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Abstract 

Warm constitutive and formability characterization of a high strength aluminum alloy 

(AA7075) was performed for a range of pre-aged (i.e. under-aged) tempers, strain rates and 

temperatures. The pre-aging processes were composed of a solution treatment process and a 

natural aging period of 2 days, followed by aging at temperatures of 80, 100 and 120 C for 

durations of 1, 2, and 4 hours. The peak-aged T6 temper condition was also considered for 

comparison purposes.  

Warm constitutive characterization was performed at strain rates of 0.01, 0.1, and 1 s-1, and 

temperatures of 150, 175 and 200 C.  Room temperature and warm formability tests were 

performed using a Nakazima [1] tooling geometry with a plane strain specimen for the same 

temperatures, considering a range of tooling stroke rates from 0.5-63 mm/s. The formability results 

were assessed utilizing limit strains based on the ISO 12004-2:2008 [2] necking detection method, 

as well as the measured dome heights at failure. In addition, the effect of heating rate prior to 

elevated temperature constitutive and formability testing was considered.  

The room temperature constitutive results revealed that the pre-aged tempers exhibit superior 

work hardening response and elongation compared to the peak-aged T6 temper. However, serrated 

flow, attributed to PLC effects, was observed in the flow response of the tempers with 

reduced/insufficient pre-aging schedules (e.g. 1 hour at 80 and 100 C pre-age schedules). This 

behaviour induced a negative strain rate sensitivity and reduced the repeatability of the tensile flow 

response and room temperature formability limits.  

In response to elevated temperature deformation, the T6 tensile samples exhibited clear 

thermal softening effects. This response, however, was accompanied by early onset of diffuse 

necking, although the elevated temperature strain rate sensitivity is high which results in increased 

elongation to failure. The pre-aged tempers, in contrast, also responded positively to the thermal 

softening effect and exhibited a delay in the onset of diffuse necking, compared to T6. 

Interestingly, the elevated temperature strain rate sensitivity of the pre-aged tempers was quite low 

compared to the T6 samples, part of which is attributed to aging during the lower rate (longer 

duration) tensile tests.  
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The room temperature formability results revealed improvements in forming limits with the 

pre-aged tempers, as compared to the peak-aged T6 temper. At elevated temperatures, thermal 

softening resulted in higher forming limits for all evaluated tempers, with the T6 temper at 200 C 

having the highest limit strain, closely followed by the 100 C 4 hour and 80 C 4 hour aged 

tempers formed at 175 C. Interestingly, the high limit strain exhibited by the warm formed T6 

temper was not fully reflected in its limit dome height, since the early onset of diffuse necking 

prevented a globally uniform strain distribution along the surface of the specimen. In contrast, the 

pre-aged tempers in contrast resulted in superior dome height limits, which is attributed to their 

higher extent of work hardening prior to onset of diffuse necking. 

Both the tensile elongation and forming limit strains were shown to decrease with test speed. 

Further, the faster heating rates considered in this study resulted in mildly superior forming limits, 

since the extent of pre-aging during heating to the warm forming temperatures was reduced.  

A limited study on the hardness of the warm formed specimens before and after a paint bake 

cycle (PBC) revealed a notable increase in hardness values in response to the PBC for all tested 

conditions. Interestingly, the T6 temper exhibited a mild drop in hardness following warm 

forming, however, the loss in hardness was largely recovered after the PBC, which may be due to 

retrogression and re-aging effects.   

For the range of initial tempers and forming conditions considered herein, the specimens 

heat-treated at 100 C for 4 hours, and warm formed at 175 C (utilizing the rapid heating method) 

resulted in one of the best overall performances. This process route (evaluated at the slow forming 

speeds of 1 mm/s) resulted in an increase of approximately 42% in dome height (from 19 to 27 

mm), and 77% in major limit strain (from 14.5 to 25.7%), compared to the room temperature limits 

of the T6 temper. Moreover, the repeatability of this process route proved to be superior compared 

to the majority of the other under-aged processing routes. In addition, the hardness values of this 

pre-aged temper, following warm forming and a paint bake cycle (PBC) were within 97% of the 

as-received T6 temper.  

