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Abstract

Pathologists examine stained specimens under a microscope to diagnose a multitude of
diseases. With the advancement of scanner technology in recent years, the entire tissue
glass slide can now be scanned and saved as a digital image known as a whole slide image
(WSI). The digitization of glass slides enables the use of digital image analysis tools to
evaluate WSIs. Machine Learning (ML) and, more specifically, Deep Learning (DL) has
piqued practitioners’ interest because they deliver cutting-edge results without the need
for feature engineering. However, the DL performance comes at a cost; training deep
models necessitates massive amounts of data that must be manually labeled by domain ex-
perts. Hand-labeled datasets take time and resources to create, especially when specialized
knowledge is required, as in medicine. As a result, practitioners are increasingly focusing
on techniques that require less supervision. Furthermore, due to existing hardware limita-
tions, high-dimensional digital slides impede the application of cutting-edge deep learning
models. As a result, most learning methods frequently require pixel-level annotation and
are best suited for simplified scenarios like working with small and manageable images.

In this thesis, two methods for representing WSIs with weakly labeled data will be
proposed to address the challenges of WSI representation learning in digital pathology.
First, a pipeline for learning WSI representation at low magnification is proposed. This
algorithm allows for the low-cost use of deep learning methods at the slide level. A WSI
is embedded into a fixed-length compact feature vector using a deep model, making it
suitable for computer vision tasks such as classification and search. A multitask multi-
instance learning paradigm based on Vision Transformers (ViTs) is also proposed to learn
visual descriptors by learning to predict gene expressions from H&E WSIs. Not only
does this approach connect the tissue morphology and transcriptomics domains, but it
also generates a WSI representation that taps into the wealth of information contained
in the molecular signature of the input. As a result, it is now possible to learn visual
representations using rich gene-level data as the ultimate source of biological information
while also providing a mechanism for translating visual knowledge to transcriptomics.

Finally, the proposed models have been trained and evaluated using renal cell cancer
subtyping as a case study. TCGA, a publicly available cancer repository, is used to train
the proposed models. The performance and superiority of the models are demonstrated by
comparison to state-of-the-art models developed for WSI classification, search, and gene
expression prediction. Lastly, the generalizability of the trained models was demonstrated
by testing them on an independent (external) test cohort.
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Chapter 1

Introduction

1.1 Motivation

The evaluation of biopsy samples by pathology is the gold standard for cancer diagnosis.
Pathologists traditionally have been using light microscopy to examine glass slides. As a
result of the increasing adoption of whole slide imaging, pathology is currently undergoing
a change. Remote primary diagnostic work, teleconsultation, workload efficiency, central
clinical review, image analysis, virtual training, and research are some of the prospects
of this transformation [104]. The massive digitized slide datasets were made possible
thanks to the whole slide imaging. The combination of big data produced by whole slide
imaging technology, Machine learning (ML), and computer vision algorithms opens up
a world of computational pathology possibilities. For instance, a Convolutional Neural
Network (CNN), and its various topologies surpassed all other traditional computer vision
algorithms in a wide range of clinical applications, including cancer subtyping [41], WSI
search [47], mitosis detection [113], and grading [15].

Data representation (or feature extraction) has a significant impact on the performance
of machine learning algorithms. Pattern recognition algorithms require extensive prepa-
ration pipelines and data transformations in order to enable successful object and scene
identification. Therefore, most of the research efforts in implementing machine learning al-
gorithms are devoted to designing robust and expressive representation [13]. In particular,
image representation is the footstone of high-level computer vision frameworks, regardless
of the task. As a result, establishing a crisp visual representation is crucial. However, due
to a lack of labeled data, hyper-dimensionality of images, polymorphism in pathology im-
ages, and the non-binary nature of the diagnosis, learning representations from pathology
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images is a daunting problem [50, 104]. Various learning schemes can be used depending
on the information available for the training set. An example of supervised learning is a
training set that has a collection of instances. Each example is labeled with the name of the
class to which it belongs. In addition, the objective of weakly supervised learning is to train
a model that can use coarse-grained (i.e., slide-level) annotation. Then infer fine-grained
(i.e., pixel/tile-level) labels using the trained model. Furthermore, a low-dimensional space
is created by transforming unlabeled raw data into a low-dimensional space that captures
the most key qualities of the input in unsupervised learning. On the other hand, trans-
fer learning methods are concerned with the transfer of information from one domain to
another [92].

Supervised learning. The classification, segmentation, and regression problems fall
under traditional supervised learning algorithms. A pixel-by-pixel prediction is made in
local-level classification tasks utilizing a small sliding window and annotation map. For
instance, Cireşan et al. [20] applied CNN based pixel prediction to detect mitosis in
Hematoxylin and Eosin (H&E) breast cancer histology images. An alternative approach
is a global-level task in which the model focuses on a tile-based classification approach
for WSI-level disease prediction. Cruz-Rao et al. proposed a simple CNN for detecting
invasive ductal carcinoma in breast cancer images [22, 24]. Later, they [23] suggested a
combination of CNN and adaptive sampling, as well as a gradient-based adaptive method,
to solve the computational complexity caused by a dense tile-wise prediction. Regression
models often focus on object detection and localization by regressing the likelihood of an
object’s central pixel. One of the applications for which regression models are suitable is
the detection of cells and their nuclei in histopathology images [70, 118].

Weakly supervised learning. The concept behind weakly supervised learning is to
take coarse-level annotations and infer fine-grained annotations automatically from them.
Because instance-level labeling is less expensive than pixel-level annotation, the weakly
supervised learning paradigm is well suited to many problems in the histopathology domain.
Multiple Instance Learning (MIL) is one type of weakly supervised learning. Each sample
in MIL is made up of a bag of instances and a label. In pathology, each WSI may be seen
as a “bag of tiles”. The WSI label might be primary diagnosis and/or primary site. The
MIL method can be used to learn to detect global (bag level), local (instance level), or
global-local (fusion of both) patterns in the bag, depending on the objective. For example,
Campanella et al. [16] developed a MIL paradigm in which only slide level diagnosis was
utilized to classify WSIs.
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Unsupervised learning. The objective of unsupervised learning is to learn critical in-
formation about the data’s inherent structure. These approaches are uncommon, as they
are among ML strategies that are mostly in their infancy (perhaps with exception of clus-
tering). Due to the possibility of mapping inputs into as many subsets as possible, the
task in unsupervised learning is ambiguous. Most of these methods maximize the data’s
probability distribution within certain constraints. Given the constraints, they are able to
narrow the solution space and form the required groupings. For example, Xu et al. [119]
employed sparse autoencoders to perform unsupervised nuclei detection in histopathology
images of breast cancer.

Transfer learning. The objective of transfer learning is to extract information from one
domain and apply it to another domain by loosening the requirement of the train and test
sets being independently identically distributed. For transfer learning in digital pathology
image analysis, models trained suing ImageNet images such as VGG [89], Inception [97],
ResNet [37], DenseNet [42], and a variety of other models are usually utilized. Riasatian
et al. [80] have shown that by training deep models utilizing ImageNet pre-trained weights
and large histopathology datasets such as TCGA, one can construct an exclusive feature
extractor more suitable for the pathology image domain.

Taking into consideration the properties of learning schemes, each has benefits and lim-
itations. Supervised learning shines when a big, high-quality expert-annotated dataset is
available. Transfer learning uses an existing well-trained model to transfer knowledge to a
domain of interest at a lower cost. Unsupervised learning, on the other hand, investigates
the underlying structure of data in order to extract and possibly distil knowledge from
it. However, specialist knowledge is still required for validation. Finally, weakly super-
vised learning uses vast amounts of weakly labeled data to learn and uncover meaningful
information in the data. As a result, weakly supervised methods lay in between fully
supervised and unsupervised techniques, reaping the benefits of both. When looking at
the broad picture, a weakly supervised setup may be ideal for the histopathology image
analysis problem since there are large digitized datasets that have been weakly labeled that
are publicly available.

Pixel-level annotated datasets are usually small and disease-specific. To give an exam-
ple, the Camelyon dataset [62] is comprised of hundreds of slides from metastatic breast
cancer patients, some of which include pixel-level annotation defining the metastatic ar-
eas. The TCGA dataset, on the other hand, has over 33,000 slides from more than 11,000
patients encompassing 25 anatomic sites and 32 cancer types. Each patient may contain
numerous slides, RNA-seq data, clinical data, and many more variables, making the TCGA,
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despite some deficiencies, a goldmine for cancer research. As a result, each learning method
is well-suited to a certain topic and data, whereas techniques with looser assumptions may
be used to a broader range of datasets (i.e., weakly supervised learning in comparison with
supervised learning).

Motivated by the advantages of weakly supervised learning and by having access to a
large dataset like TCGA, two methods for WSI representation learning are suggested in this
dissertation. In chapter 3 an efficient pipeline for WSI representation learning is proposed.
The suggested method is capable of learning relevant patterns at the tile level first. Then it
filters out irrelevant information such as background and ink marker. Eventually, an entire
gigapixel slide is represented in a fixed-length feature vector. All of this is accomplished
only through the use of slide-level diagnosis.

In Chapter 4, the gene expression is introduced as an extra modality to enforce the
model to learn diagnostically relevant representation for a slide constrained to recovering
bulk RNA-seq of the sample from the image. A MIL method is used to develop the
WSI representation learning and pixel-to-gene expression translation. In a multitask MIL
framework, a Transformer-based model is utilized to analyze a bag of samples in order
to predict both bulk RNA-seq and the primary diagnosis. Following that, the internal
representation is retrieved and utilized as the code for a gigapixel WSI. This model’s
performance is then compared to state-of-the-art techniques in the pixel-to-gene expression
and WSI representation learning methodologies for WSI classification and search.

Generalization is arguable the most critical attribute of many ML algorithms. An
external test cohort is required to evaluate the performance of any algorithm, especially in
medicine. As a result, all of the approaches proposed in this dissertation are compared to
their counterparts using a fairly big external dataset that includes the same kidney cancer
subtypes as TCGA subset used in this study.

1.2 Objectives

This work is part of a larger pilot project at Kimia Lab, University of Waterloo, dedicated
to developing a search engine for gigapixel histopathology images. A WSI search engine
can find comparable cases in the database, which can assist pathologists in reducing inter-
observer variability [104]. Moreover, unlike classification, image search does not make
a direct diagnostic judgment on pathologist’s behalf; rather, it searches for comparable
images and retrieves them, together with relevant metadata (i.e., pathology reports), and
presents them to the pathologist as decision support [47]. As a result, an AI-assisted
approach improves pathologists’ capacity to make more confident decisions efficiently.
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The objective of this thesis is to overcome the challenges of representing WSIs for
computational pathology. It also intends to develop an algorithm for learning WSI repre-
sentation by injecting the corresponding molecular signature, as well as linking the tissue
morphology and transcriptome domains.

1.3 Contributions

Two major deep frameworks are introduced in this thesis. The primary contribution of
the first model is the low-cost representation learning and embedding of WSIs. The main
contributions of the second method are three-fold. For representation learning from WSIs,
first, a weakly supervised method is suggested. Second, a multitask paradigm is used to
inject the molecular signature into the proposed model architecture to constrain visual
representation learning. Third, bulk RNA-seq can be predicted from H&E WSIs using the
final trained model.

1.4 Thesis Outline

The layout of this thesis is as follows. Chapter 2 discusses the background and relevant
work in the literature. It starts with some basic background knowledge on digital pathol-
ogy and transcriptomics. Following that, a summary of deep learning techniques in digital
pathology is presented. Finally, a brief background section discusses deep learning archi-
tectures used in this study. The third Chapter is devoted to a strategy for learning WSI
representation at low power. This Chapter contains parts on technique, data descriptions,
experiments, and findings. The technique for transcriptomic learning from H&E WSIs is in-
troduced in Chapter 4. This chapter contains the approach, data description, experiments,
and results. The Chapter 5 summarizes the thesis and identifies potential directions.
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Chapter 2

Deep Learning in Digital Pathology

2.1 Introduction

Pathology is the study of diseases’ causes and consequences via the examination of tissue,
cells, and body fluid. The procedure begins with the collection of a biopsy sample from
a suspicious tissue. The material is then cut into thin sections. The sample’s thin slices
are and stained as needed [67]. Finally, pathologists analyze stained specimens using a
light microscope, which has been widely the sole instrument available. Many attempts
to capture and store a digital version of glass slides have been made in recent years.
These experiments resulted in the development of whole-slide imaging and the first digital
scanners [74]. Researchers utilize digital image analysis algorithms to assist in activities
like diagnosis, prognosis, and knowledge discovery in the digital pathology era, thanks to
enormous databases of digitized slides made available by whole slide imaging technology.
Although digital pathology, in conjunction with computer vision and ML, has opened up
new avenues for histopathology image analysis, it also comes with its own set of problems.
The principal barriers include a lack of adequate labelled data, poly- and pleomorphism,
the non-boolean nature of the diagnosis, and the lack of transparency of current approaches
[104, 50, 12]. This chapter provides a brief outline of opportunities and challenges for Deep
Learning (DL) applications in digital pathology.
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Figure 2.1: This image demonstrates a diversity of details in multiple magnifications. From
left to right, the magnification increases. Image from [50].

