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Abstract

The accelerated growth in Microwave Imaging (MWI) and Microwave Detection (MWD)
is driven by microwave ability to penetrate materials that are considered opaque at a
shorter wavelength. This elevates MWI potential to cover a wide range of applications,
including but not limited to: security checking; civil and industrial operations; and medical
diagnostics. Involving microwaves in the biomedical field relies on two additional microwave
features: a) a microwave interacts differently with biological tissue, based on the tissue’s
electrical properties; and b) a microwave is considered as non-ionizing radiation, thus it
presents low to no risk to biological tissue. This has instigated the implementation of mi-
crowaves in different areas of biomedical diagnostics, such as brain haemorrhages, meniscus
tears, and breast cancer detection.

The first part of this dissertation presents a microwave thermography hybrid breast
cancer detection technique consists of a microwave radiation source, an infrared heat de-
tector, and a machine learning algorithm. Since many conventional MWTI approaches collect
transmission signals along with reflected signals, this technique is based on recording the
electromagnetic wave after passing through the entire breast. A sensitive film is placed be-
hind the breast (opposite direction of the radiation source) to absorb the transmitted wave
that propagates according to the dielectric properties of the breast tissue. The captured
heat pattern is used as a guide for determining the presence of an anomaly within the
breast tissue. Machine learning is used to enhance the detection accuracy and to provide
further information about the tumor’s features, such as size and location. The proposed
modality shows a capability to detect and determine the size and location of an artificial
tumor with a 5 mm radius and a 2:1 permittivity contrast with normal tissue.

A new breast cancer detection modality that uses a metasurface as the imaging medium
and a microwave radiation source is introduced in the second part of this thesis. In contrast
with previous microwave imaging techniques, or imaging techniques in general, instead of
providing an image of the internal breast tissue (i.e., a slice/cut through the breast), the
proposed technique provides an impression of the breast tissue. The impression which, in
principle, is similar to the impression captured by an x-ray film, is captured by a metasur-
face, which is an ensemble of electrically-small resonators. Each cell records the strength
of the incident power that impinges on it. This metasurface may be viewed as analogous to
a low-frequency scaling of the x-ray film. The metasurface receives the transmitted energy
through the breast, which resembles the mammography approach. While mammography
faces a major challenge in detecting tumors in dense breasts, the metasurface proposed
here utilizes a low frequency radiation source, thus allowing higher penetration through
dense breast tissue. Similar to the first part of the thesis, by building a proper machine
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learning code, the detection capability is then enhanced by engaging a Convolution Neural
Network (CNN) to determine the tumor’s features.

In the third part of this thesis, flexible-conformal metasurface films are introduced for
utilization as a wearable breast cancer detection modality. This technique involves two
metasurface arrays with electrically small and closely spaced resonators as a transmitter
and receiver. The microwave radiation of the metasurface transmitter is received at the
other side of the breast by the metasurface receiver to form an image of the received
electromagnetic power. The receiver is expected to provide an electromagnetic energy
pattern instead of an image that represents the breast’s internal contents. The power
pattern is influenced differently according to the electrical properties of the breast tissue,
thus a unique power impression can be obtained for both a healthy breast and a breast
that contains a cancerous tumor. By using flexible metasurface films, the antenna number-
penetration-resolution trade-off that limits the capability of conventional MWTI techniques
can be minimized. In addition, the necessity for antenna miniaturization to enhance the
resolution can be avoided, and the long mechanical scan can be replaced with just a few
scanning steps of the metasurface sheet.
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Chapter 1

Introduction

1.1 Overview

According to a report from the World Health Organisation, approximately 2.3 million
women developed breast cancer in 2020, while approximately 685,000 deaths occurred on a
global level, which makes this the world's most prevalent cancer [1]. The Canadian Cancer
Society predicted that, in the same year, 109,600 women would be diagnosed with cancer,
with the expected number of breast cancer cases reaching 27,400, which is 25% of overall
female cancer cases. Moreover, it is expected that every day approximately 14 Canadian
women will die from breast cancer [2]. Fig. 1.1 illustrates the U.S. statistics that estimate
that, in 2021, 281,550 new cases of breast cancer will be diagnosed, and that 43,600 women
are expected to die from breast cancer [3]. In addition, 1 in 8 Canadian and U.S. females
are estimated to be diagnosed with breast cancer over the course of their life, making breast
cancer the most likely cancer among Canadian females compared to other types [2, 3].

X-ray mammography is the most common breast screening technique used for breast
cancer detection. Although mammography has a short testing time and high resolution
imaging, several limitations decrease its detection capability. In dense breasts, mammog-
raphy has di culty in distinguishing between healthy and malignant tissue since both
appear with no contrast on the image [4]. Moreover breast cancer studies report up to
25% of undetectable cancer tumors (false negatives) using the mammography method [5].
In addition to this limitation, x-ray mammography is considered as an ionizing radiation
that may cause harmful e ects on the human body [6]. Finally, some patients experience



a painful compression in the breast during mammography testing [7].

Magnetic resonance imaging (MRI) is a non-ionizing technique that can be used for
breast imaging. MRI utilizes pulsing radio waves with the presence of a magnetic eld
that can provide a high resolution medical image. The resulting valuable image of high
density breast tissue cannot be achieved by x-ray mammography. Moreover, MRI can de-
tect a small cancerous tumor that could not otherwise be detected by other breast imaging
techniques [8, 4]. However, MRI is a very expensive and time consuming diagnosis tech-
nique, hence it is used as a complementary tool for x-ray mammography to con rm the
presence of a tumor in the breast [9].

