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A modification to real space polymeric self-consistent field theory algorithms that greatly improves
the convergence properties is presented. The method is based on Anderson mixing@D. G. Anderson,
J. Assoc. Comput. Mach.12, 547 ~1965!#, and each iteration computed takes negligibly longer to
perform than with other methods, but the number of iterations required to reach a high accuracy
solution is greatly reduced. Noa priori knowledge of possible phases is required to apply this
method. We apply our approach to a standard diblock copolymer melt, and demonstrate iteration
reductions of more than a factor of 5 in some cases. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1629673#

I. INTRODUCTION

Self-consistent field theory~SCFT! has proven itself to
be one of the best theoretical methods for studying block
copolymer systems,1 and can also be applied to general poly-
meric fluids.2 It is a mean-field theory, which yields mor-
phologies, free energies, entropies, enthalpies,1 bridging
fractions,3–5 and also some macroscopic mechanical
properties.6–8 Comparison with experiments have shown it to
be quantitatively as well as qualitatively reliable, when
solved to high accuracy.1 Originally, SCFT was solved in
real space,9–11 which limited its precision. A powerful spec-
tral approach12 has since emerged that allows dependable
phase diagrams to be produced. More recently, there has
been a turn back towards a real space method of solution
because of the ease of implementation and the ability to pre-
dict morphologies.4,13–16 This approach has been given a
boost by a pseudospectral method of solution,15,16 which
greatly increases the efficiency of the real space method.
Many such modern real space methods depend upon a
‘‘simple mixing’’ iterative technique for solving the self-
consistent set of equations.4,13–16This approach can require a
large number of iterations if the free energy is determined to
a reasonable level of accuracy. In this article, we suggest an
alternative method that converges much faster, and can speed
up real space SCFT calculations in some cases by more than
a factor of 5.

The method we suggest was originally presented by
Anderson17 in a different context, and is therefore sometimes
known as ‘‘Anderson mixing.’’ It has been clearly outlined
by Ng,18 and was introduced in the context of SCFT by
Schmid19,20 in order to study lipid monolayers. Schmid used
a variant of Anderson mixing, which we find does not speed
up the convergence of polymeric SCFT systems with respect
to simple mixing. We present an implementation that com-
bines the rapid convergence ofstandardAnderson mixing
with the ‘‘combinatorial screening’’ feature13 of the pseu-

dospectral real space algorithm for block copolymer systems.
The neat diblock copolymer system has been extensively

studied with SCFT,1 and so it makes an appropriate ‘‘fruit-
fly’’ for us to demonstrate our algorithm. It should be noted
however that the method is applicable to all block copoly-
mer, polymer blend, and polymeric fluids to which one can
apply SCFT.2

II. THEORY

SCFT has been described extensively elsewhere.1,2,20

Here we will assume a basic familiarity with the theory and
write the free energy for an AB diblock copolymer melt as

F
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In Eq. ~1!, wA(r ) andwB(r ) are the local monomer21 densi-
ties of the A and B chemical species, respectively. Conjugate
to these densities are the chemical potential fieldswA(r ) and
wB(r ). x is the Flory–Huggins interaction parameter be-
tween A and B monomers, based on a monomer volume of
r0

21 and a degree of polymerizationN. Further,V is the
volume of the system,n is the number of molecules in the
volume, kB is Boltzmann’s constant, andT is the tempera-
ture. The partition functionQ of a single diblock molecule
subject to the fieldswA(r ) andwB(r ) is given by

Q5E drq~r ,s!q†~r ,s!, ~2!

where the propagatorsq(r ,s) and q†(r ,s) are solutions to
modified diffusion equations given elsewhere.1 Thes param-
eter in the propagators follows the contour of the diblock
from one end (s50) through the junction point (s5 f ) and
to the other end (s51). The free energy~1! can be deter-
mined by solving the self-consistent set of equations

wA~r !5xNwB~r !1j~r !, ~3!

wB~r !5xNwA~r !1j~r !, ~4!
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wherej~r ! is a field that enforces incompressibility.
Typical real space approaches to solving Eqs.~3!–~7!

consist of generating random fieldswA(r ) and wB(r ) and
solving for the densitieswA(r ) andwB(r ), then recalculating
the fields. Details on the specifics of such iterative algo-
rithms can be found in Refs. 2, 4, and 13–16. Iteration
through direct substitution of the fields is unstable, so a
‘‘simple mixing’’ update is usually performed according
to2,4,13,14

wi 11
in 5~12l!wi

in~r !1lwi
out~r !, ~8!

wherewi
in(r ) is the input value for iterationi , wi

out(r ) is the
resultant field, andwi 11

in is the field to be input for the next
iteration.l is a parameter chosen sufficiently small to ensure
stability, typically &0.1. The prescription~8! is usable, but
slow and sometimes unstable. Some authors15,16 have modi-
fied Eq.~8! slightly using density information in an attempt
to increase the stability.