2.2 Digital Pathology: Challenges and Opportunities

The introduction of whole-slide imaging sparked a surge in clinical, and research interest
in digital pathology [50, 92]. Acquisition, management, exchange, and interpretation of
pathology information such as slides, data, and a digital environment are all part of digital
pathology. To comprehend this perspective, one must first grasp the value and significance
of the histopathology slide. Histopathology glass slides have traditionally been utilized
for diagnosis because they are quick to obtain, less expensive than alternative molecular
profiling tests, and can be acquired in real-time during surgery [12].

Pathologists are trained to follow straightforward algorithmic decision criteria to stratify
patients into duplicable subgroups based on tumour type and degree of malignancy in
order to preserve consistency, and inter-observer agreement [26, 12]. Despite the fact that
these algorithms focus on binary and adequately distinct characteristics, inter-observer
variability endures even among well-practiced pathologists in an identical sub-specialty
[116, 57, 109]. This ambiguity encourages the use of expensive molecular tests to assist
pathologists in distinguishing between indistinct lesions [68, 12]. Despite the availability
of a variety of molecular tests, pathologists continue to rely on morphological inspection of
histopathology slides, and the application of conventional decision algorithms [12, 84]. As
a result, Computer-Aided Diagnostic (CAD) systems provide the possibility of reducing
ambiguity while increasing inter-observer concordance [99, 103]. DL-based techniques have
established the gold standard among all computer vision and ML algorithms available
for medical image analysis, outperforming nearly all conventional approaches in the field
[12, 92, 50]. However, DL algorithms encounter a number of problems, including high-
dimensional data, the multi-magnification nature of histopathology slides, and a lack of
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annotated data [104, 50]. Fig. 2.1 shows a section of a H&E WSI at different magnifications.
The visual information differs at each level of magnification due to the massive size of the
images.

The remainder of this chapter is organized as follows; Initially, the specific procedures
involved in the collection of digital pathology slides are described. Following that, the
collection of RNA-seq data is discussed and the value and relevance of molecular profiling.
Then, some applications of DL models for histopathology image processing that is already
available are discussed. Next, a general review of current state-of-the-art deep learning
approaches is presented.

2.2.1 Image Acquisition in Digital Pathology

The procedure for creating the tissue slide begins when a physician requests confirmation
of a diagnosis by histology after a physical examination, radiography, and/or laboratory
results [12]. There are several biopsy techniques available to collect a tissue sample, such as
fine-needle aspiration, needle biopsy, excision biopsy, or extraction of a lesion in its entirety
[12, 7]. The biopsy technique has a direct effect on the outcome of the diagnosis since the
size of the sample has a strong correlation with a more accurate diagnosis. The larger
sample size ensures that the cellular context is preserved, which is essential for a more
reliable and accurate diagnosis [12]. Following tissue collection, a pathologist examines,
measures, and trims the specimen, preparing it for future procedures.

Next, the soft, thick, and transparent tissue undergo several steps to prepare for visual
assessment. The specimen is submerged in a fixation solution. That prevents the cells from
degrading and the tissue from being changed by the microorganisms [12]. The fixed tissue is
then embedded in a hardening substance, such as paraffin wax to assist subsequent section-
ing. Fixation and sectioning are essential processes because they inhibit self-destruction,
preserve the tissue close to its living condition, and limit shape and volume changes in the
following steps [12]. Finally, a small glass sheet is placed over the tissue fixed on a glass
slide. This results in a uniform thickness and prevents the microscope lens from coming
into contact with the sample. Tissue preparation takes an average of 9 to 12 hours. After
preparation, the prepared glass slide can be digitized [12]. A tissue preparation workflow
is shown in 2.2.

Because the tissue is colourless, the tissue samples are stained to highlight cellular
components and structures. H&E staining is one of the most popular, affordable, quick, and
simple staining techniques [102, 117]. In H&E staining, the nuclei are stained purple with
hematoxylin, while the extracellular matrix and cytoplasm are stained pink with eosin [30].
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Fig. 2.1 presents a glass slide stained in H&E protocol. Alternative staining techniques
exist, such as Immunohistochemistry (IHC), which uses the principle of antibodies binding
particularly to antigens in biological tissues to selectively detect antigens (proteins) in
cells of a tissue sample [79]. Although IHC provides detailed answers, it necessitates a
more complex process and is more expensive. As a result, the H&E is regarded as a gold
standard staining method for both diagnostic and research, and more H&E datasets are
publicly available [92, 12].

Figure 2.2: Tissue slide preparation workflow. Image from [4].

2.2.2 Tissue Slide Digitization

The whole slide scanner is a computer-controlled optical microscope. These microscopes
have highly specialized cameras paired with sophisticated optical sensors capable of cap-
turing images as small as 0.25 micron per pixel [9]. A complete slide scanner typically
consists of a microscope with lens objectives, a light source, robotic parts for loading and
moving slides, digital cameras, a computer, and software for manipulating, managing, and
viewing pictures. An example of a digital tissue scanner is illustrated in Fig. 2.3. Most
whole slide scanners use tiling or a line-scanning procedure to produce the final image.
The final image is created by stitching and smoothing smaller scans using one of these
approaches [12].

The magnification and resolution notion is one of the most significant distinctions be-
tween light microscopy and digital pathology. The magnification is determined by multi-
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Figure 2.3: An example of a whole slide imaging scanner manufactured by Philips [5]. The
whole slide scanner is on the left, the image management software shown on the monitor
in the middle, and the operator holding glass slides on the right.

plying the power of the objective by the power of the eyepiece [12]. Due to the fact that
the image captured at the original size may be magnified or shrunk depending on the size
of the screen on which it is displayed, the notion of magnification does not apply to digital
pathology [12]. As a result, the resolution is determined by the objective used to scan the
slide. The resolution is expressed in micrometres per pixel. The resolution is referred to
as magnification in this dissertation.

The size of the digitized slides ranges from hundreds of megabytes to tens of gigabytes,
depending on the tissue size and scanning objective [115]. When compared to other medi-
cal imaging modalities, pathology WSI’s are much bigger in size. WSIs is stored using both
lossy (e.g., JPEG2000) and lossless (e.g., TIFF) compression techniques [12, 39]. Addition-
ally, some manufacturers employ the SVS format, which saves a WSI as a multi-layered
pyramid. Presently, digital pathology lacks a standardized and unified format comparable
to DICOM for digital radiography [115].
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2.2.3 Artifacts

In digital pathology, artifacts are irregularities in the generated tissue image. The artifacts
are introduced in the preparation and digitization steps and can compromise the quality of
the image analysis, and diagnosis [75]. Fixation, sectioning, and staining all can produce
artifacts. When the process is manual, artifacts are dependent on human skills; when it is
automated, they are dependent on human monitoring, machine maintenance, and solution
preparation [75]. Moreover, artifacts might be introduced throughout the digitization
process due to the slide scanner’s overall quality and resolution. Pathologists are trained to
recognize artifacts and either remove them or ignore them (sometimes they may order new
samples when artifacts are preventing reliable tissue inspection). While manual techniques
might be impervious to artifacts, automated approaches can be quite susceptible to them.
Thus, many preprocessing approaches are proposed to discover, improve, or eliminate these
components before the final algorithm is applied [82, 66, 18].

2.3 Transcriptomics

A gene is a DNA or RNA sequence of nucleotides that contain the code for the synthesis
of a gene product, which can be RNA or protein [3]. A visual example is depicted in Fig.
2.4. During gene expression, DNA is translated into RNA. The RNA might be functional
on its own or serve as a template for a protein that performs a specific function. Genes are
the building blocks of heredity, and the transfer of genes from one organism to its offspring
is the foundation of phenotypic trait inheritance. Multiple mutations can occur in the
sequence of a gene. These gene variations are known as alleles. Subsequently, the alleles
code for slightly different forms of the same protein, resulting in phenotypical differences.

To figure out what genetic process is at work when comparing normal and mutant
cells, one must look at changes in gene expression [84]. Each cell has chromosomes, which
carry genes. High-throughput sequencing reveals which genes are transcribed and in what
amounts. To put it another way, RNA-seq technology can be utilized to evaluate gene
expression in various cells and to figure out why the mutant cells behave the way they
do. Transcriptomics investigates at RNA levels across the genome in both qualitative and
quantitative perspectives [35]. Many cancers have been demonstrated to have significant
changes in gene expression as a result of mutations, and characterization of gene expression
aids in clarifying disease processes and prioritizing appropriate treatment options [85, 56].
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Figure 2.4: In both human, animal, and plant cells, chromosomes are thread-like structures
found inside the nucleus. Proteins and a single molecule of deoxyribonucleic acid (DNA)
make up each chromosome. DNA, which is passed down from one generation to the next,
includes the particular instructions that give rise to the diversity of life on Earth. A gene
is represented by a sequence of nucleotides in DNA that is included in the chromosome.
Image from [3].

2.3.1 RNA Sequencing

The process to generate RNA sequences, short RNA-seq, has three steps, namely prepare a
sequencing library, sequencing, and data analysis [6, 73, 55]. Isolating the RNA, splitting
it into small fragments, turning the RNA fragments into double-stranded DNA, adding
sequencing adapters, PCR amplification, and performing quality control is the first step
[6]. The second step is sequencing. The DNA fragments are arranged vertically in a flow
cell grid. The RNA-seq machine is equipped with fluorescent probes that are colour-coded
according to the nucleotide type they can bind to [6]. These probes are then attached
to the first nucleotide in each sequence [6]. The machine takes a picture of the flow cell
from above after the probes are connected [6]. The first nucleotide in each sequence can
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be identified using the image. The machine then removes the colour from the probes [6].
The new colour-coded probes bind to the next nucleotide in the sequence, and the process
repeats until all nucleotides are recognized [6]. In the end, filtering away garbage readings1,
matching high-quality reads to a genome and calculating the number of genes per gene is
the third, and the last step in the RNA-seq process [6].

Both the genome and the reads are split into small parts in order to align them to
the genome [6]. By slicing the sequences into small fragments, reads that are not precise
matches to the reference genome can be aligned. The read segments are then compared to
genomic fragments. The chromosome and location of the read may be identified using the
reference genome segment [6]. A matrix of genes versus the number of reads per sample is
created following the count of reads per gene. In the “bulk” RNA-seq, the term “sample”
refers to a pool of cells (usually six million cells) that can either contain normal, and disease
samples [6]. “Single-cell” RNA-seq, on the other hand, treats each cell as a unique sample.

RNA-seq or gene expression data is commonly provided in a normalized format, such as
FPKM. The normalizing with regard to sequencing depth and gene lengths are represented
by the “Million” and “Kilobase” portions, respectively. A significant number of low-quality
reads or varying levels of concentration on the flow cell may be the cause for normalizing
the different amounts of reads in each sample. A schematic of RNA sequencing steps is
shown in Fig. 2.5.

2.4 Deep Learning Applications in Digital Pathology

Advances in DL have re-defined benchmarks in several fields by surpassing other ML prede-
cessors. There is no exception to this rule in the field of digital pathology; DL methods can
attain clinical expert accuracy [10] in digital pathology. Historically, hand-crafted methods
needed subject-matter expertise and advanced engineering in order to generate a strong
data representation. On the other hand, deep learning algorithms can directly analyze raw
data. Due to the fact that hand-crafted techniques were often designed specifically for a
task, they did not generalize well to other tasks or datasets. Deep features have demon-
strated superior performance compared to handcrafted features in histopathological image
analysis [44, 90].

DL applications are classified into two broad categories, clinical and non-clinical prob-
lems. Clinical tasks include the identification of histologic primitives such as cells and
nuclei and predictive modelling of indicators such as cancer diagnosis, categorization, and

1Garbage reads includes (1) reads with poor nucleotide calls and (2) reads that are chemical artifacts.
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Figure 2.5: A diagram of RNA sequencing steps (Illumina protocol): (a) preparing an
RNA-seq library, (b) sequencing, and (c) aligning the reads to a genome [6].
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survival analysis. On the other hand, there are inevitable byproducts of CAD applications
that are not clinical in nature, such as stain normalization and synthetic picture creation.
The current dissertation is primarily dedicated to developing deep learning algorithms for
the learning representations from gigapixel histopathology images. First, an overview of
studies for the WSI representation is provided. Following that, a body of work for the use
of transcriptome data in histopathology image analysis is discussed.

2.4.1 Whole Slide Image Representation

Given the challenges and complexities of gigapixel image analysis, researchers typically
make assumptions in order to solve simpler versions of the problem. The most common
method for processing WSIs is to combine the results of smaller tiles2 taken from the whole
image. Faust et al. [29] fine-tuned a deep CNN to classify 13 different tissue and lesion
classes common in surgical specimens of the central nervous system. Coudray et al. [21]
trained a deep CNN to differentiate lung cancer subtypes at 5× and 20× magnification.
Riasatian et al. [80] trained a CNN using 1000 × 1000 pixel high-cellularity tiles at 20×
from 32 cancer subtypes available on TCGA to construct a visual extractor, particularly
for general histopathology image representation. Hou et al. [41] suggested a tile selection
scheme to reduce sample redundancy while working at high magnifications. Bejnordi et al.
[11] proposed a framework for training a stacked CNNs on both high and low magnification
tiles. Kalra et al. [46] devised an approach, called “Yottixel”, for representing WSIs using
a handful of high magnification tiles sampled from distinctive colour regions. Later they
applied the Yottixel search engine [46] on the TCGA WSIs and presented their findings
regarding WSI search in [47].

