈O
|Ē ′o| ≤ K.

(6.16)

By Observation 6.2.3, this last reduces to

Ē = arg min
Ē′

tEr(E ′ŵ).

s.t. max
o∈O
|Ē ′o| ≤ K.

where E ′ŵ is the control set associated with Ē ′ by (6.3) given weights ŵ. This last is
exactly the MSKCS problem 2.3.10. Therefore, (Ē, w̄) if and only if w̄ = ŵ. Further,
since w̄ = ŵ the set of connections Ē solves the simplified problem (6.16) if and only if its
associated control set Eŵ is a MSKCS of the lattice whose vertex-to-vertex costs is given
by u(·, ŵ).

Corollary 6.3.4. If the control set (Ē,w) is a solution to equation (6.8), then w = w∗,
and Ē is a MSKCS on the lattice L where costs of vertex-to-vertex motions p is given by
u(p,w∗).

The proof of Corollary (6.3.4) follows closely the proof of Theorem 6.3.3, and is therefore
omitted.

6.3.4 Computational Complexity

In the previous section, we prove that obtaining a solution to both (6.8), (6.14) is simply
a matter of solving the MSKCS Problem 2.3.10. In this section we prove that the decision
version of the MSKCS Problem 2.3.11 is NP-complete. In the next section we offer a MILP
formulation of the MSKCS problem.

Theorem 6.3.5 (NP-completeness). Problem 2.3.11 is NP-complete.

124

Proof. In Chapter 5, we prove that the decision version of the MTSCS problem is NP-
complete. Indeed, we prove that it is NP-hard, and offer a MILP formulation establishing
that it is in NP. Now, we reduce the MTSCSP decision problem 2.3.9 to the MSKCS
decision problem 2.3.11.

Given the tuple (X , L,O, c,W), a real number t ≥ 1, and a natural number K ≥ 0
that constitutes an instance of the MTSCS decision problem, we observe that Problem
2.3.11 on this instance is identical to the decision version of the MTSCSP by setting t = T .
Thus, Problem 2.3.11 is NP-hard because the MTSCSP decision problem is. Observe that
a potential solution E =

⋃
o∈O Eo to Problem 2.3.11 can be verified as a solution to the

MTSCS decision problem in time polynomial in |L| by iterating over all vertices j ∈ L to
check dE(o, j) ≤ tdB(o, j) for all o ∈ O, and additionally checking that maxo∈O |Eo| ≤ K.
Thus Problem 2.3.11 is NP-hard. The same reduction can be used to reduce the MSKCS
decision problem to the MTSCS decision problem (by setting t = T) and again, solutions
to the latter can be verified as solutions to the former in time polynomial in |L|. Hence,
Problem 2.3.11 is in NP and thus NP-complete.

6.3.5 Computing an optimal control set: MILP Formulation

We now briefly summarize the proposed solution to problem (6.14). By Theorem 6.3.3,
the solution is a tuple (Ē, ŵ), where ŵ can be approximated using (6.12), and Ē is the
connection set of a MSKCS Eŵ. The MSKCS Eŵ is computed for a lattice L on a config-
uration space X with start set O where costs of motions p between lattice vertices is given
by u(p, ŵ). These motions p are assumed to solve the motion planning problem 2.2.1 given
cost u(·, ŵ). We now propose a MILP formulation of the MSKCS problem that can be
used to compute Ē. In particular, this MILP accommodates possible non-additive feature
costs f provided Assumption 6.2.1 holds. Given (X , L,O, ŵ) and a bound on the control

125

set size K,

min T (6.17a)

s.t. ∀o ∈ O (6.17b)

yop ≤ K, ∀p ∈ Bŵ (6.17c)

xo
′

ij − yop ≤ 0, ∀o′ ∈ O,∀(i, j) ∈ Sp, ∀p ∈ Bŵ (6.17d)

fl(Poi) + fl(pij)− fl(Poj) ≤M(1− xoij), ∀(i, j) ∈ L× L′,∀ additive fl (6.17e)

fl(Poi)− fl(Poj) ≤M(1− xoij), ∀(i, j) ∈ L× L′,∀ maximizing fl (6.17f)

fl(pij)− fl(Poj) ≤M(1− xoij), ∀(i, j) ∈ L× L′,∀ maximizing fl (6.17g)

ŵf(Poj)− zoj ≤ N(1− xoij), ∀(i, j) ∈ L× L′ (6.17h)

zoj ≤ Tcoj, ∀j ∈ L′ (6.17i)∑
i∈L

xoij = 1, ∀j ∈ L′ (6.17j)

xoij ∈ {0, 1}, ∀(i, j) ∈ L× L′ (6.17k)

yop ∈ {0, 1}, ∀p ∈ Bŵ, (6.17l)

where M,N are sufficiently large values. This MILP is very similar to (5.3) in Chapter 5.
However, in (5.3) explicit values of M are given. These values depend on t, the acceptable
t−error which is given as input to Problem 2.3.8 (the problem for which (5.3) is a MILP
formulation). Unfortunately, the t-error T is a variable in (6.17), and therefore cannot be
used to define M,N without making the problem non-linear. The other differences between
(5.3), (6.17) are described here:

Optimization Function (6.17a) The optimization function (6.17a) and constraint (6.17i)
seek to minimize the maximum t−error of the control set.

Constraint (6.17c) This constraint bounds the size of the control set. In particular, for
each o ∈ O, this constraint ensures that |Eo| ≤ K.

Introduction of Path Feature Variables The MILP here introduces continuous vari-
ables fl(Poj) for each j ∈ L′, o ∈ O, and feature φl with feature function fl. These variables
represent the feature function fl evaluated along the path Poj from o to j in the Tree T o

described in Chapter 5. Constraints (6.17e), (6.17f), (6.17g), (6.17h) encode the cost con-
tinuity criteria given in (5.3e) in the MILP (5.3). In detail, if xoij = 1 then (i, j) lies on a

126

path from o to j in the tree T o, and constraints (6.17e), (6.17f), (6.17g), (6.17h) reduce to

fl(Poj) ≥ fl(Poi) + fl(Poj), ∀ additive features fl

fl(Poj) ≥ max
(
fl(Poi), fl(pij)

)
∀ maximizing features fl.

zoj ≥ ŵf(Poj) = u(Poj, ŵ),

which encode the cost continuity criteria. On the other hand, if xoij = 0, then these
constraints are trivially satisfied for sufficiently large M,N .

6.4 Evaluation

We now demonstrate the performance of the proposed approach in simulations. We con-
sider a known, static environment, discretized into four-dimensional configurations. Each
configuration of a (x, y) position, a heading θ and the current velocity v. We considered 3
discrete values of velocity, and 8 discrete headings (cardinal and ordinal). All used envi-
ronments consisted of 15× 15 grid of (x, y) positions and hence of 15× 15× 8× 3 = 5400
configurations (vertices). The lattice had pre-computed motions for x-values between 0
and 4, y-values between −3 and 3, all 8 headings and all 3 speed values. Trajectories were
computed using clothoids, a subset of the used lattice is illustrated in Figure 6.1. The start

(a) Clothoid trajectory control set. (b) Sample clothoid motions.

Figure 6.1: Examples of a lattice control set and different motions.

set was taken to have Property 2.3.1. In detail O = (0, 0, j, vi), j ∈ {0, π/4}, i ∈ {1, 2, 3}.

127

(a) Demonstrated behaviour

(b) Learned behaviour

Figure 6.2: Demonstrated and learned behaviour in the training environment. The color
of the path indicates speed, where blue corresponds to slow and red corresponds to fast.

Thus, the connection set B̄ for each start contains up to 672 connections. The workspace
was considered to be R2.

We model users who evaluate motions based on three features: travel time, maximum
longitudinal acceleration and maximum lateral acceleration. User demonstration were sim-
ulated by sampling features from the distribution in (6.10). We consider three preferences
corresponding to different driving styles: An aggressive style which prefers short travel
times, a cautious style that favours low accelerations, and a moderate style that balances
the features more equally. For all user types we set the covariance in (6.10) to 0.1. We
illustrate an example demonstration of each user in Figure 6.2a. Finally, the experiment
comprises one training environment, shown in Figure 6.2 and two test environments.

6.4.1 Training Error

For each of the three driving style, we obtain three demonstrations for different start-goal
pairs. We show that we can effectively learn user preferences despite this small number of
demonstrations. We estimate ŵ for each user by computing the expectation in equation
(6.12) using N = 10 samples and assuming a covariance of 0.05, i.e., we overestimate
how accurately the user demonstration match their optimal motions. Finally, we run the
experiment for minimal k-spanning connection sets of size 25, 50 and 100 over 40 trials each.

128

(a) Training Error (b) Test error

Figure 6.3: The t-error for all connections B̄ and the MSKCS connections Ē compared to
a naive approach with B̄naive and Ēnaive, respectively.

Figure 6.2 shows one of the training demonstrations starting at the bottom at high speed
and going to the top left corner. We compare the optimal paths for the three different users,
together with the paths that were planned using the learned control set (Ē, ŵ). While the
shape of the paths is slightly different from the demonstrations, key characteristics of
the user preferences are replicated. The aggressive user only breaks for sharp turns and
immediately accelerates again. The moderate user avoids breaking too abruptly and thus
cannot take the shortcut. Finally, the cautious user minimizes lateral and longitudinal
acceleration and thus drives with minimal speed whenever possible. Figure 6.3a shows the
t-error over all users and k values for the control set (Ē, ŵ) together with the error of
the control set using all connections (B̄, ŵ) in the lattice. We include a naive approach
as a reference, where wnaive is sampled randomly and independent to the demonstrations.
This serves as a baseline to illustrate the advantage of estimating driver behavior, i.e., the
sensitivity of the cost function to user preferences w. For the naive approach we show the
error of a MSKCS (Ēnaive,wnaive) and of (B̄naive,wnaive). We observe that (B̄, ŵ) achieves
an average error of 1.16, with a median of 1.02. The MSKCS solution has a mean and
median error of 1.34 and 1.13, respectively. Thus, the limited size of the control set leads
to a mean cost that is 34% higher than the optimum, but for half of all cases the cost is at
most 13% higher. In comparison, we observe that the naive approach yields a mean error

129

of 1.81 with a median of 1.52 when using all connections, and a slightly higher error for a
MSKCS.

In Figure 6.4 we compare how different values for k influence the t-error and the plan-
ning time speedup when using a MSKCS. Generally, the t-error decreases as k increases,
though we observe large differences between user types. For the cautious user the error
does not exceed 1.1 on average, independent of k. While the aggressive user type achieves
comparable values for k = 100, the error increases drastically for smaller k, reaching an
average of ≈ 2.2 for k = 25 with a large deviation from the mean. The moderate user
shows a more balanced result with the average not surpassing 1.5 for small k. Yet, the
planning time speedup is less affected by the user type. For k = 25 we observe the highest
speedup of ≈ 35 on the median for all three user types. For higher values of k the speedup
decreases, but even using a connection set with |Ē| = 100, the median path planning is
at least 10 times faster than when using all connections B. We conclude that using a

Figure 6.4: Training data: The t-error and planning time speedup for different sizes of the
MSKCS and the different user types.

