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Abstract

High Intensity Focused Ultrasound (HIFU) has emerged as a novel therapeutic modal-

ity, for the treatment of various cancers, that is gaining significant traction in clinical

oncology. It is a cancer therapy that avoids many of the associated negative side effects

of other more well-established therapies (such as surgery, chemotherapy and radiother-

apy), and does not lead to the longer recuperation times necessary in these cases. How-

ever, the mathematical modeling of this treatment for the sake of treatment planning

and non-clinical study requires further development. In this thesis, popular models for

the propagation of ultrasound and temperature, as well as the biological effects caused

by these, are discussed. We introduce a coupled PDE model of the bioheat propagation

caused by HIFU and establish that the solution exists and is unique. We further study

the long-term dynamics of the solution under quasi-periodic external forcing, which

corresponds to the periodic (or quasi-periodic) pulsing of the ultrasound under condi-

tions where a patient is treated clinically with HIFU threapy. In this case, we are able

to prove the existence of uniform attractors to the corresponding evolutionary processes

generated by our model and to estimate the Hausdorff dimension of the attractors, in

terms of the physical parameters of the system.
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Chapter 1: Introduction

History records the constant struggles of mankind with cancer over many millenia. In

fact, the earliest documented evidence of cancer has been found in the fossilized bone

tumours of mummies of ancient Egypt, Chile, and Peru (see David et al [3]).

The term cancer is used generically to describe many different diseases that arise as

a result of the uncontrolled proliferation and accumulation of mutated cells in multi-

cellular organisms. At the cellular level, carcinogenesis is understood to be a multistep

process involving mutation and selection for cells with increasing capacity for prolifera-

tion, survival, invasion, and metastasis. The first step in the process, tumour initiation, is

believed to arise as a result of genetic alterations leading to abnormal proliferation of a

single cell. Cell proliferation then leads to the outgrowth of a population of clonally de-

rived tumour cells. Tumour progression continues, as additional mutations occur within

cells of the tumour population - some of these mutations confer a selective advantage

to cells (e.g. more rapid growth) and the offspring of cells bearing such mutations will

consequently become dominant within a tumour population. This process is known as

clonal selection, since a new clone of tumour cells has evolved with properties (such

as survival, invasion, or metastasis) that confer a selective advantage. Clonal selection

continues throughout tumour development, so that tumours are continuously evolving,

becoming more rapid-growing and increasingly malignant.

A 2013 survey carried out by the American Medical Association showed that cancer

is poised to overtake cardiovascular diseases as the leading cause of mortality in indus-

trialized countries. Over the course of a year, roughly 15 million new individuals will

be diagnosed with cancer, and at least a further 8 million people will lose their battle

with cancer, and the numbers are increasing. Cancer continues to pose a major threat

to public health worldwide, and the rates of cancer incidences have increased in most

countries since 1990. As research continues to reveal more about the complex multi-

scale nature of cancer, new treatments, like High Intensity Focused Ultrasound (HIFU),

are emerging in an attempt to develop non-invasive therapies that have minimal side

effects but increased efficacy (see Bailey et al [2] and references therein).
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In the context of cancer therapies, HIFU is a relatively new development which has

yet to gain widespread acceptance in a clinical setting. While HIFU was conceptually

developed in the mid-1950s and was used (to various degrees of success) in treating

some neurological conditions, its uses remained few and far between. Two or three

decades of technological advances were necessary before the true potential of this tech-

nology became apparent for clinical applications (Hindley et al [5]). In recent years,

HIFU has gained significant traction as a therapeutic modality and is now routinely used

in a number of clinical applications (ranging from painless removal of uterine fibroids

[5] to non-invasive destruction of solid tumours [2]). HIFU is a minimally-invasive sur-

gical technique that can be used to thermally ablate both malignant and benign tumours,

as well as to cauterize injured vessels and organs (to staunch internal bleeding), with

minimal damage to surrounding tissue. HIFU has been proposed as an alternative to

surgery for treatment of cancer and various tumour types, including prostate, breast,

brain, and renal cancer, amongst others. Currently, it is also used for palliative care,

for example, to alleviate the pain resulting from the metastasis of malignant tumours to

bone tissue.

The emergence of HIFU as a powerful new therapeutic modality in the treatment

of cancers, promises to revolutionize cancer care worldwide. The use of mathematical

modelling to predict the effects of HIFU for thermal ablation has facilitated the effec-

tive implementation of this therapeutic modality for certain disorders such as osteoid

osteomas, essential tremors and prostate ablation. Figure 1 illustrates a typical set-up

for clinical administration of HIFU to treat uterine fibroids. The further development

and generalization of mathematical models for soft tissue lesions, cavitation and dis-

ruption of the blood brain barrier, suggest significant opportunities for mathematics to

contribute to the development of HIFU as the "gold standard" for cancer therapy.

Over the past 50 years, High Intensity Focused Ultrasound has become a subject of

increasing interest among medical researchers. HIFU causes selective tissue necrosis in

a very well defined volume, at a variable distance from the transducer, through heating

or cavitation. For the past two to three decades, the use of HIFU has been investigated in

many clinical settings. The most abundant clinical trial data comes from studies on the
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Figure 1: An MRI-guided HIFU apparatus.
(Figure by D. Kakavelakis, PhD candidate, University of Waterloo.)

treatment of prostatic disease, although early research did examine its potential applica-

tions in neurosurgery. More recently horizons have been considerably broadened, and

the potential of HIFU as a non-invasive surgical tool has been demonstrated in many

settings including the treatment of tumours of the liver, kidney, breast, bone, uterus and

pancreas, in addition to its successful use in rectifying conduction defects in the heart,

as well as to perform surgical haemostasis, and for the relief of chronic pain of ma-

lignant origin. Further clinical evaluation and developments will undoubtedly follow,

but recent technological advances suggest that HIFU is likely to play an increasingly

significant role in future surgical practice.

While the quest continues for a reliable and minimally-invasive alternative to open

surgery, the endoscopic revolution is well underway and there is much research activ-

ity in other relevant fields such as laser, radiofrequency, cryo-, thermo- and brachy-

therapies. Lithotripsy is now an established treatment for kidney stones and gallstones,

but currently, the only pervasive, non-invasive modalities used in mainstream clinical

oncology are chemotherapy and radiotherapy, and while effective in many instances,

they both have significant, associated negative side-effects. High intensity focused ul-
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trasound has the potential to provide clinicians with another truly non-invasive, targeted

treatment option. Its scope is not, however, limited to the treatment of only malig-

nant cancers, but can also be used in a palliative setting for relief of chronic pain, for

haemostasis, or even for the treatment of cardiac conduction or congenital anomalies.

In this thesis, we present a mathematical analysis of a class of models of High In-

tensity Focussed Ultrasound. In chapter 2, we discuss the modelling assumptions, chal-

lenges and possible generalizations. We conclude with a presentation of the system of

partial differential equations that will be analyzed in subsequent chapters. In chapter 4,

we analyze this coupled system of partial differential equations used to model the inter-

action of HIFU with biological tissue. The mathematical model takes into account the

effects of both diffusive and convective transport on the temperature field, when acous-

tic (ultrasound) energy is deposited at a particular location (focal point) in the biological

tissue. This model poses significant challenges in establishing existence and uniqueness

of solutions, which we consider to be a crucial first step in any realistic, applied math-

ematical study of HIFU therapy. In this chapter, we establish well-posedness of our

model, using the Leray-Schauder principle, together with a-priori estimates. In chapter

4, we take the next natural step of studying the long-time dynamics of solutions to this

model, in the case where the external forcing is quasi-periodic. This is particularly rel-

evant, since it corresponds to the periodic (or quasi-periodic) pulsing of high intensity

focussed ultrasound, when HIFU therapy is administered clinically, to a patient. In this

case, we are able to prove the existence of uniform attractors to the corresponding evo-

lutionary processes generated by our model and to estimate the Hausdorff dimension

of the attractors, in terms of the physical parameters of the system. Finally, in chapter

5, we review the work carried out in this thesis and discuss possible future research

building on this work.

The content in chapter 3 and chapter 4 has appeared in Advances in Mathematical

Sciences and Applications [21] and the content in chapter 5 has appeared in a paper

submitted to the Bulletin of Mathematical Biology.
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Chapter 2: Mathematical Modelling of High Intensity

Focussed Ultrasound (HIFU)

Ultrasound is a subset of the mechanical compression waves known as acoustic waves,

which also includes audible sound. Ultrasound waves are distinguished from audible

sound waves by vibrating at higher frequencies, but have the same underlying physi-

cal processes [52]. This relation between ultrasound and audible sound is analogous

to the relation between ultraviolet light and visible light, as ultraviolet light is a higher

frequency form of electromagnetic wave than visible light [43]. In the case of elec-

tromagnetic waves, the relation is often expressed in terms of wavelength, but since

higher frequencies result in shorter wavelengths, both ultrasound and ultraviolet light

can be considered higher frequency and lower wavelength versions of audible sound

and visible light.

An acoustic wave is a mechanical wave that results through the back-and-forth vibra-

tions of the particles of the medium through which the wave is passing. Due to frictional

effects, some of the energy from this acoustic vibration is absorbed as it passes through

the tissue and some of that energy is converted into heat [52]. In diagnostic ultrasound,

the waves passing through the tissue deposit insufficient energy to heat up the tissue to

the point of having a significant effect on the physiological and structural properties of

the tissues. However, it is possible to heat the tissue to affect these properties of the

tissue by increasing the acoustic intensity and this effect may be localized by focusing

the ultrasound in a cone. This is the idea behind high-intensity focused ultrasound [2].

Acoustic intensity is a measure of acoustic power, or energy emitted per unit time,

per unit area [2]. This intensity is proportional to the energy absorbed by the tissue,

so the use of ultrasound of higher intensity increases the heat produced. In order to

efficiently use this heating effect, the ultrasound waves are focused through the use of a

convex transducer, which causes the ultrasound waves to all pass through a single point

known as the focal point of the transducer. When it is properly calibrated, this results in

relatively diffuse ultrasound effects away from the focal point with negligible heating of

the peripheral tissue and increasing deposition of thermal energy in the neighbourhood

5



of the focal point, with maximal energy deposition at the focus. It is possible to calibrate

this transducer such that tissue ablation only occurs around the focal point. In this

manner, it is possible to cause only a small region around this focal point to thermally

necrose - that is, cell death through heat - while the rest of the tissue is not heated to

the point of causing irreversible damage. This method may then be used to eliminate,

for example, tumour cells, without causing damage to the intervening tissue as would

be the case with other therapeutic modulaities [61].

The development of high-intensity focused ultrasound is comparatively recent. While

there was some success in treatment of certain neurological conditions in the 1950s, the

therapeutic effects were temporary and problems in focusing the ultrasound accurately

required surgery to access the right areas of the brain [35]. These issues in focusing the

ultrasound accurately also plagued other theoretical applications, so the technique saw

little clinical testing until the end of the 20th century [32], where it attracted attention

as a potential form of non-invasive, non-radioactive intervention. HIFU has been used

in a number of clinical applications, such as stopping internal bleeding (hemostasis)

and enhancing the body’s immune response (immunotherapy). However, for the sake of

clarity, descriptions of the methodology will focus on its application in tissue ablation

at a focal point used in order to destroy cancerous tumours [2].

An ultrasound transducer is used to produce the focused ultrasound with a curved

shape manufactured in such a way that the propagating wave will eventually converge

at a point, known as the focal point, as illustrated in Figure 1. This transducer is placed

in water in order to reduce reflection and refraction. Acoustic waves, like ultrasound,

transmit more faithfully between different media when the media have similar physi-

cal properties. If there is a large difference between the media, most of the wave is

reflected rather than transmitted, which results in significant energy dissipation at the

interface and should be avoided. Since much of the body is made of water, it is a closer

match to the body than air, particularly in soft tissues, and thus reduces the effects of

reflection [40]. The ultrasound then passes through a gel pad placed against the body,

which is even closer to the soft tissues in terms of its mchanical properties, making the

transmission even smoother [22].
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When cells remain at a sufficiently elevated temperature for a long enough time,

the heat begins to denature the proteins inside it [2]. That is, the structure of these

proteins is lost and they lose their normal function [62], which results in cell death

[2]. Denaturation of proteins is similar to the process that causes a cooked egg to have

different physical properties from a raw egg [16].

In Figure 1, a cylindrical magnet included in the equipment is used in a magnetic

resonance guidance system. In soft tissues, magnetic resonance imaging (MRI) may be

used to measure the temperature of the tissue. As such, MRI-guided HIFU uses this for

feedback on the heating of tissues by the ultrasound [32]. MRI-guided HIFU is a fairly

recent development; until 2005, the only clinical applications for MRI-guided HIFU

that had gained any traction were the treatment of uterine fibroids and breast neoplasms

[35]. However, further applications are under development [22] and HIFU has been

used in many other applications under other imaging methods [35].

One very successful application of MRI-guided HIFU in clinical applications has

been in the treatment of uterine fibroids, which are benign tumours in the uterus [61].

Despite their benign status as tumours, they can have negative side-effects [59], so they

still may need to be removed. MRI-guided focused ultrasound is one treatment method,

which causes heat-induced cell ablation to decrease the size of the tumour until side-

effects are relieved and, in fact, causes further decrease in tumour size over subsequent

months [32]. Compared to other treatments, MRI-guided focused ultrasound has fewer

restrictions than laparoscopic and hysteroscopic myomectomy [60] and has fewer post-

surgical complications [32], in part due to the non-invasive method of application [35].

The particular form of HIFU therapy that this proposal is focused on is a completely

local treatment [22] in a similar manner to the use of local surgery for tumours that

have not metastasized [46]. However, there are other methods, such as immunotherapy,

which provide a systemic treatment of cancer [35] and could be studied using some

of the same modeling techniques with the HIFU being considered here and should be

studied at a later time.

Cancer is fundamentally a genetic disease since it is initiated through the mutation of

genes that code for the synthesis of proteins regulating cell differentiation and growth
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(proto-oncogenes). These mutated genes (known as oncogenes) do not lead to the syn-

thesis of proteins that regulate mitosis and the cells begin to divide in an uncontrolled

fashion. Cancer cells have evaded the normal control checkpoints that regulate growth

and proliferation, growing and proliferating in an uncontrolled fashion. Furthermore,

as the cancer progresses, cancer cells use the circulatory system to start new colonies of

cancer cells throughout the body (metastases) [4].

