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Abstract 
There is a focus on increasing the use of active transportation and, consequently, a need to have 

pedestrian traffic volumes such as Annual Average Daily Pedestrian Traffic (AADPT) for infrastructure 

planning and safety analysis.  Traditional methods rely on the deployment of dedicated sensors to count 

pedestrians, but this limits the number of locations at which counts can be obtained and therefore does 

not permit estimation of AADPT for all intersections in the urban area.  The focus of this thesis is to 

propose and evaluate methods for addressing this limitation.   

The proposed methods assume that (i) dedicated sensors that provide continuous pedestrian volume 

counts are deployed at a small number of intersections within the urban area, and (ii) 8-hour turning 

movement counts (TMCs) are available for intersections for which AADPT are to be estimated.  These 

two assumptions are normally met in practice. Within this context, the problem of estimating AADPT 

can be divided into five sub-problems, namely: 

1. Calculating AADPT with missing counts in a dataset 

2. Selecting and implementing a set of count data filters 

3. Associating specific continuous count sites with each other  

4. Finding suitable factors groups for short-term count sites 

5. Converting short-term counts to AADPT estimates  

This thesis examines the existing methods in the literature for solving each of these sub-problems and 

proposes several extensions.  By solving all the subproblems, there is a hope that reliable average daily 

estimates from pedestrian data collected alongside turning movement counts can be obtained.  It is 

recommended to use the AASHTO method for determining continuous count site AADPT values or 

solving sub-problem 1.  For the data filters, it was determined that using pre-exiting filters from the 

literature with some adjustments was appropriate.  However, a new null count filter was needed for the 

dataset.  For grouping specific continuous count sites, existing solutions from the literature were 

incorporated into this work along with a proposed k-means clustering approach.  Specific land uses and 

temporal metrics were incorporated into linear regression models for the purposes of predicting specific 

temporal trends and placing a short-term count site in a factor group.  Lastly, the AADPT estimation 

methods were all taken from the literature and are mathematically adjusted to handle 8hr to 24hr 

conversions. 

The methods are applied to a set of field data from Milton, Ontario and Pima County, Arizona.   The 

results indicate that the AADPT estimation error metrics still are much larger for count sites located 

within 1km of a high school and, consequently, a modified factor grouping method is proposed for sub-

problems 3 and 4.  
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Chapter 1 Introduction and Background 

1.1 Introduction and Research Motivation 
Recently, various municipalities have been considering to implement policies that promote 

environmental awareness and sustainable development.  One of the ways that different municipalities 

are attempting to promote more environmentally friendly polices includes encouraging their respective 

citizens to consider alternative travel modes.  One of the more predominant alternatives, is making the 

choice to walk to a given destination.  Within a municipality, there may be different types of existing 

infrastructure that is useable for pedestrians and one prevalent aspect in municipal infrastructure often 

used by pedestrians includes roadway intersections.  Therefore, if a municipality is trying to improve the 

design of select intersections and hopefully increase pedestrian usage, then it would be necessary for 

municipal officials to evaluate the mobility levels and safety risks at those select intersections.  However, 

specific sources of information are required to complete a capacity/safety analysis at a given 

intersection. 

One of the more important temporal characteristics that can be utilized for the purposes of 

infrastructure improvement and safety screening is the actual traffic volume (U.S. Department of 

Transportation Federal Highway Administration, 2016).  For the most part, traffic data collected at an 

intersection usually corresponds to vehicular traffic.  However, traffic volumes for active transportation 

modes such as cyclists and pedestrians can be collected at intersections as well.  Traffic volumes can be 

expressed in terms of different time periods, including hourly counts, peak period counts, and daily 

counts (U.S. Department of Transportation Federal Highway Administration, 2016).  Traffic volumes can 

be obtained for a specific date/day or can be averaged across multiple days where these days can be in a 

specific month or season, or specific days of the week, or across all days in a year (U.S. Department of 

Transportation Federal Highway Administration, 2016).  Although the most appropriate count period 

and averaging period can vary depending on the application.  It is also common to express traffic volume 

as either the Annual Average Daily Traffic (AADT), which reflects the daily traffic volume averaged across 

all days in the year, or the Seasonal Average Daily Traffic (SADT), which is the daily traffic volume 

averaged over all days within a specified portion of the year (U.S. Department of Transportation Federal 

Highway Administration, 2016).  If a specific individual wanted to associate traffic volumes with 

pedestrians, AADT and SADT would be respectively known as Annual Average Daily Pedestrian Traffic 

(AADPT) or Seasonal Average Daily Pedestrian Traffic (SADPT). 

1.2 Overview of Research Problem 

1.2.1 Introduction to Research Problem 
With the need for obtaining traffic volumes such as AADT has been established, it important to 

understand what datasets AADT can be calculated from and what steps are needed to calculate AADT 

based on the dataset used.  More specifically, data used to obtain AADT can either come from a 

continuous count site (CCS) or a short-term count site (STCS) (U.S. Department of Transportation Federal 

Highway Administration, 2016).  By definition, a continuous count site has some type of data collecting 

device at its specific location and the collection device is set up to continuously receive data for the 

entire analysis period (i.e., year or season) (U.S. Department of Transportation Federal Highway 

Administration, 2016).  On the other hand, for a short-term count site, count data are only collected for 
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a short period of time (ranging from several hours to up to several weeks) and therefore count data are 

available for only a short portion of the analysis period (U.S. Department of Transportation Federal 

Highway Administration, 2016).  However, it is critical to understand some of the challenges associated 

with the datasets coming from either type of count site.   

At a continuous count site, data recording devices are deployed for the entire analysis period.  It is also 

common for some data records to be unavailable because of sensor hardware malfunctions, data 

communication failures, and/or data storage errors.  It is also possible that recorded data may contain 

unacceptably large errors (U.S. Department of Transportation Federal Highway Administration, 2016).  

Therefore, it is necessary to address (1) missing count data and (2) methods to ensure that only reliable 

count data are used.   

At a short-term count site, count data are available for only a small portion of the entire analysis period 

which means that an AADT value cannot be calculated directly from these data.  However, it is still 

possible to estimate AADT from a STCS, but it is necessary to make use of information obtained from 

nearby continuous count sites that experience similar temporal patterns of traffic volumes (U.S. 

Department of Transportation Federal Highway Administration, 2016).  This is illustrated in Figure 1.1.  

 

Figure 1.1. A Hypothetical Network with CCSs and STCs 

Continuous count sites always have data that closely resembles a complete count data profile as implied 

in the previous paragraph.  When a group of short-term count sites are matched up with a continuous 

count site, it is generally assumed that short-term counts would have the same count data profile as the 

continuous count site (U.S. Department of Transportation Federal Highway Administration, 2016).  

However, the process of matching different count sites can be challenging especially if the short-term 

count data are extremely limited.  Therefore, this leads to two additional challenges which closely deal 

with the grouping of different types of count sites: (3a) how to divide the available continuous count 

sites into appropriate groups (called factor groups); and (3b) how to determine which group of 

continuous count site should be used as the appropriate reference for a given short term count site.   

Once the association between short-term and continuous count sites is determined, the final challenge 

(4) is to determine methods by which AADT can be estimated based on the short-term counts.   
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Addressing these 5 technical challenges (illustrated in Figure 1.2) form the focus of this thesis.  Each of 

these sub-problems is discussed in more detail in the following sections.  

 

Figure 1.2. Technical Challenges Addressed in this Research 

1.2.2 Challenges in Calculating AADT with Missing Counts (P1) 
In a perfect world, a continuous count site would have a counter that acquires daily counts for every day 

of the year to calculate a value such as AADT.  However, it is more than likely that not all the daily 

counts for a given study year is present before starting any computational procedures.  Currently, there 

are existing methods for computing true AADT values with missing counts.  However, the methods that 

currently exist have specific requirements for count totals showing up in every month-of-year (MOY), 

day-of-week (DOW) and, in some cases, hour-of-day (HOD) (U.S. Department of Transportation Federal 

Highway Administration, 2016).  The reason why alternate AADT calculation methods for continuous 

count sites have specific count requirements is that, within a given study period, there are multiple 

counts that occur in different MOYs, DOWs and HODs.  It is generally unreasonable to assume that a 

count occurring within a specific MOY on a specific DOW to be similar to another count occurring within 

a different MOY and on a different DOW.  If the count values within a series of data are more abundant 

within a specific MOY and/or frequently occurring on a specific DOW, the AADT value becomes more 

biased towards that MOY and DOW.   However, if the distribution of counts associated with all MOYs 

and DOWs is roughly around the same quantity, the issue of bias is less of a concern.   Figure 1.3 and 

Figure 1.4 illustrate average traffic ratios (averaged across multiple sites in Milton, Ontario) for monthly 

to yearly pedestrian volumes and daily to weekly pedestrian volumes.  Figure 1.3 clearly shows that the 

monthly traffic portions are quite different throughout the year and Figure 1.4 shows that, though 

pedestrian volumes are quite similar across different weekdays, the pedestrian volumes are lower on 

weekends.  Therefore, having different distributions of counts corresponding to all the MOYs and DOWs 

could present challenges in calculating AADT.  

P1) How to 
calculate AADT 

with missing 
data entries?

P2) How to 
effectively 
eliminate 

problematic 
data and retain 
reliable data?

P3a) How to 
identify 

different 
groups of 

continuous 
count sites?

P3b) How to 
associate short-

term count 
data with a 

group of 
continuous 
count sites?

P4) How to 
obtain AADT 

estimates from 
short-term 

counts?
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Figure 1.3. Portions of Average Monthly Counts in 2019 for Milton, Ontario  

 

Figure 1.4. Portions of Average Daily Counts in 2019 for Milton, Ontario 

1.2.3 Considerations for Obtaining Cleaned Data (P2) 
The next issue that needs to be addressed is identifying erroneous or invalid counts in the recorded data 

to prevent these counts from adversely impacting the subsequent calculation of the AADT.  Erroneous 

counts are those which reflect inaccurate measurements of field conditions.  This may occur because of 

a malfunction of the counting sensor or through an error with the storage of the recorded values within 
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the data base (U.S. Department of Transportation Federal Highway Administration, 2016).  Invalid 

counts are the counts that are accurate but reflect field conditions that are not representative of 

“normal” conditions at the site.  For example, an emergency road repair necessitates the closure of the 

intersection for most of the day with the result that the counts for that day are much lower than that 

would have occurred on that day if the intersection had remained open.  Collectively, erroneous counts 

and invalid counts are referred to as “outliers”.  The objectives are to identify the outliers using filtering 

algorithms and then determine methods to minimize their impact on the calculation of AADT.   

The filtering algorithms are designed to remove outliers and keep the reliable data.  An outlier is a count 

value that is significantly higher or lower than a series of count values for a given site within a specific 

window of time.  If an individual wants to compute relevant summary values for a set of count data and 

removes the outliers from the computations, it is likely that the summary values are more 

representative of the dataset.  It is also important to select data filters that are based upon the traffic 

volumes observed throughout an entire study period.  As an example, Table 1.1 highlights the average 

across the unfiltered bike, pedestrian, and vehicle average daily traffic in 2019 at 7 sites in Milton, 

Ontario.  From Table 1.1, it is clear that the three modes have vastly different magnitudes of daily traffic 

volumes.  Therefore, the filtering algorithms that might be appropriate for one mode may not be 

directly applicable to data from another mode.  Based on the comparison shown in Table 1.1, daily 

pedestrian counts might be more compatible with cyclists counts.  Therefore, it is possible that various 

aspects of cyclist data filters may be applicable for pedestrians. 

Table 1.1. Average Daily Traffic in 2019 by Mode in Milton, Ontario 

Mode of Transportation Average Daily Volume in 2019 

Bike Traffic 21 

Pedestrian Traffic 198 

Vehicle Traffic 27872 

 

1.2.4 Obstacles in Forming Groups of Continuous Count Sites (P3a)  
For short-term counts sites, an observed AADT value cannot be directly computed (U.S. Department of 

Transportation Federal Highway Administration, 2016).  However, the question becomes: Are there any 

other sources of known information that could help produce an estimate of AADT for a short-term count 

site?  To provide some insight into this question, traffic studies could associate short-term count sites 

with continuous count sites by searching for similar temporal traits.  This could imply that the average 

daily and/or hourly traffic volume for a selection of count sites seem to exhibit similar profiles (patterns) 

and the practice itself is known as factor grouping (U.S. Department of Transportation Federal Highway 

Administration, 2016).  Figure 1.5 and Figure 1.6 both show a hypothetical example of two distinct day-

of-week and hour-of-day patterns, respectively.  Note that the data displayed could either come from a 

CCS or a STCS if the STCS has the minimum quantity of data needed to display the temporal information.  

For pattern one, the average traffic volumes during Monday to Friday are greater than the mean traffic 

volumes on Saturday and Sunday.  For the average hourly trends displayed by pattern one, it appears 

that the traffic peaks in the morning and the afternoon.  On the other hand, the average weekend traffic 

volumes for pattern two are larger than the mean weekday traffic volumes.  The average hourly traffic is 

the highest during the middle of the day for pattern two.  
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Figure 1.5. Two Hypothetical Sites with Different Day of Week Patterns  
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Figure 1.6. Two Hypothetical Sites with Different Hour of Day Patterns  

1.2.5 Difficulties in Associating Short-Term and Continuous Data (P3b)  
As previously implied, short term counts may be used over a duration that is too short to provide 

sufficient temporal information to permit factor grouping.  The reason why those situations might occur 

is that the pedestrian count methodology/setup selected.  Traditionally, pedestrian counts are collected 

at some pre-defined points of interest located on a piece of infrastructure exclusively utilized for active 

transportation modes (U.S. Department of Transportation Federal Highway Administration, 2016).  

Short-term count durations collected in that manner are usually long enough to obtain  day-of-week and 

hour-of-day traffic volume profiles and it is possible to determine the appropriate factor group based on 

these temporal patterns.   

For the research addressed in this thesis, the pedestrian data are not obtained from dedicated count 

surveys, but rather from turning movement count (TMC) studies.  Those specific studies are already 

carried out on an ongoing basis (typically once every 2 or 3 years) by the local municipality for the 

purpose of assessing signalized intersection performance (Mohammed, 2019).  A turning movement 

count (TMC) study consists of observing the traffic on the roadway passing through the intersection and 

the pedestrians crossing each approach (Mohammed, 2019).  Those traffic volumes are recorded by 

turning movements over each 15-minute period during the data collection period (Mohammed, 2019).  

The data collection period typically consists of 12 or 8hours, covering the AM peak, mid-day, and PM 

peak periods (Mohammed, 2019).  The data collection day is usually a weekday during the time of year 

that avoids inclement weather and significant holidays that might impact traffic demand patterns.  The 

collected counts represent a sample collected on only a single day of the year and there is not enough 

temporal variation information within the count to determine the appropriate factor grouping.  
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Consequently, some other method is required to determine which factor group the STC should be 

associated with.   

1.2.6 Challenges in Obtaining Estimations for AADT (P4) 
After all the count sites are placed within a factor group, the datasets from sites having a complete 

temporal profile (i.e., continuous counts sites) are utilized to calculate expansion/scaling factors.  The 

scaling factors (SF) for a count site typically represents a relationship between the average daily traffic 

for the entire analysis period such as (AADT) and the average daily traffic (ADT) associated with a 

specific aspect of a given temporal profile such as month-of-year or day-of-week as depicted in Eq. 1.1 

(U.S. Department of Transportation Federal Highway Administration, 2018).   

𝑆𝐹 =  
𝐴𝐴𝐷𝑇

𝐴𝐷𝑇
 

Eq. 1.1 

 

Once the expansion factors have been computed from the continuous count sites within a factor group, 

the scaling factors (SF) are then applied to the short-term counts (STC) collected from the short-term 

count sites.  The application of scaling factors produce an estimated traffic volume (such as Est AADT) 

and is mathematically shown in Eq. 1.2 (U.S. Department of Transportation Federal Highway 

Administration, 2018).  However, it not always clear if the estimates are a good representation of what 

the observed traffic volume rate could be for any location.  This is because pedestrians tend to be more 

reactive to undesirable weather conditions (Saneinejad, Roorda, & Kennedy, 2012).  These weather 

conditions could include the quantity of precipitation, fluctuations in temperature, and wind speed.  

Short-term count days should also be collected during times when the traffic is around the average for a 

given study period (U.S. Department of Transportation Federal Highway Administration, 2016).  As an 

example, Figure 1.7 presents the daily traffic volume for a year and the associated AADT for a 

hypothetical CCS.  The CCS exhibits substantial day-of-week and seasonal variation in the daily traffic 

volumes.  Figure 1.7 also shows two hypothetical STCS with daily counts collected for one week in 

February at STC1 and one week in October at STC2.  From the seasonal variation in the daily traffic 

volumes and the time of year when the short-term counts are taken, the mean of the daily counts from 

STC2 provide a much more accurate estimate of the AADT than those from STC1.  Consequently, it is 

necessary to account for these influences on the STCs when estimating the AADT.  

𝐸𝑠𝑡 𝐴𝐴𝐷𝑇 = 𝑆𝑇𝐶 × 𝑆𝐹 Eq. 1.2 
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Figure 1.7. Hypothetical Short-Term-Count Selection Example 

Another thing to consider is that the process of estimating AADT has mostly been developed for 

vehicular traffic but the temporal variations (time-of-day, day-of-week, month-of-year, holidays, etc.) 

and sensitivity to weather, may be quite different between vehicle traffic and pedestrians (U.S. 

Department of Transportation Federal Highway Administration, 2016).  Therefore, it would be ideal to 

validate the applicability of traditional vehicular scaling factors to pedestrian data.  When viewing the 

average hourly vehicle percentage and 95% confidence interval plot for a collection of sites in Pima 

County, Arizona for select short-term count days during the first quarter of 2020 in Figure 1.8, it seems 

that the 95% confidence ranges at each hour are relatively small which implies that there is a lot of 

consistency between sites.  From Figure 1.8, it also appears that the highest hourly portions are present 

in the morning and afternoon periods.  For the average hourly pedestrian percentage and 95% 

confidence plot in Figure 1.9 (also collected at the same sites and the same days as the data in Figure 

1.8), the 95% confidence ranges for each hour are larger than the ranges for vehicles.  Therefore, it is 

not always clear what type of traffic pattern the pedestrian data are exhibiting.   

Daily 

Counts 

AADT 

STC1 

STC2 
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Figure 1.8. Hourly Vehicle Traffic Portions in Pima County, Arizona from January to March 2020 

 

Figure 1.9. Hourly Pedestrian Traffic Portions in Pima County, Arizona from January to March 2020  
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1.3 Organization of Thesis 
The main objective of this research is to develop a pedestrian traffic volume estimation methodology 

that is applicable to pedestrian counts collected at intersections.  The remainder of this thesis is 

organized as follows: 

Chapter 2 provides a review of the methodologies described in the literature for computing AADT from 

continuous count site data and for estimating AADT from short-term counts.  The chapter also describes 

the existing factor grouping methods for non-motorized traffic . The data requirements for all the AADT 

calculation methods are highlighted and the advantages and disadvantages of each calculation are 

identified.  The more traditionally used and recently introduced scaling factors and their respective 

calculation procedures are explained.  For the review of pedestrian factor grouping methodologies, the 

utilization of temporal indices is examined along with the factor grouping based on land uses and the 

utilization of temporal metrics within a clustering analysis are also reviewed. 

Chapter 3 describes the field data used in this thesis including the technology that is used to collect the 

data, the geographic characteristics in the areas of study and descriptive statistics associated with the 

collected pedestrian data.     

Chapter 4 presents the proposed modifications to a data filtering methodology initially developed for 

cyclists and the results of applying this method to the field data used in this thesis.  This chapter also 

describes the criteria used for modelling short term counts from continuous count site data.  The 

criterion are weather thresholds, STC hours, days and months, and the elimination of holidays and count 

days potentially impacted by COVID-19.   

Chapter 5 describes the proposed methods by which AADPT/SADPT can be estimated based on turning 

movement counts and Chapter 6 describes the proposed method for factor grouping all types of count 

sites.   

Finally, conclusions and recommendations are provided in Chapter 7.  
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Chapter 2 Literature Review 

2.1 Introduction 
The purpose of this chapter is to provide some insight from the literature on how to address the main 

technical challenges associated with this research as presented in Figure 1.2.  Section 2.2 provides some 

suggestions to deal with research problem 1, which focuses on AADT computations from continuous 

count data.  Section 2.3 provides some answers for research problem 4, which highlights the concept of 

producing estimated AADT values from short-term data.  Section 2.4 of this chapter is assembled to 

highlight some of the methodologies that can be used to form factor groups from continuous count sites 

which is specifically related to research problem 3a.  For Section 2.5, the computation of performance 

metrics is discussed along with the implications of a performance metric value with respect to placing a 

short-term count site in a factor group, which happens to correspond to research problem 3b.  In 

Section 2.6, recommendations for developing a research methodology are provided and the 

recommendations are based on the information presented in Sections 2.2 to 2.5.  For research problem 

2, which is concerned with count data filtration, the main aspects of the utilized data filtration 

methodology were developed by Allen (2021) and is discussed in Chapter 4.    

2.2 Computing AADT from Continuous Count Sites 
With the research objectives for this thesis have been clearly defined, it is critical to review and evaluate 

the specific techniques used in past work that could help solve the outlined objectives.  The first set of 

past techniques that are evaluated in this research includes the procedures to compute traffic counts 

estimates for a given study period from continuous count site data.  More specifically, the Traffic 

Monitoring Guide (TMG) in Eq. 2.1 describes the following methodology to obtain an AADT value for a 

specific continuous count site (U.S. Department of Transportation Federal Highway Administration, 

2016): 

𝐴𝐴𝐷𝑇 =  
(∑ 𝑉𝑂𝐿𝑖)𝑛

𝑖=1

𝑛
 

Eq. 2.1 

   

where: 

i  = An index representing a day of the year 

n  = Total quantity of days within a year (365 days; 366 in leap years) 

VOLi  = The daily traffic volume on day i  

When data are not available for all the days in a year, Eq. 2.1 cannot be used to compute AADT.  It is 

possible to use a slight variation of Eq. 2.1 by simply re-defining n as the quantity of days within the year 

for which the total daily traffic volume counts are available in Eq. 2.2. 

𝐴𝐴𝐷𝑇 =  
(∑ 𝑉𝑂𝐿𝑖

𝑛
𝑖=1 )

𝑛
 

Eq. 2.2 

  

When the daily traffic volume counts are only available for a subset of days in the year, the use of Eq. 

2.2 can lead to a biased estimate of the AADT.  For example, consider the cases in which daily traffic 

volume counts are only available for weekdays but not weekends, or available for all the days in a year 
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except for the month of December.  Therefore, using Eq. 2.2 for these two hypothetical cases leads to 

biased estimates of the AADT because it is not expected that weekends and weekdays have similar 

traffic volumes and the same is true for all months of the year as discussed in Chapter 1.  Of course, it is 

more common that the missing data occur randomly throughout the year and then the impact of the 

missing data are negligible.  However, the magnitude of estimation error increases as the number of 

days out of the year for which daily traffic volume counts are available decreases (U.S. Department of 

Transportation Federal Highway Administration, 2016).  To account for this specific problem, AADT can 

also be calculated using the AASHTO method as presented in Eq. 2.3 (U.S. Department of Transportation 

Federal Highway Administration, 2016): 

𝐴𝐴𝐷𝑇 =
1

7
∑[

1

12
∑ (

1

𝑛
∑ 𝑉𝑂𝐿𝑖,𝑗,𝑘

𝑛

𝑘=1

)

12

𝑗=1

]

7

𝑖=1

 
Eq. 2.3 

 

where: 

n  = The number of times a specific day of week occurs in a specified month (the maximum value is 

typically 4 or 5) 

k  = index for a specific day of week i in month j 

i  = An index for day of week (1 ≤ i ≤ 7) 

j = An index for month of year (1 ≤ j ≤ 12) 

VOLi,j,k  = The daily traffic volume on day k, day of week i, and month j  

For the AASHTO method to work, the variable “k” must occur at least once in every month for all days of 

the week and therefore n must be ≥ 1.  For example, if there was no data collected on Mondays in 

January for a specific year, this method would not be valid.  This approach removes some of the bias 

caused from missing days by averaging months of the year and days of the week.  However, this 

formulation requires that 24-hours of data be collected on all days considered – a condition that is not 

always met.  As a result, the authors of the TMG decided to correct this problem by following the 

proposed FHWA methodology to obtain AADT by using Eq. 2.4 and Eq. 2.5 (U.S. Department of 

Transportation Federal Highway Administration, 2016): 

𝑀𝐴𝐷𝑇𝑚 =   

∑ 𝑤𝑗,𝑚 ∑ (
1

𝑛ℎ,𝑗,𝑚
∑ 𝑉𝑂𝐿𝑖,ℎ,𝑗,𝑚

𝑛ℎ,𝑗,𝑚

𝑖=1
)24

ℎ=1
7
𝑗=1

∑ 𝑤𝑗,𝑚
7
𝑗=1

 

Eq. 2.4 

 

𝐴𝐴𝐷𝑇 =  
∑ 𝑑𝑚 × 𝑀𝐴𝐷𝑇𝐻𝑃𝑚

12
𝑚=1

∑ 𝑑𝑚
12
𝑚=1

 
Eq. 2.5 

   

where: 

m  = An index for month of year (1 ≤ m ≤ 12) 
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i  = The occurrence number of a specific hour on a specific day of week and month 

j  = An index for day of week (1 ≤ j ≤ 7) 

h  = An index for hour of day (1 ≤ h ≤ 24) 

nh,j,m  = The total number of 1-hour traffic volume counts available for hour h, day of week j, and 

month m (the maximum value is typically 4 or 5) 

dm  = Number of days in a specific month (28, 29, 30, 31) 

wj,m  = The number of times that day of week j occurs in month m (this value is equal to 4 or 5) 

VOLi,h,j,m = The measured hourly traffic on occurrence i, hour of day h, day of week j, and month m  

MADTm = Monthly Average Daily Traffic in month m 

For the FHWA method to be properly executed, the following assumptions are made.  The variable “i” 

must occur at least once for every day of the week in every month for all hours of the day.  Therefore, 

nh,j,m must be ≥ 1.  If no data were collected from 5am to 6am on Wednesdays in October for a given 

year, the FHWA method would no longer be applicable.   