MSKCS drastically decreases planning time though the cost increases 34% compared to the
optimum (twice the error of the best estimate). However, in half of all training examples
the increase in cost is less than 10%. Between users, the performance benefit is similar,
while the path quality differs.

130

Figure 6.5: Test data: The t-error and planning time speedup for different sizes of the
MSKCS and the different user types.

6.4.2 Test Error

The test error is evaluated on three different start–goal pairs for which no demonstrations
were obtained in two different environments. In Figure 6.3b we show a similar analysis
as we did for the training error. The error of the learned control set (Ē, ŵ) is slightly
higher than in the training with a mean of 1.38 and a median of 1.17 while the deviation is
smaller. The naive approach performs slightly better than in the training, with mean and
median values for (B̄naive,wnaive) of 1.72 and 1.31, respectively. This indicates that the
user behaviour might be less sensitive in the test scenarios. Figure 6.5 shows a comparable
relationship between k and the t-error (left) and planning time speedup (right). The overall
t-error is comparable in mean to the training, but increases with smaller k for the cautious
user type. The aggressive user shows the highest error, with a mean of 1.8 for k = 50.
The planning speedup shows a similar trend as the training data. However, the deviations
differ more between user types. All three users yield median speedup factors of ≈ 30 for
k = 25, but are still above 10 for k = 100.

We conclude that the learned control set (Ē, ŵ) achieves good t-errors in both training
and test environments while allowing for a substantial planning time speedup. Increasing
k, the t-error tends to decrease, approaching the error of the estimation. Even though the
performance also decreases with growing k, we still obtain an improvement of more than a

131

factor of 10 for k = 100 compared to paths planned using the complete connection set B̄.

6.5 Discussion

We studied a novel approach for computing a control set that captures user preferences.
First an estimate ŵ of the user weights, given data, and a set of motions using those
weights are computed for all pairs (s, j) ∈ B̄. These motions are calculated to minimize
a user cost function that is a linear combination of weights ŵ and trajectory features.
Next, a set of connections Ē ⊆ B̄ and its associated motions is determined. This control
set minimizes the relative error of motions generated. We illustrate how both ŵ and Ē
are computed, and validate our findings using a clothoid trajectory planner. The results
illustrate that the control set given by (Ē, ŵ) is able to capture a user’s preferences while
greatly reducing online computation time relative to using the full connection set.

In future, this approach should be tested with real-world data, e.g., recorded driv-
ing behaviour. Further, these results should be extended to account for situational user
weights.

132

Chapter 7

Discussion and Future Directions

This thesis was dedicated to investigating solutions and uses for the Minimum t−Spanning
Control Set (MTSCS) problem. A t−spanning control set guarantees that each motion
between lattice vertices can be approximated using motions in the control set to within
a factor of t of their cost. Therefore, the problem of computing a smallest set with this
guarantee is a problem that optimizes a trade-off between the size of the control set (i.e.,
the run time of an online graph-search) and the quality of the motions it can compute.

We began with a class of instances for which the MTSCS problem can be solved effi-
ciently. In Chapter 3, we presented one such efficient algorithm to compute control sets for
a square lattice in a configuration space whose configurations had only positional states and
where the cost of a motion was given by the Euclidean distance between its endpoints. In
this chapter, we showed that an intuitive solution to the continuous version of the problem
persisted even when the plane was discretized into integer-valued lattice vertices. Further,
bounds on both the size of the control set as well as the error between lattice-planned
paths and free-space optimal paths were presented. Finally, this chapter illustrated that
a MTSCS could achieve the same t−factor sub-optimality as a state of the art control set
generation technique but with exponentially smaller control set size.

Chapter 3 served as motivation to consider more complex instances of the MTSCS
problem. In particular, a class of higher-dimensional lattices where the cost of a motion
was a user-specific quantity. The quality of a control set depends heavily on the quality of
its motions. That is, to create a compound motion from motion primitives that is pleasing
to a user, each motion primitive must itself be pleasing. This observation motivated the
work presented in Chapter 4. Here, a method to compute trajectories that optimize a
trade off between comfort and travel time was presented. The described technique involves

133

computing and iteratively refining a path and a velocity profile between two configurations.
Though this work focused on comfort and travel time, other trajectory features could be
incorporated into the proposed cost function without affecting the proposed technique.

Trajectories computed using the method proposed in Chapter 4 were used to validate
the results of the next chapter. In Chapter 5, we proved that the MTSCS problem is
NP-complete in general and we provided a MILP formulation of the problem. Combining
the work presented in Chapters 4 and 5 results in method to compute a control set that 1)
accommodates the preferences of a user, i.e., each motion in the control set is optimal for
the user, 2) is of minimal size, and 3) can be used to generate compound motions that are
within a factor of t from user-optimal. However, this work assumes that the preferences of
a user are known and are available as a set of weights.

In Chapter 6, we illustrate that an intuitive procedure of learning weights, planning
motions, and selecting a control set, is optimal when attempting to compute a control set
that takes user preferences into account. That is, the problem of simultaneously estimating
user preferences and selecting motion primitives can be optimally solved via a separation
principle: first estimate the weights, then select a control set.

The inputs to the MTSCS problem is the tuple (X , L,O, c,W) of configuration space
X , lattice L, starting set O, cost c, and workspace W , as well as a value t ≥ 1. Given
X , L,W , we have seen how a starting set O that generalizes the vertices of a lattice can
be selected. We have also seen how costs can be estimated from demonstrations to inform
the selection of a control set. Therefore, from X , L,W , and a user demonstrations, the
remaining inputs to the MTSCS problem may be estimated given a value t ≥ 1, and a
control set can be computed. However, this work has not addressed critical questions in
autonomous driving. In particular: how should L be computed? The lattices used in
Chapters 5, 4 were selected by trial and error and according to what seemed reasonable
given the circumstances. However, how a configuration space should discretized is surely as
important a question as how to traverse the discretization. It is the opinion of the author
that an iterative process of forming a lattice, selecting a control set, testing the control set,
and then updating the lattice based on the efficacy of the control set during testing may
result in better results than treating discretization and control set selection as two disjoint
problems.

Situational specific lattices/user weights were also not addressed in this thesis. That
is, we did not formally investigate how one could develop a set of lattices and user weights
each tailored to a specific situations. This idea was used informally in Chapter 5 where one
lattice was computed to traverse parking lots and another for highways. However, there
are a myriad of other situations: city streets, merging ramps, emergency maneuvering, etc.

134

This begs the question: is there a way to compute a set of lattices for specific situations
such that motions and vertices from one can be smoothly concatenated to produce vertices
of another? Perhaps via a third transitional lattice? What is the smallest set of lattices
required to ensure that every maneuver in every situation is perform-able within some
specified error bound, and that there is a sequence of motions taking any vertex in any
of these lattices to any other lattices’ vertices? It is the opinion of this author that by
treating situationally-derived lattices like configurations in a meta-lattice, one may be able
to employ similar t−spanning techniques as those derived in this work to solve this last
problem.

In addition to lattice selection, this work does not address trajectory tracking or vehicle
control, and we have not tested our findings in real-world situations. While available
literature suggests that smoother trajectories require less control effort and result in smaller
tracking error (a suggestion modestly verified in Chapter 4), it is left for future work to
verify that this holds in practice for techniques proposed in this thesis.

135

References

[1] Pieter Abbeel, Dmitri Dolgov, Andrew Y Ng, and Sebastian Thrun. Apprenticeship
learning for motion planning with application to parking lot navigation. In 2008
IEEE/RSJ IROS, pages 1083–1090. IEEE, 2008.

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1, 2004.

[3] Olov Andersson, Oskar Ljungqvist, Mattias Tiger, Daniel Axehill, and Fredrik
Heintz. Receding-horizon lattice-based motion planning with dynamic obstacle avoid-
ance. In 2018 IEEE Conference on Decision and Control (CDC), pages 4467–4474,
2018.

[4] Oktay Arslan, Karl Berntorp, and Panagiotis Tsiotras. Sampling-based algorithms
for optimal motion planning using closed-loop prediction. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 4991–4996. IEEE, 2017.

[5] Il Bae, Jaeyoung Moon, and Jeongseok Seo. Toward a comfortable driving experience
for a self-driving shuttle bus. Electronics, 8(9):943, 2019.

[6] Holger Banzhaf, Nijanthan Berinpanathan, Dennis Nienhüser, and J Marius Zöllner.
From g2 to g3 continuity: Continuous curvature rate steering functions for sampling-
based nonholonomic motion planning. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 326–333. IEEE, 2018.

[7] B.A. Barsky and T.D. DeRose. Geometric continuity of parametric curves: three
equivalent characterizations. IEEE Computer Graphics and Applications, 9(6):60–
69, 1989.

136

[8] Kristoffer Bergman, Oskar Ljungqvist, and Daniel Axehill. Improved optimization
of motion primitives for motion planning in state lattices. In 2019 IEEE Intelligent
Vehicles Symposium (IV), pages 2307–2314, 2019.

[9] Kristoffer Bergman, Oskar Ljungqvist, Torkel Glad, and Daniel Axehill. An
optimization-based receding horizon trajectory planning algorithm. IFAC-
PapersOnLine, 53(2):15550–15557, 2020.

[10] C Guarino Lo Bianco and Aurelio Piazzi. Optimal trajectory planning with quintic
g2-splines. In 2000 IEEE Intelligent Vehicles Symposium (IV), pages 620–625, 2000.

[11] Lorenz T Biegler. Solution of dynamic optimization problems by successive quadratic
programming and orthogonal collocation. Computers & chemical engineering, 8(3-
4):243–247, 1984.

[12] Alexander Botros and Stephen L. Smith. Computing a minimal set of t-spanning
motion primitives for lattice planners. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2328–2335, 2019.

[13] Alexander Botros, Nils Wilde, and Stephen L Smith. Learning control sets for lat-
tice planners from user preferences. In The 14th International Workshop on the
Algorithmic Foundations of Robotics (WAFR), volume: To appear, 2020.

[14] Jingwei Chen, Robert C Holte, Sandra Zilles, and Nathan R Sturtevant. Front-to-
end bidirectional heuristic search with near-optimal node expansions. arXiv preprint
arXiv:1703.03868, 2017.

[15] Ernest Cheung, Aniket Bera, Emily Kubin, Kurt Gray, and Dinesh Manocha. Iden-
tifying driver behaviors using trajectory features for vehicle navigation. In 2018
IEEE/RSJ IROS, pages 3445–3452. IEEE, 2018.

[16] Howie M Choset, Kevin M Lynch, Seth Hutchinson, George Kantor, Wolfram Bur-
gard, Lydia Kavraki, Sebastian Thrun, and Ronald C Arkin. Principles of robot
motion: theory, algorithms, and implementation. MIT press, 2005.

[17] Laurene Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien Glaser. A
review of motion planning for highway autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 21(5):1826–1848, 2019.

[18] Charles M Close, Dean K Frederick, and Jonathan C Newell. Modeling and analysis
of dynamic systems. John Wiley & Sons, 2001.

137

[19] Benjamin J Cohen, Sachin Chitta, and Maxim Likhachev. Search-based planning for
manipulation with motion primitives. In 2010 IEEE ICRA, pages 2902–2908. IEEE,
2010.