In the 20th and 21st centuries, multiple therapeutic modalities have emerged, in-

cluding chemotherapy, radiotherapy, surgery, hormone therapy, immunotherapy, stem

cell therapy, and gene therapy, yet no definitive cure for cancer exists. The various

treatments can be administered separately or in combination for greater efficacy. For

example, radiotherapy is often administered with chemotherapy to improve the effects

of radiation. All of these treatments have shown some effectiveness in treating partic-

ular cancers, but also have their own limitations [4]. For example, radiation therapy is

a cancer treatment where cancerous cells are killed by ionizing radiation and different

types of radiation therapies have been developed to administer the radiation to differ-

ent regions of the body. These include Three-Dimensional Conformal Radiotherapy,

conformal proton beam radiation therapy, Intensity Modulated Radiotherapy, and Im-

age Guided Radiotherapy, amongst others [4]. The challenge in radiation therapy is to

ensure that radiation is administered in such a manner that the cell kill is maximized for

cancer cells and minimized for normal cells. Another difficulty is that different tumours

show different radio sensitivities; that is, the effectiveness of radiation therapy varies

from case to case making it difficult for doctors to predict whether the treatment will

be effective for particular cases. In addition, radiation therapy results in several adverse

side effects, ranging from skin reactions, mouth dryness, hair loss, nausea, vomiting,

fatigue, to loss of appetite [4].

Chemotherapy is another therapeutic modality often used to shrink the size of a tu-

mour, increase the effectiveness of radiotherapy, and treat cancers like leukemia and

lymphoma. Despite the breadth of its uses, chemotherapy often compromises the im-

mune systems of patients, leaving them vulnerable to opportunistic diseases and in-

fections. Side effects include fatigue, shortness of breath, dizziness, easy bruising,
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bleeding of the gums, hair loss, dryness of hair and skin, nausea, loss of appetite, con-

stipation, and diarrhea. Also, certain alkylating agents, inhibitors, and antimetabolites

can result in neurotoxic effects on the central nervous system [4].

In comparison, properly administered HIFU has minimal side-effects. In studies on

the removal of uterine fibroids by HIFU, it was noted that recovery was substantially

faster than using previous techniques of local surgery and had no side-effects which

could be directly linked to the treatment [61]. While HIFU is not a panacea for all

cancers - for example, it is unable to deal with non-localized forms of cancer [22]

that radiochemotherapy can sometimes alleviate [7] - its minimal side-effects make it a

good candidate in cases where it is effective. By improving the methods and predictive

modeling of HIFU, the range of cases where HIFU is effective will increase, allowing

for more conditions to be treated with minimal adverse reactions.

Modeling challenges

Many challenges arise when attempting to model HIFU. Some of them are more physi-

ological and treatment-planning-oriented than mathematical, but even these challenges

often give rise to mathematical challenges as it becomes necessary to account for them

in the models and to use the models to provide insights and propose solutions.

The review paper written by Bailey et al. [2] provides a list of some of the current

major challenges facing HIFU if it is to be accepted into standard clinical practice. The

problems considered are mostly physiological in nature, but they can demonstrate the

interconnectedness of physiological and mathematical issues. Some of these are beyond

the scope of this thesis. For example, the monitoring of the treatment through forms of

real-time imaging such as magnetic resonance imaging is important to properly guide

the treatment process and is only possible through a strong mathematical understanding

of the imaging methods, but the focus of this thesis is on the mechanics of treatment

rather than the monitoring of its effects.

However, other physiological challenges noted in Bailey et al. have a more direct

impact on this work. The first of these is the unintended absorption of ultrasound. The
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intent in HIFU is to only cause significant physical effects on the tissue at the focal

point of the ultrasound. In a homogeneous material, this happens naturally, as the most

energy is absorbed at the focal point where the ultrasound is concentrated, as previously

described. However, the tissue is not homogeneous and different parts of the tissue ab-

sorb ultrasound energy at different rates, particularly skin and bone. In the case of skin,

the rate is several times higher than other soft tissues and so will react more strongly

to HIFU. Since it is necessary for the ultrasound to pass through skin first, care must

be taken to minimize energy absorption from the ultrasound waves passing through the

skin to avoid burns, which are the most common side-effect of transcutaneous HIFU

treatment [2]. Bone is even more effective at absorbing ultrasound than skin and, in

many applications, it is preferrable to avoid bone entirely in the path of the ultrasound,

even to the point of removing ribs in the way of the ultrasound beam [12]. In cases

where the HIFU target is in bone, the ultrasound has almost no penetrative power, as it

is absorbed almost immediately. These effects must be taken into consideration in treat-

ment planning, which is the second challenge considered by Bailey et al. and the most

mathematically-focused challenge. This restricts us from considering only the effects

at the focal point, as it is necessary to ascertain the effects of this early attenuation.

Treatment planning covers a number of considerations requiring proper mathemat-

ical modeling. One aspect of particular importance is identifying the evolution of the

tissue properties over the treatment. The focal point is typically about the size of a

rice kernel and the treatment region for the removal of many tumours is significantly

larger [2]. In order to destroy the entire tumour, it becomes necessary to make several

individual lesions from different passes of the ultrasound. However, the tissue prop-

erties change as the tissue is heated and as it goes through thermally-induced necrosis

[26, 27], making later passes dependent upon previous passes. It is necessary to have

models which reflect these changes to the tissue in order to avoid unpredictable be-

haviour in later passes. Some of this unpredictability can be lessened by allowing the

tissue to cool completely between passes, but this method becomes prohibitively time-

consuming [2]. In order to properly predict these changes, it is necessary to calibrate

the parameters in the models, which can be a challenge, as experimental measurements

can be difficult to obtain, particularly for abnormal states such as high temperature
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states, and the differences between patients have to be estimated on sometimes limited

information.

This lack of information is partially a result of technical limitations. Mathematically

interesting but clinically infeasible results have their uses, especially as advancing tech-

nology makes some previously clinically infeasible methods viable. However, in the

short term, it is preferrable to consider clinically applicable results. To be applicable,

certain non-theoretical considerations must be considered, such as ease of use, portabil-

ity, and affordability. However, theoretical modeling can greatly assist in dealing with

these technical limitations. Clinical trials and targeted engineering, which are important

in the continued development of HIFU treatments, are expensive and are not undertaken

lightly. Through theoretical modeling, it is possible to predict likely outcomes and weed

out unnecessary tests. The predictive power of the models also increases the reliability

of the treatment methods, which is an important technical consideration [2].

Beyond the physiological challenges, the models themselves provide significant math-

ematical challenges whose resolution can then have important impact upon the resultant

treatment methods. As previously noted, the tissue parameters change over the course

of the treatment, but the equations most commonly used in HIFU modeling treat these

parameters as constant values. Changing these parameters into functions dependent

on the tissue’s time-dependent properties, such as temperature, requires an alternative

derivation of the models and even using a simple piecewise function for the parameters

complicates the use of the equations in the model. The typical model of HIFU treatment

considers three equations where each equation is only reliant upon the equations com-

ing before it. However, the inclusion of temperature effects on acoustic properties, for

example, results in a cyclical coupling of the acoustic equation and the heat equation. In

contrast, previous models have only included a source term in the heat equation which

depends on the solution of the acoustic equation, whilst the solution of the acoustic

wave equation is independent of the solution of the heat equation.

It is also necessary to consider what properties and characteristics are crucial as-

pects to be captured in in the model. As an example, some clinical studies use an

equation known as the Rayleigh-Sommerfeld integral to model the propagation of the
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ultrasound waves, which is a linear model, but many mathematical papers prefer the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, which, amongst other things, in-

cludes nonlinear interaction of the ultrasound waves. This nonlinear interaction can

result in significant deviation from the predictions of a linear model, as shown in Figure

2 [2], but it is much less significant in many circumstances. The choice of which terms

are significant is important, as excluding significant terms will result in inaccurate re-

sults, but including unnecessary terms will complicate the understanding of the effects

of the interactions and decrease the speed and ease of use of the model.

Figure 2: Potential effect of nonlinear ultrasound modeling [2].

This choice of terms is further complicated by the available information limiting

an exact description by the model. For example, it is known that bloodflow through a

region of tissue heated by HIFU has an effect on the temperature distribution throughout

the tissue [51]. However, an exact distribution of the blood vessels in the treatment

region is unavailable, requiring a hypothetical blood vessel network to be used as an

approximation. Similar shortcomings in our knowledge of the exact distribution of the
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heterogeneous nature of the tissue complicate the relevance and applicability of the

homogenized approximations used in the model.

Preliminary models

While there is some variation in the specific equations used in the model, the overall

form of the model has become largely standardized as a system of three equations. As a

first approximation, these equations may be presented in an order such that each relies

only on the previous equation in the set.

The first equation is an acoustic equation, which describes the propagation of the

ultrasound waves. This equation is often either based on the Helmholtz equation, such

as the Rayleigh-Sommerfeld integral that results from a Green’s function solution to the

Helmholtz equation, or derived from similar equations of acoustic wave motion, such

as the KZK equation that follows a similar derivation with nonlinear equations. The

Helmholtz equation itself may be written in the form,

(∇2 + k2
w)p = 0 (2.1.1)

where p is the acoustic pressure and kw is the wave number. This equation is also

sometimes written in terms of the velocity potential φ , but under the assumptions of the

Helmholtz equation, the acoustic pressure and the velocity potential are proportional to

each other by a constant factor [40].

This acoustic pressure results in a heat term from the attenuation of the wave as it

passes through the tissue, qm, which for a constant absorption term α may be written as

qm = 2αI =
2α < p2 >

c0ρ0
(2.1.2)

where I is the acoustic intensity, c0 is the speed of sound in the medium, ρ0 is the density

of the medium at constant pressure, and the brackets < ·> denote time-averaging. [2].

This qm is used as a heat source term in the heat equation. While a number of

variations have been proposed [5], a commonly used heat equation is the Pennes bio-

13



heat equation [3]. This equation was developed in the middle of the 20th century in

the study of temperature distribution in the resting forearm at room temperature con-

ditions [51], but it has since also been used to describe temperature distribution under

abnormal temperature conditions, like the high temperatures of HIFU treatment, due to

its relative accuracy and simplicity. The heat source term that was originally used for

metabolic heat production is replaced by the heat source term from the HIFU treatment,

qm, resulting in the equation for temperature T ,

ρ0cp
∂T
∂ t

= ∇ · k∇T + cpbWb(Ta −T )+
2α < p2 >

c0ρ0
(2.1.3)

where cp and cpb are the specific heat capacities for tissue and blood, respectively, k

is the thermal conductivity, Wb is the blood perfusion rate, and Ta is the arterial blood

temperature. The blood perfusion rate is not directly related to a measureable property

of the tissue, but is instead a fitting constant to approximate the way heat is removed

from the HIFU-heated tissue through the flow of blood in the region. This term and its

criticisms will be discussed in more detail below.

While the bioheat equation gives a good description of the temperature distribution

in the tissue as a result of the HIFU, the effect on the tissue is more important in ap-

plications that aim to thermally necrose tissue such as cancerous tumours than simply

the temperature distribution. This is accomplished through an equation for equivalent

thermal dose or thermal damage. In HIFU applications, a thermal dose equation, which

converts the temperature distribution to the equivalent amount of time to cause the same

effect at a constant temperature of 43◦C, is used. The equation takes the form,

T D43◦C =
∫ t

0
R43◦C−T (t ′)dt ′ (2.1.4)

where T D43◦C is the equivalent time at 43◦C and R is a piecewise constant such that [2]

R =

{
0.25 : T (t) < 43◦

0.5 : T (t) ≥ 43◦
(2.1.5)

Both this equation and the thermal damage model used in applications such as skin
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burns and laser hyperthermia are derived from the Arrhenius equation. The Arrhenius

equation is a logarithmic fit which relates the reaction rates of chemical processes at

different temperatures. This Arrhenius fit is only accurate for certain ranges of temper-

atures [18], which is the reason for the change in R in different temperature ranges. The

thermal damage model and the derivation of both Arrhenius equation-derived equations

will be discussed below.

Acoustic equations

In the study of the propagation of ultrasound in biological tissues, most work in the field

begins with the theory of acoustic waves in fluids. In soft tissues, this is a reasonable

assumption, as much of the tissue is made up of fluid. This assumption is less reasonable

in bone, which is more solid, and thus requires alterations to the usual equations to take

into account nonlinear effects which may be significant.