It is also important to note that the variables “wjm” and “dm” are not dependent on the availability of the 

data but rather solely on the calendar.  For example, there are 31 days in January and 4 Saturdays in 

January in 2020 and therefore d1 = 31 and w6,1 = 4, even if no traffic volume count data had been 

collected for one or more of these Saturdays (U.S. Department of Transportation Federal Highway 

Administration, 2016). 

2.3 Estimating AADT from Short-Term Counts 
From reviewing the previous section, an understanding of calculating AADT from continuous count sites 

should be gained.  However, as mentioned in Chapter 1, count data from continuous count sites are not 

always going to be available and short-term count sites could be used to obtain AADT estimates with 

specific obstacles to overcome.  The TMG recommends the use of scaling factors for month-of-year, day-

of-week, and (if necessary) hour-of-day (U.S. Department of Transportation Federal Highway 

Administration, 2016).  These scaling factors are computed from the data obtained from an appropriate 

continuous count site.  In Eq. 2.6, the day-of-week scaling factor can be computed as follows (U.S. 

Department of Transportation Federal Highway Administration, 2018): 

𝐷𝑖 =   
𝐴𝐴𝐷𝑇

𝐴𝐷𝑇𝑖
 

Eq. 2.6 

   

where: 

i  = A specific day of week (1 ≤ i ≤ 7) 

AADT  = Annual Average Daily Traffic 

ADTi  = Average Daily Traffic for a collection of a specific day of week i 

Di  = Day of week scaling factor corresponding to its respective day of week i 
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Average Daily Traffic (ADT) for a given day-of-week is computed by utilizing Eq. 2.7 (U.S. Department of 

Transportation Federal Highway Administration, 2018): 

𝐴𝐷𝑇𝑖 =  
(∑ 𝑉𝑂𝐿𝑗 × 𝛼𝑗)𝑛

𝑗=1

𝑘
 

Eq. 2.7 

   

where: 

j  = An index representing a day of the year 

n  = Total number of days in a year (typically 365 days) 

i  = A specific day of the week (1 ≤ i ≤ 7) 

VOLi  = The daily traffic volume on day i 

αj = Binary variable: αj = 1 if day j is of day of week type i; otherwise αj = 0. 

k  = The total number of days with a recorded value for VOLj included in the summation 

In Eq. 2.8, the month-of-year scaling factor computation is presented below (U.S. Department of 

Transportation Federal Highway Administration, 2018): 

𝑀𝑗 =  
𝐴𝐴𝐷𝑇

𝑀𝐴𝐷𝑇𝑗
 

Eq. 2.8 

   

where: 

j  = A specific month of year  

AADT  = Annual Average Daily Traffic 

MADTj  = Monthly Average Daily Traffic for a specific month j 

Mj  = month of year scaling factor 

Eq. 2.8 requires that the Monthly Average Daily Traffic (MADT) be known.  Three different methods 

have been proposed for computing MADT.  

The first method (Eq. 2.9) assumes daily traffic volumes are available for every day in a month (U.S. 

Department of Transportation Federal Highway Administration, 2018):  

𝑀𝐴𝐷𝑇𝑗 =  
(∑ 𝑉𝑂𝐿𝑖𝑗)𝑛

𝑖=1

𝑛
 

Eq. 2.9 

   

where: 

i  = A specific day within a month 

j  = A specific month 

n  = The number of days within month j 
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VOLij  = The daily traffic volume on day i and in month j 

The second method (AASHTO method) can be used when total daily traffic volume data are not available 

for all days within the month as presented in Eq. 2.10 (U.S. Department of Transportation Federal 

Highway Administration, 2018): 

𝑀𝐴𝐷𝑇𝑘 =  
1

7
∑ (

1

𝑛𝑗
∑ 𝑉𝑂𝐿𝑖,𝑗,𝑘

𝑛𝑗

𝑖=1

)

7

𝑗=1

 

Eq. 2.10 

   

where: 

k  = A specific month 

j  = A specified day of the week 

nj  = The frequency of day j occurring in month k given that count data are provided 

i = An index value for the frequency of day j occurring in month k 

VOLi,j,k  = The daily traffic volume for an index value of i, day j in month k 

The third method for computing MADT is defined in Eq. 2.4 and can be used when hourly count data are 

available, but not available for all hours of all days.  

When a scaling factor for the month and for the day-of-week have been computed, the AADT can be 

estimated from the short-term count (assuming the short-term count spans a minimum of one full day) 

as follows in Eq. 2.11 (U.S. Department of Transportation Federal Highway Administration, 2018): 

𝐴𝐴𝐷𝑇 =  𝑉𝑂𝐿𝑖 × 𝑀𝑗 × 𝐷𝑖 × 𝐺 Eq. 2.11 

   

where: 

j  = A specific month 

i  = A specific day 

VOLi  = A daily traffic volume on day i 

Mj  = A month of year scaling factor for month j 

Di  = A day of the week scaling factor for day i 

G  = A growth factor 

The growth factor, G, in Eq. 2.11 is only used when the year for which the AADT value is being 

approximated is not the same as the year for which the count data are provided (U.S. Department of 

Transportation Federal Highway Administration, 2016).  When a growth factor is required, it can be 

calculated using Eq. 2.12 (U.S. Department of Transportation Federal Highway Administration, 2018): 
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𝐺 =
𝐴𝐴𝐷𝑇𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑦𝑒𝑎𝑟

𝐴𝐴𝐷𝑇𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑦𝑒𝑎𝑟
 

Eq. 2.12 

   

Nosal et al. (2014) utilized a method for estimating AADT for bicycle counts using a combined month-of-

year and day-of-week scaling factor as defined in Eq. 2.13 and Eq. 2.14. 

𝐷𝐹𝑑,𝑚 =
𝐴𝐷𝐵𝑑,𝑚

𝐴𝐴𝐷𝐵𝑇
 

Eq. 2.13 

 

𝐴𝐴𝐷𝐵𝑇̂
𝑖,𝑦,𝑗 =  𝑆𝐷𝐵𝑖,𝑦,𝑗,𝑑,𝑚 ×

1

𝐷𝐹𝑑,𝑚
 

Eq. 2.14 

 

where:   

j   = A specific day 

i   = A specific site 

m   = Month of year 

y   = A specific year 

d   = Day of week 

DFd,m   = A factor corresponding to day d occurring within month m 

ADBd,m   = Average Daily Bicycles specific to day d occurring within month m 

SDBi,y,j,d,m  = Short-term Daily Bicycles specific to day j which corresponds to the combination of 

month m and day d occurring within year y at site i  

AADBT   = Annual Average Daily Bicycle Traffic 

𝐴𝐴𝐷𝐵𝑇̂
𝑖,𝑦,𝑗 = Estimated Annual Average Daily Bicycle Traffic for day j at site i within year y 

Using Eq. 2.13 and Eq. 2.14 produces an expansion method that is more disaggregated than what is 

presented in Eq. 2.11  This is because Eq. 2.11 only considers at most 19 scaling factors (12 monthly + 7 

daily) and in Eq. 2.13 and Eq. 2.14  there are 84 scaling factors (12 monthly x 7 daily).  However, Nosal et 

al. (2014) also used an even more disaggregated method (creating a scaling factor for each day of the 

year) for calculating an estimated AADT value as presented in Eq. 2.15 and Eq. 2.16: 

𝐷𝐹𝑦,𝑗 =
𝐷𝐵𝑦,𝑗

𝐴𝐴𝐷𝐵𝑇
 

Eq. 2.15 

 

𝐴𝐴𝐷𝐵𝑇̂
𝑖,𝑦,𝑗 =  𝑆𝐷𝐵𝑖,𝑦,𝑗 ×

1

𝐷𝐹𝑦,𝑗
 

Eq. 2.16 

   

where: 
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j   = A specific day 

i   = A specific site 

y   = A specific year 

DFy,j   = A factor corresponding to day j within year y 

DBy,j   = Daily Bicycles specific to day j within year y 

SDBi,y,j   = Short-term Daily Bicycles specific to day j at site i corresponding to year y 

AADBT   = Annual Average Daily Bicycle Traffic 

𝐴𝐴𝐷𝐵𝑇̂  i,y,j  = Estimated Annual Average Daily Bicycle Traffic specific to day j at site i within year y 

All the AADT estimation methods presented so far require daily count values as an input.  When short 

term counts are less than 24 hours in duration, then an hour-of-day or time-of-day scaling factor is 

required.  This way, the available data can be scaled to represent a full 24-hour count.  One of the ways 

that a time-of-day scaling factor is computed is provided in Eq. 2.17 (U.S. Department of Transportation 

Federal Highway Administration, 2018): 

𝑇𝐷𝐹ℎ =  
𝑀𝐻𝑇ℎ

∑ 𝑀𝐻𝑇ℎ
23
ℎ=0

 
Eq. 2.17 

   

where: 

h  = A specific hour of day 

MHTh  = Mean Hourly Traffic for hour h 

TDFh  = A factor for time of day specific to hour h 

The result from Eq. 2.17 can be used to convert an hourly count to a daily (24 hour) count and then one 

of the three previously mentioned AADT estimation methods can be used to estimate AADT.   

Another approach is to establish a direct relationship between a specific hourly count and AADT as was 

done by Nordback et al. (2013b).  The hour-of-day factor in that study is equal to the true AADT divided 

by the specific average hourly count.  However, the AADT estimation method used in Nordback et al. 

(2013b) still considers month-of-year and day-of-week scaling factors.  Therefore, the method itself is 

essentially a traditional expansion method applicable for hourly counts.  In El Esawey et al. (2015), two 

different types of hourly factors are utilized to obtain AADT estimates.  However, the hourly factors have 

a specific focus on the peak hour counts and the factors are more specifically known as a k-factor. 

With all the relevant scaling factors outlined, it is also critical to know some of the alternate ways of 

obtaining pedestrian volume estimates.  For a study completed by Griswold et al. (2019) that took place 

in California and specifically focused on pedestrian crossings at intersections throughout the entire 

state, a log-linear regression model was utilized to produce an estimated values for annual pedestrian 

traffic.  The log-linear regression model used within Griswold et al. (2019) considered network 

characteristics and different land use properties as relevant explanatory variables. 
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Within a different study by Schneider et al. (2013) that took place within San Francisco, California, the 

researchers also focused on pedestrian traffic at intersections and utilized log-linear regression.  The 

overall purpose of using log-linear regression within Schneider et al. (2013) is to capture any existing 

connections between various properties surrounding the intersections and estimates of annual 

pedestrian traffic. 

There are also other alternatives that can be implemented to get pedestrian volume estimates such as 

negative binomial regression which was used by Cao et al. (2006).  Within Cao et al. (2006), the 

neighborhoods of interests are located in Austin, Texas and negative binomial regression is utilized to 

obtain the quantity of two different trip types pedestrians can make.      

2.4 Grouping Continuous Count Sites Based on Temporal Traffic Patterns  
With some of the common scaling factors being outlined in the previous section, it is important to 

realize that scaling factors developed from continuous count sites should ideally be only applicable to 

short-term count sites that are in the same factor group as the continuous count sites.  The TMG 

identifies the following three methods to create pattern groups all of which do so based on the monthly 

average daily traffic for motorized vehicles (U.S. Department of Transportation Federal Highway 

Administration, 2016): 

• Traditional Approach: This approach is subjective and consists of visualization of monthly trends 

and specific characteristics of the road to create monthly pattern groups.  The TMG suggests 

that usually a minimum of 3 to 6 groups are required.  

• Cluster Analysis: This method uses the clustering classification technique to create the monthly 

patterns groups.  A feature vector is defined for each continuous count site consisting of the set 

of ratios of AADT to MADT.  A distance metric is chosen such as the Euclidean distance between 

vectors.  Clustering then attempts to classify each site into a group such that the within group 

variance of the distance metric is minimized and the between group distance metrics are 

maximized.  

• Volume Factor Group Method: This method creates factor group based on the roadway 

classification system and specifically creates a factor group specific for site located on interstate 

highways.  

The TMG also suggests that at a minimum, the following factor groups for vehicular traffic should be 

used for a state-wide continuous count program: 

• Interstate rural 

• Other rural 

• Interstate Urban 

• Other Urban 

• Recreational 

Then each short-term count site is associated with one of the factor groups.  This is typically done 

subjectively based on the road classification and geographic location.  The mean scaling factors (such as 



20 
 

Mj and Di) are computed from the set of continuous count stations within each factor group and then 

the mean scaling factors are used to estimate AADT from the short-term counts. 

With the common factor grouping for motorized traffic being outlined, the next issue to address is 

completing the factor grouping process for pedestrians.  In a document prepared by the United States 

Federal Highway Administration (FHWA) called “Exploring Pedestrian Counting Procedures”, they 

suggest that factor groups for pedestrians should be split up by the specific reason for using a pedestrian 

facility and by pedestrian facility type.  However, the document does not provide any details to quantify 

the factor group development process (U.S. Department of Transportation Federal Highway 

Administration, 2016). 

In a study by Miranda-Moreno et al. (2013) on estimating AADT for cyclists, the authors propose to 

allocate sites to one of two factor groups (recreational or utilitarian) based on visual inspection of daily 

and hourly temporal trends.  The initial factor grouping decision was verified through the examination of 

the 95% confidence intervals of the daily and hourly indices.  For example, if a given count site visually 

appears to follow a recreational traffic pattern, but the confidence intervals do not verify that claim, the 

site could be classified as mixed recreational.  If that is the case, confidence intervals are recalculated for 

the mixed recreational group and if the site is not inside the confidence interval boundaries, then the 

site belongs to the unknown group.  The same is true, if the site is initially classified as utilitarian, but 

instead the site could end being classified as mixed utilitarian or again unknown based off the computed 

confidence intervals.  Another important concept that was developed from this study is the idea of 

providing summary statistics such as the morning to midday (AMI or 𝐼𝐴𝑀/𝑚𝑖𝑑) and weekend to weekday 

(WWI or 𝐼𝑤𝑒/𝑤𝑑) index and the computation of these two indices are shown in the Eq. 2.18 and Eq. 2.19 

(Miranda-Moreno, Nosal, Schneider, & Proulx, 2013). 

𝐼𝐴𝑀/𝑚𝑖𝑑 =
𝛿𝑖

𝐴𝑀

𝛿𝑖
𝑚𝑖𝑑

 
Eq. 2.18 

 

𝐼𝑤𝑒/𝑤𝑑 =
�̅�𝑤𝑒

�̅�𝑤𝑑

 
Eq. 2.19 

   

where: 

i  = A specified day 

𝛿𝑖
𝐴𝑀  = Traffic volume between 7am to 9am 

𝛿𝑖
𝑚𝑖𝑑  = Traffic volume between 11am to 1pm 

�̅�𝑤𝑑 = Average traffic on weekdays 

�̅�𝑤𝑒 = Average traffic on weekends 

The appearance of AMI and WWI has become relatively frequent in non-motorized traffic studies.  For 

example, Hankey et al. (2014) used AMI and WWI values to classify locations into a specific factor group 

based off the study from Miranda-Moreno et al. (2013).  The criteria for these factor groups are shown 
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in Table 2.1.  The same factor groups as the previously mentioned study (recreational, utilitarian, mixed 

recreational and mixed utilitarian) are also utilized. 

Table 2.1. AMI and WWI Values for Factor Groups (Hankey, Lindsey, & Marshall, 2014) 

Location Type WWI AMI 

Utilitarian <0.8 >1.5 

Mixed Utilitarian 0.8-1.25 0.75-1.5 

Mixed Recreational 1-1.8 0.35-1 

Recreational >1.8 <0.35 

 

As indicated in Table 2.1, if a count location has a high AMI value, the count site likely follows a traffic 

pattern that is predominately utilitarian.  Conversely, if a count site has a high WWI value, the count site 

is likely being used for recreational purposes (Hankey, Lindsey, & Marshall, 2014).  It is also worth 

mentioning that the AMI and WWI classification made by Hankey et al. (2014)  was strictly done to see 

what factor group each of the sites belongs to.  Therefore, the actual factor grouping was not caried out 

for other parts of the research because of the lack of count sites present.  Lindsey et al. (2018) also used 

AMI and WWI indices to classify the given count location into factor groups.  In this study they use the 

label “commuter” instead of “utilitarian”, but interestingly none of the count locations used in the study 

were categorized into the commuter factor group.  However, for further analysis in the research sites 

were split up by their land uses.  

In Nordback et al. (2019), the utilization WWI is applied in the factor grouping process and the 3 groups 

developed from that study are specifically known as: weekday commute, weekend multipurpose, and 

weekly multipurpose.  For the weekday commute factor group, the count sites associated with the 

group itself experience heavier traffic Monday to Friday when compared with the weekend traffic count 

totals.  The likely cause of experiencing that specific traffic distribution pattern is because the site is 

located on a route used for travelling to a utilitarian based destination.  Therefore, it is typical for most 

users making those trips to do so Monday to Friday.  If a count site belongs to the weekend 

multipurpose factor group, it is likely that the count site is on a route to a recreational activity such as a 

sporting event or travelling through an off-road trail.  It is also possible for sites to show no difference 

between weekday and weekend traffic volumes, which means the site has mix of utilitarian and 

recreational based users travelling through it and that the site belongs to the weekly multipurpose 

factor group. 

Nordback et al. (2019) used the classification criteria as follows: 

if (WWI > 1.2)  Weekend multipurpose 
if (WWI ≤ 0.8) Weekday commute 
If (0.8 < WWI ≤ 1.2) Weekly multipurpose 

 

In Johnstone et al. (2018), the authors strictly utilized AMI values and set thresholds based on AMI 

values to create three factor groups which are also known as the following: hourly commute, hourly 

noon activity, and hourly multipurpose.  If a count site has a larger share of traffic in the morning peak 

verses the midday peak (i.e. AMI > 1), that is likely a good indication that the count site is along a route 

that users take when travelling to a destination with an essential purpose (e.g. home-to-work or home-
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to-school).  In that situation, the sites along that type of trip pathway would be classified as an hourly 

commute site.  If a site consistently experiences heaver traffic later in the morning and/or earlier in the 

afternoon when compared to the morning rush hour period, that probably implies that the majority of 

users are not passing through the site for any utilitarian purpose (such as school or work).  The reason 

why that is the case is because the midday hours occur when workplaces and schools are in session.  

From that setup, it is reasonable to expect that potential count site users within those settings don’t 

travel during the midday hours, which means those count sites belongs to the hourly noon activity factor 

group.  Lastly, it is also possible for some count sites, to have morning and midday peaks that are 

relatively similar in terms of traffic counts.  Those specific sites could have a mix of users making 

utilitarian and non-utilitarian trips which implies that the site should be placed in the hourly 

multipurpose group.  

Johnstone et al. (2018) used the following classification criteria: 

if (AMI > 1.4)  Hourly commute group 
if (AMI ≤ 0.7) Hourly noon activity group 
If (0.7 < AMI ≤ 1.4) Hourly multipurpose group 

  

As mentioned before in Hankey et al. (2014), AMI and WWI are both used to split up sites into factor 

groups.  The advantage of using AMI and WWI together within the factor grouping process is that it 

provides the ability to classify utilitarian and reactional based traffic patterns on two different levels of 

data aggregation which includes daily totals for observing day-of-week trends and hourly totals for 

determining hour-of-day trends.  However, the problem with this method is that there is some overlap 

between the AMI and WWI thresholds for the mixed recreational and mixed utilitarian factor groups. 

Depending on a given site’s AMI and WWI values, it is possible that those two values suggest that the 

site of interest belongs in two different groups.  That specific situation means that it is not really clear 

what factor group the site belongs to and it is also more than likely that potential solutions for 

classifying sites with conflicting AMI and WWI values vary from person to person. 

In another study by Nordback et al. (2013a) in Colorado the researchers perform factor grouping on the 

basis of temporal trends and location information such as the count sites being located in the mountains 

or the Front Range.  More specifically, the Front Range is a specific collection of mountains within 

Colorado (McGuire, 2021).  Nordback et al. (2013a) also determine if the count site is in a rural setting or 

not.  As an example, if a count site has more traffic on weekends versus weekdays.  If the traffic volume 

seems to be greater on weekdays, the count site is classified as “high weekdays, low monthly variation” 

because a count site in that group resembles a commuter-based traffic pattern.  The locations in the 

“high weekdays, low monthly variation” tend to be in more urbanized environments and in the Front 

Range although, sites can be in rural settings or in the mountains.  However, if the traffic volume tends 

to be greater on weekends, the count site is either classified as “high weekends, high monthly variation” 

or “high weekends, low monthly variation”.  If the count site is both located in the mountains and is in a 

rural setting, the site is classified as “high weekends, high monthly variation” group and any other 

location type corresponds to the “high weekends, low monthly variation” group.  In the “high weekends, 

low monthly variation” group, count locations are typically in the Front Range and setting for these 

count sites is mostly urbanized, but some sites can be mountain locations or in rural areas.  In general, 

the factor grouping process in this study involved some visual inspection, location information to place 
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sites in their respective factor groups and the utilization of AMI and WWI values.  This study also 

examined the effectiveness of AMI and WWI and it was determined that using an AMI value might not 

indicate if a count site follows a commute pattern when the site AMI value is large enough.  This is 

because the AMI value ignores the afternoon peak.  However, count sites with a commuter like pattern 

generally had a high AMI value and an afternoon peak, which was confirmed by using visual inspection.  

This study also used cluster analysis and it was determined that using WWI was a good quantitative 

parameter to utilize when classifying count sites.  This is because two distinct clusters were formed 

using the WWI index. 

Classifying locations in a way that considers the spatial variation is likely useful to incorporate because it 

could help generate a more enhanced understanding of pedestrian behavior as researchers are still in 

the process of doing so.  For example, Jackson et al. (2015) suggested to classify sites based on the site 

location (i.e., in a rural, urban or university environment). The sites were differentiated by their 

temporal patterns and these temporal patterns were recreation, commute or mixed.  Therefore, a total 

of 9 different factor groups were proposed. 

Olfert et al. (2018) identified that large social events such as concerts, sports events, etc. often occur in 

the evening and can draw a relatively large crowd of pedestrians during times that are different from 

traditional spikes in pedestrian demands.  As such they used the AMI and WWI indices to create factor 

groups but also introduced a new parameter called an Evening Portion Ratio (EPR) to incorporate 

pedestrian traffic building up during after work hours which is depicted in Eq. 2.20 and Eq. 2.21. 

𝐸𝑃𝐼̅̅ ̅̅ ̅ =
1

𝑛
∑ ∑ %𝐷𝑎𝑖𝑙𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑗
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Eq. 2.21 

   

where: 

i    = A specific day 

n   = The quantity of days 

j   = Hour of day (24-hour) 

%𝐷𝑎𝑖𝑙𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑗 = Percentage of daily traffic volume at hour j on day i 

𝐸𝑃𝐼̅̅ ̅̅ ̅
𝑒𝑣𝑒𝑛𝑡  = EPI (Evening Portion Index) value on days with events 

𝐸𝑃𝐼̅̅ ̅̅ ̅
𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡  = EPI (Evening Portion Index) value on days with no events 

The factor grouping methodology utilized in the study is a two-level system.  The first part is to 

determine if the count site follows a recreational or utilitarian pattern using the WWI and AMI indices.  

It should be noted that in their study the count sites all seemed to follow a pattern known as “urban 

utilitarian”.  Once the initial classification is determined, EPR was used to determine if the count site is 
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highly affected by social gathering in the evening.  The criteria for a given count site EPR value to have or 

not influence special evening events is shown in Table 2.2.   

Table 2.2. Range of EPR Values for Influence of Events (Olfert, Poapst, & Montufar, 2018) 

Site Type EPR Range 

Not Influenced by Events 0-1.5 

Influenced by Events 1.5-4 

 

From this, the urban utilitarian and urban utilitarian event traffic pattern groups were created.   

However, Olfert et al. (2018) considers only evening events and therefore does not consider large 

pedestrian crowds that occur during the morning or afternoon (which may occur because of special 

events or even align with the arrival of transport modes such as passenger ferries or passenger trains).  

Incorporating events would be an interesting aspect to consider but, doing so might be difficult to 

incorporate if the events of interest do not generate a relatively large group of people.   

In a pedestrian study by Griswold et al. (2018) , two factor group methodologies were compared.  The 

first methodology used land use properties to establish factor groups which consisted of the following: 

(Central Business District (CBD), Trail, Commercial, School and Other).  The second methodology 

consisted of k-means clustering to define the factor groups.  Griswold et al. (2018) showed that both 

methods provided approximately the same results and therefore the authors recommended to utilize 

the land use method with some incorporation of clustering.  However, it appears that some connections 

between land uses and temporal trends were established which is important note moving forward with 

this research but, not all land uses could be affiliated with specific temporal trend.   

In a follow up study by Medury et al. (2019), the authors proposed a factor grouping method that uses 

land use information obtained from Google Places™ as input to a multinomial logistic model.  A k-means 

algorithm was applied in the clustering analysis and 4 different clusters were created (Clusters A, B, C 

and D).  The researchers then used the API for Google Places™ and were able to obtain descriptive land 

use information of any location of interest.  The land use information obtained from Google Places™ was 

then grouped together in more generalized land use categories shown in Table 2.3. 

Table 2.3. Land Use Categories (Medury, Griswold, Huang, & Grembek, 2019) 
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The land use information was used as input variables and the four clusters created were used as specific 

categories in a multinomial logit model.  The model coefficients and the elasticity of the variables were 

determined and led to the creation of the following factor groups:  

• Central Business Districts (Cluster B) 

• Isolated Recreational Trails (Cluster C) 

• Urban Commuter Trails (Cluster A) 

• Summer Vacation Destinations (Cluster D) 

Based on the facts presented in the literature review, it appears that there are three main categories of 

factor grouping methods: 

1. Temporal Indices, namely AMI, WWI, and, where appropriate, EPR. 

2. Clustering Analysis 

3. Land Use characteristics 

The advantage of Temporal Indices is that they are easy to apply and only require the count data itself.  

EPR can only be applied when the short-term counts span a minimum of 24 hours.  As for AMI, counts 

for the morning and midday portions of the day need to be present.  For computing WWI, it can only be 

applied when the short-term counts span a minimum of 24 hours on both a weekday and a weekend 

day.  Though criteria have been published to identify different factor group categories based on the 

values of these indices, it is not clear that these criteria are transferable to all locations. More 

importantly, they have only been used to classify the counts sites to a small number of factor groups.  