In this article, we use a combination of Eq.~8! and a
method described by Ng18 and Schmid.19 We define a devia-
tion function as

di~r !5wi
out~r !2wi

in~r !, ~9!

from which we can specify a total deviation through the in-
ner product

~g~r !,h~r !![E drg~r !h~r !, ~10!

whereg(r ) andh(r ) are arbitrary functions. Our total devia-
tion is then

di
tot5U ~di~r !,di~r !!

~wi
out~r !,wi

out~r !!
U, ~11!

which follows the definition of Schmid and Mu¨ller10 rather
than that of Ng.18 Simple mixing is performed until a certain
tolerance is reached where a morphology has begun to de-
velop. Typically,dtot;1023 is sufficient, although in many
casesdtot;1022 or 1021 will do. We then switch to the Ng
procedure, and hence define the matrix

Unm5~di~r !2di 2n~r !,di~r !2di 2m~r !!, ~12!

and vector

Vn5~di~r !2di 2n~r !,di~r !!, ~13!

with dimensionsn5m, which are arbitrary.22 Calculating the
coefficients,

An5Unm
21Vn , ~14!

allows us to use the prescription

wi 11
out ~r !5wi

out1(
n

An~wi 2n
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out~r !!. ~15!

One can see that whereas the simple mixing prescription~8!
mixed the input and output of a single iteration using an
arbitrary mixing parameterl to obtain the input for the next
iteration, the Anderson mixing prescription~15! mixes the
output of several iterations and calculates the best mixing
parameters possible assuming a linear system. Obviously, the
SCFT system~3!–~7! is not linear, but the Anderson mixing
procedure is able to correct for occasional bad steps.

We should point out that Schmid has also used a combi-
nation of simple mixing and Anderson mixing in SCFT ap-
plied to lipid molecules,19 however, that approach differs

TABLE I. Iterations required for a given accuracy tolerance. The first row gives the number of iterations
required to reach a relative accuracy of 1023 in the fields using simple mixing only. Subsequent rows give the
additional iterations required to reach the indicated accuracy. The last row gives the total number of iterations
required to reach an accuracy of 10216. The results given here are for the lamellar system shown in Fig. 1.

Tolerance

Simple mixing Anderson mixing

Iterations Free energy Iterations Free energy

1023 100 4.385 597 865 ¯ ¯

1024 36 4.393 744 754 4 4.388 714 217
1025 59 4.392 150 644 3 4.392 041 233
1026 36 4.391 962 299 3 4.392 174 754
1027 59 4.391 969 470 4 4.391 997 179
1028 60 4.391 973 279 4 4.392 009 709
1029 59 4.391 974 733 3 4.391 961 370
10210 36 4.391 975 785 5 4.391 979 954
10211 60 4.391 975 693 3 4.391 974 741
10212 59 4.391 975 657 4 4.391 975 490
10213 60 4.391 975 638 3 4.391 975 489
10214 36 4.391 975 628 6 4.391 975 647
10215 59 4.391 975 629 4 4.391 975 630
10216 60 4.391 975 629 8 4.391 975 622

Totals 779 154
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from our method. Schmid defined formulas analogous to Eq.
~15! for both the input and output fields, and these two re-
sults were combined through simple mixing.23 We find that
the Schmid method does not noticeably reduce the iteration
count for polymeric systems with respect to pure simple mix-
ing. Instead, we have used simple mixing alone at the start of
the algorithm to distill out a morphology,followedby Ander-
son mixing alone to rapidly converge the solution to a high
relative accuracy in the fields. We have found that using
Anderson mixing directly from random fields can be un-
stable, or will result in highly metastable solutions.

III. RESULTS AND DISCUSSION

The algorithm described in the previous section has been
applied to a diblock copolymer melt; the corresponding
SCFT equations were also given in Sec. II. The results for a
system withxN525 and f 50.5 are shown in Table I. The
first column shows the relative accuracy achieved in the
fields; the second and third columns give the iteration count
and free energy, respectively, for a simple mixing calcula-
tion. The fourth and fifth columns are the same as the second

and third, except that Anderson mixing was used. The first
row gives the number of iterations required to reach a rela-
tive accuracy of 1023 in the fields using simple mixing only.
Subsequent rows give theadditional iterations required to
reach the indicated accuracy. The last row gives the total
number of iterations required to reach an accuracy of 10216.
The final morphology is shown in Fig. 1. Bearing in mind
that an Anderson iteration takes negligibly longer to perform
than a simple mixing iteration, it is clear that the Anderson
method is more than five times faster than the simple mixing
method. Since atxN525 andf 50.5, the diblock copolymer
system is known to be in a lamellar state, Table I was gen-
erated using a one-dimensional code. Two- and three-
dimensional runs on other morphologies however, have
given similar benefits.