Ultrasound (sonography) is another imaging method that is used for breast cancer de-
tection. In this technique, sound waves are sent through the breast and the re ected waves
are reconstructed to form an image of the tissue layers of the breast, hence normal and
malignant tissue can be determined. Although this is a convenient technique from the
patient perspective, and is also low cost, ultrasounds are not used individually for breast
imaging since they cannot detect some forms of cancerous tumors [2, 10]. Therefore, as
in MRI, this technique is used to complement x-ray mammography in the case of dense
breasts, in order to improve the sensitivity of the imaging system [11].

The microwave technique, which utilizes the wave in the microwave range, is another
proposed (still not medically available) method for breast cancer screening. The detection
principle of the microwave technique is based on the di erence in electrical properties be-
tween normal and malignant breast tissue [12]. During screening, the breast is illuminated
by electromagnetic waves that have the capability to partially penetrate the breast tissue
(depending on the frequency and material properties). A part of these waves is re ected
or scattered, depending on the electrical properties of each tissue. The re ected and scat-
tered waves are collected using antennas to reconstruct the geometrical and/or dielectric
map of the breast tissue [13]. Since this imaging technique is considered as non-ionizing
and non-invasive, it has attracted signi cant development that has resulted in 3D imaging
data. Compared to other breast imaging techniques, it is very low cost. However, many
challenges come with microwave imaging, such as mismatching at air-skin interface, which
results in a remarkable e ect on both image quality and accuracy [4]. The reconstruction
of the data requires a speci ¢ algorithm that has a signi cant impact on image quality. In
addition, the size of the antennas (receivers) has to be small to allow for increasing the
number of antennas in the system, hence more information can be collected. However, in
general, a smaller antenna means using a higher frequency, which has lower penetration
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Figure 1.1: US cancer statistics for new cancer cases and deaths.

capability for breast tissue. Moreover, increasing the number of antennas causes a mutual
coupling between the adjacent elements. In the microwave-imaging system, this results in
a trade-o between image resolution and antenna size [4].

1.2 Microwave Imaging for Breast Cancer Detection

The limitations of detection capability, harmful radiation components, and the expensive
access cost of recent breast imaging modalities introduce MWI as an promising alternative
breast cancer detection technique. MWI is based on the variation in electrical properties
between healthy and cancerous breast tissue over the microwave frequency range. The
scattered microwave is expected to be in uenced by the di erence in electrical properties
that will be collected to build an image of the internal breast tissue construction. EX
vivo studies report that the signi cant di erences in water content between healthy and
malignant breast tissue result in a contrast in dielectric properties [14, 15, 16, 17, 18]. The



stated healthy-to-malignant electromagnetic property variation ratio in biological breast
tissue ranges from 10% up to 300%, which is su cient to form the detection principle of
microwave imaging or detection techniques [19, 20]. Utilizing this variation in electromag-
netic properties, extensive investigation and development in MWI and MWD techniques
have been conducted, both numerically and experimentally. MWI studies reported a non-
ionizing and non-invasive 3D imaging modality for breast cancer detection at a lower cost
compared to other breast imaging modalities [21, 22, 23, 24, 25].

The experimental implementation of MWI has taken several forms and can be classi-
ed into three categories: passive, active, and hybrid as seen in Fig 1.2. Passive MWI
utilize a radiometry device to detect the variation on the temperature between healthy
and cancerous tissue which develops higher temperature than the rest of the breast tissue
[26, 27, 28]. In active MWI, the breast is subjected to radiation by electromagnetic wave
in microwave regime and the scattered wave is collected to form an image of the internal
breast tissue. Dierent scattering signals results from the healthy and malignant tissue
due to the contrast in the electrical properties [29, 30]. The hybrid approach utilized two
di erent radiation and detection tools for breast cancer detection. A microwave source
is used to illuminate the breast whereas an ultrasound transducer is used to record the
acoustic waves that is radiated by breast tissue. As a result of the higher conductivity
of the malignant tissue compared to the healthy tissue, higher electromagnetic energy is
absorbed, hence a higher acoustic waves radiation occurs [31, 32].

1.2.1 Microwave Tomography Technique

Active microwave imaging can be typically divided into two categories: tomography and
radar-based microwave imaging, as shown in Fig 1.2. The Microwave tomography (MWT)
technique utilizes the re ected microwave signal from the breast to form an image that
reconstructs the dielectric (permittivity and conductivity) pro le of breast tissue. Recon-
structing the image is accomplished by solving the inverse scattering problem that estimates
the absorbed and scattered signals from the internal breast tissue. This technique provides
the quantitative features of the cancerous tissue, such as the size and location of the tumor
[33, 34].

Several studies into breast cancer detection investigate the capability of the MWT
technique, theoretically, experimentally, and clinically [35, 36, 37, 38, 39]. A group from
Dartmouth College in the USA was one of the earliest research groups to implement MWT
for breast cancer detection [40, 41, 42]. In 2000, Meaney et al. [35] introduced the rst
clinical prototype system using infrared (IR) for breast cancer detection. An array of 16



Figure 1.2: Schematic diagram of the classi cation and approaches of MWI for breast
cancer detection.

monopole antennas was utilized in this system to work as a transmitter or receiver in
an operation frequency range between 300{1000 MHz. The advantage of using monopole
antenna comes from the ability of high radiation in lossy medium and the simplicity in
modelling for a 2D imaging problem. The antenna array was arranged in a circular con-
guration and placed underneath a bed that has a hole into which the patient's breast

is inserted. A coupling medium was lled between the breast and the antenna to reduce
any noise. The clinical trial was performed on ve patients with an exam time up to 30
minutes per patient. The achieved results constructed 2D images of the permittivity and
conductivity of the breast tissue.