[20] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[21] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-angle path
planning on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[22] Ryan De Iaco, Stephen L Smith, and Krzysztof Czarnecki. Learning a lattice planner
control set for autonomous vehicles. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 549–556. IEEE, 2019.

[23] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time
constrained routing and scheduling. Handbooks in operations research and manage-
ment science, 8:35–139, 1995.

[24] Mihir Dharmadhikari, Tung Dang, Lukas Solanka, Johannes Loje, Huan Nguyen,
Nikhil Khedekar, and Kostas Alexis. Motion primitives-based path planning for fast
and agile exploration using aerial robots. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 179–185, 2020.

[25] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Prac-
tical search techniques in path planning for autonomous driving. Ann Arbor,
1001(48105):18–80, 2008.

[26] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path
planning for autonomous vehicles in unknown semi-structured environments. The
International Journal of Robotics Research, 29(5):485–501, 2010.

[27] L. E. Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics, 79(3):497, 1957.

[28] Yi Fang, Jie Hu, Wenhai Liu, Quanquan Shao, Jin Qi, and Yinghong Peng. Smooth
and time-optimal s-curve trajectory planning for automated robots and machines.
Mechanism and Machine Theory, 137:127–153, 2019.

[29] T. Fraichard and A. Scheuer. From reeds and shepp’s to continuous-curvature paths.
IEEE Transactions on Robotics, 20(6):1025–1035, Dec 2004.

138

[30] Hiroshi Fuji, Jingyu Xiang, Yuichi Tazaki, Blaine Levedahl, and Tatsuya Suzuki.
Trajectory planning for automated parking using multi-resolution state roadmap
considering non-holonomic constraints. In 2014 IEEE Intelligent Vehicles Symposium
(IV), pages 407–413. IEEE, 2014.

[31] Jonathan D Gammell, Timothy D Barfoot, and Siddhartha S Srinivasa. Informed
asymptotically optimal anytime search. arXiv preprint arXiv:1707.01888, 2017.

[32] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch in-
formed trees (bit*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs. In 2015 IEEE international conference
on robotics and automation (ICRA), pages 3067–3074. IEEE, 2015.

[33] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[34] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. A review of
motion planning techniques for automated vehicles. IEEE Transactions on Intelligent
Transportation Systems, 17(4):1135–1145, 2015.

[35] David Sierra González, Ozgur Erkent, Vı́ctor Romero-Cano, Jilles Dibangoye, and
Christian Laugier. Modeling driver behavior from demonstrations in dynamic en-
vironments using spatiotemporal lattices. In 2018 IEEE ICRA, pages 1–7. IEEE,
2018.

[36] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in
Learning and Control, Lecture Notes in Control and Information Sciences, pages
95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.

html.

[37] Tianyu Gu, Jason Atwood, Chiyu Dong, John M Dolan, and Jin-Woo Lee. Tunable
and stable real-time trajectory planning for urban autonomous driving. In 2015
IEEE/RSJ IROS, pages 250–256. IEEE, 2015.

[38] Shilpa Gulati, Chetan Jhurani, and Benjamin Kuipers. A nonlinear constrained
optimization framework for comfortable and customizable motion planning of non-
holonomic mobile robots-part i. arXiv preprint arXiv:1305.5024, 2013.

[39] Hongyan Guo, Chen Shen, Hui Zhang, Hong Chen, and Rui Jia. Simultaneous
trajectory planning and tracking using an mpc method for cyber-physical systems:

139

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

A case study of obstacle avoidance for an intelligent vehicle. IEEE Transactions on
Industrial Informatics, 14(9):4273–4283, 2018.

[40] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[41] L. Han, H. Yashiro, H. Tehrani Nik Nejad, Q. H. Do, and S. Mita. Bezier curve based
path planning for autonomous vehicle in urban environment. In IEEE Intelligent
Vehicles Symposium (IV), pages 1036–1042, June 2010.

[42] Peter A Hancock, Illah Nourbakhsh, and Jack Stewart. On the future of transporta-
tion in an era of automated and autonomous vehicles. Proceedings of the National
Academy of Sciences, 116(16):7684–7691, 2019.

[43] Daniel Damir Harabor and Alban Grastien. An optimal any-angle pathfinding al-
gorithm. In Twenty-Third International Conference on Automated Planning and
Scheduling, 2013.

[44] Daniel Damir Harabor, Alban Grastien, Dindar Öz, and Vural Aksakalli. Optimal
any-angle pathfinding in practice. Journal of Artificial Intelligence Research, 56:89–
118, 2016.

[45] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[46] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of time-optimal, jerk-
limited trajectories. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3248–3253, 2008.

[47] Gabriel M Hoffmann, Claire J Tomlin, Michael Montemerlo, and Sebastian Thrun.
Autonomous automobile trajectory tracking for off-road driving: Controller design,
experimental validation and racing. In American Control Conference (ACC), pages
2296–2301, 2007.

[48] Neville Hogan and Dagmar Sternad. Sensitivity of smoothness measures to movement
duration, amplitude, and arrests. Journal of motor behavior, 41(6):529–534, 2009.

[49] Quanan Huang and Huiyi Wang. Fundamental study of jerk: evaluation of shift
quality and ride comfort. Technical report, SAE Technical Paper, 2004.

140

[50] Lucas Janson, Brian Ichter, and Marco Pavone. Deterministic sampling-based motion
planning: Optimality, complexity, and performance. The International Journal of
Robotics Research, 37(1):46–61, 2018.

[51] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching
tree: A fast marching sampling-based method for optimal motion planning in many
dimensions. The International journal of robotics research, 34(7):883–921, 2015.

[52] Laura Jarin-Lipschitz, James Paulos, Raymond Bjorkman, and Vijay Kumar.
Dispersion-minimizing motion primitives for search-based motion planning. arXiv
preprint arXiv:2103.14603, 2021.

[53] Morton I Kamien and Nancy Lou Schwartz. Dynamic optimization: the calculus of
variations and optimal control in economics and management. Dover Publications,
2 edition, 2013.

[54] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[55] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[56] Adam Kasperski and Pawel Zielinski. An approximation algorithm for interval data
minmax regret combinatorial optimization problems. Inf. Process. Lett., 97(5):177–
180, 2006.

[57] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. Real-
time motion planning methods for autonomous on-road driving: State-of-the-art and
future research directions. Transportation Research Part C: Emerging Technologies,
60:416–442, 2015.

[58] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[59] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory generation via para-
metric optimal control. The International Journal of Robotics Research, 22(8):583 –
601, July 2003.

141

[60] Sebastian Klemm, Jan Oberländer, Andreas Hermann, Arne Roennau, Thomas
Schamm, J Marius Zollner, and Rüdiger Dillmann. Rrt-connect: Faster, asymptot-
ically optimal motion planning. In 2015 IEEE international conference on robotics
and biomimetics (ROBIO), pages 1670–1677. IEEE, 2015.

[61] Bernhard Korte and Jens Vygen. Combinatorial optimization. Springer, 6 edition,
2018.

[62] Bernhard Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization.
Springer, 6 edition, 2018.

[63] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[64] Kostas J Kyriakopoulos and George N Saridis. Minimum jerk for trajectory planning
and control. Robotica, 12(2):109–113, 1994.

[65] Jae-Yeong Lee and Wonpil Yu. A coarse-to-fine approach for fast path finding for
mobile robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5414–5419. IEEE, 2009.

[66] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren
Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards
fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles
Symposium (IV), pages 163–168. IEEE, 2011.

[67] Xiaohui Li, Zhenping Sun, Dongpu Cao, Zhen He, and Qi Zhu. Real-time trajectory
planning for autonomous urban driving: Framework, algorithms, and verifications.
IEEE/ASME Transactions on Mechatronics, 21(2):740–753, 2015.

[68] Daniel Liberzon. Calculus of variations and optimal control theory. Princeton uni-
versity press, 2011. Available at http://http://liberzon.csl.illinois.edu/

teaching/cvoc.pdf.

[69] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. Ara*: Anytime a*
with provable bounds on sub-optimality. Advances in neural information processing
systems, 16:767–774, 2003.

142

http://http://liberzon.csl.illinois.edu/teaching/cvoc.pdf
http://http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

[70] Yucong Lin and Srikanth Saripalli. Sampling-based path planning for uav collision
avoidance. IEEE Transactions on Intelligent Transportation Systems, 18(11):3179–
3192, 2017.

[71] Thomas Lipp and Stephen Boyd. Minimum-time speed optimisation over a fixed
path. International Journal of Control, 87(6):1297–1311, 2014.

[72] Changliu Liu, Yizhou Wang, and Masayoshi Tomizuka. Boundary layer heuristic for
search-based nonholonomic path planning in maze-like environments. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 831–836. IEEE, 2017.

[73] Matthew McNaughton, Chris Urmson, John M Dolan, and Jin-Woo Lee. Motion
planning for autonomous driving with a conformal spatiotemporal lattice. In 2011
IEEE International Conference on Robotics and Automation (ICRA), pages 4889–
4895, 2011.

[74] Bernard Michini, Thomas J Walsh, Ali-Akbar Agha-Mohammadi, and Jonathan P
How. Bayesian nonparametric reward learning from demonstration. IEEE Transac-
tions on Robotics, 31(2):369–386, 2015.

[75] Alex Nash and Sven Koenig. Any-angle path planning. AI Magazine, 34(4):85–107,
2013.

[76] Rui Oliveira, Mårcello Cirillo, Bo Wahlberg, et al. Combining lattice-based planning
and path optimization in autonomous heavy duty vehicle applications. In 2018 IEEE
Intelligent Vehicles Symposium (IV), pages 2090–2097. IEEE, 2018.

[77] Rui Oliveira, Pedro F Lima, Marcello Cirillo, Jonas Mårtensson, and Bo Wahlberg.
Trajectory generation using sharpness continuous dubins-like paths with applications
in control of heavy-duty vehicles. In 2018 European Control Conference (ECC), pages
935–940. IEEE, 2018.

[78] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli.
A survey of motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016.

[79] Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa Sadigh. Learn-
ing reward functions by integrating human demonstrations and preferences. arXiv
preprint arXiv:1906.08928, 2019.

143

[80] Luigi Palmieri, Leonard Bruns, Michael Meurer, and Kai O Arras. Dispertio: Opti-
mal sampling for safe deterministic motion planning. IEEE Robotics and Automation
Letters, 5(2):362–368, 2019.

[81] Aleksandr I Panov, Konstantin S Yakovlev, and Roman Suvorov. Grid path planning
with deep reinforcement learning: Preliminary results. Procedia computer science,
123:347–353, 2018.

[82] Aditya A Paranjape, Kevin C Meier, Xichen Shi, Soon-Jo Chung, and Seth Hutchin-
son. Motion primitives and 3d path planning for fast flight through a forest. The
International Journal of Robotics Research, 34(3):357–377, 2015.

[83] Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Using
probabilistic movement primitives in robotics. Autonomous Robots, 42(3):529–551,
2018.

[84] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Prob-
abilistic movement primitives. Advances in neural information processing systems,
26:2616–2624, 2013.

[85] David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory,
13(1):99–116, 1989.