Clustering methods have the advantage that they have a sound statistical foundation and can be used to 

identify any number of factor groups.  However, they also suffer from several limitations.  First, it can be 

difficult to interpret the resulting clusters in terms of describing the main characteristics of the factor 

groups.  Second, conducting the clustering is more complex than applying the Temporal Indices methods 

and often requires software tools and expertise that practitioners do not possess.  

Land Use methods have the advantage that they do not rely on the temporal pattern exhibited by the 

counts themselves and can be applied to count sites even when the short-term counts are available for 

only a truly short duration.  The logit model proposed by Medury et al. (2019)  can be used to define a 

larger number of factor groups than the temporal indices and the inputs required to apply the model are 

generally available as they are obtained from Google Places™.  Lastly, the model has been shown to 

perform as well as the k-means clustering method.  However, this model has only been recently 

proposed and it is not clear if the model is transferable to other locations.  The most significant 

challenge in evaluating the factor group methods is the lack of literature in which the Land Use methods 

have been compared with the Temporal Indices methods. 

2.5 Computing Performance Metrics from AADT Estimations 
Several different methods exist for estimating AADT from short term counts.  It is intended to maximize 

the estimation accuracy (or conversely minimize the estimation error) to be able to compare different 

AADT estimation methods.  Though different measures of error exist, they all require that the true AADT 

be known.  When only short-term counts are available, the true AADT is not known, a measure of error 

cannot be computed.  Consequently, comparing the accuracy of different AADT estimation methods is 

done by using data from continuous count stations.  The full year of counts at a given station is used to 
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compute the “true” AADT for that station as stated in Chapter 1.  A set of n samples of count data are 

taken from the full set of data to represent a set of n short term counts.  Each short-term count sample 

is used as input within the AADT estimating methodology to compute an estimated AADT (𝐴𝐴𝐷𝑇𝑖
̂ ) 

where i = 1, n and represents the sample index # (Wright, Hu, Young, & Lu, 1997).  Then a measure of 

error between the true and estimated AADT can be computed.  A common error metric utilized in 

pedestrian studies is the Mean Absolute Percent Error (MAPE) which is calculated in Eq. 2.22 below: 

𝑀𝐴𝑃𝐸 = ( 
1

𝑛
∑

|𝐴𝐴𝐷𝑇 − 𝐴𝐴𝐷𝑇𝑖
̂ |

𝐴𝐴𝐷𝑇

𝑛

𝑖=1
) ∗ 100% 

Eq. 2.22 

   

where: 

n  = The number of short-term count samples 

𝐴𝐴𝐷𝑇 = True AADT computed from full data set from continuous count station 

𝐴𝐴𝐷𝑇𝑖
̂  = Estimate of AADT from short term count sample i 

It is also essential to be aware of the limitations that exist when quantifying the AADT error obtained 

from short-term counts.  As mentioned before, scaling factors that are applied to a specific short-term 

count site are derived from a continuous count site in the same factor group.  However, the issue then 

becomes the choice of scaling factors used.  As an example, a continuous count site has a full set of 

count data obtained (365 days of data collected for 24 hours each day for a given year) and every day is 

treated as an individual short-term count.  Day-of-year scaling factors are developed from the full set of 

data and applied to each short-term count.  Therefore, when the AADT error for the short-term site is 

computed, it is equal to zero.   

This result is obtained because the geographic location and the year of study did not change, and each 

day-of-year scaling factor applied is calculated to represent a relationship between the true AADT and a 

specific daily count.  It might appear as if this result is favorable, but one should be aware that this result 

is not realistic.  This is because a specific factor group also include short-term counts that were obtained 

from locations different from the continuous count sites.  Although, certain geographic locations might 

have similar traffic characteristics, it is almost next to impossible for two specific locations to have the 

exact same traffic data, which implies AADT errors are larger than zero.   

This specific setup was used in Figliozzi et at. (2014) for cyclists in Portland, Oregon.  However, day-of-

year scaling factors were not utilized and ultimately the errors obtained for each day were not zero.  

Although, the authors of the study do mention that if the developed scaling factors are utilized for some 

other count location, they would anticipate that the computed errors would be larger.  This implies that 

the errors cited by the study under-estimate the errors that would be experienced in practice.  

In a completely different study by Nosal et al. (2014), count data for cyclists was obtained from multiple 

locations in Montreal, Quebec and Ottawa, Ontario.  Some of the sites were used to create scaling 

factors for various AADT methods and the other sites were used to provide short term counts and to 

compute the errors for each AADT estimation method.  Although the scaling factor and error 

computation sites were in the same municipality, the results obtained from the study has a range of 

success that varies.   
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Nosal et al. (2014) determined that one specific error computation site in Montreal did not appear to 

match temporally with Montreal’s only count site used for scaling factor development.  In another 

finding by Nosal et al. (2014), one specific error computation site in Ottawa produced a relatively low 

error when the scaling factors came from one specific scaling factor site.  Nosal et al. (2014) suggest that 

the relatively low error value was likely obtained because both count sites followed the same traffic 

pattern.  However, when the scaling factors were computed from Ottawa’s other scaling factor site, the 

computed error was much higher.  Nosal et al. (2014) concluded that this was likely because the scaling 

factor site and error computation sites experienced different traffic patterns and theoretically would 

have belonged to different factor groups.  This result confirms that when temporal patterns between 

sites do not match, it is difficult to judge the relative performance of different AADT estimation methods 

because the error introduced by the factor grouping is so large.  Therefore, it is necessary to ensure that 

the error computation (short-term count) and scaling factor (continuous count) sites are assumed to 

have similar traffic characteristics (same factor group) which could be difficult to accomplish if the short-

term count’s duration is only 8 hours. 

2.6 Summary and Recommendations 
Based on the literature review there are several recommendations that can be made for methods to 

adopt as the benchmark approach: 

1. Calculating the actual “true” AADT/SADT: 

It is proposed to use the AASHTO method (Eq. 2.3) because it can effectively handle datasets 

with missing counts and the data requirements for the AASHTO method as described in section 

2.2 are not overly extensive.    

2. Factor grouping methods: 

The performance of specific factor grouping methods has not been extensively evaluated.  

However, from the research that did evaluate the performance of the land use and clustering 

analysis methods for factor grouping, the results indicated that the performance was not 

significantly different.  Therefore, both the land use and clustering techniques are considered in 

this research.  With no recommendation that was presented based off performance; it would be 

ideal to use a method that is relatively popular in the literature.  Therefore, it is also 

recommended to utilize AMI and WWI as way to established factor groups for the given count 

sites (Eq. 2.18 and Eq. 2.19).   

3. Computing Expansion Factors:  

For the calculations of AADT expansion factors , the more Traditional or Standard method for 

expanding short-term counts to an AADT estimate is to utilize a day-of-week and month-of-year 

scaling factor as previously mentioned (Eq. 2.6, Eq. 2.8 and Eq. 2.11).  However, in various 

studies such as Hankey et al. (2014), Nosal et al. (2014), and El Esawey et al. (2016), the 

Traditional method seems to be outperformed by the Disaggregate method (Eq. 2.15 and Eq. 

2.16) which ultimately uses a day of year scaling factor.  Therefore, the Disaggregate factor 

method is selected as a benchmark expansion factor method selected for this research.  

Although, the Traditional method scaling factors and a set of other factors known as the day by 

month scaling factors (Eq. 2.13 and Eq. 2.14) are also computed.  This is because it is expected 

that the 8hr counts could add another degree of variability in the expansion process which 

means it is unclear what expansion method is truly the best.  
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Chapter 3 Description of Empirical Data  

3.1 Introduction 
This chapter describes the empirical (field) data used in this thesis. First, the technology used to collect 

the data is described.  Then, general geographical information about the counts sites is provided in 

Section 3.2.1.  Section 3.2.2 presents an overview of the unfiltered data at each of the count locations.  

Lastly, Section 3.2.3 describes the relevant weather patterns that pedestrians could encounter at the 

selected count locations. 

For this research, count data were obtained from a vendor having system deployments at intersections 

in both Milton, Ontario and Pima County, Arizona.  The system collects data by processing images 

collected using a video camera system installed at the intersection.  The system characterizes by user 

type (i.e., motorized vehicle, cyclist, or pedestrian) and motorized vehicles are classified by type of 

vehicle such as a passenger car, semi-truck, or bus.  The counting system collects data in 1-minute 

intervals if intersection users are present for the given 1-minute interval.  Road users such as (motorized 

vehicles and bicycles) are collected as traditional turning movement counts.  Pedestrians are collected 

based off their motion around the center of the intersection (clockwise (CW) or counter-clockwise 

(CCW)) from a specific crosswalk side.  Figure 3.1 shows a 4-legged intersection highlighting the center 

of the intersection and all the possible movements a pedestrian can make (8 total). 

 

Figure 3.1 Pedestrian Crossing Diagram at the Ina Rd / Mona Lisa Rd Intersection in Pima County, 
Arizona (Source: Modified from Google Maps™, 2021) 
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3.2 Description of Observed Land Uses 
The type of land use of the area surrounding each count site was determined using available sources, 

including Google Maps™, and categorized as one of: commercial, industrial, recreational, residential, 

and undeveloped.  A commercial land use would be any section of land with office spaces, restaurants, 

and other retail establishments.  An Industrial land use includes areas with factories, refineries, and 

warehouses.  Recreational uses include sections of land with indoor/outdoor sporting/entertainment 

facilities and recreational trails that could be used for walking and/or biking.  Residential areas include 

sections of a municipality that mainly consist of single unit dwellings, row houses and apartment 

buildings.  As for undeveloped land, it can be within a rural area or a specific section of an urbanized 

area however, the section of land is not being used for any specific purpose.  Examples of undeveloped 

land could include grasslands or wooded areas.   

3.3 Description of Milton, Ontario  

3.3.1 Geographic Information 
Milton is a municipality in southern Ontario that is close to the city of Toronto, Ontario which is the 

most heavily populated urban center in the province and in Canada and its borders are outlined in red as 

depicted in Figure 3.2.  The population of Milton was 110,128 in 2016 and has been growing for the last 

two census reports (Statistics Canada, 2017).  With Milton’s proximity to the city of Toronto, Milton is a 

community that is generally suburban.  Milton covers a surface area equal to 363.22 square kilometers 

(Statistics Canada, 2017) however, the municipality itself has a rural and urban section.  All of the count 

sites used in this study are located in the urbanized portion as presented in Figure 3.3.   

 

Figure 3.2. Location of Milton, Ontario (Source: Google Maps™, 2021) 
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Figure 3.3. Count Sites within Milton, Ontario (Source: Google Maps™, 2021) 
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3.3.2 Count Data 
There was a total of 30 count sites.  However, there are 4 sites with no pedestrian data, so these sites 

have been excluded from further consideration.  The collection periods for each site along with the 

intersection location and land uses are presented in the Appendix A.  Figure 3.4 shows the average daily 

pedestrian volume from the 26 sites.   The majority of sites experience more than 100 pedestrians/day, 

with the exception of 4 sites which have just below 100 and 5 sites in Milton are well below an average 

daily count value of 100.  For the distribution of daily count values in Milton, Ontario all 26 sites had 

interquartile ranges between 0 to 1250.  However, most of the sites have a Q3 value that is significantly 

less than 1250 and most of the sites have outlier daily count values as presented in Figure 3.5. 

 

Figure 3.4. Average Daily Counts for Sites in Milton, Ontario 
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Figure 3.5. Daily Count Value Distribution for Sites in Milton, Ontario 

3.3.3 Weather Data 
For Milton average daily precipitation and average daily temperature were obtained from Environment 

Canada.  The average daily precipitation in Milton, Ontario seems to show quite a bit of variability on a 

month-by-month basis.  The minimum average daily precipitation occurred in the month of September 

and has a value just above 1 mm.  The maximum average daily precipitation took place in October and 

the specific value is above 4 mm as shown in Figure 3.6.  Average daily temperature is greater than 0oC 

for all months of the year except for January, February, March, and December.  The warmest month is 

July with an average daily temperature above 20 (oC) and the coldest month is January having an 

average daily temperature just below -5 (oC) as presented in Figure 3.7. 
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Figure 3.6. Average Daily Precipitation in 2019 for Milton, Ontario  

 

Figure 3.7. Average Daily Temperature in 2019 for Milton, Ontario   



34 
 

3.4 Description of Pima County, Arizona 

3.4.1 Geographic Information 
Pima County is in the state of Arizona’s southern section and is adjacent to the United States and Mexico 

boundary and the county’s borders are highlighted in red as presented in Figure 3.8.  The population of 

Pima County, Arizona was 980,263 in 2010 and based off the last population estimate of 1,047,279 in 

2019, it appears that the county itself is growing (U.S. Department of Commerce, n.d.).  Pima County has 

a collection of different communities within its defined boundaries.  The City of Tucson is the main 

community located within Pima County and the other population centers located in the county appear 

to be suburbs.  The count sites used in this thesis are located as shown in Figure 3.9.  Pima County is 

large geographically and has an overall surface area equal to 23,794 square kilometers (U.S. Department 

of Commerce, n.d.).  A large section of Pima County’s land mass is associated with the Tohono O’odham 

Nation Reservation and everything east of that land use is where Tucson and most of the suburban 

communities are located. 

 

Figure 3.8. Location of Pima County, Arizona (Source: Google Maps™, 2021) 
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Figure 3.9. Count Sites within Pima County, Arizona (Source: Google Maps™, 2021) 
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3.4.2 Count Data 
There are110 counts sites used for this study.  A total of 15 sites in the dataset do not have any count 

data at all and these were eliminated from further consideration.  The site name and location, 

surrounding land uses, and the data collection period for each site is provided in Appendix B.  Figure 

3.10 and Figure 3.11 show the average daily pedestrian volume and distribution of daily traffic volumes 

across for a sample of 34 sites.  Most sites have an average daily traffic volume less than 75.  The 

interquartile ranges of daily pedestrian volumes at these sites are mostly between 0 to 100.   

 

Figure 3.10. Average Daily Counts for Sites in Pima County, Arizona 
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Figure 3.11. Daily Count Value Distribution for Sites in Pima County, Arizona 

3.4.3 Weather Data 
The average daily precipitation, average daily temperature, and average wind speed were obtained from 

the National Oceanic and Atmospheric Administration (NOAA).  The average daily precipitation varies by 

month-of-year as shown in Figure 3.12.  The month of June has the lowest average daily precipitation 

value (close to 0 mm) and the highest average daily precipitation value occurs in September where the 

value is slightly greater than 2 mm.  For the average daily temperature in Pima County, Arizona, no 

month has an average daily temperature below 0oC and colder months occur during the winter season.  

February has the lowest average daily temperature and July has the highest average daily temperature 

which hover around values of 10oC and 30oC, respectively, as shown in Figure 3.13.  For the average 

wind speed profile in Pima County, Arizona, the values for each month are similar throughout the year 

and hover around a speed of 3 km/h as shown in Figure 3.14.  
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Figure 3.12. Average Daily Precipitation in 2019 for Pima County, Arizona  

 

Figure 3.13. Average Daily Temperature in 2019 for Pima County, Arizona 
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Figure 3.14. Average Daily Wind Speed in 2019 for Pima County, Arizona  
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Chapter 4 Data Filtering and Site Selection Criteria 

4.1 Introduction 
As mentioned in Chapter 1, it is generally expected that when a count dataset is received, it is more than 

likely to observe problematic entries.  As an example, a null value is recorded to the database to indicate 

that a system error has occurred, and no count data has been received (e.g., a sensor error or 

communication error).  It is also possible to have a null entry when the system is operating correctly, but 

no users pass the sensor and therefore the reported count is truly zero.  There may also be specific 

duration of counts where all the counts for each time interval are equal to one specific non-zero count 

value, this might imply that there is something wrong with the counter because the counter itself could 

be stuck on the repeating value.  Another example of a problematic entry within a dataset is having a 

relatively large count value corresponding to a relatively small time interval which could imply that some 

over counting by the system is occurring. 

For some cases, there could be a relatively long duration of zero counts within a dataset, which could 

imply that the counter at the intersection is powered off and ultimately not collecting the data for the 

identified duration.  It is also important to focus on eliminating exceptionally large count entries within 

specific timeframe of a given dataset because those entries do not reflect the temporal trend and could 

impact any further analysis if they are not removed.  

This chapter describes various types of data filtering methods applied to the pedestrian count data.  The 

filtering methods have been adapted from those suggested by Allen (2021) for application to cyclist 

count data and assuming count data were available for 15-minute count periods.   

Allen (2021) proposed five separate sequentially applied filters as follows: 

1. Null count filter 

2. Non-consecutive zero filter 

3. Hard cap filter 

4. Daily and 8hr zero filter 

5. IQR filter 

The first three were developed for data aggregated into 15-minute counts which includes a filter for null 

counts, repeating non-zero values, and a hard cap limit.  The other two filters deal with data both on the 

8-hour and daily aggregate levels and more specifically, one of these filters removes data outside of a 

given interquartile range and other filter removes 8-hour and daily zero values.  The set of filters, and 

how they have been modified for this work, is described in more detail in the next part of this thesis and 

then the filters are applied to the Milton and Pima County pedestrian count data.  The purpose of this 

chapter is to address research problem 2, which deals with the retention of cleaned count data.   

4.2 Proposed Filtering Method  

4.2.1 Null Count Filter 
The system from which the data used in this thesis were obtained does not make a distinction between 

a null entry occurring caused by an issue with the counting device and a null entry that is the result of no 

users present for a given time interval therefore, it is not clear if a problem is existent.  The null count 

filter proposed in this research also acts as a replacement for both the traditional null count filter, where 
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a given entry has its timestamp recorded but the count value is blank and as well as the consecutive zero 

filter which was also known as filter f2. 

The likelihood of observing zero counts decreases as the average traffic volume increases and as the 

count period duration increases.  As stated before, pedestrian (and cyclists) volumes at intersections 

tend to be much smaller than the motorized traffic volumes at the intersection.  The system from which 

the count data were obtained also provided motorized traffic counts.  It was hypothesized that a system 

failure or error would impact all counts (i.e., motorized vehicles and pedestrians) and therefore even a 

relatively short period of zero counts (combination of vehicles and pedestrian counts from all turning 

movements) would be indicative of a system error.  It was proposed that if the total traffic volume from 

all turning movements combined was equal to zero for three or more consecutive 15-minute intervals, 

then it was concluded a system error had occurred and those count intervals were flagged as missing 

data.  

It is important to realize that the term “missing counts” is referring to a collective representation of all 

modes of transportation that are not recorded for a given 15-minute time interval.  If any roadway 

traffic is recorded at a given 15-minute interval (any count > 0) and pedestrians are not recorded at the 

same 15-minute interval, the timestamp itself, is not considered a missing count and the count value for 

pedestrians is truly zero.   

4.2.2 Non-Consecutive Zero Filter 
To deal with the issue of non-consecutive zero counts within a dataset, the non-consecutive zero filter 

uses a Poisson distribution to validate the likelihood of a specific non-zero count being repeated for x 

number of succeeding intervals.  If a given series of the same non-zero value is deemed to be unlikely, 

the filter flags all those 15-minute entries.  It is also possible to have valid duration of non-zero counts 

repeating if the recording time intervals are relatively short.  In that specific case, it is also more than 

likely that the deviation of count values are smaller, which could imply that certain count values have a 

higher frequency for certain hours of the day.  Although, if the duration of repeated non-zero counts 

increases, the likelihood of each recorded count in that specific period being valid decreases.  

4.2.3 Hard Cap Filter 
The purpose of the hard cap limit is to mark 15-minute data entries that appear to be unreasonably 

large.  Therefore, it is important to select an appropriate hard cap for a set of 15-minute counts and the 

hard cap value itself is dependent on the range of typical count values for daily totals.  The filter itself is 

not intended to eliminate too many count entries because the targeted entries for the filter itself are 

just strictly upper outliers.  If there is ever a case where too many 15-minute entries are greater than 

the hard cap, that implies that the flagged values are not all outliers, and the hard cap limit should be 

increased.  Hard cap limits of 500 pedestrians and 250 pedestrians were selected for the Milton and 

Pima County data, respectively and were chosen based of the observed daily totals.  If the daily totals 

are generally less than 100, the hard cap should be set to 250 and If the daily totals are mostly between 

100 to 500, the corresponding hard cap limit would be 500 (Allen, 2021).  Any 15-minute counts 

exceeding those pre-defined limits are flagged.  

4.2.4 Daily and 8hr Zero Filter 
For eliminating long durations of consecutive zero counts, an 8-hour and 24-hour threshold was utilized.  

However, a long duration of zero counts could still be equal to zero for every time interval and could 
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happen if there is something such as construction work present at the intersection and pedestrians 

cannot use the intersection.  Although, the construction work situation does represent a valid case of 

having a long duration of zero counts, the data itself is not useful since the intersection is out of service.  

It is also possible to observe a long series of zero counts at an intersection that is located in an area that 

typically does not attract pedestrians and/or does not have suitable pedestrian infrastructure in place.  

An example of that is an intersection in a rural area with no sidewalks and even though a long duration 

of zero pedestrians is likely to be observed, it is still important to remember that long durations of zero 

are not useful.  This is because the data only produces expansion factors equal to zero.  If an expansion 

factor equal to zero is used to expand a non-zero STC from a different site, the estimated daily value for 

the other site is equal to zero when in reality the true daily value is a non-zero count.     

4.2.5 IQR Filter 
For removing large data entries that are clearly different from typical counts, the IQR filter makes use of 

a moving 27-day window and the interquartile range times two plus the third quartile as its boundaries 

to flag count values that are potentially problematic.  The moving 27-day window was utilized in Allen 

(2021)  algorithms and it also assumed that the 27-day window has been applied elsewhere.  As an 

example, if the day of interest is January 15th, the mobile 27-day window would consider the succeeding 

and previous 13 days which is (January 16th to January 28th) and (January 2nd to January 14th) 

respectively.  Therefore, it is important to realize that the IQR filter is somewhat like the hard cap filter 

in the sense that the IQR also focuses on upper outliers and should not be eliminating too many values.  

However, depending on the typical range of 8-hour and daily values, the IQR could either be relatively 

large or fairly small.  If the typical 8-hour and daily values fit within a relatively small range, the IQR too 

is going to be small and if the IQR is small enough, it is possible to observe flagged entries that do not 

visually appear to be outliers and/or an excessive quantity of entries being caught by the IQR filter.  That 

limitation could imply that the IQR filter is not effective in dealing with datasets with relatively low count 

values and that some sort of IQR limit should be implemented.  For the Milton data, the issues of small 

count values were a relatively nonexistent problem.  However, for the Pima County data, the problem 

was much more prevalent, and it was decided to implement a lower IQR cut off value that is equal to 50.      

4.3 Application of Filtering 

4.3.1 Retention of Cleaned Data 
Although the daily and 8 hour data have their own specific filters, it is important to realize that the daily 

and 8 hour data are also impacted by the filters specifically designed to flag problematic entries at the 

15-minute level.  Furthermore, problematic data with a duration of 15 minutes impacts all calculated 

values even if the data aggregation level is not equal to a day or 8 hours.  This is because all data entries 

are composed of at least one or more specific 15-minute count values and as an example, it is quite 

possible for specific daily or 8 hour counts to not be deemed problematic but, a 15-minute count within 

that daily or 8 hour period is flagged as problematic, or the opposite case could be true.  Therefore, 

filtering thresholds need to be established and more specifically, problematic entries are not permitted 

to be used for any further analysis.  The only exception to that requirement is that a daily total can have 

less than 20 15-minute null counts present and the reason for it is because it is quite possible that the 

flagged null counts could actually be equal to zero therefore, the daily total is not necessarily an 

uncounted value.  There was also an investigation in the count data for Pima County to see if it was 

worthwhile to increase some of the thresholds for the utilized filters.  However, after a closer 
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examination of the data, it was hypothesized that adjusting thresholds do not appear to significantly 

increase the quantity of count sites with a reasonable quantity of cleaned count data.   

4.3.2 Milton, Ontario Filtering Results 
Table 4.1 shows the average percentage of daily, 8 hour and 15-minute entries flagged as problematic 

for all sites that have data between in July 2019 to February 2020 in Milton, Ontario.  From that specific 

table, very few entries are impacted by the initial filtering process.  The average percentage of flagged 

entries is almost close to 0% with no % value exceeding 5%.  For the average percentage values closest 

to 5%, those values specifically corresponded to daily and 8 hour entries flagged by the daily and 8 hour 

zero filter.  However, for the percentage of daily, 8 hour and 15-minute entries flagged by site as 

presented in Appendix C, it is clear to see that one specific site has more than 30% of its daily entries 

flagged and more than 50% of its 8 hour entries flagged as problematic by the daily and 8 hour zero 

filter.  With that specific site corresponding to those percentage values, it is expected that the site 

cannot be used for further work in this research.  However, 12 remaining sites generally have high 

percentages of cleaned data so, those specific sites should be considered for further analysis in this 

study. 

Table 4.1. Aggregated Filtering Results for Milton, Ontario (July 2019 to February 2020) 

Filter % Flagged (Avg across all sites) 

Null Counts (Daily Totals f1) 0.7 

Non-Consecutive Zeros (Daily Totals f3) 0.1 

Hard Cap (Daily Totals f4) 0.3 

Daily Zeros (Daily Totals f5) 2.8 

IQR (Daily Totals f6) 0.9 

Null Counts (8hr Totals f1) 0.9 

Non-Consecutive Zeros (8hr Totals f3) 0.1 

Hard Cap (8hr Totals f4) 0.1 

8hr Zeros (8hr Totals f5) 4.7 

IQR (8hr Totals f6) 1.1 

Null Counts (15min Totals f1) 1.3 

Non-Consecutive Zeros (15min Totals f3) 0.01 

Hard Cap (15min Totals f4) 0.02 

 

After reviewing the general filtering results, it is important to validate them.  Figure 4.1 illustrates an 

example in which six consecutive 15-minute intervals (highlighted in blue) have the same count and are 

flagged by the filter (f3) as suspect.  In the context of the time series of reported count values both 

before and after these points, it is not clear that these values are erroneous and that this filter is 

correctly identifying suspect data.  However, given how few data are marked as suspect by the filter, no 

attempt was made to revise or validate this filter as this is likely have almost no impact on future 

research steps. 
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Figure 4.1. Example of Data Entries Flagged by Filter f3 (Site Code: S15)  

With the limited quantity of entries being flagged with the Milton dataset, it is probably and good 

indication that the hard cap (f4) value is acceptable.  This is because the filter seems to be eliminating 

15-minute counts that are above the hard cap limit (500) and much larger than the typical 15-minute 

counts being collected as highlighted by the blue markers in Figure 4.2. 