The Dartmouth College group spent several years improving the algorithm and the
hardware of this clinical prototype [21, 43, 44]. In 2013, based on nite element modelling
(FEM), a 3D MWT system was introduced for the rst time [21]. The challenges in
the previous prototype were overcome by improving the algorithm and the hardware of
this version. An array of 16 monopole antennas was divided into two groups, controlled
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separately by using a motor to precisely position the antennas. The achieved results
demonstrate the capability of the proposed system to detect a tumor size down to 1 cm
inside the breast of a patient. The system screens each breast within two minutes, with a
data processing time of about 20 minutes, which is considered very fast compared to the
ten hour processing time that is reported in [45].

A preclinical MWT prototype system to provide 2D breast screening images was re-
ported by Son et al. [46]. The system has 16 monopole antennas that merge inside a
tank where liquid is used to reduce the mismatching that occurs at the air-skin interface.
The elements are used as a receiver and transmitter over a frequency that extends from
0.5 GHz to 3 GHz. The tumor in this study is represented by a pipe, lled with a liquid
that has complex permittivity comparable to a realistic tumor. The system exhibits a high
resolution and capability of reconstructing 2D images for a breast phantom that contains
single or multiple tumors with diameters of 5 mm and 10 mm.

Aiming to reduce the cost of the system and enhance the image reconstruction time,
Pagliari et al. [47] proposed a breast cancer detection prototype based on MWT. The drop
in cost is a result of using o -the-shelf components and in-house fabricated antennas, while
the fast image reconstruction is a result of using a eld-programmable gate array instead
of a multicore CPU to execute the imaging algorithm. The breast phantom is a cylindrical
plastic dielectric that is lled with a glycerin-water mixture, where the tumor is represented
by a smaller-radius cylinder containing di erent material. The operation frequency of the
system ranges from 1.4 to 1.6 GHz, which is considered to be a narrow bandwidth, since the
low cost components are compatible with this frequency range. The system executed the
algorithm 20 times faster compared to a conventional powerful multicore CPU. Moreover,
the system showed a detection accuracy that is comparable to the accuracy that can
be accomplished by an expensive vector network analyzer. Another recent attempt to
reduce processing time was conducted using an algorithm based on 2-D discrete dipole
approximation [48]. The reconstruction time was reduced from 140 seconds to about 6
seconds which also reduces the required memory space.

Jeon et al. [49] developed a clinical trial MWT system that operates in a frequency
range between 3 to 6 GHz and utilizes a fast forward reconstruction algorithm. Using the
proposed system, 15 patients, aged from 40 to 68 years, were subjected to the screening.
The test was a non-blind test involving ve patients who were diagnosed previously as
having normal breast tissue and ten with tumor presence. The reconstructed images show
an abnormality inside the breast of one of the patients, already known to have a tumor
inside her left breast. Comparing the resulting breast images with previous mammogram
images and biopsy data, ve doctors from Seoul National University Hospital identi ed
one false positive case and one false negative case.
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1.2.2 Radar-Based Microwave Technique

Radar-based microwave imaging utilizes a scattered signal and provides a map of the
scattered signal that results from di erent breast tissue. Unlike MWT, radar-based MWI
does not reconstruct the dielectric properties map of the breast tissue. The radar-based
MWI approach can be divided into ve techniques: MWI via space-time (MIST); confocal
microwave (CM); multi-static adaptive (MSA); time domain data adaptive (TDDA); and
tissue sensing adaptive radar (TSAR).

Several research groups have investigated the feasibility of radar-based MWI for breast
cancer imaging. Hagness et al. [50] introduced a confocal microwave technique for early-
stage breast cancer detection. The achieved results show the capability of the system to
detect a tumor size of about 3.2 mm at depth of up to 3.72 cm. The system utilizes the 2D
CMI and 3D CMI approach, which shows a di erent detection accuracy. The limitations in
this approach were solved by developing a delay multiply-and-sum signal processing that
enhances the resolution and interface rejection. Intensive research was later conducted by
this group to develop their radar-based MWI for breast cancer detection [51, 52, 53, 54].

Fear et al. [55] reported a tissue sensing adaptive radar to detect cancerous tumors
inside the breast. In this study, a PVC pipe with a spherical piece of wood represented the
breast skin and the cancerous tumor, respectively, while the breast tissue was represented
by air. This system faced some challenges that are attributed to the signi cant re ection
that results from breast skin. However, the system obtained promising results that prove
the feasibility of tissue sensing adaptive radar for breast cancer detection. More recently,
they developed a clinical prototype derived from a monostatic radar-based system [56].
Re ection from the skin was solved by passing the data through a circuit to Iter any
noise. The patients were required to lie face down on a bed, designed with a hole for
the breast. The system was designed to horizontally and vertically scan the antenna
around the breast during measurements. The reconstructed images were compared to the
patients' previously-obtained magnetic resonance (MR) images. The microwave images
showed results that were consistent with the MR images down to a tumor size of 5 mm
diameter.