[86] Scott Drew Pendleton, Wei Liu, Hans Andersen, You Hong Eng, Emilio Fraz-
zoli, Daniela Rus, and Marcelo H Ang. Numerical approach to reachability-guided
sampling-based motion planning under differential constraints. IEEE Robotics and
Automation Letters, 2(3):1232–1239, 2017.

[87] A. Piazzi and C. Guarino Lo Bianco. Quintic g/sup 2/-splines for trajectory planning
of autonomous vehicles. In IEEE Intelligent Vehicles Symposium (IV), pages 198–
203, Oct 2000.

[88] Mihail Pivtoraiko and Alonzo Kelly. Generating near minimal spanning control sets
for constrained motion planning in discrete state spaces. In 2005 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 3231–3237.
IEEE, 2005.

[89] Mihail Pivtoraiko and Alonzo Kelly. Kinodynamic motion planning with state lattice
motion primitives. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2172–2179. IEEE, 2011.

144

[90] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009.

[91] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence,
1(3-4):193–204, 1970.

[92] M. Raineri and C. Guarino Lo Bianco. Jerk limited planner for real-time applications
requiring variable velocity bounds. In 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), pages 1611–1617, 2019.

[93] Abhijeet Ravankar, Ankit A Ravankar, Yukinori Kobayashi, Yohei Hoshino, and
Chao-Chung Peng. Path smoothing techniques in robot navigation: State-of-the-art,
current and future challenges. Sensors, 18(9):3170, 2018.

[94] Nicolás Rivera, Carlos Hernández, Nicolás Hormazábal, and Jorge A Baier. The
2 to the k neighborhoods for grid path planning. Journal of Artificial Intelligence
Research, 67:81–113, 2020.

[95] Jin Woo Ro, Partha S. Roop, and Avinash Malik. A new safety distance calculation
for rear-end collision avoidance. IEEE Transactions on Intelligent Transportation
Systems, 22(3):1742–1747, 2021.

[96] BW Robinson, L Rodegerdts, Wade Scarborough, W Kittelson, R Troutbeck, Werner
Brilon, Lothar Bondzio, Ken Courage, Michael Kyte, John Mason, et al. Round-
abouts: An informational guide. federal highway administration. Turner-Fairbank
Highway Research Center, 3, 2000.

[97] Martin Rufli and Roland Siegwart. On the design of deformable input-/state-
lattice graphs. In 2010 IEEE International Conference on Robotics and Automation
(ICRA), pages 3071–3077. IEEE, 2010.

[98] Alexandru Rusu, Sabine Moreno, Yoko Watanabe, Mathieu Rognant, and Michel
Devy. State lattice generation and nonholonomic path planning for a planetary
exploration rover. In 65th International Astronautical Congress 2014 (IAC 2014),
volume 2, page 953, 2014.

[99] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active
preference-based learning of reward functions. In Robotics: Science and Systems
(RSS), 2017.

145

[100] Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal sampling-based
motion planning under differential constraints: the driftless case. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 2368–2375.
IEEE, 2015.

[101] Steven H Schot. Jerk: the time rate of change of acceleration. American Journal of
Physics, 46(11):1090–1094, 1978.

[102] Dong Hun Shin, Sanjiv Singh, and W Whittaker. Path generation for a robot vehicle
using composite clothoid segments. IFAC Proceedings Volumes, 25(6):443–448, 1992.

[103] J. A. R. Silva and V. Grassi. Clothoid-based global path planning for autonomous
vehicles in urban scenarios. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4312–4318, May 2018.

[104] Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and Marco Pavone.
Revisiting the asymptotic optimality of rrt. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 2189–2195. IEEE, 2020.

[105] Wataru Takeda. The exact order of the number of lattice points visible from the
origin. arXiv preprint arXiv:1608.02703, 2016.

[106] Mattias Tiger, David Bergström, Andreas Norrstig, and Fredrik Heintz. Enhanc-
ing lattice-based motion planning with introspective learning and reasoning. IEEE
Robotics and Automation Letters, 6(3):4385–4392, 2021.

[107] Tansel Uras and Sven Koenig. Fast near-optimal path planning on state lattices with
subgoal graphs. In Eleventh Annual Symposium on Combinatorial Search, 2018.

[108] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-
tonomous driving in urban environments: Boss and the urban challenge. Journal of
Field Robotics, 25(8):425–466, 2008.

[109] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and
Moritz Diehl. Time-optimal path tracking for robots: A convex optimization ap-
proach. IEEE Transactions on Automatic Control, 54(10):2318–2327, 2009.

[110] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25–57, 2006.

146

[111] Larry Wasserman. All of statistics: a concise course in statistical inference. Springer
Science & Business Media, 2013.

[112] Wenda Xu, Junqing Wei, J. M. Dolan, Huijing Zhao, and Hongbin Zha. A real-time
motion planner with trajectory optimization for autonomous vehicles. In 2012 IEEE
International Conference on Robotics and Automation, pages 2061–2067, May 2012.

[113] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Optimal tra-
jectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE
International Conference on Robotics and Automation, pages 987–993. IEEE, 2010.

[114] Taeg-Keun Whangbo. Efficient modified bidirectional a* algorithm for optimal route-
finding. In International Conference on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems, pages 344–353. Springer, 2007.

[115] Edmund Taylor Whittaker. A treatise on the analytical dynamics of particles and
rigid bodies. CUP Archive, 1937.

[116] Kwangjin Yang, Sangwoo Moon, Seunghoon Yoo, Jaehyeon Kang, Nakju Lett Doh,
Hong Bong Kim, and Sanghyun Joo. Spline-based rrt path planner for non-holonomic
robots. Journal of Intelligent & Robotic Systems, 73(1):763–782, 2014.

[117] Kwangjin Yang and Salah Sukkarieh. An analytical continuous-curvature path-
smoothing algorithm. IEEE Transactions on Robotics, 26(3):561–568, 2010.

[118] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-based col-
lision avoidance. IEEE Transactions on Control Systems Technology, 29(3):972–983,
2021.

[119] Yu Zhang, Huiyan Chen, Steven L Waslander, Jianwei Gong, Guangming Xiong,
Tian Yang, and Kai Liu. Hybrid trajectory planning for autonomous driving in
highly constrained environments. IEEE Access, 6:32800–32819, 2018.

[120] Zhijie Zhu, Edward Schmerling, and Marco Pavone. A convex optimization approach
to smooth trajectories for motion planning with car-like robots. In 2015 IEEE Con-
ference on Decision and Control (CDC), pages 835–842. IEEE, 2015.

[121] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller. Trajectory plan-
ning for bertha—a local, continuous method. In 2014 IEEE intelligent vehicles sym-
posium proceedings, pages 450–457. IEEE, 2014.

147

[122] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias Strauss,
Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph G Keller, et al.
Making bertha drive—an autonomous journey on a historic route. IEEE Intelligent
transportation systems magazine, 6(2):8–20, 2014.

148

APPENDICES

149

Appendix A

Proofs of Results in Chapter 3

A.1 Lemma 3.3.6

Lemma A.1.1 (BEW Paths Using E). Let t ≥ 1, and w = W [(x1, y1), (x2, y2)] be a BEW
that is bounded by a control set E for a lattice Ln. For any v ∈ w if k1, k2 ∈ N such that
v = (k1x1 + k2x2, k1y1 + k2y2), then

dE(v) = k1||x1, y1||+ k2||x2, y2||. (A.1)

Further, if E∗ is any control set, then for all v ∈ w,(
dE
∗
(v) < dE(v)

)
=⇒

(
∃u ∈ E∗ ∩ wo

)
. (A.2)

Proof. Let (x1, y1) = (l1, θ1), (x2, y2) = (l2, θ2), then by definition of a wedge, θ1 < θ2. The
second result (A.2) follows from the first result (A.1). Indeed, suppose that E∗∩wo = ∅, and
let Ē = E∗ ∪ {(x1, y1), (x2, y2)}. Then dE

∗
(v) ≥ dĒ(v) because E∗ ⊆ Ē and each relative

motion in E∗ is available for paths using Ē. Observe that Ē ∩wo = ∅, (x1, y1), (x2, y2) ∈ Ē
implies that w is bounded by Ē. Therefore, dĒ(v) = k1l + 1 + k2l2 = dE(v) (from (A.1))
implying that dE

∗
(v) ≥ dĒ(v) = dE(v) which establishes the contrapositive of (A.2).

Therefore, it suffices to prove (A.1). Let L = k1l1 + k2l2. Because w is bounded by
E, it must hold that (x1, y1), (x2, y2) ∈ E thus dE(v) ≤ L. Therefore, it suffices to show
that dE(v) ≥ L. We offer a proof of this by way of contradiction. Suppose dE(v) < L,
and let v = (x, y). Then there must exist a relative motion (x3, y3) ∈ E in a path using
E to v implying that dE(v) = ||x3, y3|| + dE(x − x3, y − y3) ≥ ||u|| + ||x − x3, y − y3|| by

150

the triangle inequality. We establish the result in the worst case: (x − x3, y − y3) ∈ E
implying that dE(x− x3, y − y3) = ||x− x3, y − y3||, and dE(v) = ||u||+ ||x− x3, y − y3||.
Let (x3, y3) = (l3, θ3), (x − x3, y − y3) = (l4, θ4) where, without loss of generality, θ3 <
θ4. Because w is bounded by E – implying that E ∩ wo = ∅ – we may conclude that
(x3, y3), (x − x3, y − y3) /∈ wo thus θ3 < θ1, θ4 > θ2. Therefore, the vertex (x3, y3) cannot
appear to the left of the line passing through (k1x1, k1, y1). Indeed, if this were not the
case, then θ4 ∈ [θ1, θ2] which cannot happen if (y − y3, x − x3) /∈ w. This is illustrated in
Figure A.1 (Left). Therefore, (x3, y3) must appear to the right of the line passing through
(k1x1, k1y1) and (x, y) as illustrated in Figure A.1 (Right). Let A,B,C,D be the lengths

Figure A.1: (Left) Graphical proof that (x3, y3) cannot appear to the left of the line
containing (x, y) and k1(x1, y1). (Right) Graphical proof that the shortest distance to
(x, y) in E does not contain (x3, y3)

of the green, blue, red, and orange lines, respectively, as illustrated in Figure A.1 (Right).
Then, observe by repeated applications of the triangle inequality:

L = k1l1 + k2l2 ≤k1l1 +D + C ≤ A+B + C = l3 + l4 = dE(x, y).

The second inequality comes from the observation that the orange line is colinear to the
vector (k1x1, k1y1). If the above holds with equalities, then (A.1) is established. Otherwise,
a contradiction is reached using the definition of dE(x, y).

151

A.2 Lemma 3.3.7

Lemma A.2.1. Let w be a BEW on a lattice Ln that is bounded by a control set E. Let
u, v be two vertices in w. Then mw(u) ≥ mw(v) if and only if u lies above the line passing
through v and the origin.