 

Figure 4.2. Example of Data Entries Flagged by Filter f4 (Site Code: S02) 
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For the IQR (f6) filtering example (Figure 4.3) shown below, there are two specific daily counts that 

visually appear to be an extreme outlier within its specific 27-day window and is ultimately flagged by 

the IQR filter (the two highest daily counts highlighted in blue).  From this, there is reason to believe that 

one of the daily entries is flagged by the IQR filter because that daily entry corresponds to the same date 

as the 2019 Milton, Ontario Santa Clause parade.  That type of event is known to significantly increase 

pedestrian traffic, which ultimately generates a recorded count value much larger than normal.  There is 

also a couple more daily entries caught by the IQR filter (remaining daily counts highlighted in blue) that 

do not appear to be much different from its surrounding daily totals.  However, when viewing the entire 

dataset for the site, it is not clear if those values are extreme outliers but removing those entries should 

not make much of a difference. 

 

Figure 4.3. Example of Data Entries Flagged by Filter f6 (Site Code: S13) 

4.3.3 Pima County, Arizona Filtering Results 
The results in Pima County, Arizona showing the average percentage of daily, 8 hour and 15-minute 

entries captured within the filtering process for sites with data present between January 2020 to March 

2020 are presented in Table 4.2.  Within that table, no data entries were flagged by the non-consecutive 

zero and hard cap limit.  Furthermore, an exceedingly small percentage (almost equal to 0%) of daily and 

8 hour entries were flagged as problematic by the IQR filter.  For the null count filter, the percentage of 

daily, 8 hour and 15-minute entries flagged hovered around 10% and for the daily and 8 hour zero filter, 

the percentage of data entries captured was close to 20%.  The filtering results in Pima County, are not 

overly surprising given the fact that quite a few sites have exceptionally low pedestrian traffic volumes.  

In Appendix D where the same results are shown by site, a few sites have almost all of their data entries 
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flagged by the null count filter and the daily and 8 hour filter.  Therefore, those specific results imply 

that those sites are not useful in this research.  

Table 4.2. Aggregated Filtering Results for Pima County, Arizona (January 2020 to March 2020) 

Filter % Flagged (Avg across all sites) 

Null Counts (Daily Totals f1) 11.8 

Non-Consecutive Zeros (Daily Totals f3) 0 

Hard Cap (Daily Totals f4) 0 

Daily Zeros (Daily Totals f5) 22.4 

IQR (Daily Totals f6) 0.3 

Null Counts (8hr Totals f1) 10.4 

Non-Consecutive Zeros (8hr Totals f3) 0 

Hard Cap (8hr Totals f4) 0 

8hr Zeros (8hr Totals f5) 23.4 

IQR (8hr Totals f6) 0.1 

Null Counts (15min Totals f1) 8.7 

Non-Consecutive Zeros (15min Totals f3) 0 

Hard Cap (15min Totals f4) 0 

 

4.4 Pedestrian Data Study Period 
After the effectiveness of the filters have been examined and determined to be appropriate for the 

given dataset, the next specific focus of this research is to select a study period.  More specifically, it is 

ideal to select a study period that is equal to an entire year and include a relatively large number of 

count sites.  Doing so is important because the study period captures the different variations of 

temporal trends that occur within a year for a given location.  Having many count sites provides more 

options for considering numerous factor grouping setups and provides more results that could further 

validate this research.  The one problem present in all datasets is that considering a cleaned full year of 

data leaves a limited quantity of sites to work with.  Therefore, the study period then must represent a 

specific season instead of a full year to have more optimal quantity of sites to work with. 

Another issue that must be considered when selecting a study period is that a relatively large portion of 

count data obtained from both Milton, Ontario and Pima County, Arizona was collected just prior to and 

at the start of the COVID-19 global pandemic.  Therefore, it is expected that the pandemic significantly 

reduces traffic volumes for all modes of transportation.  An example of this is shown in Figure 4.4 where 

the figure itself presents daily pedestrian data from March 2020 at site in Pima County located near a 

school.  More specifically, the daily pedestrian totals for the first half of March are typically much larger 

than the counts from the last half of the month.  With all that considered, the study period for Milton, 

Ontario starts in July 2019 and goes to February 2020 (8 months) and as for Pima County, Arizona, the 

study period begins in January 2020 and ends in March 2020 (3 months). 
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Figure 4.4. An Example of the Impact of COVID-19 on Daily Count Totals (Site Code: S083)  

4.5 Site Selection Requirements and Short Term Count Criteria 
After selecting a study period for both geographic locations, it is now important to determine if the sites 

that have data collected within the specific study periods meet the requirements to calculate AMI, WWI, 

and the observed/true SADPT and expansion factor values.  For a given site to have sufficient data for 

calculating AMI, all the components of Eq. 2.18 need to be available.  For WWI, Eq. 2.19 is utilized 

however, the requirements for calculating WWI in this work are more extensive.  Therefore, to calculate 

WWI in this research, all sites need daily count values that cover all days of the week.  Since it was 

suggested to utilize the AASHTO method for calculating a value such as AADT/SADT, sites in Milton need 

at least one daily entry for 56 types of daily entries and sites in Pima County need a minimum of one 

daily entry for 21 unique daily entries.  The required daily entries for both datasets are representative of 

a specific day-of-week and month-of-year combination hence (8 months x 7 days = 56) for Milton and (3 

months x 7 days = 21) for Pima County.  Once the determination is made that a given site passes the 

AASHTO requirements for AADT/SADT, most of the expansion factors can be calculated.  The only 

exception to that statement is for the calculation of the k-factor. To determine if a site has adequate 

data for the k-factor computation, the AASHTO requirements should be applied to the 24hr to 8hr ratios 

as well.  After applying all site selection criteria, 12 sites are available for Milton, Ontario and 25 sites for 

Pima County, Arizona.    

For selecting short-term counts from specific count sites, it is important to remember that turning 

movement counts are collected during specific months of the year, days of the week and times of the 

day because certain time periods better reflect the peak usage of hourly vehicular traffic at a specific 

intersection.  Therefore, pedestrian counts at intersections are also representative of the same 

timeframes since the pedestrian data are collected alongside the vehicular data.  For both Milton, 

Ontario and Pima County, Arizona the times of day to collect count data includes 7am to 9am, 11am to 
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2pm and 3pm to 6pm occurring on Tuesdays, Wednesdays, and Thursdays.  From the constraints 

determined by the study periods in Milton and Pima County, short-term counts in Milton are collected 

from September to November and in Pima County, the extraction period is from January to March.  It is 

also important to avoid selecting short-term counts on holidays and on days impacted by COVID-19.  

This is because it is quite possible that the count values corresponding to those specific days are not at 

all like the other count values for any given site which was ultimately demonstrated in Figure 4.4.  If any 

input data used in the SADPT calculations considers holidays and/or COVID-19 days, it is possible that 

the SDAPT estimates are unrepresentative of the true traffic conditions.  The list of holidays and days 

impacted by COVID-19 are presented in Table 4.3 below. 

Table 4.3. List of Holidays Impacting Pima County, Arizona 

Holiday Date 

New Year’s Day Jan 01, 2020 

Winter Break for Schools Jan 02, 2020 to Jan 03, 2020 

Civil Rights Day Jan 20, 2020 

Presidents Day Feb 17, 2020 

Spring Break for Schools Mar 16, 2020 to Mar 20, 2020 

COVID-19 Mar 21, 2020 to Mar 31, 2020 

 

Another aspect to consider when selecting short-term counts is the actual weather conditions which is 
especially important for pedestrians because of its sensitivity to it.  In Table 4.4 and Table 4.5, the 
weather conditions for both Milton and Pima County are listed and if a specific short-term count is to be 
utilized for further analysis, the short-term count must pass the listed weather conditions for its 
geographic location.   

Table 4.4. Weather Conditions for Milton, Ontario 

Weather Variable Condition to Pass 

Total Daily Rainfall <= 10mm 

Average Daily Temperature >= -5oC 

Total Daily Snow on the Ground <= 1cm 

 

Table 4.5. Weather Conditions for Pima County, Arizona 

Weather Variable Condition to Pass 

Average Daily Windspeed <= 30km/h 

Average Daily Temperature <= 35oC 

Minimum Daily Temperature >= -5oC 

Maximum Daily Temperature <= 40oC 

Total Daily Precipitation <= 10mm 

Total Daily Snow on the Ground <= 1mm 
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Chapter 5 Methodologies for Estimating SADPT/AADPT 

5.1 Introduction 
The main objective of this chapter is to address research problem 4, which is associated with the 

conversion of short-terms counts to estimate an average daily pedestrian count value for a given 

timeframe.  To fulfill research problem 4, it is important to understand that expansion methodologies 

for short-term pedestrian counts have already been developed as stated in Chapter 2.  More specifically, 

those expansion methodologies have been recommended and are known as the Traditional (Eq. 2.6, Eq. 

2.8, and Eq. 2.11), AASHTO (Eq. 2.13 and Eq. 2.14), and Disaggregate (Eq. 2.15 and Eq. 2.16) methods. 

However, if those methods are left as is (no modifications made), they can only be applied to short-term 

pedestrian counts equal to 24 hours.  With the short-term pedestrian counts being equal to a duration 

of 8 hours in this research, a modified version of those expansion methods is needed if there is any 

attempt to use them.   

As previously mentioned, the literature does provide suggestions for dealing with situations where the 

short-term counts are less than 24 and those suggestions ultimately imply that modifying daily 

expansion methods is acceptable.  Chapter 2 also suggests that the Disaggregate method has the best 

performance out of the recommended methods however, those comparisons were completed with daily 

totals.  As previously implied, it is not clear what expansion methodology is best for 8hr pedestrian 

counts.  The mechanics of each expansion method are explained throughout the chapter which could 

provide some insights for determining the best expansion methodology for 8hr pedestrian counts.  

Although, the performance of each method is not examined until the next chapter.  It should also be 

noted that the remaining analysis in this thesis does not include any pedestrian count data from Milton, 

Ontario.  It was determined that there were not enough sites remaining after going through the site 

selection criteria.  Therefore, only sites in Pima County, Arizona are being utilized moving forward with 

this work.      

5.2 Computation of Seasonal Values 
As previously stated in this thesis, a seasonal average daily pedestrian traffic value is computed from all 

remaining sites in Pima County, Arizona that includes dates ranging from January 1st, 2020 to March 31st, 

2020.  It was also mentioned that a modified version of the AASHTO method is used to compute the 

seasonal average daily pedestrian traffic value and is presented in Eq. 5.1 shown below. 
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Eq. 5.1 

 

where: 

m   = A specified month of year 

d   = A specified day of week 

c   = An appearance value for a specified day d and month m 

t   = Total quantity of a specified day d and month m 

𝑉𝑑𝑚𝑐   = 24 hour pedestrian volume corresponding to appearance c on day d within month m 
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 𝑆𝐴𝐷𝑃𝑇  = Seasonal Average Daily Pedestrian Traffic 

From Eq. 5.1, it is clear that the only difference between it and the AASHTO method equation presented 

in the TMG is that the number of months considered is 3 within Eq. 5.1 and is 12 months (a full calendar 

year) within the TMG (Eq. 2.3).  However, both versions of the AASHTO method have the same 

mathematical structure and consider all 7 days of the week.  One of the main concerns with calculating a 

seasonal average verses an annual average is that a season average does not capture as much seasonal 

temporal variation as an annual average .  As listed in Table 4.3, data collected between March 16th, 

2020 to March 31st, 2020 is not considered for SADPT estimations however, that specific data restriction 

does not apply to the computation of the true SADPT value.  Although, it was mentioned that including 

count data collected from March 16th, 2020 to March 31st, 2020 is concerning because of the COVID-19 

pandemic and March school break however, that data are not necessarily invalid.  It is just expected that 

the count values at some locations are lower than normal.  As an example, a pedestrian count site could 

be located near a school and by default, the pedestrian volumes are influenced by the presence of the 

school.  If that is the case, it is reasonable to assume that the pedestrian volumes during the summer 

months are much lower than months during the school year which ultimately influences the site AADPT 

value.  The COVID-19 pandemic and March break could also have a similar effect on SADPT values for 

sites in Pima County and could ultimately capture some temporal variation. 

Another factor, the k-factor, is needed because the utilized short-term counts consider less than a day’s 

worth of data.  The calculated k-factor for each site is incorporated within all the SADPT expansion 

methods discussed in Section 5.3.  However, to calculate the k-factor for a given site, Eq. 5.2 and Eq. 5.3 

outline the overall calculation process. 

𝑅𝑑𝑚𝑐 =
𝑉𝑑𝑚𝑐

𝑉𝑑𝑚𝑐(8ℎ𝑟)
 

Eq. 5.2 
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Eq. 5.3 

 

where: 

m   = A specified month of year 

d   = A specified day of week 

c   = An appearance value for a specified day d and month m 

t   = Total quantity of a specified day d and month m 

𝑉𝑑𝑚𝑐   = 24 hour pedestrian volume corresponding to appearance c on day d within month m 

𝑉𝑑𝑚𝑐(8ℎ𝑟) = 8 hour pedestrian volume corresponding to appearance c on day d within month m 

𝑆𝐴𝐷𝑃𝑇  = Seasonal Average Daily Pedestrian Traffic 

𝑅𝑑𝑚𝑐  = Ratio 8 hour to 24 hour pedestrian volumes for appearance c on day d within month m  
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k   = K-factor value 

From Eq. 5.3, it is again obvious to see that it is almost identical to the SADPT computation (Eq. 5.1) used 

in this research.  This is because both formulations consider a modified version of the AASHTO method 

and both formulations do not consider STC requirements however, the ratio of 24hr to 8hr counts 

replaces the 24hr count term in the k-factor equation.  It is also probably reasonable to expect that the 

ratio of 24hr to 8hr counts might be different during various months of the year and days of the week.  

As stated previously, the AASHTO method is mathematically set up to handle monthly and daily 

variations which ultimately implies that using the AASHTO method to compute the k-factor is 

appropriate.   

5.3 Expansion Methodologies 

5.3.1 The Traditional Method 
The first expansion methodology that is considered in this research is the Traditional method.  The 

Traditional method is commonly used in motorized traffic estimation studies but has also been used in 

non-motorized traffic estimation studies as well.  As stated in the literature, the Traditional method 

itself requires a month-of-year and day-of-week scaling factor and to calculate those specific scaling 

factors, a monthly average daily traffic and an average day-of-week traffic value are required.  Eq. 5.4, 

Eq. 5.5, Eq. 5.6, Eq. 5.7, and Eq. 5.8 are needed to produce the SADPT estimates for the Traditional 

method are listed below. 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = 𝑘 × 𝑆𝑇𝐶𝑥 × 𝐷𝑊𝑆𝐹𝑑 × 𝑀𝑌𝑆𝐹𝑚 Eq. 5.4 
 

𝐷𝑊𝑆𝐹𝑑 =
𝑆𝐴𝐷𝑃𝑇

𝐴𝐷𝑃𝑇𝑑
 

Eq. 5.5 

 

𝐴𝐷𝑃𝑇𝑑 =
1

𝑞
∑ 𝑉𝑑𝑎

𝑞

𝑎=1

 
Eq. 5.6 

 

𝑀𝑌𝑆𝐹𝑚 =
𝑆𝐴𝐷𝑃𝑇

𝑀𝐴𝐷𝑃𝑇𝑚
 

Eq. 5.7 

 

𝑀𝐴𝐷𝑃𝑇𝑚 =
1

7
∑[

1

𝑡𝑑𝑚
∑ 𝑉𝑑𝑚𝑐

𝑡𝑑𝑚

𝑐=1

]

7

𝑑=1

 

Eq. 5.8 

 

where: 

m   = A specified month of year 

d   = A specified day of week 

x   = A specified short-term count day 



52 
 

c   = An appearance value for a specified day d and month m 

a   = An appearance value for a specified day d 

𝑡𝑑𝑚   = Total number of days of specified day d and month m 

q   = Total quantity of a specified day d 

k   = K-factor value 

𝐴𝐷𝑃𝑇𝑑   = Average Daily Pedestrian Traffic for day d 

𝑀𝐴𝐷𝑃𝑇𝑚  = Monthly Average Daily Pedestrian Traffic for month m 

𝑉𝑑𝑚𝑐   = 24 hour pedestrian volume corresponding to appearance c on day d within month m 

𝑉𝑑𝑎   = 24 hour pedestrian volume corresponding to appearance a on day d 

𝐷𝑊𝑆𝐹𝑑  = Day of Week Scaling Factor for day d 

𝑀𝑌𝑆𝐹𝑚  = Month of Year Scaling Factor for month m 

𝑆𝑇𝐶𝑥  = Short-Term Count for day x 

𝑆𝐴𝐷𝑃𝑇  = Seasonal Average Daily Pedestrian Traffic 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = Estimated Seasonal Average Daily Pedestrian Traffic for day x 

In Eq. 5.8, the monthly average traffic value is computed using an AASHTO based computation.  This is 

because not every day in each month is present.  In that situation, the literature suggests that utilizing 

an AASHTO based computation is necessary when 100% of the data within a month is not present.  On 

the other hand, in Eq. 5.6, does not separate the average day-of-week traffic value by month, it is just a 

simple average of either Tuesday, Wednesday, or Thursday daily pedestrian traffic totals occurring 

between January 1st, 2020 to March31st, 2020.  Therefore, the Traditional method requires a total of 6 

scaling factors from each site (not including the k-factor) however, 1 scaling factor from each type (MOY 

and DOW) must be applied for Eq. 5.4 to produce the SADPT estimate. 

5.3.2 The AASHTO Method 
The next expansion method takes a slightly more disaggregated approach and only requires 1 additional 

type of scaling factor.  The method is known as the AASHTO expansion method and its associated 

equations (Eq. 5.9, Eq. 5.10, and Eq. 5.11) are listed below. 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = 𝑘 × 𝑆𝑇𝐶𝑥 × 𝐷𝑀𝑆𝐹𝑑𝑚 Eq. 5.9 
 

𝐷𝑀𝑆𝐹𝑑𝑚 =
𝑆𝐴𝐷𝑃𝑇

𝐴𝐷𝑃𝑇𝑑𝑚
 

Eq. 5.10 

 

𝐴𝐷𝑃𝑇𝑑𝑚 =
1

𝑡
∑ 𝑉𝑑𝑚𝑐

𝑡

𝑐=1

 
Eq. 5.11 
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where: 

m   = A specified month of year 

d   = A specified day of week 

x   = A specified short-term count day 

c   = An appearance value for a specified day d and month m 

t   = Total quantity of a specified day d and month m 

k   = K-factor value 

𝐴𝐷𝑃𝑇𝑑𝑚  = Average Daily Pedestrian Traffic for day d within month m 

𝑉𝑑𝑚𝑐   = 24 hour pedestrian volume corresponding to appearance c on day d within month m 

𝐷𝑀𝑆𝐹𝑑𝑚 = Day of Week Scaling Factor for day d within month m 

𝑆𝑇𝐶𝑥  = Short-Term Count for day x 

𝑆𝐴𝐷𝑃𝑇  = Seasonal Average Daily Pedestrian Traffic 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = Estimated Seasonal Average Daily Pedestrian Traffic for day x 

The AASHTO expansion method itself starts off by determining the average daily traffic for every day-of-

week and month-of-year combo within the study period.  For this research, there are 9 different average 

daily traffic values to be computed to correspond with specific short-term count months and days which 

include: Tuesday, Wednesday, Thursday (3 days) x January, February, March (3 months).  After the 

required average daily totals have been determined, those values are converted to its corresponding 

AASHTO factor has outlined in Eq. 5.10 which means there are 9 different scaling factors produced from 

each site. 

5.3.3 The Disaggregate Method 
The last expansion methodology considered within this research is the most disaggregated of all the 

expansion methodologies and is known as the Disaggregate method.  Eq. 5.12 and Eq. 5.13 outline 

process for utilizing the Disaggregate method. 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = 𝑘 × 𝑆𝑇𝐶𝑥 × 𝐷𝑌𝑆𝐹𝑥 Eq. 5.12 
 

𝐷𝑌𝑆𝐹𝑥 =
𝑆𝐴𝐷𝑃𝑇

𝑉𝑥
 

Eq. 5.13 

 

where: 

x   = A specified short-term count day 

k   = K-factor value 

𝑉𝑥   = 24 hour pedestrian volume on day x 
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𝐷𝑌𝑆𝐹𝑥  = Day of Year Scaling Factor for day x 

𝑆𝑇𝐶𝑥  = Short-Term Count for day x 

𝑆𝐴𝐷𝑃𝑇  = Seasonal Average Daily Pedestrian Traffic 

𝐸𝑠𝑡𝑆𝐴𝐷𝑃𝑇𝑥 = Estimated Seasonal Average Daily Pedestrian Traffic for day x 

From viewing the above equations, there are no average daily values calculated.  The Disaggregate 

method itself, just considers every day for a specific site meeting all short-term count criteria (except for 

weather) presented in Chapter 4 separately.  Then the method divides those specific days by the SADPT 

value to get all the Disaggregate factor for the given site.  With using the Disaggregate method, it is 

worth knowing that all considered sites do not likely have the same quantity of Disaggregate factors.  

The reason why that happens is because the filtering results are different for every individual site.  
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Chapter 6 Factor Grouping 

6.1 Introduction 
In the AADT/SADPT expansion calculation, there are two main components that make up the input 

which ultimately includes the short-term count of interest and at least one scaling/expansion factor as 

shown in Chapter 1. The short-term count is collected from a count site with limited quantity of count 

data and almost no temporal profile (short-term count site).  Scaling factors are computed based on 

data from a collection of continuous count sites (factor group) and since those sites are continuous, 

these count data contain temporal information.  This chapter focuses on two technical challenges: the 

first is the method for establishing factor groups with continuous count sites (research problem 3a); and 

the second is the method to associate a short-term count site with the appropriate factor group 

(research problem 3b). 

For problem 3b, it is not possible to use AMI or WWI or other temporal indices because the short-term 

counts are too short to contain sufficient temporal information.  Consequently, it is proposed to explore 

models that make use of land use information. 

Each of these sub-problems is addressed in the following sections.  

6.2 Grouping Continuous Count Sites 
The literature review revealed the use of temporal indices (i.e. AMI, WWI, and AMI+WWI) for factor 

grouping.  Those specific indices were primarily developed from studies involving cyclists and for those 

studies involving pedestrians, the indices were calculated from pedestrian data collected on off-road 

trails and not at roadway intersections.  Therefore, it is not clear if AMI and/or WWI effectively capture 

the behavior of pedestrians utilizing any given roadway intersection.  Nevertheless, these three 

temporal indices are used as benchmark factor grouping methods in this thesis.  

Another possible approach to finding the true factor groups is to utilize the k-means clustering 

methodology.  However, the problem with k-mean clustering is that it is not clear how many clusters 

should be considered or what and how many input variables should be included in the analysis.   

The application of the benchmark methods and the k-mean clustering methods are described in the 

following sub-sections.  

6.2.1 Benchmark Factor Grouping Methods 
As mentioned in Chapter 2, the usage of AMI and WWI in the factor grouping process have been 

selected as benchmark methods.  Overall, AMI expresses a relationship between the traffic in the 

morning and midday peak periods of any given day.  AMI also summarizes traffic patterns for a specific 

site on an hourly level.  On the other hand, WWI highlights the relationship between weekend and 

weekday traffic.  Therefore, WWI categorizes traffic patterns using daily count totals.  Within this 

research there are 3 distinct benchmark methods which include (1) AMI only (Johnstone, Nordback, & 

Kothuri, 2018), (2) WWI only (Nordback, et al., 2019), and (3) AMI and WWI combined (Hankey, Lindsey, 

& Marshall, 2014).   

However, in Hankey et al. (2014) a mixed factor group is created to deal with the unclarity surrounding 

the factor grouping process.  Although, there is a potential solution presented in Miranda-Moreno et al. 

(2013) that could possibly provide more clarity in determining if the site is more recreational or 
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utilitarian based.  However, the intention of this research is to not adjust the threshold values listed in 

Hankey et al. (2014) and if the solution outlined in Miranda-Moreno et al. (2013)  is used, it is possible 

the threshold values for AMI and WWI in Hankey et al. (2014)  could change.  Another issue with using 

the solution in Miranda-Moreno et al. (2013) is that it might be difficult to tell what temporal trends the 

low traffic volume sites in this work are revealing as discussed before.  Therefore, adding the mixed 

group appeared to be the most appropriate solution.  Table 6.1 and Table 6.2 shown below highlight the 

requirements for each group in the AMI and WWI combined case.  19 of 25 sites somewhat exhibit 

characteristics of both utilitarian and recreational traffic patterns.  Those results are not unexcepted 

based on the fact that hourly and daily trends are not always connected for utilitarian and recreational 

behavior for the AMI only and WWI only cases. 

Table 6.1. Boundaries for Combined AMI and WWI Factor Groups Modified from (Hankey, Lindsey, & 
Marshall, 2014) 

Factor Group WWI AMI 

Utilitarian <0.8 >1.5 

Mixed Utilitarian >=0.8 & <1 >1 & <=1.5 

Mixed Recreational >1.25 & <=1.8 >=0.35 & <0.75 

Recreational >1.8 <0.35 

Mixed >=1 & <=1.25 >=0.75 & <=1 

 

Table 6.2. Conditions for the Modified Combined AMI and WWI Factor Groups 

Factor Group Criteria 

Utilitarian 1) AMI and WWI = Utilitarian 
2) AMI/WWI = Utilitarian and AMI/WWI = Mixed 
Utilitarian 

Mixed Utilitarian 1) AMI and WWI = Mixed Utilitarian 
2) AMI/WWI = Mixed Utilitarian and AMI/WWI = 
Mixed 
3) AMI/WWI = Utilitarian and AMI/WWI = Mixed 

Mixed Recreational 1) AMI and WWI = Mixed Recreational 
2) AMI/WWI = Mixed Recreational and AMI/WWI 
= Mixed 
3) AMI/WWI = Recreational and AMI/WWI = 
Mixed 

Recreational 1) AMI and WWI = Recreational 
2) AMI/WWI = Recreational and AMI/WWI = 
Mixed Recreational 

Mixed Any criteria not previously listed 

 

6.2.2 K-Means Factor Grouping Methods 
The k-means clustering method provides a factor grouping method that is both objective and flexible, 

but it is necessary to define the feature vector and the number of clusters.  Given the objective is to 

distinguish between sites that have different expansion factor values, it is proposed to compose the 

feature vector of the k-factor, and the DOW and MOY scaling factors.  Only the DOW scaling factors 
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associated with short-term count days (i.e. Tuesdays, Wednesday, and Thursdays) need be considered 

so for a typical application, the feature vector consists of 1+3+12 = 16 values.  For the Pima County 

application, for which we only have valid data from three months (Jan, Feb, and March), the feature 

vector consists of just 1+3+3 = 7 values.  