A group from the University of Bristol reported a hemi-spherical antenna array for
an Ultrawideband (UWB) radar imaging for breast cancer detection. The array of patch
antenna consisted of 16 patch antennas positioned tangentially to the surface of a spherical
plastic container that held a breast phantom. The antenna was designed to radiate over a
frequency range from 4 GHz to 10 GHz and have a re ection coe cient lower than -5 over
this frequency range. The system was able to detect a 1cm tumor with a 10mm shift in
tumor position in one direction [57]. The system was improved to reduce the size of the
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antenna and to take a symmetrical 4x4 curved geometry shape. Under the same frequency
range, the operation sequence of the antenna pairs was controlled by electromechanical
switches. The developed system successfully detected a 4 mm diameter tumor that was
positioned in di erent locations [58]. More recently, a clinical prototype system for breast
cancer detection, based on multi-static UWB radar, was introduced [59]. The system
consists of a real aperture antenna array comprised of 31 cavity-backed UWB antennas that
are attached to part of a half-spherical container. The experimental exams were conducted
using realistic breast phantoms and real patients who had already been diagnosed with
breast cancer. The achieved results were promising regardless of the fact that a large
tumor was detected as multiple objects rather than as one object.

Porter et al. [60] proposed a microwave breast cancer detection technique that, for the
rst time, was based on multi-static radar and time-domain measurements. The system
has an array that contains 16 antennas, connected to the surface of a hemispherical bowl
that has 16 holes to host the elements. The operation of the system involves a switching
network to arrange the operation sequence where one antenna is used as a transmitter
while each of the remaining 15 antennas acts as a receiver, until each antenna is used as a
transmitter. The breast is presented by a realistically shaped phantom lled with fat-like
material and with a tumor inserted inside the fat. A tumor of less than 1 cm radius was
successfully detected in di erent locations inside the breast phantom with a localization
error in two axes in 2-D images. More recently, a clinical prototype wearable radar-based
MWI system was developed. The prototype was based on multistatic time-domain radar,
and comprised of 16 wearable antennas attached to a bra. In contrast with conventional
MWI prototypes, this system provides much less complexity and footprint, and requires
no exam table nor coupling liquid. Healthy patients were subjected to testing over 28 days
using the wearable system and the reconstructed images show high consistency over the
examination period (28 days) [61].

1.3 Thermography

In photography, light (made up of photons) is used to create an image. Similarly, heat is
used in thermography to create a thermal image. The evolution of thermography comes
from its ability to capture the thermal distribution along an object without contact. There-
fore, the idea of IR thermography has been generated to capture the thermal radiation that
is emitted from a targeted object, which leads to form a thermal image of that object [62].

For several years, IR thermography has made signi cant contributions in di erent ap-
plications. It has been utilized in Non-Destructive Tests (NDT) that are used to detect the
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defects in materials and in devices such as photovoltaic cells [63]. Moreover, identi cation
of the thermal properties of material can be conducted using IR thermography. Monitoring

in advanced security and health issues heavily relies on IR thermography which provides
important results that cannot be achieved by using other methods [64]. IR thermography
can also be used to map the electromagnetic eld of the microwave to realize the eld
intensity distribution for antennas [65, 66, 67]. The large number of applications of IR
thermography is a consequence of advantages such as: fast measurement time; non-contact
testing; and ease of processing data. In addition, the improvement in IR thermographic
tools has led to quantitative as well as qualitative results, which gives greater preference
to this technique [65].

The approaches of IR can be generally classi ed into two main types: active and pas-
sive [68, 69]. In the passive method, the IR camera captures the thermal distribution of
the object with no external in uencer. Passive thermography utilizes material that has
a distinctive temperature compared to the surrounding environment In contrast, in the
active method, since some objects have no di erence between their temperature and the
surrounding environment, an external excitation source is required to provide thermal con-
trast to the object under test. This method is utilized to detect the deeper defects in
materials. The excitation source is placed in the same or opposite side of the IR camera,
depending on a number of factors, such as material type and thickness.

Passive thermography leads to qualitative results that can detect the presence of an
abnormal object in the tested material. These results present in the form of di erent
thermal distributions compared to the rest of the material. The active thermography
allows qualitative and quantitative diagnosis that can give more information about the
size and depth of defects in the material. The specimen in the passive method is produced
internally and the IR camera is located in front of the radiation side of the object. The
active thermography relies on an external excitation source since no heat is generated from
the specimen. Therefore, the heat either re ects from the specimen, where the IR camera
and the excitation source are placed at the same side or transmits through it, where the
IR camera is placed at the opposite side from the excitation source. It is worth mentioning
that the re ection method is preferred for detecting defects that are close to the surface
of the object, whereas the transmission method is preferable when a deep inspection is
needed.

In 1986, Sega and Norgard [70] were among the rst researchers to experiment with
using Microwave Thermography (MT) to measure the electromagnetic elds near the aper-
tures of planar and cylindrical structures. This study ignited attention by using microwaves
combined with IR thermography as a signi cant technique for NDT. Levesque et al. later
conducted an experiment to detect the arti cial defects on glass-epoxy composites [71].
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In this experiment, the excitation source was a parabolic and horn antenna to provide
microwave heat to the specimen. The thermal distribution on the specimen's surface was
detected using an IR camera with a capturing range of 8 to 12 m.

A study in 1995 performed an experiment to detect defects in non-metallic composite

material. Two types of cavities, with power of 600-1700W, were used as excitation sources
[72]. The results, which were compared with other techniques such as x-ray and ultrasound,
found that MT can be e ectively evaluated as a NDT technique.