Proof. Let w = W [(x1, y1), (x2, y2)]. Because w is a BEW, there must exist natural num-
bers k1, k2, q1, q2 such that u = k1(x1, y1) + k2(x2, y2), v = q1(x1, y1) + q2(x2, y2). Let
l1 = ||x1, y1||, l2 = ||x2, y2||. Then

mw(u) ≥ mw(v) ⇐⇒ k2l2
k1l1
≥ q2l2
q1l1

⇐⇒ k2

k1

≥ q2

q1

⇐⇒ k2q1 ≥ k1q2 (A.3)

Letting ∆u,∆v denote the slope of the lines passing through the origin and u, v, respectively,
we observe by (A.3) that

∆u ≥ ∆v ⇐⇒
k2y1 + k1y1

k2x2 + k1x1

≥ q2y1 + q1y1

q2x2 + q1x1

⇐⇒ 0 ≤ (x1y2 − x2y1)(k2q1 − k1q2)

Finally, observe that it is assumed in the definition of a BEW, that the angle formed
between the x−axis and the line passing through the origin and (x2, y2) is larger than that
for (x1, y1) implying that y2/x2 > y1/x1. Therefore, x1y2 − x2y1 > 0, and we conclude that
∆u ≥ ∆v if and only if (A.3) holds.

A.3 Lemma 3.3.8

Lemma A.3.1 (t−Error for BEWs). Let t ≥ 1, and consider lattice Ln with control set E
and BEW w = W [(x1, y1), (x2, y2)]. If w is bounded by E, then the t−error of any point
(x, y) ∈ wo is given by

tE(x, y) =
1 +mw(x, y)√

1 +mw(x, y)2 + 2mw(x, y)Bw

. (A.4)

If, on the other hand, (x1, y1) ∈ E, and (x2, y2) /∈ E is t−reachable using E, then

tE(x, y) ≤ 1 + tmw(x, y)√
1 +mw(x, y)2 + 2mw(x, y)Bw

, ∀(x, y) ∈ wo. (A.5)

152

Finally, if (x2, y2) ∈ E and (x1, y1) /∈ E is t−reachable using E, then

tE(x, y) ≤ t+mw(x, y)√
1 +mw(x, y)2 + 2mw(x, y)Bw

, ∀(x, y) ∈ wo. (A.6)

Proof. Let l1 = ||x1, y1||, l2 = ||x2, y2||. If w is a BEW that is bounded by E, then by
definition of an interior vertex of a BEW, there must exist k1, k2 ∈ N − {0} such that
(x, y) = k1(x1, y1) + k2(x2, y2). By Lemma 3.3.6, it must hold that dE(x, y) = k1l1 + k2l2.
Therefore, by the definition of the t−error and the law of cosines,

tE(x, y) =
k1l1 + k2l2√

k2
1l

2
1 + k2

2l
2
2 + 2k1k2l1l2Bw

. (A.7)

Dividing the numerator and denominator of (A.7) by k1l1, and replacing mw(x, y) =
k2l2/(k1l2) in the result yields (A.4).

If (x1, y1) ∈ E, and (x2, y2) is t−reachable using E, then dE(x1, y1) = l1 and dE(x2, y2) ≤
tl2. Replacing this and the definition of m in (A.7) yields (A.5). Finally, if (x2, y2) ∈ E
and (x1, y1) is t−reachable using E, then dE(x2, y2) = l2, d

E(x1, y1) ≤ tl1. Replacing this
the definition of m in (A.7) yields (A.6).

A.4 Lemma 3.3.9

Lemma A.4.1 (t-Reachable Vertices in a BEW using E). Let t > 1 and consider a lattice
Ln with control set E ⊆ Ln and BEW w = W [(x1, y1), (x2, y2)] that is bounded by E. Then
the following are true:

1. If Bw ≥ (2t−2 − 1), then every vertex in w is t−reachable using E. If n =∞, then this
requirement is necessary as well as sufficient.

2. If not every vertex in w is t−reachable using E, then the set of all non t−reachable
points (x, y) in w using E is exactly equal to

w̄ ={(x, y) ∈ w : mw(x, y) ∈ (mw,mcirt)}, where

mw =
t
(
t(1−Bw)−

√
(Bw − 1)(Bwt2 + t2 − 2)

)
t2 − 1

− 1,

mw =
t
(
t(1−Bw) +

√
(Bw − 1)(Bwt2 + t2 − 2)

)
t2 − 1

− 1.

(A.8)

153

Proof. We begin with the first claim. Because w is boundary expressible that is bounded by
E, by Lemma 3.3.8, the t−error for any point (x, y) is given by (A.4). Maximizing tE(x, y)
with respect to mw(x, y) results in a single maximizer mw(x, y) = 1, and a maximum value:
tE(x, y) ≤ tE(x, y)|mw(x,y)=1 = 2(2 + 2Bw)−1/2. Note that the right hand side of this upper
bound is itself bounded by t if and only if Bw ≥ 2t−2 − 1. Therefore, if (Bw ≥ 2t−2 − 1),
then tE(x, y) ≤ t for each vertex (x, y) ∈ w. Further, if k =∞, then by the density of the
rationals in the reals, there will always exist vertices (x, y) ∈ w with mw(x, y) arbitrarily
close to 1. Thus if Bw < (2t−2 − 1) and k =∞, there will exist vertices in w that are not
t−reachable using E.

To prove the second claim of the Lemma, we solve tE(x, y) ≤ t (with tE given in (A.4))
for mw(x, y) which yields the result of the Lemma.

A.5 Lemma 3.3.12

Lemma A.5.1 (BEW Closed Under Splitting). Let w = W [(x1, y1), (x2, y2)] be a BEW
that is bounded by a control set E for a lattice Ln. The wedges w1 = W [(x1, y1), v1

w] and
w2 = W [v1

w, (x2, y2)] are both BEWs that are bounded by E ∪ {v1
w}, and w1 ∪ w2 = w.

Further, if w is upper or lower separable, then the wedges wunreach, wbetween are BEWs and
wunreach is bounded by E ∪ {vkw}.

Proof. We begin by showing that w1, w2 are both BEWs. Observe that w1 ∪w2 = w holds
from the definition of a wedge. Because w is a BEW, it must hold that for any u ∈ w
there exists natural numbers k1, k2 with u = (k1x1 + k2x2, k1y1 + k2y2). Assume without
loss of generality, that k1 ≤ k2 (a similar argument to the one that follows can be made if
k1 > k2), and note that in this case, u ∈ w2. Indeed, in this case, mw(u) = k2l2(k1l1)−1 ≥
l2(l1)−1 = mw(x1 +x2, y1 + y2) implying by Lemma 3.3.7, that u lies above the line passing
through (x1 + x2, y1 + y2) that is, in w2. Then

u = k1(x1, y1) + k2(x2, y2) = k1v
1
w + (k2 − k1)(x2, y2).

By assumption, k2 − k1 = k3 ∈ N, thus u = k1v
1
w + k3(x2, y2) implying that there exists

natural numbers k1, k3 such that u can be expressed as a linear combination of the boundary
vertices of w2. If k1 > k2, then u ∈ w1, and a similar argument can be made to show that
u can be expressed as a linear combination of the boundary vertices of w1. Therefore both
w1, w2 are BEWs. Since E contains no vertices in the interior of w, and w = w1 ∪ w2, it
must hold that E ∪ {v1

w} contains no vertices in the interior of w1 or w2. Thus w1, w2 are
both BEWs bounded by E ∪ {v1

w}.

154

Next we show that if w is upper or lower separable, then the wedges wunreach, wbetween

are BEWs. We reserve our argument to the case of an upper separable wedge for brevity
as a near identical argument can be made if w is lower separable using E. We prove these
claims for an upper separable wedge by way of induction on k. As a base case, if k = 1, then
wunreach, wbetween are equal to w1, w2 and the result holds from the above argument. Assume
now that the result holds for some k − 1 ≥ 2. Letting w′ = W [(x1, y1), vk−1

w], we observe
that w′ is a BEW by the induction assumption. Therefore, by the base case, the wedges
w′1 = W [(x1, y1), vk−1

w +(x1, y1)], w′2 = W [vk−1
w +(x1, y1), vk−1

w] are both BEWs. Noting that
w′1 = W [(x1, y1), vkw] = wunreach, w

′
2 = W [vkw, v

k−1
w] = wbetween by (3.9) completes the proof

that wunreach, wbetween are BEWs. Finally, because w is bounded by E, E has no vertices
in the interior of w by definition. Therefore, E has no vertices in the interior of wunreach

implying that wunreach is bounded by E ∪ {vkw}.

A.6 Lemma 3.3.13

Lemma A.6.1. Let t ∈ (1,
√

2), and let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded
by a control set E for a lattice Ln. If w is upper (or lower) separable using E, then

Bwbetween
≥ 1

t
. (A.9)

Proof. The proof will be presented for the case when w is upper separable as an almost
identical argument can be made if w is lower separable using E. Begin by observing
that wbetween is a BEW by Lemma 3.3.12. Note that Bw > 0 for any wedge other than
W [(0, 1), (1, 0)]. Furthermore, if t <

√
2, then this lemma does not apply to this wedge.

Therefore, we can conclude that if (A.9) does not hold, then

t <
1

Bwbetween

.

For simplicity of notation, let v1 = (x1, y1), v2 = (x2, y2), v3 = vk−1
w , v4 = vkw, and let

li = ||vi||, i = 1, 2, 3, 4. Then, by definition of the upper separability, it must hold that
mw(v3) ≥ mw, implying by Lemma 3.3.9 that v3 is t−reachable using E. Therefore, by
equation (A.4) of Lemma 3.3.8:

tE(v3) =
1 +mw(v3)√

1 +mw(v3)2 + 2mw(v3)Bw

≤ t <
1

Bwbetween

. (A.10)

155

By the definition of the inner product,

Bw =
v1 · v2

l1l2
=
x1x2 + y1y2

l1l2
, Bwbetween

=
v3 · v4

l3l4
. (A.11)

Replacing mw(v3) = l2((k − 1)l1)−1, vi, li, and Bw in Bwbetween
from (A.11) yields

Bwbetween
=

(k − 1)mw(v3)2 +mw(v3)Bw(2k − 1) + k√
(2mw(v3)Bw +mw(v3)2 + 1) (2mw(v3)Bwk(k − 1) + k2 +mw(v3)2(k − 1)2)

.

Observe that Bwbetween
given here is an increasing function of k for all Bw ≤ 1. Further,

observe that k ≥ 2. Indeed, if k = 1, then v4 = v1
w. However, v4 is not t−reachable by the

definition of the upper separability factor. Therefore, if v4 = v1
w is not t−reachable, then

by Lemma 3.3.9, w is shortest separable, not upper separable which is a contradiction.
Therefore, since Bwbetween

is an increasing function of k, and k ≥ 2, it must hold that
Bwbetween

≥ Bwbetween
|k=2. Thus by (A.10),

1 +mw(v3)√
1 +mw(v3)2 + 2mw(v3)Bw

<
1

Bwbetween

≤ 1

Bwbetween
|k=2

=

√
(2Bwmw(v3) +m2(v3)2 + 1) (4B2mw(v3) +mw(v3)2 + 4)

3Bwmw(v3) +mw(v3)2 + 2

=⇒ 2mw(v3)4 + (11Bw − 1)mw(v3)3 + (18B2
w − 2Bw + 8)mw(v3)2

+ (23Bw − 1)mw(v3) + 8 ≤ 0.