Having decided which variables to utilize in the feature vector, it is necessary to select the number of 

clusters and this requires a means of comparing the two different factor grouping solutions that have 

different numbers of groups.  For this research, two different k-means cases were considered where one 

case has two clusters and the other case has three clusters.  Using a three cluster setup makes sense 

because from the benchmark cases, there generally seems to be 3 types of factor groups.  With using a 

three cluster setup, there is a possibility that the clustering results could match the results of one of the 

benchmark methods.  If that is the case, it proves that the use of the specified benchmark method in 

future studies is suitable because of its simplicity and it matches the results of a more complex factor 

grouping method.  Using a two cluster setup is also a good option because if certain sites seem to fit 

within the “mixed factor group”, it is possible to see if those sites are more associated with the 

utilitarian or recreational factor group.      

6.2.3 Comparing Factor Grouping Methods 
The results from the three benchmark and proposed factor grouping methods are compared 

qualitatively and quantitively, as described in the next sections. 

6.2.3.1 Qualitative comparison of factor grouping method results 

The grouping results for the benchmark methods and the proposed k-means clustering methods are 

provided in Table 6.3.  The results are colour coded to clearly show the groupings.  Sites that are 

assumed to be more utilitarian based are yellow, recreational based are blue, and sites with both 

patterns are green.  The only exception to that rule are sites within the mixed utilitarian group which 

uses red.  For a given grouping method, sites within the same group are indicated in the same colour.  

Comparisons across grouping methods can also be made on the basis of the colour coding even when 

the factoring methods may assign different test descriptors to the groups.  For example, consider Site 

S001 in Table 6.3.  This site is assigned to Cluster 0 by the K-means (n=2) grouping method and to Cluster 

1 by the K-means (n=3) method.  These cluster labels are arbitrary and the light blue colours in the cells 

indicates that both these methods identify this site into the same group.  The same can be observed 

from the group assignment from the three benchmark methods.  The group labels vary by method, but 

the site is effectively assigned to the same group.   

A review of the results in Table 6.3 indicates that there is little consistency in the site groupings by the 

different grouping methods even when the grouping methods have the same number of groups and 

provide similar number of sites in each group.  Consider the results from the AMI Only and WWI Only 

methods.  They both create 3 factor groups and the number of sites assigned to each factor group are 

almost identical (the AMI Only case has 11, 10, and 4 sites in each of its factor groups and the WWI Only 

case has 10, 10, and 5 sites in each of its factor groups).  However, the allocation of the sites to each 

group is not very consistent between the two methods.  As previously implied, it is not unreasonable for 

someone to assume that hourly and daily trends could be associated with each other but, the hourly 

commute group from the AMI Only case has 4 sites and the weekday commute group from the WWI 

Only case has 10 sites associated with it.  That result implies that sites having a heavier portion of traffic 

occurring on weekdays when compared to Saturday and Sunday do not always display a traditional 
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hourly peak pattern.  It also does not appear as if a midday peak pattern is always associated with 

heaver weekend traffic.  This is because for the AMI only case, the hourly noon activity group has 10 

sites and the weekend multipurpose group only has 5 sites fitting within its boundaries. 

Table 6.3. Factor Group Classification Table by Factor Grouping Method 

Site 
Code 

K-means 
(n=2) 

K-means 
(n=3) 

AMI and WWI AMI Only WWI Only 

S001 Cluster 0 Cluster 1 Mixed Recreational Hourly Noon Activity Weekend 
Multipurpose 

S004 Cluster 0 Cluster 1 Mixed Utilitarian Hourly Multipurpose Weekday Commute 

S018 Cluster 1 Cluster 2 Mixed Hourly Multipurpose Weekly Multipurpose 

S021 Cluster 1 Cluster 2 Utilitarian Hourly Commute Weekday Commute 

S023 Cluster 1 Cluster 2 Mixed Hourly Noon Activity Weekday Commute 

S024 Cluster 0 Cluster 2 Utilitarian Hourly Commute Weekday Commute 

S031 Cluster 1 Cluster 0 Mixed Hourly Multipurpose Weekend 
Multipurpose 

S041 Cluster 1 Cluster 0 Mixed Recreational  Hourly Noon Activity Weekly Multipurpose 

S045 Cluster 1 Cluster 0 Mixed Recreational  Hourly Noon Activity Weekend 
Multipurpose 

S050 Cluster 0 Cluster 1 Mixed Utilitarian Hourly Multipurpose Weekly Multipurpose 

S055 Cluster 0 Cluster 1 Utilitarian Hourly Commute Weekly Multipurpose 

S056 Cluster 1 Cluster 0 Mixed Utilitarian Hourly Multipurpose Weekly Multipurpose 

S062 Cluster 1 Cluster 2 Mixed Utilitarian Hourly Multipurpose Weekday Commute 

S065 Cluster 0 Cluster 1 Mixed Hourly Multipurpose Weekly Multipurpose 

S072 Cluster 1 Cluster 0 Mixed Recreational Hourly Multipurpose Weekly Multipurpose 

S078 Cluster 1 Cluster 2 Mixed Hourly Noon Activity Weekday Commute 

S079 Cluster 0 Cluster 1 Mixed Hourly Noon Activity Weekly Multipurpose 

S082 Cluster 1 Cluster 2 Mixed Hourly Noon Activity Weekly Multipurpose 

S083 Cluster 1 Cluster 2 Utilitarian Hourly Multipurpose Weekday Commute 

S084 Cluster 1 Cluster 0 Mixed Recreational Hourly Noon Activity Weekly Multipurpose 

S090 Cluster 1 Cluster 2 Utilitarian Hourly Multipurpose Weekday Commute 

S093 Cluster 1 Cluster 0 Mixed Recreational Hourly Noon Activity Weekend 
Multipurpose 

S098 Cluster 1 Cluster 2 Mixed Hourly Noon Activity Weekday Commute 

S101 Cluster 1 Cluster 0 Mixed Recreational Hourly Multipurpose Weekend 
Multipurpose 

S107 Cluster 1 Cluster 2 Utilitarian Hourly Commute Weekday Commute 

 

In the combined AMI and WWI case, there are more than 3 factor groups considered.  The utilitarian, 

mixed utilitarian, mixed recreational, recreational, and mixed groups each have 6, 4, 7, 0, and 8 sites 

respectively.  For the K-means case with two clusters, the quantity of sites in each of the two clusters is 

quite different, cluster 0 only has 7 sites and cluster 1 has the remaining 18 sites.  Most of the sites in 

cluster 0 appear to be utilitarian or a mix of recreational and utilitarian if the sites are to be placed in 
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one of the literature cases but, 1 of the sites in cluster 0 does display some strict recreational behavior.  

For the K-means case with three clusters, clusters 0, 1, and 2 each have 8, 6, and 11 sites respectively.  

The sites within cluster 1 for the three cluster setup fit within cluster 0 of the two cluster setup and 

there is only a difference in size by one site between those two clusters.  It might also be justified to 

assume that the literature cases for factor grouping are not the best for creating factor groups for 

pedestrians.  This is because if AMI and/or WWI are useful thresholds in the factor grouping process, 

they should produce factor groups that are almost identical to the clustering method results and that 

does not appear to happen. 

6.2.3.2 Quantitative comparison of factor grouping method results 

To complete the evaluation of factor grouping methods, the impact of the factor grouping method on 

the AADPT estimation accuracy was determined.  Accuracy was quantified in terms of the mean 

absolute percent error (MAPE) and mean absolute error (MAE) of the AADPT estimate assuming the true 

factor group to which the short term count site belongs is known.  As an example, group/cluster 0 in the 

k-means case with two clusters has 7 sites and if someone wanted to expand a short-term count 

corresponding to a specific day and the 4th site listed for cluster 0 (Table 6.3), each specific scaling factor 

from all expansion methods (Traditional, AASHTO, and Disaggregate) are calculated as an average of the 

true scaling factors from the other sites in the group (sites 1-3, and 5-7) for given type of scaling factor.  

Once all the scaling factors are calculated for each the expansion methods, the applicable scaling factors 

associated with the short-term count day for site 4 are then used as multiplying factors for the short-

term count value which produces the SADPT estimate for the site and day.  After obtaining all SADPT 

from every eligible short-term count day from a given site, MAPE and MAE values are obtained and 

using simple average computation of the site error value produces error values for a given factor 

grouping case. 

In Table 6.4, MAPE and MAE values corresponding to the factor grouping methods are shown.  The best 

factor grouping method is the K-means case with three clusters and the worst performing case is the 

AMI Only case.   T-tests were conducted to determine if the differences in AADPT estimation accuracy 

between the different factor grouping methods were statistically significant.  These results for MAPE 

and MAE are shown in Appendix E, and most of the case by case comparisons show that the differences 

in MAPE and MAE values are significant.  In terms of the expansion methods, the Traditional method 

had the lowest MAPE values and the Disaggregate method had the highest MAPE values.  Another key 

observation is that the Disaggregate method did not outperform the Traditional method and as stated 

before, the Disaggregate method has always been the best performing in past studies.  One of the main 

concerns with the MAPE values for the factor grouping cases is that they range between 45% to 70%, 

which is much higher than those reported in the literature.  The range of MAE values for the factor 

grouping cases is between 30 to 60, and sites with lower pedestrian volumes could have an influence on 

the larger MAPE values and smaller MAE values.  
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Table 6.4. AADPT Estimation Error Metrics by Factor Grouping Method 

Metric Expansion 
Method 

Factor Grouping Method 

K-means 
(n=2) 

K-means 
(n=3) 

AMI and 
WWI 

AMI Only WWI Only 

MAPE 
(%) 

Traditional 51.0 47.5 52.2 55.5 48.3 

Disaggregate 63.8 55.0 63.0 67.8 55.8 

AASHTO 53.0 48.8 54.5 58.0 49.4 

MAE Traditional 39.4 33.0 39.1 44.6 35.8 

Disaggregate 51.6 34.8 45.9 55.6 39.5 

AASHTO 41.6 33.8 40.9 47.2 36.9 

 

Estimation errors were also examined by individual site.  MAPE and MAE by site are presented in 

Appendix F.  Note that are 5 factor grouping methods and 3 different expansion method for each site in 

this analysis, which means that each site has 15 site MAPE and 15 MAE values corresponding to it.   

Figure 6.1 shows the MAPE errors for each site considering all expansion methods and the k-means 

clustering factor grouping method with two clusters.  There seems to be collection of sites with 

respectable MAPE values when compared with the literature.  From Appendix F, the site MAE values 

have a relatively large range and it is likely large because of the collection of low and high pedestrian 

volume sites in the dataset.  However, 3 specific sites, which include Calle del Marques and Sunrise Dr 

(Site S021), Linda Vista Bl and Thornydale Rd (Site S083), and Sunrise Dr and Swan Rd (Site S107) 

consistently had MAPE values above 100% for most scenarios considered.  

 

Figure 6.1. MAPE Values for the K-means (n=2) Factor Grouping Method  
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6.2.4 Modified K-Means Factor Grouping Methods 
An investigation was carried out on these three sites and it was observed that they are all located very 

close to high schools.  To explore if being located close to a high school plays a role in increasing MAPE 

values, the relationship between AADPT estimation accuracy (MAPE) and the closest walking distance to 

a nearby high school (PIMA COUNTY SCHOOL SUPERINTENDENT, 2021) was examined (Figure 6.2).  The 

results in the figure show (1) that for sites located less than 1km walking distance from a high school, 

estimation errors are much higher than for sites located farther away from a high school; and (2) that 

there is no discernable impact of distance to the nearest high school when the distance is equal to or 

greater than 1km.  Therefore, none of the current factor grouping cases were able to capture the 

connection between close proximity to high schools and site MAPE. 

 

Figure 6.2. Walking Distance to High School vs MAPE for the K-means (n=3) Factor Grouping Method 

With the observation made in the above paragraph, both of the k-means clustering factor grouping 

methods were modified to place the three sites close to high schools (i.e. intersections of Calle del 

Marques and Sunrise Dr, Linda Vista Bl and Thornydale Rd, and Sunrise Dr and Swan Rd) in their own 

exclusive high school factor group.  The modified K-means clustering method consists of applying the 

standard K-means clustering to all 25 sites and then extracting the sites located less than 1km from a 

high school from the clusters they have assigned to and placing them in their own cluster.  In this way, 

the modified K-means clustering method with n clusters results in n+1 groups.   

The results (MAPE and MAE) results for all the factor grouping methods, including the modified K-means 

clustering methods, are provided in Table 6.5.  From these results we can observe: 

1. The modified k-means clustering methods provide better AADPT estimation accuracy than the 

standard K-means clustering methods and the three benchmark methods.  

2. The modified K-means clustering method performs better with n=3 than with n=2.  

3. The Traditional expansion method performs the best across the different factor grouping 

methods and the Disaggregate expansion method performs the worst.   
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There are 21 t-test results presented in Appendix G for MAPE and MAE.  17 of the case by case 

comparisons have significant differences and for only 4 comparisons, the differences in AADPT are not 

statistically significant.   

Table 6.6 provides the site groupings that result from the application of the factor grouping methods.  

Please note that the colour coding does not change from Table 6.3 however, sites in the high school 

group use the color pink.  It is observed that group/cluster 0 in the two cluster setup remains the same 

between the previous and modified versions.  The same is also true for clusters 0 and 1 within the three 

cluster setup.  Even though the clustering cases now have improved MAPE values, all the MAPE values 

are still above 40% which again is not ideal.  Therefore, it is likely necessary to evaluate the impact of 

the high school group on the site MAPE values.   

Table 6.5. Updated Error Metrics by Factor Grouping Method 

Metric Expansion 
Method 

Factor Grouping Method 

K-means 
(n=2) 
Mod 

K-means 
(n=3) 
Mod 

K-means 
(n=2) 

K-means 
(n=3) 

AMI and 
WWI 

AMI 
Only 

WWI 
Only 

MAPE Traditional 44.2 42.6 51.0 47.5 52.2 55.5 48.3 

Disaggregate 52.4 48.0 63.8 55.0 63.0 67.8 55.8 

AASHTO 46.1 43.9 53.0 48.8 54.5 58.0 49.4 

MAE Traditional 27.9 24.9 39.4 33.0 39.1 44.6 35.8 

Disaggregate 31.2 23.6 51.6 34.8 45.9 55.6 39.5 

AASHTO 29.4 25.8 41.6 33.8 40.9 47.2 36.9 

 

Even though the modified k-means clustering cases are the best performing it is important to realize 

that there are practical issues with implementing that methodology.  It is not clear on how many 

clusters should be considered and what temporal metrics should be inputted into the analysis as well.  

With the benchmark methods, all the thresholds for allocating sites have already been set and it is just a 

matter of knowing where a given site’s AMI and/or WWI values fall between.  
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Table 6.6. Updated Factor Group Classification Table by Factor Grouping Method 

Site 
Code 

K-means 
(n=2) 
Mod 

K-means 
(n=3) 
Mod 

K-means 
(n=2) 

K-means 
(n=3) 

AMI and 
WWI 

AMI Only WWI Only 

S001 C0 C1 C0 C1 MR  HNA  WDM 

S004 C0 C1 C0 C1 MU HM  WC 

S018 C1 C2 C1 C2 MX HM  WYM 

S021 HSG HSG C1 C2 UT HC  WC 

S023 C1 C2 C1 C2 MX HNA  WC 

S024 C0 C2 C0 C2 UT HC  WC 

S031 C1 C0 C1 C0 MX HM  WDM 

S041 C1 C0 C1 C0 MR  HNA  WYM 

S045 C1 C0 C1 C0 MR HNA  WDM 

S050 C0 C1 C0 C1 MU  HM  WYM 

S055 C0 C1 C0 C1 UT HC  WYM 

S056 C1 C0 C1 C0 MU  HM  WYM 

S062 C1 C2 C1 C2 MU  HM  WC 

S065 C0 C1 C0 C1 MX HM  WYM 

S072 C1 C0 C1 C0 MR HM  WYM 

S078 C1 C2 C1 C2 MX HNA  WC 

S079 C0 C1 C0 C1 MX HNA  WYM 

S082 C1 C2 C1 C2 MX HNA  WYM 

S083 HSG HSG C1 C2 UT HM  WC 

S084 C1 C0 C1 C0 MR HNA  WYM 

S090 C1 C2 C1 C2 UT HM  WC 

S093 C1 C0 C1 C0 MR HNA  WDM 

S098 C1 C2 C1 C2 MX HNA  WC 

S101 C1 C0 C1 C0 MR HM  WDM 

S107 HSG HSG C1 C2 UT HC  WC 

C0 = Cluster 0, C1 = Cluster 1, C2 = Cluster 2, HSG = High School Group, 

UT= Utilitarian, MU = Mixed Utilitarian, MX = Mixed, MR = Mixed Recreational, 

HC = Hourly Commute, HM = Hourly Multipurpose, HNA = Hourly Noon Activity, 

WC = Weekday Commute, WYM = Weekly Multipurpose, WDM = Weekend Multipurpose 

Even though it appears that the addition of the high school group has generally improved MAPE values 

on the factor group level, it is still critical to determine why the high school group still has large errors.  

After viewing the site MAPE values for all 3 sites in the high school factor group (Appendix H), 2 of the 3 

sites have MAPE values that are substantially less than 100% and for some of the MAPE values, they are 

more in line with the literature results.  For the site of Linda Vista and Thornydale (Site S083), the errors 

have improved but they still hover around 100%.  One of the main differences between the site of Linda 

Vista and Thornydale and the other two sites is that a shopping plaza is located near the remaining two 

sites.  Therefore, the pedestrian demands at these other two sites are influenced by both the nearby 

high school and the retail plaza and consequently these sites are expected to have a larger portion of 
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weekend traffic.  The WWI values support this observations.  Linda Vista and Thornydale has a WWI 

value of 0.17 whereas, the other two sites have WWI values close to 0.35.  Overall, the WWI values of all 

three high school sites indicate that the sites likely display utilitarian behavior because of their proximity 

to a high school.  However, the difference in WWI values does indicate that Linda Vista and Thorndale’s 

temporal trend is unique within the high school group because weekend traffic portion is much smaller 

than the weekend portion for the other two sites.  For this analysis, the Linda Vista and Thornydale site 

is not reassigned to another factor group.  With the factor groups not changing, site MAPE and MAE 

values still generally have a wide spectrum of values. 

6.3 Estimating AADPT from Short-Term Counts  
The previous section quantified AADPT estimation errors when expansion factors are computed from 

the factor groups and when the correct factor group is known for each short-term count site.  However, 

in practice, the factor group is not known in advance and there must be a way to determine the 

appropriate factor group.  This section describes two approaches taken to determine expansion factors 

for short-term count sites: 

1. Direct estimation of expansion factors from the short-term count site characteristics.  

2. Identification of the most appropriate factor group based on short-term counts site 

characteristics, and then determination of the expansion factors from the factor group.  

Each of these approaches is described in the following sections.   

6.3.1 Direct Estimation of Temporal Trends using Regression Modelling 
It is proposed to estimate the temporal trend factor(s) on the basis of the land use characteristics at the 

short term site.  For the modified k-means clustering methods (n=2 and n=3) the feature vector consists 

of 7 temporal scaling factors and thus linear regression models are required to estimate each of these 

seven values. The three benchmark factor grouping methods require the estimation of AMI and/or 

WWI.   

Land use characteristics within 400m of each site are captured via five binary land use variables (1=land 

use present; 0 otherwise) as defined in Table 6.7.  The variables are relatively broad categories except 

for the convenience store flag.  The land use characteristic data were obtained and complied from 

Google Places™ by another student (A. Jafari).  The school flag considers post-secondary schools, high 

schools, and elementary schools.  The retail flag reflects any retail location such as restaurants, big box, 

grocery, and clothing stores.  For the parks and recreation variable, other recreational facilities could 

include gyms and sporting arenas.  Finally, for the residential flag, that variable could include anything 

from a subdivision of single unit dwellings or a high rise apartment building complex.  

Table 6.7. List of Land Use Variables Considered for Regression Modelling 

Land Use Variable Description 

ConvSFlag Convenience Stores 

Park_Rec Parks and other Recreational Areas/Facilities 

Residential Residential Areas 

RetailFlag Retail Establishments 

SchoolFlag Educational Institutions 
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9 different land use regression models were developed where each model corresponded to one of the 

dependent variables.  All the land use variables listed in Table 6.7 were used in a step wise regression in 

R with 95% confidence intervals to produce the results for each of the models.  Detailed regression 

model fitting results are provided in Appendices I through M.  A summary is provided in Table 6.8.  All 

reported model coefficients and constants are statistically significant at the 95% confidence level.   

The results indicate that linear models, relating land use characteristics to temporal factors, could be 

established for only the AMI, WWI, January, March, and Tuesday scaling factors.  Therefore, the K-

factor, February, Wednesday, and Thursday scaling factors did not produce any significant land use 

regression models.  The predicted values for those dependent variables are equal to the average across 

all 25 sites for each variable respectively.  For the AMI land use model, park/recreational and school land 

uses are significant and the AMI land use model is the only model with two independent variables.  The 

VIF value indicate that there is no substantial correlation between these two independent variables.  For 

the WWI and Tuesday land use models, only the school land use was significant and for the January and 

March land use models, the convenience store land use was the only significant independent variable.  

In Table 6.8, the prediction error metrics for each of the dependent variables is also displayed. These 

values were computed by comparing the value of the dependent variable determined from the 

proposed regression model to the “true” value computed from the site count data.  The majority of the 

MAPE values are below 15% which is quite good.  However, for WWI the MAPE is around 35% and for 

AMI, the MAPE is even larger and hovers above 60%.  The error metrics obtained are not overly 

surprising because the range of values for AMI and WWI appears to be larger than the range of values 

for the other dependent variables.  One of the concerns with the AMI land use model is that it predicts a 

negative AMI value for a couple of the sites.  A negative AMI value would never be realistic because a 

traffic count can never be less than zero and the input for AMI exclusively considers traffic counts.  

Another issue is that the adjusted r-squared values for every land use model is less than 0.4.  That 

finding implies that the given land uses are not overly reliable at predicting the selected temporal 

metrics. 

Table 6.8. Summary of Land Use Regression Model Calibration 

Model 
(Dependent 
variable) 

Independent Variable 
(coefficient) 

constant VIF Value Adjusted R2 MAPE (%) 

AMI SchoolFlag (1.581) 
Park_Rec (-1.014) 

0.954 1.133 0.395 61.8 

WWI SchoolFlag (-0.443) 1.027 NA 0.275 34.5 

K-factor NA 1.903* NA NA 13.6 

Jan ConvSFlag (-0.128)   1.019 NA 0.189 7.2 

Feb NA 1.035* NA NA 9.6 

Mar ConvSFlag (0.237) 0.982 NA 0.220 11.1 

Tue SchoolFlag (0.200) 1.031 NA 0.275 10.0 

Wed NA 0.995* NA NA 12.4 

Thu NA 1.005* NA NA 10.4 

*One average value for all sites 
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The values predicted for each site from the regression equations or average values are used as the 

scaling factor components in the Traditional method (Eq. 5.4) for the purposes of obtaining SADPT 

estimates for its corresponding site.  That type of SADPT estimation is known as the direct estimation 

method and since Eq. 5.4 is utilized, only predicted values for the k-factor and all 3 MOY and DOW 

factors are required.  The purpose of the direct estimation method is to see if it is worthwhile to attempt 

placing short-term count sites into a specific factor group.  To make that determination, the SADPT 

errors from the direct estimation method and all the relevant factor grouping methods are compared in 

Section 6.3.3.  If the SADPT errors from the direct estimation method are similar or significantly less than 

the factor grouping SADPT errors, that is likely an indication that factor grouping isn’t necessary for 

short-term counts.  It is also worth noting that there was no attempt in this research to develop 

regression equations for the AASHTO and Disaggregate scaling factors.   

6.3.2 Identification of Factor Group using Regression Modelling 
In this method, the factor group to which the short-term count site should be associated is identified by 

comparing one or more temporal trend measures estimated based on the short-term count site 

characteristics to the same temporal trend measured used to establish the factor groups of the 

continuous count site.  The regression models described in the previous sections are used to estimate 

the temporal trend measures for the short-term count sites.  For the benchmark factor grouping 

methods, it is required to compute the estimated AMI/WWI value and then apply the factor grouping 

criteria accordingly.  For the k-means clustering methods, the actual clustering analysis is not carried out 

again however, all 25 sites are treated as short-term count sites and use the regression models to 

predict each value in a feature vector of the 7 factors.  The short-term count feature vector is then 

compared with the average feature vector computed for each factor group within both of the clustering 

cases in Section 6.2.4.  When the short-term count feature vectors are being compared with an average 

factor group feature vector, the mean absolute error (MAE) considering all 7 scaling factors shared 

between the vectors was computed.  The factor group that corresponds to the lowest MAE value is the 

factor group the given site belongs to.  Since 4 of the 7 elements consisting of the short-term count 

feature vector are based on average values, it was also decided to match short-term count sites with a 

k-means cluster using a feature vector consisting of 3 components that have a regression equation 

associated with it.  Those specific values include the January, March, and Tuesday scaling factors and 

again the cluster corresponding to the smallest MAE value based off all 3 components is the known as 

the appropriate factor group for the respective short-term count site.  

