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Abstract 

Covid-19 has changed the world in terms of business, public and many other fields. Millions of 

livelihoods have been affected by the pandemic. Amidst the upheaval, work from home and 

restrictions on indoor gatherings have played a significant role in flattening the curve.  Even after 

enforcing restrictions, numbers are still on the rise. Various covid-19 tracing applications have 

been designed to keep track of positive cases. There is an increased need of tracking positive 

covid cases to limit the spread of the virus to ordinary people. The continents are trying to flatten 

the curve and maintain a good economic condition to attain normalcy in the season of chaos. 

Technology has proved helpful in times of pandemics. Now we have IoT devices and advanced 

tech, including cameras, Wi-Fi, Bluetooth, RFID etc., which can be used for tracking positive 

patients. This tracking should be made efficient without exploiting the privacy of users.  

Vaccination research along with proper tracking seems to be a failsafe solution for evading covid-

19 after effects. Amidst all these available strategies, Indoor localization seems to be one of the 

required fields of research.  This thesis dives into establishing a machine learning framework that 

can be used across all kinds of IoT (Internet of Things) systems and WSNs (Wireless sensor 

networks). Distance estimation based on fingerprint has been a widely researched field for indoor 

localization algorithms. Several traditional approaches have been tried out , including trilateration, 

triangulation which needs more testing parameters and renders them complex. Fingerprinting 

techniques seems to be helpful. Even though various fingerprinting techniques have been tried 

out, we do not have a generic framework that can be used for research on fingerprinting. The 

system has been implemented as a part of cloud remote monitoring solutions and an accurate 

blend of ensemble bagging and boosting methods for making an accurate distance estimation 

based on the strength of RSSI fingerprints. The framework hopes to serve as a base platform for 

all kinds of indoor localization research. It encompasses a BLE based system that acquires data 

from leak detection systems, relays it to the cloud via BLE gateway, accumulates data on a cloud 

database and is passed as alert notifications to users via the use of cloud designed app. At the 

other end, the database aids in the creation of a location dataset for machine learning which is 

used for training the model. A regression machine learning model is deployed for the prediction 

of distances based on fingerprint strength which can be utilized for various fingerprint algorithms. 

A classification machine learning model is deployed for fingerprint intensity classification to 

evaluate fingerprint levels in different environments. 
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Chapter 1  

Introduction 

1.1 Problem Statement 

Indoor localization involves the retrieval of a device or a user’s location in all kinds of indoor environments. 

It is almost a decade since the introduction of smartphones, IoT devices etc. Tracking and localization 

enabled in these domains have has led to the design of various applications to improve route navigation 

and advertisements. These applications range from museums gallery navigation to police and firefighting 

systems. Innovative architectures have been developed to aid in healthcare, building management and 

surveillance sectors. Nowadays, various heterogeneous data sources have made information available, 

easy and reliable. Big data and machine learning has become the common buzzword in software industry. 

Emerging technologies like Wi-Fi, ZigBee, UWB, Bluetooth, Bluetooth Smart are indivisible parts of these 

IoT networks. Localization is classified into three major categories - Device-based localization (DBL), 

Monitor based localization and Proximity detection. Device-based localization relies on reference or 

anchor nodes to narrow down a location. This kind of localization can be used for navigation, mostly in 

the case of structures like museums, art galleries, tech expo etc. The second category, i.e., monitor-

based localization, is like the first one in the way that it uses reference nodes. However, this one is used 

for tracking assets and provision of services based on tracking.  

Proximity categorization of the localization is a reliable and affordable solution using estimation of the 

distance between the user and the area of interest. Traditional approaches have been effective in the 

estimation of distances for short-range based on reference points. Satellite-based approaches are meant 

for outdoors and fail to provide an accurate estimation of distances in indoor environments. Contact 

tracing applications have become essential for the prevention of the spread of Covid-19 (Coronavirus 

Disease (COVID-19) Situation Reports,2019). Efforts need to be made in this arena because manual 

testing takes time and puts the people performing this testing at risk. Bluetooth Low Energy or BLE signals 

are readily available on most of smartphones which can be used for estimation of position as 

smartphones are almost everywhere. But again, there is a significant limitation of this approach – not all 

people have smartphones with them every time. This reduces the capacity of tracing positive cases via 

the use of BLE tracing applications. However, smartphones, laptops and other smart devices are 

connected to the internet all the time. So, we can use Wi-Fi or BLE or a mixed approach that can estimate 

position efficiently, thereby improving the indoor localization approach. But before we reach there, we 
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need a common base platform for research. The approach discussed in this thesis is aimed at the design 

of this framework which can be further used for all kinds of indoor localization research. 

1.2 Research Objectives 

Determining the location and knowledge of the user surroundings have become essential factors for 

navigation and the design of intelligent indoor structures. There is no doubt that GPS has come out on 

top for navigation and localization. It has become a vital technology in our daily lives. Since its introduction 

in 1973 by the US Department of Defence, GPS gives the position of any object globally relative to earth. 

Satellite deployment has become affordable and reliable with the exponential progress in the design of 

rockets. GPS lets us know our current position as well as our past locations. In contrast, it’s an excellent 

tool for military, commercial applications, driverless cars, vehicle tracking systems. The accuracy of GPS 

signals decreases in urban areas where signals are weak due to various EMI, RF interferences, obstacles 

etc. Emerging technologies, including Bluetooth, RF, Ultrasound, Wi-Fi etc., have given rise to IoT 

connectivity. The concept of the interconnectivity of people, devices and technologies has transformed 

the world of localization.  

Deterministic approaches like trilateration and triangulation have the ability to localize user/device with 

accurate distance estimations, but they need complex equipment like the angle of arrival measurements, 

base stations making the measurement process cumbersome. Region-based estimations use a relatively 

more straightforward mechanism via the use of signal strength maps or fingerprint databases with spatial 

context for accurate distance estimations. Offline data is used for training machine learning models which 

learn and tries to predict the distance based on supervised learning algorithms. The online phase uses 

trained models for real-time prediction. With the pandemic season at its prime phase, we need better 

frameworks for testing positive cases as well as ensure safety amidst the vaccination phase. Indoor 

localization approaches based on machine learning algorithms have achieved accurate distance 

estimations. Approaches like Triangulation and Trilateration have played an important role in location 

determination and asset tracking. These approaches need complex setup and the equipment cost is high 

which makes them difficult to use in several cases where fingerprinting solution could prove useful. 

Fingerprinting solutions do not need complex equipment, but they suffer from issue of multipath fading. 

Machine learning combined with fingerprinting solution is a useful approach to evade multipath fading. 

There is a need for a base platform or a generic machine learning framework for indoor localization 

research. A reliable approach that ingests data from sources incorporates spatial context, and a machine 

learning pipeline might lead us to a new perspective of seeing the problem of indoor localization. 

Deployment of such a framework can be further used for contact tracing apps without exploiting the 
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privacy of users. The aim of the thesis work is to reduce the complexity factor and provide a cheap and 

open-source platform for indoor localization. 

1.3 Contributions 

I. Dataset generation – Major part of any machine learning use case involves dataset generation 

and model generation. This framework has been used for creation of a new location dataset. 

Reference datasets have been used in the past, but when it comes to the domain of indoor 

localization, datasets might vary from place to place due to interferences involved. The framework 

introduced in the thesis solves these issues: 

a. Reduces efforts in dataset generation for any kind of fingerprints used for indoor 

localization. 

b. The use of any standard reference dataset is also supported; in fact, one of the major 

datasets has been used for the evaluation of the framework. 

II. Novel Water Leak Detection Systems for acquisition of RSSI Fingerprints (Witham et al., 2019) – 

A new data ingestion pipeline via use of cloud approach has been designed for acquisition of 

sensor data including RSSI fingerprints and used for creation of a location dataset with labelled 

outputs generated using dataset generation algorithm. This dataset can be used for further 

analysis of water leakages for indoors.  

III. Model generation – The machine learning pipeline introduced covers the use of supervised 

learning algorithms. The algorithms can vary from domain and environmental conditions. For 

example, some algorithms, including decision trees, K-nearest neighbours and cat-boost, have 

been covered. 

IV. Regression plus Classification – The regression phase can be used for distance estimation using 

a generalized distance metric (Minkowski’s distance – Euclidean and Manhattan distance). The 

classification phase has been introduced to cover fingerprint intensity classification. This intensity 

classification has been introduced based on some standard scales. The fingerprint used in the 

thesis is RSSI (Received Signal Strength Indicator), but other fingerprints can be used with the 

proposed framework. 

V. Low-code framework – With the use of a low code framework, any research candidate with 

minimal prior experience in python or machine learning can easily use it. The code for both dataset 

generation and model generation will be open-sourced for use. 
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1.4  Thesis Organization 

The overall structure of thesis is composed of six chapters. The first chapter introduces the proposal of 

the framework with introduction of problem statement, research objectives and major contributions. The 

second chapter covers the Bluetooth architectures and indoor localization using triangulation, 

trilateration, and fingerprinting. The chapter mentions advantages and disadvantages of approaches 

used. The third chapter comprises of literature survey conducted on indoor localization via use of machine 

learning algorithms. A brief description on classification and regression is done for evaluation using 

several fingerprints and supervised learning algorithms. The fourth chapter starts with cloud 

implementation for data acquisition and moves onto dataset generation and model generation. A 

reference dataset along with transformed dataset are run through dataset generation and then through 

model generation. The fifth chapter presents the evaluations of the model generated. Different plots are 

used for evaluation of classification and regression phase. The final chapter concludes the thesis with a 

future scope. 
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Chapter 2 

Bluetooth and Indoor Localization 

2.1 Introduction 

This chapter summarises the studies on Bluetooth and indoor localization. The architecture of Bluetooth 

and Bluetooth Low Energy (BLE) has been discussed in detail with a focus on profiles, services and 

characteristics. Wireless sensor networks (WSNs) have become crucial for our day to day lives. Emerging 

as an active research area, WSNs have found their practical roots in energy consumption, robustness, 

localization, sensor locations, routing algorithms and so on. Composed of a finite set of sensor devices 

distributed indoors and outdoors environment, these networks aim is to acquire valuable environmental 

insights and relay the information further for data analysis which can drive forecasting and alert systems. 

Low power, low data rate and reliable communication nodes make up WSNs  Bluetooth and Wi-Fi are 

two of the major communication protocols which can be utilized for WSNs. This chapter throws a light on 

these major protocols with a focused analysis on BLE, which consumes less power. A review of some of 

the existing indoor localization approaches has been done to draft out a comparison on limitations and 

advantages of traditional as well as fingerprinting approaches. 

 

2.2 Bluetooth 

Bluetooth has been one of the significant breakthroughs of the 20th century. This widely used short-range 

wireless communication protocol was first introduced in the 1990s as an alternative to RS-232 cable. The 

protocol in its abstracted form is being used prominently in mobile phones, portable computers, sensors, 

headsets etc. It was developed as an IEEE standard (IEEE 802.15.1) which is now maintained by a 

Special Interest Group or SIG.  Bluetooth is now available in six versions, the latest one being Bluetooth 

5.0 is commonly used in wireless hardware, audio hardware as well as game controllers, keyboards, 

mice. This version is revolutionizing the existing state of the art of IoT with almost twice the speed, four 

times the range and eight-time the broadcasting of the message capacity (Bloem and Schiphorst, 2011) 

. Cost efficiency, low power wireless and easy deployment have become the holy grail of IoT. Following 

represents the original architecture of Bluetooth - 
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Figure 2-1. Bluetooth architecture IEEE 802.15.1 

 
The architecture delineates a radio interface and a reliable communication stack. The interface and stack 

allow all devices to search for each other and advertise the services. The devices use the 2.4 GHz ISM 

band for Bluetooth communication. The physical radio layer modulates/demodulates data for 

transmission/reception over 2.4 GHz band radio frequencies and illustrates the transceiver's physical 

characteristics. Moving up, we have baseband layers that define the framing, timing, packets and flow 

control on the link. The link manager layer is responsible for authentication, security, QoS, transmission 

scheduling and power consumption. The Control layer provides a coherent interface to hardware 

manufactured by various other manufacturers. This is ensured via a command interface to baseband 

levels and link managers. The L2CAP or Logic Link Control Adaptation Protocol handles the connection-

less services to upper layers, including protocol multiplexing, Segmentation, QoS support and 

reassembly of the protocol data units from upper levels.  RFCOMM provisions emulation over a serial 

port which facilitates existing applications operating on serial communications. HCI (Host Controller 

Interface) which is not visible in the current architecture diagram, presents an interface between the 

device driver and the software aspect of the system. SDP (Service Discovery Protocol) is crucial for 

provisioning the interface to the link controller, thereby granting interoperability between various 

Bluetooth devices. 
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2.3 Bluetooth Low Energy 

A low power wireless technology is operating in the 2.4 GHz ISM band, targeting applications with low 

power and the ability to run on batteries for years. This technology was introduced in Bluetooth 4.0 in 

2010 (Afaneh,2016). BLE has found its profound use in sensor data, low bandwidth applications and 

controlling of devices. The connections established using BLE are quicker than classic Bluetooth. The 

major version update is Bluetooth 5 (Bluetooth Smart), which the prominent version over all previous BLE 

standards. This version offers data rates in four different transmission ranges - 125 kbps, 500 kbps, 

1Mbps and 2 Mbps. BLE uses a GFSK modulation scheme hence allowing max data throughput of 

1Mbps. BLE makes cell operated applications like fitness wearables quite feasible. In January 2020, 

Bluetooth SIG introduced version 5.2, which brought a significant change in LE Audio. ISOC, LEPC and 

EATT are three significant features of Bluetooth 5.2. It is backwards compatible, which means you can 

continue using devices using Bluetooth 4.2 with Bluetooth 5.0. Bluetooth has two main advantages – low 

cost and low power consumption, which makes it ideal for any kind of low power device for daily use. It 

uses almost a fifth of the power of Wi-Fi. When it comes to positioning APIs, Bluetooth becomes an 

alternative to Wi-Fi API for indoor positioning. The IoT market has been revolutionized because of 

Bluetooth. With Wi-Fi having too many parameters, the process to localize devices for indoor positioning 

becomes complex. Time synchronization is one crucial feature missing from Bluetooth, which renders 

time-based triangulation methods difficult in terms of implementation. The second major issue is the 

occasional use of directional antennas being a low footprint device without which angle measurement 

becomes challenging. BLE or Bluetooth Low energy (Gomez, Oller Bosch and Paradells, 2012) – a 

power-friendly version introduced for devices that needed to be run off a tiny cell for long periods. BLE 

became an essential standard for low power sensors, which would be used as wearable tech. 

Smartwatches, heartbeat monitors, tracking ids, etc., are some of the commonly used devices which 

make use of BLE. This version supports central operating systems including apple OS, windows 8, 

GNU/Linux, Android 4.3+ etc. 
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Figure 2-2. Bluetooth Low Energy Architecture 

 
The architecture of BLE follows pretty much like Bluetooth architecture, including the physical layer, link 

layer, L2CAP layer. The physical layer is here again used for modulation and demodulation of data over 

radio interface operating in frequencies specified by 2.4 GHz ISM band. Link-layer abstracts higher levels 

via the use of HCI. Timing requirements and management of radio state are also handled by this layer. 

HCI acts as a standard protocol allowing the host layer for communication with the controller layer. L2CAP 

layer is used for protocol multiplexing accepting various protocols from upper layers and relaying them 

to lower layers. There is the inclusion of a Direct Test Mode, which tests the radio operation in terms of 

transmission power, receiver sensitivity etc. 

2.3.1 GAP (Generic Access Profile) 

GAP makes the device accessible to the outside world. It handles the communication between two 

devices and controls connections and advertising. Two types of roles are defined by GAP - Peripherals 

and Central devices. Peripheral devices are low powered, resources constrained devices like a BLE tag, 

smartwatch etc. Central devices are medium powered devices like a phone or a gateway with better 

processing power and more memory. 
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2.3.2 GATT(Generic Attribute Profile) 

GATT makes use of an Attribute Protocol for storing services, characteristics and related data via the use 

of a LUT(Lookup Table) with 16-bit identifiers. GATT implementation usually comes after GAP; once the 

two devices have successfully established communication, GATT will use services and characteristics to 

define this communication for transferring data back and forth between two devices. Only one peripheral 

device is allowed to connect with the one central device following exclusivity. The other devices cannot 

connect once the peripheral device is connected to the central device. The service/Client relationship is 

the major part of GATT. The GATT server or the peripheral device holds the lookup data and definitions 

for services and characteristics. GATT client sends a request and receives a response from this server. 

A connection interval is specified by the peripheral to a central device, during which the central device 

will keep reconnecting to verify any new data availability (Townsend, 2020). 

  

 

Figure 2-3. GATT implementation 

 

2.3.3 Profiles, Characteristics and Services 

Profiles are pre-defined collections of designer compiled services. GNSS profile is one of the profiles 

prepared by Car Working Group, which specifies how a GNSS client, including a  laptop and phone, can 

run a  navigation stack and obtain positioning data from the server without the presence of a GPS receiver 

(National Marine Electronics Association - NMEA, no date). Characteristics are used for encapsulation 

of a single datapoint and have predefined 16 bit or 128 bit UUID. These present the lowest level of GATT 

transactions that interacts with the BLE peripheral. Services contain one or more characteristics and 

identify themselves from each other via the use of 128-bit identifiers.  

 

2.4 Wireless Fidelity (Wi-Fi) 

Wi-Fi is a prevalent wireless networking technology operating in the RF bands IEEE 802.11b, 

IEEE802.11 n, IEEE802.11 g in 2.5 GHz and IEEE802.11 a in 5Ghz range (Crow et al., 1997). Wi-Fi is 
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widely distributed in all indoor environments making it the most reliable means of indoor localization. 

Almost all devices, including cameras, tablets, cell phones, smart devices and laptops, use Wi-Fi for 

communication and for operation. It's cheap, affordable and widely available. Wi-Fi localization uses RSSI 

based fingerprinting approach. The current Wi-Fi system supports a data rate of 54 Mbps with an indoor 

coverage of 100 feet.  IEEE 802.11 family operates over a larger 20 MHz bandwidth. Below is the 

technical comparison of three major Wi-Fi standards. 

Feature 802.11a/g 802.11 b 

Channel Bandwidth 20 MHz 25 MHz 

Duplexity Half-duplex Half-duplex 

Modulation BPSK, QPSK, 16/64 

QAM 

QPSK 

Application Wireless LAN Wireless LAN 

Bandwidth 2.7 bps/Hz 0.44 bps/Hz 

Access protocol CSMA/CA CSMA/CA 

Encryption RC4m  RC4 

Table 2-1. Comparison of major Wi-Fi standards. 