On the other hand, there are few works on WSI analysis at the gigapixel level, namely
representing the WSI in its entirety. Graham et al. [33] classified WSIs using features that
are extracted from the probability maps of a trained CNN. Kong et al. [51] suggested a
method based on 2D LSTM networks to embed the spatial context into the representation.
Lin et al. [61] proposed, “ScanNet”, a new neural network architecture that can be trained
using larger regions. Wang et al. [114] presented a weakly-supervised approach to WSI
representation based on ScanNet [61]. Tellez et al. [101] embedded all tiles of a WSI
and then learn a representation based on the latter tensor of the WSI tiles. Shaban et
al. [86] proposed a framework, that applied multitask learning, namely classification, and
segmentation, on a tensor of spatially ordered tile embeddings, while utilizing attention. As
an alternative to these methods, Lu et al. [64] proposed “CLAM”, a DL weakly-supervised

2Also known as patches.
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approach that uses attention-based learning to automatically detect high diagnostic value
sub-regions across the entire slide, while also employing instance-level clustering over the
identified representative regions to refine the embedding space.

Overall, the vast majority of WSI representation schemes either omitted spatial infor-
mation or were computationally costly. Furthermore, the majority of the offered algorithms
do not give a technique for representing WSI as they are making a decision based on patch
aggregation.

2.4.2 Transcriptomic Data: An Extra Source of Information

DL models are commonly applied in digital pathology to answer clinical questions such as
prognosis and diagnosis. However, there have been a few attempts to connect morphological
characteristics to molecular signatures [84, 60, 36, 100]. Models that can relate histological
characteristics with mutations in organs such as the lung and prostate have been shown in
recent studies [21, 83]. Mutations and epigenomic modifications are known to cause large
variations in gene expression. Therefore, characterization of the gene expression can be
vital for diagnosis and treatment [85]. Even though more affordable whole transcriptome
sequencing tools for studying gene information have been established, they are still a long
way from being widely used in medical centers [48]. On the other hand, the recovery
of molecular features from H&E stained WSIs is one of the faster and less expensive
options. The capability to predict gene expression using WSIs, either as an intermediate
modality or as an outcome, has been demonstrated to aid diagnosis and prognosis [84, 100,
36, 45]. Previous studies have drawn attention to gene expression prediction using WSI;
however, the nature of WSI and available labels still impose challenges. In particular,
sample selection and WSI representation is an open topic that is often handled arbitrarily.

He et al. suggested ST-Net based on DenseNet-121 architecture for predicting 250 genes
from 224× 244 tiles [36]. They used a dataset including spatial transcriptomics associated
with 30,612 spots on 68 tissue sections from 23 patients [36]. Tavolara et al. presented a
method for predicting gene expression using WSIs [100]. To detect a condition in mice,
they employed predicted gene expression values as an intermediary modality [100]. They
trained Gradient Boosting Tree (GBT)s to identify five predictive gene transcripts. Then,
they created several bags of randomly selected thousands of 32 × 32 tiles to train their
model. To discover an embedding for a bag of features linked with a WSI, they first used
a CNN to embed all tiles. The attention weights for each instance (tile embedding) were
then computed, and the final embedding was generated by combining the weighted average
of all embeddings of the tiles. After that, the model’s last fully connected layer projected
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the embedding to five gene expression values. Finally, Schmauch et al. [84] proposed a
Multi-layer Perceptron (MLP) and a training paradigm for learning bulk RNA-seq from
WSIs. First, they embedded 8,000 randomly selected tiles of each WSI using ResNet-50
[37]. Next, they clustered 8,000 tiles into 100 clusters. By taking the average of the tiles
in each cluster, they created the second type of bag of instances from the WSIs. They
trained their model using pairs of WSI bags and the bulk RNA-seq.

Because this is a new area of study, there has not been as much research done on it
as elsewhere. Currently available solutions either call for tile-level information or involve
a significant computing expense. However, no one has yet imposed molecular information
while it is learning a visual representation for a WSI.

2.5 Deep Learning Architectures

This section is comprised of a brief introduction of CNN architectures and popular models
that are used for image recognition tasks. Followed by CNNs, Transformers are introduced.
In the end, some notable and state-of-the-art Transformer architectures for the image
recognition task are presented. Overall, this section provides background information on
crucial deep learning models widely utilized in the field and is discussed multiple times
throughout this work.

2.5.1 Convolutional Neural Networks

CNNs, which were created by LeCun et al. in 1989 and are named after a linear pro-
cess called convolution, is one of the most successful neural networks [58]. The adjective
convolution refers to all networks with at least one convolutional layer. For a real-valued
function, the convolution operation is defined as

s(t) =

∫
x(a)w(t− a)da, (2.1)

and can also be written as

s(t) = (x ∗ w)(t). (2.2)
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Here, x and w refer to the input and kernel, respectively, in both equations 2.1 and 2.2,
whereas s refers to the feature map. Due to the fact that the equations 2.1 and 2.2 can
only take integer values, discrete convolution may be expressed as

s(t) =
∞∑

a=−∞

x(a)w(t− a). (2.3)

Furthermore, assuming that the input and kernel are both zero except for a finite number
of points, the concept of convolution may be expanded to include multidimensional arrays,
commonly known as tensors. For example, for a two-dimensional image, I and kernel K,
the convolution is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.4)

or

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n).. (2.5)

The primary purpose for flipping in the convolution formula is to keep the commutative
property. Although in many ML library implementations, an alternate “cross-correlation”
is employed instead:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.6)

An example of 1D and 2D convolution is depicted in Fig. 2.6.

A large number of weights connect neurons in traditional fully-connected neural net-
works, resulting in hyper-parameters for learning. The same parameters are shared by
more than one function in the CNN, which means the network has tied weights together,
resulting in the same set of parameters at all locations. The term “weight sharing” refers
to this architectural attribute [32].

The latter situation, equivariant representations, results in an equivariance to transla-
tion attribute in the convolution as a result of the particular kind of parameter sharing.
Equivariance is a characteristic of a function in which a change in one input causes the
function’s output to change in the same way. Convolution is equivariant to translation, but
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Figure 2.6: Diagram of 1D and 2D convolution operation. The stride is how much the filter
should be moved at a time. The stride is shown with red arrows in the figures. (a) 1D
convolution operation for kernel size 3, stride one and without padding. (b) 2D convolution
operation for kernel size 3, stride (2,2) and without padding.

not to transformations like scaling, or rotation [32]. When the objective is to determine if
a feature exists or not, rather than its precise position, translation invariance is desirable.

Each convolution block has three stages: convolution or affine transform, non-linearity
function3, and pooling [32]. The pooling stage replaces each value with summary statis-
tics, like maximum or average, in a rectangular neighbourhood around that value. This
maintains the invariance to the small translations and adds robustness to the noise. It will
be statistically efficient when the assumption is correct. Also, pooling over the outcome of
separately parametrized convolutions can introduce invariance to specific transformations
[32]. Moreover, pooling also decreases memory requirements by reducing the size of the
output of each convolution layer.

3e.g., the rectifier or Rectified Linear Unit (ReLU) activation function [69].
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2.5.2 Notable Convolutional Neural Network Architectures

Various CNN designs have been introduced in recent years, contributing to the progress of
computer vision and DL. For handwritten digit recognition, LeNet-5, commonly known as
the CNN architecture, was presented by LeCunn et al. in 1998 [59]. The top-5 error rate
of image classification in the “ImageNet” competition was one of the key benchmarks that
offered a good measure during these years.

AlexNet. In 2012, Krizhevsky et al. presented “AlexNet”, the winner of “ImageNet”
that year, which outperformed the second-best accuracy by %9 [54]. They used two reg-
ularisation approaches to prevent overfitting, in addition to using %50 dropout on fully
connected layers and conducting data augmentation. After the non-linearity stage of the
first two convolution layers, they included “local response normalization” [54].

GoogLeNet. Szegedy et al. presented “GoogLeNet”, a novel design that uses sub-
networks and inception modules to reduce the top-5 error rate in ImageNet to under
%7, resulting in 10 times fewer parameters than its predecessors [97]. “GoogLeNet” can
capture patterns at different scales because of the inception modules, which contain many
convolutional layers with varying kernel sizes [97].

VGG. The VGG design, presented by Simonyan et al., has a number of layers ranging
from 16 to 19, making it deeper than other known structures at the time [89]. They also
used 3 × 3 kernels with a stride of one to reduce the number of parameters in the model
as it was improved [89].

ResNet. He et al. devised another notable structure, known as “ResNet”, which had
152 layers and was the winner of “ImageNet” in 2015 [37]. They were able to train such a
deep network because of the introduction of skip connections. The skip connections allow
the network to proceed even when several layers have not yet begun to learn while also
speeding up the learning process [37].

DenseNet. Huang et al. introduced the “DenseNet”, which demonstrated that deep
networks might achieve greater accuracy while being efficient when the connections between
layers are shorter [42]. Unlike conventional neural network setups, in which an L-layer
network has L connections, DenseNet feeds all previous layers’ feature maps into each layer
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(b) A deep DenseNet with three dense blocks.

Figure 2.7: DenseNet architecture. (a) a dense block diagram, in which each convolution
layer has a skip connection to all successor convolution layers. (b) a DenseNet model that
consist of several dense blocks. (a) and (b) are from [42].

as an input. This approach overcomes the vanishing gradient problem while simultaneously
improving feature propagation and lowering the number of parameters [42]. Figure 2.7
depicts a dense block and a three-layer DenseNet model.

2.5.3 Transformers

A Transformer is an attention-based architecture that was originally designed for natural
language processing. It was initially introduced in “Attention is all you need” [112]. Since
the release of the Transformers, several projects, such as Google BERT and OpenAI’s
GPT, have been built on its basis and have single-handedly surpassed prior benchmarks
[25, 77]. Due to its architecture, A Transformer excels in processing sequential data,
such as text. Transformers are built on “Encoder” and “Decoder” layers at their heart.
Certain Transformer variants do not have a Decoder at all. An Encoder is made of a “Self-
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Attention” and a “Feed-forward” layers. In addition to Self-Attention and Feed-forward
layers, a Decoder has an additional “Encoder-Decoder Attention” layer. There are also
residual skip connections and normlayers in the “Encoder”. The “Attention mechanism”4

is responsible for the Transformers’ ground-breaking performance. The original Encoder-
Decoder design for Transformer, presented in [112], is depicted in Fig. 2.8.

RNNs, as well as their close relatives, LSTMs and Gated Recurrent Unit (GRU)s, were
once the usual choice for processing sequential data (see Fig. 2.9). However, they have
two main flaws: (1) they are limited in their ability to handle lengthy dependencies, and
(2) they are slower since they process data sequentially. In the same way, CNNs have
limits in terms of long-range dependencies. On the other hand, transformers overcome
these restrictions by processing sequential data in parallel and capturing all dependencies,
regardless of sequence length.

Attention

While processing each instance, attention allows the model to focus on closely connected
components of the sequence. The Attention layer accepts three parameters as input: Query,
Key, and Value. The Attention score is then calculated by combining these variables using
the “Scaled Dot-Product Attention” formula

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (2.7)

where dk is the embedding size. Fig. 2.10a shows a diagram of scaled dot-product at-
tention. In the Encoder’s Self-attention unit, the input sequence pays attention to itself.
Therefore, the Encoder’s input is passed to all three parameters, Query, Key, and Value.
The Encoder’s Self-attention generates an encoded representation for each instance in the
input sequence, including the Attention scores.

Transformers leverage various “Attention scores” for each instance to manage numer-
ous nuances and semantics in a sequence. Each Attention processor is referred to as an
Attention Head, which is repeated multiple times in parallel. This is known as the “multi-
head attention”. It increases the discriminating strength of its Attention by merging many
similar Attention calculations. Fig. 2.10b shows a multi-head attention unit. A multi-head
attention unit can be summarized as

4The Deep Learning Attention mechanism is based on the notion of directing the model’s focus, and it
pays more attention to particular variables when processing data.
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Figure 2.8: The original Transformer [112] including both Encoder and Decoder blocks for
a sequence-to-sequence task (i.e., language translation). First, the input sequence (i.e., a
sentence) is embedded and supplied into the Encoder. The Encoder takes the input and
converts it into an encoded version of the input sequence. The start-of-sequence token
is given to the Decoder. The Decoder stack processes its input along with the encoded
representation from the Encoder and creates the encoded version of the target sequence.
The embedding is converted to a vector of probabilities corresponding to the next instance
(i.e., a word) in the target sequence in the output layer. The new target sequence is added
to the start-of-sequence token and processed until it reaches the end-of-sequence token.
Image from [112].

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO, (2.8)
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(a) An unrolled RNN.

(b) The repeating module in an LSTM.