It is also important to remember that the input for the factor group scaling factors doesn’t change from 

the original factor groups outlined in Section 6.2.  That statement remains true even if specific factor 

groups loses or gains sites in the land use factor grouping prediction process.  The only exception is if a 

given short-term count location matches the location of a continuous count site in specific factor group 

from Section 6.2.  If that is the case, the input from that site is removed from the factor group scaling 

factor computations.   

The models for determining the factor group for a short-term count sites are assessed in two ways.  The 

first is to qualitatively examine the factor groupings that result from the group prediction models.  The 

second is to quantify the accuracy of the factor group identification methods in terms of factor group 

prediction accuracy.  Each of these is discussed in the following sections.  
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6.3.2.1 Qualitative assessment of predicted factor groups: 

The factor group membership prediction for each of the factor grouping methods is shown in Table 6.10 

(color coding remains the same as Table 6.6) and the factor groups that have known associated land 

uses are presented in Table 6.9.  It can be observed that: 

1. The hourly commute or utilitarian group are both the same as the weekday commute group. 

2. Cluster 1 in the K-means clustering (n=2) method is the same as cluster 2 in the K-means (n=3) 

method.   

3. There is a total of 9 unique factor grouping arrangements (not including the high school group) 

created from the land use factor group prediction models.   

4. The Hourly Commute, Utilitarian or Weekday Commute group must have sites that are within 

400 meters of any type of school.   

5. The hourly multipurpose or mixed group must have sites that are not located within 400 meters 

of both a school and recreational area.  For the hourly noon activity or mixed recreational group, 

sites within that group must be located within 400 meters of a recreational area but further 

than 400 meters from any type of school.  The weekly multipurpose group is simply a 

combination of the hourly multipurpose/mixed and hourly noon activity/mixed recreation 

groups where the sites cannot be less than 400 meters situated from any type of school.  For 

any of the factor groups formed from the k-means clustering analysis, those sites must not be 

within 1 kilometer of a high school but other land uses for the k-means factor groups are 

unknown.   

Table 6.9. Land Use Conditions for Factor Grouping Placements 

Factor Group Conditions 

< 400m 
from a 
School Area 

=> 400m 
from a 
School Area 

< 400m 
from a 
Recreational 
Area 

=> 400m 
from a 
Recreational 
Area 

< 1km from 
a High 
School 

=> 1km 
from a High 
School 

Hourly 
Commute, 
Utilitarian, or 
Weekday 
Commute 

Required NA NA NA NA NA 

Hourly 
Multipurpose 
or Mixed 

NA Required NA Required NA NA 

Hourly Noon 
Activity or 
Mixed 
Recreational 

NA Required Required NA NA NA 

Weekly 
Multipurpose 

NA Required NA NA NA NA 

High School 
Group 

NA NA NA NA Required NA 
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With knowing the associated land uses across the different factor groups, STC sites can be clearly placed 

into a group.  The associated land uses can also explain why the Combined AMI and WWI and the AMI 

Only cases are the same.  Both of those factor grouping methods consider the same two land use 

variables that are utilized to estimate AMI values.  As stated before, WWI only considers one land use 

variable in its regression model and that land use variable is one of the two land uses considered in the 

AMI regression model.  Ultimately, the AMI model is more dominant than the WWI model because the 

additional land use variable in the AMI model gives it the ability to create more factor groups.  

Therefore, the site assignment to the given factor groups is identical.  The AMI Only and the combined 

AMI and WWI cases also have a site distribution of 16, 6, and 3 sites and the WWI case has one factor 

group with 19 sites and the other factor group in that case has only 6 sites.  The distribution of the 7V 

clustering cases includes the high school group of 3 sites and the larger cluster of 22 sites.  The 3 

variable (3V) clustering cases also consider the high school group and have a distribution 19, 3, and 3 

sites for 2 clusters and 18, 4, and 3 sites for 3 clusters.   

Table 6.10. Land Use and Original Factor Group Classification Comparison by Factor Grouping Method 

Site 
Code 

K-means 
(n=2) Mod 
(7V) 

K-means 
(n=2) Mod 
(3V) 

K-means 
(n=3) Mod 
(7V) 

K-means 
(n=3) Mod 
(3V) 

AMI and 
WWI 

AMI Only WWI Only 

Org LU Org LU Org LU Org LU Org LU Org LU Org LU 

S001 C0 C1 C0 C1 C1 C2 C1 C1 MR  MX HNA  HM WDM WYM 

S004 C0 C1 C0 C1 C1 C2 C1 C1 MU MR HM  HNA WC WYM 

S018 C1 C1 C1 C1 C2 C2 C2 C2 MX MX HM  HM WYM WYM 

S021 HSG HSG HSG HSG HSG HSG HSG HSG UT UT HC  HC WC WC 

S023 C1 C1 C1 C1 C2 C2 C2 C1 MX MX HNA  HM WC WYM 

S024 C0 C1 C0 C0 C2 C2 C2 C2 UT UT HC  HC WC WC 

S031 C1 C1 C1 C1 C0 C2 C0 C1 MX MX HM  HM WDM WYM 

S041 C1 C1 C1 C1 C0 C2 C0 C1 MR  MX HNA  HM WYM WYM 

S045 C1 C1 C1 C1 C0 C2 C0 C1 MR MX HNA  HM WDM WYM 

S050 C0 C1 C0 C1 C1 C2 C1 C1 MU  MX HM  HM WYM WYM 

S055 C0 C1 C0 C1 C1 C2 C1 C1 UT MX HC  HM WYM WYM 

S056 C1 C1 C1 C1 C0 C2 C0 C1 MU  MX HM  HM WYM WYM 

S062 C1 C1 C1 C1 C2 C2 C2 C1 MU  MX HM  HM WC WYM 

S065 C0 C1 C0 C1 C1 C2 C1 C1 MX MX HM  HM WYM WYM 

S072 C1 C1 C1 C1 C0 C2 C0 C1 MR MX HM  HM WYM WYM 

S078 C1 C1 C1 C1 C2 C2 C2 C1 MX MX HNA  HM WC WYM 

S079 C0 C1 C0 C1 C1 C2 C1 C1 MX MX HNA  HM WYM WYM 

S082 C1 C1 C1 C1 C2 C2 C2 C2 MX MX HNA  HM WYM WYM 

S083 HSG HSG HSG HSG HSG HSG HSG HSG UT UT HM  HC WC WC 

S084 C1 C1 C1 C1 C0 C2 C0 C1 MR MR HNA  HNA WYM WYM 

S090 C1 C1 C1 C1 C2 C2 C2 C1 UT MX HM  HM WC WYM 

S093 C1 C1 C1 C1 C0 C2 C0 C1 MR MR HNA  HNA WDM WYM 

S098 C1 C1 C1 C0 C2 C2 C2 C2 MX UT HNA  HC WC WC 

S101 C1 C1 C1 C0 C0 C2 C0 C1 MR UT HM  HC WDM WC 

S107 HSG HSG HSG HSG HSG HSG HSG HSG UT UT HC  HC WC WC 
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C0 = Cluster 0, C1 = Cluster 1, C2 = Cluster 2, HSG = High School Group,                                                       

UT= Utilitarian, MU = Mixed Utilitarian, MX = Mixed, MR = Mixed Recreational,                                           

HC = Hourly Commute, HM = Hourly Multipurpose, HNA = Hourly Noon Activity,                                       

WC = Weekday Commute, WYM = Weekly Multipurpose, WDM = Weekend Multipurpose,                     

Org = Original Factor Group, LU = Predicted Land Use Factor Group 

The likely reason why the n=2 and n=3 clustering cases considering 7 variables (7V) were the exact same 

is because most of the components making up the clustering analysis feature vector did not have a 

regression model.  Since that was the case, there likely was not enough variation between the site 

feature vectors because all the feature vectors have 4 components equal to one average value for each 

component.  In the 3V setup with n=3, 18 of the 22 sites originally assigned to cluster 2 in the 7V setup 

with n=3 were moved to cluster 1.  That specific observation proves that considering a different quantity 

of variables between k-means cases can potentially alter the factor grouping placement of short-term 

count sites.   

6.3.2.2 Factor group prediction accuracy: 

Factor group prediction accuracy is determined as the number of sites for which the predicted group is 

correct divided by the total number of group membership predictions (in this application this is 25). 

Prediction accuracy, provided in Table 6.11, ranges from 72% to 44%.  The case that best assigned the 

sites to their original factor group in Section 6.2 is the modified k-means clustering case with n=2 and 7 

variables.  The worst case is the modified k-means cases with n=3 and 7 variables.  The reason why that 

likely happened is because the best and worst cases have the same predicted factor grouping 

arrangement.  However, the original n=2 and n=3 cases are different and since the original n=3 case 

considered one more factor group that the original n=2 case, the prediction score for n=3 is 

automatically lower.  One aspect that the best and worst factor grouping cases have in common is that 

they contain the high school group.  It does not matter what the predicted values are for the feature 

vector for the sites in the high school group.  From Section 6.2, it was determined that the three high 

school group sites should only be associated with each other.  That means the minimum accuracy for 

the modified clustering cases is 12% (3 sites/25 sites).  The Benchmark factor grouping methods do not 

treat the sites near high schools differently from other sites. 

Table 6.11. Factor Group Prediction Accuracy of Land use Regression Models 

Factor Grouping 
Case 

K-means 
(n=2) 
Mod 
(7V) 

K-means 
(n=2) 
Mod 
(3V) 

K-means 
(n=3) 
Mod 
(7V) 

K-means 
(n=3) 
Mod 
(3V) 

AMI and 
WWI 

AMI Only WWI Only 

Number of Factor 
Groups 

2 3 2 3 3 3 2 

Prediction 
Accuracy 

72% 68% 44% 52% 52% 52% 60% 

 

With knowing the assignment accuracy of all factor grouping cases, it is important to realize that factor 

grouping cases that better predict the allocation of sites does not mean the actual site SADPT estimation 

errors are the best out of all the cases considered.  As an example, case 1 has a better factor group 

prediction accuracy value than case 2.  However, the smaller quantity of sites not predicted correctly in 
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case 1 have extremely high SADPT errors.  Therefore, when the summary error metrics are computed for 

both case 1 and case 2, the summary errors for case 1 end up exceeding case 2.  

6.3.3 AADPT estimation accuracy 
The previous sections described two methods for determining the expansion factors for short-term 

count sites.  For the second method (Identifying factor group), a qualitative and quantitative assessment 

was made on the factor group identification.  In this section, the AADPT estimation errors for the two 

methods and the benchmark methods are computed and compared. The AADPT estimation error 

metrics are provided inTable 6.12.  All the modified k-means clustering methods perform better than 

the Benchmark methods with the exception k-means case with 3 variables and n=3, and as indicated in 

Appendix N, most of those improvements are statistically significant.  Initially, the direct estimation 

method obtained SADPT estimation errors that were similar to the benchmark method errors.  

However, after excluding the high school sites from the direct estimation process and placing those sites 

again in the high school group, the overall case errors went down to 42.6% from 52%.  

In terms of the best performing expansion methods, again the Traditional method is the best with the 

lowest MAPE values, followed by the AASHTO and Disaggregate expansion methodologies.  The MAE 

and MAPE values for all land use factor grouping cases range from 25 to 50 and from 35% to 70% 

respectively.  

Table 6.12. AADPT Estimation Error Metrics for Short-term count sites 

Metric MAPE MAE 

Expansion Method T D A T D A 

Direct Est 52.0 NA NA 40.7 NA NA 

Direct Est HSG Sep 42.6 NA NA 26.8 NA NA 

K-means (n=2) Mod (7V) 41.5 46.5 42.9 25.9 27.4 27.1 

K-means (n=2) Mod (3V) 43.8 50.7 45.8 27.8 30.7 29.4 

K-means (n=3) Mod (7V) 38.4 35.4 39.1 24.0 19.5 24.5 

K-means (n=3) Mod (3V) 53.2 66.2 56.2 30.6 33.6 32.3 

AMI and WWI 52.1 62.2 53.9 39.1 45.6 40.7 

AMI Only 52.5 59.5 54.5 40.4 45.0 42.3 

WWI Only 52.4 62.7 54.5 38.5 44.7 40.1 

T = Traditional; D=Disaggregate; A=AASHTO 

With most of the k-means clustering cases performing the best using the predicted temporal metrics, it 

is again important to know it’s limitations.  From this analysis, it was decided to compare predicted 

feature vectors with factor group feature vectors using all 7 and just 3 specific variables.  Even though it 

was explained why those two arrangements were considered, it is also possible to get much better or 

worse SADT estimation results with different setups of variables to compare.  Therefore, it is not clear if 

the association between the predicted and factor feature vectors truly produced the best SADPT 

estimation errors.  The direct estimation method with the high school group separated also performed 

well and it might be a more practical choice to use.  This is because there is a discrete number of 

expansion factors that could be used for a specific dataset which means that there is less uncertainty 

surrounding the direct estimation SADPT error results. 



71 
 

The impact of having to estimate the factor group to which a short-term count site belongs can be 

determined by comparing SADPT estimation errors when the factor group is known to when the factor 

group must be estimated.  This comparison is provided in Table 6.13 where the majority cases have 

better performance metrics using the predicted temporal metrics.  However, the WWI only case and the 

k-means case with 3 variables and n=3 do not have any errors metrics that outperform the land use 

predictions. 

Table 6.13. Differences in Error Metrics when factor group is known and when it must be estimated 

Metric Expansion 
Method 

Factor Grouping Method 

K-
means 
(n=2) 
Mod 
(7V) 

K-
means 
(n=2) 
Mod 
(3V) 

K-
means 
(n=3) 
Mod 
(7V) 

K-
means 
(n=3) 
Mod 
(3V) 

AMI 
and 
WWI 

AMI 
Only 

WWI 
Only 

MAPE 
Difference 
(%) 

Traditional 6.1 0.9 9.8 -24.9 0.1 5.4 -8.5 

Disaggregate 11.2 3.3 26.3 -37.8 1.3 12.2 -12.3 

AASHTO 7.0 0.7 11.0 -28.1 1.2 6.0 -10.4 

MAE 
Difference 
(%) 

Traditional 7.1 0.4 3.8 -22.9 -0.1 9.4 -7.5 

Disaggregate 12.3 1.5 17.2 -42.2 0.7 19.1 -13.2 

AASHTO 8.0 0.2 5.0 -25.4 0.6 10.4 -8.7 

 

Overall, the k-means case with 3 variables and clusters considered has much worse SADPT error values 

than its original group.  The likely cause of that specific difference is that the association of just 3 specific 

variables with actual regression models does not seem to capture the full temporal profile of some of 

the sites.  Therefore, it is important to try and select variables for comparison that truly reflect the 

temporal trends of a given factor group so that the summary errors for the case are reduced.  However, 

as stated before, the answer for selecting the optimal collection of variables to compare between 

predicted and factor group metrics it always obvious.   

For the individual site error metrics which includes MAPE and MAE as displayed in Appendix O, the 

values again seem to display a wide range of success which is again likely dependent on the site and the 

specific factor group the sites are placed in.  
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 
This research was able to provide solutions to the five main research objectives outlined in the first 

chapter.   

1. The modified AASHTO method for computing SADPT values for continuous count sites was 

determined to be flexible with respect to missing data entries.   

2. This research was able to adapt filtering algorithms developed by Allen (2021) for cyclist count 

data and successfully apply them to pedestrian count data.  In the datasets for both Milton, 

Ontario and Pima County, Arizona, the daily/8hr zero and null count filters flagged the highest 

percentage of problematic entries.  For the daily/8hr zero filter more than 2.5% of entries were 

captured within the Milton dataset and for Pima County, around 20% of entries were marked as 

problematic by that filter.  The null count filter was able to flag around 1% of the data collected 

in Milton and about 10% of entries in Pima County.  For filters such as the IQR filter or hard cap 

limit, it is not intended for those filters to mark an extensive portion of the count data.  

Therefore, the hard cap filter had its threshold value increased and a lower limit was applied to 

the IQR filter and ultimately those filters marked less than 1.5% for both datasets. 

3. For the SADPT expansion methodologies, the Traditional, AASHTO, and Disaggregate methods 

were evaluated.  It was worthwhile to try all three expansion methodologies because the SADPT 

error metrics collected in this research yielded different performance results than those in 

previous studies.  The majority of case by case comparisons that were made between the error 

metrics indicated that the Traditional method is the best and the Disaggregate method is the 

worst expansion method.  Within the literature, the opposite is true and the likely reason why 

there is a difference in performance between the expansion methods is the low pedestrian 

volume sites.  The problem with low pedestrian volume sites is that they may have perfectly 

valid larger count values within their dataset from time to time.  When the comes time to 

calculate the expansion factors, the day of year scaling factor for example cannot mitigate the 

effect of the random value.  This is because the Disaggregate expansion methodology treats 

every day in the study period as unique.  A Traditional scaling factor requires a daily average for 

either a given month or day within a study period.  That specific daily average considers an input 

of multiple data entries that have a greater potential to reduce the impact of noticeably 

different counts. 

4. When the site error metrics are compared with some of the literature values, some of the sites 

have error values that are generally respectable and similar to error metrics collected from past 

studies.  However, some of the remaining sites had extremely large error values.  Therefore, 

some of the likely causes of those large site errors could include the incorrect factor group 

placement for the site and/or the variability within the collection of short-term counts 

associated with the site.  It was also determined that both the Benchmark(the utilization of AMI 

and/or WWI) and the k-means factor grouping methods for continuous count sites were not the 

best factor grouping solutions for this dataset.  However, 3 sites that are closely positioned near 

high schools were placed within their own unique factor group for all of the k-means clustering 

cases, and some of the various error metrics did seem to improve and the Disaggregate 

expansion method also performed the best for the 3 high school sites.  However, even with the 
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high group considered within the clustering analysis, there is still some uncertainty with respect 

to the quantity of clusters and what variables to consider in that type of analysis.   

5. For the land use regression models, the MAPE values were between 5% to 15% with the 

exception of the models used to predict AMI and WWI which range from 30% to 65%.  The likely 

reason why those MAPE values were obtained is that most of the utilized temporal tends have a 

relatively small range of values.  However, the adjusted r-squared values for all the land use 

models fell between 0.15 to 0.4.  For the factor grouping cases considered for land use 

prediction, the assignment accuracy was above 50% except for one case that predicted 44% of 

the sites original factor groups.  However, assignment accuracy is not always associated with the 

actual SADPT errors.  For most factor grouping cases, the land use prediction models  produced 

more favorable SADPT errors when compared to the factor grouping arrangements for the 

continuous count sites.  In one specific k-means case, the land use prediction SADPT MAPE value 

was more than 25% better than the original SADPT MAPE value.  Overall, the combination of 

variables to associate short-term count sites with a k-means cluster is important for produces 

low SADPT error values.    

7.2 Recommendations 
The research presented in this thesis gives rise to the following 5 recommendations: 

1. The first recommendation that can be made from this work is to utilize a dataset that allows 

sites to have their true AADPT value computed and that has very large collection of counts sites 

with mostly reliable data.  For this research, most of the sites in the Pima County, Arizona 

dataset had to be removed from the analysis because of problems identified in Chapter 4.  Sites 

with a large portion of cleaned data had most of their data entries removed because it was 

collected after the COVID-19 pandemic was declared and it was questionable if that data would 

represent the typical temporal trends at the site.  Using a large collection of count sites that 

have enough reliable data to compute AADPT instead of SADPT would further validate the 

estimation accuracy by providing more data within the given sites and across the study region as 

well.  Another benefit to using a larger dataset with reliable annual count data is that there is 

the possibility of observing more temporal trends for pedestrians.  Having more temporal trends 

could mean that there could be more factor groups to consider and that could possibly reduce 

AADPT estimation errors because the sites within the groups have more specific temporal 

trends shared. 

2. Another recommendation that can be made for future research is selecting count locations in a 

densely populated urban center.  The reason why it is important to consider sites located in 

those environments is because those sites likely have high pedestrian volumes and there could 

be more of a risk of pedestrians getting injured in those settings as well.  Therefore, if 

pedestrian volumes are not calculated or estimated, there is no way of addressing the safety 

concerns that numerous pedestrians could be dealing with on a consistent basis.   

3. If pedestrian count sites are placed within their correct factor group the variation in 

performance metrics should be relatively low and the majority of obtained performance metrics 

should be in line with previous studies.  It also might be a good idea to compare the Traditional, 

AASHTO, and Disaggregate methods when utilizing more heavily urbanized pedestrian count 

locations because there is likely no guarantee that the best performing expansion method is 

going to be the same as this research or other previous studies.  It is also very possible that 



74 
 

temporal trends for pedestrians may appear to be very different depending on the geographic 

location for the count sites.  Therefore, it is probably worthwhile to incorporate as many 

geographic locations as possible for potential count sites in future studies and continue to 

compare AADPT expansion methodologies to see what expansion methodology work best in 

certain situations and to truly get an enhanced understanding pedestrian traffic at intersections.   

4. Commonly used literature and k-means factor grouping methods have their limitations.  Those 

methods do not always have the ability to reduce estimation errors for all count sites.  From 

that, it would be good idea to identify problematic sites and once the source of the problem is 

identified for each site, place each of those sites within a different factor group if possible.   

5. Finally, the last aspect of this research that can be improved is the land use regression 

modelling.  It could be useful to model the distance between a specific site and a given land use 

as a function of a given temporal metric such as the scaling factors used in the clustering 

analysis or AMI/WWI.  For this work, if land uses were equal to or more than 400 meters away 

from a given site, it was assumed that the land use had no influence on the site.  However, in 

reality, there is no set distance for land uses to be temporally influential.  Another benefit of 

modelling distance as a function of a temporal metric is that the independent variable (the 

distance value) is no longer binary which means that there could be a greater variation of 

predicted values for all temporal metrics considered.  In general, it is expected that a collection 

of count sites have slightly different values from each other for all of their associated temporal 

metrics.  
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Appendices 

Appendix A: List of Milton, Ontario Intersections 
Table A.1. Milton Ontario Intersections Part 1 

Site Name Site Code Start Date End Date Land Uses 

Bronte Street and Derry Road S01 No Data No Data Residential and 
Commercial 

Bronte Street North and Main 
Street West 

S02 Nov 06, 2018 Apr 16, 2020 Commercial 

Fifth Line and Yukon Court S03 No Data No Data Undeveloped and 
Industrial 

James Snow Parkway and 
Derry Road 

S04 Jun 06, 2018 Nov 11, 2019 Residential and 
Undeveloped 

Laurier Avenue and 
Commercial Street 

S05 Jul 23, 2019 Apr 16, 2020 Residential and 
Undeveloped 

Laurier Avenue and Ontario 
Street South 

S06 Jun 14, 2019 Apr 16, 2020 Residential and 
Commercial 

Louis St Laurent Avenue and 
Commercial Plaza 

S07 Jul 04, 2019 Apr 16, 2020 Undeveloped 

Louis St Laurent Avenue and 
Farmstead Drive 

S08 Aug 25, 2019 Apr 16, 2020 Residential and 
Undeveloped 

Main Street and Sherwood S09 Apr 06, 2020 Apr 16, 2020 Undeveloped 

Main Street E and Harris / 
Pearson 

S10 Oct 16, 2019 Apr 16, 2020 Residential 

Main Street East and 
Commercial Street 

S11 Apr 06, 2020 Apr 16, 2020 Commercial 

Main Street East and Leisure 
Centre Driveway 

S12 Oct 28, 2019 Apr 16, 2020 Recreational and 
Undeveloped 

Main Street East and Mall 
Entrance 

S13 Oct 19, 2018 Apr 16, 2020 Commercial 

Main Street East and Maple / 
Sinclair 

S14 Nov 04, 2019 Apr 16, 2020 Residential 

Main Street East and Ontario 
Street North 

S15 Oct 12, 2018 Apr 16, 2020 Commercial 
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Table A.2. Milton Ontario Intersections Part 2 

Site Name Site Code Start Date End Date Land Uses 

Main Street West and Savoline 
Boulevard 

S16 Feb 11, 2020 Apr 16, 2020 Residential, 
Recreational and 
Undeveloped 

Main Street West and Scott 
Boulevard 

S17 Jan 30, 2020 Apr 16, 2020 Residential and 
Undeveloped 

Martin Street and Main Street 
East 

S18 Apr 06, 2020 Apr 16, 2020 Commercial 

Ontario Street South and 
Childs Drive 

S19 Oct 12, 2018 Apr 16, 2020 Residential, 
Commercial, and 
Undeveloped 

Ontario Street South and Pine 
Street 

S20 Oct 12, 2018 Apr 16, 2020 Residential and 
Commercial 

Steeles Avenue East and 
Martin Street 

S21 No Data No Data Commercial 

Thompson Road and Childs 
Drive 

S22 Jun 05, 2018 Apr 16, 2020 Residential 

Thompson Road and Derry 
Road 

S23 No Data No Data Residential and 
Commercial 

Thompson Road and Drew 
Centre 

S24 Jul 19, 2019 Apr 16, 2020 Commercial, 
Recreational, and 
Industrial 

Thompson Road and Laurier 
Avenue 

S25 Jun 06, 2018 Apr 16, 2020 Residential 

Thompson Road and Main 
Street 

S26 Jun 08, 2018 Apr 16, 2020 Residential and 
Commercial 

Thompson Road and McCuaig 
Drive 

S27 Mar 09, 2020 Apr 16, 2020 Residential 

Thompson Road and Nipissing 
Road 

S28 Sep 17, 2018 Apr 16, 2020 Residential and 
Commercial 

Thompson Road North and 
Maple Avenue 

S29 Jan 23, 2020 Apr 16, 2020 Residential and 
Commercial 

Thompson Road North and 
Woodward Avenue 

S30 Jan 27, 2020 Apr 16, 2020 Residential and 
Undeveloped 
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Appendix B: List of Pima County, Arizona Intersections 
Table B.1. Pima County Arizona Intersections Part 1 

Site Name Site Code Start Date End Date Land Uses 

1st Av / Christie Dr / Ina Rd S001 May 12, 2019 Sep 10, 2020 Undeveloped and 
Residential 

1st Av / Orange Grove Rd S002 No Data No Data Residential and 
Undeveloped 

36th St / Palo Verde Rd S003 Jan 02, 2020 Sep 10, 2020 Undeveloped, 
Industrial and 
Commercial 

37th St / Golf Links Rd / Palo 
Verde Rd 

S004 Jan 02, 2020 Sep 10, 2020 Industrial, 
Recreational and 
Commercial 

Abrego Dr / Continental Rd S005 Mar 16, 2020 Sep 10, 2020 Residential 

Abrego Dr / Esperanza Bl S006 Jun 10, 2020 Sep 10, 2020 Residential and 
Recreational 