Observe now that mw(v3) ≥ mw by the definition of the separability factor and mw ≥ 1
by Remark 3.3.10. Therefore, mw(v3) ≥ 1. Observe that the left hand side of the final
inequality above is an increasing function of Bw for all mw(v3) ≥ 1. Therefore, since
Bw ≥ 0, we can conclude that

2mw(v3)4 −mw(v3)3 + 8mw(v3)2 −mw(v3) + 8 ≤ 0,

which cannot happen if mw(v3) ≥ 1. Therefore, the assumption t < B−1
wbetween

results in a
contradiction.

A.7 Lemma 3.3.14

Lemma A.7.1. Let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded by a control set E
on a lattice Ln. If w is not deletable using E, let v denote the shortest non t−reachable
vertex in w using E. The the following hold:

156

1. If w is shortest separable using E, then v1
w = v.

2. If w is either upper or lower separable using E and vkw is not t−reachable using E, then
v = vkw and every vertex in wreach ∪ wbetween is t−reachable using E ∪ {vkw}.

3. If w is either upper or lower separable using E and vkw is t−reachable using E, then w
is deletable using E ∪ {v}.

Proof. We prove the claims in the order that they appear. If w is shortest separable using
E, then by definition of shortest separability, mw(v1

w) ∈ (mw,mw) which by Lemma 3.3.9
implies that v1

w is not t−reachable using E. Observe that v1
w is the shortest vertex in the

interior of w. Indeed, if u is a vertex lying in the interior of w, then by definition of the
interior of a BEW, u = k1(x1, y1) + k2(x2, y2) for k1, k1 ∈ N≥1. Thus ||u|| is minimized
for k1 = k2 = 1 resulting in u = v1

w. Finally observe that any vertex lying on the
boundary of w – that is, any vertex u of the form above where k1 = 0 ∨ k2 = 0 – is
trivially t−reachable using E for any t ≥ 1. Indeed, it is assumed that w is bounded by
E, thus (x1, y1), (x2, y2) ∈ E implying that dE(u) = ||u||. Therefore, v1

w is the shortest non
t−reachable vertex in w using E establishing the first claim.

We prove the second claim for the case that w is upper separable as a near identical
argument can be made if w is lower separable using E. We begin by showing that vkw
is the shortest such vertex in w. Suppose that u ∈ w is the shortest non t−reachable
vertex in w. Since w is a BEW, there must exist natural numbers k1, k2 with u = (k1x1 +
k2x2, k1y1 + k2y2). Observe that if u ∈ w does not lie in the interior of w, then u is
trivially t−reachable using E. Therefore, if u is not t−reachable using E, then u must
lie in the interior of w implying that k1, k2 ≥ 1. Suppose that k1 ≤ k − 1 and observe
that mw(vk−1

w) = l2((k − 1)l1)−1 ≥ mw by the definition of the upper separability factor.
Then mw(u) = k2l2(k1l1)−1 ≥ l2((k − 1)l1)−1 ≥ mw implying by Lemma 3.3.9, that u is
t−reachable using E. Therefore, if u is not t−reachable using E, then k1 ≥ k. Minimizing
||u|| given that u = (k1x1 + k2x2, k1y1 + k2y2) over k1 ≥ k, k2 ≥ 1 results in k1 = k, k2 = 1
implying that vkw = u. Therefore, vkw is the shortest non t−reachable vertex in w using
E. Next we show that every vertex in wreach ∪ wbetween is t−reachable using E ∪ {vkw}.
Suppose u ∈ wreach. Then by definition of wreach in (3.9), u must lie below the line passing
through the origin and vk−1. Therefore, by Lemma 3.3.7, mw(u) ≥ mw(vk−1

w). However,
mw(vk−1

w) ≥ mw by the definition of the upper separability factor implying that mw(u) ≥
mw. Therefore, u is t−reachable using E (and therefore using E ∪ {vkw}) by Lemma 3.3.9.

Assume now that u ∈ wbetween. Note that the wedge wbetween is a BEW by Lemma
3.3.12, and that the lower boundary vertex vkw of wbetween is in E ∪ {vkw}. Further, since
mw(vk−1

w) ≥ mw by the definition of the upper seperability factor, vk−1
w is t−reachable

157

using E (and therefore using E ∪ {vkw}) by Lemma 3.3.9. Therefore, the upper boundary
vertex, vk−1

w of wbetween is t−reachable using E ∪ {vkw}. By equation (A.5) of Lemma 3.3.8,
the t−error of u ∈ wbetween using E ∪ {vkw} is bounded by

tE∪{v
k
w}(u) ≤ 1 + tmwbetween

(u)√
1 +mwbetween

(u)2 + 2mwbetween
(u)Bwbetween

.

The right-hand-side of the above inequality is a decreasing function of Bwbetween
. Further,

by Lemma 3.3.13, Bwbetween
≥ t−1. Therefore, replacing this bound on Bwbetween

, we obtain

tE∪{v
k
w}(u) ≤

√
t(tmwbetween

(u) + 1)√
tmwbetween

(u)2 + 2mwbetween
(u) + t

,

the right-hand-side of which is an increasing function of mwbetween
(u). Therefore,

tE∪{v
k
w}(u) ≤ lim

mwbetween
(u)→∞

√
t(tmwbetween

(u) + 1)√
tmwbetween

(u)2 + 2mwbetween
(u) + t

= t,

implying that u is t−reachable using E ∪ {vkw}.
We now prove the third claim. Again, we offer a proof for the case that w is upper

separable as an almost identical argument can be made if w is lower separable using
E. Observe that mw(vkw) ≤ mw. Indeed, mw(vkw) ≤ mw by the definition of the upper
separability factor. Therefore, if mw(vkw) > mw, then mw(vkw) ∈ (mw,mw) implying that
vkw is not t−reachable using E by Lemma 3.3.9. This contradicts the assumption that vkw is
t−reachable using E. Therefore, mw(vkw) ≤ mw. This implies that the set of all vertices in
w that are not t−reachable using E is a subset of wbetween. Indeed, if u is not t−reachable
using E then mw(u) < mw. Since mw(vk−1

w) ≥ mw by definition of the upper separability
factor, it must hold that u lies below the line passing through the origin and vk−1

w by
Lemma 3.3.7. Further, since mw(u) > mw, u must lie above the line passing through
the origin and vkw. Thus u ∈ wbetween and the set of all vertices that are not t−reachable
using E is a subset of wbetween. Therefore, v ∈ wbetween and there exists natural numbers
k1, k2 > 1 such that v = k1v

k
w + k2v

k−1
w because wbetween is a BEW by Lemma 3.3.12. Let

v1 = (k1 − 1)vkw + vk−1
w , v2 = vkw + (k2 − 1)vk−1

w . We make several observations:

1. The wedges w1 = W [v1, v], w2 = W [v, v2] are BEWs.

2. The vertices v1, v2 are t−reachable using E.

3. Every vertex in w − w1 − w2 is t−reachable using E.

158

4. It holds that Bw1 , Bw2 ≥ Bwbetween
.

To show the first observation, note that the wedge w1∪w2 = W [v1, v2] is a BEW. Indeed, by
repeated application of the result of Lemma 3.3.12, the wedge W [vkw, v1] is a BEW because
wbetween is. Moreover, by repeated application of the result of Lemma 3.3.12, W [v1, v2] is a
BEW because W [vkw, v1] is. Finally, noting that v = v1 + v2, we may conclude that w1, v2

are both BEWs by Lemma 3.3.12. Next, observe that ||v1||, ||v2|| < ||v| by construction.
Therefore, since v is the shortest non t−reachable vertex in w using E, it must hold that
v1, v2 are t−reachable using E and the second observation holds. Observe that v1 lies
below the line passing through the origin and v, implying by Lemma 3.3.7, that mw(v1) <
mw(v). Similarly, mw(v2) > mw(v). By the second observation, if mw(v1) < mw(v) then
mw(v1) ≤ mw. Indeed, if this were not the case then mw < mw(v1) < mw(v) < mw

implying that v1 would not be t−reachable using E by Lemma 3.3.9. Similarly, mw(v2) ≥
mw. If u ∈ w − w1, w2, then either mw(u) ≥ mw(v2) ≥ mw or mw(u) ≤ mw(v1) ≤ mw

implying that u is t−reachable using E in either case by Lemma 3.3.9. Therefore, the third
observation holds. Finally, observe that w1, w2 ⊂ wbetween by construction, implying that
Bw1 , Bw2 ≥ Bwbetween

and the last observation holds.

By the third observation, to show that every vertex u ∈ w is t−reachable using E∪{v},
it suffices to show that every vertex u ∈ w1 ∪ w2 is t−reachable using E ∪ {v}. Let
u ∈ w1 ∪ w2. Because these wedges are BEWs by the first observation, and v1, v2 are
t−reachable using E (and therefore using E∪{v}) by the second observation, it must hold
by (A.5), (A.6) of Lemma 3.3.8, that

tE∪{v}(u) ≤ t+mw1(u)√
1 +mw1(u)2 + 2mw1(u)Bw1

, ∀u ∈ w1,

tE∪{v}(u) ≤ 1 + tmw2(u)√
1 +mw2(u)2 + 2mw2(u)Bw2

, ∀u ∈ w2.

(A.12)

By the fourth observation and Lemma 3.3.13, Bw1 , Bw2 ≥ t−1. Replacing these bounds in
(A.12) results in new bounds that are increasing functions of mw1(u),mw2(u), respectively.
Taking the limit as mw1 ,mw2 →∞ yields t in both cases. Therefore, we can conclude that
tE∪{v}(u) ≤ t and u is t−reachable for any u ∈ w1 ∪ w2 using E ∪ {v}.

A.8 Lemma 3.3.15

Lemma A.8.1. If v ∈ Ln is not t−reachable using Er, then v lies in a BEW that is
bounded by Er for any r ≥ 0.

159

Proof of Lemma 3.3.15. We offer a proof by way of induction on r. As a base case, if
r = 0, then E0 is given by Line 2 of the algorithm. Observe that we may form a set
of BEWs W = {W [(1, 0), (0, 1)],W [(0, 1), (−1, 0))],W [(−1, 0), (0,−1)],W [(0,−1), (1, 0)]}
each of which is bounded by E0 and

⋃
w∈W w = Ln. Therefore, if v ∈ Ln is not t−reachable

using E0, then v ∈
⋃
w∈W w is in a BEW that is bounded by E0. Assume that the result

holds at iteration r for any r ≥ 0. Observe that Er+1 = Er ∪ {v} where v is the shortest
(ties broken arbitrarily) vertex in Ln that was not t−reachable using Er. By the induction
assumption v ∈ w = W [(x1, y1), (x2, y2)] for a BEW that is bounded by Er. Suppose now
that u ∈ Ln is not t−reachable using Er+1. If u /∈ w, then the result holds trivially by
the induction assumption. Otherwise, if u ∈ w, let w1 = W [(x1, y1), v], w2 = W [v, (x2, y2)]
then u ∈ w1∪w2. We consider three exhaustive cases: w is deletable, shortest separable, or
upper/lower separable using Er. If w is deletable using Er, then no such u ∈ w can exist
which is a contradiction. If w is shortest separable using Er, then v = v1

w by Lemma 3.3.14.
In this case, both w1, w2 are BEWs bounded by Er+1 by Lemma 3.3.12, and u ∈ w1 ∪ w2

lies in a BEW that is bounded by Er+1. Finally, if w is either upper or lower separable
using Er, then there are two sub-cases: first, if mw(vkw) /∈ (mw,mw), then by the third
result of Lemma 3.3.14, no u in w can exist that is not t−reachable using Er+1, which is a
contradiction. If mw(vkw) ∈ (mw,mw), then v = vkw by the second result of Lemma 3.3.14.
Further, by the same result u ∈ wunreach. By Lemma 3.3.12, wunreach is a BEW that is
bounded by Er ∪ {vkw} = Er+1. Therefore, in all three cases, if u ∈ w is not t−reachable
using Er+1 then u is in a BEW that is bounded by Er+1.