Figure 2.9: A diagram of RNNs. (a) An RNN is made up of many copies of the same
network, each sending a message to the next. As a result, the output must be calculated
in a sequential manner. (b) underlying LSTM operations and how output is handled at
each iteration. (a) and (b) are from [72].

where

headi = Attention(QWQ
i , KW

K
i , V W

V
i ). (2.9)

Consider a sequence-to-sequence language translation model. Given the input sentence
“The cat drank the milk because it was hungry,” self-attention should give semantic in-
formation so that the words are connected with the proper terms in the sentence. To
appropriately translate the word “it” in the sentence, attention assists the model in fo-
cusing on the closely related terms in the text. For example, in the given sentence, “it”
refers to the “cat,” not the “milk.” There might also be nuances in the sentences. When
translating the word “it,” for example, both “cat” and “hungry” should be considered. The
model’s multi-head attention allows it to collect many connections if necessary. Fig. 2.11
shows a graphic representation of how a self-attention model might assign scores to dis-
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(a) Scaled Dot-Product Attention. (b) Multi-Head Attention.

Figure 2.10: (a). (b) Multi-head attention is made up of many attention layers that work
in parallel. (a) and (b) from [112].

tinct instances in a sequence. The same self-attention notion is applicable to any sequential
format, such as a collection of image tiles or a sequence of features.

2.5.4 Transformers in Vision

First introduced in [27], Vision Transformer (ViT)s have taken the computer vision by
storm. The paper’s major objective was to show that, if altered to deal with data from the
visual domain, Transformer could compete with some of the most high-performing CNNs.
The vanilla ViT splits the image into tiles, flattens, and projects them into an embedding
space to produce tile embeddings. Then a learnable class token is concatenated with the
embeddings. Next, the positional embedding5 is added to these embeddings. Ultimately,
Encoder processes the outcome tensor to deliver the desired task. ViT’s performance was
only acceptable when trained on smaller datasets (i.e., ImageNet with 1M images) while
being state-of-the-art when trained on large datasets (i.e., JFT-330M with 300M images).
Later in Data efficient image Transformers (DeiT), the Transformers were shown to be
competitive with CNNs utilizing major data augmentation, stochastic depth, and hard-
label distillation [107]. Multi-head self-attention in bottleneck blocks of the last stage of
a ResNet [93], Conditional Positional Encodings [19], Transformer in Transformer design

5A collection of learnable vectors that allows the model to retain its position.
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Figure 2.11: A dummy example of how multi-head attention can capture semantics in
sequential data. For the given input sentence, “The cat drank the milk because it was
hungry,” attention helps the model focuses on related instances to seize the semantics in
the sequence.

[34], and deeper ViTs utilizing class-attention layers [108] are only a few examples of the
advances accomplished in recent of years.
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Chapter 3

Learning Whole Slide Image
Representation at Low Power

3.1 Motivation

Pathology WSIs are often comprised of a variety of distinct areas that may or may not
include useful information for any given task. Due to their massive scale, these images may
contain a broad range of patterns, ranging from local to global textures. State-of-the-art
methods like as CNNs cannot be easily applied to WSIs because of current hardware and
memory limitations. Extracting information from these images involves several steps and
is, understandably, difficult [71, 104]. An overview of existing solutions is presented in
Chapter 2, Section 2.4.1.

In this chapter, a novel approach is demonstrated based on DL that can be used for
classification and search of RCC subtypes WSIs. The proposed framework is capable of
learning WSI patterns using CNNs at a low cost at 2.5× magnification. The application of
low magnification WSIs has been reported by other researchers previously. For instance,
WSIs at 2.5× [76], 4× [114], and 5× [21, 46] are used by other researchers for wide range
of ML and computer vision applications in pathology. The proposed model can learn task-
specific features efficiently. It can also represent a large image with a fixed-length compact
representation useful for a fast similarity search in image databases or other applications.
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3.2 Method

This section contains all of the algorithm’s stages. First, a description of preprocessing will
be provided. An algorithm for localizing tissues is then discussed. Representation learning
comes next. Finally, the WSI embedding is presented.

3.2.1 Stain Normalization

Colour differences in sample preparation, raw material use, staining methods, and slide
scanners can all affect visual examination and computer-aided image analysis. As a result,
several approaches for normalizing image stain have been presented in recent years [106].
In the realm of digital pathology, the influence of stain normalization on image processing
methods and CNNs has been investigated [96]. In this study, a stain normalization tech-
nique proposed by Macenko et al. [65] is deployed. The colour of WSIs is normalized at
2.5× magnification to reduce stain variation and to enhance the colour appearance. An
example of stain normalization is illustrated in Fig. 3.1.

(a) Original thumbnail (b) Color normalized thumbnail

Figure 3.1: An example of stain normalized thumbnail using [65].

3.2.2 Tissue Localization

The next step in the algorithm is to localize the tissue region. The benefits of localizing
tissue are twofold. First, tiles can be extracted from the informative part of the WSI
and avoid background pixels. Second, the same masks can be used to confine the deep
feature maps extracted from the CNN model to important information. The tissue masks
computed from WSIs by applying the following steps:
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(a) Thumbnail (b) Mask

Figure 3.2: An example of the tissue localization algorithm’s outcome. (a) a tissue 2.5×
thumbnail and (b) the outcome binary mask delineating the tissue.

1. First, red, green, and blue pen markers1 were filtered out using a set of fuzzy rules[1].

2. The SD was calculated within the three colour channels. All pixels with SD< 5 were
considered as background regions.

3. The resulting primary mask is then closed using morphological operation with a 3×3
structuring element. All pixels associated with the background region are set to white
(i.e., [255, 255, 255] for a pixel in a 24-bit RGB image).

4. By using RGB to HSD (hue, saturation, and density), colour space transformation
[110], the density channel of each image is evaluated. By applying a global threshold,
0.05, the rest of the background pixels are transformed to white pixels on the mean
filtered density channel.

5. All white pixels are assigned to the background pixels, while the rest of the pixels
are considered tissue pixels.

An example of the tissue localization algorithm is included in Fig. 3.2.

When all WSIs and their tissue masks had been preprocessed automatically, they are
then visually examined for quality control. Visual inspection was put in place in order to
ensure that the automatic preprocessing stage did not include any low-quality occurrences
(i.e., WSIs extensively contaminated with artifacts). Automated and manual processes

1manual markings on glass slides
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were combined to guarantee reliable and high-quality data for the next stage of the algo-
rithm.

3.2.3 Representation Learning

A visual feature extractor is a cornerstone of any image recognition task. It extracts key
patterns from an image and quantifies them as a feature vector. With the introduction of
DL, CNNs outperformed handcrafted features in image recognition tasks by a considerable
margin [54]. Therefore, the DenseNet-121 model [42] is used as the visual feature extractor
in this work. The DenseNet-121 is frequently utilized in image recognition applications
[78, 46, 36]. DenseNet-121 is made up of many convolutional, pooling, and fully connected
layers, similar to most CNNs.

The following steps are taken to train a DenseNet-121 [42] on the histopathology data.
First, the tissue localization algorithm takes preprocessed 2.5× thumbnails to compute the
tissue mask. The tissue tiles are then extracted from the thumbnail on a grid using the
tissue mask from the previous step. The deep model is initialized with ImageNet weights.
Finally, the model is trained on a dataset of small tiles to learn relevant patterns associated
with different cancer subtypes.

3.2.4 Representing An Entire Whole Slide Image

After training a DenseNet-121 [42] model using tiles associated with the cancer subtypes,
the model has learned how to represent salient morphology patterns at 2.5× magnification.
Consequently, the model can be applied to extract feature maps from an image of any
size. Although the proposed method can facilitate feature extraction from the entire WSI,
the feature maps may still contain redundant information (i.e., background pixels in filter
responses). As a result, the feature maps are masked using tissue masks that were extracted
earlier from each WSI.

First, each tissue mask is downsampled to match the height and width of the associ-
ated feature map. Then, positive values are maintained within the tissue region, and the
remainder of the values are set to zero for each feature map. Each feature map now depicts
how each area of the WSI has a particular pattern. Finally, to produce a fixed-length fea-
ture vector related to the WSI, each feature map is replaced with its average value. In this
study, each WSI has a feature-length of 1024 since DenseNet-121 has a last convolutional
layer with 1024 feature values. The outline of the proposed algorithm is shown in Fig. 3.3.
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Figure 3.3: The outline of the proposed algorithm for encoding WSIs. (a) shows the train-
ing step in the algorithm. In this step, a DenseNet-121 [42] is trained using 224× 224 tiles
extracted from 2.5× WSIs in the training subsets to classify different RCC subtypes. The
DenseNet-121 [42] is initialized with ImageNet weights. (b) depicts how the model encodes
an entire WSI at 2.5× magnification. First, a 2.5× WSI is passed into the model, and the
feature maps are calculated. Then, the feature maps are masked using the associated tissue
mask. As the WSI goes through a series of convolution operations with a stride larger than
one, the ultimate size of the feature map is smaller than the actual WSI. As a result, the
tissue mask is resized first. Finally, an average of the positive values that are inside the
tissue region within each feature map is taken to calculate the ultimate feature vector that
represents the WSI.

3.3 Data

According to the most recent global cancer statistics report, in 2020, there were an esti-
mated 431, 288 new cases of kidney cancer and 179, 368 deaths globally [95]. The RCC is
the most common kidney cancer that is responsible for 85% malignant cases [87]. From a
single malignant phenotype to a heterogeneous group of tumors, our knowledge about RCC
has evolved over time [87]. Among all RCC histologic subtypes, ccRCC, Papillary Renal
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Cell Carcinoma (pRCC), and Chromophobe Renal Cell Carcinoma (crRCC) make almost
75%, 16%, and 7% of the whole RCC cases, respectively [87]. RCC subtypes differ in their
histology, molecular characteristics, clinical outcomes, and therapeutic responsiveness as
a result of this heterogeneity. For instance, because the 5-year survival rate differs across
different subtypes, proper subtype diagnosis is critical [98]. All methods in this dissertation
are applied on RCC slides to identify the subtypes using search and classification.

This section includes detailed information about the public and private datasets used
in this chapter. First, the TCGA dataset is introduced, and its associated statistics are
provided. Next, the external test cohort from the Ohio State University is presented in
detail.

3.3.1 TCGA Kidney Dataset

The data used in this study came from the TCGA [2]. The H&E-stained Formalin-Fixed,
Paraffin-Embedded (FFPE) diagnostic slides were selected. The retrieved cases included
three subtypes, ccRCC, ICD-O 8310/3, crRCC, ICD-O 8317/3, and pRCC, ICD-O 8260/3.
The data was split case-wise into train (80%), validation (10%), test (10%) sets, respec-
tively. In other words, each patient only belonged to one of the sets. A summary of TCGA
dataset used in this chapter is presented in Table 3.1.

Table 3.1: TCGA kidney dataset splits for training, validation and testing.

Train Validation Test
Subtype Slides Cases Slides Cases Slides Cases
ccRCC 393 390 47 47 48 47
crRCC 95 86 10 10 13 10
pRCC 222 208 28 26 27 25

3.3.2 The Ohio State University Kidney Dataset

This is an internal (private) dataset used to evaluate the internal representation of the
model. The pathology department’s surgical pathology files were examined for consecutive
cases of renal cell carcinoma classified as ccRCC, crRCC, or pRCC. The dataset was
created at the end of the search, and it contained 141 instances of renal cell carcinoma.
The WSIs from ccRCC, crRCC, or pRCC were 48, 44, and 49, respectively. Each patient
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had one representative cancer slide that was examined by a board-certified pathologist2

before being scanned at 20× utilizing an Aperio XT scanscope (Leica biosystems, CA).
The board-certified pathologist reviewed the WSI images and validated the classifications
a second time to guarantee the image quality and correctness of the diagnosis.

Ethics statement. This study was approved by the Ohio State University institutional
research board. Informed consent was obtained from all individual patients included in the
study. All the data was de-identified using an honest broker system.

3.4 Experiments and Results

A 25%, 50%, 75%, and 100% of the cases are randomly selected from the training set to
create four different subsets. The hybrid approach was applied to preprocess the data.
After preprocessing the dataset, no manual intervention was needed. The model is trained
using tiles of size 224 × 224 × 3 extracted at 2.5× magnification level for each subset.
The validation set was used for error estimation throughout the training. The network
parameters are set to the best parameter set attained in training on the ImageNet dataset.
The kidney cancer tiles from ccRCC, crRCC, and pRCC subtypes in the training set are
used to optimize all weights. The backpropagation algorithm guided by the cross-entropy
loss function and the Adam optimizer [49] is used to update all parameters of the network.

The performance of the proposed technique is assessed in two scenarios, namely clas-
sification and search. In WSI classification and search, the method is compared against
state-of-the-art methods [64, 46]. All methods were evaluated on the same test set, and
their performance was measured using established criteria. The “weighted F1 score” is
used to compare the proposed technique with [64] in the classification experiment. The
F1 scores are determined for each label, and the number of true cases then weighs the
average. The P@K is used as a metric for the WSI search experiment. P@K is the number
of relevant results among K retrieved cases [8]. Also, Average Precision@K (AP@K) is
defined as the mean of P@i for i = 1, . . . , K.