 

IEEE 802.11 uses CSMA/CA or Carrier Sense Multiple Access / Collision Avoidance and are half-duplex 

where transmission and reception are on the same channels. 802.11 has included a distributed control 

function to facilitate transmission only in clear channels to avoid collision detection.  Security has been a 

significant concern on wireless technologies. 802.11 family has an RC4 based 40/104-bit encryption with 

a static key. Wi-Fi operates on radio signals with transmitters responsible for transmitting it over a 

modulated channel with receiver antennas receiving it. Access points (APs) are a significant source of 

transmission and reception of radio waves. Wi-Fi cards are included in devices; these can be internal or 

external; a USB antenna attachment is also available. A PCMCIA card is included in the laptop, which 

connects to access points for data. Hotspots are created by access point installation and connection to 

the internet. Hotspots are available in cafes, hotels, book stores, university areas, etc., to allow 
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accessibility to the internet. ISPs (Internet Service Providers) are the major suppliers of Wi-Fi 

networks(Bloem and Schiphorst, 2011). 

 

Figure 2-4. Wi-Fi generic architecture 

 
The architecture is composed of the physical layer, MAC layer, Application/Transport/Internet layer. 

Physical layers perform encoding/decoding of signals, includes the transmission medium specification, 

handles bit transmission/reception. MAC layer assembles data frame and error detection and address at 

the transmission end and disassembles data frame with error detection and address recognition at the 

reception end. The link-layer provides an interface to higher layers and is responsible for flow and error 

control. 

2.5 Receiver Signal Strength 

Receiver Signal Strength Indication or RSSI – a radio signal strength is used to infer the mobile node's 

location. Three or more points in three-dimensional space are used to predict the exact location of the 

node. RSSI is used for determining the optimal radio energy of a link and measured in Decibels or dB. 

Received signal strength is a very economical factor for Location-Based Services due to its vast presence 

in almost all wireless devices. The core stage of RSSI based positioning relies on reference radio maps 

with point measurements. RSSI based positioning is done in two stages - an online and an offline stage. 

The offline stage mainly deals with data collection, whereas the online stage performs online estimation. 

A database is it using data collected in the offline stage, including spatial aspects of the indoor 

environment. A radio map can be collected using some known algorithms and stored online/offline in a 

relational database. The radio-map built consists of (x, y and z) location coordinates of each point of an 
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indoor structure. The approach of RSSI based positioning makes several assumptions. Some of them 

are mentioned below -   

• Reference points - Visibility is enough even with variations to identify them uniquely. 

• Transmitters and receivers - transmission is assumed to be the constant signal strength, 

and radio receiver characteristics are similar for both locating and mapping devices. 

• Environment - a significant contribution is a factor of the environment that would not change 

when the radio map is built. 

RSSI fingerprinting is further described in detail in the fingerprinting section. 

2.5.1 RSSI Ranging 

The relationship between transmitted power and received power of wireless signals and distance 

between the nodes is given by the following equation (Adewumi, Djouani and Kurien, 2013) – 

 𝐏𝐫 = 𝐏𝐭 .  
 𝐆𝐫 𝐆𝐭

(𝟒 𝛑 𝐝 ∕𝛌)𝟐  …….. (Eq. 1-1) 

Taking logarithms and multiplying by 10 on both sides on eq. (1-1)  

𝟏𝟎 𝐥𝐠 𝐏𝐫 = 𝟏𝟎 𝐥𝐠 𝐏𝐭 − 𝟏𝟎 𝐧 𝐥𝐠 𝐝….. (Eq. 1-2) 

Where; 

Pt refers to the transmitted power of the wireless signals. 

Pr refers to the received power of the wireless signals. 

Gt and Gr refers to antenna gain of transmitter and receiver. 

λ   refers to the wavelength of the signal. 

d denotes the distance between the sending nodes and reception node. 

n refers to the transmission factor, and its value depends on the propagation environment (Arthi and 

Lochana, 2019). 

After conversion, eq. (2) describes the power in dBm or decibel-milliwatts. 

𝐏𝐫(𝐝𝐁𝐦) = 𝐀 − 𝟏𝟎𝐧 𝐥𝐠 𝐝 …… (Eq. 1-3) 
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2.6 Indoor Localization 

Positioning and localization have always been significant areas of research. A big change was brought 

with the rise in Global Navigation Satellite Systems, which led to the birth of American based Global 

Positioning Systems and Russian GLONASS in the 1980s and 1990s. GNSS is primarily concerned with 

position accuracy with millimetres and centimetres positions and access to these accurate locations to 

users with relevant apparatus. Initially born with military objectives, GNSS became commercially 

available with the advent of smartphones. The increased popularity of smartphones led to application 

development making use of GNSS services. As more people started using location-based services, 

including google APIs for navigation, context-aware recommendation systems,  etc., accuracy became a 

crucial factor in the localization problem. A reliable means of real-time localization was obtained using 

GNSS applications, but localization accuracy drops inside indoor structures due to various factors despite 

its success on outdoor localization. GNSS systems are affected by signal blockage, multipath 

propagation issues, Non - line of sight problems. This decreased faith of GNSS to be used indoors. 

As homo sapiens spent more of their time indoors, the use of GNSS systems for indoor 

localization was discouraged. Indoor localization is the problem of dealing with location, position and 

navigation. Location is a higher-level abstract of position, for e.g. location of some restaurant in some 

mall. The position usually refers to standard coordinates in the form of latitude and longitude. Navigation 

defines the logic of traversing from point A to point B. The major limitation of using current technologies 

lies in inability to estimate count of people indoors. The problem is attributed to noise induced in form of 

interference in indoor positioning and localization. Various algorithms have been implemented for 

proximity detection. Location-based services refer to applications that make use of location APIs for 

services like navigation, tracking, marketing, data acquisition etc. The problem with Global Positioning 

System (GPS) is that power of the signal goes on decreasing with the distance, which makes it difficult 

to be used for indoor localization. Wi-Fi access points are an expensive way of indoor localization, so; 

we try to perform a strategic search through BLE based indoor localization algorithms. The environment 

model includes several beacons/mesh nodes and an agent. The test space is treated as a flat space with 

background interferences from floors, signals, walls etc. Indoor positioning algorithms are classified into 

two major types – one with the need for prior measurements and another without the need for prior 

measurements. The former classification includes algorithms that use proximity, centroid, weighted-

centroid, trilateration, and the latter involves fingerprinting-based methods. 
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2.6.1  Localization techniques 

1. Angle of Arrival 

The direction of the radiofrequency wave is determined by the angle of arrival when propagation of wave 

encounters several antennas, which is measured by time difference when the wave propagates through 

each antenna. This is commonly known as The Time Difference of Arrival and is used for the estimation 

of the location of wireless devices. 

2. Time of Arrival 

Figure. 2-5 denotes two signals arriving at the antennas, where some delay exists in the time arrival of 

both the signals at the antennas, another measurement method. The distance can be easily calculated 

based on the speed of these signals, given their time of arrival. It is difficult to measure this time unless 

some form of synchronization is done between the transmitters and receiver’s clock. This tricky part of 

time calculation increases complexity in its implementation.  

3. Distance-based 

Using a path loss model of RSS, estimation of position is done. This approach needs a mean accuracy 

of 4 meters and emitters position (Bose and Foh, 2007). 

4. Proximity-based 

According to GSM, smartphones are assigned a cell for connection and accuracy is determined by 

distance calculation between the cells. 

5. Inertial based 

Inertial sensors can be used for data acquisition. The data contains information relating to the orientation 

and speed of sensors. This data proves to be useful for localization. Lot of calibration and resetting 

integrator is critical to the implementation of inertial based localization systems. 

VI. Fingerprinting 

A widely used approach without the need of base stations and complicated equipment for estimation of 

position. A reference radio map is built using RSS, which relates values with the positions.  

  

2.7 Indoor localization approaches 

The estimation methods make use of distance estimation to various Access Points (Aps). The estimation 

methods which use signal characteristics to determine location are referred to as fingerprinting methods.  

• Triangulation 
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The name suggests that this approach somehow relies on the triangle’s geometrical calculations. The 

triangulation approach considers two receivers, with one source emitting a signal towards 

them(Hartley and Sturm, 1997). The angle of arrival is calculated for each signal arriving at the 

receiver as depicted in the following figure-                  

 

Figure 2-5. Experimental setup for Triangulation 

  

Angles A and B denote the Angles of Arrivals for Receiver 1 a, and two respectively,      L denotes 

the length between the receiver and D can be formulated from the following equation – 

𝐃 =  𝐋
𝐒𝐢𝐧 𝐀+𝐒𝐢𝐧 𝐁

𝐒𝐢𝐧(𝐀+𝐁)
 …….. (Eq. 1-4) 

• Trilateration 

One of the prominently used methods for position estimation, commonly used in navigation and GPS. 

For these, three or more Access points or Aps are needed. RSSI calculation is done between the 

device and Access points for considering the radius from AP on which device might be located. The 

estimation of device or source positioning is done by the intersection of three radii of spheres resulting 

from Aps. It is also referred to as the Line-of-sight measurement method; the obstacles might affect 

the RSSI and time of propagation(Sturgess and Carey, 1987). This Line-of-sight method is sensitive 

to disturbances, especially at large distances. Consider an assumption of noise introduction in the 

model around 3dBm, which results in the ranging uncertainty of the same order of magnitude as the 

source distance. As the distance increases, this method could become unreliable for measurement. 

Floorplan construction based on this method is unsuitable. 
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Figure 2-6. Estimation of position using Trilateration 

 

• Odometry 

Estimation of the motion is possible using odometry and, this is all possible with smartphone sensors 

consisting of the accelerometer for detection of forwarding motion. The magnetometer gives the 

current heading; over time, odometry cannot be relied on as it is susceptible to drift. However, when 

combined with the fingerprinting methods, odometry can provide an absolute estimate of the position. 

The challenge with this method is – it makes estimations based on position relative to the last known 

position, so unless we know at least one position, we cannot proceed ahead. A drift from integrators 

also poses a major challenge. 

2.8 Fingerprinting 

Fingerprinting is used for estimation and is the most popular available method for accurate estimation. It 

runs on an identification of location based on specific sensor measurements and signal properties. This 

approach needs no additional infrastructure to be deployed as Wi-Fi fingerprints are available almost 

everywhere. These signal properties and their location are stored in some central repository or database, 

which can be used for mapping radio properties at different locations. The significant advantage of this 

method over any approaches discussed so far is not relying on the Access point locations. It can work 

even without determining the exact locations of these Access points. Fingerprinting using Wi-Fi prints is 

able to achieve 2-3 meters of accuracy. The indoor propagation is affected by multipath fading induced 

by electromagnetic and radio-frequency interference. The implementation can be improved with the use 

of advanced algorithms which can identify hidden patterns. (Subedi and Pyun, 2017). Generalized 
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patterns can then be used for improving accuracy even in the presence of significant interferences. 

Machine learning algorithms are one way of looking at this problem for the identification of valuable 

patterns. Artificial Neural Networks(ANNs), Bayesian classifiers, KNNs, decision trees are some of the 

standard algorithms which are being used in indoor localization. Fingerprinting approaches follow two 

phases, the offline phase being a step where the signal properties are collected, and radio mapping is 

done, whereas the online phase deals with the matching of data acquired with the radio map and 

determining the location. A brief look into both the phases has been described below  – 

1. Offline Phase 

The phase starts with the setting up of an environment essential for fingerprint-based positioning. 

The phase consists of acquiring data, radio mapping and creation of the central repository or 

database to hold everything. The test area is divided into subareas, and we provide reference 

points for each sub-area. Graph-based methods can be used for this. A unique identification 

needs to be added for each of the reference points, which depicts Access points and their RSSI. 

Hence, each reference point gets a unique identification with signals passing via several walls, 

devices, obstacles, humans etc. These unique identifications are referred to as fingerprints. As 

RSSI varies over time due to obstacles, humans etc., multiple samples need to be taken to avoid 

missing out essential fingerprints, which can then be embedded as a list or vector and stored in 

the central repository/database. 

2. Online Phase 

This phase is much simpler than the offline phase. It deals with data acquisition from the device 

in the form of RSSI from the Access Points around it. The list/vectors with identifications (ids) and 

names are sent to the server with RSSI. On the server-side, matching of fingerprints is done to 

provide accurate locations. The localization algorithms search for the best fingerprint match using 

a fingerprint database. The estimation of distance can be formulated by minimization of Euclidean 

distance -  

𝐱̂ =  𝐚𝐫𝐠 𝐦𝐢𝐧
𝐱𝐣

∑(𝐚𝐢 − 𝐱𝐣 )𝟐……... (Eq. 1-5) 

 Where ai  is  the  fingerprint 

 xj   is  the fingerprint  from the fingerprint  database 

RSSI based fingerprint approach is based on a signal attenuation model, which requires low-cost 

equipment and low low-cost infrastructure. This has caught the attention of research community. 



 

 18 

However, the propagation model described above is idealistic and is far from realistic 

implementations where signal occlusion, electromagnetic interference and personnel flow are 

common factors challenging localization. Instead of looking at this from signal level interference, 

we need to look at this problem from a feature matching problem (Zhu et al., 2020). 

2.8.1 Channel State Information (CSI) 

Channel state information is one of the other primary fingerprints which makes use of the information 

contained in different subcarriers of a single channel. CSI signals define the process of signal 

transmission between transmitter and receiver, including signal attenuation, delay distortion and 

scattering. CSI is a physical layer characteristic and can easily differentiate between multi-path signals, 

hence making it reliable in terms of precision and stability (Caire and Shamai, 1999). The following figure 

describes various fingerprints used for indoor localization – 

Fingerprint Advantage Disadvantage 

RSSI Easily available, low-cost and 
easy deployment. 

Susceptible to multipath 
effect, noise interference with 
the training model, 
inaccuracies in positioning. 

Bluetooth Easy to collect signals, low 
power consumption and less 
expensive. 

This fingerprint relies on RSSI 
signals which makes it 
susceptible to multipath effect 
and leads to inaccuracies in 
positioning. 

Channel State Information 
(CSI) 

Better stability, high precision 
and less susceptibility to 
multipath effect. 

Random signal phase 
attainment due to 
multichannel, modification of 
driver needed for 
measurement. 

Magnetic field Natural environment signal 
and not affected by multipath 
effect 

Electromagnetic interference 
is high in indoor environments 
and extra calibration cost is 
required. 

Visible light Easy to collect and system is 
scalable 

Natural light interferes its 
path, line-of-sight is required. 

Table 2-1.Advantages and Disadvantages of different fingerprints 

 

2.8.2 Wi-Fi Fingerprinting 

The approach of fingerprinting achieved using Wi-Fi involves interference from many objects including 

both still moving and still ones causing attenuation of signal. Diffraction , scattering and reflections due 

to these objects causes attenuation of signal, sometimes up to 2-3 dB even when the position of 

transmitter and receiver are not change (Bose and Foh, 2007) . Hence, relying on this approach becomes 
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unreliable as Wi-Fi radiations are absorbed by human beings and reflected by other interferences. This 

causes a drop in the accuracy of Wi-Fi indoor localization. The offline phase is aimed at the collection of 

reference points. Multiple measurements have to be considered for the offline phase as the values might 

fluctuate at a different time due to the 

 presence of humans or obstacles. A radio map is built using RSS values along with a set of all vectors 

acquired for all reference points. The online phase deals with the acquisition of RSS values, and position 

estimates are done using an algorithm. Several algorithms are available, including K-nearest neighbours, 

probabilistic and Bayesian algorithms. Radio maps act as a feature space for these algorithms. When 

the access point locations are available, any existing centroid method can be used for the estimation of 

position (Bose and Foh, 2007). 

  

  

 

Figure 2-7. Generic Architecture of Wi-Fi fingerprinting 

  

2.8.3 Significant Wi-Fi  fingerprinting issues 

As discussed before, this approach has some significant limitations. With better frameworks and 

approaches, we can overcome these limitations. The major issues are highlighted below- 

1. Energy consumption - Applications designed for low power devices are meant for reducing energy 

consumption. Power consumption is a crucial factor for such devices; hence better algorithms are 

needed to reduce the scan intervals.  
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2. Interference from humans - Wi-Fi is absorbed by people, which proves to be a significant limitation 

as the devices on which localization applications are deployed involves many people. Better 

machine learning frameworks can be deployed to reduce noise or find hidden insights even 

amongst a vast majority of humans. 

3. Variation in signal strength - Wi-Fi signal strength is varying at different locations depending on 

obstacles and personnel flow, causing a drop or rise in strength. With such varying strengths, 

estimation of position becomes tricky. 

4. Radio-map creation - The creation of a Radio-map is a complicated procedure. Manual efforts are 

needed with accurate reference point locations in the offline phase. Human errors have to be 

weighed in along with an assumption that nothing is changed in setup during the offline and online 

phase. 

2.8.4 Radio-Maps 

Radio-maps are represented as a model of network characteristics which includes the spatial context. 

They are used for the estimation of a position using some known algorithmic approach. Wi-Fi / BLE based 

radio maps include the RSSI parameter along with the coordinates of the sensors/beacons/Access-

points. The locations can be drafted in the form of latitude, longitude and floor locations as x, y and z 

coordinates. RSSI, along with the coordinates observed over different samples, forms the base radio 

map and serves as a fingerprint database. This database can be any local database stored offline, or it 

can be stored online on a remote cloud server. The distance from a central node is calculated using any 

known distance formula. Chapter 3 discusses the algorithmic approach for the creation of a fingerprint 

database in detail. The aim of the radio map is to search for the hidden pattern that governs the 

relationship between RSSI value and the location with spatial context added to it. The actual values 

obtained from sensor/beacon/access points from vendor to vendor. Environmental factors affect the 

mean value of RSSI observed over different time intervals. Time dependency is also weighed in when 

trying to estimate the positions using advanced algorithms.  Data can be acquired continuously by walking 

at a steady pace in numerous locations. Obstacles and other interferences also need to be considered 

during the readings. The environmental space can be narrowed down to a rectangular grid of some 

specified length to observe the readings, and here, the locations specified are in terms of x , y and z 

coordinates where x and y are cartesian coordinates of rectangular grid and z represents the floor 

locations. The creation of a radio map is often a simple procedure but a time-consuming process. There 

are always unknown sources, including the floor size, divisions, corridors and materials of the indoor 

structures, which influences the creation of the radio maps. Crowdsourcing is a reliable approach to build 
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radio maps for large indoor structures. The main idea behind crowdsourcing is the enrolment of users on 

the survey and have them continuously contributing to radio-maps creation. This approach reduces the 

search space for large indoor structures and makes it time-consuming. Indoor maps have no specified 

standard which can be used as a reference. SLAM (Simultaneous Localization and Mapping) is a popular 

crowdsourcing approach tried out by many researchers. Graph SLAM is one such SLAM approach 

making use of inertial based user motion measurement and use of Wi-Fi signals sensed for building a 

crowdsourced fingerprint radio map (Grisetti et al., 2010). 