Utilizing the deep penetration of microwaves that results in a volumetric absorption for
heat, Keo at al. demonstrated a detection of corroded steel inside concrete reinforcements
[73]. A horn antenna was excited by using a commercial magnetron with 800 W of energy
and operating at 2.45 GHz. A specimen of concrete, with an embedded steel bar, was
heated with an incident electromagnetic wave for about ve minutes. During the radiation,
an IR camera recorded the change of heat on the concrete specimen. The recording was
processed using a specic algorithm to distinguish the slight di erence in temperature.
The experiment demonstrated a temperature increase where the steel reinforcement was
located. In addition, the results show the ability of MT to detect up to 3.8 cm inside a
concrete specimen without causing alteration to the specimen.

An electromagnetic eld can be visualized using IR thermography that captures the
thermal distribution of the waves on a sensitive-thin Im. The incident electromagnetic
wave is partially absorbed by an electrical eld sensitive Im that converts the absorbed
electromagnetic power into heat. As a result, a thermal pattern is formed on the sensitive
Im, and an IR camera then captures that heat distribution as shown in Fig. 1.3. This
technique provides a characterization method for the antenna near- eld radiation and the
propagation mode of the wave guide [62]. Visualization of the electromagnetic wave was
started in 1955 by Hasegawa [74] using a sheet of paper that changed color from pink to
blue when it absorbed electromagnetic power. This study was followed by further valuable
research, the principle of IR imaging of the absorption sheet has not yet utilized. The
rst study that involves IR thermography was reported by lizuka and Gregoris [75]. Here,

a carbon-rubber sheet is placed on the front of a 10W microwave source with 76.6 GHz
frequency. The microwave source illuminates a metal object, hence the image is absorbed
by the thin sheet. Metzger [76] obtained the measurements of the fallen electromagnetic
eld by utilizing an IR camera to capture the equilibrium temperature of the absorption
surface. However, since the measurement was obtained in a steady-state regime, the accu-
racy of the thermal images was 15% when a high power source was used and about 50%
in the case of a lower power source. The achieved results are considered as low sensitivity
beside the lengthy time period required to obtain the nal image (20 minutes). This is
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Figure 1.3: The principle of applying thermography for electromagnetic eld measurement.

attributed to the waiting time to obtain an image of the equilibrium surface temperature,
which takes a long time to reach a steady-state condition, and is a ected by convection
and radiation of heat transfer [77].

Researchers at the French Aerospace Lab reported a characterization study for the
electrical eld pattern of a metamaterial resonator [78]. The measurements of the near-
eld radiation of the metamaterial structure were obtained in a similar way to the previous
study by [66], where the thermoemission Im was placed close to the structure. A good
agreement was achieved between the experiment and the numerical results obtained by the
nite-element method. Recently, multiple amplitude ad phase images were captured from
a single experiment using frequency modulation [62]. The chirp signal and image process-
ing employed in this study resulted in high resolution thermal images of patch-antenna
electromagnetic radiation. Images resulting from numerical simulation (CST) exhibit a
high similarity to those obtained by the experiment at low frequency modulation. It is
worth mentioning that the simulation results show a square electrical eld on the pattern
on the absorption screen, hence the heating on the absorption screen (in the experiment)
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is a result of the tangential component of the electrical eld.

1.4 Metasurface

A metasurface can be de ned as a two-dimensional (planar) synthetic material consisting
of dielectrics and/or metals, with a surface that contains a periodic pattern of electrically
small resonators. Metasurfaces have been widely investigated as a result of the exceptional
interaction with electromagnetic waves that introduce new features that are not naturally
available in the material [79, 80, 81]. Moreover, compared to metamaterial (the 3-D ver-
sion of a metasurface), metasurfaces have a smaller physical space, lighter weight, lower
losses, and easier fabrication [82, 83]. The resonators (scatters) and the thickness of the
metasurface are considered as electrically small compared to the wavelength of operation.
The periodicity and the space between the resonators can be engineered to control the
re ection, absorption, and transmission to the incident wave.

The critical factor comes from the scalability of the metasurface unit cell, which allows
its use within the desired frequency spectrum. Engineering the geometry and the shape
of the unit cell a ects the surface refractive, hence di erent functions can be obtained.

In addition, the impedance of the unit cell can be manipulated to control the phase of
the surface waves [84]. Based on these capabilities, a broad domain of applications was
introduced, including microwave radiation absorption [85], antenna capability enhancement
[86, 87], energy harvesting [88, 89], superlenses [90, 91], uid controlling [92],and cloaking
[93, 94].

Based on its de nition as a 2-D material, a metasurface can be divided into two cat-
egories: metascreen and metalm. A metascreen is composed of separated apertures,
arranged in a periodic pattern that have a \ shnet" topology [95]. The meta Im consists
of a surface that has an array of separated periodic elements that have \cermet" topology.
The electrically small elements can be characterized by their distribution density and the
electrical and magnetic polarization [89]. A metalm can be used as an antenna, where
it can be utilized as a radiator or as a receiver in several applications. The versatility of
the meta Im encourages the interest of communication eld researchers to consider such a
structure in communication device development.