3.4.1 Experiment 1: Tissue Localization and Dataset Size Effect

First, the models trained with various training sets were used to compute P@K on the
TCGA test set for the WSI search. First, following Section 3.2.4, all test WSIs are em-

2Anil V. Parwani, MD, Ph.D., MBA
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bedded using the model. Next, the distance matrix is computed for each query WSI and
returned the K nearest WSIs as the search results to identify the top-K instances for search.
The distances between two feature vectors were calculated using the Pearson correlation.
To avoid obtaining samples from the same patient in the results, a “leave-one-patient-out”
strategy is used for the search. The outcomes for masking feature maps are also included.
Table 3.2 summarizes these findings. As it is depicted in Table 3.2 overall P@K value in-
creased proportionally to the size of the training set. Also, masking feature maps enhanced
and stabilized the P@K outcomes when more cases were retrieved (from P@3 to P@10).
According to Table 3.2, masking increases AP@10 from 0.873 to 0.906.

Table 3.2: The impact of different training dataset sizes and masking feature maps on
P@K using TCGA test set.

Precision
Training set Methods @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

25% NM 0.89 0.84 0.80 0.78 0.77 0.75 0.73 0.73 0.72 0.70
M 0.86 0.85 0.84 0.83 0.83 0.82 0.81 0.80 0.80 0.80

50% NM 0.85 0.85 0.83 0.82 0.80 0.78 0.77 0.76 0.76 0.74
M 0.88 0.88 0.88 0.87 0.87 0.85 0.83 0.82 0.81 0.80

75% NM 0.86 0.89 0.87 0.85 0.83 0.83 0.81 0.80 0.79 0.79
M 0.85 0.87 0.89 0.90 0.89 0.89 0.88 0.88 0.88 0.87

100% NM 0.94 0.94 0.90 0.89 0.87 0.86 0.85 0.84 0.83 0.81
M 0.90 0.93 0.93 0.91 0.91 0.91 0.90 0.90 0.89 0.88

NM and M are corresponding to “not masked” and “masked” approaches, respectively.

3.4.2 Experiment 2: Whole Slide Image Search - TCGA Dataset

For the second experiment, the performance of the method was tested against Yottixel
described in [46]. To construct a more extensive search database for the WSI search, first,
the samples that were left out of the training set were added to the test set. It was checked
that the left-out set and the training set do not share patients. As a result, while training,
the model has not seen any of the slides in the search database. Then, the proposed method
was used to embed all samples in the search database.

For visualization, the t-SNE method is used to reduce the dimensionality of the WSI
embeddings [111]. t-SNE is a dimensionality reduction approach that is especially well
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suited for the display of high-dimensional datasets [111]. The t-SNE method is divided
into two phases. To start, t-SNE creates a probability distribution across pairs of high-
dimensional objects, assigning greater probabilities to comparable items and lower prob-
abilities to dissimilar points. Next, t-SNE forms a similar probability distribution over
the low-dimensional map’s points and minimizes the Kullback–Leibler Divergence (KL di-
vergence) between the two distributions with regard to the map’s point locations. While
the initial algorithm’s similarity measure is based on the Euclidean distance between ob-
jects, this may be modified as needed [111]. Fig. 3.4 shows the two-dimensional t-SNE
embeddings of the samples in the search databases for various models. The method could
represent various RCC subtypes in distinct clusters, as illustrated in t-SNE diagrams in
Fig. 3.4. The suggested method was compared with the Yottixel search engine [46] in
terms of WSI retrieval over the search datasets.

The P@K diagrams for three RCC subtypes for both methods are shown in Fig. 3.5.
The SDs are shown in the diagrams by horizontal lines, indicating that Yottixel [46] used a
random tile selection strategy in the WSI representation process. The Yottixel results are
the outcome of ten independent runs, with the mean and SDs used to create the graphs.
In the RCC subtype WSI search, it is shown that proposed technique performs superior.
However, it must be acknowledged that Yottixel is designed as a universal search engine
and has been tested for all TCGA anatomical sites and their subtypes. Finally, top-3
searches for the TCGA test dataset was included in the qualitative evaluation of the WSI
search framework in Fig. 3.6.

Subtype
ccRCC
crRCC
pRCC

(a)

Subtype
ccRCC
crRCC
pRCC

(b)

Subtype
ccRCC
crRCC
pRCC

(c)

Subtype
ccRCC
crRCC
pRCC

(d)

Figure 3.4: The two-dimensional t-SNE embedding of WSI features. (a)-(d) are the two-
dimensional t-SNE embedding for excluded samples from the 25%, 50%, 75%, and 100%
subsets of the training set alongside the test set, respectively.
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Figure 3.5: P@K for the proposed method and Yottixel [46]. The first row is P@K diagrams
for the proposed method. The second row is the P@K diagram for Yottixel. The SD of
ten runs of Yottixel [46] is shown by vertical lines on the diagram. From left to right,
each column includes diagrams for excluded samples from the 25%, 50%, 75%, and 100%
subsets of the training set alongside the test set, respectively. Each column has a fixed
range for P@K to provide an easier visual comparison.

3.4.3 Experiment 3: WSI Classification - TCGA Dataset

For the third experiment, the framework’s performance was investigated against CLAM [64]
in a classification task. The weighted F1 scores of different approaches on the TCGA test
set are reported in Table 3.3. The first two approaches, namely Patch Level Aggregation
(PLA) and Patch Probabilities Aggregation (PPA), are tile-based methods for predicting
WSI labels based on tile-level labels. The model was used to estimate probabilities for
tiles of size 224 × 224 × 3 in the test dataset for tile-based models. The bulk of the tile
labels in a WSI are used to compute the WSI label in PLA. In other words, the predicted
label for WSI was chosen from the class with the most tiles. However, in PPA, the average
of all tile probabilities in a WSI was considered, and the WSI label based on the class
with the highest average. More significantly, because the method converts a WSI into a
fixed-length feature vector, various classifiers could be applied directly on the WSI features.
Thus, different strategies were deployed to do this, namely Logistic Regression (LR) and
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Figure 3.6: The top three search results for queries related to different RCC subtypes from
the TCGA search dataset. The images with a light blue tag are the query WSIs, while the
correct and the wrong retrievals are shown in green and red tags, respectively. A variety
of similar cases show the method’s robustness in terms of different colours, shapes, sizes,
and the number of tissue segments. For visualization purposes, all images are resized to a
fixed-sized square. So, the size of the WSIs may vary.

GP. The embedded WSIs in the training set are used to train all classifiers. Also, the F1
score on the test set using the approach described in [64] is reported. In terms of weighted
F1 score, all approaches based on the trained model outperform CLAM [64], as shown in
Table 3.3.

The micro ROC curves are drawn and AUC are provided alongside their associated CIs
for different classification strategies, as shown in Fig. 3.8. It can be concluded that the GP
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Table 3.3: The weighted F1 score of WSI classification using different approaches consid-
ering different training subsets.

% of training set used (number of slides)
Methods 25 (176) 50 (354) 75 (531) 100 (710)
PLA 0.84 0.91 0.93 0.95
PPA 0.85 0.90 0.92 0.95
LR 0.84 0.90 0.93 0.94
GP 0.86 0.90 0.94 0.94
CLAM [64] 0.63 0.50 0.69 0.66

classifier trained with WSI-level embeddings had the best overall performance, as reported
in Table 3.3 and depicted in Fig. 3.8. The GP classifier’s confusion matrices are shown
in Fig. 3.7. It can be seen that, according to the confusion matrices, that increasing the
number of training samples enhanced the performance of the algorithm.

3.4.4 Experiment 4: WSI Search - External Validation

A private dataset from the Ohio State University is used to assess better the generalizability
of the method beyond the TCGA dataset. The WSI search performance is assessed on 141
WSIs from the Ohio State University dataset. In Table 3.4, the P@K for the framework
is provided alongside Yottixel [46]. To demonstrate the benefits of the steps incorporated
in the suggested approach, the search results for the DenseNet-121 [42] with ImageNet
weights are presented as well. The proposed approach exceeds alternative methods by a
substantial margin, as demonstrated in Table 3.4. The top-3 searches are included for the
external dataset from the Ohio State University in the qualitative evaluation of the WSI
search pipeline in Figure 3.9.

Table 3.4: The P@K for WSI search in Ohio State University dataset. Due to the selection
process in Yottixel [46], the values reported here have SD under 2% for ten independent
runs.

Precision
Methods @1 @2 @3 @4 @5 @6 @7 @8 @9 @10
Proposed method 0.85 0.80 0.78 0.78 0.76 0.75 0.75 0.74 0.74 0.73
DenseNet-121 0.76 0.71 0.68 0.65 0.64 0.64 0.62 0.61 0.59 0.59
Yottixel [46] 0.78 0.76 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.66
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Figure 3.7: Confusion matrices for GP classifier trained on TCGA training set WSI embed-
dings and tested on TCGA test set WSI embeddings. (a)-(d) are the confusion matrices
for 25%, 50%, 75%, and 100% subsets of the training set, respectively.

3.4.5 Experiment 5: WSI Classification - External Validation

For the last experiment, the external dataset is used to test the performance of the classi-
fication algorithms mentioned in the preceding sections. The GP classifier (the suggested
approach) generated the best AUC among all other strategies, according to the ROC curves
in Fig. 3.11. The confusion matrix for the GP classifier, as well as the two-dimensional
t-SNE representations of the WSIs, are displayed in Fig. 3.11.

39



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

PLA (area = 0.962, CI = 0.945-0.983)
PPA (area = 0.962, CI = 0.945-0.983)
LR   (area = 0.966, CI = 0.949-0.986)
GP   (area = 0.973, CI = 0.959-0.990)
CLAM (area = 0.810, CI = 0.760-0.865)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PLA (area = 0.982, CI = 0.971-0.996)
PPA (area = 0.981, CI = 0.971-0.995)
LR   (area = 0.979, CI = 0.965-0.999)
GP   (area = 0.980, CI = 0.967-0.997)
CLAM (area = 0.800, CI = 0.748-0.856)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PLA (area = 0.982, CI = 0.970-0.998)
PPA (area = 0.983, CI = 0.972-0.998)
LR   (area = 0.984, CI = 0.973-0.999)
GP   (area = 0.989, CI = 0.982-0.999)
CLAM (area = 0.859, CI = 0.816-0.908)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PLA (area = 0.989, CI = 0.981-1.000)
PPA (area = 0.990, CI = 0.981-1.000)
LR   (area = 0.993, CI = 0.987-1.000)
GP   (area = 0.994, CI = 0.989-1.000)
CLAM (area = 0.815, CI = 0.765-0.869)

(d)

Figure 3.8: ROC curves and AUC values for different classification approaches. (a)-(d)
are the confusion matrices for 25%, 50%, 75%, and 100% subsets of the training set,
respectively. The AUC’s CI are reported for all classifiers.

3.4.6 Activation Map Visualization and Interpretability

Along with the phenomenal success of deep neural networks, there is rising skepticism over
their black-box nature. Interpretability is a desirable quality for deep networks to become
strong tools in many sensitive disciplines such as medical image analysis [120]. Visualization
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Figure 3.9: The image depicts the top three search results for queries related to different
RCC subtypes from the Ohio State University dataset. The images with a light blue tag
are the query WSIs, while the correct and the wrong retrievals are shown in green and
red tags, respectively. A variety of similar cases show the method’s robustness in terms
of different colours, shapes, sizes, and the number of tissue segments. For visualization
purposes, all images are resized to a fixed-sized square. So, the size of the WSIs may vary.

of convolutional activation maps is one method for compensating the lack of interpretability
in deep learning. Visualization of the CAM is previously utilized for pathology images for
visual validation of the features learned by a deep CNN [28]. By comparing pathologist3

annotations with patterns that are relevant to the model, the interpretability of the model is
demonstrated. To do so, first, the most important features were selected by computing the

3Ricardo Gonzalez, MD
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Figure 3.10: Two-dimentional t-SNE embeddings of the external dataset.
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(b) Confusion matrix.

Figure 3.11: Classification performance on the external dataset. (a) ROC curves and AUC
values for all classifiers. The CI for all classifiers are reported in front of the AUC in the
figure. (b) the confusion matrix for the GP classifier.

Mutual Information (MI) between the training set WSI features (continuous variables) and
class labels (discrete variable). MI between two random variables is a non-negative number
that indicates how dependent the variables are on each other. It is zero if and only if two
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random variables are independent, while larger values indicate more dependence between
them. As stated in [53] and [81], the employed function uses nonparametric approaches
based on entropy estimates using k-nearest neighbors distances. Both techniques are based
on a concept that was first stated in [52].

In this experiment, the MI values ranged from 0.68 to 0. Then, those deep features
were selected that had MI greater than 0.5. Out of 1024 features, a subset of 82 features
was selected. Because the number of features was reduced, it was easy to explore each
one visually, one at a time. Fig. 3.12 depicts the CAM corresponding to a deep feature
in the model that complies with the pathologist’s annotation. There is a high degree of
consistency between the annotated area and the heatmap, demonstrating the suggested
algorithm’s interpretability. According to Fig. 3.12, the model seeks a particular pattern
associated with the diagnosis while excluding irrelevant data and artifacts.