  

2.8.5 Challenges in the indoor positioning algorithms  

1. Multipath Fading 

The major problem lies with the receiver, which fails to detect the original signal(s) from its reflections. 

Sometimes due to the presence of obstacles, and in other cases, the signal travels more distance 

than the directed path to reach the receiver, which leads to errors in the estimation of the distance, 

thereby raising the complexity of indoor positioning. 

2. Synchronization  

Some of the methods discussed above are based on accurate synchronization between transmitter 

and receiver clocks, and due to multipath fading and interference from other obstacles, it is almost 

impossible to synchronize both the clocks. 

3. Signal Propagation 

Since we rely on signal propagation and these are electromagnetic signals, attenuation over varying 

distances are bound to occur, following the inverse square law usually measured on a logarithmic 

scale (dB). The SNR (Signal to Noise ratio) worsens as the distance from the source increases and 

the signal becomes weaker due to all kinds of interferences.  

2.9 Conclusion 

 

This chapter summarize the use of Bluetooth and Wi-Fi architecture used for indoor positioning and 

localization. The use of GPS indoors raises significant issues which are highlighted. RSSI is the common 

fingerprint which measures the strength of a signal. This fingerprint with an improved framework is used 

for indoor positioning. Radio-maps are created using RSSI fingerprints. Electromagnetic interferences 

and obstacles (both living and non-living) cause a drop in RSSI measurements which lead to inaccuracies 

in positioning and therefore localization. Triangulation and trilateration are no doubt one of the best 
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approaches for indoor positioning but use of high-cost and complicated equipment evinces the expertise 

needed to carry out the process for obtaining RSSI measurements. Fingerprinting is a low cost and less 

reliable approach for RSSI measurements for indoor positioning purposes but use of machine learning 

specifically data driven algorithms make accurate measurements which outperform trilateration and 

triangulation approaches. 
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Chapter 3 

Literature survey 

3.1 Introduction 

This chapter covers the literature survey reviews on some of the machine learning algorithms 

carried out during the course of research. Comparison of tried out machine learning approaches 

for indoor localization is discussed along with their advantages and disadvantages. Machine 

learning is defined as a field of study that gives computers the ability to learn without being 

explicitly programmed. Machine learning is a subfield of computer science where machines are 

meant to learn when not explicitly programmed to perform a variety of tasks. They do this by 

observing a pattern and try to imitate the patterns drawn from those observations to perform tasks. 

Machine learning is broadly classified into three main categories – Supervised Learning, 

Unsupervised Learning and Reinforcement Learning. Supervised learning is primarily used for 

the transformation of a dataset into another. This kind of learning draws a pattern based on 

labelled outputs. This domain of algorithms can learn patterns from one dataset and apply those 

patterns to new datasets and is used for making predictions. For example, prediction of stock 

prices or make weather predictions based on historical data.  

The input dataset consists of values drawn from historical data that is used for pattern 

observations which are then formulated as a function that relates it to output. The formulated 

function is referred to as a model, which is then used for making predictions on unseen values. 

The model derived is the driving force behind significant breakthroughs that came in machine 

learning, including computer vision, Natural language processing, Autonomous vehicles etc. 

Supervised learning forms the foundation of applied machine learning when we have a set of 

input variables/features and labelled outputs, which can be used by algorithms to learn the 

mapping function from input to output.  Unsupervised Learning is like supervised learning in a 

way that it can transform one dataset into another. But with unsupervised learning, there might 

be not a single correct answer or a single model that we are trying to derive from the dataset. 

Common examples of this kind of learning are clustering methods which transform datasets or 

datapoints observed from the dataset into a group of cluster labels. For example, in marketing 

firms, unsupervised learning is used for the determination of different segments of customers in 

terms of their gender, location, age, education etc., and apply strategies based on these 

segments. Reinforcement learning is quite different from the above two categorizations. 
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Reinforcement learning is about mapping situations to actions to maximize a reward signal. Here, 

there’s something called a learner, which decides on its own which actions to consider for 

maximizing its reward. The actions taken by the learner might affect not only the immediate reward 

but also the following situation. Trial error and delayed reward are major distinguishing features 

of reinforcement learning. For example, an adaptive controller is used in a petroleum refinery for 

adjusting parameters for optimizing cost, quality, and yield.  The reinforcement learning system 

involves a policy, reward signal, value function and a model of the environment. This kind of 

learning behaves like a small child learning to walk in the initial phase and then advances as it 

starts interacting with its environment. The research on indoor localization utilizes a supervised 

learning approach, so the next section describes the process in detail. 

3.2 Supervised Learning Algorithms 

Supervised learning is further classified as parametric and non-parametric learning. The 

parametric learning model uses a fixed number of parameters, whereas the non-parametric 

model’s learning is determined by data, and hence the number of parameters are defined by data. 

Supervised parametric learning is like a control system that has a fixed number of knobs where 

input data comes in, processed by how you turn the knobs, and output is a prediction. Turning 

knobs can lead to either proper/improper learning. The system proposed in the thesis is based on 

supervised parametric learning, where prediction of distance is based on how we turn on knobs 

of parameters like RSSI and locations. Target refers to an entity that is predicted. The properties 

of the target segregate the learning process into classification and regression. Dataset is defined 

in terms of input or observations and corresponding target with the assumption of real domain in 

which case we have x features/inputs/observations and y target. 

3.2.1 Formulation of a supervised learning approach 

Dataset D = {(𝒙𝟏, 𝐲𝟏 ),  (𝒙𝟐, 𝐲𝟐 ), (𝒙𝟑, 𝐲𝟑 ). . . . . . . . (𝒙𝐧, 𝐲𝐧 )}  …….. (Eq. 2-1) 

Where; 

𝑥𝑖 € X → inputs/features/observations 

𝑦𝑖 € Y → corresponding target. 

Assumption made: X € 𝑅𝑚  Where m → d-dimensional vector. 
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As described before, the properties and target result in the segregation of the supervised learning 

into regression and classification. Classification results in the generation of a classifier function 

whose cardinality is finite like binary labels, multi-class labels. In the Regression problem, we 

have output, which is continuous; possible examples include output/target (Y) belonging to a real 

domain R or [0, ∞). There’s no clear line between classification and regression; we can transform 

a multi-label classification problem and formulate it as a regression problem. On the other hand, 

we can threshold the regression predictions and transform them into a multi-label classification 

by rounding the predictions to the closest integer. Modelling depends on prior information about 

a specific domain.  Regression-based supervised parametric learning is a wise choice for indoor 

localization algorithms based on distance estimation using RSSI parameters. Supervised learning 

algorithms include both regression and classification algorithms (Grokking Machine Learning, no 

date). 

3.3 Regression  

The regression learning starts with a hypothesis in the functional form of the relationship 

𝒇(𝒙) =  𝒘𝟎 + 𝒘𝟏 𝒙𝟏 + 𝒘𝟐 𝒙𝟐  ……..(Eq. 2-2) 

Where; 

 w = 𝑤0 , 𝑤1, 𝑤2  are the parameters that need to be learned  

And X = 𝑥1, 𝑥2 are the features of the dataset. 

Searching for the best parameters w is known as a linear regression problem. Every other relation 

between feature and target falls under non – linear learning.  

3.3.1 A simple form of Linear regression 

The simplest form of linear regression is a straight-line relationship which estimates the regression 

coefficients as mentioned below – 

𝒀𝒋 =  𝜶𝟏𝒙𝒊 + 𝜶𝟎 +  𝜺 ……... (Eq. 2-3) 

Where; 

 Y is a dependent variable, X is the independent variable, 𝛼1 is the slope, 𝛼0 is the y – intercept 

and 𝜀 is the error. 
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Line fitting problem describes the relationship between feature and target considering slope, y-

intercept, and error. Error is assumed to have zero mean and variance. When N observations are 

done using features and target, a method of least square estimates 𝛼0 and 𝛼1 as well as any 

possible hidden relationship. The precision of estimates describes how good the line will fit to 

data. 

 

 

 

Target 𝑌𝑗 

 

                                       Feature 𝑋𝑖  

Figure 3-1. Linear Regression fit 

 
The models generated form linear regression modelling include partial least squares and 

penalized models like lasso, ridge, and elastic net. These models seek to find parameter 

estimates to minimize the sum of squared errors or function of the sum of mean squared error. 

Their mathematical nature allows us to compute coefficients assuming distributions of the model 

residuals. There are certain limitations when it comes to linear regression models – 
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• The primary assumption is that relationship between features and targets lie on the same 

hyperplane, so if data had just one predictor, this modelling proves to be useful 

• As the number of features rises, the relationship widens, and the linearity does not hold 

for such cases; in those cases, we need to augment features with additional functions of 

features and try to capture those relationships. 

3.3.1.1 Best fits with Linear Regression 

The aim of regression models is a prediction of a numeric target value. As described in the 

previous section, a more straightforward way of doing this is to write out a regression equation 

that relates targets to their inputs. Finding out regression weights or coefficients is what we term 

as regression. Once the regression weights are found, the process of forecasting becomes easy. 

Linear regression and regression terms are used interchangeably. Following outlines the overview 

of regression approach -  

• Data Collection via a data source. 

• Data preparation - only numeric values are used, and nominal values are transformed to 

binary values. 

• Visualization of regression using any plot which relates targets to inputs . 

• Computation of regression weights or coefficients also referred to as the training process. 

• Using the weights from trained models on unseen data for forecasting and prediction also 

referred to as the testing/inference process. 

• Measurement of accuracy or R-squared and correlation. 

3.3.1.2 Pros and Cons of using Linear Regression 

i. Regression works both with nominal and numeric values. 

ii. Easy interpretation of results. 

iii. Computationally inexpensive. 

iv. Regression often results in poor modelling for non-linear data. 

3.3.1.3 Least Squares Estimation 

Estimation of the coefficient values can be performed using least-squares in the case of multiple 

inputs. The least-squares is aimed at minimization of the sum of squared residuals. The operation 
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is performed by calculating the distance from each data point to the regression line, then squaring 

it and summation of squared errors. The aim of squared error is to minimize this error. The 

operation is relatively simpler and computationally inexpensive.  

 

Figure 3-2. Least Squares Fit 

 

3.3.1.4 Gradient Descent  

Estimation of the coefficient values can also be performed using gradient descent which iteratively 

minimizes the error of the model during training of data. This method performs a summation of 

squared errors for each input-output value pair. As a scale factor, the learning rate is used, which 

is a hyperparameter. The optimization is done by iterative minimization of error. Learning rate 

determines the correction to be performed on each iteration of optimization (Robbins, 2007). 

However, this approach has an advantage when we have a large dataset. 
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Figure 3-3. Gradient Descent algorithm 

3.3.1.5 Overfitting and Regularization 

A major issue with machine learning models is modelling error which occurs when a model fits a 

limited set of data points. The root causes of this error lie in bias and variance. Bias refers to 

assumptions a model makes to simplify the learning process for the target function. Low bias 

leads to fewer assumptions making the model complex for learning, and high bias leads to 

accessible models which quickly fits to a limited set of data points but disagree with unseen data 

points. Variance is defined by the variability of target function over different data points. Low 

variance causes target function to change at a low rate with changes in data, and vice versa holds 

for high variance. Linear regression is defined by the linear relationship between target and 

features, which often tend to have a high bias with low variance. To reduce overfitting, models 

are supposed to reduce bias and increase variance. It is possible to reduce overfitting by applying 

the following techniques -  

i. Early stopping - During the iterative learning process of a learner, the training 

process can be stopped before the final iteration. 

ii. Pruning - Commonly used in decision trees, tress can be stopped from growing by 

pre-pruning or post-pruning. 
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iii. Dropout - A widely applied technique where a randomly set of selected neurons 

are dropped during training. 

iv. Cross-Validation - Splitting of the dataset into train and test data where training 

data is used for model generation, and test data is a phase where the model is 

used for prediction. A validation dataset is also used as a part of the training phase, 

where a fraction of the training dataset is used for the validation of the model. 

Cross validation may not reduce overfitting on its own but it gives a better insight 

on models which further helps in reducing overfitting. It allows models to generalize 

and prevents model to draw patterns from noise. 

v. Regularization - Another popular approach for regularizing or shrinking the 

estimates of coefficients towards zero. This reduces the complexity of the model 

(Ying, 2019). 

vi. Two of the common approaches are Lasso and Ridge regression. Lasso 

regression is used to modify ordinary least squares by minimization of the absolute 

sum of coefficients or what is generally referred to as L1-norm. Ridge regression 

is used to modify ordinary least squares by minimization of the squared absolute 

sum of coefficients or what is generally referred to as L2-norm. 

3.3.2 Decision Tree Regression 

A prime example of the divide and conquer strategy used in sorting algorithms. Decision trees are 

based on this divide and conquer strategy. The aim of learning is to figure out which questions to 

ask, decide the order in which these questions need to be asked and make predictions once we 

have enough questions to get a valid answer. When this set of questions are organized in a tree-

like structure, the approach is referred to as a decision tree. CART or Classification and 

Regression tree algorithms is another name coined for decision trees. Decision trees are binary 

trees at the core level of implementation. Each node consists of an input variable and a split point. 

Leaf nodes are output variables used for making a prediction. 
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3.3.2.1 Decision tree representation 

Each tree comprises nodes where each node is associated with one of the input variables and a 

split point on that variable. Edges represent possible values of that node. Leaf nodes constitute 

an output variable used for making a prediction. The following example represents a decision tree 

model - 

  

 

Figure 3-4. Decision tree representation 

 

3.3.2.2 Predictions 

The above model makes predictions by evaluating the input at the root node, deciding a split point 

based on values of this root node, partitioning the input space. Each input variable can be thought 

of as a dimension on an n-dimensional space. When the new data lands on a certain hyperplane 

of this n-dimensional space, it gets filtered, and the output value of this hyperplane is the 

prediction or target of the decision tree model. 

3.3.2.3 Model learning 

As described above, the prediction is a relatively simpler approach of iteration of binary decisions 

made at each step. Partitioning of the input space is performed by a greedy approach which 

divides the space referred to as recursive binary splitting. All values are gathered, and numerous 

split points are tried out and tested via the use of a cost function. The cost function evaluates the 
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split in terms of best or minimized cost and split them with the optimized cost is selected.  The 

cost functions are described below - 

• Regression modelling cost function - Sum of squared errors across all training samples is 

chosen as a cost function to evaluate the split point. 

∑  (𝒚𝒊 −  𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒊)𝟐𝒏
𝒊=𝟏  ……… (Eq. 2-4) 

• Classification cost function - Gini cost function is used for indication of the n of purity of 

leaf nodes. This purity represents the blend of training samples assigned to each node. 

Gini cost of 0.5 represents the worst purity since G in the below equation will have 50-50 

split. 

𝑮 =   ∑ 𝒑𝒊  𝑿 (𝟏 − 𝒑𝒊)𝒏
𝒊=𝟏  ……… (Eq. 2-5) 

 

3.3.2.4 Criteria for stopping  

A criterion or a stopping point needs to be set for recursive binary splitting; otherwise tree might 

never stop from growing. Systematic approaches include setting a minimum count on training 

instances assigned for each leaf node. Split won't be accepted if the count is less than criteria set 

and it will be rendered as a final leaf node. Pruning is a helpful technique for raising the 

performance of a tree. Occam's razor (Rasmussen and Ghahramani, 2000)  says simpler 

hypotheses or models with fewer coefficients should be preferred to reduce complexity. Hence 

simpler trees should be given higher priority. The complexity of a CART or a decision tree is 

determined by the number of splits. A hold-out test set can be used as a rapid pruning method. 

However, removal of leaf nodes should be done only to ensure minimization of the cost function. 

Other approaches include alpha pruning, where the learning rate decides the weight of removal 

of nodes. 

3.3.2.5 Pros and cons of using Decision Trees / CART  

Pros  

1. This method is not in need of any kind of data normalization or scaling. 
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2. Data imputation is not necessary as it doesn't provide any significant changes in the 

decision tree building. 

3. No extra efforts have to be put in for data pre-processing. 

4. An easy approach without inducing a complexity factor in modelling. 

Cons 

1. Not efficient implementation for regression and classification 

2. Higher training time. 

3. Computationally intensive. 

4. Small changes in data can render the model unstable for prediction. 

3.3.2.6 K - Nearest Neighbours 

K-nearest Neighbours is another simpler supervised learning algorithm. Due to its low calculation 

and ease of use, KNN is widely used by the research industry. KNN classifies data points based 

on similarity. An educated guess is made on test data to classify unclassified points. KNN uses 

the dataset directly for prediction. K-most similar instances or neighbours are searched through 

the entire training set, and output variables are summarized for those K-instances. A distance 

measure is used for the  determination of similarity with the K-instances. 

3.3.2.7 Distance measure 

Following are some of the distance measures used for KNN - 

• Hamming distance - Distance between binary vectors is calculated. It refers to the number of 

bits positions in which the two bits are different. Primarily used for error correction or detection 

over data transmission networks (Norouzi, Fleet and Salakhutdinov, 2012). 

• Manhattan distance - Distance between real vectors is calculated using the sum of their 

absolute difference. Also referred to as taxicab geometry or city block distance, the distance 

between two city blocks or two points in a grid is formulated as a grid path (Craw, 2017).  
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𝒅 =  ∑ |𝒙𝒊 −  𝒚𝒊|𝒏
𝒊=𝟏  ………... (Eq. 2-6) 

• Euclidean distance - The most famous distance measure used which calculates similarity in 

terms of squared roots of sum of squared differences between two points across all input 

attributes (Dokmanic et al., 2015). 

𝒅 =  √∑ (𝒙𝒊  −   𝒚𝒊 )𝟐𝒏
𝒊=𝟏     …………. (Eq. 2-7) 

• Minkowski’s distance -  A generalized distance metric that can be used with Euclidean or 

Manhattan distance formula. In short, it combines all L-norms in the form of Lp-norm where p 

= 1, 2,3, infinity etc (Çolakoğlu, 2019). 

𝒅 =  ∑ |𝒙𝒊 − 𝒚𝒊𝒑|
𝟏/𝒑𝒏

𝒊=𝟏 …………. (Eq. 2-8) 

 

 

3.3.3 KNN for Classification / Regression 

For Classification, KNN output evaluates the K-most similar instances and uses the highest 

frequency from those K-most instances for output. For Regression, it’s the mean/median of these 

K-most instances that makes the prediction. Votes for each class are done based on each 

instance, and the class that has the most votes use used for prediction. The frequency of samples 

belonging to each class of K - most similar instance set is normalized, and probabilities of classes 

are evaluated. 