A.9 Lemma 3.3.16

Lemma A.9.1. Let w = W [(x1, y1), (x2, y2)] be a BEW that is bounded by a control set
E. If w is either upper or lower separable using E, let θ denote the angle inscribed by the
wedge wbetween ∪ wreach. Then

cos(θ) ≥ 2

t2
− 1. (A.13)

Further, if mw(vkw) /∈ (mw,mw), let v denote the shortest vertex in w that is not t−reachable
using E. Then

min(cos(θ1), cos(θ2)) ≥ 2

t2
− 1, (A.14)

where θ1, θ2 are the angles inscribed by the wedges w1 = W [(x1, y1), v],W [v, (x2, y2)], re-
spectively.

160

Proof. We prove this results for the case where w is upper separable using E, an identical
argument can be made for the case when w is lower separable. By the cosine law, the angle
inscribed by the wedge wreach is

cos(θreach) =
||vk−1

w ||2 + l22 − (k − 1)2l21
2||vk−1

w ||l2
where l1 = ||x1, y1||, l2 = ||x2, y2||. Observing that cos(θreach) is an increasing function of
||vk−1

w || and t||vk−1
w || ≥ dE(vk−1

w) = (k − 1)l1 + l2 because vk−1
w is t−reachable using E by

the definition of the upper separability factor, k, it must hold that

cos(θreach) ≥ t2(mw(vk−1
w)− 1) +mw(vk−1

w) + 1

2(mw(vk−1
w))2t

,

where, by definition, mw(vk−1
w) = l2((k−1)l1)−1. Observing that the right hand side of the

above is an increasing function of mw(vk−1
w) and mw(vk−1

w) ≥ mw by the definition of the
upper separability factor, we can conclude that

cos(θreach) ≥ t2(mw − 1) +mw + 1

2m2
wt

.

Further, by Lemma 3.3.13, cos(θbetween) ≥ t−1 where θbetween is the angle inscribed by the
wedge θbetween. Therefore,

cos(θ) = cos(θreach + θbetween)

≥ cos

(
arccos

(
t2(mw − 1) +mw + 1

2m2
wt

)
+ arccos

(
1

t

))
.

Replacing the definition of mw in (A.8) in the above results in a non-increasing function
of Bw. Since w is upper separable and not deletable, it must hold by the first result in
Lemma 3.3.9, that Bw < 2t−2 − 1. Replacing this last in the result yields exactly 2t−2 − 1
implying that (A.13) holds.

If mw(vkw) /∈ (mw,mw), then vkw is t−reachable using E, and it must hold that mw(vkw) ≤
mw since mw(vkw) ≤ mw by the definition of the upper separability factor, and mw(vkw) /∈
(mw,mw) by assumption. This implies that mw(v) ∈ (mw(vkw),mw(vk−1

w))) since v is not
t−reachable using E (implying that mw(v) ∈ (mw,mw) by Lemma 3.3.9), mw(vk−1

w) ≥ mw

(by the definition of the upper separability factor), and mw(vkw) ≤ mw. Therefore, v must
lie between the lines connecting the origin and vkw and connecting the origin and vk−1

w .
Therefore, θ1 ≤ θunreach + θbetween, θ2 ≤ θreach + θbetween where θunreach is the angle inscribed
by the wedge wunreach. It has already been established that cos(θreach + θbetween) ≥ 2t−2−1.
Further, using an almost identical argument, it is easily verified that cos(θunreach+θbetween) ≥
2t−2 − 1 using the fact that mw(vkw) ≤ mw and kl1 + l2 ≤ t||vkw|| by Lemma 3.3.9.

161

A.10 Lemma 3.3.17

Lemma A.10.1 (Distance Invariance). Let t ∈ (1,
√

2), and let Er denote the control
set at the beginning of iteration r of the for loop in Line 3 of Algorithm 3. Let w =
W [(x1, y1), (x2, y2)] be a BEW wedge that is bounded by Er. Then the following are true:

1. If w is shortest separable using Er, then for any other control set E ′ with v1
w /∈ E ′, it

holds that dE
′
(v1
w) ≥ dE

r
(v1
w).

2. If w is upper or lower separable using Er and mw(vkw) ∈ (mw,mw), then for all vertices
u ∈ wunreach, u 6= v, ||u||+ ||vkw − u|| ≥ dE

r
(vkw).

Proof. We prove the claims in the order in which they appear. Let E ′ be a control set
with v1

w /∈ E ′. We offer a proof by way of contradiction. Suppose that dE
′
(v1
w) < dE

r
(v1
w).

Then there must exist a vertex u ∈ Ln such that u ∈ E ′, u /∈ Er and such that the
path using E ′ to v1

w contains the relative motion u. Further, by the triangle inequality,
dE
′
(v1
w) ≥ ||u||+ ||v1

w−u||. Therefore, if E ′′ = {u, v1
w−u, (x1, y1), (x2, y2)}, then dE

′
(v1
w) ≥

dE
′′
(v1
w). Without loss of generality, we may assume that u ∈ w. Indeed, by Lemma

3.3.6, u ∈ w ∨ v1
w − u ∈ w otherwise a path in E ′′ to v1

w will not contain either of the
relative motions u, v1

w − u which contradicts our assumption. Therefore we declare u to
be the vertex in w. Note further that if u is on the boundary of of w, then it trivially
holds that dE

′′
(v1
w) ≥ dE

r
(v1
w) and a contradiction is reached. Therefore, we may assume

that u lies in the interior of w, implying that there must exist k1, k2 ∈ N≥1 such that
u = (k1x1 + k2x2, k1y1 + k2y2) by the definition of the interior of a BEW. Therefore,

dE
′′
(v1
w) =||u||+ ||v1

w − u||
=||k1x1 + k2x2, k1y1 + k2y2||+
||(1− k1)x1 + (1− k2)x2, (1− k1)y1 + (1− k2)y2||.

Assume (without loss of generality), that ||x1, y1|| = l1 ≤ ||x2, y2|| = l2 (an identical proof
exists if this is not the case). Then, the right hand side of the above inequality is minimized
for k1, k2 ≥ 1, u 6= v1

w, by k1 = 2, k2 = 1 yielding

dE
′′
(v1
w) ≥ ||2x1 + x2, 2y1 + y2||+ l1.

By Lemma 3.3.6, dE
r
(v1
w) = l1 + l2. Therefore, recalling that dE

′
(v1
w) ≥ dE

′′
(v1
w),

dE
′
(v1
w) ≥ dE

r

(v1
w) ⇐= ||2x1 + x2, 2y1 + y2||+ l1 ≥ l1 + l2

⇐⇒
√

(2x1 + x2)2 + (2y1 + y2)2 ≥ l2 ⇐=
√

4l21 + l22 ≥ l2

162

the last line of which holds for all l1, l2 ≥ 0. Therefore, dE
′
(v1
w) ≥ dE

r
(v1
w) as desired.

We now prove the second claim. We prove this claim for upper separable wedges using
E but omit proof for lower separable wedges as these proofs are almost identical. Therefore,
we must show that if w is an upper separable wedge using Er and mw(vkw) ∈ (mw,mw)
then for all u ∈ wunreach, dE

r
(vkw) ≤ ||u|| + ||vkw − u||. By Lemma 3.3.15, each vertex

that is not t−reachable using Er on iteration r of the for loop in Line 3 of 3 lies in a
boundary expressible wedge that is bounded by Er. Letting Wr denote the set of all
such wedges w′ that are upper separable using Er and such that vkw′ ∈ (mw′ ,mw′), we
observe that w ∈ W . To prove the result, we make the following interim claim: For each
w′ = W [(x′1, y

′
1), (x′2, y

′
2)] ∈ Wr,

|y′2||x′1| ≤ |x′2y′1|+ y
′2
1 + 1. (A.15)

For simplicity, we limit Wr to wedges in the first quadrant of R2. The assumption does
not alter the proof of the interim claim. We prove the validity of this interim claim by
induction on r. If t <

√
2, then when r = 0, W0 = {W [(1, 0), (0, 1)]}, and we observe that

(A.15) reduces to 1 ≤ 0 + 01 + 1. As an induction hypothesis, assume that (A.15) holds for
some r ≥ 0 for an arbitrary wedge w′ ∈ Wr. At iteration r+1 of the for loop in Line 3, let v
denote the vertex that is added to Er in line 5. If v /∈ w′ then w′ ∈ Wr+1 remains unchanged
and (A.15) continues to hold. If, however, v ∈ w′ then w′ /∈ Wr+1 since w′ is not bounded
by Er+1. By the definition of Wr, vkw′ ∈ (mw′ ,mw′) implying that vkw′ is not t−reachable
using Er (Lemma 3.3.9) and vkw′ is the shortest non t−reachable vertex in w′ using Er

(Lemma 3.3.14). Therefore, since v is the shortest vertex in Ln (and therefore in w′) that
is not t−reachable using Er, it must hold that v = vkw′ . Thus at the beginning of iteration
r + 1, w′ is split into two sub-wedges w′1 = W [(x′1, y

′
1), vkw′], w

′
2 = W [vkw′ , (x2, y2)]. Observe

that w′2 /∈ Wr+1 since the length of its lower boundary vertex exceeds that of its upper
implying that w′2 cannot be upper separable using Er+1 by the definition of upper separable
wedges in Definition 3.3.11. If w′1 is also not upper separable using Er+1, then interim
claim holds vacuously on iteration r + 1. Otherwise, (A.15) for the wedge w′1 reduces to
(ky′1+y2′)x′1 ≤ x

′2
1 +(kx′1+x′2)y′1+y

′2
1 which holds if and only if y′wx

′
1 ≤ x

′2
1 +x′2y

′
1+y

′2
1 which

is the induction assumption. Therefore, for any wedge w′ = W [(x′1, y
′
1), (x′2, y

′
2)] ∈ Wr at

any iteration r of the for loop in line 3 of Algorithm 3, the inequality (A.15) must hold.