12



1.5 Convolutional Neural Network (CNN)

Over the last decade, machine learning has received intensive improvement towards en-
hancing its performance and capability. This development is pushed by the breakthrough
occurring in the neural network, which contains di erent techniques and algorithms to raise
the ability of computers to recognize a speci c pattern (visual, audible, written) among
huge data [96]. Several applications have started to evolve machine learning, ranging from
speech recognition [97, 98] to biomedical analysis [99, 100] and natural language processing
[101]. The popularity of machine learning in the eld of computer vision started to develop
when neural networks provided an outstanding performance in image analyses compared
to other machine learning techniques. This was noted during the ImageNet competition
that was held in 2012 and won by Alex Krizhevsky through his neural network architecture
\AlexNet" [102].

Machine learning is of high importance in medical imaging as a result of its outstanding
capability in image classi cation, feature recognition, and image analysis. Mingxia et al.
[103] employed a deep learning CNN on MRI brain images to recognize Alzheimer's disease,
which relate to anatomical landmarks in the brain. Moreover, utilizing an end-to-end
learning method, Zhou et al. [104] harnessed a CNN for an automatic abdominal organ
localization and segmentation of 3D computed tomography scan (CT) images. Jen et al.
[105] achieved a signi cant performance in applying a CNN to MRI result images of the
lumbar spine for segmentation of spine vertebrae and spinal stenosis grading.

Recent MWI studies have involved di erent machine learning methods to develop a
higher detection capability. Utilizing backscatter microwave signals, some studies imple-
mented machine learning on numerical targets to classify and characterize tumors [106,
107]. Rana et al. [108] reported the rst clinical data-based study that incorporates MWI
and machine learning to di erentiate between healthy and malignant breasts. Therefore,
involving machine learning in the technique presented in this work is anticipated to en-
hance the capability of detecting the presence of a cancerous tumor inside the breast. In
addition to qualitative results, machine learning may provide some valuable quantitative
features of the tumor, such as size, location, and depth inside the breast.

The fundamental of machine learning is based on developing techniques that allow
computers to deal with problems by learning from training [96]. This can be achieved by
building mathematical models that are used to train the computer to provide a valuable
output when supplied by input data. A machine learning model gains \experience" when
subjected to training using the training data, during which the algorithm should be opti-
mized to enhance the prediction accuracy of the training data. The main objective is to
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train the model to obtain enough expertise in order to provide an accurate decision for the
totally new \unseen data". Multiple training and adjusting sessions are required before
the model is provided by the unseen data \test set". The model is then evaluated based
on the accuracy of the results, namely \the output data", that are related to the supplied
test set, namely \the input data".

1.6 Related Theory

1.6.1 Wave propagation in lossy material

When a uniform plane wave with a normal incident hits a lossy dielectric slab as illustrated
in Fig. 1.4, the wave will be partially re ected, absorbed, and transmitted. The re ection
coe cient at the boundary (z = d) of the interface can be de ned as:

2 1
= 1.1
e (1.1)

where ; and , are the intrinsic impedance of medium 1 and medium 2, respectively.
The total input re ection at z= dis given by:

+ e zde j2 od

1+ 15 e 29 i22d (1.2)

where , and , are the attenuation and the phase constants of the incident wave in
medium 2, respectively. The transmission coe cient is written as

T = (1.3)

» of medium two is the ratio between the incident electrical eldg; and the magnetic
eld H;, hence it can be de ned as:

- B (1.4)
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Figure 1.4: Re ection and transmission coe cients for wave propagation in dielectric slab
[109]

EO z i !
= —e Zel(#t) 1.5
H (1.5)

=Eezejz(t:0) (1.6)
H;
where! is the angular frequency. Similarly, ; of the air can be obtained. It can be
observed that ; and , are a function of the and which are related to the corresponding
constitutive parameters of the medium (i.e. the permitivity , the permeability , and the
conductivity ), and can be written as:
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1.6.2 Skin Depth

Human body tissue is considered as a lossy material that can actually be classi ed as an
imperfect dielectric or imperfect conductor. Contrary to the lossless medium, the biological
tissue conductivity is not equal to zero. In addition, previous studies report that the
dielectric properties of body tissue change with changes in frequency. The wave propagation
in human tissue will be considered as a propagation in a lossy medium. Starting with the
wave equation:

2B 2E=0 (1.9
where
2= ( +j) (1.10)
and it can be written as:
= 4+ (2.12)

where is a propagation constant of the medium and is a medium conductivity.
Since 6 0 in lossy dielectric, as shown in Eg. 1.7 , the penetration depth of the medium
is considered as decreases in the wave amplitude, which is measured in nepers per meter
(Np/m) or decibels per meter (Db/m). A reduction of 1 neper equals a decrease o1
of the main value of the wave, as illustrated in Fig. 1.5 [109], in the case of the following
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Figure 1.5: lllustration of skin depth [109]

plane wave:

E=Ee e’ ax (1.12)

where is the penetration depth. When the wave starts attenuating inside the medium
and decreases bg !, the wave equation can be modi ed:

E=Eee el ax (1.13)
Therefore:
E.e =Egqe! (1.14)
1
== (1.15)



Substitute (3.7) in (3.15):

| =
[EY

]
(%)

(1.16)

Based on this theory, it can be concluded that, for each material (lossy dielectric) the
transmission coe cient is di erent since the constitutive parameters of each material (

, and ) are dierent. Therefore, the electrical eld of the transmitted wave di ered
depending on the material types. In other words, Fig. 1.6 shows that introducing a
material with di erent electrical properties inside another material (Medium 2), as shown
in Fig. 1.6 (b), can a ect the propagation of the wave, hence the recorded electrical eld
of the transmitted wave is di erent compared to that shown in Fig. 1.6 (a).