 

Figure 3-5. KNN classification 
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3.3.3.1 Advantages and Disadvantages of KNNs 

Advantages 

1. As seen, KNNS can be used for both Classification and Regression. 

2. Numerous distance measures can be used for determining the similarity of instances. 

3. No need of building a model. 

4. Pretty simple and intuitive. 

Disadvantages 

1. Rather a slow implementation. 

2. Sensitivity to outliers. 

3. The curse of dimensionality is a major issue for KNNs. 

4. Data imbalances lead to performance issues. 

3.4 Classification Algorithms 

A major fraction of machine learning algorithms is concentrated on solving a common 

classification problem. The learner is required to learn the hypothesis, which is used for mapping 

vectors into one of many classes by looking at output examples or labels of the hypothesis. This 

classification domain makes use of linear classifiers, Naïve Bayes classifiers, Logistic regression, 

K-means clustering, decision trees etc (Babcock University et al., 2017). This section describes 

some of them in a concise manner. 

3.4.1  Logistic Regression 

The algorithm relies on the use of a single multinomial logistic regression model with a single 

estimator. It identifies the states where the boundary between classes exist and also formulates 

class probabilities based on distance from the boundary in a specific approach (Sengar, Gaikwad 
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and Nagdive, 2020). It is more robust at detailed predictions. It is one of the most commonly used 

tools for discrete data analysis and sometimes also referred to as linear interpolation.  Regression 

is about prediction of a value for input based on past data whereas classification aims at 

classifying data points into different categories.  

 

Figure 3-6. Classification vs Regression 

 

3.4.2  Multi-layer perceptron (ANNs) 

The algorithm is a classifier with weights whose values can be searched for by the use of a 

quadratic problem with linear constraints. In generic neural network training, the focus is on 

solving a non-convex unconstrained minimization problem. The classifier is generally used for 

learning from a batch of training instances iteratively. The process runs until a prediction vector 

is found, which is accurate on all of the training sets. This prediction vector is then used for the 

prediction of labels on a test set. These classes of algorithms can be used for both classification 

and regression. Artificial Neural Network (ANNs) make use of three fundamental elements, input 

and activation functions of each unit, network architecture and weight of each input 

connection(Kotsiantis, Zaharakis and Pintelas, 2006). The ANN’s behaviour is defined by the 

current values of weights given the network architecture, and input connections are fixed. The 

weights are adjusted overall in order to reduce the error in the output values. The ANNs have 

been inspired by the human nervous system, which allows learning from representative data 

describing a decision process. An ANN consist of a layer of input node, layers of output nodes 
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and a single or more hidden node layers. The information or input is passed to hidden layers from 

input layers by firing of activation functions. The hidden nodes may fire or remain dormant based 

on the evidence. They apply weights to evidence in the form of function. When the values of these 

nodes reach a threshold, they are fired, and information is passed onto another layer and doesn’t 

work efficiently for a tiny fraction of input data samples as they are not sufficient to train the model. 

ANNs are used to develop predictive modelling, optimization and control.  

 

Figure 3-7. Artificial Neural Networks 

3.4.3 Naïve Bayes Classifier  

One of the most simple networks consisting of directed acyclic graphs with a single parent and 

several children nodes with the independence assumption amongst them. A model is rendered 

based on this independent assumption which is used further for estimation. This group of 

classifiers are less accurate than neural networks.  Sometimes they prove to be better than other 

SOA algorithms like instance-based learning and decision tree induction. The focus here is on 

conditional probabilities, but not on the probability that something will happen, instead of the 

likelihood that an event might happen given that some other event happens. For example, we can 

try to classify emails; given an email, we would like to calculate the likelihood that it is spam. 

Bayes theorem is used for the calculation of conditional probabilities. Naïve Bayes assumes that 

given some input variables, they are assumed to be independent. The weaker part of the algorithm 

is that it performs better with categorical than with the numerical values, as it assumes the bell 

curve distribution. This assumption could sometimes harm the performance. The other underlying 

issue is the zero-frequency problem – if a categorical variable has some new category in the test 

set which might be absent from the training set, then the model will automatically assume it with 



 

 38 

a 0 probability, and that won’t be effective while making a prediction. This classifier is prominently 

used in spam filtering, image classification, document classification, sentiment analysis etc.  

 

Figure 3-8. Bayes Theorem applied to Naive Bayes Classifier 

3.5 Ensemble Approach for Weak learners 

An ideal approach to the generation of better predictions is by combining predictions from several 

models. The core principle of ensemble algorithms is to group several weak learners to form a 

strong learner. The accuracy of the model can be increased with this approach. Models differ from 

each other in terms of variance, bias and noise. The ensemble approach helps remove the 

instability caused due to variance and bias. These minor differences lead to either overfitting or 

underfitting in models. The error gap gets significant between the training and testing error due to 

differences in bias, variance and noise. Ensemble algorithms are further classified into three 

subcategories – Bagging, Stacking and Boosting. 

3.5.1 Bagging 

Bagging or Bootstrap Aggregation is one of the powerful ensemble approaches. Bagging is a 

generic technique of reducing variance for high variance algorithms. The list of algorithms 

commonly influenced by high variance is decision trees. Decision trees are easily influenced by 

the training data. Infinitesimal changes in training data can influence the predictions made by the 

decision trees. In bagging, predictions made by several weak learners or models are combined 

using voting or averaging. Bagging reduces the variance of the data and prevents the models 

from overfitting. Bagging with decision trees is done by growing the trees deep instead of pruning, 

as this leads to low bias and high variance in predictions. Care has to be taken to ensure a unique 
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sampling of the dataset for each model(Brownlee, 2016a). Replacement is allowed, which means 

a row selected is included back in the training set for getting selected for the same training set. 

This is referred to as a bootstrap sample, used typically with small datasets for estimation of the 

statistical value of a data point. A better prediction is possible with the mean of estimates prepared 

using multiple bootstrap samples. In summary, bagging has three major elements – 

I. Bootstrap samples 

II. Unpruned decision trees. 

III. Mean of predictions 

  

 

Figure 3-9. Ensemble models using bagging method 
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3.5.2 Stacking  

An ensemble approach of learning combines regression or classification models via a meta-

regressor or meta-classifier. The base model is trained on the entire training set, and the meta-

model is trained on outputs of the base model trained using the outputs as features. The base 

model can be generated by different algorithms, and hence this form of ensemble learning 

involves heterogeneous ensembles. Stacking can make use of Naïve Bayes classifier, KNN or 

Random forests as a base model and logistic regression being used as a meta 

classifier(Brownlee, 2020). The stacking process is outlined below – 

1. The training set is split into disjoint sets. 

2. Base learners are trained on the above training set. 

3. Base learners are tested on the second one 

4. A high-level learner is trained using predictions from Step (III) as inputs. 

  

 

Figure 3-10. Stacking Algorithm 

 

3.5.3 Boosting  

As the name suggests, this kind of ensemble transforms weak learners into solid learners using 

boosting. This approach is just slightly better than an educated guess on fitting weak learners. 
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Boosting helps in reducing bias and variance; examples include Ada-boost, Stochastic Gradient 

Boosting etc. The core idea is the correction of prediction errors. Models are made to fit and added 

sequentially to the ensemble in a way to correct predictions of the first model by the second model, 

second to third etc. Predictions are usually combined with averaging or simple voting(Brownlee, 

2016b). No changes are made in the training dataset and algorithms are modified to make better 

corrections. The process of boosting is highlighted below – 

I. Adding bias for samples that are hard for predictions. 

II. Adding ensemble members iteratively for correction of predictions. 

III. Weighted averaging predictions of models. 

  

 

Figure 3-11. Boosting approach of ensemble learning 

 

3.6  Comparison of fingerprint indoor localization approaches based on machine 

learning algorithms. 

This section summarizes the use of different machine learning approaches used for fingerprinting 

based on RSSI and how each implementation is better than the previous one. The summary has 

been plotted in a tabular format as below – 

Algorithm 

used 

Fingerprint  Complexity  Accurac

y 

Important points 
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KNN RSSI Medium 2-3 m Low accuracy as KNN is used for indoor 

localization. (Bahl and Padmanabhan, 

2000). 

Semi-

supervise

d learning 

Bluetooth Medium Not 

specified 

Multiple signals fused to form a unified 

model, efforts of manual calibration are 

reduced. However, training and testing 

occur at a much faster rate (Jiang et al., 

2018). 

Improved 

KNN 

RSSI Low 3-4 m  A better selection method in KNN (Tang, 

Deng and Huang, 2016) 

NN RSSI High 4 m Neural networks used for modelling and 

training non-linear Wi-Fi signal 

propagation(Dinh-Van et al., 2017). 

Ensemble 

Classifica

tion 

RSSI High 2.25 m Constraints from the environment are 

used for solving the multipath effect with 

ensemble classification (Atia, Noureldin 

and Korenberg, 2013). 

Bayesian  RSSI Medium 2-3 m Bayesian Kernel parameters updating is 

done constantly for calibration and 

estimation of radio maps (Guo et al., 

2018). 

KNN CSI NA 1.203 m Use of Euclidean distance measure for 

estimation of distance b/w the target 

point and reference point (Zhou et al., 

2017). 

SVM CSI NA 1.22 m PCA used for dimension reduction and 

then DBSCAN implementation for 

reduction of noise(Wang et al., 2018) 
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CNN Magnetic NA 1 m  Magnetic field and RSSI integrated into 

an image and position classification done 

via the use of a convolutional neural 

network (Subbu, Gozick and Dantu, 

2013). 

ML Visible light NA Less 

than 5 

cm 

Multiple classifiers are constructed for 

improving the localization performance 

(Zhao et al., 2017). 

RF,SVM Bluetooth NA 0.8-2.35 

m 

Dead reckoning and position fingerprints 

are fused to form a composite fingerprint 

for improving accuracy(Xiaodong et al., 

2018). 

DTW Visible light NA Less 

than 1 m 

A navigation framework for the collection 

of light intensity fingerprints while walking 

reducing walking efforts (Wu et al., 

2013). 

Table 3-1. Comparison of indoor localization fingerprint approaches 

 

3.7 Summary 

The review conducted gave a generalization of different supervised learning algorithms. 

Classification and Regression cover major use case including indoor localization. Regression is 

aimed at prediction or forecasting of continuous dependent variables from a number of 

independent variables. For the proposed framework, regression phase covers distance estimation 

using fingerprinting methods.  The goal of classification phase is to predict class of given data 

instances/points. Decision Trees can be used for both classification as well as regression. The 

use of artificial neural networks can bring down errors following gradient descent algorithm. 

Ensemble machine learning involves use of multiple models which are weak learners but when 

combined together, they obtain more accurate and robust models (Rocca, 2021). Bagging is the 

mode of ensemble learning where base models are trained in parallel on several bootstrap 

samples and follow the averaging process to obtain strong model. Boosting is the mode of 

ensemble learning where base models are trained sequentially and learning of current weak 
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learner is dependent on previous weak learners. Boosting prefers weak learners with high bias 

and low variance. Stacking is the mode of ensemble learning where several weak learners are 

fitted independently. Training of a meta-model ensures prediction of outputs based on outputs 

returned by base models. 
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Chapter 4  

Experimental Setup  

4.1 Introduction 

This chapter covers details on dataset generation and model generation for indoor localization 

framework. It introduces a brief summary of the experimental setup, including the use of 

proprietary hardware and software along with cloud infrastructure. It also highlights the use of 

some standard datasets along with the standard machine learning pipeline design. The execution 

involves the use of open-source tools including Python3, standard python and machine learning 

libraries and the use of a low code framework. The chapter starts with a brief dive into mesh 

architecture used for sending fingerprint (RSSI) data onto cloud. The cloud architecture is a 

standard PaaS (Platform-As-a-Service) platform which suites current research platform. The main 

reason of using this platform is because of its simplicity, cost-effective development, scalability 

and high availability. The proposed framework supports local development without reliability on 

any cloud architecture details of which are covered in the appendix. The later part of this chapter 

describes the dataset generation and model generation algorithms. 

4.2 Experimental Setup 

This section describes the architecture setup involving Bluetooth mesh setup via the use of three 

primary components - Beacons, Servers and Gateways. The experimental setup described in this 

section is limited to the scope of this study. The experiments conducted makes use of water leak 

detection sensors which are BLE-based and hence makes use of RSSI fingerprint. The reason 

behind choosing this novel leak detection sensor is low equipment cost, low power, and easy 

setup. The setup also includes a novel Bluetooth mesh systems using energy harvesting powered 

beacons to send notification signals which mesh devices can identify and send over the mesh, 

reaching endpoints. The combination of Beacons and Mesh (referred to as Beacon Mesh 

Integration system) sends out a BLE beacon while they are powered. It is not necessary to use 

the same architecture while testing out machine learning frameworks in different domains. The 

setup can be replaced with Wi-Fi or another fingerprint setup. Bluetooth mesh extends the 

capabilities of the current BLE to include mesh networking. A many to many communications 

network can be extended to thousands of devices. Reliability is a significant part of Bluetooth 

mesh which is ensured with multiple paths from source to destination without a single point of 
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failure. The design has been driven with an aim to create an efficient, flexible and simple wireless 

mesh networking solution. A message entering the mesh network can is forwarded by multiple 

relaying nodes. Relaying is possible because of a flooding communication model. For hardware, 

we are relying on Nordic semiconductor's products for the BLE mesh stack. The following 

underlines our current mesh architecture. 

  

Figure 4-1. Mesh network implementation using Nordic semiconductors 

  

A custom BLE board is designed for being used as a Beacon. The Beacon connects to an energy 

harvesting board and water leak sensor. A plastic housing case has been designed using CAD. 

When in contact with water, the beacon's underlying magnesium and graphite sensor power 

Nordic semiconductor's nrF52832 chip. Once turned on, this sensor sends packets to the mesh 

network while it is powered. The messages being transmitted by the beacons contain the following 

information - Sensor address (128-bit hexadecimal address for identification of Bluetooth 
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address), Mac address (sensor’s MAC id), RSSI (fingerprint values) and a GUID for gateway 

identification. 

 

Figure 4-2. Expanded view of leak sensor for RSSI fingerprint measurement 

 

 Servers rely on Beacons which are the same custom BLE boards utilizing the nrF52832 chip.  A 

DC board powers the server using a wall outlet. These boards are always powered on and ready 

for transmission of packets it receives from other beacons in the mesh network. Relaying packets 

from one server to another server is an important feature.  Multiple hops are possible for packets 

between beacons between servers and then be received by the gateway. These packets are then 

further sent to the cloud for data processing. 

  Gateway uses the Fantsel BLG,840x, which is an industrial gateway responsible for 

sending information from mesh to the cloud. This gateway is again a combination of nrf52840 and 

nrf9160 onboard, where the first one, i.e., nrf52840 is responsible for communication with the 

Bluetooth mesh, and the second one, i.e., nrf9160 is an LTE module responsible manufactured 

by Nordic responsible for communication between gateway and cloud. Intercommunication 

between these two modules is done via use of UART connection. The client refers to the firmware 
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running on the BLE side and gateway refers to the firmware running on the LTE side(Witham et 

al., 2019). 

  

 

Figure 4-3. BLG840x acting as a gateway for sending data to cloud. 

 

4.3 Software 

This section describes the software architecture used in the research. The section is further 

subdivided into following categories: 

1. Cloud reference architecture 

2. Data ingestion  

3. Reference Dataset 

4. Dataset generation 

5. Machine learning pipeline 

4.3.1 Cloud Reference Architecture 

 The azure platform is used as a PaaS (Platform-as-a-service) for our implementation. Most of 

the IoT use cases are fundamental processes of sending data in order to generate insights.  These 
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actions can then be used for improving the process of indoor localization.  The reference 

architecture being used is as shown below: 

  

 

Figure 4-4. Azure IoT Reference Architecture. 

 
The reference architecture (doodlemania2, no date)is composed of following elements (some of 

which are optional): 

1. IoT devices - refers to devices that can connect with cloud securely and proceed 

with transmission and reception of messages. Edge devices can be used for 

performing data processing on devices for which use of Azure IoT Edge is preferred. 

In our use case, leak detection sensors are the core IoT devices used for the 

experiment. 

2. Cloud gateway - A bidirectional gateway is acting as a hub for devices to connect to 

cloud for data transmission and reception. IoT Hub is one of the prime components 

being used for receiving data from the Nordic Bluetooth gateway and relaying the 

information further. IoT Hub makes provisions for device management, capabilities 

to control and command devices. The IoT Hub is responsible for getting data 
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ingestion from devices, thereby acting as a message broker between backend 

services and devices.  

3. DPS or Device Provisioning Service - helps in registration and assignment of devices 

to IoT Hub endpoints at scale. 

4. Stream Processing - As the name suggests, this element deals with streaming of 

extensive data records and applies rules to those streams in order to be processed 

further. Complex analysis can be executed at scale using stream aggregations, 

windowing functions and external data source joins.  

5. Azure storage - can be used via two different pipelines. Cold path storage can be 

used for storing long term data, and this is generally used for batch processing, 

whereas warm path storage holds data for high availability for reporting and 

visualization in the form of dashboards via the use of business intelligence tools. 

6. Logic apps - After gathering insights, the next step in the process is to drive actions 

which can be done via use of logic apps where actions can be included for storing 

messages, raising alarms, sending emails or SMS messages or integration with 

custom relationship management tools. Logic apps in our use case are used for 

raising alerts via use of mail connectors for sending emails to end-users. 

7. Machine learning (Auto-ML) - makes use of several algorithms for prediction 

modelling. Models generated can be deployed and used over real-time data for 

making predictions to enable scenarios for maintenance or for localization. 

8. Power Apps and BI platform - plays a vital role as a User Interface for representation 

of actionable insights or data which could be driving market for several businesses. 

The agnostic framework makes these tools highly useful in case of any kind of data 

related issues.  