3.5 Conclusions

A pipeline is presented for representation learning for kidney WSIs. It was shown that by
utilizing only slide-level labels and no extra annotations, the method achieves better per-
formance in WSI multi-class classification and search in comparison with state-of-the-art
algorithms. It was demonstrated that the method enhances data efficiency and generaliz-
ability over an independent test cohort. The method learns relevant textural information
for RCC subtyping at 2.5× magnification. Choosing a magnification of 2.5× helps bal-
ance the computational cost while still obtaining essential information at both the cell and
structural levels. At test time, the technique processes the WSI in a single step, whereas
competing approaches require tens of thousands of tiles to cover the WSI at 20× [64]. In
addition, unlike methods that rely on tile selection for WSI representation, a fixed-length
vector is created to characterize each instance. The latter benefit allows us to minimize
the number of comparisons at retrieval time significantly. It also assists in the removal of
variance in the outcomes by dealing with the unpredictability caused by sample selection.
Overall, the pipeline provides a more efficient and accurate approach for encoding gigapixel
kidney WSIs, which can be utilized to design and train classifiers and search engines.
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(a) A WSI thumbnail.

(b) The annotated WSI.

(c) The CAM visualization.

Figure 3.12: Interpretability and visualization of the CAM. (a) a ccRCC WSI from the
TCGA test set, (b) annotated WSI by the pathologist, and (c) the CAM for a deep feature.
The activated regions in (c) are in good agreement with the most relevant regions marked
by the pathologist in (b). The model concentrated on the most important portions of the
image and disregarded irrelevant regions and artifacts.
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Chapter 4

Transcriptomic Learning for
Representing Whole Slide Images

4.1 Motivation

In this chapter, tRNAsformer1, a DL model for end-to-end gene prediction and learning
WSI representation at the same time, is introduced. tRNAsformer employs transformer
modules built on the attention mechanism to gather information required for learning to
represent WSIs. To train the model, kidney WSIs, as the primary site, and their related
RNA-seq data have been gathered from The Cancer Genome Atlas (TCGA) public dataset.
For WSIs, the findings related to gene prediction and internal representation are presented
in this chapter. Finally, the proposed model has been tested using an external kidney
cancer dataset from the Ohio State University to verify its generalization.

4.2 Methods

In this section, first, gene expression and WSI preprocessing steps are discussed in detail.
Next, the suggested architecture for tRNAsformer is explained in Section 4.2.3.

1tRNAsformer sounds like t·r·n·a·sfor·mr.
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4.2.1 Gene Expression Preprocessing

The Fragments Per Kilobase of transcript per Million mapped reads Upper Quartile (FPKM-
UQ) files contained 60,483 Ensembl gene IDs [43]. The genes with a median of zero across
all kidney cases were excluded. As a result, the final gene expression vector was of size
31,793. Other studies have adopted the same strategy to improve the interpretability of the
results [84]. The a→ log10(1+a) transform was used to convert the gene expressions since
the order of gene expression values changes considerably and can impact mean squared
error only in the case of highly expressed genes [84, 100].

4.2.2 WSI Preprocessing

The size of the digitized glass slides may be 100, 000× 100, 000 in pixels or even larger. As
a result, processing an entire slide at once is not possible with present technology. These
images are commonly divided into smaller, more manageable pieces known as tiles. Further-
more, large WSI datasets are generally weakly labelled since pixel-level expert annotation
is costly and labour-intensive. As a result, some of the tiles may not carry information
that is relevant to the diagnostic label associated with the WSI. Consequently, MIL may
be suitable for this scenario. Instead of receiving a collection of individually labelled exam-
ples, the learner receives a set of labelled bags, each comprising several instances in MIL.
For making bags of instances, the first step is to figure out where the tissue boundaries are.
Using the algorithm described in Chapter 3, Section 3.2.2, the tissue region was located
at the thumbnail (1.25× magnification) while the background and the marker pixels were
removed. Tiles of size 14 by 14 pixels were processed using the 1.25× tissue mask to discard
those with less than 50% tissue. Note that 14 by 14 pixel tiles at 1.25× is equivalent to
area of 224× 224 pixels at 20× magnification.

The k-means algorithm is deployed on the location of the tiles selected previously
to sample a fixed number of tiles from each WSI. The value of k was set to 49 for all
experiments in this chapter. After that, the clusters are spatially sorted based on the
magnitude of the cluster centers. The benefit of spatially clustered tiles is twofold; (1)
the concept of similarity is more likely to be true within a narrow radius [88, 31], and
(2) clustering coordinates with two variables is computationally less expensive than high-
dimensional feature vectors. The steps of the clustering algorithm are shown in Fig. 4.1.

After sampling from the clusters, a bag of samples including 49 tiles was generated.
Each slide is sampled 100 times and to generate 100 bags. This is done to reduce the ran-
domness in the bagging procedure. Random sampling works as an augmentation technique
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(a) WSI thumbnail (b) tissue mask (c) k-means clusters

Figure 4.1: An example of clustering for creating a bag of tiles from a WSI.

for training. It also helps in the incorporation of uncertainty during testing. Finally, every
tile was embedded using a DenseNet-121 model with ImageNet weights [42]. Each bag
reduces the dimension of each WSI to Rk×d, where k and d are the numbers of clusters
and number of the deep features2, respectively. Given the number of slides in the TCGA
dataset, about four million 224 × 224 × 3 tiles were selected and embedded to form bags
of instances needed to train and evaluate the tRNAsformer model.

4.2.3 The tRNAsformer Architecture

The tRNAsformer is made of L standard transformer encoder layers [27] followed by
two heads, namely the classification and the gene prediction head. Fig. 4.2 depicts the
architecture of the proposed method. The Transformer Encoder learns an embedding (also
known as the class token) for the input by treating it as a sequence of feature instances
associated with each WSI. It learns internal embeddings for each instance while learning
the class token that represents the bag or WSI.

The classification head, which is a linear layer, receives the WSI representation c. Next,
the WSI representation is projected using a linear layer to the WSI’s score ŷ. tRNAs-
former then uses cross-entropy loss between the predicted score ŷ and the WSI’s true label
y to learn the primary diagnosis. The use of the Transformer Encoder and the classification
head enables the learning of the WSI’s representation while training the model.

Considering a bag X = [x1,x2, . . . ,xk], where xi ∈ Rd, i = 1, . . . , k are the embedded
tiles by DenseNet-121, an L-layer standard Transformer can be defined as

2For instance, DenseNet-121 has 1024 deep convolutional features right after the last pooling layer.
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z0 = [xclass; x1E; x2E; . . . ; xkE)] + Epos, E ∈ Rd×D, Epos ∈ R(k+1)×D (4.1)

z′` = MSA(LN(z`−1)) + z`−1, ` = 1, . . . , L (4.2)

z` = MLP(LN(z′`)) + z′`, ` = 1, . . . , L (4.3)

c = LN(z0
L), (4.4)

ŷ = L(c), (4.5)

where MSA, LN, MLP, L, E, and Epos are multi-head self-attention, layernorm, multi-layer
perceptron block (MLP), linear layer, tile embedding projection, and position embedding
(for more information see [27]). The variables E and Epos are learnable. The layernorm
applies normalization over a minibatch of inputs. In layernorm, the statistics are calculated
independently across feature dimensions for each instance (i.e., tile) in a sequence (i.e., a
bag of tiles). The multi-layer perceptron block is made of two linear layers followed by a
dropout layer. The first linear layer has Gaussian Error Linear Units (GELU) activation
function [38]. The embedding is projected to a higher dimension in the first layer and then
mapped to its original size in the second layer. Fig. 4.2b shows the structure of a MLP
block in a Transformer Encoder.

The remaining internal embeddings are passed to a dropout layer followed by a 1D
convolution layer for the gene prediction head. The gene prediction head uses a dropout
layer and 1D convolution layer as the output layer similar to the HE2RNA model introduced
in [84]. However, the first two layers, which were two 1D convolution layers responsible
for feature extraction in HE2RNA, were replaced with a Transformer Encoder to capture
the relationship between all instances. As the model produces one prediction per gene per
instance, the same aggregation strategy described in [84] was adapted for computing the
gene prediction for each WSI. In particular, Schmauch et al. sampled a random number n
at each iteration and calculated each gene’s prediction by averaging the top-n predictions
by tiles in a WSI (bag) [84]. They suggested this approach acts as a regularization technique
and decreases the chance of overfitting [84]. As there were 49 tile embeddings in each bag,
n was randomly selected from {1, 2, 5, 10, 20, 49}. For a randomly selected n during
training, gene prediction outcome can be written as

s = CONV1D(z1:end
L ), (4.6)

S(n) =
n∑

i=1

si

n
, (4.7)
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where z1:end
L ∈ RD×k, s ∈ RD×k, and S(n) ∈ Rdg are the internal embeddings excluding

the class token, the tile-wise gene prediction, and slide-level gene expression prediction,
respectively. During the test the final prediction S is calculated as an average of all
possible values for n as

S =
k∑

i=1

S(i)

i
. (4.8)

The mean squared error loss function is employed to learn gene predictions.

Finally, the total loss for tRNAsformer is computed as

LTotal(θ) = Lclassification(θ) + γLprediction(θ) + λLregularization(θ), (4.9)

=
1

B

B∑
i=1

(−yilog(ŷi) + γ|yg
i − Si|) + λ ‖θ‖2

2 , (4.10)

where θ, λ, γ, B, yg are the model parameters, weight regularization coefficient, hyper-
parameter for scaling the losses, number of samples in a batch, and true bulk RNA-seq
associated with the slides.

4.3 Training and Evaluation

Training settings for training tRNAsformer models. To begin, TCGA cases are
split into 80%, 10%, and 10% subsets for the training, validation, and test sets. Each
case was associated with a patient and could have contained multiple diagnostic WSIs or
RNA-seq files. The 100 bags were sampled from each WSI. As a result, the training set
comprised of 63,400 bags (see Table 4.2).

The tRNAsformer’s internal representation size was set to 384. The MLP ratio and
the number of self-attention heads were both four. The tRNAsformer was trained for 20
epochs with a minibatch of size 64. The AdamW was chosen as the optimizer with a starting
learning rate of 3×10−4 [63]. The weight regularization coefficient was set to 0.01 to avoid
overfitting. The reduce-on-plateau method was chosen for scheduling the learning rate.
Therefore, the learning rate was reduced by ten every two epochs without an improvement
in the validation loss. The scaling coefficient γ was set to 0.5. The last dropout layer’s
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Figure 4.2: The tRNAsformer model architecture – (a) a standard Transformer Encoder
comprises layernorm, multi-head attention, multi-layer perceptron block, and residual skip
connections. Because it is a multi-head self-attention module, the first layernorm’s output
embedding is provided to the multi-head attention as the query, key, and value. Each
model can have L blocks of Transformer Encoder. The classification head transforms the
internal representation to the number of classes, whereas the gene prediction head maps
it to the number of genes. (b) a detailed diagram of multi-layer perceptron block (MLP).
The letter D refers to the size of internal representation in the Transformer Encoder, and
D′

D
is referred to as MLP ratio.
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(b) Internal schematic of how data flows in tRNAsformer.

Figure 4.3: A diagram showing how tRNAsformer works. (a) 49 tiles of size 224×224×3
selected from 49 spatial clusters in a WSI are embedded with a DenseNet-121. The outcome
is a matrix of size 49×1024 as DenseNet-121 has 1024 deep features after the last pooling.
Then the matrix is reshaped and rearranged to 224 × 224 matrix in which each 32 × 32
block corresponds to a tile embedding 1×1024. (b) applying a 2D convolution with kernel
32, stride 32, and 384 kernels, each 32 × 32 block has linearly mapped a vector of 384
dimensional. Next, a class token is concatenated with the rest of the tile embeddings, and
Epos is added to the matrix before entering L Encoder layers. The first row of the outcome,
which is associated with the class token, is fed to the classification head. The rest of the
internal embeddings that are associated with all tile embeddings are passed to the gene
prediction head. All parts with learnable variables are shown in purple.
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Table 4.1: The number of parameters and one epoch’s wall clock processing time for
tRNAsformer and HE2RNAbb models. When the minibatch is set to 64, the processing
time is the wall clock time for one epoch of training or validation.

Processing time (s)

Model Number of parameters Training Validation
tRNAsformerL=1 14,429,876 128 61
tRNAsformerL=2 16,204,340 133 60
tRNAsformerL=4 19,753,268 146 61
tRNAsformerL=8 26,851,124 173 64
tRNAsformerL=12 33,948,980 205 65
HE2RNAbb1024 34,687,025 335 81

probability was set to 0.25. The values for the model with the lowest validation loss are
reported in Section 4.5. All experiments are conducted using a single NVIDIA GeForce
RTX 2080 SUPER graphic card. The desktop’s CPU was Intel(R) Core(TM) i9-10900X.

Training settings for training MLP model. Another model was trained based on
the MLP architecture described in [84] for fair comparison. The fully connected layers were
replaced with successive 1D convolutions with kernel size one and stride one to slide data
due to practicality in the MLP design [84]. A dropout layer is applied between successive
layers, and the activation function was ReLU. The model based on MLP design suggested
in [84] is referred to as HE2RNAbb

3 as it was trained on TCGA training set used in this
dissertation. The HE2RNAbb model is made of three 1D convolutional layers. The first
two layers each contained h input and output channels, whereas the last layer had the
same number of output channels as the number of genes. In other words, h is the size of
the model’s internal representation. The h was set to 1024 for HE2RNAbb1024. The model
was trained for 20 epochs using AdamW optimizer and a starting learning rate of 3× 10−4

[63]. If no improvement is observed for the validation loss for two epochs, the learning rate
was reduced by 10. The minibatch size was set to 64. The values for the model with the
lowest validation loss are provided. The number of parameters of each model in Table 4.1
for comparison. The wall clock time for a single epoch for training and validation is also
provided in the same table as the number of parameters.