From our experience, the lamellar morphology can take
longer to ‘‘anneal’’ when using simple mixing than some
other morphologies, such as the body-centered-cubic~bcc!
spherical phase. Indeed, we have found the bcc phase par-
ticularly amenable to the traditional simple mixing approach.
Even for this case, however, a significant benefit is realized
by using Anderson mixing, as shown in Table II. One can see
from the total iterations that Anderson mixing is more than
twice as fast as simple mixing for the bcc morphology. The
final morphology produced is shown in Fig. 2.

The benefits displayed in Tables I and II are the result of
starting from random fields. If a reasonable first guess is
already available for a given morphology, then the benefits of
the Anderson approach can be much greater. Work has been
done on the elastic properties of block copolymer melts,7,8

where deformations about an equilibrium structure are inves-
tigated using SCFT. Such calculations, when done in real
space,8 could be performed far more efficiently and to a
much higher accuracy using the current approach.

In Tables I and II, the increased accuracy in the free
energy reflects only the increased accuracy of the iterated
fields in a given discretization. The number of real space grid
points, or the discretization of the timelike contour parameter
s will also limit the free energy accuracy. Certainly, the

FIG. 1. Lamellar morphology of a diblock copolymer withf 50.5 andxN
525. The solid line is the A~B! phase and the dashed line is the B~A! phase.

TABLE II. Same as Table I except for the bcc spherical phase shown in Fig. 2. The last row gives the total
number of iterations required to reach an accuracy of 10215.

Tolerance

Simple mixing Anderson mixing

Iterations Free energy Iterations Free energy

1023 720 3.842 855 605 ¯ ¯

1024 29 3.842 396 475 8 3.844 175 772
1025 31 3.844 500 524 3 3.845 097 114
1026 31 3.845 272 439 4 3.845 547 576
1027 43 3.845 469 768 6 3.845 473 906
1028 129 3.845 444 712 15 3.845 438 991
1029 144 3.845 415 456 15 3.845 411 627
10210 145 3.845 404 670 18 3.845 403 465
10211 145 3.845 400 721 15 3.845 400 713
10212 145 3.845 399 272 17 3.845 399 256
10213 147 3.845 398 735 20 3.845 398 669
10214 150 3.845 398 539 16 3.845 398 515
10215 151 3.845 398 468 13 3.845 398 466

Totals 2010 870
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present method allows sufficient accuracy at a given discreti-
zation to remove one previously important limiting factor.
This approach also allows one to more quickly get results
when interpolating a known solution to a finer discretization.
It may be that in time the real space method free energy will
allow the construction of phase diagrams competitive with
the more sophisticated basis function method.24

IV. CONCLUSIONS

An algorithm for solving polymeric SCFT equations
based on Anderson mixing has been presented, which can
greatly speed up convergence. For a lamellar morphology,
we find an improvement of more than a factor of 5. For a bcc
spherical morphology, which is among the easiest to solve
with simple mixing, we still see a benefit of more than a
factor of 2. In more complicated systems or morphologies
where simple mixing iterations oscillate significantly before
an accurate free energy is found, we expect even greater
improvements than those reported here.

The Anderson mixing method can be used by itself for
cases where a reasonable initial guess is known. From Tables
I and II, it can be seen that Anderson mixing reduces itera-
tions for a good initial guess by a factor of roughly 10. If
starting from random fields, the method can be used subse-
quent to simple mixing. The higher accuracy of the free en-
ergy that is obtainable using this method relates only to the
relative accuracy of the iterated fields. To make phase dia-
gram calculations competitive with the spectral method,12

other improvements in the real space approach are required.

One possibility is the interpolation to denser meshes. The
present method of solution makes such an approach much
more feasible.

Lastly, the Anderson mixing method can be applied to
field theoretic simulations~FTS!, as well. The FTS method
involves numerically solving the exact partition function of
the polymer fluid model, and does not use the mean-field
approximation. This approach has been restricted to two di-
mensions previously because of the computational intensity.
Since good initial guesses are always used for these systems,
the application of Anderson mixing could well make three-
dimensional FTS calculations possible.
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FIG. 2. bcc morphology of a diblock copolymer withf 50.2 andxN525.
The calculated pattern is repeated three times in every direction. The isos-
urfaces show contours of equal A and B densities, that is, contours at 0.5
A~B! density.
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