4.3.2 Data Ingestion   

The reference architecture described above is used as a core implementation for data ingestion 

to be processed for further use. Following outlines, the process of data ingestion for collecting 

RSSI data from beacons via use of Nordic Bluetooth gateway -  

a. The data from leak detection sensor is sent to Azure IoTHub via gateway via the use of a 

mesh network. 
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b. On the Azure cloud side, IoTHub has a default built-in endpoint that is also compatible with 

event hubs. The default topic on IoTHub is messages/events. Custom endpoints can also be 

used for routing messages to another service. 

c. IoTHub supports various message protocols, including HTTPS/AMQP/MQTT etc. There are 

two ways to send data to the cloud using IoT devices - 

i. Registration of device with IoTHub using a security token/certificate. 

ii. Creation of virtual IoT device on IoTHub and using that device with SAS or 

Security Token with a TTL (Time to Live) 

a. Following any one of the approaches, we see device activity in the IoTHub. Monitoring the 

data is possible via the use of Azure command-line interface.  

b. Once the data packet reaches the default endpoint (messages/events), a similar streaming 

job ensures to store it in a database. 

c. Azure SQL server database ensures the high availability of our data. 

d. This data is stored in real-time and can be accessed via running SQL queries on the database 

or via the use of a script to access the table. 

e. A logic app runs sequentially to send alerts to end-users regarding the leak detection or data 

collected from sensors/beacons. 
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Figure 4-5. Cloud application for data acquisition and sending alerts to endpoints 
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4.3.3 Reference Dataset (Used for framework evaluation) 

This section describes one of the standard reference datasets that was chosen for the evaluation 

of the algorithm. The dataset is the one used for indoor location determination with RSSI values 

(Malekpour, Ling and Lim, 2008). As a part of the research, 120k RSSI samples from 4 access 

points on floors, 1 and 2 of the building of the author's faculty have been taken (Indoor location 

determination with RSSI, 2018). A simple algorithm was used for finding the location of a Wi-Fi 

device in that building with 85 % accuracy (Malekpour, Ling and Lim, 2008). Following describes 

the outline of the dataset used- 

a. Multiple samples are taken for each coordinate. 

b. Access points are referred with A, B, C and D. 

c. Physical coordinates are identified by grid coordinates (X, Y and Z coordinates), 

where X and Y are grid coordinates, and Z refers to the floor coordinates. 

d. Signal strength fluctuation is prominent in any indoor location. Hence multiple 

samples are considered. 

e. Each row of the sample dataset has the format - 

i. Ap, signal, sequence, X, Y and Z. 

ii. Ap - refers to the access point identifier (A, B, C or D). 

iii. Signal- refers to the signal strength from the access point. 

iv. Sequence - The sequence of the sample from any access point to a 

specific coordinate. 

v. x, y and z coordinates are the grid coordinates. 

This dataset has been used as a benchmark for the evaluation of the framework. 

4.3.4 Fingerprint Dataset generation 

This section describes how to use any fingerprint and transform it from raw data to an organized 

location dataset for further evaluation of the framework. Dataset generation is one of the widely 

researched fields for machine learning purposes. Supervised machine learning algorithms need 

a labelled dataset for target inference. There are three main approaches used for the generation 

of labelled training datasets - 

• Manual labelling  

• Synthetic labelled dataset  

• Semi-automatic labelled dataset 
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Manual labelling of the dataset is essential when we have no control over the environment during 

the collection of labels for dataset generation. Indoor localization is a challenging field where the 

environmental conditions keep on changing. There is no control over the interferences which get 

induced during the training and deployment phase. The fingerprint collected using manual labels 

is not an easy task. Various methods are employed for the collection of manual data. However, 

these manual labels are referred to as ground truth collected with the help of a domain expert. 

Sometimes, the whole task of gathering manual data can be tedious even for the domain experts 

and hence we can avail the use of synthetic dataset generation process. Synthetic dataset 

generation involves scripts programmed by humans. There are five steps involved in process of 

synthetic dataset generation process - 

• A simulation architecture is defined, implemented and executed. 

• During the simulation execution, data is collected. 

• Relevant features are used for the generation of the dataset in this step. 

• The result of the above three steps is split according to a specified 

proportion/fraction. 

• A fraction of the dataset section is used for training the machine learning model, and 

another fraction is used for the evaluation of the training model. 

The last approach utilizes a semi-automatic process of dataset generation. This approach is 

usually a blend of manual label generation and implementation of logic on labelling. Complex 

algorithms and heuristics can be used as a part of the labelling logic. This logic drives an 

automatic process of generation of dataset. The last two steps are similar to the ones used in the 

synthetic dataset generation process. Fingerprint dataset generation has been implemented by 

use of a semi-automatic approach. Following algorithm outlines the whole process- 
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Figure 4-6. Dataset generation using a semi-automatic approach. 

  

The following diagram represents a snapshot of the dataset generated using the above algorithm. 

CSV files have been used as a source along with RSSI as a fingerprint. However, this algorithm 

has been generalized to be used for any other fingerprint from any relevant source. The labels 

generated using this algorithm use Minkowski’s distance metric, generalizing Euclidean and 

Manhattan distance metric for estimation of distance using data points. 
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Figure 4-7. Preview of the transformed dataset generated using Dataset generation algorithm. 

 

4.3.5 Machine learning pipeline 

Machine learning pipelines are becoming more critical in the field of self-driving cars, computer 

vision and predictive maintenance industries. Experts are necessary for deploying a pipeline 

which takes in the existing raw data and transforms it into a model which can be used for further 

prediction/classification purpose. In this section, we describe the architecture as well as the 

experiment conducted using the dataset transformed in the previous section. 

4.3.5.1 The architecture of the ML pipeline 

A machine learning pipeline transforms a feature vector into a target value with a sequential 

combination of various algorithms. Following represents the generic architecture of an ML pipeline 

- 

  

 

Figure 4-8. Machine learning pipeline architecture 

  

4.3.5.2 Dataset 

 The dataset generation algorithm takes care of the transformation of the raw dataset. However, 

the transformed data might still be insufficient for regression and classification. There might be 
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some datatype conflicts, some feature imbalances, some imputation issues. The dataset loaded 

must have enough features correlated with your target. The indoor location dataset has a spatial 

context integrated with the dataset in the form of geocoordinates along with the target distance 

estimation. Details of the dataset are as follows - 

4.3.5.3 Reference Dataset details  

Indoor Location Determination with RSSI (120k RSSI samples to determine the distance in a two-

level building) - 

a. Four access points have been used for sampling RSSI levels for each row in a 

dataset 

b. Access point identifiers are one of A, B, C and D locations 

c. X, Y, Z are grid coordinates recorded for the experiment  

d. Signal strength is the RSSI signal strength from each of the access points. 

e. Locations of the access points are static and do not vary during the experiment 

- {"A": (23, 17, 2), "B": (23, 41, 2), "C”: (1, 15, 2), "D": (1, 41, 2)}   

f. Wi-Fi radio signals have been used in 2.4GHz frequency, which gives an 

interesting approach to learn how signal varies indoors. 

g. The major challenge was to come up with a machine learning model that 

estimates distance and also makes estimations of X, Y and Z coordinates. 

h. Distance estimation is performed using a Euclidean distance equation. 

i. The execution phase conducted by Author consisted of 120k samples which 

ran in 7644.6 seconds without the use of any accelerator. 

 

4.3.5.4 Transformed Dataset details 

Indoor location determination with RSSI (Approx. 2048 RSSI samples for RSSI intensity range 

level classification) - 

A. Two access points have been used for sampling RSSI levels for each row in a 

dataset. 

B. Access points have names in the form of actual locations indoors. 

C. X, Y and Z coordinates are geocentric coordinates in the form of latitudes, longitudes 

and floor location, thereby having a spatial aspect to them. 

D. Signal strength is still the RSSI signal from each of the novel leak detection sensors 

described in the hardware section, along with the cloud gateways. 
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E. A better network architecture for dataset acquisition. 

F. Distance estimation is done using generalized Minkowski's distance equation. 

G. Execution phase - to be completed. 

4.3.5.5 Data preprocessing Phase  

Preprocessing phase is an indispensable step when it comes to architecting a machine learning 

pipeline. This section describes some of the necessary preprocessing steps performed with both 

Reference and Transformed datasets in order to be used for classification and regression. Pycaret 

(PyCaret — pycaret 2.2.0 documentation, 2021), which is a low code machine learning library, 

has been used from this phase and onwards. The preprocessing phase includes - 

• Sample and Split - The main aim of any machine learning algorithm is to build a model 

which generalizes well to new data. Hence, the dataset is often split into train and test 

datasets for supervised machine learning tasks. The test dataset here serves as a proxy 

for real-world data, which the deployed model will be exposed to in real-time for prediction 

or classification. Cross-validation ensures the overfitting of the model. For our use case, 

k-fold cross-validation has been used on the training set, and the test set is used as a 

holdout set which is used for prediction. A sampling of the dataset is enabled by default 

when the dataset contains more than 25k samples.  

(Parameters - train_size, default = 0.7)  

• Data Preparation - This section is subdivided into further six subcategories with 

experiments on different preparation steps - 

o Missing Values imputation - Deals with the missing values or empty records in the 

dataset. Algorithms are themselves incapable of performing imputation; hence this 

step becomes necessary.  

(Parameters -  

numeric_imputation, default = 'mean' = missing values replaced with the mean value 

of the feature. 

categorical_imputation, default = 'constant' = missing values imputed with a constant 

'not_available' value). 

o Changing Datatypes - Pycaret's inference algorithm does detection of the data 

type of each feature, and if the detection proves to be incorrect, a default approach 

is enabled to change the feature. 

(Parameters -  
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numeric_feature , default = None 

categorical_feature , default = None 

date_feature , default = None 

ignore_feature , default = None). 

o One - Hot Encoding - Commonly known as dummy encoding, works with the 

transformation of categorical features into numerical enumerated values before 

training a model.  

o Ordinal Encoding - There might be variables in a dataset with natural intrinsic order 

such as Low, Medium and High, which have to be encoded differently than others. 

(Parameters - 

Ordinal_features:dictionary , default = None). 

o Cardinal Encoding - There might be variables in a dataset with many levels or high 

cardinality features; one hot encoding might become slow in such cases and also 

introduce noise; hence their conversion can be handled using 

high_cardinality_feature in pycaret. 

(Parameters - 

High_cardinality_features, default = None) 

• Scaling and transformation - Normalization and transformation are part of preprocessing 

phase, where the goal is rescaling of numeric column values without losing information or 

value ranges. Z-score and min-max scaling are two popular approaches when it comes to 

normalization. Transformation is more of a distribution shape change where data must be 

transformed when machine learning algorithms are used. The data can be represented by 

a normal or approximate normal distribution instead of relying on gaussian and normality 

in residuals. Yeo-johnson and quantile are two popular approaches used for 

transformation. 

(Parameters –  

Normalize_method, default='zscore' (others include min-max, maxabs and  

robust, Transformation_method (string/bool), default = False for book and 'yeo-johnson' 

for string.). 

• Feature Engineering - This step deals with the creation of new features from existing 

data for training a machine learning model. It includes feature interaction, creation of 



 

 60 

polynomial, trigonometric or group features, binning numeric levels and combining rare 

levels. 

(Parameters -   

Feature_interaction: bool, default = False 

Feature_ratio: bool, default = False 

Interaction_threshold: bool, default = 0.01 

Bin_numeric_features: list, default = None)  

• Feature Selection - This step includes feature importance, removal of multicollinearity, 

principal component analysis and ignorance of low variance. 

(Parameters -  

Feature_selection: bool, default = False 

Feature_selection_threshold: float, default = 0.8 

Removal_multicollinearity: bool, default = False 

Pca : bool , default = False)  

4.3.5.6 Model generation phase 

 This section describes the model generation phase via the use of the framework. There are two 

crucial classes of algorithms used in this section - 

• Regression - This step is used for distance estimation using various regression algorithms. 

• Classification - This step is used for intensity level classification using various classification 

algorithms.  

The following image outlines the algorithm for a model generation - 
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Figure 4-9. Model generation phase. 

 

4.4 Conclusion 

 

This concludes the experimental setup section. The setup covered all the necessary aspects of 

fingerprint dataset generation. Any kind of fingerprint with a fraction of spatial context is useful to 

dataset generation. The transformed dataset is then further loaded onto machine learning pipeline 

which opts the algorithms best suited for a specific domain and makes predictions using the 

trained models. The cloud is an indivisible part of the framework. Data ingestion and reliable cloud 

servers make it easy to conduct efficient research. The endpoints make it easy to inform the end 

users with the leak alerts and also send email notifications with the necessary information 

regarding the leaks detected. 
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Chapter 5  

Experimental Results and Analysis 

5.1 Introduction 

This chapter presents the results from the use of algorithms from the previous chapter. The results 

are based on the use of reference datasets and datasets generated via the use of dataset 

generation algorithms. The chapter is subdivided into two sub-sections - Distance Estimation 

using Reference dataset and Multilabel fingerprint intensity classification. The first section 

mentions the use of reference datasets (RSSI dataset) and the use of a new dataset generated 

for distance estimation. The last section describes a multi-label classification approach for 

fingerprint intensity. The assessment and evaluation of all results are done via the use of standard 

metrics used for evaluation of classification and regression models. For analyzing the 

performance of regression models, we use residuals plot, prediction error plot, cooks distance 

plot, learning curve, manifold learning, feature importance and model hyperparameters. For 

analyzing the performance of the classification model, we use AUC, Confusion Matrix, Threshold, 

precision-recall, error plot, class report, feature selection, learning curve, validation curve, feature 

importance and decision boundary. 

5.2 Introduction to evaluation of machine learning models. 

5.2.1 Regression Evaluation 

Various kinds of plots can be used for model analysis. However, for our use case, three major 

types of plots have been used for the evaluation of a regression model. They are described as 

follows - 

o Residual plot is simply a plot that denotes how much a regression line misses a data point 

vertically. The residual values are plotted on vertical axis and the independent variable are plotted 

on the independent variable.  For a good plot, the residual values are randomly and equally 

spaced around the horizontal axis.  

o A prediction error plot is a plot that shows the predicted values generated by the model against 

the actual targets from the dataset. This plot allows us to see how much variance is present in 

the model. Regression models can be compared against a 45-degree line which shows how the 

prediction matches the model 
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o Learning curve plot compares the performance of a model on training and test datasets over 

various training instances. This allows us to verify if a model is learning much about the data. A 

bad learning curve usually can be a possible effect of high variance and high bias. An ideal 

learning curve is a model that generalizes well to new data. 

o Other metrics include mean absolute error, mean squared error, and root mean squared error. 

5.2.2 Classification Evaluation 

Evaluation of a good classifier naturally depends on its accuracy to classify a test data point 

accurately by its class. Different metrics are used for evaluation of classification models. The 

selection of an evaluation metric depends on the nature of the problem. Following describes some 

of the standard metrics used – 

o AUC (Area Under Curve) is one of the frequently used evaluation metrics. The metric 

plots out sensitivity and specificity for each decision cut-off between 0 and 1. A threshold 

is used for the conversion of probability outputs to classifications. The AUC plots the true 

positive rate versus false-positive rates for each possible threshold. 

o Confusion Matrix is used for the visualization of the performance of a model. Actual 

targets are plotted against the predicted ones. True positives, True negatives, False 

positives and False negatives are four elements that tell us about the performance of a 

classifier.  

o True Positives are the ones in which we predict true, and the actual target is true. 

o True Negatives are the ones where we predict false, and the actual target is false. 

o False Positives are the ones where we predict true and actual target is false 

o False Negatives are the ones where we predict false and actual target is true. 

o Accuracy shows us how frequent is our classifier correct. It is the ratio of the number of 

correct predictions to the total number of predictions 

o Recall presents the fraction of correct positive identifications out of all positives. 

o Precision denotes the fraction of correctly identified positives out of all positive 

predictions. 

o Sensitivity presents a model’s evaluation of positive predictions for all categories. 
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o Specificity presents a model’s evaluation of negative predictions for all categories . 

Most of these evaluation metrics alone are not enough to tell us how good a classifier is. 

Sometimes we need to optimize on a specific metric depending on the domain and the use 

case in which the classifier is trained and tested. 

5.3 Distance Estimation (Regression Phase) 

This section describes and analyses the regression phase used for distance estimation. Two 

datasets have been used for this purpose – 

5.3.1 Reference Dataset based Euclidean distance estimation analysis. 

To evaluate the accuracy and performance of the proposed framework, a reference dataset has 

been used. The indoor space used for this dataset is a two-level building with four access points 

placed across both the floors referenced by “A”, “B”, “C” and “D”.  

o Initial plot specifies RSSI values at different coordinates. The signal is strongest near the 

access point, and intensity drops as we go farther. The intensity is represented by the 

color, darker the color more the intensity in that area. 
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Figure 5-1. Reference dataset fingerprint intensity plot (x-axis-distance in meters, y-axis - distance in 
meters) 

 



 

 67 

o After plotting the RSSI values, calculation of Euclidean distance of each sampling location 

is done w.r.t its respective access point.  

o A relation graph is plotted between distance to each access point and RSSI (Smaller RSSI 

values denote stronger signals and therefore correspond to short distances, instability 

increases as we go farther). 

  

Figure 5-2. Reference dataset fingerprint distance relation plot.(x-axis – distance in meters , y-axis – RSSI 
values) 

 
o Wild variability of RSSI in almost all locations is a hindrance to accurate location tracking. 

Following plots denote the use of – min, max, mean and median regressor.  
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Figure 5-3. Reference dataset distance estimation using min, max, mean, and median regressors. (x-axis 
-distance in meters, y-axis – distance in meters) 

 
o Plots denote that min and max are not good regressors, whereas mean and median near 

access points still seem to perform well with distance estimation from access points. 

o Non-linearities can be modelled using various other regression algorithms. 
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5.3.1.1 Preprocessed phase 

The next section describes the use of proposed machine learning framework. The data used for 

modelling has 101973 rows and 6 feature columns. The data which is not used for modelling and 

used for predictions has 17995 rows with 6 feature columns. 

Index Description Value 

0 session_id 123 

1 Target distance 

2 Original Data (119968, 7) 

3 Missing Values True 

4 Numeric Features 4 

5 Categorical Features 2 

6 Ordinal Features False 

7 High Cardinality Features False 

8 High Cardinality Method None 

9 Transformed Train Set (83976, 9) 

10 Transformed Test Set (35991, 9) 

11 Shuffle Train-Test True 

12 Stratify Train-Test False 

13 Fold Generator K-Fold 

14 Fold Number 10 

15 CPU Jobs -1 

16 Use GPU False 

17 Log Experiment True 

18 Experiment Name diamond1 

19 USI c3dd 

20 Imputation Type simple 

21 Iterative Imputation Iteration None 

22 Numeric Imputer mean 

23 Iterative Imputation Numeric Model None 

24 Categorical Imputer constant 

25 Iterative Imputation Categorical Model None 
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26 Unknown Categorical Handling least frequent 

27 Normalize True 

28 Normalize Method z-score 

29 Transformation True 

30 Transformation Method yeo-Johnson 

31 PCA False 

32 PCA Method None 

33 PCA Components None 

34 Ignore Low Variance False 

35 Combine Rare Levels True 

36 Rare Level Threshold 0.05 

37 Numeric Binning False 

38 Remove Outliers False 

39 Outliers Threshold None 

40 Remove Multicollinearity True 

41 Multicollinearity Threshold 0.95 

42 Clustering False 

43 Clustering Iteration None 

44 Polynomial Features False 

45 Polynomial Degree None 

46 Trigonometry Features False 

47 Polynomial Threshold None 

48 Group Features False 

49 Feature Selection False 

50 Feature Selection Method classic 

51 Features Selection Threshold None 

52 Feature Interaction False 

53 Feature Ratio False 

54 Interaction Threshold None 

55 Transform Target True 

56 Transform Target Method box-cox 
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Table 5-1. Preprocessing of reference dataset 

 

5.3.1.2 Model training using regression  

The next step involves the use of some major supervised algorithms for training our train dataset 

(data used for modelling). Performance of the supervised learning algorithms is summarized as 

follows - 

 

Figure 5-4. Reference Dataset comparison of models on training dataset. 