For the evaluation of the model, 100 bags from each test WSI in TCGA and external
dataset were created, similar to the training set.

3bb stands for backbone
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4.4 Data

This study uses the TCGA (public) and the Ohio State kidney (private) datasets. The
TCGA dataset is divided into train, validation, and test subsets, as described in Chapter
3. In addition to slides, bulk RNA-seq data from TCGA is obtained and utilized to train
and assess the models. The data description is included below in section 4.4.14. Finally,
the Ohio State University slides are used as an external test cohort. The details for the
external validation data can be found in Chapter 3, Section 3.3.2.

4.4.1 TCGA Kidney Image-Gene Dataset

First, the TCGA dataset was searched for the kidney diagnostic FFPE glass slides and
kidney cases RNA-seq files, separately. Then the results of both searches were compared
against each other to find instances with at least one glass slide and one bulk RNA-seq
file. The detailed information regarding the cases is included in Table 4.2. The FPKM-UQ
were selected as the transcriptomic data. The FPKM-UQ normalization technique is based
on a modified version of the FPKM approach. The following is the formula for calculating
FPKM-UQ values:

FPKM-UQ =
RMg × 109

RM75 × Lg

, (4.11)

where RMg is the number of reads mapped to the gene, RM75 is the number of reads
mapped to the 75th percentile gene in the alignment, and Lg is the length of the gene in
base pairs. Each FPKM-UQ file is a text file with two columns. The first column contains
the Ensembl ID, which serves as a unique identifier for each gene. The second column
includes the above-mentioned normalized value for the number of reads per gene.

4.5 Experiments and Results

Several experiment series were carried out to quantify the performance of the proposed
model, which can predict gene expression as well as construct WSI level embedding. In each
task, tRNAsformer is compared to the best model for that task. The benchmark methods
were chosen based on model performance, comprehensive assessment, and code and data

4The dataset is created under the supervision of Anil V. Parwani, MD, Ph.D., MBA.
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Table 4.2: TCGA kidney dataset split for transcriptomic learning (the number of cases,
slides, and FPKM files per subtype per subset).

Train Validation Test

Subtype Cases Slides FPKMs Cases Slides FPKMs Cases Slides FPKMs

ccRCC 369 372 373 43 43 45 46 47 48
crRCC 47 47 47 8 8 8 7 7 7
pRCC 195 215 195 26 28 26 24 26 24

availability. The tRNAsformer model is compared to the HE2RNA architecture [84] in
terms of gene prediction performance in Section 4.5.1. Next, tRNAsformer is compared
to state-of-the-art WSI representation models in WSI classification and search to measure
the quality of the internal representations. As a result, the CLAM [64] and Yottixel [46]
are utilized for benchmarking the WSI categorization and search. A description of all three
methods is presented in Chapter 2.

4.5.1 Experiment Series 1: Predicting Gene Expression

Both models, tRNAsformer and HE2RNA, were compared for three different subtasks,
namely mean correlation coefficient of predictions, the number of genes predicted signifi-
cantly better than a random baseline, and the prediction error.

In the first experiment, the correlation is assessed for each gene separately using Pear-
son and Spearman’s correlation coefficient. If the datasets are normally distributed, the
Pearson correlation coefficient measures the linear connection between them. The Pearson
correlation coefficient varies between −1 and +1. A correlation of −1 or +1 denotes a per-
fect linear negative or positive relationship, respectively, whereas a correlation of 0 denotes
no correlation. The p-value roughly represents the probability that an uncorrelated system
can produce datasets with a Pearson correlation at least as high as the one calculated
from these datasets. The Spearman correlation, unlike the Pearson correlation, does not
require that both datasets be normally distributed. Fig. 4.4 displays the distribution of
correlation coefficient for 31,793 genes predicted by different models.

The mean correlation coefficient R grew with depth from L = 1 to L = 8, as seen in
Fig. 4.4. The mean R value declines after eight blocks of Transformer encoders, suggesting
that increasing the number of layers does not enhance gene expression predictions. Another
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Figure 4.4: The distribution of the correlation coefficients between 31,793 genes predicted
and their true value for TCGA test set. The violin diagrams depict the distribution,
min, max, and mean values of the correlation coefficients. (a) violin diagrams for Pearson
correlation coefficients and (b) violin diagrams for Spearman’s correlation coefficients. The
violin diagrams are plotted for tRNAsformerL for L = (1, 2, 4, 8, 12) and HE2RNAbb1024.
The mean and standard deviation of the correlation coefficients are included in the legend.
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Table 4.3: The number of genes were predicted with a statistically significant correlation
(p-value < 0.01) under HS and BH correction. The total number of predicted genes is
31,793. These values are computed using the TCGA test dataset.

Pearson Spearman

Model HS BH HS BH
tRNAsformerL=1 29,990 30,797 30,427 31,042
tRNAsformerL=2 30,338 31,014 30,695 31,141
tRNAsformerL=4 30,433 30,996 30,858 31,266
tRNAsformerL=8 30,344 31,002 30,741 31,181
tRNAsformerL=12 28,933 30,187 28,938 30,210
HE2RNAbb1024 30,249 30,937 30,663 31,163

important observation is that tRNAsformer has higher mean correlation coefficients than
its counterpart for L = 2 to L = 8.

The Pearson and Spearman’s correlation coefficients and p-values were computed be-
tween the predicted and the true value of the gene expression for each gene. Two multiple-
hypothesis testing methods, namely HS and BH, were utilized to adjust the p-values. If
the p-value of the R coefficient was less than 0.01 after correction for multiple-hypothesis
testing, the prediction was significantly different from the random baseline [40, 14]. Sim-
ilar to [84], multiple-hypothesis testing was done using both HS and BH correction. The
results are shown in Table 4.3 for all architectures.

As it is demonstrated in Table 4.3, increasing the depth of the tRNAsformer from
one to eight increases the number of genes that are significantly different from a random
baseline. Similar to the results in Fig. 4.4, there is a decrease in the number of genes
when the depth reaches 12 blocks of Transformer Encoder. On the other hand, the model
based on the design of HE2RNA scored inferior to nearly all other tRNAsformer models
(except for L = 1).

MAE, RMSE, and RRMSE [91] were selected to calculate the error between the pre-
diction and real gene expression values. MAE, RMSE, and RRMSE are defined as
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Table 4.4: Prediction error for tRNAsformer and HE2RNAbb1024 models quantified by
MAE, RMSE, and RRMSE. All errors are calculated using TCGA test set.

Model MAE RMSE RRMSE
tRNAsformerL=1 1.31± 1.04 1.67± 1.20 1.02± 0.16
tRNAsformerL=2 1.30± 1.03 1.65± 1.17 1.02± 0.16
tRNAsformerL=4 1.30± 1.08 1.63± 1.19 0.98± 0.11
tRNAsformerL=8 1.37± 1.02 1.69± 1.13 1.11± 0.27
tRNAsformerL=12 1.50± 1.10 1.79± 1.26 1.10± 0.43
HE2RNAbb1024 1.29± 1.08 1.63± 1.20 0.96± 0.08

MAE =

∑
(xi,yi)∈Dtest

|ŷi − yi|
|Dtest|

, (4.12)

RMSE =

√∑
(xi,yi)∈Dtest

(ŷi − yi)2

|Dtest|
, (4.13)

RRMSE =

√∑
(xi,yi)∈Dtest

(ŷi − yi)2∑
(xi,yi)∈Dtest

(ȳ − yi)2
, (4.14)

where Dtest denotes the test set, (xi, yi) is the i-th sample xi with ground truth yi, ŷi is
the predicted value of yi, ȳ is the mean value over the targets in the test set, and |Dtest| is
the number of samples in the test set. The results are given in Table 4.4.

Similar to the results in Fig. 4.4 and Table 4.3, increasing the number of Transformer
Encoder blocks from eight to 12 significantly degrades the performance of the model. In
addition, the tRNAsformer has a comparable for L = 1 to L = 8, considering the
fact that tRNAsformer handles multiple tasks rather than a single gene prediction task.
Overall, according to the correlations coefficients, p-value tests, and prediction errors,
L = 8 appears to be a critical threshold after which the model becomes overparametrized
for the gene prediction task, according to the results.

4.5.2 Experiment Series 2: WSI Classification

WSI classification - TCGA dataset. The classification experiments were conducted
to assess the quality of internal representation learned by the proposed model. To begin,
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100 bags have been created from each TCGA test WSIs. According to Table 4.2, a total
of 8,000 bags were created from TCGA test set, as there were 80 WSIs. The same models
that were trained in the previous section to predict RCC subtypes were assessed for the
classification task as well. The accuracy, macro, and weighted F1 scores is presented for all
models in Table 4.5. The confusion matrices of different models are displayed in Fig. 4.5.
All values reported here are based on slide-level classification results. The prediction is
made for all bags in order to calculate slide-level values. Each test slide’s label predication
is chosen as the most common prediction among all bags created from that slide. The WSI
representations learned by the models are projected onto a plane created by the first two
principal components found using PCA to depict the internal representation of our models
in two-dimensional space. The two-dimensional PCA projections are shown in Fig. 4.6.

WSI classification - External dataset. Because of variations in hospital standards
and methods for tissue processing, slide preparation, and digitization protocols, the ap-
pearance of WSIs might vary significantly. As a result, it is important to ensure that
models built using data sources are resistant to data-source-specific biases and generalize
to real-world clinical data from sources not used during training [94]. For testing the gener-
alization of our trained models, 142 RCC WSIs are used from the Ohio State University as
an independent test cohort (see Section 3.3.2 in Chapter 3 for detailed information about
the external kidney dataset).

First, 100 bags were created from each external test WSIs. According to Table 4.2,
a total of 14,200 bags were created from TCGA test set, as there were 142 WSIs. Same
models that were trained in the previous section to predict RCC subtypes are used to report
classification results for the external dataset. The accuracy, macro, and weighted F1 scores
are reported for all models in Table 4.5. The confusion matrices of different models are
displayed in Fig. 4.7. The WSI representations learned by the models are projected onto
a plane created by the first two principal components found using PCA to depict the
internal representation of the models in two-dimensional space. The two-dimensional PCA
projections are shown in Fig. 4.9.

Referring to Figures 4.5, 4.7, 4.8, and Table 4.5, the accuracy and F1 scores on TCGA
and the external dataset drop when the model has 12 blocks. This is consistent with the
results for the gene prediction in Section 4.5.1. For tRNAsformerL=4 seems to slightly
overfit to TCGA data as the model’s performance slides towards TCGA. In other words,
the tRNAsformerL=4 improves slightly for the TCGA dataset while decreasing marginally
for the external dataset.
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Figure 4.5: The confusion matrices for different models applied on 8,000 bags created from
80 TCGA test WSIs. (a)-(f) are for tRNAsformerL, L = (1, 2, 4, 8, 12), respectively.
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Figure 4.6: The two-dimensional PCA projection of TCGA test WSI features. (a)-(f) are
for tRNAsformerL, L = (1, 2, 4, 8, 12), respectively. Each TCGA test WSI is represented
by 100 bags of features. All bags of features associated with the test set are shown with
transparent circles. The average of PCA projection of each WSI (average of 100 bags
associated with each WSI) is shown in bold circles with black edges.
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Figure 4.7: The confusion matrices for different models applied on 14,200 bags created from
the external dataset WSIs. (a)-(d) are for tRNAsformerL, L = (1, 2, 4, 8, 12), respectively.
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(a) TCGA test dataset.
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Figure 4.8: The micro ROC curve of different models applied on (a) TCGA test set and
(b) the external dataset. The AUC is reported in the legend for all models.

Table 4.5: The accuracy, macro, and weighted F1 scores for classification on TCGA test
set and the external dataset for all classification models.

TCGA External dataset

F1 score F1 score

Model Accuracy macro weighted Accuracy macro weighted
tRNAsformerL=1 93.75% 0.9488 0.9366 82.39% 0.8241 0.8223
tRNAsformerL=2 95.00% 0.9406 0.9496 81.69% 0.8161 0.8145
tRNAsformerL=4 96.25% 0.9511 0.9625 78.87% 0.7899 0.7871
tRNAsformerL=8 95.00% 0.9414 0.9502 82.39% 0.8251 0.8227
tRNAsformerL=12 92.50% 0.9392 0.9243 80.28% 0.8072 0.8034
Low power method (Ch. 3) 93.75% 0.9488 0.9366 73.76% 0.7388 0.7385
CLAM [64] 58.75% 0.5452 0.6537 72.34% 0.7198 0.7190
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Figure 4.9: The two-dimensional PCA projection of the external dataset WSI features.
(a)-(f) are for tRNAsformerL, L = (1, 2, 4, 8, 12), respectively. Each external test WSI is
represented by 100 bags of features. All bags of features associated with the test set are
shown with transparent circles. The average of PCA projection of each WSI (average of
100 bags associated with each WSI) is shown in bold circles with black edges.
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According to Fig. 3.11, the GP classifier (suggested method in Chapter 3) outperformed
all tile-based approaches and CLAM [64]. The GP classifier’s accuracy, F1 score (macro
and weighted), and AUC were 73.76%, 0.7388, 0.7385, and 0.893, respectively. As it
is demonstrated in Table 4.5 and Fig. 4.8, all tRNAsformer models surpass the GP
classifier in all measures, namely accuracy, F1 score (macro and weighted), and AUC.
As a result, tRNAsformer surpasses CLAM in WSI classification task on the external
dataset as well. Additionally, as it is depicted in Fig. 4.7, the tRNAsformer models
tend to have more balanced correct predictions for all classes as there is crisp diagonal line
highlighted in confusion matrices. To put it another way, tRNAsformer models are good
at distinguishing between all classes.