Finally, a numerical model was devised, using the Hockett-Sherby [3] constitutive model to 

fit the warm tensile data. The numerical simulations demonstrated accurate predictions for the 

tensile experiments and fair predictions for the warm forming experiments.  
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1. Introduction 

Global warming and climate change remain as one of the most critical challenges of this 

generation, and perhaps generations to come [1]. Canada has been at the forefront of awareness 

campaigns and has established several initiatives in various fields to mitigate the further worsening 

of global warming and climate change, as set by Canada’s greenhouse gas emission regulations 

[2], [3]. 

Figure 1 and Figure 2 display the historical development of carbon dioxide emissions over 

the past thirty years. Figure 1 shows the sector-wise distribution of CO2 emissions in Canada, 

which highlights the increasing emissions due to transportation in Canada. Further, Figure 2 

depicts the emissions caused by each fuel source, with oil being the increasingly higher pollutant.  

 

Figure 1. Canada’s CO2 emissions produced in different sectors [4].  
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Figure 2. Canada's CO2 emissions produced from different energy sources [4]. 

Furthermore, Canada and the US are ranked last globally, amongst 50 participating countries, 

in vehicle efficiency [5]. This is associated with factors such as the vast landscape, climate, urban 

design, and demographics. Figure 3 lists the top 15 countries as characterized by a) Emissions in 

gCO2/km, b) Fuel consumption in L/100km, c) Curb weight in kg, and d) Engine displacement in 

cm3. As can be seen, the United States and Canada are the bottom two in each of the four charts, 

indicating that the heaviest vehicles are being used, powered by the largest engines, producing the 

most greenhouse gas.  
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Figure 3. Top 15 countries listed by the characteristics of the average personal vehicles [5] ,[6]. 

This trend is further worsened by the recent growing consumer demand for larger vehicles. 

Data from Statistics Canada, Figure 4, shows the rapid upsurge in the number of newly registered 

trucks, increasing from 50% to 70% of total newly registered vehicles across Canada. The division 

labelled as trucks includes light and heavy trucks, sport-utility vehicles (SUVs), minivans, vans, 

and buses. 

 

Figure 4. The total number of new vehicles and the relative comparison between consumer cars and trucks [7] [8]. 

In response, Canada’s fuel consumption of light-duty vehicles is set to be reduced by 

approximately 40% over the period 2011 to 2025, which is in line with the US CAFE [9] goals of 
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reducing the fuel consumption of road vehicles in an effort to alleviate the concerns raised by 

global warming [10], [11]. Figure 5 displays the calculated trend in fuel consumption as expected 

to be achieved by 2025. 

 

Figure 5. Calculated fuel consumption of cars and trucks across Canada [12] [13] [14]. 

 

With the abovementioned goals in mind, two primary paths can be taken: (i) altering the fuel 

source (propulsion systems); or (ii) improving the general efficiency of the vehicle. The first path 

has been a subject of substantial interest in the automotive industry but requires more time and 

effort to achieve energy storage density and accessibility similar to that of current fossil-fuel 

powered propulsion systems.  

The second path can be achieved by improving various factors such as the aerodynamics of 

the exterior shell, drivetrain, vehicle autonomy, and a major contributor, the overall weight of the 

vehicle [15].  

A study by the International Energy Agency (IEA), Figure 6, displays the relationship 

between fuel consumption and vehicle weight, for the common powertrains in the market. It is 

shown that an increase of curb weight corresponds to an exponential increase of fuel consumption 

for the fossil fuel based propulsion systems.  

Moreover, despite the reduced effect of curb weight on the overall emissions of the electric 

vehicles (EVs) - partly owing to the regenerative technologies [16], EVs can also benefit from a 
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reduction in body weight. The lowered center of gravity helps with the general driving and 

handling experience, and more importantly provides additional passive safety improvements (e.g. 

rollover) [17].  Also, the reduced weight can help compensate the added battery weight to gain 

further range, resulting in an improved practicality for a wide range of consumers [18]. 

 

Figure 6. Automobile fuel consumption vs. vehicle weight for the different powertrains in 2017 [19].  

The body structures of automobiles, which comprises approximately 35% of the total curb 

weight [20], has been an appealing candidate to consider for weight reduction. In this regard, the 

substitution of lighter materials, such as high strength grades of aluminum alloys, for heavy steels 

in car bodies has become more prevalent amongst automakers. Needless to say, such 

implementation must also uphold the overall comfort and safety requirements associated with 

modern vehicles. 