 

5.3.1.3 Analysis of model comparison 

Most of the models generated have an accuracy of 100 percent R-squared which denotes 

how close data are to the fitted regression line. But R-squared cannot determine whether the 

coefficient estimates, and predictions are biased, hence evaluation of residual plots is done 

further (Imam, Kumar and Srivastava, 2018). Any of the top three regression models can 

further be used for ensemble creation using bagging and boosting methods. For our reference 
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dataset and for this specific domain, three algorithms seemed to do really well – cat-boost, 

Random forests and Decision Trees. Errors denotes differences between estimated distance 

from access points and their actual distances. MAE, MSE, RMSE, RMSLE and MAPE are 

some common error metrics used for comparison of models. 

5.3.1.4 Ensemble of models 

A blended model is created which combines all the three models to make predictions. The blended 
model has been generated with cat-boost, Random forests, decision tress and K-nearest 
neighbors. 

Index MAE MSE RMSE R2 RMSLE MAPE 

0 0.0346 0.0287 0.1694 0.9997 0.0080 0.0026 

1 0.0356 0.0297 0.1723 0.9997 0.0172 0.0032 

2 0.0337 0.0088 0.0941 0.9999 0.0057 0.0027 

3 0.0358 0.0152 0.1232 0.9998 0.0081 0.0030 

4 0.0348 0.0161 0.1268 0.9998 0.0104 0.0031 

5 0.0347 0.0319 0.1787 0.9996 0.0183 0.0033 

6 0.0350 0.0176 0.1325 0.9998 0.0087 0.0027 

7 0.0346 0.0062 0.0785 0.9999 0.0073 0.0027 

8 0.0365 0.0117 0.1081 0.9999 0.0093 0.0029 

9 0.0383 0.0656 0.2562 0.9992 0.0103 0.0028 

Mean 0.0354 0.0231 0.1440 0.9997 0.0103 0.0029 

Standard 

Deviation 

0.0012 0.0165 0.0492 0.0002 0.0039 0.0002 

Table 5-2.Ensemble model’s performance on unseen/test data from Reference dataset. 

 
The final predicted model accuracy comes out to 99.9 percent on unseen data, which has not 

been used for modelling. The blended model can therefore be used as a final model for distance 

estimation. 

 

Figure 5-5. Final model’s prediction performance on unseen/test data. 
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5.3.1.5 Prediction using Blended Model 

The plot denotes a comparison of actual versus predicted distance – RSSI relations. 

 

 

 

 

 

 

Figure 5-6. Reference Dataset fingerprint actual (left) versus predicted (right) distance relation plot and 
snapshot of Distance vs Label (bottom) using ensemble of models. 
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5.3.1.6  Predictions using trained models on test dataset (unseen data for 
modelling) 

Model Name MAE MSE RMSE R2 RMSLE MAPE 

Decision 

Tree 

Regressor 

0.0072 0.0572 0.2325 0.9993 0.0121 0.0005 

Knn 

regressor 

0.1722 0.1113 0.3336 0.9987 0.0342 0.0160 

Catboost 

regressor 

0.0951 0.0197 0.1402 0.9998 0.0142 0.0078 

Tuned_knn 

regressor 

0.1572 0.0830 0.2878 0.9990 0.0308 0.0152 

Bagged_knn 

regressor 

0.1677 0.0968 0.3111 0.9989 0.0317 0.0155 

Boosted_knn 

regressor 

0.1212 0.0640 0.2529 0.9993 0.0270 0.0114 

Blender 0.0354 0.0231 0.1440 0.9997 0.0103 0.0029 

Stacker 0.0321 0.0046 0.0665 0.9999 0.0058 0.0023 

Table 5-3.Trained models’ performance on test set of reference dataset 

 
This plot summarizes how after combining different models and tuning various hyperparameters, 

the errors are brought down, and accuracy is increased at the same time. As evident from the 

tabular plot, the blender and stacker which are ensemble of models seems to outperform them 

all. The distance estimation along with the reduced errors using the ensemble of models seem to 

be an efficient framework over the mean and median regressors which might not be able to 

include interferences and other non-linearities in the environment. 
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5.3.1.7 Residual Plots on test data 
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Figure 5-7.Residual plots for all trained model (Decision Trees, K-nearest neighbors, Cat-boost, Tuned K-
nearest neighbors, Bagged Knns, Boosted Knns and Blender model) on unseen/test data. 

 

Residual plots follow property that all errors are independent and normally distributed. The normal 

distribution is clear from the distribution plot besides the residual plots in the above figure. Few 

characteristics of a good plot are high-density points close to origin and low density of points away 

from origin (Gohar, 2020). A generalized model depicts symmetricity along its origin. The plots 

follow order – Decision Trees, K-nearest neighbors, Cat-boost, Tuned K-nearest neighbors and 

Ensemble of models (bagged and boost). The ensemble models have highest density of points 

close to origin. The final model is combined with decision trees, Cat-boost and K-nearest 

neighbors. This model has minimum outliers compared to any other model rendering it as best 

model to be used for deployment. 
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5.3.1.8  Prediction Error plots on test data 
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Figure 5-8. Prediction error plots for all trained (Follows order from left to right - Decision Trees, K-nearest 
neighbors, Cat-boost, Tuned K-nearest neighbors, Bagged Knns, Boosted Knns and Blender model). 

 
The plots follow order from left to right – Decision Trees, K-nearest neighbors, Cat-boost, Tuned 

K-nearest neighbors, and Ensemble of models (bagged and boost). Most of them seems to be 

less biased with low variance. However, K-nearest neighbors seem to have some outliers which 

represents some of the prediction errors, hence demonstrating that even after modelling, there 

always seems to be some features which are not weighed in and hence can affect the prediction 

on unseen data. Most of the fingerprinting research is concerned with the use of K-nearest 

neighbors for distance estimation or location determination. This graph makes it obvious on how 

even after tuning K-nearest neighbors, significant portion of outliers seem to be persistent in the 

final predictions. 

5.3.1.9 Interpretation of models 

The interpretation of model is one very useful tool supplied with Pycaret which has been integrated 

with our framework to explain the predictions of the model. The model is interpreted using SHAP 

(Shapley Additive Explanations) (Lundberg and Lee, 2017). Accuracy versus interpretability 

trade-off has always been relevant for model success. The use of SHAP simplifies this issue. 

SHAP identifies the new class of additive feature importance measures. The feature is currently 

designed to accommodate only tree-based model. The interpretation has been done for decision 

tree regression and cat-boost regression. 
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Figure 5-9. Interpretation of cat-boost regression model on unseen data/test set. 

. 

 

The first plot shows the interpretation of the cat-boost regression. It depicts how x and y grid 

coordinates are very important for the prediction. Access point B seems to be a very good 

candidate for fingerprint predictions. 

 

Figure 5-10. Interpretation of decision trees regression model on unseen data/test set. 

 

The second plot explains the decision tree model. The interpretation follows the cat-boost 

regression’s interpretation. There are some minor differences which varies from domain to 

interferences involved.  
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5.3.2 Distance Estimation using transformed dataset generated via Dataset 

Generation Phase 

This section covers all the regression phase for distance estimation using the transformed 

dataset. The dataset is transformed initially with the dataset generation phase where Minkowski’s 

distance measure is used for feature transformation using the latitudes and longitudes of the 

locations. This dataset uses 2048 datapoints or instances. Split has been made as 85% data for 

modelling (training set) and 15% data for testing out on trained model. The regression phase 

process for this dataset is similar to the previous phase. This section covers only final 

comparisons on test datasets.  

5.3.2.1 Preprocessed Phase 

The preprocessed phase covers the necessary transformation required for the dataset to be used 

further for model generation. Below table covers a brief overview on some of the preprocessed 

features. The training test set is again divided into training and validation dataset for avoiding 

overfitting. 

Index Description Value 

0 session_id 123 

1 Target distance 

2 Original Data (1334, 14) 

3 Missing Values False 

4 Numeric Features 3 

5 Categorical Features 9 

6 Ordinal Features False 

7 High Cardinality Features False 

8 High Cardinality Method None 

9 Transformed Train Set (933, 32) 

10 Transformed Test Set (401, 32) 

11 Shuffle Train-Test True 

12 Stratify Train-Test False 

13 Fold Generator K-Fold 

14 Fold Number 10 
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15 CPU Jobs -1 

16 Use GPU True 

17 Log Experiment False 

18 Experiment Name Distance-estimation 

19 USI 89fb 

20 Imputation Type iterative 

21 Iterative Imputation Iteration 20 

22 Numeric Imputer mean 

23 Iterative Imputation Numeric Model Light Gradient Boosting Machine 

24 Categorical Imputer constant 

25 Iterative Imputation Categorical Model Light Gradient Boosting Machine 

26 Unknown Categorical Handling Least frequent 

27 Normalize True 

28 Normalize Method z-score 

29 Transformation False 

30 Transformation Method None 

31 PCA False 

32 PCA Method None 

33 PCA Components None 

34 Ignore Low Variance False 

35 Combine Rare Levels False 

36 Rare Level Threshold None 

37 Numeric Binning False 

38 Remove Outliers False 

39 Outliers Threshold None 

40 Remove Multicollinearity True 

41 Multicollinearity Threshold 0.850000 

42 Clustering False 

43 Clustering Iteration None 

44 Polynomial Features False 

45 Polynomial Degree None 
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46 Trigonometry Features False 

47 Polynomial Threshold None 

48 Group Features False 

49 Feature Selection False 

50 Feature Selection Method classic 

51 Features Selection Threshold None 

52 Feature Interaction False 

53 Feature Ratio False 

54 Interaction Threshold None 

55 Transform Target False 

56 Transform Target Method box-cox 

Table 5-4. Preprocessing of Transformed Location dataset (generated using dataset generation) 

 

5.3.2.2 Predictions using the trained models on test dataset 

The trained models are finally tested out using the test set or the unseen data which is not used 

for modelling. Below is a brief overview on the R-squared accuracy on the test sets. The cat-boost 

regression and blended model seems to outperform the other models. However, as mentioned 

before R-squared accuracy alone isn’t enough to cover all the interpretations of the model. The 

blended model and Stacking model achieve 99 % accuracy with low error counts.  

Model Name R2 

Cat-Boost Regressor 1.0 

K Neighbors Regressor 0.9956 

Decision Tree Regressor 0.9972 

Blended model  0.9991 

Stacking model 1.0 
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Table 5-5.Trained models’ performance on transformed Location dataset (generated using dataset 
generation) 

                                 

Figure 5-11. Final model’s predicted distance versus RSSI plot on unseen/test data of transformed 
location dataset. (x-axis – distance in meters, y-axis – RSSI values in dB). 

 

5.3.2.3 Residual Plots 

The residual plot follows order K-nearest neighbors, Decision trees regression, Cat-boost 

regression, Tuned K-nearest neighbors and Ensemble of models. Decision trees seem to perform 

well without significant outliers. Cat-boost performs slightly better than K-nearest neighbors 

which has significant outliers. However, tuned K-nearest neighbors seem to perform better than 

Cat-boost and K-nearest neighbors. Ensemble of models are used at the end for making final 

predictions on the unseen datapoint which haven’t been used for modelling. 
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Figure 5-12. Residual plots for all trained model (Decision Trees, K-nearest neighbors, Cat-boost, Tuned 
K-nearest neighbors, Bagged Knns, Boosted Knns, Blender and Stacking model) on unseen/test data (x-

axis – distance in meters, y-axis – Residual values).  

 

5.3.2.4 Interpretation of model 

Cat-boost and decision trees have been used for interpretation of model. For Cat-boost, access 

point 3 and access point 4 (the sensors) are major contributors towards distance estimations. The 

locations of wireless sensor lab and exit lobby from the floor plan have significant fractions 

towards distance estimation, denoting the fact that those two locations are appropriate for data 

collection. Decision trees otherwise reflect the same conclusion as explained in the following plots. 
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Figure 5-13. Interpretation of cat-boost regression model on unseen data/test set of transformed location 
dataset. 

 

Figure 5-14. Interpretation of Decision Tree regression model on unseen data/test set of transformed 
location dataset. 
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5.4 Classification Phase  

This section describes a classification pipeline designed for fingerprint intensity classification. The 

fingerprint used in our use case is RSSI, and the dataset used for training our classifier has been 

generated using the dataset generation phase. The classification is a multi-label classification. 

The transformed dataset has multiple classes for RSSI intensity which is our target feature. This 

problem is therefore a multi-label classification machine learning use case. 

5.4.1 Preprocessed Phase 

The preprocessed phase evaluates the transformed dataset and performs necessary 

preprocessing steps. The target feature is hot encoded and dataset imbalance is resolved using 

SMOTE (Synthetic Minority Oversampling Technique) which synthesizes new examples from 

existing samples. The data augmentation improves performance of the trained model. A minority 

class instance of RSSI intensity is selected (i.e., Excellent/Outstanding RSSI Intensity sample 

values which are less in number). The model generation phase relies on the transformed dataset 

generated using the dataset generation phase. The dataset consists of 2052 data instances with 

14 feature columns. It is split into 70 percent training set and 30 percent test set. The training 

instances are used for training the classifier or model and rest of instances are used to test out 

the trained model. 

Index Description Value 

0 session_id 111 

1 Target RSSI_Intensity 

2 Target Type Multiclass 

3 Label Encoded Excellent: 0, Good: 1, Low: 2, Outstanding: 3, Very good: 4, Very 

low: 5 

4 Original Data (2052, 14) 

5 Missing Values False 

6 Numeric Features 4 

7 Categorical Features 8 

8 Ordinal Features False 

9 High Cardinality Features False 

10 High Cardinality Method None 

11 Transformed Train Set (1436, 1456) 

12 Transformed Test Set (616, 1456) 

13 Shuffle Train-Test True 
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14 Stratify Train-Test False 

15 Fold Generator StratifiedKFold 

16 Fold Number 10 

17 CPU Jobs -1 

18 Use GPU True 

19 Log Experiment False 

20 Experiment Name clf-default-name 

21 USI 9ba5 

22 Imputation Type iterative 

23 Iterative Imputation Iteration 10 

24 Numeric Imputer mean 

25 Iterative Imputation Numeric Model Light Gradient Boosting Machine 

26 Categorical Imputer mode 

27 Iterative Imputation Categorical 

Model 

Light Gradient Boosting Machine 

28 Unknown Categorical Handling least_frequent 

29 Normalize True 

30 Normalize Method z-score 

31 Transformation True 

32 Transformation Method quantile 

33 PCA False 

34 PCA Method None 

35 PCA Components None 

36 Ignore Low Variance True 

37 Combine Rare Levels False 

38 Rare Level Threshold None 

39 Numeric Binning False 

40 Remove Outliers False 

41 Outliers Threshold None 

42 Remove Multicollinearity False 

43 Multicollinearity Threshold None 

44 Clustering False 

45 Clustering Iteration None 

46 Polynomial Features False 

47 Polynomial Degree None 

48 Trignometry Features False 

49 Polynomial Threshold None 

50 Group Features False 
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51 Feature Selection False 

52 Feature Selection Method classic 

53 Features Selection Threshold None 

54 Feature Interaction False 

55 Feature Ratio False 

56 Interaction Threshold None 

57 Fix Imbalance True 

58 Fix Imbalance Method SMOTE 

Table 5-6.Preprocessing of transformed location dataset for classification phase. 

 

5.4.2 Comparison of models on training dataset 

Training of the models is done using various supervised classification algorithms. The tree 

algorithms seem to perform better than other algorithms. Similar to regression phase, Accuracy 

is not the only metric to be relied on. Area under Receiver operating characteristic curve (AUC), 

precision, recall, F1-score etc. are some of the other metrics that can be used for evaluation of 

trained models. 

Index Model Accuracy AUC Recall Precision F1 Kappa MCC TT 
(Sec) 

catboost Cat-Boost 
Classifier 

1.0000 0.4000 1.0000 1.0000 1.0000 1.0000 1.0000 6.6930 

dt Decision 
Tree 
Classifier 

0.9989 0.4000 0.9791 1.0000 0.9994 0.9984 0.9984 0.0240 

gbc Gradient 
Boosting 
Classifier 

0.9989 0.4000 0.9791 1.0000 0.9994 0.9984 0.9984 2.6780 

lightgbm Light 
Gradient 
Boosting 
Machine 

0.9989 0.4000 0.9791 1.0000 0.9994 0.9984 0.9984 0.1700 

rf Random 
Forest 
Classifier 

0.9593 0.3991 0.8351 0.9548 0.9550 0.9398 0.9410 0.7380 
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lr Logistic 
Regression 

0.9368 0.3964 0.8025 0.9305 0.9321 0.9063 0.9071 0.5690 

et Extra Trees 
Classifier 

0.9325 0.3969 0.8244 0.9278 0.9286 0.9002 0.9013 0.7720 

knn K Neighbors 
Classifier 

0.9250 0.3949 0.8591 0.9236 0.9228 0.8893 0.8904 0.4790 

lda Linear 
Discriminant 
Analysis 

0.8145 0.3836 0.6034 0.8187 0.8060 0.7206 0.7293 0.3990 

ada Ada Boost 
Classifier 

0.7567 0.3467 0.6867 0.6107 0.6654 0.6244 0.6936 0.1800 

ridge Ridge 
Classifier 

0.7492 0.0000 0.5567 0.7239 0.7332 0.6265 0.6299 0.0350 

svm SVM - 
Linear 
Kernel 

0.7385 0.0000 0.6204 0.7407 0.7279 0.6124 0.6222 0.1240 

nb Naive 
Bayes 

0.2165 0.2342 0.4510 0.2139 0.1366 0.0793 0.1109 0.0250 

qda Quadratic 
Discriminant 
Analysis 

0.1038 0.1242 0.0987 0.1041 0.0880 0.0492 0.0618 0.2620 

Table 5-7.Comparison of classifiers on training data of transformed location dataset. 