In the case of both the Helmholtz and the Khokholov-Zabolotskaya-Kuznetsov (KZK)

equations, the derivation of the acoustic model begins with conservation equations. Fol-

lowing Landau and Lifshitz’s derivation of the Helmholtz equation [40], since a sound

wave in a medium is physically expressed through the oscillatory motion of the medium,

conservation equations are chosen to consider three properties: the velocity v⃗ (of the os-

cillatory motion which makes up the acoustic wave), density ρ (as the wave compresses

and decompresses the medium as it passes through), and pressure p (as the compression

and decompression causes a change in local pressure). In a fluid, these properties may

be related through the Euler’s equations of fluid dynamics for an inviscid fluid,

∂ v⃗
∂ t

+ (⃗v ·∇)⃗v = − 1
ρ

∇p (2.2.1)

and a continuity equation
∂ρ

∂ t
+∇ · (ρ v⃗) = 0 (2.2.2)

For the derivation of the classical wave equation, it is assumed that the sound wave

causes small oscillations in the medium where the velocity of the particles in the medium,

15



v⃗, is small compared to the speed of sound c. Since these are small oscillations, this

causes only small changes in pressure and density in the medium. We can represent this

by expressing the pressure p and density ρ as

p = p0 + p′; ρ = ρ0 +ρ
′ (2.2.3)

where p0, ρ0 are the unperturbed, equilibrium pressure and density and p′, ρ ′ are the

changes in these equilibria, which are assumed to be much smaller than the equilibrium

values. Since these changes and the velocity are all assumed to be small, any terms

with two or more of these perturbation terms multiplied together will be even smaller

and may be neglected. Also, the equilibrium values are assumed to be constant, so any

derivatives of them are zero. Thus, placing the terms which may be dropped within

square brackets, equation (2.2.1) becomes

∂ v⃗
∂ t

+
[
(⃗v ·∇)⃗v

]
= − 1

ρ0 +ρ ′∇(p0 + p′)

(ρ0 +ρ
′)

∂ v⃗
∂ t

= −
[
∇(p0)

]
−∇(p′)

ρ0
∂ v⃗
∂ t

+
[
ρ
′∂ v⃗
∂ t

]
= −∇(p′)

∂ v⃗
∂ t

= − 1
ρ0

∇(p′) (2.2.4)

and equation (2.2.2) becomes

∂

∂ t
(
[
ρ0
]
+ρ

′)+∇ ·
(
(ρ0 +ρ

′)⃗v
)
= 0

∂ρ ′

∂ t
+ρ0∇ · v⃗+

[
∇ · (ρ ′⃗v)

]
= 0

∂ρ ′

∂ t
+ρ0∇ · v⃗ = 0 (2.2.5)

However, since this is a system of two equations in three variables, we eliminate the

small change in density by assuming the medium is adiabatic – that is, heat does not

enter or leave the system – which allows us to relate the change in pressure to the change
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in density by

p′ =
(

∂ p0

∂ρ0

)
ρ
′ (2.2.6)

where the derivative with respect to the equilibrium density is taken for constant en-

tropy. It should be noted that the assumption that the medium is adiabatic does not

appear in the derivation of the KZK equation [37], as this may not be a reasonable

assumption in medical practice.

We also eliminate reliance on the change in pressure p′ by expressing the velocity

of the fluid particles, v⃗, in terms of a scalar function, the velocity potential φ , which

always exists in the case of irrotational flow. Since v⃗ = ∇φ , then equation (2.2.4) gives

us that

∂

∂ t
∇φ = − 1

ρ0
∇(p′)

∇

(
∂φ

∂ t
+

1
ρ0

p′
)
= 0 (2.2.7)

Since the gradient is zero, then the expression inside is equal to a constant. For our

purposes, it may be assumed that this constant is zero, as this expression will be later

used in a derivative. Thus,

p′ = −ρ0
∂φ

∂ t
(2.2.8)

Combining equations (2.2.6) and (2.2.8), we obtain

ρ
′ = − ρ0

∂ p0/∂ρ0

∂φ

∂ t
(2.2.9)

Thus, substituting this into equation (2.2.5) and replacing the velocity with the velocity

potential, it is straightforward to show that this gives rise to the wave equation:

∂ 2φ

∂ 2t
− c2∆φ = 0 (2.2.10)

for c =
√

∂ p0
∂ρ0

for constant entropy.

As mentioned above, a similar process is used for deriving the KZK equation, which
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is commonly used in the literature for high-intensity focused ultrasound, under differ-

ent initial equations but similar assumptions for the size of fluid particle velocity and

pressure and density variations. The standard form used in this application was derived

by Kuznetsov [37] for approximately planar waves – that is, sound waves that do not

change as much perpendicular to the direction that the sound wave is moving as they do

parallel to this direction.

In Kuznetsov’s derivation, he expressed the equation in terms of the velocity poten-

tial, but it is currently used in the literature in terms of the pressure, through a relation

like (2.2.8). The reason for this focus on acoustic pressure comes from the fact that

the heat produced by the ultrasound is usually given in terms of the pressure, as will

be discussed in the following section. Using the notation of Bailey et al. [2], the KZK

equation describing the pressure in the medium that the sound wave passes through is

given by

∂ p
∂ z

− β

c03ρ0
p

∂ p
∂τ

− b
2c03ρ0

− b
2c03ρ0

∂ 2 p
∂τ2 =

c0

2

∫
τ

−∞

∆⊥p(τ ′)dτ
′ (2.2.11)

where z is the coordinate along the direction of the sound wave propagation and τ is a

delayed time variable for sound wave propagation along the axis of motion such that

τ = t − z
c0

. This form of the KZK equation has four terms, which are, in order: the

change in pressure along the direction of the main sound wave movement; a nonlinear

term, where β is a nonlinear coefficient; a term for attenuation (the loss of intensity as

the wave passes through the medium), where b is a dissipative coefficient; and a term

for diffraction (the bending of sound waves due to obstacles), where ∆⊥ is a Laplacian

operator only for coordinates perpendicular to z.

Another model used in practice is the Rayleigh integral, which considers a wave

propagating from an area on an infinite rigid plane, which may be derived from the

Helmholtz equation through the use of Green’s functions. The Green’s function for the

Helmholtz equation of a wave propagating from a point source on a rigid flat surface at

z = 0 is

Gk(xs|x) = R1
−1eikR1 +R2

−1eikR2 (2.2.12)
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for

R1,2 =
[
(xS − x)2 +(yS − y)2 +(zS ∓ z)2] 1

2 (2.2.13)

where R1 and R2 take different values for the ∓. The equation may be written

p(x) =
1

4π

∫ ∫
S

[
p(xS)∇SGk(xS|x)−Gk(xS|x)∇S p(xs)

]
zS=0

· ezdxSdyS (2.2.14)

Since the subset of the rigid surface we are integrating over is at z = 0, then zS = 0.

At zS = 0,

∇SGk(xS|x) · ez = 0

Gk(xS|x) = 2R−1eikR

∇S p(xS) · eZ = iωρvn(xS,yS) (2.2.15)

and thus (2.2.14) reduces to the Rayleigh integral, [52]

p(x) = − iωρ

2π

∫ ∫
vn(xS,yS)R−1eikRdxSdyS (2.2.16)

Bioheat equations

Since the main desired effects of HIFU on biological tissue – specifically, the cauteriza-

tion of tissue – are achieved as a result of the heat produced, it is important to understand

how this heat flows and redistributes through the body. To do this, most researchers rely

on the bioheat equation derived by Pennes in the 1940s for a resting human forearm

[51].

The experiment was run on men with normal blood pressure and no evidence of dis-

ease in the muscles or nervous system. The subjects lay on a hospital bed from between

8 and 9 AM until four to six hours had passed, nude save for a small sheet over their

hips. Conditions in the lab, such as temperature, were kept as consistent as possible,

though they encountered issues in keeping humidity consistent. During this time, the

temperature in the forearms of the subjects were measured by passing a wire with ther-
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mocouples attached through a section of the forearm where it wouldn’t pierce either

nerves or arteries. These thermocouples measured the temperature at their location in

the forearm, giving an approximate distribution of temperature within the tissue. It is

approximate, as it gave a number of discrete points rather than a continuous spectrum

and there was a chance that the thermocouples would shift in position within the tissue,

though the latter issue was minimized by holding the wire taut. There was also the issue

that heat would be conducted by the wires of thermocouples and the alcohol swab prior

to insertion lowered the local temperature, but it was assumed that this effect would be

negligible after giving an hour for the system to return to equilibrium. This data was

used to then fit the parameters in his derived bioheat equation [51].

The actual derivation of the bioheat equation required a few assumptions about the

form of the forearm for the sake of fitting this data, but these particular assumptions are

not required for understanding the equation in general applications and so will not be

reported here. However, some assumptions are relevant to all applications. First, the

vasculature is not specifically modeled. Every point in space is assumed to contain both

tissue and blood vessels, with the blood flow uniform throughout. Second, the thermal

conductivity, k, is assumed to be constant throughout the tissue being modeled; in cases

where there are multiple layers of tissue, it is assumed to be constant within any specific

layer.

The equation is, in essence, the classical heat equation [24] with specific assumptions

for the heat source term. Specifically, it is assumed that heating in the tissue is from

the movement of heat due to blood flow through the tissue and from tissue metabolism

[51]. The rate of heating from these effects are, respectively, hb and hm, though modern

sources (such as Bailey et al. [2] and Khaled and Vafai [36]) refer to the latter as qm.

Using the notation of Khaled and Vafai, while referencing Bailey et al. for the form of

the equation in three dimensions, the heat equation under this heat source hb + qm may

be expressed as

ρcp
∂T
∂ t

= k∇
2T + hb + qm (2.3.1)

where ρ is the tissue density, cp is the tissue specific heat, T is the tissue temperature,

and k is the tissue thermal conductivity [36]. A function for the rate of heat generation
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from the tissue metabolism is not given. In HIFU, this term is usually replaced by a

function for the heat generated by the ultrasound. This replacement is done without

explanation, but it reflects an unstated assumption that the metabolic heat generation

occurs over too long a time period to be relevant.

The heat transfer between blood and tissue, by contrast, is considered to be propor-

tional to the difference between the temperature of blood flowing into a point in the

tissue or the "arterial blood temperature," Ta, and the temperature of blood flowing out

of that point in the tissue or the "venous blood temperature," Tv [51]. Specifically, using

the notation of Khaled and Vafai [36],

hb = cpbWb(Ta −Tv) (2.3.2)

where cpb is the specific heat of blood and Wb is the volumetric rate of blood flow

through tissue. In order for this function to be useful, it is necessary to consider these

blood temperatures as constants or as functions of time, space, and/or temperature.

In Pennes’s derivation, the incoming arterial blood temperature Ta is assumed to be

constant [51], though some alternate derivations of temperature models in biological

tissues have included a separate equation for the blood temperature [57].

As for the outgoing blood temperature, Pennes assumed that the venous blood tem-

perature came to an equilibrium value somewhere between the temperature of the tissue

T and the incoming arterial blood temperature Ta so that

Tv = T + k′(Ta −T ) ; 0 ≤ k′ ≤ 1 (2.3.3)

where k′ is an equilibrium constant, so that equation (2.3.2) becomes

hb = cpbWb(k′−1)(T −Ta) (2.3.4)

Pennes notes that finding the actual equilibrium value of the venous blood temperature

would require experimental validation. However, he hypothesized that the blood would

reach complete equilibrium with the tissue as it left, so that k′ = 0 and thus the outgoing
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blood temperature Tv is equal to the tissue temperature T . This means that the rate of

heat transfer between blood and tissue is

hb = cpbWb(Ta −T ) (2.3.5)

He incorrectly identified this as occurring at k′ = 1 [51], where Tv = Ta, but this would

mean that the blood does not lose or gain any heat as it passes through the tissue. In

such a case, there would be no heat transfer between blood and tissue.

Taking this into account, we arrive at the Pennes bioheat equation as used in the

literature,

ρcp
∂T
∂ t

= k∇
2T + cpbWb(Ta −T )+ qm (2.3.6)

Thermal dose equations

Although the two thermal dose equations considered in this thesis have different forms,

they both are essentially derived from the Arrhenius equation [18, 68]. The Arrhenius

equation is an empirical relation used in theoretical chemistry to describe the change in

the reaction rates of chemical reactions with regards to temperature. This was initially

used by Arrhenius in the study of sugars breaking down in the presence of various

acids. He found that the effect of temperature on this reaction’s rate was too large

to be accounted for merely through the change in kinetic energy of the molecules or

dissociation of the acids from the temperature. The change between the reaction rates

at different temperature was found to be [34]

kT1 = kT0eµ(T1−T0)/2T0T1 (2.4.1)

where Ti is the temperature in ◦K, kTi is the reaction rate at temperature Ti, and µ is

a constant related to the energy of activation (or, in this case, inactivation [18]). This

relation has been found to be considerably accurate in describing the change in reaction

rates of chemical processes over limited temperature ranges, with especially limited

temperature ranges in biological reactions like inactivation of proteins [34]. In the case
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of the thermal dose and thermal damage equations, this temperature range has not been

studied in great depth. The thermal dose equation was developed specifically in the

range of 37◦C to 46◦C for Chinese hamster ovary cells, with a parameter change at

43◦C [18]. The resultant equation is considered to give a decent approximation for

lesion formation at higher temperatures due to necrosis occuring so rapidly at these

higher temperatures [2], but the parameter values and critical temperature of 43◦C were

chosen arbitrarily, and are known to vary under various circumstances [55]. Studies in

pig skin burn models support this idea, suggesting another change in parameter values

somewhere in the 50◦C range and that parameter values may depend on cell type, but

different studies do not all agree on the exact values [68]. This does suggest that current

parameter values should be considered with caution outside the studied 37◦C to 46◦C

range.

Within the appropriate temperature ranges, this exponential relation in (2.4.1) allows

for a linear fit to the relation between the logarithm of the reaction rate and the inverse

of the temperature in degrees Kelvin. From this, the Arrhenius equation is thus also

sometimes written in the form [34]

v(T ) = Ae−E/RT= Ae−∆H/2T (2.4.2)

where v is the velocity of the reaction, E is the activation energy, R is the gas constant,

T is the temperature in degrees Kelvin, and ∆H is the inactivation energy of molecules

proposed by Dewey et al. [18] to be the most ciritcal in the reaction causing cell death in

cal/mole. The parameter A is most accurately a temperature-dependent function, which

in the case of thermal necrosis takes the form

A(T ) = 2.05(1010)e∆s/2T (2.4.3)

where ∆s is the entropy of inactivation in cal/degree Kelvin/mole, but A is typically

treated as a constant as the change in the linear A(T ) due to temperature is much smaller

than the change due to the exponential part of v(T ) [18]. It should be noted that the

units for ∆H, ∆s, and T will result in the units in the exponential terms in v(T ) to cancel
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out.

This version of the Arrhenius equation is used to derive both the most well-known[33]

model for the macroscale effect of heat on tissue in HIFU, the thermal dose model[55],

as well as the thermal damage model used in skin burn and laser irradiation models

[68]. To derive the thermal dose model, we define 1
D̃0

= v(T ) as exponential slope of

the heat inactivation survival curve. Then the change in the slope per degree change in

the temperature, R, is[18]

R =
D̃0 at T + 1

D̃0 at T
= e−∆H/2T (T+1) (2.4.4)

where ∆H and T retain their values as per the units expressed above, but are unitless.