This principle can be utilized and harnessed to be bene cial for biomedical imaging
applications. Since the dielectric constant and the conductivity of the biological tissue
di er based on the water content of the tissue. The presence of a di erent tissue changes
the propagation (re ection, absorption, and transmission) of the wave through the object
under test, hence the transmitted electromagnetic power changes.

1.6.3 Absorption on the thin Im

The fallen electromagnetic wave on an absorption sheet exhibits all three wave states: re-
ection, absorption, and transmission. To study these wave behaviors, an equivalent circuit
for the system can be illustrated using the transmission line technique, as in Fig. 1.7 and
Fig. 1.8, as reported in [62, 110].

The medium (air) through which waves transmit is considered as a transmission line
with characteristic impedanceZ,. The impedance of the absorption sheet can be consid-
ered as sheet resistancg; that is inversely in proportion with the conductivity of the sheet
( ) and the sheet thickness (d), hence [111]:

1
Zs= (1.17)



Figure 1.6: A schematic diagram illustrates the wave propagation and transmission through
lossy (a) homogeneous medium (Medium 2) and (b) in-homogeneous medium that includes
materials with di erent properties. The curves show the recorded transmission electric eld
measured at very near eld.

This transmission line equivalent circuit is utilized to calculate the re ection, absorption,
and transmission through the absorption sheet. The load impedan&g of the above cir-
cuit can be found as:

Z, = ZgjjZo
ZsZg
Z = ——— 1.18
T (1.18)

The re ection coe cient is then de ned as [62, 110]:
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by substituting 1.18 in 1.19 :
3 Zod
= 2474 (1.20)

From 1.20, the re ection from the sheet can be optimized by controlling the sheet con-
ductivity and thickness.

Consider:
_ 2
T 2Zs
Hence: )

The transmission coe cient is de ned as:

27,

T= o5 1.22

Using the value of , the transmission coe cient can be written as:

1
T= (1.23)

Hence:

2 1

20



Figure 1.7: Equivalent transmission line circuit of the absorption Im [62].

Figure 1.8: Equivalent transmission line circuits where (a) absorption sheet is considered
as sheet resistanc&s, and (b) including transmission characteristic impedancé&, [62].
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After nding the re ection and the transmission coe cient, the absorption coe cient
( ) can be calculated. The total incident power on the sheet is the sum of re ected,
absorbed, and transmitted power through the sheet, therefore [62]:

Piot = Pret + Pus + Paps

P P P
ref + trs + abs
I:)tot Ptot I:)tot

1=

1= 2+T2+ 2

2 2

S @y (1.25)

It can be observed that the maximum value of is 0.5, happens when =1 [112]. The
power fractions of the transmitted, re ected, and absorbed power are shown in Fig. 1.9 as
a function of the surface resistance of the absorption sheet.

The power absorbed from the incident electromagnetic wave per square meter in a thin
Im (sheet) is described by [113]:

1Zdh i i

P (H 1 NEDHL (MY dn (1.26)

Here, n is the vector normal to the surface of the thin sheet,’ is the real part of the
conductivity of the material, ~ and " are the imaginary part of the complex permittivity
and complex permeability of the material, respectively.

The thin Im used in this project is a polycarbonate Im where the values of * and
are much smaller than the value of °, hence the absorbed power is de ned as:

0Z g
Pabs = — E? dn (1.27)
2
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Figure 1.9: Variation of re ected, transmitted, and absorbed powers with sheet surface
resistance [62].

Therefore [114]:

°dE?2
2

Pabs = (1.28)

Increasing the sheet temperature due to the electromagnetic power absorption will be
discussed in detail in Chapter 2.

1.7 Problem statement

1.7.1 Research Motivation

Although breast cancer causes a high number of deaths worldwide every year, the current
imaging techniques are still incapable of precisely detecting a malignant tumor in the early
stages. In addition to its harmful ionizing radiation, the x-ray mammography detection
rate for cancerous tissue in dense breasts could become as low as 55% [7]. It is worth
mentioning that breast density is related to increased probability of developing breast
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cancer [115]. Therefore, women at high risk of breast cancer are unable to take advantage
of the most common breast screening technique, namely mammography [7]. In contrast,
the bene ts of the high resolution and accuracy of MRI are still restricted by the high cost
that prevents this technique from being a common modality for breast cancer imaging.

In MWI imaging, in addition to fact that the microwave technique is still not clinically
available, the mismatching at the air-skin interface results in a signi cant re ection that
a ects image quality and accuracy. Additionally, improving the accuracy of MWI requires
collecting more signals (information), which can be achieved by reducing the antenna
footprint, hence increasing the number of receivers in the system. However, while a smaller
antenna size is compatible with a higher frequency that enhances the resolution in general,
higher frequencies limit the penetration of the microwave inside the breast. Moreover,
increasing the number of antennas causes mutual coupling between adjacent elements,
thus reducing the quality of the image [116].

Toward overcoming the MWI challenges and achieving less system complexity, recent
studies concentrated on MWD instead of imaging [117, 118]. Recent MWD systems re-
quired prior information about the presence of the tumor inside the breast while, in some
studies, the experimental part was based on homogeneous breast phantoms [119, 120, 121].
Moreover, in the case of non-identical (asymmetrical) breasts, a slight di erence in breast
tissue distribution in one of the breasts may a ect the total breast permittivity, which
leads to di erent sensing results. Therefore, these aspects reduce the practicality of the
MWD system in real life applications.