 

5.4.3 Predictions on data not used for modelling (Test dataset) 

After comparison of classifier models, models are created using logistic regression, light gradient 

boosting, cat-boost, k-nearest neighbors and random forests. The trained models are then 

evaluated on the test dataset. The models are then tuned to optimize AUC. The tuned versions 

have better generalization and less misclassified classes. An ensemble of models is generated 

using Bagging and Boosting which outperforms the tuned versions of classifiers. A blender model 

composed of all the above-mentioned classifiers (light gradient boosting, logistic regression, k-

nearest neighbors and random forests) is generated and evaluated on test set. The following table 

depicts the performance of all with other evaluation metrics and coefficients. 
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Index Model Accuracy AUC Recall Prec. F1 Kappa MCC 

0 Logistic 

Regression 

0.9451 0.9907 

 

0.7011 

 

0.9439 

 

0.9424 

 

0.9201 

 

0.9205 

 

1 Light 

Gradient 

Boosting 

classifier 

0.9975 1.0 0.9444 0.9975 0.9973 0.9964 0.9964 

2 Cat-boost 

Classifier 

0.9975 0.9999 0.9444 0.9975 0.9973 0.9964 0.9964 

3 K-nearest 

neighbors 

0.9327 0.9981 0.7032 0.9319 0.9309 0.9023 0.9026 

4 Random 

forests 

0.9751 0.9979 0.7251 0.9730 0.9729 0.9638 0.9640 

5 Tuned 

Logistic 

Regression 

0.9526 0.9936 0.7396 0.9511 0.9513 0.9314 0.9317 

6 Tuned light 

gradient 

boosting 

classifier 

0.9950 1.0 0.7778 0.9925 0.9938 0.9928 0.9928 

7 Tuned cat-

boost 

classifier 

0.9975 0.9992 0.9444 0.9975 0.9973 0.9964 0.9964 

8 Tuned K-

nearest 

neighbors 

0.9626 0.9902 0.8849 0.9639 0.9615 0.9457 0.9462 
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9 Tuned 

random 

forests 

0.9975 1.0 0.9444 0.9975 0.9973 0.9964 0.9964 

10 Bagged 

logistic 

regression 

0.9501 0.9920 0.7349 0.9487 0.9489 0.9277 0.9281 

11 Bagged 

light 

gradient 

boosting 

classifier 

0.9950 1.00 0.7778 0.9925 0.9938 0.9928 0.9928 

12 Bagged 

cat-boost 

classifier 

0.9975 1.0 0.9444 0.9975 0.9973 0.9964 0.9964 

13 Bagged K-

nearest 

neighbor 

0.9426 0.9899 0.8731 0.9437 0.9417 0.9167 0.9169 

14 Bagged 

random 

forests 

0.9975 1.0 0.9444 0.9975 0.9973 0.9964 0.9964 

15 Boosted 

logistic 

regression 

0.9501 0.9920 0.7379 0.9487 0.9489 0.9277 0.9281 

16 Boosted 

light 

gradient 

boosting 

classifier 

0.3616 0 0.1667 0.1308 0.1921 0 0 
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17 Boosted 

Cat-boost 

classifier 

0.9975 0.9992 0.9444 0.9975 0.9973 0.9964 0.9964 

18 Boosted 

random 

forests 

0.9975 1.0 0.9444 0.9975 0.9973 0.9964 0.9964 

19 Blender 0.9925 0.9989 0.9248 0.9926 0.9921 0.9892 0.9892 

20 Stacker 0.9975 0.9993 0.9444 0.9975 0.9973 0.9964 0.9964 

Table 5-8. Training models’ performance on unseen/test data of transformed location dataset 

5.4.4 Area Under ROC curve 

The Receiver Operator Characteristic curve (ROC) has many faces when being analyzed. It’s 

important to understand the interpretation behind each of the ROC curve. The ROC analysis isn’t 

only about the cost-sensitive learning. The classifiers on the convex hull achieve the best 

accuracy for class distributions whereas the classifiers lying below the convex hull are sub-

optimal(ICML’04 tutorial on ROC analysis, no date). Before analyzing the classifiers on the final 

predictions, here’s a deep dive into the curves.  

  

Figure 5-15. AUC explanation with points on the curve. 

 

Specificity is lowest and sensitivity is highest at point A providing evidence on correct classification 

of all positive class instances and incorrect classification of all negative class instances. As the 

curve shifts to point B, incorrect classification of negative class instances starts decreasing 
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denoting that threshold at this point is better than point A. The specificity stays same at C and D 

points but as noticeable from the reference plot, point C has higher sensitivity than point D. The 

number of correctly classified positive instances increase for same value of specificity and lastly, 

point E has highest specificity and hence highest number of correct classifications for negative 

class points. The analysis provided for the model generated on test set follows the order – Logistic 

regression, Cat-boost, K-nearest neighbors, Light-gradient boosting, random forests with their 

tuned counterparts and ensemble of models with bagged, boosted and blender models. Each plot 

has confusion matrix besides it showing the number of predictions made using test set. 

 

Figure 5-16. AUC and confusion matrix of Logistic regression on unseen/test data of transformed location 
dataset. 

 

The logistic regression being a rather simple implementation faces issues in classifying all 

instances correctly. The prediction miss-outs or misclassification of labels is quite significant for 

classes ‘1’,’2’,’4’ which represent ‘Good’, ‘Low’, ‘Very good’ RSSI intensity levels. 
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Figure 5-17. AUC and confusion matrix of Cat-boost classifier on unseen/test data of transformed location 
dataset. 

  

Figure 5-18. AUC and confusion matrix of Light gradient boosting classifier on unseen/test data of 
transformed location dataset. 

 

Both light gradient boosting, and Cat-boost proved to be good classifiers, reducing the 

misclassifications of the labels and maintaining accuracy of the predictions. 

 

Figure 5-19. AUC and confusion matrix of K-nearest neighbors on unseen/test data of transformed 
location dataset. 
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Figure 5-20. AUC and confusion matrix of Random Forests on unseen/test data of transformed location 
dataset. 

 

The model analysis shows the fact that K-nearest neighbors and Random Forests still are not sub 

optimal and therefore misclassify positive and negative class instances in significant numbers. 

The Cat-boost and light gradient boosting are more reliable than logistic regression in terms of 

specificity and sensitivity. The tuned models seem to be slightly better than untuned counterparts, 

as they were optimized on AUC. The last section covers final predictions using ensemble of 

modes (Bagging, Boosting and Blender). The analysis covers specific versions (even though AUC 

and Confusion matrices have been plotted for all).  

            

Figure 5-21. AUC and confusion matrix of Bagging classifier (ensemble of models) on unseen/test data of 
transformed location dataset. 
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Figure 5-22. AUC and confusion matrix of Boosting Classifier (ensemble of models) on unseen/test data 
of transformed location dataset. 

     

Figure 5-23.AUC and confusion matrix of Blender model on unseen/test data of transformed location 
dataset. 

 

 The bagged version of logistic regression and it’s boosted version seem to perform worse than 

the tuned versions of logistic regression. The root cause of this could be attributed to unknown 

features occupying the feature space. Even the ensemble of models is not sufficient to cover the 

complexity of the environment if the classifier is unable to model the unknown variables in the 

domain. Due to this reason, a blender with combination of Logistic regression, Cat-boost 

classifier, K-nearest neighbors, Light gradient boosting classifier and Random forests is trained 

and tested to make final predictions on unknown data or test set which has not been used for 

modelling.  
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5.5 Conclusion 

This concludes the experimental results and analysis section. The two phases regression and 

classification make this framework highly efficient combined with a long list of supervised learning 

algorithms. The evaluation of model has been carried out in depth to make better analysis of 

different phases of model generation. Often overlooked, dataset generation and preprocessing 

phase are very important steps in the framework which helps tune the model for different domains. 

The distance estimation and fingerprint intensity classification implemented in the proposed 

framework are a generalization of the improved indoor localization. This framework could serve 

to be a breakthrough in the upcoming era where SLAM (Simultaneous Localization and Mapping) 

has become important to map indoor areas eliminating the need to rely on GPS for accurate 

indoor positioning. 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

 

The research presented in thesis focused on improving state of art indoor localization via 

improved machine learning framework for indoor positioning and fingerprint intensity level 

classification. Indoor localization has become one of the crucial fields of research. The framework 

implemented means to serve as a base platform for further research. Dataset generation, 

preprocessing, adding spatial context to data, model generation and model interpretation are key 

elements of the framework. In addition to the framework, the ML-Ops is another key factor of this 

framework. Instead of focusing all the time on data preparation and preprocessing, focusing on 

improving machine learning models and gaining useful insights is highly encouraged. The 

optimization of models and their interpretation helps us gain useful insights of any indoor 

environment thereby reducing complexity of manual efforts.  

6.2 Future Work 

 

The framework is currently data-centric, and some improvements are needed to allow multiple 

machine learning models to perform well. The shift from data-centric to model-centric framework 

is proposed for future improvements, where significant noise can be handled by the framework 

and maintain accuracy at the same time. The use of neural models in the current framework could 

be biased since the dataset used is on a smaller scale. The generalization of framework to work 

with varying environment and interferences is the next best thing to be achieved. Convnets or 

Convolutional Neural Networks and modifying the framework to include image datasets is a 

suggested direction of research to reduce the localization error in indoor non-line-of-sight (NLoS) 

conditions. Last but not least, visualization of varying intensity levels in real time inference is a 

domain yet to be explored and researched upon. The appendix will cover the deployment phase 

which is still a work in progress.  
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Appendix 

A. Dataset Generation code 

This section describes the dataset generation code. The major implementation has been done 

using python 3.6, anaconda and use of some major libraries including NumPy, Matplotlib, pandas, 

Pycaret, Scikit, Pyodbc, Cat-boost and Shap. NumPy is used for manipulation of multidimensional 

array objects, sorting and shape manipulations. Matplotlib is used for plotting various useful 

visualizations. Pandas provide an efficient way to use data structures and data analysis tools for 

python. Pycaret is the low-code framework which helps someone with machine learning pipeline 

setup without much hassle and prior knowledge about machine learning pipelines. Scikit-learn 

covers major regression and classification implementations. Cat-boost is an open-source library 

for applying gradient boosting on decision trees. Shap is used for interpretation of models after 

they are trained. Dataset generation code makes use of Minkowski’s distance metric for Euclidean 

and Manhattan distance metrics either of which can be used for distance estimation using 

fingerprints. The code also integrates spatial context to existing raw fingerprint data in form of 

grids or latitude-longitudes. 
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Flowchart 
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Code 

######################### Installation of required packages ##################### 

!pip install numpy 

!pip install matplotlib 

!pip install pandas 

!pip install pycaret 

!pip install scikit-optimize 

!pip install catboost 

!pip install pyodbc 

!pip install shap 

########################### Import packages ############################### 

from numpy import vstack 

from numpy import sqrt 

from pandas import read_csv 

import pyodbc 

import getpass 

import pandas as pd 

import numpy as np 

from datetime import datetime 

from dateutil import tz 

from pycaret.utils import enable_colab 

import pandas as pd 

enable_colab() 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

import seaborn as sns 

import pandas as pd 

import scipy as sc 

sns.set() 

import matplotlib 

from pycaret.regression import * 

matplotlib.rcParams['figure.figsize'] = [12, 8] 
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from pycaret.datasets import get_data 

######################### Dataset Class #################################### 

class Dataset(): 

######################### Source of data definition ########################### 

def display(self): 

print("Choose source of your indoor location data:") 

print("1-> SQL server") 

print("2-> CSV file") 

print("3-> Json file") 

print("4-> Via API call") 

 

########################## SQL server connection using pyodbc package ######### 

def sqlapi(self,server,database,username,password,table_name): 

conn = pyodbc.connect('DRIVER={SQL 
Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ password) 

cursor = conn.cursor() 

query = "SELECT * from "+ table_name + " ;" 

df = pd.read_sql(query,conn) 

return df 

######################### CSV (Comma-Separated Values) files ################ 

def csv_files(self,filename,s): 

df = pd.read_csv(filename,sep=s) 

return df 

############################## JSON files ################################# 

def read_json(self,file): 

df = pd.read_json(file) 

df.info() 

return df 

############################# API Call  ################################### 

def api_call(self,URL): 

df = pd.read_json(URL) 

return df 

#################### Datatype conversion for numeric/datetime types############## 

def datatype_convert(self,df,col): 

choice = int(input("Press 1 for numeric / Press 2 for Datetime")) 

if(choice == 1): 
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df[col] = pd.to_numeric(df[col]) 

elif(choice == 2): 

try: 

df[col] = pd.to_datetime(df[col], format="%Y-%d-%m %H:%M:%S") 

except: 

df[col] = pd.to_datetime(df[col]) 

return df 

 

def data_sources(self,src): 

if(src == 1): 

server = input("Enter the server name: ") 

database = input("Enter the database name: ") 

username = input("Enter the username: ") 

password = getpass.getpass("Enter the password: ") 

table_name = input("Enter the table name you want to query out ") 

df = self.sqlapi(server,database,username,password,table_name) 

elif(src == 2): 

file = input("Enter the file path ") 

s = input("Enter the separator if any ") 

df = self.csv_files(file,s) 

elif(src == 3): 

file = input("Enter the json file path ") 

df = self.read_json(file) 

elif(src == 4): 

url = input("Enter the REST URL ") 

df = self.api_call(url) 

else: 

print("Sorry Invalid choice !! ") 

return df 

 

########################## Saving files #################################### 

def save_file(self,df): 

print("Location Dataset: \n",df) 

file_path_tf = input('Enter the file you want to store the transformed dataset: ') 

file_name = input("Enter the file name with .csv extension") 
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df.to_csv(file_path_tf+'/'+file_name,index=False) 

 

######################## Bluetooth Address / Sensor address ################### 

def check_sensor_bluetooth(self,df): 

hv_sensor_col = input("Do you have a sensor/bluetooth  column in your dataset? ") 

if(hv_sensor_col == "no"): 

data_col = input("Enter the name of sensor data column: ") 

address = input("Enter the bluetooth address:") 

df['Sensor'] = np.where(df[data_col] == address,"Sensor Device","Bluetooth Device") 

return df 

 

################ Initial pass of processing raw data without spatial context########## 

def initial_pass(self): 

self.display() 

src = int(input("Enter the source of the data: (make sure path doesn't contain whitespaces or special 
symbols)")) 

df = self.data_sources(src) 

print("\n Data loaded on a dataframe.....") 

col_names = [] 

count = len(df.columns) 

print("\n Columns present in current dataset.... :",count) 

col_names.append(df.columns) 

#df = pd.DataFrame(df,columns = col_names) 

df.convert_dtypes().dtypes 

print("\n Preview of Data: \n",df.head(50)) 

print("\n Summary of data: \n",df.info()) 

d_type_conv = input("Do you want to convert Datatype of any specific column (yes/no) :") 

while(d_type_conv == "yes"): 

col = input("Enter the name of column whose datatype you want to change: ") 

self.datatype_convert(df,col) 

d_type_conv = input("Do you want to change datatype of one more column(yes/no): ") 

print("\n Summary of data after conversion \n",df.info()) 

self.check_sensor_bluetooth(df) 

rssi_col = input("Enter the fingerprint column in the dataset :") 

 

############## RSSI fingerprint intensity binning based on standard scales ########## 
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def rssi_levels(df): 

if df[rssi_col] < -100: 

return "No Signal" 

elif df[rssi_col] >= -100 and df[rssi_col] <= -90: 

return "Very low" 

elif df[rssi_col] >= -90 and df[rssi_col] <= -80: 

return "Low" 

elif df[rssi_col] >= -80 and df[rssi_col] <= -70: 

return "Good" 

elif df[rssi_col] >= -70 and df[rssi_col] <= -60: 

return "Very good" 

elif df[rssi_col] >= -60 and df[rssi_col] <= -50: 

return "Excellent" 

elif df[rssi_col] > -50: 

return "Outstanding" 

df["RSSI_Intensity"] = df.apply(rssi_levels,axis=1) 

print("\n Preview of data before proceeding forward .....") 

return df 

 

ds = Dataset() 

df = ds.initial_pass() 

################################# Location Class ########################### 

class Location(): 

def __init__(self,df): 

self.df = df 

 

def location(self,df): 

loc_data = input("Do you have manual location coordinates in your dataset (yes/no) ") 

if(loc_data == "no"): 

how_many = int(input("Enter the count of locations you want to enter: ")) 

id = input("Enter the beacon identifier column name: ") 

x_loc = input("Enter the x location col_name: ") 

y_loc = input("Enter the y location col_name: ") 

z_loc = input("Enter the floor location col_name: ") 

loc_name_col = input("Enter the location name col_name:") 
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for i in range(how_many): 

idn = input("Enter the beacon id: ") 

loc_name = input("Enter the location name: ") 

x = float(input("Enter the x / latitude coordinate / grid coordinate")) 

y = float(input("Enter the y / longitude coordinate / grid coordinate")) 

z = float(input("Enter the z / floor coordinate / grid coordinate")) 

df.loc[df[id] == idn,x_loc] = x 

df.loc[df[id] == idn,y_loc] = y 

df.loc[df[id] == idn,z_loc] = z 

df.loc[df[id] == idn,loc_name_col] = loc_name 

return df 

 

loc_ds = loc1.location(df) 

ds.save_file(loc_ds) ### Save file with some name 

dataset_file = ('location_dataset_thesis_final.csv') ### retrieve the file with the same name 

data = pd.read_csv(dataset_file) 

print(data.count) 

dataset = data.copy() 

 

#########Generalizing all distance measures in form of minowski's distance metric##### 

p = int(input("Enter 1 for Manhattan distance measure and 2 for Euclidean distance measure")) 

 

######### Location of the Access point or Bluetooth gateway ###################### 

 

ap_coordinates = {"1":{43.476462,-80.570871,2},"2":{43.476473,-80.570879,2},"3":{43.4764129, -
80.5707663,2},"4":{43.4764791, -80.5710245,2}} 

x_loc = input("Enter the x location col_name (sensors)") 

y_loc = input("Enter the y location col_name (sensors)") 

z_loc = input("Enter the floor location col_name (sensors)") 

access_point_col = input("Enter the name of access point column(make sure it's a string column") 

g = dataset.groupby([x_loc,y_loc,z_loc,access_point_col]) 

def dist(df): 

ap_coords = ap_coordinates[df[access_point_col].iloc[0]] 

x, y, z = ap_coords 

df["distance"] = pow((np.abs((df[x_loc] - x)) ** p + np.abs((df[y_loc] - y)) ** p + np.abs((df[z_loc] - z)) ** 
p),(1/p)) 
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return df 

dataset  = g.apply(dist) 

 

B. Model generation code (Classification plus Regression) 

This section includes the code for using the transformed dataset for classification and regression. 