This results from the ratio of D̃0 to itself will cancel all units. In a similar form to the

relation between reaction rates in (2.2.1), the time required to have the same effect at

different constant temperatures can be related by

t1 = t2RT1−T2 (2.4.5)

for constant temperatures T1, T2 and elapsed times t1, t2 [55]. A variable temperature

may be written as an integral by approximating it as a Riemann sum and taking the limit

as ∆t → 0. Using 43◦C as a reference temperature, the thermal dose at 43◦C

T D43◦ =
∫ t

0
R43◦C−T (t ′)dt ′ (2.4.6)

where the thermal dose T D43◦C is the time taken to cause an equivalent reaction in the

tissue at 43◦C to the temperature profile T over time t [55]. Irreversible thermal damage

to the tissue is considered to have taken place at 240 equivalent minutes at 43◦C [2].

The parameters for the Arrhenius equation are determined by taking the natural log

of v(T ) and linearly fitting lnv(T ) to 1
T (see [18]). However, the Arrhenius equation

only provides a good fit as long as the range of temperatures is not too large [34]. In the

case of the thermal dose model, this is demonstrated by taking two sets of parameter

values: one below 43◦C and one above it [18]. For these parameter values, the value of
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R does not change significantly and so may be approximated by[55]

R =

{
0.25 : T (t) < 43◦

0.5 : T (t) ≥ 43◦
(2.4.7)

These parameters fit the survival curves of the studied Chinese hamster ovary cells, but

they consider only the range of temperatures between 37◦C and 46◦C,[18].

To derive the thermal damage model, the reaction velocity v(T ) is used as the reac-

tion rate of the chemical reaction of protein P to denatured protein D,

P
v(T )−→ D

as the main process behind thermal necrosis is the denaturation of proteins [2]. Thus,

the changes in concentrations of the reactants Ci may be modeled as

dCD

dt
= v(T )CP = v(T )(CT −CD) (2.4.8)

where CT is the total concentration of proteins, both denatured and not denatured. This

may be rearranged and integrated to give

dCD

CT −CD
= v(T )dt

ln(CT )− ln(CT −CD) =
∫ t

0
v(T )dt

ln
( CT

CT −CD
) =

∫ t

0
v(T )dt ′ (2.4.9)

This logarithm, which represents the fraction of denatured proteins, is defined as the

thermal damage parameter Ω = ln
(

CT
CT−CD

). Thus, the thermal damage equation is[73]

Ω(t) = A
∫ t

0
eE/RT (t ′)dt ′ (2.4.10)

This thermal damage parameter allows for judging various levels of damage based on

the percentage of proteins which have been denatured by thermal necrosis. As the equa-
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tion was initially developed for burn models, this has been used to determine different

severities of burns [68], but in the case of thermal necrosis, the second-degree burn level

of Ω ≥ 1 is used to represent irreversible damage [73].

Due to the fact that both the thermal dose and thermal damage models are derived

from the Arrhenius equation, it is simple to convert fitted parameters of the thermal

damage model into the thermal dose model. An approximate constant R can be devel-

oped through

R ≈ e−E/RgasT (T+1) (2.4.11)

for temperatures T within the range where the thermal damage parameters are valid.

The inverse problem of converting thermal dose parameters into thermal damage pa-

rameters is not possible, as the thermal dose model only has one parameter R which

combines two parameters A and E of the thermal damage model. However, work on

the thermal dose model has only considered the values of R noted above and thus such

conversions are unecessary.
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Chapter 3: System of bioheat equations

The third term in (2.3.6), the blood perfusion term can be heuristically justified on the

basis of Newton’s Law of cooling. The Pennes bioheat equation has been the subject

of criticism, as it is less justified physically, and we refer the reader to Wissler[66] for

further discussion of more physically justifiable extensions of this equation. Thus, using

a common approximation to treat the soft tissue as an incompressible fluid, we may use

a more standard term that takes fluid flow into account in the heat source term.

Although this assumption of incompressibility may appear unjustified in the context

of ultrasound, as a truly incompressible fluid would be acoustically inert, this model

focuses only on the transmission of heat in biological tissue and the evolution of the

temperature field. In such a model, the assumption of incompressibility may be justified

[42]. The methods used in this thesis may be used with some adjustments in the case

of a slightly compressible fluid (∇x · v⃗(t,x) = ε). Further research is required to move

to assumptions which are valid in every part of the larger problem, but this first step

provides a baseline.

Let Ω be a bounded domain of x in Rd . In our application, d = 3, but the following

proofs work in general. As a consequence of the assumption that the soft tissue behaves

like an incompressible fluid, we have

∇x · v⃗(t,x) = 0 (3.1)

for fluid velocity of the biological tissue, v⃗ and for t ≥ τ for some τ ∈ R. The velocity

and temperature are related by Darcy’s Law in the following manner:

v⃗(t,x) = ∇x ·P(t,x)− γ⃗ ·T (t,x) (3.2)

where P is the fluid pressure in the biological tissue and γ⃗ is a constant parameter

to match the scalar temperature with the other vector terms. Finally, using this fluid

velocity, we arrive at a modified heat equation where the ad hoc blood perfusion term
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is replaced with a more theoretically sound convection term,

∂T
∂ t

(t,x) = ∆xT (t,x)− v⃗(t,x)∇x ·T (t,x)+ h(t,x) (3.3)

In the case where v⃗(t,x) and h(t,x) are known, then (3.3) is an advection-diffusion

equation with a known proof of well-posedness. However, in real application, the ve-

locity term will not generally be measurable due to the complexities of biological tissue,

so we cannot rely on this. The system of nonautonomous equations (3.1-3.3) defines

the fluid velocity in terms of tissue temperature and fluid pressure, which means that,

to solve this system of nonautonomous equations, we need to find (P,T ). We assume

that we know the initial distribution of the functions in Ω and that we may define non-

homogeneous boundary conditions such that

P(t = τ ,x) = Pτ(x); P(t,x′)|x′∈∂ Ω = Pbd(x′) (3.4)

T (t = τ ,x) = Tτ(x); T (t,x′)|x′∈∂ Ω = Tbd(x′) (3.5)

The following compatability conditions need to be imposed:

Pτ(x
′
)|x′∈∂ Ω = Pbd(x

′
) Tτ(x

′
)|x′∈∂ Ω = Tbd(x

′
) (3.6)

Without loss of generality, we assume Pbd(x
′
) = 0.

However, it is possible to define the fluid pressure P in terms of the temperature T

by applying the gradient operator to equation 3.3. Using equation 3.2, we obtain

∆xP(t,x) = γ⃗∇x ·T (t,x) (3.7)

This leads to the full system of nonautonomous equations which constitute our model,
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and take the form

∆xP(t,x) = γ⃗∇x ·T (t,x) (3.8)

v⃗(t,x) =
(
∇x · (−∆x)

−1⃗
γ · (∇xT )+T

)
(3.9)

∂T
∂ t

(t,x) = ∆xT (t,x)− v⃗(t,x)∇x ·T (t,x)+ h(t,x) (3.10)

P(t = τ ,x) = Pτ(x); P(t,x′)|x′∈∂ Ω = Pbd(x′) (3.11)

T (t = τ ,x) = Tτ(x); T (t,x′)|x′∈∂ Ω = Tbd(x′) (3.12)

We seek a solution of (3.8-3.12) as a pair

(
T (t,x),P(t,x)

)
∈W (1,2),p([τ ,η ]×Ω

)
×W (1,3),p([τ ,η ]×Ω

)
(3.13)

for t ≥ τ , which satisfy the equations in the sense of distributions. Note that u ∈
W (1,2),p([τ ,η ]×Ω

)
, by definition, means that

u ∈ Lp([τ ,η ]×Ω
)
), ∂tu ∈ Lp([τ ,η ]×Ω

)
, Dαu ∈ Lp([τ ,η ]×Ω

)
(3.14)

for 0 ≤ |α| ≤ 2. The value of p = p(n) (where n is the dimension of the space Ω ∈ Rn)

can be chosen “a posteriori” to guarantee compact embedding[58].

W (1,2),p([τ ,η ]×Ω
)
⊂ C

(
[τ ,η ],Cε(Ω)

)
for some ε ∈ (0, 3

2 ]. It is known that for

sufficiently large p = p(n) >> 1, dependent on dimension n, this compact embedding

holds (see Simon[58]). From (3.13), it follows

Tτ(x) ∈W 2(1− 1
p ),p(Ω), Pτ(x) ∈W 3− 2

p ,p(Ω)

Tbd(x
′
) ∈W 2− 1

p ,p(Ω), Pbd(x
′
) ∈W 3− 1

p ,p(Ω) (3.15)

As already indicated, we seek a solution

(
T (t,x),P(t,x)

)
∈W (1,2),p([τ ,η ]×Ω

)
×W (1,3),p([τ ,η ]×Ω

)
(3.16)

that satisfies (3.8-3.10) in a weak sense. To that end, we will assume the following
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compatibility conditions are satisfied:

Tτ(x) = Tbd(x), Pτ(x) = Pbd(x) (3.17)

Lemma 2.1. Let
(
P(t,x), T(t,x)

)
be a solution of (3.8-3.10), with Pbd(x

′
) := 0. Then

for every fixed t ≥ 0 and for every 1 < p < ∞, we have

||P(t,x)||
W 3− 2

p ,p
(Ω)

≤C||T (t,x)||
W 2− 2

p ,p
(Ω)

(3.18)

Proof Indeed, this implies that P(t,x) satisfies ∆xP(t,x) = γ⃗∇xT , x ∈ Ω

P|∂ Ω = 0
(3.19)

From assumptions of Lemma 2.1, it follows that γ⃗∇xT ∈W 1− 2
p ,p(Ω). Then, by el-

liptic regularity theory (which studies the behaviour of weak solutions of elliptic partial

differential equations; see Renardy & Rogers[53]), the assertion of Lemma 2.1 follows.

Corollary 2.1. Let
(
P(t,x),T (t,x)

)
be a solution of (3.8-3.12). Then the following

holds:

||P(t,x)||W (1,3),p([τ ,η ]×Ω) ≤C||T (t,x)||W (1,2),p([τ ,η ]×Ω) (3.20)

Thus, it is sufficient to prove all “a priori” estimates for the temperature component

of
(
P(t,x),T (t,x)

)
of the solution to (3.8-3.12).

The following Corollary 2.2 will be used in the proof of uniqueness of solutions.

However, to formulate Corollary 2.2, some preliminary work is necessary. From
∆xP(t,x) = γ⃗ ·∇xT

P(t,x)|∂ Ω = 0

v⃗ = ∇xP− γ⃗T

(3.21)
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It follows that

v⃗ = −
(⃗
γ +∇x(−∆x)

−1⃗
γ ·∇x

)
T (t,x) (3.22)

where the inverse (−∆x)−1 is taken with homogeneous Dirichlet boundary conditions.

We denote by

Ψ(x,D)T (t,x) := −
(⃗
γ +∇x(−∆x)

−1⃗
γ ·∇x

)
T (t,x) (3.23)

Corollary 2.2. The operator Ψ(x,D) defined by (3.23) acts from L2(Ω) to L2(Ω) and

satisfies for each fixed t ≥ 0

||Ψ(x,D)ξ (x)||L2(Ω) ≤C||ξ (x)||L2(Ω) (3.24)

for all ξ (x) ∈ L2(Ω).

Indeed, the linear pseudodifferential operator Ψ(x,D) defined by (3.23) is order zero

and, as a consequence, satisfies (3.24). Thus, v⃗(t,x) = Ψ(x,D)T (t,x) and we rewrite

the equation for T(t,x), (3.10), as follows:

∂tT (t,x)−∆xT = −∇T ·Ψ(x,D)T (t,x)+ h(t,x) (3.25)

with

T (t,x)|t=τ = Tτ(x), T (t,x
′
)|∂ Ω = Tbd(x

′
) (3.26)

In the next chapter, we establish existence and uniqueness of solutions in W (1,2),p([τ ,η ]×Ω
)
.

This is an important step in establishing a rigorous mathematical foundation for a

model. Some PDEs admit no solutions and some boundary value problems produce

multiple solutions, and numerical simulations will not always demonstrate this. Neither

of these results will properly model a real, physical reaction, as any physical reaction

above the molecular scale will occur in exactly one way, so it is necessary to first prove

that the boundary value problem will also have exactly one possible solution.
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Chapter 4: Existence and Uniqueness of Solutions to the

HIFU Model

We work in the Lp space of the domain of this family of equations with p = p(n)>> 1

(we will choose a concrete value for p later). Let Qτ ,η be

Qτ ,η := [τ ,η ]×Ω (4.1)

where η is sufficiently large to include the time interval of interest.

We assume that the heat source term, h(t,x) is known a priori and that h ∈Lp(Qτ ,η).

Then our problem can be stated as follows:

Find T ∈W (1,2),p(Qτ ,η) such that

∂T
∂ t

(t,x) = ∆xT (t,x)−Ψ(x,D)T (t,x) ·∇xT (t,x)+ h(t,x) (4.2)

where

Tτ(x) ∈W 2(1− 1
p ),p(Ω); Tbd(x′) ∈W 2− 1

p ,p(∂ Ω) (4.3)

To prove the existence of a solution under these conditions, we connect equation

(5.4) to a simpler linear equation using the Leray-Schauder principle (see Section 1).

In this case, if for λ = 0, φ (0;x) = 0 has at least one solution, say x∗0, then by the

Leray-Schauder principle, it follows that for λ = 1, φ (1;x) = 0 has a solution x∗1. In

this manner, we establish existence of a weak solution to (5.4-5.5).