Aero Park Bl / Nogales Hy / 
Vamori St 

S007 Mar 15, 2020 Sep 10, 2020 Undeveloped, 
Industrial and 
Commercial 

Aerospace Pw / Nogales Hy S008 Mar 15, 2020 Sep 10, 2020 Industrial and 
Undeveloped 

Aerospace Pw / Raytheon 
Pw 

S009 Mar 15, 2020 Sep 10, 2020 Undeveloped and 
Industrial 

Ajo Wy / Alvernon Wy S010 Mar 15, 2020 Sep 10, 2020 Industrial and 
Undeveloped 

Ajo Wy / Dodge Bl S011 Mar 15, 2020 Sep 10, 2020 Commercial and 
Undeveloped 

Ajo Wy / Palo Verde Rd S012 Mar 15, 2020 Sep 10, 2020 Commercial and 
Undeveloped 

Alvernon Wy / Brandi Fenton 
Dw / River Rd 

S013 Mar 01, 2020 Sep 10, 2020 Recreational and 
Undeveloped 

Alvernon Wy / Dodge Bl S014 Mar 03, 2020 Sep 10, 2020 Recreational 

Alvernon Wy / Irvington Rd S015 No Data No Data Industrial and 
Undeveloped 

Alvernon Wy / Valencia Rd S016 Jan 02, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Benson Hy / Palo Verde Rd S017 No Data No Data Commercial and 
Residential 

Benson Hy / Swan Rd / 
Valencia Rd 

S018 Jan 02, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 
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Table B.2. Pima County Arizona Intersections Part 2 

Site Name Site Code Start Date End Date Land Uses 

Broadmont Dr / Palo Verde 
Rd 

S019 No Data No Data Commercial and 
Undeveloped 

Calle Bosque / Territory Dr / 
Craycroft Rd 

S020 Jun 29, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Calle del Marques / Sunrise 
Dr 

S021 Dec 05, 2019 Sep 10, 2020 Residential 

Camino Casa Verde / La 
Canada Dr / Paseo del Chino 

S022 Mar 15, 2020 Sep 10, 2020 Commercial and 
Residential 

Camino de la Tierra / Ina Rd S023 Mar 31, 2019 Sep 10, 2020 Commercial and 
Residential 

Camino De La Tierra / 
Orange Grove Rd 

S024 Nov 17, 2019 Sep 10, 2020 Commercial and 
Residential 

Camino de la Tierra / 
Valencia Rd 

S025 Feb 10, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 

Camino de Oeste / Valencia 
Rd 

S026 Feb 09, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 

Camino Del Sol and Camino 
Encanto 

S027 Feb 19, 2020 Sep 10, 2020 Recreational , 
Residential, and 
Undeveloped 

Camino Verde / Valencia Rd S028 Feb 09, 2020 Sep 10, 2020 Undeveloped, 
Commercial and 
Residential 

Campbell Av / Skyline Dr S029 Mar 30, 2020 Sep 10, 2020 Commercial 

Campbell Av / Speedway Bl S030 No Data No Data Commercial 

Campo Abierto / Sunrise Dr S031 Dec 05, 2019 Sep 10, 2020 Commercial and 
Undeveloped 

Campus Park Wy / Shannon 
Rd 

S032 Jul 06, 2020 Sep 10, 2020 Residential  

Cardinal Av / Drexel Rd S033 Jun 30, 2020 Sep 10, 2020 Commercial, 
Residential, and 
Undeveloped 

Cardinal Av / Valencia Rd S034 Mar 08, 2020 Sep 10, 2020 Commercial 

Casino del Sol Dr / Valencia 
Rd 

S035 Feb 09, 2020 Sep 10, 2020 Undeveloped and 
Commercial 

Cloud Rd / Sabino Canyon Rd S036 Mar 15, 2020 Sep 10, 2020 Residential 
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Table B.3. Pima County Arizona Intersections Part 3 

Site Name Site Code Start Date End Date Land Uses 

Club Dr / Shannon Rd S037 Jun 28, 2020 Sep 10, 2020 Residential 

Colossal Cave Rd / Mary Ann 
Cleveland Wy 

S038 Nov 12, 2019 Sep 10, 2020 Residential, 
Commercial and 
Undeveloped 

Continental Rd / Continental 
Plaza / I19 Frontage Rd 

S039 No Data No Data Commercial 

Continental Rd / La Canada 
Dr 

S040 Mar 11, 2020 Sep 10, 2020 Commercial and  
Recreational 

Cortaro Farms Rd / Magee 
Rd / Shannon Rd 

S041 Jan 05, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Cortaro Farms Rd / Oldfather 
Dr 

S042 Jul 14, 2020 Sep 10, 2020 Residential 

Cortaro Farms Rd / 
Thornydale Rd 

S043 Jan 05, 2020 Sep 10, 2020 Residential, 
Commercial and 
Undeveloped 

Craycroft Rd / River Rd S044 Mar 11, 2020 Sep 10, 2020 Residential, 
Recreational, 
Commercial and 
Undeveloped 

Craycroft Rd / Sunrise Dr S045 Nov 20, 2019 Sep 10, 2020 Residential and 
Undeveloped 

Curtis Rd / La Cholla Bl S046 Mar 11, 2020 Sep 10, 2020 Commercial, 
Recreational, and 
Undeveloped 

Desert Bell Dr / La Canada Dr 
/ La Canoa 

S047 Mar 16, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 

Desert View HS Dw / 
Valencia Rd 

S048 No Data No Data Residential and 
Undeveloped 

Drexel Rd / Mission Rd S049 No Data No Data Commercial and 
Undeveloped 

Drexel Rd / Palo Verde Rd S050 Jan 02, 2020 Sep 10, 2020 Residential and 
Commercial 

East Catalina Highway and 
North Mount Lemmon Short 
Road 

S051 Jul 14, 2020 Sep 10, 2020 Undeveloped and 
Residential 

Esperanza Bl / La Canada Dr S052 Mar 11, 2020 Sep 10, 2020 Commercial 

Flowing Wells Rd / Wetmore 
Rd 

S053 Mar 11, 2020 Sep 10, 2020 Commercial  

Foothills Mall Dr / La Cholla 
Bl 

S054 Mar 11, 2020 Sep 10, 2020 Commercial 
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Table B.4. Pima County Arizona Intersections Part 4 

Site Name Site Code Start Date End Date Land Uses 

Hardy Rd / La Canada Dr / 
Overton Rd 

S055 Jan 05, 2020 Sep 08, 2020 Residential 

Hardy Rd / Thornydale Rd S056 Jan 05, 2020 Sep 10, 2020 Residential, and 
Undeveloped 

Hermans Rd / Nogales Hy S057 Mar 11, 2020 Sep 10, 2020 Undeveloped, 
Industrial and 
Commercial 

Hospital Dr / La Cholla Bl S058 Mar 11, 2020 Sep 10, 2020 Commercial and 
Industrial 

Houghton Rd / Sahuarita Rd S059 Mar 11, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 

Ina Rd / La Canada Dr S060 Jun 10, 2019 Sep 10, 2020 and Residential 

Ina Rd / La Cholla Bl S061 Apr 23, 2020 Sep 10, 2020 Commercial  

Ina Rd / Mona Lisa Rd S062 May 07, 2019 Sep 10, 2020 Commercial, 
Residential, and 
Undeveloped 

Ina Rd / Pima Canyon Dr / 
Skyline Dr 

S063 Nov 20, 2019 Sep 10, 2020 Commercial  

Ina Rd / Shannon Rd S064 Apr 27, 2020 Sep 10, 2020 Commercial and 
Recreational 

Ina Rd / Westward Look Dr S065 Nov 19, 2019 Sep 10, 2020 Residential and 
Undeveloped 

ITD VLAN Test S066 No Data No Data Commercial 

Kinney Rd / Western Wy S067 Aug 25, 2020 Sep 10, 2020 Commercial and 
Residential 

Knollwood Dr / River Rd / 
Sabino Canyon Rd 

S068 Apr 13, 2020 Sep 10, 2020 Residential 

Kolb Rd / Mountain Shadows 
Pl / Ventana Canyon Dr 

S069 Mar 11, 2020 Sep 10, 2020 Residential and 
Recreational 

Kolb Rd / Sabino Canyon Rd S070 Apr 21, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Kolb Rd / Snyder Rd S071 Mar 10, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Kolb Rd / Sunrise Dr S072 Oct 09, 2019 Sep 10, 2020 Commercial 

 

  



84 
 

Table B.5. Pima County Arizona Intersections Part 5 

Site Name Site Code Start Date End Date Land Uses 

La Canada Dr / Magee Rd S073 Mar 11, 2020 Sep 10, 2020 Residential 

La Canada Dr / Orange Grove 
Rd 

S074 Apr 23, 2020 Sep 10, 2020 Commercial, 
Residential, and 
Undeveloped 

La Canada Dr / River Rd S075 Dec 10, 2019 Sep 10, 2020 Commercial  

La Cholla Bl / Magee Rd S076 Jan 05, 2020 Sep 10, 2020 Residential, 
Commercial and 
Undeveloped 

La Cholla Bl / Omar Dr S077 Mar 10, 2020 Sep 10, 2020 Residential and 
Recreational 

La Cholla Bl / Orange Grove 
Rd 

S078 Nov 18, 2019 Sep 10, 2020 Commercial 

La Cholla Bl / Overton Rd S079 Jan 05, 2020 Sep 10, 2020 Residential and 
Undeveloped 

La Cholla Bl / River Rd S080 Feb 24, 2020 Sep 10, 2020 Commercial 

La Cholla Bl / Rudasill Rd S081 Mar 16, 2020 Sep 10, 2020 Commercial and 
Undeveloped 

La Cholla Bl / Ruthrauff Rd S082 May 07, 2019 Sep 10, 2020 Commercial 

Linda Vista Bl / Thornydale 
Rd 

S083 Oct 10, 2018 Sep 10, 2020 Recreational and 
Undeveloped 

Magee Rd / Shannon Rd / 
Tuscany Dr 

S084 Jan 05, 2020 Sep 10, 2020 Recreational 

Magee Rd / Thornydale Rd S085 Oct 30, 2019 Sep 10, 2020 Residential and 
Commercial 

Mark Rd / Valencia Rd S086 Feb 10, 2020 Sep 10, 2020 Undeveloped and 
Residential 

Maryvale Av / Ruthrauff Rd S087 No Data No Data Undeveloped 

Mission Rd / Valencia Rd S088 Apr 23, 2020 Sep 10, 2020 Undeveloped and 
Residential 

Nogales Hy / Old Nogales Hy S089 Mar 10, 2020 Sep 10, 2020 Commercial, 
Residential and 
Undeveloped 

Orange Grove Rd / Shannon 
Rd 

S090 Nov 18, 2019 Sep 10, 2020 Residential 

Orange Grove Rd / Skyline Dr S091 Nov 20, 2019 Sep 10, 2020 Residential 
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Table B.6. Pima County Arizona Intersections Part 6 

Site Name Site Code Start Date End Date Land Uses 

Overton Rd / Shannon Rd S092 Jan 05, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Overton Rd / Thornydale Rd S093 Oct 09, 2018 Sep 10, 2020 Commercial, 
Recreational and 
Undeveloped 

Pontatoc Rd / River Rd S094 Aug 17, 2020 Sep 10, 2020 Residential and 
Recreational 

Pontatoc Rd / Sunrise Dr S095 Dec 05, 2019 Sep 10, 2020 Residential and 
Undeveloped 

River Rd / Swan Rd S096 Mar 10, 2020 Sep 10, 2020 Residential and 
Undeveloped 

River Rd / Via Entrada S097 Mar 10, 2020 Sep 10, 2020 Commercial and 
Residential 

Romero Rd / Ruthrauff Rd S098 Sep 29, 2019 Sep 10, 2020 Commercial, 
Residential, and 
Recreational 

Romero Rd / Wetmore Rd S099 Mar 16, 2020 Sep 10, 2020 Residential, 
Commercial and 
Undeveloped 

Sabino Canyon Rd / Snyder 
Rd 

S100 Aug 18, 2020 Sep 10, 2020 Residential, 
Commercial and 
Undeveloped 

Sabino Canyon Rd / Sunrise 
Dr 

S101 Oct 03, 2019 Sep 10, 2020 Commercial, 
Residential, 
Recreational and 
Undeveloped 

San Marcos / Mission Road 
(Shop Test Cabinet) 

S102 No Data No Data Industrial 

Silverbell Rd / Sunset Rd S103 May 27, 2020 Sep 10, 2020 Residential and 
Undeveloped 

Speedway Bl and Alvernon 
Wy 

S104 No Data No Data Commercial 

Speedway Bl and Tucson Bl S105 No Data No Data Commercial 

Suncrest Pl / Sunrise Dr S106 No Data No Data Residential 

Sunrise Dr / Swan Rd S107 Dec 05, 2019 Sep 10, 2020 Commercial 

Sunrise Dr / Via Palomita S108 No Data No Data Undeveloped 

Tanque Verde Loop Road 
and Tanque Verde Road 

S109 Jun 16, 2020 Sep 10, 2020 Undeveloped 

Valencia Rd / Wade Rd S110 May 13, 2020 Sep 10, 2020 Undeveloped 
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Appendix C: Filtering Results for Milton, Ontario by Site (Jul 2019 to Feb 2020) 
Table C.1. Daily Filtering Results for Milton Ontario 

Site Code Null Counts 
(%)  

Non-
Consecutive 

Zeros (%) 

Hard Cap (%)  Daily Zeros 
(%)  

IQR (%)  

S02 0 0 0 0 0 

S05 2.2 0 0 0 0 

S06 6.6 0 0 4.4 0 

S07 0 0 0 31.9 0 

S13 0 1.1 0 0 0 

S15 0 0 0 0 3.3 

S19 0 0 0 0 0 

S20 0 0 0 0 3.3 

S22 0 0 0 0 0 

S24 0 0 2.2 0 2.2 

S25 0 0 0 0 0 

S26 0 0 1.1 0 2.2 

S28 0 0 0 0 1.1 

 

Table C.2. 8 Hour Filtering Results for Milton Ontario 

Site Code Null Counts 
(%)  

Non-
Consecutive 

Zeros (%) 

Hard Cap (%)  8hr Zeros (%) IQR (%)  

S02 2.2 0 0 0 0 

S05 2.2 0 0 0 0 

S06 6.6 0 0 4.4 1.1 

S07 0 0 0 56 0 

S13 0 1.1 0 0 0 

S15 0 0 0 0 3.3 

S19 0 0 0 0 0 

S20 0 0 0 0 3.3 

S22 0 0 0 0 0 

S24 0 0 1.1 0 2.2 

S25 0 0 0 0 1.1 

S26 0 0 0 0 2.2 

S28 1.1 0 0 0 1.1 
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Table C.3. 15 Minute Filtering Results for Milton Ontario 

Site Code Null Counts (%) Non-Consecutive Zeros (%)  Hard Cap (%)   

S02 3 0 0 

S05 0.8 0 0 

S06 7.4 0 0 

S07 0.1 0 0 

S13 0.05 0.1 0 

S15 3.3 0 0 

S19 0.05 0 0 

S20 0.05 0 0 

S22  0.05 0 0 

S24 0.05 0 0.2 

S25 0.05 0 0 

S26 1.2 0 0.01 

S28 0.2 0 0 
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Appendix D: Filtering Results for Pima County, Arizona by Site (Jan 2020 to Mar 2020) 
Table D.1. Daily Filtering Results for Pima County Arizona 

Site 
Code 

Null Counts (%)  Non-Consecutive 
Zeros (%) 

Hard Cap (%)  Daily Zeros 
(%)  

IQR (%)  

S001 0 0 0 0 0 

S003 100 0 0 1.1 0 

S004 2.2 0 0 1.1 0 

S016 57.8 0 0 100 0 

S018 3.3 0 0 1.1 0 

S021 0 0 0 0 0 

S023 0 0 0 0 1.1 

S024 0 0 0 0 0 

S031 4.4 0 0 2.2 0 

S038 0 0 0 100 0 

S041 2.3 0 0 1.1 1.1 

S043 2.3 0 0 98.9 0 

S045 0 0 0 2.2 0 

S050 2.2 0 0 1.1 0 

S055 2.3 0 0 1.1 0 

S056 2.3 0 0 1.1 0 

S060 47.3 0 0 0 0 

S062 0 0 0 0 1.1 

S063 100 0 0 13.2 0 

S065 0 0 0 0 0 

S072 0 0 0 0 0 

S075 8.8 0 0 98.9 0 

S076 2.3 0 0 100 0 

S078 0 0 0 0 0 

S079 2.3 0 0 3.4 3.4 

S082 0 0 0 0 0 

S083 1.1 0 0 0 0 

S084 4.6 0 0 1.1 2.3 

S085 78 0 0 0 0 

S090 0 0 0 0 0 

S091 3.3 0 0 100 0 

S092 2.3 0 0 100 0 

S093 2.2 0 0 1.1 0 

S095 0 0 0 98.9 0 

S098 1.1 0 0 0 1.1 

S101 2.2 0 0 0 1.1 

S107 1.1 0 0 0 0 
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Table D.2. 8 Hour Filtering Results for Pima County Arizona 

Site 
Code 

Null Counts (%)  Non-Consecutive 
Zeros (%)  

Hard Cap (%) 8hr Zeros (%) IQR (%)  

S001 0 0 0 4.4 0 

S003 100 0 0 1.1 0 

S004 2.2 0 0 1.1 0 

S016 33.3 0 0 100 0 

S018 2.2 0 0 1.1 0 

S021 0 0 0 0 0 

S023 0 0 0 0 1.1 

S024 1.1 0 0 0 0 

S031 5.5 0 0 2.2 0 

S038 0 0 0 100 0 

S041 2.3 0 0 1.1 0 

S043 2.3 0 0 98.9 0 

S045 0 0 0 7.7 0 

S050 3.3 0 0 1.1 0 

S055 3.4 0 0 2.3 0 

S056 2.3 0 0 1.1 0 

S060 17.6 0 0 0 0 

S062 0 0 0 0 0 

S063 100 0 0 31.9 0 

S065 0 0 0 2.2 0 

S072 0 0 0 0 0 

S075 4.4 0 0 98.9 0 

S076 2.3 0 0 100 0 

S078 0 0 0 0 0 

S079 2.3 0 0 9.2 0 

S082 0 0 0 0 0 

S083 2.2 0 0 0 0 

S084 5.7 0 0 1.1 2.3 

S085 78 0 0 0 0 

S090 0 0 0 0 0 

S091 3.3 0 0 100 0 

S092 2.3 0 0 100 0 

S093 2.2 0 0 1.1 0 

S095 2.2 0 0 98.9 0 

S098 1.1 0 0 0 0 

S101 1.1 0 0 0 0 

S107 1.1 0 0 0 0 
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Table D.3. 15 Minute Filtering Results for Pima County Arizona 

Site Code Null Counts (%) Non-Consecutive Zeros (%) Hard Cap (%)  

S001 0 0 0 

S003 70.6 0 0 

S004  1 0 0 

S016  18.1 0 0 

S018  9.1 0 0 

S021  0 0 0 

S023  0.03 0 0 

S024  0.1 0 0 

S031  3.4 0 0 

S038 0 0 0 

S041 1 0 0 

S043 4 0 0 

S045  1.4 0 0 

S050  1.1 0 0 

S055 1.5 0 0 

S056 1 0 0 

S060 17.8 0 0 

S062 0 0 0 

S063 97.4 0 0 

S065 0 0 0 

S072 0 0 0 

S075 17 0 0 

S076 1 0 0 

S078 6.8 0 0 

S079 0.9 0 0 

S082 1.2 0 0 

S083 0.5 0 0 

S084 1.9 0 0 

S085 52.6 0 0 

S090 0 0 0 

S091 1.8 0 0 

S092 0.9 0 0 

S093 1.6 0 0 

S095 0.2 0 0 

S098 0.3 0 0 

S101 0.8 0 0 

S107 7.2 0 0 
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Appendix E: T-Test Results by Factor Grouping Methods 
 Table E.1. T-Test Results for MAPE Values 

Case WWI Only AMI Only AMI and WWI K-means (n=3) 

K-means (n=2) 0.101 0.004 0.490 0.081 

K-means (n=3) 0.020 0.021 0.024 NA 

AMI and WWI 0.030 0.016 NA NA 

AMI Only 0.024 NA NA NA 

Values in bold are statistically significant at 95% confidence level 

 Table E.2. T-Test Results for MAE Values 

Case WWI Only AMI Only AMI and WWI K-means (n=3) 

K-means (n=2) 0.125 0.010 0.322 0.087 

K-means (n=3) 0.027 0.032 0.035 NA 

AMI and WWI 0.041 0.029 NA NA 

AMI Only 0.034 NA NA NA 

Values in bold are statistically significant at 95% confidence level 
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Appendix F: SADPT Estimation Metrics for Sites in Pima County, Arizona 
Table F.1. MAPE Traditional (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 43.4 45.1 40.3 39.8 43.0 

S004 46.8 52.4 32.7 32.4 28.3 

S018 27.5 26.2 28.5 30.7 33.8 

S021 127.9 106.9 113.4 140.9 108.3 

S023 16.8 16.2 31.2 24.3 16.1 

S024 73.1 29.2 28.9 33.3 28.6 

S031 64.8 67.3 64.5 66.0 67.6 

S041 25.4 30.0 30.9 27.1 31.6 

S045 39.5 46.0 46.6 42.3 54.4 

S050 29.1 33.1 19.8 20.1 22.0 

S055 32.7 32.7 52.1 51.4 36.0 

S056 40.4 47.6 45.7 46.4 48.1 

S062 38.3 30.0 57.9 54.4 30.2 

S065 59.7 61.9 55.7 56.1 57.2 

S072 24.1 26.1 27.5 27.1 28.4 

S078 34.0 23.7 60.3 50.4 24.3 

S079 74.9 78.3 65.0 66.1 67.3 

S082 18.6 14.7 40.8 31.7 44.7 

S083 195.3 167.8 180.9 242.0 170.8 

S084 26.9 41.6 43.9 33.1 41.4 

S090 36.5 30.4 31.2 51.1 30.4 

S093 34.9 46.3 48.4 40.1 61.2 

S098 28.2 20.2 41.3 36.9 21.0 

S101 30.0 26.2 25.5 26.9 26.1 

S107 105.7 86.6 92.7 116.8 88.0 
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Table F.2. MAPE AASHTO (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 42.4 44.9 40.6 38.9 44.8 

S004 52.3 59.0 39.7 35.1 28.5 

S018 27.4 27.1 27.4 32.1 35.8 

S021 133.8 107.2 117.1 147.7 109.2 

S023 18.6 18.4 33.8 27.8 18.4 

S024 80.5 30.6 31.1 36.3 30.9 

S031 65.2 68.0 62.8 67.4 68.8 

S041 25.9 34.3 37.1 30.9 34.2 

S045 39.7 46.1 45.6 41.5 52.2 

S050 31.3 38.3 23.1 20.4 21.8 

S055 36.4 36.8 51.7 51.0 37.7 

S056 39.5 46.7 47.3 45.3 44.7 

S062 42.8 31.3 67.9 59.3 30.7 

S065 61.4 64.0 54.2 57.1 57.8 

S072 22.3 26.2 28.2 25.9 29.2 

S078 37.7 24.6 64.2 57.2 25.2 

S079 68.7 71.3 63.6 61.7 63.7 

S082 22.0 16.0 44.2 38.4 50.5 

S083 202.8 168.7 184.7 249.6 172.2 

S084 28.9 46.6 48.2 37.1 45.5 

S090 40.3 30.2 30.1 54.7 30.2 

S093 35.1 48.5 51.1 42.1 63.8 

S098 30.7 21.6 46.5 41.8 22.8 

S101 29.2 27.0 25.3 27.3 26.2 

S107 111.0 87.7 96.5 122.9 89.4 
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Table F.3. MAPE Disaggregate (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 52.9 60.0 48.2 44.4 61.8 

S004 66.2 78.9 48.8 44.1 32.0 

S018 34.7 33.1 41.5 42.5 48.0 

S021 156.1 98.2 110.3 144.6 98.2 

S023 32.9 18.5 57.2 56.0 19.5 

S024 111.6 23.7 24.6 29.4 21.6 

S031 60.7 68.3 62.5 62.5 82.2 

S041 29.2 54.5 55.1 42.4 45.7 

S045 41.2 56.3 52.8 45.6 69.9 

S050 55.4 69.7 35.0 29.3 37.4 

S055 44.9 49.7 59.0 59.9 44.1 

S056 41.9 60.3 49.3 45.5 52.1 

S062 52.7 26.2 81.9 72.8 25.6 

S065 56.9 61.2 55.3 57.4 56.4 

S072 25.6 47.4 46.1 33.0 48.2 

S078 55.1 25.3 91.8 87.8 26.3 

S079 73.3 79.0 67.9 63.7 63.6 

S082 37.3 16.2 68.6 67.4 78.4 

S083 234.7 159.1 178.9 284.9 161.3 

S084 33.3 60.1 61.1 48.8 52.9 

S090 52.1 26.8 29.1 64.7 26.3 

S093 39.4 65.1 62.3 48.6 95.2 

S098 46.3 27.9 70.1 70.8 31.8 

S101 30.4 29.8 26.6 30.0 37.1 

S107 130.4 79.5 90.2 119.6 79.6 
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Table F.4. MAE Traditional (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 3.3 3.4 3.0 3.0 3.2 