Being the most abundant metallic element on earth, aluminum was initially introduced as a 

symbol of luxury due to its refinement complexities from ore [21], [22]. Henri Sainte-Claire 

Deville [23], a chemist involved in the rapid refinement of aluminum, aware of the great potentials 

of the industrialization of this new metal, has reportedly said:  
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“There is nothing more difficult than to make people use a new metal. Luxury items 

and ornaments cannot be the only sphere of its application. I hope the time will come 

when aluminum will serve to satisfy the needs of daily application” [24].  

Consequently, upon the development of its rapid and cost-effective purification methods in 

the late 1800s, the first industry to flourish from its excellent formability (ability of the material to 

be formed to the desired shapes without visible defects) and density characteristics, was the 

culinary industry. At the time, the majority of the manufactured aluminum products were utensils 

and cookware [25]. 

It was not until the early 1900s when Wilm [26] evaluated the age hardening behaviour of 

aluminum alloys, determining the excellent strength potentials of this element. Wilm saw that after 

quenching, a widely known process for hardening iron alloys, given some ‘aging’ time, aluminum 

alloys develop further strength. This process was later referred to as precipitation (or age) 

hardening.  

The discovery of this behaviour promoted great interest in aluminum since it had a much 

better strength-to-weight ratio compared to common steels, with other inherent advantages such 

as superior electrical and thermal conductivity and better corrosion resistance for a variety of new 

applications and industries, most predominantly aeronautics and astronautics, and recently, the 

automotive industry. Furthermore, given the relatively higher cost of this metal, the ease of 

recyclability has also proven to be advantageous. Such characteristics have improved with further 

efforts in the development of new alloys of aluminum and continue to enable the industry to reach 

new milestones with today’s evolving world.  

High strength 7000-series aluminum alloys have been shown to exhibit higher specific 

strength, the ratio of tensile strength to density, than the majority of commonly-used steels in 

industry, since they have one-third the density of steel. In the automotive industry, it has been 

calculated that if every 2 kg of steel were to be replaced by 1 kg of aluminum, a reduction of 

approximately 10 kg in CO2 emissions over the average life cycle of vehicles will result [27]. Thus, 

the 7000-series alloys are a compelling option, even compared to the current automotive aluminum 

solutions which predominantly employ 5000- and 6000-series alloys.  
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However, at their peak strength, the AA7000-series aluminum alloys display relatively low 

formability, as shown in several studies by Wang et al. [28], Sotirov et al. [29], Polak et al. [30] 

and Österreicher et al. [31]. This drawback has been a topic of research in the industry and academe 

during the past few decades. The current study aims to address this problem for one of the well-

established and widely-used alloys in the 7000-series designation, namely, AA7075. 

The formability enhancing warm-forming process, as one of the most prevalent solutions, is 

the focus of the current work. This process takes advantage of the thermal softening response of 

aluminum alloys at temperatures above 150 C and below the recrystallization temperature [29]. 

Additionally, the pre-aged (or partially heat-treated) conditions of this alloy (AA7075), previously 

examined by Österreicher et al. [31] and Lee et al. [32] with some promising results, will be 

considered in this thesis.  

This research will focus on understanding the effect of warm forming of pre-aged tempers, 

in conjunction with rapid heating and rapid forming techniques, on the formability of AA7075. 

Efforts are made to identify desirable thermo-mechanical processing routes for this alloys. As part 

of the constitutive response evaluation, the alloy is characterized during warm forming. Lastly, the 

effect of the processing route on the final hardness (strength) is assessed.   

The balance of this thesis is organized as follows. Chapter 2 presents a concise literature 

review addressing the constitutive and precipitation hardening behaviour of this alloy and explores 

recent efforts in evaluating and resolving the formability concerns with this alloy series. Chapter 

3 provides a brief description of experimental procedures and equipment along with some 

background information on the AA7075 alloy under analysis; Chapter 4 presents results on the 

measured constitutive behaviour for each temper, temperature and strain rate, providing 

constitutive models for some selected conditions; Chapter 5 presents a numerical simulation study 

to evaluate the constitutive models, supported by experimental validation; and finally Chapter 6 

provides the conclusions drawn from this research and presents an optimal forming process route 

satisfying the formability and final strength enhancement goals as set forth for this thesis. 