In order to apply the Leray-Schauder principle to equations (3.8-3.12), we form a

family of equations where the velocity, v⃗(t,x) in equation (3.2) is replaced by v⃗(λ ; t,x),

where

v⃗(λ ; t,x) = ∇x ·P(λ ; t,x)− γ⃗ ·λT (λ ; t,x) (4.4)
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By the same methods used in the derivation of (3.8-3.9), it is possible to show that

v⃗(λ ; t,x) = λ v⃗(t,x) (4.5)

which in turn makes the family of equations, equivalent to equation (3.10), take the

form

∂T
∂ t

(λ ; t,x) = ∆xT (λ ; t,x)−λ v⃗(t,x)∇x ·T (λ ; t,x)+ h(t,x)

∂T
∂ t

(λ ; t,x) = ∆xT (λ ; t,x)−λ Ψ(t,x)T (λ ; t,x) ·∇xT (λ ; t,x)+ h(t,x) (4.6)

For λ = 0, the equation in the family (5.6) becomes

∂T
∂ t

(0; t,x) = ∆xT (0; t,x)+ h(t,x) (4.7)

T (0;τ ,x) = Tτ(x) ∈W 2(1− 1
p ),p(Ω); (4.8)

T ((0; t,x′)|x′∈∂ Ω = Tbd(x′) ∈W 2− 1
p ,p(∂ Ω) (4.9)

It is well known (see Ladyženskaja, Solonnikov, & Ural’ceva[38]) that the initial bound-

ary value problem (eqns (5.6)-(5.8)) has a unique solution. When λ = 1, the equation

is the same as equation (3.10). Therefore, it remains to bring the initial boundary value

problem (eqns (5.5)-(5.8)) to the form (5.6) and prove the uniform a priori estimates

with respect to λ in the space W (1,2),p(Qτ ,η).

Reduction of our model to Leray-Schauder form

Let T̃ be a solution to (5.6) with the given initial and boundary conditions (3.12). Be-

cause of our choice of spaces for these conditions, (5.5), it is possible to show that T̃

exists and that T̃ ∈ W (1,2),p(Qτ ,η) (see Ladyženskaja et al.[38]). Then we can choose

the family of solutions T (λ ; ·) from (5.7) as the sum of T̃ and an unknown function

T ∗(λ ; ·): T (λ ; ·) = T ∗(λ ; ·)+ T̃ (·). From equations (5.7) and (5.8), it follows that if
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T ∗(λ ; ·) exists, it will satisfy the family of equations

∂T ∗

∂ t
(λ ;t,x) = ∆xT ∗(λ ; t,x)

−λ Ψ(x,D)(T ∗(λ ; t,x)+ T̃ (t,x)) ·∇x(T ∗(λ ; t,x)+ T̃ (t,x))

T ∗(λ ;τ , t) = 0; T ∗(λ ; t,x′)|x′∈∂ Ω = 0 (4.10)

As a result of the homogeneous initial and boundary conditions, H := (∂t − ∆x)−1,

H : Lp(Qτ ,η)→W (1,2),p(Qτ ,η)[38], which in turn leads to

T ∗(λ ; t,x) = −H
(
λ Ψ(x,D)(T ∗(λ ; t,x)+ T̃ (t,x)) ·∇x(T ∗(λ ; t,x)+ T̃ (t,x))

)
T ∗(λ ; t,x)+λH

(
Ψ(x,D)(T ∗(λ ; t,x)+ T̃ (t,x)) ·∇x(T ∗(λ ; t,x)+ T̃ (t,x))

)
= 0

T ∗(λ ; t,x)+λK(T ∗(λ ; t,x)) = 0

(4.11)

where K is defined as

K(u(t,x)) = H
(
Ψ(x,D)(u(t,x)+ T̃ (t,x)) ·∇x(u(t,x)+ T̃ (t,x))

)
(4.12)

To apply the Leray-Schauder principle, we have to show that:

a) the operator K is a compact operator in W (1,2),p(Qτ ,η) and

b) T ∗(λ ; t,x) satisfies the uniform a priori estimate ||T ∗(λ ; t,x)||W (1,2),p(Qτ ,η )
≤C∗.

If a) and b) are satisfied, the Leray-Schauder principle may be used to prove that

T ∗(1; t,x) and hence T (t,x) = T ∗(1; t,x) + T̃ (t,x) exist. The proof of the existence

of a solution for component T of our model is based on the dissipative estimates in

W (1,2),p-spaces.
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Theorem 4.1. Let T ∗(λ ; t,x) be a solution of the family of equations

∂T ∗

∂ t
(λ ;t,x) = ∆xT ∗(λ ; t,x)

−λ Ψ(x,D)(T ∗(λ ; t,x)+ T̃ (t,x)) ·∇x(T ∗(λ ; t,x)+ T̃ (t,x)) (4.13)

T ∗(λ ;τ , t) = 0; T ∗(λ ; t,x′)|x′∈∂ Ω = 0

where t ≥ τ , t, τ ∈R, and p= p(n)>> 1 is sufficiently large to guarantee compactness

of embedding

W (1,2),p(Qτ ,η) ⊂⊂C
(
[τ ,η ],Cε(Ω)

)
(4.14)

for some ε ∈ (0, 3
2 ]. Then the following estimate holds:

||T ∗(λ ; t,x)||W (1,2),p([τ ,τ+1]×Ω)+ ||P∗(λ (t,x)||W (1,3),p([τ ,τ+1]×Ω)

≤ C∗(||Tτ(x)||
W 2(1− 1

p ),p(Ω)

)
e−α(t−τ)

+C∗(||Tbd(x
′
)||

W 2− 1
p ,p

(∂ Ω)
+ ||Pbd(x

′
)||

W 3− 1
p ,p

(∂ Ω)

)
(4.15)

where t ≥ τ , τ ∈ R, α > 0, and C∗ is a constant that is independent of λ .

Proof: A proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Let u(t,x) be a solution of∂tu(t,x)−∆xu(t,x) = h(t,x)

u(t,x)|t=0 = uo(x); u(t,x
′
)|∂ Ω = ubd(x

′
)

(4.16)

where Ω ⊂⊂ Rn. We set Rη = [η ,η + 1]× Ω for every η > 0. Let h ∈ Lp(Rη),

uo(x) ∈W 2(1− 1
p ),p(Ω), and ubd ∈W 2− 1

p ,p(∂ Ω), assuming the compatibility condition
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uo(x
′
)|x′∈∂ Ω = ubd(x

′
) as in (3.6). Then,

∫
η+1

η

(
||∂tu(t,x)||pLp(Ω)

+ ||u(t,x)||W 2,p(Ω)

)
dt

≤C
(
||uo(x)||

W 2(1− 1
p ),p(Ω)

e−αη + ||ubd(x
′
)||

W 2− 1
p ,p

(∂ Ω)

)
+C

∫
η+1

0
e−α(η−t)||h(t,x)||Lp(Ω)dt (4.17)

Here, α > 0 and depends on the first eigenvalue of the Laplacian on Ω. This is called the

dissipative version of the parabolic maximal regularity (α = 0 is the classical parabolic

maximal regularity, see LSU [38], page 342). Due to the trace theorem, it is sufficient

to prove (4.16) only for uo(x) = 0, ubd(x
′
) = 0, as the general case can be reduced to

this case (see Remark 4.3 below).

For a proof of (4.17), we recall the classical interior estimate for the case uo(x)≡ 0

in Ω and ubd(x
′
) ≡ 0 on ∂ Ω. It reads as follows:

||u||W (1,2),p(Rη )
≤C

(
||h(t,x)||Lp(R′

η )
+ ||u(t,x)||L2(R′

η )

)
(4.18)

where R
′
η = [max{η −1,0},η + 1]×Ω and the constant C is independent of η .

Assume for a moment that (4.18) holds. Multiplying (4.16) by u and integrating by

parts we obtain

1
2

∂

∂ t
||u||2L2(Ω)+ ||∇xu||2L2(Ω) =

∫
Ω

h(t,x)u(t,x)dx (4.19)

From the Poincare inequality

∂

∂ t
||u||2L2(Ω)+ 2α||u||2L2(Ω) = 2

∫
Ω

h(t,x)u(t,x)dx (4.20)

⇒ ∂

∂ t
||u||2L2(Ω)+α||u||2L2(Ω) ≤C||h(t,x)||L2(Ω)e

αη

∫
η

0

∂

∂ t

(
eαt ||u||2L2(Ω)

)
≤Ceαt ||h(t,x)||2L2(Ω) (4.21)
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Integrating (4.20) over [0,η ], we obtain

eαη ||u||2L2(Ω) ≤ ||uo(x)||2L2(Ω)+C
∫

η

0
eαt ||h(t,x)||2L2(Ω)dt

||u(t,x)||2L2(Ω) ≤ ||uo(x)||2L2(Ω)e
−αη +C

∫
η

0
e−α(η−t)||h(t,x)||2L2(Ω)dt (4.22)

Inserting (4.22) into (4.18) we obtain

||u||W (1,2),p(Rη )
≤C

(
||h(t,x)||Lp(R′

η )
e−αη +

∫
η

0
e−α(η−t)||h(t,x)||2L2(Ω)dt

)
; α > 0

(4.23)

||u||W (1,2),p(Rη )
:=
∫

η

0

∫
Ω
|∂tu|pdxdt +

∫
η

0
||u||pW 2,p(QT )

dt

(4.24)

Hence, it remains to prove (4.18). To this end, we recall that we have

||s(t,x)||W (1,2),p(R′
η )

≤C||h(t,x)||Lp(R′
η )

(4.25)

for the solution s(t,x) of∂ts(t,x) = ∆xs(t,x)+ h(t,x)

s(t,x)|t=max{η−1,0} = 0, s(t,x)|∂ Ω = 0
(4.26)

(5.31-5.32) can be found in Ladyzhenskaja et al. [38], pages 342-355.

For η ≤ 1, we have ∂ts(t,x) = ∆xs(t,x)+ h(t,x)

s(0,x) = 0; s|∂ Ω = 0
(4.27)
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and from (5.31), we have

||s(t,x)||W (1,2),p(R′
η )

≤C||h(t,x)||Lp(R′
η )

(4.28)

⇒||s(t,x)||W (1,2),p(R′
η )

≤C
(
||h(t,x)||Lp(R′

η )
+ ||s(t,x)||Lp(R′

η )

)
(4.29)

⇒||s(t,x)||W (1,2),p(R′
η )

≤C
(
||h(t,x)||Lp(R′

η )
+
∫

η

0
e−α(η−t)||h(t,x)||Lp(R′

η )
dt (4.30)

It remains to prove (4.18) for η ≥ 1, where R
′
η := [η − 1,η + 1]×Ω. In order to

deduce (4.18) for η ≥ 1, consider

r(t,x) :=
(
t − (η −1)

)Nu(t,x), (4.31)

where N can be chosen later in connection with p. Obviously r(t,x) satisfies

∂tr(t,x) = ∆xr(t,x)+ h̃(t,x),

r|t=η−1 = 0, v|∂ Ω = 0 (4.32)

where

h̃(t,x) :=
(
t − (η −1)

)Nh(t,x)+N
(
t − (η −1)

)N−1u(t,x) (4.33)

Consequently,

||r(t,x)||W (1,2),p(R′
η )

≤C||h̃(t,x)||Lp(R′
η )

(4.34)

From (5.26), it follows that

||h̃(t,x)||Lp(R′
η )

≤C||h(t,x)||Lp(R′
η )
+C

′
||
(
t − (η −1)

)Nu(t,x)||Lp(R′
η )

(4.35)

It remains to estimate the last term in (5.33). To this end, we will also use the following

embedding:

W (1,2),p(R
′
η) ⊂⊂ L∞(R

′
η) (4.36)
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for sufficiently large p = p(n) >> 1. Indeed,

∫
R′

η

|
(
t − (η −1)

)N−1u(t,x)|pdxdt =
∫

R′
η

|
(
t − (η −1)

)Nu(t,x)|
p(N−1)

N |u(t,x)|
p
N dxdt

≤
∫

R′
η

|u(t,x)|
p
N dxdt · ||r(t,x)||

p(N−1)
N

L∞(R′
η )

≤ ||u(t,x)||
p
N

L
p
N (Ω)

· ||r(t,x)||
p(N−1)

N

L∞(R′
η )

(4.37)

From (5.37), it follows that

∫
R′

η

((
t − (η −1)

)N−1|u(t,x)|
)p

dxdt ≤ ||r(t,x)||
p(N−1)

N

L∞(R′
η )
· ||u(t,x)||

p
N

L
p
N (Ω)

(4.38)

≤
(
||r(t,x)||

N−1
N

W (1,2),p(R′
η )
· ||u(t,x)||

1
N

L
p
N (Ω)

)p

⇒ ||
(
t − (η −1)

)p−1u(t,x)||Lp(R′
η )

≤C1||r(t,x)||
N−1

N

W (1,2),p(R′
η )
· ||u(t,x)||

1
N

L
p
N (R′

η )
(4.39)

Choosing p = 2N (N >> 1) and α := 1
N , we obtain

||
(
t − (η −1)

)N−1u(t,x)||Lp(R′
η )

≤C1||r(t,x)||1−α

W (1,2),p(R′
η )
· ||u(t,x)||α

L2(R′
η )

≤ ε||r(t,x)||W (1,2),p(R′
η )
+Cε ||u(t,x)||L2(R′

η )
(4.40)

Here we have used the inequality x1−αyα ≤ εx+Cεy for each ε > 0 and for every x > 0,

y > 0. Thus we obtain from (5.26).

||r(t,x)||W (1,2),p(R′
η )

≤C
(
||h(t,x)||Lp(R′

η )
+ ||u(t,x)||L2(R′

η )

)
(4.41)

In order to finish the proof of (4.18), it remains to note that

||u(t,x)||W (1,2),p(R′
η )

≤C2
(
||h(t,x)||Lp(R′

η )
+ ||u(t,x)||L2(R′

η )

)
, (4.42)

where C2 does not depend on η . Q.E.D.
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Remark 4.3. The general case, that is T (t,x)|t=τ = Tτ(x) and T (t,x)|∂ Ω = Tbd(x
′
)

can be reduced to the case of

Tτ(x) = Tbd(x
′
) ≡ 0 (4.43)

in the following way: let
(
Tτ(x),Tbd(x

′
)
)
̸= 0 and T∗(x) be a solution of

∆xT∗(x) = 0, x ∈ Ω

T∗|∂ Ω = Tbd(x
′
) ∈W 2− 1

p ,p(∂ Ω)
(4.44)

It is well-known that T∗ ∈W (1,2),p([τ , t]×Ω
)
. Let

T̃∗(t,x) = (t − τ)
(
T (t,x)−T∗(x)

)
(4.45)

Obviously, T̃∗(t,x) satisfies
∂ T̃∗(t,x)

∂ t = ∆xT̃∗(t,x)+ (t − τ)
(
h(t,x)+ v⃗(t,x) ·∇xT (t,x)

)
T̃∗(t,x)|t=τ = 0; T̃∗(t,x)|∂ Ω = 0

(4.46)

As a corollary of Lemma 4.2 with standard Lp-estimates (see Ladyženskaja[38]), we

obtain the assertion of Theorem 4.1.