The pipeline includes loading of dataset, comparison of models, model creation, model training 

and predictions on holdout/validation set and final predictions on unseen data or test set. 

Flowchart 
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Code  

####################### import the transformed dataset file ##################### 

from imblearn.over_sampling import * 

dataset_file = ('.//transformed_thesis_final.csv') 

data_read = pd.read_csv(dataset_file) 

print(data_read.count) 

dataset = data_read.copy() 

 

####################### Check the dataset shape ############################## 

print("Shape of the dataset (observations, features): ",dataset.shape) 

 

####################### Train – Test dataset split ############################# 

data = dataset.sample(frac=0.65,random_state=600) 

data_unseen = dataset.drop(data.index) 

data.reset_index(inplace=True,drop=True) 

data_unseen.reset_index(inplace=True,drop=True) 

print('Data for Modeling:' + str(data.shape)) 

print('Unseen Data for Predictions:' + str(data_unseen.shape)) 

 

###################### Checking the fingerprint intensity counts ################# 

data.RSSI_Intensity.value_counts() 

data["RSSI_Intensity"].value_counts().plot.bar(legend=None) 

 

########################## Preprocessing Stage ############################## 

from pycaret.classification import * 

adasyn1 = ADASYN(sampling_strategy='minority') 

exp2 = setup(data = data, target = 
'RSSI_Intensity',session_id=111,preprocess=True,imputation_type='iterative',iterative_imputation_iters=1
0,date_features=['timestamp'],normalize=True,normalize_method='zscore',transformation=True,transform
ation_method='quantile',log_plots=True,log_experiment = True,use_gpu=True,experiment_name = 
'Fingeprint Multilabel classification') 

 

####################### Comparison of models ############################### 

best_model  = compare_models() 
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######################## Classifier Model creation ########################### 

lightbgm = create_model('lightgbm') 

cat = create_model('catboost') 

lr = create_model('lr') 

rf = create_model('rf') 

knn = create_model('knn') 

tuned_lightbgm = tune_model(lightbgm, optimize = 'AUC') #default is 'Accuracy' 

tuned_cat = tune_model(cat, optimize = 'AUC') #default is 'Accuracy' 

tuned_lr = tune_model(lr, optimize = 'AUC') #default is 'Accuracy' 

tuned_knn = tune_model(knn, optimize = 'AUC') #default is 'Accuracy' 

tuned_rff = tune_model(rf, optimize = 'AUC') #default is 'Accuracy' 

bagged_lightbgm = ensemble_model(tuned_lightbgm, method = 'Bagging') 

bagged_lr = ensemble_model(tuned_lr, method = 'Bagging') 

bagged_rf = ensemble_model(tuned_rff, method = 'Bagging') 

bagged_knn = ensemble_model(tuned_knn, method = 'Bagging') 

bagged_cat = ensemble_model(tuned_cat,method='Bagging') 

boosted_lightbgm = ensemble_model(tuned_lightbgm, method = 'Boosting') 

boosted_lr = ensemble_model(tuned_lr, method = 'Boosting') 

boosted_rf = ensemble_model(tuned_rff, method = 'Boosting') 

blender_normal = blend_models(estimator_list = [knn,rf,lr,cat,lightbgm], method = 'soft') 

stacker = stack_models(estimator_list = [lr,knn,rf,cat,lightbgm]) 

 

######################### Predictions on validation/hold-out set ################## 

predicted_lr = predict_model(lr) 

predicted_lightbgm = predict_model(lightbgm) 

predicted_cat = predict_model(cat) 

predicted_knn = predict_model(knn) 

predicted_rf = predict_model(rf) 

predicted_tuned_lr = predict_model(tuned_lr) 

predicted_tuned_lightbgm = predict_model(tuned_lightbgm) 

predicted_tuned_cat = predict_model(tuned_cat) 

predicted_tuned_knn = predict_model(tuned_knn) 

predicted_tuned_rf = predict_model(tuned_rff) 

predicted_bagged_lr = predict_model(bagged_lr) 

predicted_bagged_lightbgm = predict_model(bagged_lightbgm) 
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predicted_bagged_cat = predict_model(bagged_cat) 

predicted_bagged_knn = predict_model(bagged_knn) 

predicted_bagged_rf = predict_model(bagged_rf) 

predicted_boosted_lr = predict_model(bagged_lr) 

predicted_boosted_lightbgm = predict_model(boosted_lightbgm) 

predicted_boosted_cat = predict_model(boosted_cat) 

predicted_boosted_rf = predict_model(boosted_rf) 

predicted_blender = predict_model(blender_normal) 

predicted_stacked = predict_model(stacker) 

 

######################### Predictions on unseen test sets ###################### 

## run this only once 

predicted_lr = predict_model(lr,data=data_unseen) 

predicted_lightbgm = predict_model(lightbgm,data=data_unseen) 

predicted_cat = predict_model(cat,data=data_unseen) 

predicted_knn = predict_model(knn,data=data_unseen) 

predicted_rf = predict_model(rf,data=data_unseen) 

predicted_tuned_lr = predict_model(tuned_lr,data=data_unseen) 

predicted_tuned_lightbgm = predict_model(tuned_lightbgm,data=data_unseen) 

predicted_tuned_cat = predict_model(tuned_cat,data=data_unseen) 

predicted_tuned_knn = predict_model(tuned_knn,data=data_unseen) 

predicted_tuned_rf = predict_model(tuned_rff,data=data_unseen) 

predicted_bagged_lr = predict_model(bagged_lr,data=data_unseen) 

predicted_bagged_lightbgm = predict_model(bagged_lightbgm,data=data_unseen) 

predicted_bagged_cat = predict_model(bagged_cat,data=data_unseen) 

predicted_bagged_knn = predict_model(bagged_knn,data=data_unseen) 

predicted_bagged_rf = predict_model(bagged_rf,data=data_unseen) 

predicted_boosted_lr = predict_model(bagged_lr,data=data_unseen) 

predicted_boosted_lightbgm = predict_model(boosted_lightbgm,data=data_unseen) 

predicted_boosted_cat = predict_model(boosted_cat,data=data_unseen) 

predicted_boosted_rf = predict_model(boosted_rf,data=data_unseen) 

predicted_blender = predict_model(blender_normal,data=data_unseen) 

predicted_stacked = predict_model(stacker,data=data_unseen) 

 

######################## Save the predictions ################################ 
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predicted_lr.to_csv('.//predictions_lr.csv') 

predicted_lightbgm.to_csv('.//predictions_lightbgm.csv') 

predicted_cat.to_csv('.//predictions_cat.csv') 

predicted_knn.to_csv('.//predictions_knn.csv') 

predicted_rf.to_csv('.//predictions_rf.csv') 

predicted_tuned_lr.to_csv('.//predictions_tuned_lr.csv') 

predicted_tuned_lightbgm.to_csv('.//predictions_tuned_lightbgm.csv') 

predicted_tuned_cat.to_csv('.//predictions_tuned_cat.csv') 

predicted_tuned_knn.to_csv('.//predictions_tuned_knn.csv') 

predicted_tuned_rf.to_csv('.//predictions_tuned_rf.csv') 

predicted_bagged_lr.to_csv('.//predictions_bagged_lr.csv') 

predicted_bagged_lightbgm.to_csv('.//predictions_bagged_lightbgm.csv') 

predicted_bagged_cat.to_csv('.//predictions_bagged_cat.csv') 

predicted_bagged_knn.to_csv('.//predictions_bagged_knn.csv') 

predicted_bagged_rf.to_csv('.//predictions_bagged_rf.csv') 

predicted_boosted_lr.to_csv('.//predictions_boosted_lr.csv') 

predicted_boosted_lightbgm.to_csv('.//predictions_boosted_lightbgm.csv') 

predicted_boosted_cat.to_csv('.//predictions_boosted_cat.csv') 

predicted_boosted_rf.to_csv('.//predictions_boosted_rf.csv') 

predicted_blender.to_csv('.//predictions_blender.csv') 

predicted_stacked.to_csv('.//predictions_stacked.csv') 

 

############################# Saving/Loading trained models ################### 

save_model(lr,'logistic_regression') 

save_model(lightbgm, 'lightbgm') 

save_model(cat, 'catboost') 

save_model(knn,'knn') 

save_model(rf,'rf') 

save_model(tuned_lr,'tuned_lr') 

save_model(tuned_cat,'tuned_cat') 

save_model(tuned_knn,'tuned_knn') 

save_model(tuned_rff,'tuned_rf') 

save_model(tuned_lightbgm,'tuned_lightbgm') 

save_model(bagged_lr,'bagged_lr') 

save_model(bagged_cat,'bagged_cat') 
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save_model(bagged_rf,'bagged_rf') 

save_model(bagged_knn,'bagged_knn') 

save_model(bagged_lightbgm,'bagged_lightbgm') 

save_model(boosted_lr,'boosted_lr') 

save_model(boosted_cat,'boosted_cat') 

save_model(boosted_rf,'boosted_rf') 

save_model(boosted_lightbgm,'boosted_lightbgm') 

save_model(blender_normal,'blender_normal') 

save_model(stacker,'stacking_model') 

#####use this only when loading models 

# lr = load_model('logistic_regression') 

# lightbgm = load_model('lightbgm') 

# cat = load_model('catboost') 

# knn = load_model('knn') 

# rf = load_model('rf') 

# tuned_lr = load_model('tuned_lr') 

# tuned_cat = load_model('tuned_cat') 

# tuned_knn = load_model('tuned_knn') 

# tuned_rff = load_model('tuned_rf') 

# tuned_lightbgm = load_model('tuned_lightbgm') 

# bagged_lr = load_model('bagged_lr') 

# bagged_cat = load_model('bagged_cat') 

# bagged_rf = load_model('bagged_rf') 

# bagged_knn = load_model('bagged_knn') 

# bagged_lightbgm = load_model('bagged_lightbgm') 

# boosted_lr = load_model('boosted_lr') 

# boosted_cat = load_model('boosted_cat') 

# boosted_rf = load_model('boosted_rf') 

# boosted_lightbgm = load_model('boosted_lightbgm') 

# blender_normal = load_model('blender_normal') 

# stacker = load_model('stacking_model') 

 

######### Regression Phase for distance / coordinates estimation ######################### 

from pycaret.regression import * 

from pycaret.datasets import get_data 
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from imblearn.over_sampling import * 

dataset_file = ('.//transformed_thesis_final.csv') 

data = pd.read_csv(dataset_file) 

print(data.count) 

dataset = data.copy() 

 

###################### Training/Test set split ###################################### 

data = dataset.sample(frac=0.65,random_state=300) 

data_unseen = dataset.drop(data.index) 

data.reset_index(inplace=True,drop=True) 

data_unseen.reset_index(inplace=True,drop=True) 

print('Data for Modeling:' + str(data.shape)) 

print('Unseen Data for Predictions:' + str(data_unseen.shape)) 

 

######################## Preprocessing Phase #################################### 

from pycaret.regression import * 

adasyn1 = ADASYN(sampling_strategy='minority') 

regression_set = setup(data = data, target = 'distance', 
session_id=123,preprocess=True,imputation_type='iterative', 

iterative_imputation_iters=20,numeric_imputation='mean', 

normalize = True,log_plots=True, 

remove_multicollinearity = True, multicollinearity_threshold = 0.85, 

use_gpu=True,experiment_name = 'Distance_estimation') 

 

##################### Comparison of models ####################################### 

best_reg_model = compare_models() 

 

##################### Model Creation ########################################### 

dt = create_model('dt',fold=5) 

cat = create_model('catboost',fold=5) 

knn = create_model('knn',fold=5) 

tuned_knn = tune_model(knn) 

bagged_knn = ensemble_model(knn) 

boosted_knn = ensemble_model(knn,method='Boosting') 

blender = blend_models(estimator_list=[cat,knn,dt]) 

stacker = stack_models(estimator_list=[cat,knn,dt]) 
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##################### Model interpretation and Creation ############################## 

interpret_model(dt) 

plot_model(dt) 

 

#################### Predictions of model on holdout or validation set ################### 

predict_model(cat) 

predict_model(knn) 

predict_model(dt) 

predict_model(blender) 

predict_model(stacker) 

############################ Saving of Models ################################### 

save_model(cat,'catboost regressor') 

save_model(dt,'Decision tree regressor') 

save_model(knn,'KNN regressor') 

save_model(blender,'Voting regressor') 

save_model(stacker,'Stacking regressor') 

 

########################## Test set distance estimation ############################# 

data_unseen['access_point'] = data_unseen['access_point'].astype(str) 

fig = plt.figure(figsize=(8, 20)) 

from itertools import product 

axs = fig.subplots(4,2) 

for pair, ax in zip(product((1,2), ("1","2","3","4")), axs.flatten()): 

(floor, access_point) = pair 

mask = (data_unseen.floor == floor) & (data_unseen.access_point == access_point) 

signal = data_unseen[mask][["RSSI", "distance"]] 

ax.plot(signal.distance, signal.RSSI, '.') 

ax.set_ylabel("RSSI") 

ax.set_title("Floor: %s AP: %s" %(floor, access_point)) 

 

########################### UI server running to collect all data and plots ############### 

!mlflow ui 
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C. Floor plans used for Dataset generation 

Two different floor plans were utilized for creation of regression and classification framework and evaluation. 

The first floor plan has been used for reference dataset by author(Malekpour, Ling and Lim, 2008). The 

second-floor plan has been used for the transformation of raw location coordinates to a location dataset 

with fingerprint intensity levels. Both the floor plans are attached below – 

 

Floor Plan used by author for reference dataset generation 

z  

Floor plan used for transformed dataset ( RIA building, University of Waterloo, Ontario,Canada) 
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D. Deployment Phase 

This section covers a fraction of deployment phase which is still a work in progress. The deployment of 

trained models is done using Microsoft’s Power BI which is a business analytics platform. The analytics 

solution is used for visualizing data and driving insight to actions. The further scope of the project is to 

embed the report on an application or a website. The proposed framework in the deployment phase is the 

use of an automated machine learning tool (Auto-ML) for indoor localization. This allows data analysts and 

data scientists to build machine learning models with efficiency and ensures efficiency of a model. The 

outcome of the Auto-ML framework is to use the best model based on performance criteria. To reduce the 

work of training and building using Auto-ML tool, the model generation code is used for training and saving 

the trained models. These trained models are then deployed on Power BI to ensure 

predictions/inference/classification in real time (maggiesMSFT, 2021). Following are some of the steps 

used for deployment of model on Power BI – 

1. Setting up the environment using an Anaconda tool - 

conda create –name thesis python=3.6 (3.7 is the preferred one for deployment) 

2. Activation of the virtual environment created in the previous step using – 

Conda activate thesis 

3. Installation of the Pycaret library using pip manager 

Pip install Pycaret[full] 

4. Loading the transformed dataset via any data source (SQL server / CSV files / JSON / API source) 

 

5. Running python script  

       Code 
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         ############# load functions from regression module ############################## 

from pycaret.classification import load_model, predict_model 

 

############ load the saved model in a variable################################## 

model = load_model('C:/Users/aquasensing/Desktop/data repo/blender_normal') 

 

############ Classification of fingerprint intensity levels ############################ 

dataset = predict_model(model, data=dataset) 

 

6. A column label will appear in the dataset with the classifications. 

        

 

7. The labels generated in form of classification are used for RSSI Intensity plots using custom 

visualizations in Power BI – 

 

 

This concludes the appendix section. The proposed framework with dataset generation, model 

generation and real time inference-visualization is the apt way for indoor localization. The code 

needs some versioning and cleaning before publishing it as open source on central code repository 

to be accessed by everyone for further research in the field of indoor localization. 
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Glossary 

 
Wi-Fi    Wireless Fidelity 
RFID   Radiofrequency Identification 
RSSI   Received Signal Strength Indicator 
UWB    Ultra-wideband 
IoT   Internet of Things 
WSNs   Wireless Sensor Networks 
DBL   Device Based Localization 
BLE   Bluetooth Low Energy 
EMI   Electromagnetic Interference 
RF    Radio Frequency 
WSNs   Wireless Sensor Networks  
RS-232   Recommended Standard 232 
SIG   Special Interests Groups 
QoS   Quality of Service 
L2CAP   Logic Link Control Adaptation Protocol 
RFCOMM  Radio-frequency Communication (Serial Port Emulation) 
HCI   Host Controller Interface 
SDP    Service Discovery Protocol 
GFSK   Gaussian Frequency Shift Keying 
LE   Bluetooth Low Energy Audio 
ISOC   Isochronous Channels 
LEPC   LE Power Control 
EATT   Enhanced Attribute Protocol 
API    Application Programming Interface 
GAP    Generic Access Profile 
GATT   Generic Attribute Profile 
LUT   Look-Up Table 
GNSS   Global Navigation Satellite System 
GPS   Global Positioning System 
UUID   Universally Unique Identifier 
BPSK    Binary Phase Shift Keying 
QPSK   Quadrature Phase Shift Keying 
QAM   Quadrature Amplitude Modulation 
CSMA/CA  Carrier-sense Multiple Access with Collision Avoidance 
RC4   Rivest Cipher 4 
AP(s)   Access Points 
PCMCIA  Personal Computer Memory Card International Association 
ISP   Internet Service Providers 
MAC    Media Access Control Address 
dB   Decibels 
ANNs    Artificial Neural Networks 
KNNs    K-Nearest Neighbors 
CSI   Channel State Information 
SLAM   Simultaneous Localization and Mapping 
SNR   Signal to Noise Ratio 
SOA   State of Art 
NN   Neural Networks 
SVM   Support Vector Machines 
CNN   Convolutional Neural Networks 
RF   Random Forests 
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DTW   Dynamic Time Warping 
GUID   Globally Unique Identifier 
LTE    Long Term Evolution 
Auto-ML  Automated Machine Learning 
HTTPS   Hypertext Transfer Protocol Secure 
AMQP    Advanced Message Queueing Protocol 
MQTT   Message Queueing Telemetry Transport 
TTL   Time To Live 
SQL   Structured Query Language 
AUC   Area Under ROC Curve 
ROC   Receiver Operating Characteristics 
TP/TN/FP/FN  True Positive/True Negative/False Positive/False Negative 
MAE   Mean Absolute Error 
MSE   Mean Squared Error 
RMSLE   Root Mean Squared Logarithmic Error 
MAPE    Mean Absolute Percentage Error 
R2   R-Squared 
SHAP   Shapley Additive Explanations 
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