From this investigative overview, an improvement in the detection and characterization
of cancerous tumors is essential in order to decrease the number of deaths caused by breast
cancer. Therefore, an alternative screening technique that has the capability of diagnosing
early stage tumors, as well as determining location and size, can encourage the further
development of breast imaging technology, enabling more lives to be saved. In addition,
non-body harmful components and a ordable access costs should be considered in designing
such a technique.

1.7.2 Research Objectives
The main objective of this study is to develop a microwave detection technique that in-

creases the ability to diagnose a cancerous tumor in dense breasts in the early stages.
Utilizing this MWD system, the objectives that can be achieved are as follows:
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1. Develop a non-ionizing and non-invasive technique that operates in a microwave
regime for breast cancer detection.

2. Improve the accuracy of early stage diagnosis of cancerous tissue in breasts that have
dense tissue.

3. Determine the location and size of tumors, and detect tumors that are located deeper
inside the breast.

4. Introduce an a ordable and comfortable imaging modality for breast cancer detec-
tion.

5. Introduce a new microwave technique to overcome the recent challenges that face
MWI and build a less complex microwave system.

1.8 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 of the thesis proposes a novel breast cancer detection technique that com-
prises a combination of a microwave source for radiation, an IR system for heat detection
and machine learning for imaging classi cation. The study conducted a numerical, ex-
perimental investigation, and involved machine learning to investigate the capability of
the proposed modality in detecting tumor presence inside an extremely dense breast and
provide quantitative data about the tumor.

Chapter 3 introduces a new concept using a metasurface for breast cancer detection.
This concept utilizes a metasurface Im as a receiving sheet that captures a transmitted
electromagnetic wave through the breast. The theory behind this principle and the design
methodology of the metasurface Im is discussed in detail. The feasibility of this modality
was intensively investigated through the simulation study, the experimental trial and the
convolution neural network training.

Chapter 4 presents a exible breast cancer detection system that is built completely
by using a metasurface for radiation (transmitter) and for signal detection (receiver). The
chapter explains the design processes, optimization steps, and the material features that
are implemented to achieve exible metasurface Ims that work at 50 impedance. The
comprehensive numerical study determines the potential of this system to detect a small
cancerous tumor while de ning the existing location and the size.
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Chapter 5 summarizes the main contributions, the already accomplished work of the
thesis, and the future work that will improve the proposed modalities.
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Chapter 2

A Microwave-Thermography Hybrid
Technigue for Breast Cancer
Detection

2.1 Introduction

This chapter presents a hybrid breast cancer detection modality that consists of microwaves
as a radiation source, an IR thermography method as a heat-imaging recorder, and sup-
ported by a CNN as a machine learning method. This hybrid technique is based on
the dierence in the transmitted electromagnetic power between healthy and tumorous
breasts. The variation in transmitted power results from the variation in electrical prop-
erties between healthy and cancerous tissue, which in uences the wave propagation inside
the breast dierently. Under microwave radiation, the power of the transmitted waves
leads to a heat distribution pattern on a sensitive screen placed under the breast. This
technique utilizes the change in the heat pattern to indicate the presence of abnormality
inside the breast. Involving a CNN elevates the proposed technique's detection capability
and extracts quantitative data that characterize the tumor's location and size.

2.2 Theory and Methodology

When an electromagnetic eld impacts a lossy inhomogeneous medium, part of the wave
energy is scattered in all directions and is absorbed by the medium. This phenomenon
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of scattering and absorption is entirely dependent on the medium's dielectric properties
(i.e., composition). Analytical expressions for the re ected and transmitted elds can be
obtained for simple geometries made of in nite homogeneous layered media. However, for
media that is nite and complex in terms of geometry and composition, as shown in Fig.
2.1, the scattered eld will be equally complex but expected to be uniquely representing
the medium through which the propagation takes place. Furthermore, a pro le of the
transmitted energy (which is essentially a scattered eld) taken on a at surface, which
is placed on the opposite side of the source, is expected to provide a unique signature for
the medium under test. If the medium composition changes, it is expected that a di erent
signature will result. This is the basic principle behind the method introduced in this
work, where the breast is considered as the medium through which the electromagnetic
eld propagates.

Since the dielectric constant and the conductivity of a tumor (whether benign or can-
cerous) di er from that of healthy tissue, the presence of a tumor can change the breast
signature, which is represented by the pro le on the at surface. This transmitted electrical
eld can be recorded and compared for both breasts to detect the presence of an anomaly
or a tumor inside the breast.

In order to implement this principle for breast cancer screening, the breast under test is
placed between the electromagnetic eld source and an absorption screen, as illustrated in
Fig. 2.2. A horn antenna is used as the source of microwave radiation that is incident on the
breast. The absorption sheet absorbs the transmitted electromagnetic wave power, which
results in increasing the sheet temperature due to the Joule e ect. This temperature rise
can be captured using an IR camera that has su cient resolution to detect minor changes
in the temperature pro le on the screen.

The relation between the absorption of the transmitted wave power and the increase in
the sheet temperature T can be given by [122]:

Pabs = Tp 4h? + ( Cdw)? (2.1)

whereh is the heat transfer coe cient between the screen and the environment. The Im
characteristics are the density , thermal conductivity C, and the thicknessd, and w is the
angular frequency of the incident electromagnetic eld. In addition, the power absorbed by
the screen can be linked to the electric el of the electromagnetic wave by substituting
1.17 in 1.28 as:

(2.2)
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