Uniqueness

Now that we have established existence of a solution to (3.10), it remains to prove that

this solution is unique.

Theorem 5.1. Let
(
T (t,x),P(t,x)

)
be a solution of (3.8 - 3.12) belonging to W (1,2),p(Qτ ,η)×

W (1,3),p(Qτ ,η), as shown to exist via the Leray-Schauder method. Then such a solution

is unique.

Proof: Let
(
T1(t,x),P1(t,x)

)
and

(
T2(t,x),P2(t,x)

)
be two solutions of (3.8 - 3.12)
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belonging to W (1,2),p(Qτ ,η)×W (1,3),p(Qτ ,η) respectively and w(t,x) = T1(t,x)−T2(t,x),

then∂tw = ∆xw+
(
∇xT1(t,x)

)
Ψ(x,D)w(t,x)+

(
∇xw(t,x)

)
Ψ(x,D)T2(t,x)

w(t,x)|∂ Ω = w(t,x)|t=τ = 0
(4.47)

Note that, due to the embedding (4.14), we have ||∇xT1(t,x)||L∞(Ω)≤C∗ and ||Ψ(x,D)T2(t,x)||L∞(Ω) =

||v2(t,x)||L∞(Ω) ≤C∗. Multiplying (4.47) by w(t,x) and integrating over x ∈ Ω we ob-

tain

1
2

∂t ||w(t,x)||2L2(Ω)+ ||∇xw(t,x)||2L2(Ω)

≤C∗||∇xw(t,x)||L2(Ω)+C∗||Ψ(x,D)w(t,x)||L2(Ω) · ||w(t,x)||L2(Ω)

≤C1||w(t,x)||2L2(Ω)+
1
2
||∇xw(t,x)||2L2(Ω) (4.48)

Here we used Corollary 2.2, that is

||Ψ(x,D)w(t,x)||L2(Ω) ≤C||w(t,x)||L2(Ω) (4.49)

Integrating the last line of (4.48) over [τ , t] and using Gronwall’s inequality [53], we

obtain w(t,x) ≡ 0. This establishes the uniqueness of the solution.
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Chapter 5: Existence of Uniform Attractors for our HIFU

model

We will follow Chepyzhov & Vishik (1994) [10] and Chepyzhov & Efendiev (2000)

[11]. We begin with some preliminaries. Let E be a Banach space. In E we consider

the nonautonomous Cauchy problem∂tu = A(u, t)

u|t=τ = uτ , u ∈ E, τ ∈ R, t ≥ τ ,
(5.1)

where A(u, t) : E1 x R → E0 is a family of nonliear operators and E1 and E0 are Banach

spaces. We assume that the embeddings E1 ⊂ E ⊂ E0 are everywhere dense.

We always assume that the initial value problem (3.8-3.12) has a unique solution

u(t) ∈ E ∀t ≥ τ and ∀τ ∈ R and uτ ∈ E.

Consider the two-parameter family of maps {U(t,τ), t ≥ τ}, U(t,τ) : E → E,

such that

U(t,τ) : uτ → u(t). (5.2)

DEFINITION 3.1 A family of maps {U(t,τ)} is called a process if

• U(τ ,τ) = Id (identity) and

• U(t,s)⊙U(s,τ) =U(t,τ) for all t ≥ s ≥ τ , τ ∈ R

In this chapter, we are mainly interested in processes generated by nonautonomous

evolution equations such as (3.8-3.12). It’s clear that a process is a natural generaliza-

tion of a semigroup St : E → E, which corresponds to autonomous evolution equations;

that is, A(u, t) ≡ A0(u). Note that in this case, it is easy to see that

U(t,τ) =U0(t − τ) (5.3)

Our main goal is to study the large-time asymptotics of a process {U(t,τ)} generated
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by equation (5.1): that is, the behaviour of trajectories u(t) = U(t,τ)uτ of (5.1) when

t − τ tends to infinity. As we will see below, the large-time dynamics of a process can

be described in terms of attractors (we give a precise definition of attractor later). We

follow Chepyzhov and Vishik (1994) [10]. As was shown in the paper, an adequate

theory of attractors for nonautonomous equations is obtained by considering a family

of processes {U(t,τ)} instead of a single process where g ∈ Σ is a functional parame-

ter. For the convenience of the reader, we recall basic definitions from Chepyzhov and

Vishik (1994) [10]. Indeed, consider the family of Cauchy equations

∂tu = Ag(t)(u), (5.4)

u|t=τ = uτ , uτ ∈ E (5.5)

where for any fixed t ∈ R, Ag(t)(u) is, in general, a nonlinear operator acting from

a Banach space E1 to a Banach space E0 and E1 ⊂ E ⊂ E0 (everywhere dense). We

assume that a functional parameter g(t) belongs to a certain closed set Σ in Cb(R,W ),

where {Cb(R,W ) denotes the space of bounded continous functions on R with values

in a certain metric space W , with T (h)Σ = Σ, where

T (h)g(t) := g(t + h), h ∈ R (5.6)

We suppose that the problem (5.4)-(5.5) is well-posed for any symbol g(t) ∈ Σ so that

any solution u(t) ∈ E (we specify in each case what we mean by "solution") can be

represented as

u(t) =Ug(t,τ)uτ , (5.7)

g = g(t) ∈ Σ, uτ ∈ E, τ ∈ R, t ≥ τ

Due to the uniqueness theorem for (5.4)-(5.5), operators defined by (5.7) define a pro-

cess and satisfy the following translation identity:

UT (h)g(t,τ) =Ug(t + h,τ + h), ∀h ≥ 0, t ≥ τ , τ ∈ R (5.8)
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Let S(t) : E ×Σ → E ×Σ be the family of operators defined by

S(t)(u,g) = (Ug(t,0)u,T (t)g), t ≥ 0, (u,g) ∈ E ×Σ (5.9)

It is not difficult to see that the family of operators {S(t)} defined by (5.9) forms a

semigroup on the extended phase space E ×Σ. We use this fact throughout this chapter.

Before formulating the main result for a family of processes {Ug(t,τ)} from a dy-

namical viewpoint, we recall some definitions [10, 30]. Let E be the Banach space as

before, and denote by β (E) the set of all bounded subsets E.

DEFINITION 3.2 A set B0 ⊂ E is called a uniformly (with respect to Σ) absorbing

(or attracting) set for the family of processes {Ug(t,τ)} if for any τR and any B⊂ β (E)

there exists T = T (τ ,B) ≥ τ such that

∪
g∈Σ

Ug(t,τ)B ⊂ B0, ∀t ≥ T (absorbing property), (5.10)

and

lim
t→+∞

sup
g∈Σ

distE
(
Ug(t,τ)B,P

)
= 0, ∀τ ∈ R, B ⊂ β (E) (attracting property).

(5.11)

DEFINITION 3.3 A closed set AΣ ̸= ∅ is called a uniform (with respect to Σ) at-

tractor of the {Ug(t,τ)} if it is uniformly attracting and is contained in any closed

uniformly attracting set Ã (minimality property).

Following Haraux (1991) [31], a family of processes possessing a compact, uni-

formly absorbing (uniformly attracting) set are called uniformly compact (or uniformly

asymptotically compact) processes. Now we are in position to formulate the main re-

sult on the existence of attractors for a family of processes. Let Π1 : E ×Σ → E be the

projector defined by Π1(u,g) = u.
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THEOREM 3.4 Let a family of processes {U(t,τ)}, g ∈ Σ, acting in the Banach

space E be uniformly compact and (E×Σ,E) continuous. Then the semigroup {S(t)} : E×
Σ → E ×Σ defined by (5.9) possesses the global attractor A . Moreover, A = Π1A is

the uniform attractor of the family of processes {Ug}.

For a proof, see Chepyzhov and Vishik (1994) [10].

In the following section, we will apply Theorem 3.4 to our hyperthermia model

with external forces which are quasiperiodic in t. Let h̄(t,x) ∈ H
(
h(t,x)

)
, where by

H
(
h(t,x)

)
we denote the hull of a given quasiperiodic function h(t,x) of t. Note that,

by definition,

H (h(t,x)) := {T (θ )h(t,x) : θ ∈ R}
Cb(R,W )

(5.12)

that is, the closure in Cb(R,W ) of the set of all translations of the given quasiperiodic

function h. Depending on the context, we will take W = Lp(Ω) or W = L∞(Ω). On

the other hand, a quasiperiodic (in t) function h(t,x) can be represented as

h(t,x) = h̃(α1t, . . . ,αkt,x) (5.13)

where h̃(ω1, . . . ,ω j + 2π , . . . ,ωk,x) = h̃(ω1, . . . ,ωk,x) and the numbers α1, . . . ,αk are

rationally independent. When h̃(ω1, . . . ,ωk,x) is a continuous function on Tk (k-dimensional

torus), one can easily see that the hull H (h) is a set

H
(
h(t,x)

)
= {h̃(α1t +ω10, . . . ,αkt +ωk0,x);

ω0 = (ω10, . . . ,ωk0) ∈ Tk} (5.14)

Thus, due to (5.14), it is reasonable to consider the torus Tk as the symbol space through

the map

Tk ∋ ω0 → h(αt +ω0,x)

:= h̃(α1t +ω10, . . . ,αkt +ωk0,x) ∈Cb(R,W ). (5.15)

We set

T (θ )ω0 = [ω0 +αθ ] := ω0 +αθ (mod Tk) (5.16)
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Obviously, T (θ )Tk = Tk.

We will apply Theorem 3.4 to the family of processes generated by (3.8-3.12).

Long-time dynamics of solutions for hyperthermia model

In this section, we will prove the existence of a uniform attractor of our model equations

(3.1-3.5).



∇x · v⃗(t,x) = 0, x ∈ Ω, t ≥ τ

v⃗(t,x) = ∇xP(t,x)− γ⃗T (t,x), x ∈ Ω, t ≥ τ

∂T
∂ t (t,x) = ∆xT (t,x)− v⃗(t,x)∇x ·T (t,x)+ h(t,x) x ∈ Ω, t ≥ τ

P(t,x)|x∈∂ Ω = Pbd(x) x ∈ Ω

T (0,x) = To(x); T (t,x′)|x′∈∂ Ω = Tbd(x′) x ∈ Ω

(5.17)

where h(t,x) is a quasi-periodic external source, Ω is a bounded domain in Rn with

a sufficiently smooth boundary,
(
T (t,x),P(t,x)

)
are unknown functions (temperature

and pressure, respectively), γ⃗ = (γ1, . . . ,γN) is a given constant vector, say |⃗γ|= 1.

As already indicated above, we will apply Theorem 3.4 to the family of Cauchy

problems

∇x · v⃗(t,x) = 0 x ∈ Ω, t ≥ τ

v⃗(t,x) = ∇xP(t,x)− γ⃗T (t,x), x ∈ Ω, t ≥ τ

∂T
∂ t (t,x) = ∆xT (t,x)− v⃗(t,x)∇x ·T (t,x)+ h̄(t,x) x ∈ Ω, t ≥ τ

P(t,x)|x∈∂ Ω = Pbd(x), x ∈ Ω

T (0,x) = To(x); T (t,x′)|x′∈∂ Ω = TBd(x′) x ∈ Ω

(5.18)

with h̄(t,x) ⊂ H ull(h(t,x)).

To apply Theorem 3.4 in our cases, we have to prove the existence of a uniformly
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absorbing (uniformly attracting) set. To this end, let us recall that our problem (3.19,

3.12) generates a a family of processes {Uωo(t,τ)|t ≥ τ}, ωo ∈ Tk in the space V0 =

W 2− 1
p ,p(Ω)∩{T (t,x)|x∈∂ Ω = Tbd(x)}. Specifically,

Uωo(t,τ) : V0 → V0 t ≥ τ

Uωo(t,τ) : Tτ(x)→ T (t,x) (5.19)

where T (t,x) is a solution of (5.18) with the h term in the form of h̃(αt +ω0,x) =

h̃(α1t +ω10, . . . ,αkt +ωk0,x).

Proposition 4.1: The family of processes constructed above for our model (5.18),

that is, {Uωo(t,τ) | t ≥ τ , τ ∈ R, ωo ∈ Tk}, Uωo(t,τ) : V0 → V0 – is uniformly

bounded and uniformly compact in V0.

Proof: In the previous chapter, we obtained the following dissipative estimate:

||T (t,x)||W (1,2),p(Qτ ,η )
+ ||P(t,x)||W (1,3),p(Qτ ,η )

≤ Q
(
||Tτ(x)||V0

)
e−α(t−τ)+Q(||Tbd(x′)||

W 2− 1
p ,p

(∂ Ω)

+ ||Pbd(x′)||
W 3− 1

p ,p
(∂ Ω)

+C||h̄(t,x)||
C
(

Tk,Lp(Ω)
), α > 0 (5.20)

where constant C, α > 0, and the monotonic function Q are independent of Tτ(x). From

this dissipative estimate, it follows that

||Uωo(t,τ)Tτ(x)||V0 ≤C3
(
||Tτ(x)||V0

)
(5.21)

where constant C3 depends on initial data ||Tτ(x)||V0 . This proves uniform bounded-

ness of the process Uωo(t,τ) with respect to ωo ∈ Tk. Moreover, the same dissipative

estimate also implies that the set

B1 = {ψ(x) ∈ V0 | ||ψ(x)||V0 ≤C∗} (5.22)
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where C∗ is a sufficiently large constant depending on ||Tbd(x)||
W 2− 1

p ,p
(Ω)

and sup
ωo∈Tk

||h̃([ωo+

αt],x)||Lp(Ω), but independent of ωo ∈ Tk is uniformly absorbing set for the family

{Uωo} ∈ V0.

To apply Theorem 3.4, we need to show existence of a compact absorbing set in V0.