Additional information on specific setup calibrations, troubleshooting and description of 

corrective measures is provided in the appendices.  
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2. Literature Review 

The outstanding specific strength of AA7075 aluminum alloy sheet has led to consideration 

of its application for use in anti-intrusion components within the automotive industry. However, 

to justify the implementation, various factors should be taken into account, such as the 

manufacturability, the in-service strength and the stability of the final temper. 

This chapter provides a summary of the relevant literature concerning the aging response, 

and constitutive and formability characterization of AA7075 aluminum alloy sheet, in response to 

various forming process routes. The precipitation behaviour is studied to evaluate the aging 

response as a function of processing time, temperature and deformation (associated with warm 

forming processes). Further, the current literature constitutive characterization and modeling 

efforts for this alloy are also presented as a function of temperature and plastic deformation for 

multiple temper conditions of this alloy. Lastly, some existing studies are presented to outline the 

current findings of the formability response of this alloy and the advantages and drawbacks of the 

various formability improvement approaches.     

2.1. Metallurgy and Mechanics of Precipitate Hardening in 7000-Series 

Aluminum Alloys  

Aluminum matrix is comprised of a face centred cubic arrangement of atoms with 12 slip 

systems promoting enhanced formability [33]. With the addition of small amounts of alloying 

elements and an age-hardening cycle, the alloys can gain a considerable amount of strength as 

compared to pure aluminum.  

Precipitation (or age) hardening is a result of a phenomenon in which finely-distributed 

particles, present in the base matrix of the alloy material, provide resistance to material 

deformation by blocking dislocation motion. It has been shown that depending upon the 

precipitation hardening heat treatment cycles, the Al-Zn-Mg (7000-series aluminum) alloys 

exhibit a substantial increase in mechanical strength as a consequence of precipitate formation in 
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the matrix of the alloy [34].  The following sections will discuss the nature of such response in 

7000-series aluminum alloys from metallurgical and mechanical viewpoints. 

2.1.1. Phase Transformation 

The phase transformation of 7000-series aluminum alloys during aging is comprised of a 

multi-step precipitate formation and evolution. The precipitation sequence is generally described 

as: Supersaturated Solid Solution (SSS)  Guinier-Preston (G.P.) zones  𝜂′ (MgZn)  𝜂 

(MgZn2) [35], in which each state leads to a more stable (in terms of aging) and, therefore, a lower 

free energy condition [32], [36].  

The aforementioned multi-step phase transformation is initiated by the solution treatment 

process, in which the temperature of the sample is increased to the solution treatment temperature, 

i.e. 470 °C in the case of 7000-series aluminum [36]. This treatment causes existing precipitates 

(mainly comprised of Zn and Mg) to dissolve within the aluminum matrix. Solution treatment is 

followed by a rapid reduction of the temperature (i.e. water-quenching), resulting in a 

supersaturated state for both vacancies and solute atoms. This state is referred to as the 

Supersaturated Solution State (SSS), which has a high thermodynamic potential to form fine 

precipitates. Following the solution treatment process, extended aging at lower temperatures 

results in the formation of precipitates in order to lower the energy of the system, leading (with 

time at temperature) to the peak (T6) and slightly overaged (T76) conditions. For use in an exterior 

automotive body panel, the effect of the subsequent paint bake heat-treatment cycle (PBC) should 

also be taken into account, normally comprising 160-185 °C for approximately 30 minutes [31], 

[37], [38]. 

Precipitates are considered material hardening elements, creating obstacles to dislocation 

glide. The T6 temper is the peak aged state, exhibiting the highest mechanical strength with a 

typical room temperature (RT) ultimate tensile strength (UTS) of approximately 572 MPa [39] for 

AA7075. The slightly over-aged T76 temper, for comparison, has a UTS of roughly 503 MPa, but 

provides an enhanced corrosion resistance response which is also a desirable quality for structural 

components [40]–[42].  
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The development of the precipitates in a study by Lee et al. [32] is shown in Figure 7. Images 

(a), (c) and (e) in Figure 7 display the development and growth of the finer GP zones following 

natural aging (NA, aging at room temperature), as well as subsequent artificial aging (AA) at 120 

°C for either 30 or 240 min. The diffraction pattern in these pre-aged (PA) conditions (here, PA 

refers to an aging state preceding the T6 temper) conditions show the GP-zones to be the main 

phase in the aluminum matrix. With a subsequent paint-bake cycle (PBC) at a higher temperature 

of 180 °C for a period of 30 minutes (images (b), (d), and (f)) after each PA condition (images (a), 

(c) and (e) respectively), coarser 𝜂′ precipitates were observed to become the dominant phase. 