4.5.3 Experiment Series 3: WSI Search

WSI search experiments were conducted to assess the quality of the internal representation
of the tRNAsformer. The model is tested on both TCGA and the external dataset.
As it was mentioned earlier in Section 4.2.2 and 4.3 and Subsection 4.5.2, 100 instances
were created from each WSI in TCGA dataset; TCGA test set contained 8,000 instances
associated with 80 slides. To quantify the performance of tRNAsformer in WSI search,
first, 100 subsets of instances were created from 8,000 TCGA test instances. Next, a
pairwise distance matrix is computed using the WSI embeddings for each subset. The
Pearson correlation is employed as the distance metric. Following the leave-one-patient-out
procedure, the top-k samples were determined for each instance (WSI). Later, P@K and
AP@K were computed for each subset. Finally, the Mean Average Precision@K (mAP@K)
value was computed by taking average of 100 queries associated with 100 search subsets.

Similarly, 100 instances were created for each WSI in the external dataset. Overall,
100 subsets of 142 WSIs generated for the WSI search in the external dataset. As a result,
mAP@K values were evaluated by taking an average from 100 different search experiments.
The summary of mAP@K values for both TCGA test and the external dataset are shown
in Table 4.6.

To compare tRNAsformer’s search results with Yottixel [46], the state-of-the-art in
WSI search, the mAP@5 and mAP@10 for Yottixel were calculated. The mAP@5 and
mAP@10 for 10 independent Yottixel runs were 0.7416 and 0.7092, respectively. tR-
NAsformer outperforms Yottixel in both mAP@5 and mAP@10 measures. Furthermore,
tRNAsformer models provide more stability because the mAP@K value does not drop
as steeply as other search algorithms while the k increases.
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Table 4.6: The mAP@5 and mAP@10 values for all WSI search models applied on TCGA
test and the external dataset.

TCGA External dataset

Model mAP@5 mAP@10 mAP@5 mAP@10
tRNAsformerL=1 0.8966 0.8985 0.8026 0.8035
tRNAsformerL=2 0.8831 0.8800 0.7988 0.7976
tRNAsformerL=4 0.9150 0.9124 0.7819 0.7781
tRNAsformerL=8 0.9031 0.8996 0.7674 0.7628
tRNAsformerL=12 0.8762 0.8751 0.7262 0.7257
Yottixel [47] 0.764 0.717 0.7416 0.7092

4.6 Conclusions

In this chapter, a multitask MIL framework based on tRNAsformer model is proposed for
learning WSI representation by learning to predict gene expression from H&E slides. By
incorporating the attention mechanism and the Transformer design, tRNAsformer can
provide more precise predictions for gene expressions from a WSI. Meanwhile, tRNAs-
former surpassed benchmarks for bulk RNA-seq prediction while having fewer hyperpa-
rameters. Additionally, tRNAsformer learns exclusive5 and compact representation for
a WSI using molecular signature of the tissue sample. As a result, the proposed tech-
nique learns a diagnostically relevant representation from an image by integrating gene
information in a multimodal approach.

Furthermore, the Transformer design allowed for more efficient and precise processing
of a collection of samples. This property eliminates the need for costly and time-consuming
pixel-by-pixel human annotations. Finally, sampling and embedding image tiles using pre-
trained CNN models offers several advantages:

• Trained on large image datasets, deep CNNs can be exploited to create rich interme-
diate embeddings from image samples.

• Working with embedded sampled instances6 is computationally less expensive in com-
parison with treating each WSI as an instance. According to Table 4.1, the smallest
tRNAsformer model can have about 60% less hyperparameter in comparison with

5A dedicated paradigm for distilling the bag information into a feature vector for WSI representation.
6The tile deep features instead of tiles.
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MLP -based model. Additionally, they can be about 72% and 15% faster than MLP -
based model during training and validation, respectively.

• By augmenting data, bootstrapping meets the requirement for big datasets for train-
ing deep models.

• By diversifying the instances in a bag, bootstrapping at test time reduces noise.

In contrast to [36] where the spatial transcriptomics dataset was available, the proposed
approach in this chapter uses bulk RNA-seq data. As a result, the model described in this
chapter employs a weaker type of supervision, as it learns internal representation using a
combination of a primary diagnosis and a bulk RNA-seq associated with a WSI. Further-
more, tRNAsformer handles the problem by treating a WSI in its entirety, whereas the
method explained in [36] separates each tile and estimates the gene expression value for it.
Therefore, the method described in[36] ignores the dependencies between tiles. Comparing
to [100], the proposed technique in this dissertation processes a considerably smaller set
of samples with a larger field of view. In particular, the proposed technique samples bags
of 49 instances of 224× 224× 3 while the other technique [100] deployed several sampling
options with at least 2,500 tiles of size 32 × 32 × 3 per bag. In addition, tRNAsformer
learns exclusive WSI representation by learning the pixel-to-gene translation. On the other
hand, none of the methodologies have an independent representation learning paradigm
[84, 36, 100].

In conclusion, the proposed framework can learn reliable internal representations for
massive archives of pathology slides that match or outperform the performance of cutting-
edge classification and search algorithms developed [46, 64]. It can also predict gene ex-
pressions from H&E slides better than other methods [84]. By employing a balanced
architecture, the proposed model outperforms existing topologies in both tasks simultane-
ously.
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Chapter 5

Summary and Conclusions

5.1 Thesis Summary

This thesis put forward two techniques to represent gigapixel glass slides utilizing slide-
level annotation. In Chapter 3, a novel paradigm for learning visual patterns at low power
was proposed that outperformed state-of-the-art WSI representation learning approaches
for WSI search and classification in histopathology. Aside from performance, the suggested
algorithm is computationally less expensive for analyzing a single WSI. Additionally, the
proposed method embeds gigapixel WSIs into a compact fixed-length vector regardless of
the original size of the slide.

In Chapter 4, a new pipeline was proposed to learn WSI representations by trans-
lating morphological features into the bulk RNA sequences associated with WSIs. The
new tRNAsformer model, built on the existing Transformer design, allows processing
labelled bags of instances instead of requiring exhaustive labelling of a large number of
instances. The tRNAsformer learns a diagnostically relevant representation of a slide
while constrained on learning gene expressions. Not only can the proposed model generate
a compact and discriminative representation from a gigapixel slide, but it also connects
visual characteristics of the tissue morphology to the gene information. This capability
of tRNAsformer provides an affordable solution to initially estimate the gene profile of
patients from H&E slides. Finally, both suggested algorithms were applied on an indepen-
dent test cohort for external validation to investigate the generalization of the techniques
during domain shift.

Both of the proposed methods need more examination and validation before they can be
used in clinical practice. In order to further understand the low-power technique’s ability
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to treat a wide range of cancers, additional research is needed. As well, the tRNAsformer
performance should also be thoroughly analyzed with respect to specific genes related to
distinct cancer types. Finally, before clinical application, it is necessary to investigate
misclassified cases and irrelevant retrievals to shed light on any model limitations.

5.2 Future Research

In this dissertation, all methods were trained on RCC cases from TCGA dataset. There-
fore, pan-cancer research with additional body parts and cancer types might be an excellent
place to start [47, 17]. The diversification of samples will help the generalization. Further-
more, a bulk RNA-seq contains genetic information related to all activities in the human
body. As a result, incorporating more samples linked with various organs and illnesses
provides the prediction model with additional relevant data. Similar to training data, ex-
pansion and diversification of the external test dataset is critical to assess potential domain
shifts. Also, an external dataset of paired slides and bulk RNA-seq would be useful for
gene prediction assessment when it comes to larger datasets.

As it was explained in Chapter 2 Section 2.1 digitized WSIs exhibit heterogeneous
patterns of tissue morphology at different magnification levels. As a result, analyzing
tissue patterns at different magnifications at the same time and fusing the knowledge can
help to improve the WSI representation [105]. The proposed paradigm in Chapter 3 can
also be utilized to learn and embed large regions at any magnification. As a result, the
size of the instances can vary depending on the tasks, tissue type and primary site. Also,
the bag of instances in Chapter 4 can be diversified by including instances from various
magnifications.

The size of the database, the retrieval technique, and the length of the embeddings can
all add to the complexity of image search. One of the approaches to reduce the search
complexity is an initial refinement of the results. As a result, the search may be divided
into two stages; First, a rapid approach may be used to pick a large number of candidates.
The outcomes can then be filtered and modified for the next stage. Even for circumstances
that may require further investigation at higher magnifications, the paradigm described in
Chapter 3 is a viable solution for the early refining stage.

Several techniques were tested in this dissertation on both the TCGA data set as well as
a private kidney dataset from the Ohio State University (external data set). Even though
all algorithms generalized to the external dataset to some extent, it appears that there is
still a performance gap as a result of the domain shift. One approach to dealing with the
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problem of generalization is to train models on more extensive and more diverse datasets.
However, Patients’ privacy and a time-consuming and expensive data-gathering process
are significant obstacles to generating massive clinical datasets in digital pathology. In
order to solve this type of problem, domain adaptation would be a good candidate for
consideration.

Last but not least, a comprehensive study of biological findings of tRNAsformer
model. The Gene Ontology (GO) study, for example, may be used to validate the model in
order to discover relationships between visual patterns and genes. The GO describes our
understanding of the biological world in three ways; molecular-level, cellular components,
and biological process. This investigation would need clinical expertise and oversight.
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Åke Borg, Jonas Maaskola, Joakim Lundeberg, and James Zou. Integrating spatial
gene expression and breast tumour morphology via deep learning. Nature biomedical
engineering, 4(8):827–834, 2020.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[38] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[39] Markus D Herrmann, David A Clunie, Andriy Fedorov, Sean W Doyle, Steven Pieper,
Veronica Klepeis, Long P Le, George L Mutter, David S Milstone, Thomas J Schultz,
et al. Implementing the dicom standard for digital pathology. Journal of pathology
informatics, 9, 2018.

[40] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[41] Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, James E Davis, and Joel H Saltz.
Patch-based convolutional neural network for whole slide tissue image classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2424–2433, 2016.

[42] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700–4708, 2017.

[43] Tim Hubbard, Daniel Barker, Ewan Birney, Graham Cameron, Yuan Chen, L Clark,
Tony Cox, J Cuff, Val Curwen, Thomas Down, et al. The ensembl genome database
project. Nucleic acids research, 30(1):38–41, 2002.

[44] Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology
image analysis: A comprehensive tutorial with selected use cases. Journal of pathology
informatics, 7, 2016.

[45] David Juan, Gabriela Alexe, Travis Antes, Huiqing Liu, Anant Madabhushi, Charles
Delisi, Shridhar Ganesan, Gyan Bhanot, and Louis S Liou. Identification of a mi-
crorna panel for clear-cell kidney cancer. Urology, 75(4):835–841, 2010.

74



[46] Shivam Kalra, Hamid R Tizhoosh, Charles Choi, Sultaan Shah, Phedias Diamandis,
Clinton JV Campbell, and Liron Pantanowitz. Yottixel–an image search engine
for large archives of histopathology whole slide images. Medical Image Analysis,
65:101757, 2020.

[47] Shivam Kalra, Hamid R Tizhoosh, Sultaan Shah, Charles Choi, Savvas Damask-
inos, Amir Safarpoor, Sobhan Shafiei, Morteza Babaie, Phedias Diamandis, Clin-
ton JV Campbell, et al. Pan-cancer diagnostic consensus through searching archival
histopathology images using artificial intelligence. NPJ digital medicine, 3(1):1–15,
2020.

[48] Rick Kamps, Rita D Brandão, Bianca J Bosch, Aimee DC Paulussen, Sofia Xan-
thoulea, Marinus J Blok, and Andrea Romano. Next-generation sequencing in oncol-
ogy: genetic diagnosis, risk prediction and cancer classification. International journal
of molecular sciences, 18(2):308, 2017.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[50] Daisuke Komura and Shumpei Ishikawa. Machine learning methods for histopatho-
logical image analysis. Computational and structural biotechnology journal, 16:34–42,
2018.

[51] Bin Kong, Xin Wang, Zhongyu Li, Qi Song, and Shaoting Zhang. Cancer metastasis
detection via spatially structured deep network. In International Conference on
Information Processing in Medical Imaging, pages 236–248. Springer, 2017.

[52] LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.
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[84] Benôıt Schmauch, Alberto Romagnoni, Elodie Pronier, Charlie Saillard, Pascale
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rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning, pages 10347–
10357. PMLR, 2021.

[108] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé
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