However, the set B1 is not compact in V0. To obtain a compact absorbing set, consider

the new set

Babs :=
⋃

ωo∈Tk

⋃
τ∈R

Uωo(τ + 1,τ)B1 (5.23)

Proposition 4.2: The set Babs ⊂ V0 defined by equation (5.23) is a compact set in

V0.

Proof: To show this, we consider

T̂ (t,x) = (t − τ)
[
T (t,x)−T ∗(x)

]
(5.24)

where T ∗(x) is a solution of∆xT ∗(x) = 0, x ∈ Ω

T ∗(x′)|x′∈∂ Ω = Tbd(x′) ∈W 2− 1
p ,p(∂ Ω)

(5.25)

From elliptic regularity theory [20, 47, 53], it follows that T ∗(x)∈W 2,p(Ω). Obviously,
∂ T̂
∂ t = ∆xT̂ +(t − τ)∇xT (t,x) ·Ψ(x,D)T (t,x)−T ∗(x)− h̄(t,x)

T̂ (t = τ ,x) = 0, T̂ (t,x′)|x′∈∂ Ω = 0
(5.26)

Here, we use the fact that that T (t,x) is a solution of


∂tT (t,x)−∆xT (t,x) = −∇T (t,x) ·Ψ(x,D)T (t,x)+ h̄(t,x)

T (t = τ ,x) = Tτ(x) ∈ B1

T (t,x′)|x′∈∂ Ω = Tbd(x′) ∈W 2− 1
p ,p(∂ Ω)

(5.27)

Remark 4.3: Here, we impose additional requirements on on the right hand side of
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(5.27). namely h̄(t,x) ∈ L∞(Qτ ,η).

Let h∗(t,x) := (t − τ)∇xT (t,x)Ψ(x,D)T (t,x)− T ∗(x)− h̄(t,x) and Tτ(x) ∈ B1.

Then due to ||∇xT ||L∞(Qτ ,η ) ≤C, ||v(t,x)||L∞(Qτ ,η ) ≤C, we obtain h∗(t,x) ∈ L∞(Qτ ,η).

Consequently, for any q > p, since h̄(t,x) ∈ L∞(Qτ ,η) ⊂ Lq(Qτ ,η), we obtain that

h∗(t,x) ∈ Lq(Qτ ,η).

||T̂ (t,x)||W (1,2),q(Qτ ,η )
≤ Q2(||Tbd(x′)||

W 2− 1
q ,q

(∂ Ω)
+ ||Pbd(x′)||

W 3− 1
q ,q

(∂ Ω)
) (5.28)

where Q2 is a monotonicity function. Consequently the set Uωo(t,τ)B1 − T ∗(x) is

bounded in V0. Since T ∗(x) ∈ W 2,p(Ω) where p >> 1 and q > p, then Babs =

Uωo(t,τ)(t,τ)B1 is compact in V0. Here we use our new assumption h̄(t,x)∈L∞(Qη ,τ)

for the first time. Hence Proposition 4.3 is proved and as a consequence, we obtain that

the family of processes {Uωo(t,τ)|t ≥ τ} poseesses a uniform attractor in V0.

We denote by Aun
HT ⊂ V0 (hyperthermia) a uniform attractor for a family of pro-

cesses {Uωo(t,τ), t ≥ τ}, ωo ∈ Tk. In the next section, we will prove an estimate of the

Hausdorff dimension of Aun
HT in V0.

Definition 4.4: Let E be a Banach space, let Y ⊂ E be a compact subset of E, and

let d, ε ∈ R+. Let the sets {Bri(yi) be all coverings of Y for ri ≤ ε and yi ∈ Y . The

d-dimensional Hausdorff measure of Y , µ(Y ,d), is defined as

µ(Y ,d) = lim
ε→0+

inf
{Bri (yi)}

∑
i

rd
i = sup

ε→0+
inf

{Bri (yi)}
∑

i
rd

i (5.29)

Then the number

dimHaus(Y ,E) = inf{d | µ(Y ,d) = 0} (5.30)

is called the Hausdorff dimension of Y in E [63].

Note that Uωo(t,τ) : V0 → V0 generates the semigroup
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S(t) : V0 ×Tk → V0 ×Tk

S(t)(To(x),ωo) =
(
Uωo(t,0)To(x), [αt +ωo]

)
(5.31)

To(x) ∈ V0, ωo ∈ Tk, t ≥ 0

which in turn corresponds to the following autonomous dynamical system
∂tT (t,x) = ∆xT (t,x)−∇T (t,x) ·Ψ(x,D)T (t,x)+ h̄(t,x)

∂tω(t) = α

T (0,x) = To(x), ω(0) = ωo, T (t,x′)|x′∈∂ Ω = Tbd(x′)

(5.32)

where Tτ(x)∈V0, Tbd(x)∈W 2− 1
p ,p(∂ Ω), ωo ∈Tk, and Ψ(x,D) is defined as in (3.17),

or 
∂ty(t) = My(t), y(t)|t=0 = yo

y(t) :=
(
T (t,x),ω(t)

)
∈ V0 ×Tk

M(y(t)) := (∆xT (t,x)−∇T (t,x) ·Ψ(x,D)T (t,x)+ h̄(ω(t),x),α)

(5.33)

where ω(t) = [αt + ωo], ωo ∈ Tk is a transformation of ω0 on the torus Tk and

M : V0 ×Tk → V0 ×Tk. Since the process {Uωo(t,τ), t ≥ τ} defined by (5.19) is

uniformly compact, then due to Theorem 3.4 the semigroup S(t) defined by

S(t)(To(x),ωo) = (Uωo(t,0)To(x), [αt +ωo]) (5.34)

possesses a global attractor AHT in V0 ×Tk. Moreover, the projection Π1AHT is the

uniform attractor of the processes Uωo(t,τ) : V0 → V0 defined by Uωo(t,τ)Tτ(x) =

T (t,x), where T (t,x) is a solution of (5.18) and Π1 : V0 ×Tk → V0, Π1
(
ξ (x),ν

)
=

(ξ (x),0). We denote by Aun
HT = Π1AHT .

Obviously, dimHaus(Aun
HT ,L2(Ω))≤ dimHaus(AHT , L2(Ω)×Tk), where dimHaus(·, ·)

denotes the Hausdorff dimension as defined in Definition 4.5. Hence to obtain an esti-
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mate for dimHaus(Aun
HT ,L2(Ω)), it is sufficient to obtain an upper bound for dimHaus(AHT ,

L2(Ω)×Tk). Note that AHT ⊂ V0×Tk =W 2(1− 1
p ),p(Ω)×Tk ⊂ L2(Ω)×Tk. To this

end, we will assume that h̃ ∈C1 (Tk,L∞(Ω)), as well as using a well-known formula of

Constantin, Foias, and Temam [63].

Let Ed be any d-dimensional subspace in the Hilbert space L2(Ω)×Rk containing

some orthonormal family in L2(Ω)×Rk, z j ∈Ed , j = 1,2, . . . ,d, belonging to H2(Ω)×
Rk such that

(
zi(x),z j(x)

)
L2(Ω)×Rk = δi j, i, j = 1, . . . ,d, where z j(x) = (θ j(x),ν j) ∈

L2(Ω)×Rk and θ j(x)|∂ Ω = 0. Let y(t) =
(
T (t,x),ω(t)

)
where T (t,x) =Uωo(t,0)To(x)

is a solution of (5.18) and ω(t) = [αt +ωo], y(0) ∈ AHT . If

lim
t→∞

1
t

t∫
0

sup
Ed

d

∑
j=1

(
M′(y(τ))z j,z j

)
dτ < 0 (5.35)

holds, then due to the aforementioned formula of Constantin, Foias, and Temam,

dimHaus(AHT ,L2(Ω))≤ d (5.36)

By M′(y(t)), we denote a quasidifferential of the mapping M defined by (5.33)

M′(y(t))z(x) = ∆xθ (x)−∇xT (t,x) ·Ψ(x,D)θ (x)

−∇xθ (x) ·Ψ(x,D)T (t,x)+ h̃′
(
ω(t),x

)
ν

z(x) =
(
θ (x),ν

)
∈ L2(Ω)×Rk

h̃′
(
ω(t),x

)
:=
(

∂ h̃
∂ω1

, . . . , ∂ h̃
∂ωk

) (5.37)

with θ (x)|∂ Ω = 0. In (5.35), we take this quasidifferential of M at the point y(τ)∈AHT .
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Hence,(
M′(y(t))z(x),z(x))

=−||∇xθ (x)||2 −
(
∇xT (t,x) ·Ψ(x,D)θ (x),θ (x)

)
−
(
∇xθ (x) ·Ψ(x,D)T (t,x),θ (x)

)
+
∫

Ω

(
h̃′
(
ω(t),x

)
,ν
)

Rk
·θ (x)dx

=−||∇xθ (x)||2 +
(
T (t,x),Ψ(x,D)θ (x)∇xθ (x)

)
+
∫

Ω

(
h̃′
(
ω(t),x

)
,ν
)

Rk
·θ (x)dx

=−||∇xθ (x)||2 +
(
T (t,x),∇xP(t,x) ·θ (x)∇xθ (x)

)
−
(
T (t,x),γθ (x)∇xθ (x)

)
+
∫

Ω

(
h̃′
(
ω(t),x

)
,ν
)

Rk
·θ (x)dx

≤− 1
2
||∇xθ (x)||2

+C∗∗||θ (x)||2 +
∫

Ω
|h̃′
(
ω(t),x

)
|

1−δ

2 · |h̃′
(
ω(t),x

)
|

1+δ

2 · |ν | · |θ (x)|dx

≤− 1
2
||∇xθ (x)||2 +C∗∗||θ (x)||2 + b

2

∫
Ω
|h̃′(ω(t),x)|1−δ |θ (x)|2dx

+
|ν |2

Rk

2b

∫
Ω
|h̃′(ω(t),x)|1+δ dx (5.38)

where 0 < δ < 1, b is an arbitrary positive number, and C∗∗ is a constant dependant on

||Tbd(x′)|| but independent of ωo.

Let G1 := max
ω∈Tk

∫
Ω |h̃′(ω(t),x)|1+δ dx. Hence, for any z = (θ (x),ν) ∈ L2(Ω)×Rk

where θ (x)|x∈∂ Ω = 0.

(Az,z) := (A1θ , θ )+ (A2ν , ν) ≤

≤− 1
2
||∇xθ (x)||2 +C∗∗||θ (x)||2 + b

2

∫
Ω
|h̃′(ω(t),x)|1−δ |θ (x)|2dx+ |ν |2

Rk
G1

2b
(5.39)

where A j, j = 1,2, are quadratic forms defined by (A1θ ,θ ) = −1
2 ||∇xθ (x)||2 +C∗∗||θ (x)||2 + b

2
∫

Ω |h̃′(ω(t),x)|1−δ |θ (x)|2dx

(A2ν ,ν) = G1
2b (ν ,ν)

(5.40)
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Let us recall that our basic task is to estimate the expression

d

∑
j=1

(
M′(y(t))z j,z j

)
L2(Ω)×Rk

(5.41)

where z j = (θ j(x),νk) ∈ L2(Ω)×Rk with (zi,z j) = δi j, i, j = 1,2, . . . ,d.

Proposition 4.5 Let z j =
(
θ j(x),ν j

)
, j = 1,2, . . . ,d, be any orthonormal system in

L2(Ω)×Rk. Then there exists some integer k1 such that 0 ≤ k1 ≤ k, some orthonormal

(in L2(Ω)) vectors, θ̄1, . . . , θ̄d−k1 , and some orthonormal (in Rk) vectors, ν̄1, . . . , ν̄k1 ,

such that
d

∑
j=1

(Az j,z j) ≤
d−k1

∑
i=1

(A1θ̄i, θ̄i)+
k1

∑
m=1

(A2ν̄m, ν̄m) (5.42)

Proof: Let E ⊂ L2(Ω)×Rk be the subspace of the form

E = {β1θ1(x)+ · · ·+βdθd(x)}×Rk (5.43)

where β j ∈ R1, j = 1,2, . . . ,d. In E, there is a scalar product induced from L2(Ω)×
Rk. Consider the restriction of (Az,z) to E. Note that z j =

(
θ j(x),ν j

)
∈ E and is

orthonormal in E. Then

(
A(β1θ1 + · · ·+βdθd ,ν), (β1θ1 + · · ·+βdθd ,ν)

)
=A1(β1θ1 + · · ·+βdθd ,β1θ1 + · · ·+βdθd)+ (A2ν ,ν)

=
d

∑
i, j=1

(
A1θi(x),θ j(x)

)
·βiβ j +(A2ν ,ν)

=(Bβ ,β )+ (A1θ ,θ ) (5.44)

From (5.44), it follows that the operator A is block diagonal, that is,

A =

(
B 0

0 A2

)
(5.45)
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and it is known that A can be transformed into diagonal form

A =



λ1
. . . 0

λd

ν1

0 . . .

νk


(5.46)

by orthogonal transformations in L2(Ω) and Rk respectively. Let θ̄1(x), . . . , θ̄d(x) and

ν̄1, . . . , ν̄k be orthonormal in L2(Ω) and Rk eigenvectors of B and A2 respectively. Ob-

viously, orthonormal eigenvectors of A : L2(Ω)×Rk → L2(Ω)×Rk have the form

(θ̄i,0) and (0, ν̄m), i = 1, . . . ,d, m = 1, . . . ,k. We denote ζi(x) = (θ̄i,0), ζm = (0, ν̄m).