S004 9.0 10.1 6.3 6.2 5.5 

S018 15.4 14.7 15.9 17.2 18.9 

S021 72.7 60.8 64.5 80.1 61.6 

S023 15.1 14.5 28.0 21.9 14.5 

S024 84.9 33.9 33.5 38.7 33.2 

S031 9.3 9.7 9.3 9.5 9.7 

S041 8.9 10.5 10.8 9.5 11.0 

S045 2.5 2.9 3.0 2.7 3.5 

S050 19.8 22.5 13.5 13.7 14.9 

S055 4.8 4.8 7.7 7.6 5.3 

S056 14.5 17.1 16.4 16.7 17.2 

S062 13.4 10.5 20.2 19.0 10.6 

S065 5.5 5.8 5.2 5.2 5.3 

S072 18.8 20.4 21.4 21.2 22.1 

S078 35.3 24.6 62.5 52.2 25.2 

S079 4.8 5.0 4.1 4.2 4.3 

S082 39.1 31.1 86.0 66.7 94.2 

S083 338.6 290.9 313.6 419.5 296.2 

S084 8.0 12.4 13.1 9.9 12.4 

S090 6.1 5.1 5.2 8.5 5.1 

S093 8.0 10.7 11.1 9.2 14.1 

S098 8.8 6.3 12.9 11.5 6.6 

S101 16.4 14.3 13.9 14.7 14.2 

S107 222.7 182.6 195.4 246.2 185.4 
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Table F.5. MAE AASHTO (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 3.2 3.4 3.1 2.9 3.4 

S004 10.1 11.4 7.6 6.8 5.5 

S018 15.3 15.2 15.3 18.0 20.0 

S021 76.1 61.0 66.6 84.0 62.1 

S023 16.7 16.5 30.4 24.9 16.5 

S024 93.4 35.5 36.1 42.2 35.9 

S031 9.4 9.8 9.0 9.7 9.9 

S041 9.0 12.0 12.9 10.8 11.9 

S045 2.5 2.9 2.9 2.7 3.3 

S050 21.3 26.0 15.7 13.8 14.8 

S055 5.4 5.4 7.6 7.5 5.6 

S056 14.2 16.7 17.0 16.2 16.0 

S062 15.0 10.9 23.8 20.7 10.7 

S065 5.7 5.9 5.0 5.3 5.4 

S072 17.4 20.5 22.0 20.3 22.8 

S078 39.0 25.5 66.6 59.3 26.2 

S079 4.4 4.5 4.0 3.9 4.0 

S082 46.2 33.7 93.0 80.8 106.4 

S083 351.6 292.5 320.3 432.7 298.6 

S084 8.6 13.9 14.4 11.1 13.6 

S090 6.7 5.1 5.0 9.2 5.0 

S093 8.1 11.2 11.8 9.7 14.7 

S098 9.6 6.8 14.5 13.1 7.1 

S101 15.9 14.7 13.8 14.9 14.3 

S107 234.0 184.8 203.3 259.2 188.5 
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Table F.6. MAE Disaggregate (Original Unmodified) 

Site Code K-means (n=2) K-means (n=3) AMI and WWI AMI Only WWI Only 

S001 4.0 4.5 3.6 3.3 4.6 

S004 12.7 15.2 9.4 8.5 6.2 

S018 19.5 18.5 23.2 23.8 26.9 

S021 88.8 55.8 62.7 82.2 55.9 

S023 29.5 16.6 51.3 50.3 17.5 

S024 129.5 27.5 28.6 34.1 25.0 

S031 8.7 9.8 9.0 9.0 11.8 

S041 10.2 19.0 19.2 14.8 15.9 

S045 2.6 3.6 3.4 2.9 4.5 

S050 37.7 47.4 23.8 19.9 25.4 

S055 6.6 7.4 8.7 8.9 6.5 

S056 15.0 21.6 17.7 16.3 18.7 

S062 18.4 9.2 28.7 25.5 9.0 

S065 5.3 5.7 5.1 5.3 5.2 

S072 20.0 37.0 36.0 25.8 37.7 

S078 57.2 26.2 95.1 91.0 27.2 

S079 4.7 5.0 4.3 4.0 4.0 

S082 78.5 34.0 144.4 142.0 165.1 

S083 406.9 275.9 310.2 494.0 279.6 

S084 10.0 17.9 18.2 14.6 15.8 

S090 8.7 4.5 4.9 10.8 4.4 

S093 9.1 15.0 14.3 11.2 21.9 

S098 14.5 8.7 21.9 22.1 9.9 

S101 16.6 16.3 14.5 16.4 20.3 

S107 274.8 167.7 190.1 252.1 167.9 

 

  



98 
 

Appendix G: Updated T-Test Results by Factor Grouping Methods 
Table G.1. Updated T-Test Results for MAPE Values 

Case WWI Only AMI Only AMI and WWI K-means 
(n=3) 

K-means 
(n=2) 

K-means 
(n=3) Mod 

K-means 
(n=2) Mod 

0.006 0.010 0.008 0.005 0.032 0.080 

K-means 
(n=3) Mod 

0.013 0.018 0.019 0.015 0.042 NA 

K-means 
(n=2) 

0.101 0.004 0.490 0.081 NA NA 

K-means 
(n=3) 

0.020 0.021 0.024 NA NA NA 

AMI and 
WWI 

0.030 0.016 NA NA NA NA 

AMI Only 0.024 NA NA NA NA NA 

Values in bold are statistically significant at 95% confidence level 

Table G.2. Updated T-Test Results for MAE Values 

Case WWI Only AMI Only AMI and WWI K-means 
(n=3) 

K-means 
(n=2) 

K-means 
(n=3) Mod 

K-means 
(n=2) Mod 

0.001 0.014 0.008 0.010 0.035 0.083 

K-means 
(n=3) Mod 

0.016 0.024 0.022 0.013 0.046 NA 

K-means 
(n=2) 

0.125 0.010 0.322 0.087 NA NA 

K-means 
(n=3) 

0.027 0.032 0.035 NA NA NA 

AMI and 
WWI 

0.041 0.029 NA NA NA NA 

AMI Only 0.034 NA NA NA NA NA 

Values in bold are statistically significant at 95% confidence level 
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Appendix H: Updated SADPT Estimation Metrics for Sites in Pima County, Arizona 
Table H.1. MAPE Values (Original Modified) 

Site Code K-means (n=2) Modified K-means (n=3) Modified 

Traditional AASHTO Disaggregate Traditional AASHTO Disaggregate 

S001 43.4 42.4 52.9 45.1 44.9 60.0 

S004 46.8 52.3 66.2 52.4 59.0 78.9 

S018 29.7 29.5 38.0 25.5 26.0 30.4 

S021 54.9 56.4 28.4 54.9 56.4 28.4 

S023 21.4 23.2 42.9 16.0 17.2 17.6 

S024 73.1 80.5 111.6 34.4 35.6 31.4 

S031 65.2 65.4 63.0 67.3 68.0 68.3 

S041 25.8 28.0 35.5 30.0 34.3 54.5 

S045 42.2 42.2 45.2 46.0 46.1 56.3 

S050 29.1 31.3 55.4 33.1 38.3 69.7 

S055 32.7 36.4 44.9 32.7 36.8 49.7 

S056 42.8 42.5 47.7 47.6 46.7 60.3 

S062 46.4 51.9 68.3 37.8 38.5 36.0 

S065 59.7 61.4 56.9 61.9 64.0 61.2 

S072 24.5 23.7 30.3 26.1 26.2 47.4 

S078 43.9 48.5 70.7 33.6 34.0 35.3 

S079 74.9 68.7 73.3 78.3 71.3 79.0 

S082 26.6 31.0 50.6 18.4 18.9 21.5 

S083 109.9 109.5 80.7 109.9 109.5 80.7 

S084 30.7 33.7 39.4 41.6 46.6 60.1 

S090 43.3 48.4 64.9 36.1 36.6 36.5 

S093 37.9 39.8 45.9 46.3 48.5 65.1 

S098 34.4 37.8 56.1 23.7 25.1 28.1 

S101 26.8 26.3 25.9 26.2 27.0 29.8 

S107 39.4 42.8 14.3 39.4 42.8 14.3 
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Table H.2. MAE Values (Original Modified) 

Site Code K-means (n=2) Modified K-means (n=3) Modified 

Traditional AASHTO Disaggregate Traditional AASHTO Disaggregate 

S001 3.3 3.2 4.0 3.4 3.4 4.5 

S004 9.0 10.1 12.7 10.1 11.4 15.2 

S018 16.6 16.5 21.3 14.3 14.6 17.0 

S021 31.2 32.1 16.1 31.2 32.1 16.1 

S023 19.2 20.9 38.5 14.4 15.5 15.8 

S024 84.9 93.4 129.5 40.0 41.4 36.5 

S031 9.4 9.4 9.1 9.7 9.8 9.8 

S041 9.0 9.8 12.4 10.5 12.0 19.0 

S045 2.7 2.7 2.9 2.9 2.9 3.6 

S050 19.8 21.3 37.7 22.5 26.0 47.4 

S055 4.8 5.4 6.6 4.8 5.4 7.4 

S056 15.4 15.2 17.1 17.1 16.7 21.6 

S062 16.2 18.1 23.9 13.2 13.5 12.6 

S065 5.5 5.7 5.3 5.8 5.9 5.7 

S072 19.1 18.5 23.7 20.4 20.5 37.0 

S078 45.5 50.3 73.3 34.9 35.3 36.6 

S079 4.8 4.4 4.7 5.0 4.5 5.0 

S082 56.0 65.2 106.5 38.8 39.7 45.3 

S083 190.5 189.8 139.9 190.5 189.8 139.9 

S084 9.2 10.1 11.8 12.4 13.9 17.9 

S090 7.2 8.1 10.9 6.0 6.1 6.1 

S093 8.7 9.2 10.6 10.7 11.2 15.0 

S098 10.8 11.8 17.5 7.4 7.8 8.8 

S101 14.7 14.4 14.1 14.3 14.7 16.3 

S107 83.0 90.2 30.0 83.0 90.2 30.0 
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Appendix I: AMI Land Use Model 
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Appendix J: WWI Land Use Model 
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Appendix K: January Scaling Factor Land Use Model 
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Appendix L: March Scaling Factor Land Use Model 
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Appendix M: Tuesday Scaling Factor Land Use Model 
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Appendix N: T-Test Results by Land Use Factor Grouping Case 
Table N.1. Land Use T-Test Results for MAPE Values 

Case WWI Only AMI Only AMI and 
WWI 

K-means 
(n=3) Mod 
(3V) 

K-means 
(n=3) Mod 
(7V)  

K-means 
(n=2) Mod 
(3V) 

K-means 
(n=2) Mod 
(7V) 

0.016 0.002 0.017 0.025 0.147 0.029 

K-means 
(n=2) Mod 
(3V) 

0.013 0.00003 0.014 0.024 0.1 NA 

K-means 
(n=3) Mod 
(7V) 

0.047 0.03 0.048 0.053 NA NA 

K-means 
(n=3) Mod 
(3V) 

0.125 0.241 0.097 NA NA NA 

AMI and 
WWI 

0.048 0.662 NA NA NA NA 

AMI Only 0.445 NA NA NA NA NA 

Values in bold are statistically significant at 95% confidence level 

Table N.2. Land Use T-Test Results for MAE Values 

Case WWI Only AMI Only AMI and 
WWI 

K-means 
(n=3) Mod 
(3V) 

K-means 
(n=3) Mod 
(7V)  

K-means 
(n=2) Mod 
(3V) 

K-means 
(n=2) Mod 
(7V) 

0.011 0.004 0.011 0.007 0.158 0.03 

K-means 
(n=2) Mod 
(3V) 

0.008 0.001 0.009 0.0004 0.102 NA 

K-means 
(n=3) Mod 
(7V) 

0.032 0.019 0.031 0.053 NA NA 

K-means 
(n=3) Mod 
(3V) 

0.015 0.002 0.015 NA NA NA 

AMI and 
WWI 

0.019 0.392 NA NA NA NA 

AMI Only 0.138 NA NA NA NA NA 

Values in bold are statistically significant at 95% confidence level 
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Appendix O: Land Use SADPT Estimation Metrics for Sites in Pima County, Arizona 
Table O.1. MAPE Traditional (Land Use Predicted) 

Site 
Code 

K-
means 
(n=2) 
Mod 
(7V) 

K-
means 
(n=2) 
Mod 
(3V) 

K-
means 
(n=3) 
Mod 
(7V) 

K-
means 
(n=3) 
Mod 
(3V) 

AMI 
and 
WWI 

AMI 
Only 

WWI 
Only 

Direct 
Est 

Direct 
Est HSG 
Sep 

S001 39.7 39.7 40.6 25.8 41.2 41.0 41.0 40.6 40.6 

S004 29.9 29.9 28.0 42.2 33.6 30.3 37.2 31.0 31.0 

S018 29.7 29.7 25.5 26.6 28.5 30.7 33.8 24.7 24.7 

S021 54.9 54.9 54.9 54.9 113.4 140.9 108.3 131.0 54.9 

S023 21.4 21.4 16.0 57.9 31.2 25.8 32.3 24.3 24.3 

S024 39.3 73.1 34.4 30.7 28.9 33.3 28.6 42.1 42.1 

S031 65.2 65.2 63.3 27.3 64.5 66.0 66.3 65.3 65.3 

S041 25.8 25.8 25.1 73.1 29.6 28.0 31.6 27.1 27.1 

S045 42.2 42.2 38.5 39.7 45.5 45.8 48.4 44.6 44.6 

S050 20.2 20.2 20.3 42.8 20.6 20.1 22.0 21.2 21.2 

S055 39.1 39.1 42.6 46.4 36.1 37.1 36.0 37.8 37.8 

S056 42.8 42.8 40.0 29.9 46.4 46.4 48.1 44.0 44.0 

S062 46.4 46.4 37.8 20.2 56.9 54.4 60.2 50.0 50.0 

S065 56.6 56.6 55.1 24.5 55.7 56.1 57.2 57.6 57.6 

S072 24.5 24.5 26.2 39.1 29.2 27.1 28.4 26.1 26.1 

S078 43.9 43.9 33.6 56.6 60.3 49.4 59.2 47.1 47.1 

S079 66.3 66.3 61.4 43.9 65.0 68.1 67.3 67.7 67.7 

S082 26.6 26.6 18.4 43.3 40.8 32.9 44.7 31.9 31.9 

S083 109.9 109.9 109.9 109.9 180.9 181.9 170.8 198.0 110.0 

S084 30.7 30.7 25.3 66.3 43.9 33.1 41.4 33.4 33.4 

S090 43.3 43.3 36.1 29.7 53.4 51.1 56.5 46.8 46.8 

S093 37.9 37.9 33.6 21.4 48.4 40.1 46.6 40.7 40.7 

S098 34.4 57.9 23.7 37.9 21.5 24.8 21.0 27.5 27.5 

S101 26.8 27.3 31.3 65.2 35.2 31.4 35.4 29.1 29.1 

S107 39.4 39.4 39.4 39.4 92.7 116.8 88.0 110.1 39.3 
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Table O.2. MAPE AASHTO (Land Use Predicted) 

Site Code K-means 
(n=2) 
Mod (7V) 

K-means 
(n=2) 
Mod (3V) 

K-means 
(n=3) 
Mod (7V) 

K-means 
(n=3) 
Mod (3V) 

AMI and 
WWI 

AMI Only WWI Only 

S001 39.8 39.8 40.7 28.0 40.3 40.3 39.3 

S004 32.5 32.5 28.0 42.2 37.8 34.5 42.4 

S018 29.5 29.5 26.0 31.0 27.4 32.1 35.8 

S021 56.4 56.4 56.4 56.4 117.1 147.7 109.2 

S023 23.2 23.2 17.2 66.8 33.8 27.8 37.1 

S024 40.5 80.5 35.6 33.7 31.1 36.3 30.9 

S031 65.4 65.4 63.3 29.8 62.8 67.4 67.2 

S041 28.0 28.0 25.5 80.5 30.6 28.9 34.2 

S045 42.2 42.2 38.9 39.8 45.1 45.9 49.9 

S050 19.0 19.0 20.3 42.5 19.9 20.4 21.8 

S055 38.4 38.4 42.7 51.9 39.5 36.7 37.7 

S056 42.5 42.5 41.1 32.5 45.1 45.3 44.7 

S062 51.9 51.9 38.5 19.0 63.2 59.3 69.1 

S065 57.6 57.6 54.4 23.7 54.2 57.1 57.8 

S072 23.7 23.7 27.1 38.4 30.3 25.9 29.2 

S078 48.5 48.5 34.0 57.6 64.2 53.4 65.5 

S079 63.8 63.8 63.3 48.5 63.6 65.7 63.7 

S082 31.0 31.0 18.9 48.4 44.2 36.1 50.5 

S083 109.5 109.5 109.5 109.5 184.7 186.7 172.2 

S084 33.7 33.7 24.8 63.8 48.2 37.1 45.5 

S090 48.4 48.4 36.6 29.5 57.9 54.7 62.5 

S093 39.8 39.8 35.3 23.2 51.1 42.1 49.5 

S098 37.8 66.8 25.1 39.8 24.4 28.7 22.8 

S101 26.3 29.8 31.3 65.4 33.9 30.7 35.0 

S107 42.8 42.8 42.8 42.8 96.5 122.9 89.4 
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Table O.3. MAPE Disaggregate (Land Use Predicted) 

Site Code K-means 
(n=2) 
Mod (7V) 

K-means 
(n=2) 
Mod (3V) 

K-means 
(n=3) 
Mod (7V) 

K-means 
(n=3) 
Mod (3V) 

AMI and 
WWI 

AMI Only WWI Only 

S001 40.3 40.3 38.7 35.5 42.5 40.2 43.6 

S004 39.0 39.0 26.0 45.2 45.6 42.9 55.8 

S018 38.0 38.0 30.4 50.6 41.5 42.5 48.0 

S021 28.4 28.4 28.4 28.4 110.3 144.6 98.2 

S023 42.9 42.9 17.6 91.9 57.2 43.5 60.1 

S024 53.3 111.6 31.4 39.4 24.6 29.4 21.6 

S031 63.0 63.0 61.6 36.0 62.5 62.5 66.2 

S041 35.5 35.5 26.2 111.6 42.7 36.6 45.7 

S045 45.2 45.2 38.2 40.3 51.8 49.3 58.2 

S050 25.4 25.4 22.2 47.7 32.1 29.3 37.4 

S055 33.5 33.5 42.8 68.3 41.3 36.4 44.1 

S056 47.7 47.7 38.0 39.0 50.6 45.5 52.1 

S062 68.3 68.3 36.0 25.4 83.2 72.8 92.3 

S065 58.8 58.8 53.3 30.3 55.3 57.4 56.4 

S072 30.3 30.3 24.1 33.5 39.8 33.0 48.2 

S078 70.7 70.7 35.3 58.8 91.8 71.5 92.4 

S079 64.6 64.6 61.6 70.7 67.9 70.2 63.6 

S082 50.6 50.6 21.5 64.9 68.6 50.6 78.4 

S083 80.7 80.7 80.7 80.7 178.9 176.0 161.3 

S084 39.4 39.4 25.6 64.6 61.1 48.8 52.9 

S090 64.9 64.9 36.5 38.0 76.8 64.7 82.1 

S093 45.9 45.9 34.4 42.9 62.3 48.6 56.4 

S098 56.1 91.9 28.1 45.9 35.1 35.5 31.8 

S101 25.9 36.0 31.3 63.0 41.5 37.0 40.4 

S107 14.3 14.3 14.3 14.3 90.2 119.6 79.6 
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Table O.4. MAE Traditional (Land Use Predicted) 

Site 
Code 

K-
means 
(n=2) 
Mod 
(7V) 

K-
means 
(n=2) 
Mod 
(3V) 

K-
means 
(n=3) 
Mod 
(7V) 

K-
means 
(n=3) 
Mod 
(3V) 

AMI 
and 
WWI 

AMI 
Only 

WWI 
Only 

Direct 
Est 

Direct 
Est HSG 
Sep 

S001 3.0 3.0 3.0 9.0 3.1 3.1 3.1 3.1 3.1 

S004 5.8 5.8 5.4 2.7 6.5 5.8 7.2 6.0 6.0 

S018 16.6 16.6 14.3 56.0 15.9 17.2 18.9 13.8 13.8 

S021 31.2 31.2 31.2 31.2 64.5 80.1 61.6 74.5 31.2 

S023 19.2 19.2 14.4 18.1 28.0 23.2 29.0 21.8 21.8 

S024 45.7 84.9 40.0 9.2 33.5 38.7 33.2 48.9 48.9 

S031 9.4 9.4 9.1 14.9 9.3 9.5 9.5 9.4 9.4 

S041 9.0 9.0 8.8 84.9 10.3 9.8 11.0 9.5 9.5 

S045 2.7 2.7 2.5 3.0 2.9 2.9 3.1 2.8 2.8 

S050 13.8 13.8 13.8 15.4 14.0 13.7 14.9 14.4 14.4 

S055 5.8 5.8 6.3 16.2 5.3 5.5 5.3 5.6 5.6 

S056 15.4 15.4 14.3 5.8 16.6 16.7 17.2 15.8 15.8 

S062 16.2 16.2 13.2 13.8 19.9 19.0 21.1 17.5 17.5 

S065 5.3 5.3 5.1 19.1 5.2 5.2 5.3 5.3 5.3 

S072 19.1 19.1 20.5 5.8 22.8 21.2 22.1 20.4 20.4 

S078 45.5 45.5 34.9 5.3 62.5 51.2 61.3 48.9 48.9 

S079 4.2 4.2 3.9 45.5 4.1 4.3 4.3 4.3 4.3 

S082 56.0 56.0 38.8 7.2 86.0 69.3 94.2 67.3 67.3 

S083 190.5 190.5 190.5 190.5 313.6 315.3 296.2 343.3 190.7 

S084 9.2 9.2 7.6 4.2 13.1 9.9 12.4 10.0 10.0 

S090 7.2 7.2 6.0 16.6 8.9 8.5 9.5 7.8 7.8 

S093 8.7 8.7 7.7 19.2 11.1 9.2 10.7 9.4 9.4 

S098 10.8 18.1 7.4 8.7 6.7 7.8 6.6 8.6 8.6 

S101 14.7 14.9 17.1 9.4 19.2 17.1 19.3 15.9 15.9 

S107 83.0 83.0 83.0 83.0 195.4 246.2 185.4 232.2 82.9 
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Table O.5. MAE AASHTO (Land Use Predicted) 

Site Code K-means 
(n=2) 
Mod (7V) 

K-means 
(n=2) 
Mod (3V) 

K-means 
(n=3) 
Mod (7V) 

K-means 
(n=3) 
Mod (3V) 

AMI and 
WWI 

AMI Only WWI Only 

S001 3.0 3.0 3.1 9.8 3.0 3.0 3.0 

S004 6.3 6.3 5.4 2.7 7.3 6.6 8.2 

S018 16.5 16.5 14.6 65.2 15.3 18.0 20.0 

S021 32.1 32.1 32.1 32.1 66.6 84.0 62.1 

S023 20.9 20.9 15.5 20.9 30.4 25.0 33.3 

S024 47.0 93.4 41.4 10.1 36.1 42.2 35.9 

S031 9.4 9.4 9.1 16.3 9.0 9.7 9.7 

S041 9.8 9.8 8.9 93.4 10.7 10.1 11.9 

S045 2.7 2.7 2.5 3.0 2.9 2.9 3.2 

S050 12.9 12.9 13.8 15.2 13.5 13.8 14.8 

S055 5.7 5.7 6.3 18.1 5.8 5.4 5.6 

S056 15.2 15.2 14.7 6.3 16.2 16.2 16.0 

S062 18.1 18.1 13.5 12.9 22.1 20.7 24.2 

S065 5.3 5.3 5.1 18.5 5.0 5.3 5.4 

S072 18.5 18.5 21.2 5.7 23.7 20.3 22.8 

S078 50.3 50.3 35.3 5.3 66.6 55.4 67.9 

S079 4.1 4.1 4.0 50.3 4.0 4.2 4.0 

S082 65.2 65.2 39.7 8.1 93.0 76.0 106.4 

S083 189.8 189.8 189.8 189.8 320.3 323.7 298.6 

S084 10.1 10.1 7.4 4.1 14.4 11.1 13.6 

S090 8.1 8.1 6.1 16.5 9.7 9.2 10.5 

S093 9.2 9.2 8.1 20.9 11.8 9.7 11.4 

S098 11.8 20.9 7.8 9.2 7.6 9.0 7.1 

S101 14.4 16.3 17.1 9.4 18.5 16.7 19.1 

S107 90.2 90.2 90.2 90.2 203.3 259.2 188.5 
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Table O.6. MAE Disaggregate (Land Use Predicted) 

Site Code K-means 
(n=2) 
Mod (7V) 

K-means 
(n=2) 
Mod (3V) 

K-means 
(n=3) 
Mod (7V) 

K-means 
(n=3) 
Mod (3V) 

AMI and 
WWI 

AMI Only WWI Only 

S001 3.0 3.0 2.9 12.4 3.2 3.0 3.3 

S004 7.5 7.5 5.0 2.9 8.8 8.3 10.7 

S018 21.3 21.3 17.0 106.5 23.2 23.8 26.9 

S021 16.1 16.1 16.1 16.1 62.7 82.2 55.9 

S023 38.5 38.5 15.8 28.7 51.3 39.1 54.0 

S024 61.9 129.5 36.5 11.8 28.6 34.1 25.0 

S031 9.1 9.1 8.9 19.7 9.0 9.0 9.5 

S041 12.4 12.4 9.1 129.5 14.9 12.8 15.9 

S045 2.9 2.9 2.4 3.0 3.3 3.2 3.7 

S050 17.3 17.3 15.1 17.1 21.8 19.9 25.4 

S055 5.0 5.0 6.3 23.9 6.1 5.4 6.5 

S056 17.1 17.1 13.6 7.5 18.1 16.3 18.7 

S062 23.9 23.9 12.6 17.3 29.1 25.5 32.3 

S065 5.5 5.5 4.9 23.7 5.1 5.3 5.2 

S072 23.7 23.7 18.8 5.0 31.1 25.8 37.7 

S078 73.3 73.3 36.6 5.5 95.1 74.1 95.8 

S079 4.1 4.1 3.9 73.3 4.3 4.5 4.0 

S082 106.5 106.5 45.3 10.9 144.4 106.6 165.1 

S083 139.9 139.9 139.9 139.9 310.2 305.2 279.6 

S084 11.8 11.8 7.6 4.1 18.2 14.6 15.8 

S090 10.9 10.9 6.1 21.3 12.8 10.8 13.7 

S093 10.6 10.6 7.9 38.5 14.3 11.2 13.0 

S098 17.5 28.7 8.8 10.6 11.0 11.1 9.9 

S101 14.1 19.7 17.1 9.1 22.6 20.2 22.0 

S107 30.0 30.0 30.0 30.0 190.1 252.1 167.9 

 

 

 

 

 