As noted above, w ∈ Wr by construction ofWr. We offer a proof of result of the Lemma
by way of contradiction. For simplicity, we limit the discussion to the first quadrant of the
plane since an equivalent argument can be made to show the result in all other quadrants.
For the purposes of contradiction, assume that u ∈ wunreach, u 6= vkw but

||u||+ ||vkw − u|| < dE
r

(vkw). (A.16)

163

Since w is a BEW bounded by Er, it must hold that dE
r
(vkw) = kl1 + l2 where ||x1, y1|| =

l1, ||x2, y2|| = l2. Further, there must exist natural numbers k1, k2 such that u = k1(x1, y1)+
k2(x2, y2). Minimizing ||u||+ ||vkw−u|| over all u ∈ wbetween, u 6= vkw yields k1 = k+1, k2 = 1
and u = vkw + (x1, y1). Replacing this u in (A.16) yields

((Bw − 1)k + 1 +Bw)mw(v1
w) + 2k < 0, (A.17)

by the law of cosines and the definition mw(v1
w) = l2(l1)−1. Observe that (A.17) implies

that (Bw − 1)k + 1 + Bw < 0 implying in turn that the left hand side of (A.17) is a
decreasing function of mw(v1

w) and an increasing function of Bw. Note Bw must be a
decreasing function of y2 since larger values of y2 result in larger values of θw and therefore
smaller values of Bw = cos(θw). Further, mw(v1

w) must be an increasing function of y2

since l2 increases with y2 and mw(v1) = l2/l1. Therefore, the left hand side of (A.17) can
be no smaller than when y2 is at its maximum. By the interim claim, y2x1 ≤ x2y1 +
y2

1 + 1. Replacing this constraint in (A.17) and simplifying observing that Bw = (x1x2 +
y1y2)(l1l2)−1 (by the definition of the inner product) yields k ≤ 1/3 which is a contradiction.

A.11 Lemma 3.3.18

Lemma A.11.1 (Base Case For Inductive Proof). Let t > 1 and Ln a lattice. Let E t denote
the set of all minimal t−spanning control sets of Ln, and let E = {(0, 1), (1, 0), (−1, 0), (0,−1)}.
If t ≥

√
2 then E ∈ E t. Furthermore, if t <

√
2 then E ⊆ E∗ for all E∗ ∈ E t.

Proof of Lemma 3.3.18. Note that w = W [(1, 0), (0, 1)] is a BEW that is bounded by E.
Therefore, by equation (A.4) of Lemma 3.3.8, the t−error of any point u in Ln is given by

tE(u) =
1 +mw(u)√
1 +mw(u)2

because Bw = cos(π) = 0. Maximizing tE(u) with respect to mw(u) yields tE(u) ≤
√

2
implying that every vertex in w is t−reachable using E if t ≥

√
2. A similar argument can

be made if u lies in the second, third, and fourth quadrant of R2. Further, there cannot
be a smaller set E that t−spans Ln as this set would contain no more than 3 elements.

Further, there cannot be a smaller MTSCS as such a set would contain only one vertex
which would fail to span (let alone t−span) Ln ⊂ R2. Suppose now that t <

√
2. Suppose

164

that E∗ ∈ E t with E 6⊂ E∗. Suppose, without loss of generality, that (0, 1) 6∈ E∗. Then the
shortest path in E∗ to (0, 1) is at least as long as the path

(1, 1) + (−1, 0).

Therefore,

RE∗(0, 1) ≥
√

2 + 1

1
>
√

2 > t.

which is a contradiction.

165

Appendix B

Proofs of Results in Chapter 4

Figure B.1: Curvature profile of two curves in the set G. (Red): curvature of the curve
G(ps, κtop, κf ,∆ = s3). (Black): curvature of the curve G(ps, κtop, κf ,∆) for ∆ > s3.

Proof of Lemma 4.4.1. Consider a set of curves G. Let G(∆) : R≥s3 → G be the function
that sends values of ∆ ≥ s3 to the corresponding G3 curve in G. Let x(s,∆) y(s,∆),
θ(s,∆), κ(s,∆) denote the path state profiles of the curve G(∆) at arc-length s, and let
xf (∆), yf (∆), θf (∆), κf (∆) denote the final path states of G(∆). From Equations (4.1),
(4.12), we make the following observation:

θ(s,∆) =

θ(s, s3), if s ≤ s3

θ(s3, s3) + κtop(s− s3), if s3 < s ≤ ∆

κtop(∆− s3) + θ(s− (∆− s3), s3), if ∆ < s ≤ s6.

(B.1)

As implied by Figure B.1, if s6 is the final arc-length of the curve G(∆), then s6− (∆− s3)
is equal to the final arc-length of the curve G(s3). Therefore, we can conclude from (B.1)

166

that θf (∆) = κtop(∆− s3) + θf (s3). Setting this last to θg, and solving for ∆ completes the
proof.

Proof Of Theorem 4.4.2. This proof uses the notation of the Proof of Lemma 4.4.1. Given
a set of curves G, it can be shown from equations (B.1), and (4.1), that

θf (∆) =θf (s3) + κtop(∆− s3),

xf (∆) =x(s3, s3)− sin(θ(s3))− sin(κtop(∆− s3) + θ(s3))

κtop

+ cos(κtop(∆− s3))(xf (s3)− x(s3, s3))

− sin(κtop(∆− s3))(yf (s3)− y(s3, s3)),

yf (∆) =y(s3, s3)− − cos(θ(s3)) + cos(κtop(∆− s3) + θ(s3))

κtop

+ sin(κtop(∆− s3))(xf (s3)− x(s3, s3))

+ cos(κtop(∆− s3))(yf (s3)− y(s3, s3)).

(B.2)

Observe now that the shortest distance from the point xc = [xc, yc]
T given in (4.14) to

the line passing through (xf (∆), yf (∆)) whose slope is tan θf (∆), is given by

d(∆) =
xc tan θf (∆)− yc + yf (∆)− xf (∆) tan θf (∆)√

tan θf (∆)2 + 1
.

Replacing (B.2) in d(∆), yields a complete cancellation of the term ∆. The remaining
parameters κtop, s3,xc, etc., are identical for all members of G, thus we can conclude that
d(∆) is the same for all members of G as desired.

167

Glossary

G3 A curve is G3 continuous if it is thrice continuously differentiable with respect to arc-
length. 61, 109

Gk A curve is Gk continuous if it is k-times continuously differentiable with respect to
arc-length but not k+ 1-times continuously differentiable with respect to arc-length.
61

t−error A measure of the quality of a control set E. The worst case ratio of the distance
using E to a lattice vertex to the cost of the direct motion to that vertex taken over
all starts in a starting set and all lattice vertices. 36, 121

configuration A tuple of all of the states and inputs of a curve. 35, 59, 90, 118

configuration space The set of all possible configurations. 35, 91, 116

curve A k-times continuously differentiable function from an interval of the real line to
the plane. 61, 109

Demonstrations A set of trajectories proposed by a user. Each trajectory is between
known configurations. These trajectories can be obtained by monitoring a user as
they drive for a fixed amount of time. We do not assume that a user is able to provide
demonstrations that perfectly reflect their preferences. 9, 116

distance using E The cost of a path using E. 38, 95

global planner A global planner computes an initial trajectory between vehicles’ start
and goal configurations. This trajectory does not take the differential constraints
of the vehicle into account. The initial trajectory can be expressed as a sequence of
waypoints. The motion planning problem is then solved by the local planner between

168

global waypoints to produce a smooth trajectory that adheres to the differential
constraints of the vehicle. 1

local planner A local planner obtains a goal configuration – possibly a waypoint in a
larger motion – from the global planner as well as the current configuration of the
vehicle, and solves the motion planning problem between configurations. The solution
is used as a reference trajectory by the tracking controller. 1, 2

motion An equivalence class of trajectories. Here, the equivalence relation is defined as
the set of all tuples of trajectories such that the first trajectory can be rotated and
translated in R2 to produce the second trajectory. A motion is an abstraction of a
trajectory that may be rotated or translated to connect different configurations. 35,
60, 90, 118

path A function from an interval of the real line representing arc-length to a configuration
space. 36, 60

path using E A path using E from a starting vertex o ∈ O to a lattice vertex j ∈ L
is a minimal-cost path from o to j in the graph whose vertices are all of the lattice
vertices, whose edges are pairs of lattice vertices for which there exists a motion in
E taking the first to the second, and whose cost is the cost of those motions. 52

state An element that appears in the kinematic model of a curve but is not an input to
the model. 64, 90

trajectory A function from an interval of the real line representing time to a configuration
space. Uniquely defined by a path and a velocity profile. If the velocity profile has
constant unit speed, then the trajectory is equal to the path. 59, 112, 118

velocity profile A function from an interval of the real line representing arc-length to
the real line. Represents a rate of change of arc-length with respect to time. 60, 107

workspace A subset of R2. Typically used to define the boundaries of a motion planning
problem and/or a bounding box for a lattice. 35, 92, 116

169

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Structure & Summary of Contributions
	Chapter 2: Preliminaries
	Chapter 3: The MTSCS Problem for an Any-Angle Square Lattice
	Chapter 4: Tunable Trajectory Planner Using G3 Curves
	Chapter 5: High-Dimensional Lattice Planning with Optimal Motion Primitives
	Chapter 6: Learning Control Sets for Lattice Planners from User Preferences

	Related Work
	Chapter 3: The MTSCS Problem for an Any-Angle Square Lattice
	Chapter 4: Tunable Trajectory Planner Using G3 Curves
	Chapter 5: High-Dimensional Lattice Planning with Optimal Motion Primitives
	Chapter 6: Learning Control Sets for Lattice Planners from User Preferences

	Preliminaries
	Graph Theory
	Shortest Path in a Weighted Graph

	Differential Geometry & The Motion Planning Problem
	Lattice-Based Motion Planning & The MTSCS Problem
	Starting Set for a Lattice
	Lattice-Based Motion Planning with Starting Sets
	Selecting a Control Set: The MTSCS problem

	The MTSCS Problem for an Any-Angle Square Lattice
	Introduction
	Main Result
	Wedge Analysis
	Completeness, Solution Size, & Path Error
	Evaluation
	Computing a Control Set
	Any-Angle Path Planning

	Discussion

	Tunable Trajectory Planner Using G3 Curves
	Introduction
	Problem Statement
	Original Optimization Problem
	Adding Comfort Constraints & Velocity

	Approach
	Computing G3 Paths
	Single G3 Curves
	Connecting G3 Curves
	Connecting G3 curves with a Straight Line
	Connecting G3 curves with a G3 curve

	Computing Velocity Profiles
	Evaluation
	Setup
	Evaluation

	Discussion

	High-Dimensional Lattice Planning with Optimal Motion Primitives
	Introduction
	Main Results
	MTSCS Problem: MILP Formulation
	Motion Planning With a MTSCS
	Motion Smoothing

	Evaluation
	Memory
	Parking Lot Navigation
	Speed Lattice

	Discussion

	Learning Control Sets For Lattice Planners From User Preferences
	Introduction
	Problem Statement
	Approach
	User model
	Estimation of the loss function
	Main Results
	Computational Complexity
	Computing an optimal control set: MILP Formulation

	Evaluation
	Training Error
	Test Error

	Discussion

	Discussion and Future Directions
	References
	APPENDICES
	Proofs of Results in Chapter 3
	Lemma 3.3.6
	Lemma 3.3.7
	Lemma 3.3.8
	Lemma 3.3.9
	Lemma 3.3.12
	Lemma 3.3.13
	Lemma 3.3.14
	Lemma 3.3.15
	Lemma 3.3.16
	Lemma 3.3.17
	Lemma 3.3.18

	Proofs of Results in Chapter 4
	Glossary