Then due to Courant’s principle [11], we have

d

∑
j=1

(
Az j,z j

)
≤

d

∑
j=1

(
Aζ j,ζ j

)
(5.47)

where {ζ j(x)}, j = 1, . . . ,d are eigenvectors of the matrix A in E corresponding to the

greater eigenvalues of the block operator A. Without loss of generality, we assume that

(due to the block structure A) eigenvectors of A are (θ̄1,0), . . . , (θ̄d−k1 ,0), (0, ν̄1), . . . ,

(0, ν̄k1), where 0 ≤ k1 ≤ k, k1 ∈ N.
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Corollary 4.6 There exist vectors orthonormal in L2(Ω) θ̄1, . . . , θ̄d−k1 , 0 ≤ k1 ≤ k,

such that

d

∑
j=1

(Az j,z j) ≤

≤
d−k1

∑
j=1

(
A1θ̄ j, θ̄ j

)
+

k1

∑
m=1

(
A2ν̄m, ν̄m

)
≤− 1

2

d−k1

∑
j=1

||∇xθ̄ j(x)||2 +C∗∗
d−k1

∑
j=1

||θ̄ j(x)||2

+
b
2

d−k1

∑
j=1

∫
Ω
|h′(ω(t),x)|1−δ |θ j(x)|2dx+

G1

2b
k1

≤− 1
2

d−k1

∑
j=1

||∇xθ̄ j(x)||2 +C∗∗
d−k1

∑
j=1

||θ̄ j(x)||2

+
b
2

∫
Ω
|h̃′(ω(t),x)|1−δ

d−k1

∑
j=1

|θ j(x)|2dx+
G1

2b
k

≤− 1
2

d−k1

∑
j=1

||∇xθ̄ j(x)||2 +C∗∗
d−k1

∑
j=1

||θ̄ j(x)||2

+
b
2

∫
Ω
|h̃′(ω(t),x)|1−δ

(d−k1

∑
j=1

|θ j(x)|2
)
dx+

G1

2b
k

≤− 1
4

d−k1

∑
j=1

||∇xθ̄ j(x)||2 −
1
4

d−k1

∑
j=1

||∇xθ̄ j(x)||2 +C∗∗
d−k1

∑
j=1

||θ̄ j(x)||2

+
b
2

∫
Ω
|h̃′(ω(t),x)|1−δ

ρ(x)dx+
G1

2b
k (5.48)

where ρ(x) :=
d−k1
∑

j=1
|θ j(x)|2. On the other hand,

∫
Ω
|h′(ω(t),x)|1−δ

ρ(x)dx =
∫

Ω

(1
ε
|h′(ω(t),x)|1−δ

)(
ερ(x)

)
dx (5.49)
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Hence,

∫
Ω
|h̃′(ω(t),x)|1−δ

ρ(x)dx ≤ n
n+ 2

∫
Ω

(
ερ(x)

)1+ 2
n
dx+

2
n+ 2

∫
Ω

(1
ε
|h̃′(ω(t),x)|1−δ

)1+ n
2
dx

≤ n
n+ 2

ε
1+ 2

n

∫
Ω

(
ρ(x)

)1+ 2
n dx+

2
n+ 2

(1
ε

)1+ n
2 G2 (5.50)

where G2 = max
ω∈Tk

∫
Ω |h̃′(ω(t),x)|(1−δ ) n+2

2 . Hence, due to Proposition 4.4,

d

∑
j=1

(
M′(y(τ))z j,z j

)
≤

≤− 1
4

d−k1

∑
j=1

||∇xθ j||2 +
G1

2b
k+

∫
Ω

C∗∗
ρ(x)dx− 1

4
C0

∫
Ω

(
ρ(x)

)1+ 2
n dx

+
bn

2(n+ 2)

∫
Ω

ε
n+2

n
(
ρ(x)

)1+ 2
n dx+

b
n+ 2

(1
ε

) n+2
2 G2

≤− 1
4

d−k1

∑
j=1

||∇xθ j||2 +
∫

Ω

((
− C0

4
+

bn
2(n+ 2)

ε
n+2

n
)(

ρ(x)
)1+ 2

n +C∗∗
ρ(x)

)
dx

+
G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2 (5.51)

where C0 is a constant due to the Lieb Thirring inequality,

∫
Ω

d−k1

∑
j=1

|∇xw j|2dx ≥C0

∫
Ω

(d−k1

∑
j=1

|w j|2
)1+ 2

n dx (5.52)

Choosing ε << 1 such that
nb

2(n+ 2)
ε

n+2
n =

C0

8
(5.53)
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Then

d

∑
j=1

(
M′(y(τ))z j,z j

)
≤

≤− 1
4

d−k1

∑
j=1

||∇xθ j||2 +
∫

Ω

(
− C0

8
(
ρ(x)

)1+ 2
n +C∗∗

ρ(x)
)

dx

+
G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2 (5.54)

By using the extremum test on the variable ξ = ρ(x) ≥ 0, it may be shown that the

integrand in (5.54) −C0
8

(
ρ(x)

)1+ 2
n +C∗∗ρ(x) obtains its maximum value at

ρ(x) = (2C∗∗)
n
2

( 4n
C0(n+ 2)

) n
2
= (2C∗∗)

n
2C4 (5.55)

Thus,

d

∑
j=1

(
M′(y(τ))z j,z j

)
≤

≤− 1
4

d−k1

∑
j=1

||∇xθ j||2 +
∫

Ω
(2C∗∗)

n
2C4dx+

G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2

≤− 1
4

d−k1

∑
j=1

||∇xθ j||2 +
G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2 + |Ω|(2C∗∗)

n
2C4

≤− λ1

4
(d − k1)+

G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2 + |Ω|(2C∗∗)

n
2C4

≤− λ1

4
(d − k)+

G1

2b
k+

b
n+ 2

(1
ε

) n+2
2 G2 + |Ω|(2C∗∗)

n
2C4

<0 (5.56)

This implies that

dimHaus AHT ≤ k+
|Ω|
λ1

(2C∗∗)
n
2C4 +

G1

2bλ1
k+

G2b
λ1(n+ 2)

(1
ε

) n+2
2 (5.57)
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Let us simplify this inequality. To this end, using (5.53),

ε
n+2

n =
C02(n+ 2)

8nb
(5.58)

ε =
(C0(n+ 2)

4n

) n
n+2
(1

b

) n
n+2

(5.59)

1
ε

=
( 4n

C0(n+ 2)

) n
n+2

b
n

n+2 (5.60)

(1
ε

) n+2
2 =

( 4n
C0(n+ 2)

) n
2
b

n
2 =C4b

n
2 (5.61)

and introducing a constant

C∗∗
4 = |Ω|C4 (5.62)

From (5.57), it follows that

dimHaus(AHT ,L2(Ω)×Rk) ≤ k+
C∗∗

4
λ1

+
G1

2bλ1
k+C4

G2b
n+2

2

λ1(n+ 2)
(5.63)

Remember that b is an arbitrary positive number. We choose b such that the last two

terms in (5.63) will be equal. This implies that

C4
G2b

n+2
2

λ1(n+ 2)
=

G1

2bλ1
k

b
n+4

2 =
G1(n+ 2)

2C4G2
k

b =
(G1(n+ 2)

2C4G2
k
) 2

n+4
(5.64)

Let C5 =
(G1

2

) n+2
n+4
(C4G2

n+2

) 2
n+4 . Substituting (5.64) into (5.63), we rewrite (5.63) as

dimHaus(AHT ,L2(Ω)×Rk) ≤ k+
C∗∗

4
λ1

+
2
λ1

C5k
n+2
n+4 (5.65)

Now we are in a position to formulate our main result.
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Theorem 4.7 Let Aun
HT be the uniform attractor of {Uωo(t,τ), t ≥ τ} defined by

(5.19). Then

dimHaus(A
un
HT ,L2(Ω))≤ k+

C∗∗
4

λ1
+

2
λ1

C5k
n+2
n+4 (5.66)

This provides the bound we were seeking to prove the existence of a uniformly

absorbing (uniformly attracting) set in order to apply Theorem 3.4 to our results. In

essence, we know that the asymptotic behaviour of our model will be well-behaved.
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Chapter 6: Conclusion

While clinical applications of HIFU have greatly increased in the past decade, mod-

elling and treatment planning for HIFU has lagged behind that of similar, more estab-

lished treatment modalities (e.g. radiation therapy modelling is an example where clin-

ical applications are guided by well-developed computer programs powered by mathe-

matical models). Although much work remains to be done in these areas, work towards

developing such mathematically guided programs and software for HIFU has started in

earnest. Currently, while there is no unanimity as to which models should be used, the

use of the models is unidirectional in the sense that a model of acoustic propagation

is used to derive the acoustic pressure; this pressure term is used to calculate the ul-

trasound heat source for the model for tissue temperature distribution; and finally, this

tissue temperature is used to calculate the thermal damage.

This view of the relation between the models is a simplification of the actual vari-

ation in tissue properties. It is known that the tissue parameters for both the acoustic

and heat equations change in damaged tissue and, similarly, these tissue parameters’

values will change under high pressures and temperatures [26, 27]. This suggests that a

more accurate model would consider interrelations between the three equations rather

than a simple unidirectional handing off of information to the equation preceding it. It

is uncertain at this time how significant these dependencies are, as parameter values for

biological tissues under even typical conditions are difficult to obtain [5].

There are also some questions regarding the accuracy of the thermal dose and ther-

mal damage models. The thermal dose model in particular was derived for temperatures

between 38◦C and 46◦C, but in HIFU treatments, the temperatures often rise as high as

70◦C. It is generally considered that the thermal dose model remains accurate in this

wider range [ref], but the Arrhenius model that underlies the derivation of both the ther-

mal dose and thermal damage models is known to only be accurate in small temperature

ranges for biological processes [2], which is the reason the value of R changes at 43◦C

[39]. No evidence has been provided that the parameters of the Arrhenius model does

not change above 46C and a change in the parameters for the thermal damage model at
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50C compared to the parameter values around 40C [50] suggest that this change should

happen. Either R in the thermal dose equation may have more than two values to be

accurate in the range of temperatures for HIFU or a new equation may be derived for a

model like the Arrhenius model that is accurate in a wider range of temperatures.

As well, while heat is the dominant effect on tissue in HIFU treatments, acoustic

pressure still has an effect on tissue, which is relevant in some applications [ref]. For

example, certain frequencies and intensities of HIFU results in the formation of bubbles

in bodily fluids like blood (cavitation), which have a variety of effects on both the body

and the propagation of the ultrasound itself [48]. Some of these effects are desirable

for certain applications and some can cause issues with other applications. However,

modelling of these effects is not well defined and in some cases are too imprecise to give

the necessary information, such as when attempting to temporarily open the blood-brain

barrier in drug delivery [44].

In chapter 3, we considered a mathematical model that attempts to accurately model

the effects of HIFU on biological tissue, and established existence and uniqueness of

weak solutions to this model. We consider this to be the first step in the mathematical

modelling continuum, and subsequent work will include the numerical exploration of

the problem, which we consider to be an equally important step, since: (a) it can provide

guidance as to where further development and refinement of mathematical tools and

techniques (analytical and/or computational) are required, (b) it can identify shortcom-

ings in existing models, and (c) it can shed light on the interplay of various subprocesses

and therefore might provide important insight into a particular application.

Finally, in chapter 5, we study the asymptotic behaviour of dynamical systems which

is a fundamental question in modern applied mathematics. One way to tackle this prob-

lem for dissipative dynamical systems is to consider its global attractors. A basic ques-

tion then, is to study the existence of a global attractor, and once this is established, it

is natural to study important properties of the global attractor, such as its dimension,

dependence on parameters, regularity of the attractor etc.

In chapter 4, we answer many of these questions for a mathematical model developed

to predict the interaction of HIFU with biological tissue. The model takes into consider-
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ation both the convective and diffusive transport of heat, together with inhomogeneous

initial and boundary conditions. One of the objectives of this chapter was to build on

our earlier work in chapter 3 (which established well-posedness of the system of cou-

pled partial differential equations that constitute our model), and prove the existence of

a uniform attractor to this non-autonomous system of PDEs. In the work presented in

Chapter 4, we study the long-time dynamics of solutions to our model equations, and

establish the existence of a non-autonomous attractor. This puts the theoretical basis of

our mathematical model on a firm foundation, and completes what we consider to be a

fundamental first step in a truly applied mathematical approach to real-world problems.

The second (equally important) step in our modelling efforts (which will be the fo-

cus of future work) is the thorough numerical exploration of the HIFU problem and

comparison with experimental data. This, we consider to be an equally important step

for an applied mathematician, since: (a) it often highlights shortcomings of the model,

where crucial underlying mechanisms (driving the underlying problem studied) may

have been neglected. This, in turn, often leads to further developments and refine-

ment of mathematical tools and techniques that result in a mathematical framework

that (to a great extent) closely mirrors the physical problem it purports to model, (b)

This application of "Ockham’s razor" (which is a quintessentially applied mathemati-

cal approach to study real world problems) can often draw attention to shortcomings in

existing models, and when appropriately applied, can lead to a model that provides a

unique in silico approach to studying applications of HIFU (devoid of the ethical ques-

tions and challenges that face experimental, biomedical scientists when carrying out in

vivo experiments). (c) Finally, a well developed mathematical model that provides a

reliable framework to study a biomedical problem, can be used to generate hypotheses

which can subsequently be investigated experimentally in vivo. In this manner, a good

mathematical model can throw light on the interplay of various subprocesses, and lead

to important insights into a particular therapeutic intervention or treatment strategy that

can be confirmed by in vivo studies.

As evident from the enormous and growing interest in HIFU (both experimental and

theoretical) over the past two decades, this novel, non-invasive, therapeutic modality
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has emerged as an important, novel technology, with a myriad of potential applications.

HIFU provides a non-invasive, non-ionizing, therapy that can be used to thermally ab-

late tissue at a target location, while minimally affecting the surrounding tissue. The

use of mathematical modelling to predict the ef-fects of HIFU for thermal ablation has

facilitated its use for certain disorders such as osteoid osteomas, essential tremors and

prostate tumour ablation. The development of mathematical models for soft tissue le-

sions, cavitation and disruption of the blood brain barrier (to facilitate the delivery of

high molecular drugs to treat brain tumours), suggest significant opportunities for math-

ematics to contribute to the development of HIFU as the "gold standard" for cancer

therapy.

While there remain numerous unsolved problems in HIFU modelling and the field

has not reached the point of predictive modelling and treatment planning seen in radi-

ation therapy, these solutions are not out of reach. Mathematical models can provide a

better understanding of the potential applications of HIFU and a better preparation for

the differences in individual patients. It is possible and desirable to reach the point of

treatment planning of HIFU as reached by radiation therapy in the present day.
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