Figure 7 (b) displays the larger and coarser 𝜂′ precipitates developing without the need of an 

intermediate pre-aging treatment. However, by presenting the pre-aging treatments, the 𝜂′ 

precipitates were shown to become finer with increasingly higher volume fractions, ultimately 

leading to more resilient temper conditions, as seen in Figure 8. 

  

Figure 7. TEM (Bright-field) Micrographs of aging evolution in AA7075 alloy in the <001> zone axis, including selected area 
diffraction patterns [32]. 
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Figure 8. The corresponding Engineering Stress-Strain curves for each of the precipitation states in Figure 7 [32].  
NA: 7 Days at Room Temperature. PA': (120 °C x 30 min + NA). PA": (120 °C x 240 min + NA). Paint Bake Cycle (PBC): (180 °C x 

30 min)  

It is reported that the combination of GP zones and 𝜂′precipitates are responsible for the 

maximum strength of the metastable T6 condition [34]. However, Wang et al. [43] showed that 

for a similar alloy (AA7050), the addition of a pre-straining step, prior to the artificial aging 

involved in the development of the T6 temper, results in an increase in the number of 𝜂′precipitates 

after the full aging treatment. The higher resultant precipitation hardening, together with the work-

hardening (the entanglement of dislocations) effect caused by pre-straining is responsible for the 

enhancement of the mechanical properties beyond what was previously achieved for the T6 

temper. Such a modified version of the T6 temper treatment is referred to as the T651 temper 

[34],[43]. A comparison of the peak age and the pre-strained peak-age, along with the slightly 

overaged temper (T76) of AA7050 is presented in Figure 9.   
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Figure 9. The tensile properties of the peak-aged tempers of AA7050 [43]. 

The addition of a deformation step in the aging heat treatment can alter the precipitation 

behaviour in various ways. Deformation-induced dislocations are favourable heterogeneous 

nucleation sites that result in faster and coarser precipitation. On the other hand, dislocations are 

also vacancy sinks in which vacancies can be annihilated, which would adversely affect the 

precipitation strengthening process, as assessed by Deschamps et al. [44]. Emani et al. [45] also 

reported that the deformation between two aging steps (Thermo-Mechanical Double Ageing with 

a higher temperature assigned to the second ageing step) leads to an improvement in mechanical 

properties, attributed to a combination of work hardening and refinement of intermediate phases 

due to precipitate nucleation on dislocations [45]. Behrens et al. [46] , Lee et al. [32] and 

Österreicher et al. [31] explored the response of deformation imposed on a few pre-aged 

conditions. While significant improvements have been seen regarding the alloy’s general 

formability, several mechanical instabilities were also operative in this material condition that 

adversely affected the repeatability (i.e. consistency) of the forming behaviour [47]. The Portevin–

Le Chatelier (PLC) phenomenon is shown to be promote such instabilities and will be discussed 

in the following section. 

 

2.1.2. PLC - A Flow Curve Instability 

The dynamic interaction between solute atoms and developing dislocations in the matrix 

during deformation is referred to as Dynamic Strain Aging (DSA). This phenomenon is a 
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propagative instability within the material that leads to the jerky motion of dislocations and 

transient softening [48]. DSA occurs in many polycrystalline dilute alloys, including mild steels 

with nitrogen and carbon as solute elements and other industrial alloys with only a few percentages 

of solutes such as magnesium, copper, chromium, and manganese [49],[50]. The macroscopic 

perspective of DSA was first examined by Portevin and Le Chatelier [51] and is, therefore, known 

as the PLC effect. 

An adverse consequence of the PLC effect is the negative strain-rate sensitivity imposed by 

the erratic plastic flow and rapid softening, leading to an inconsistent reduction in ductility [48]. 

This behaviour will, thus, result in undesirable reduced repeatability during forming processes.  

Cottrell et al. [49] demonstrated the dependency between the diffusion rate of the solutes and 

PLC effect. Additionally, Halim et al. [52] recently reported that the amplitude of the serrations in 

the flow response is a factor of the strain rate since decreasing the strain rate increases the blockage 

time at forest dislocations [53],[54].  

The PLC behaviour is divided into three general types, as illustrated in Figure 10. Type A is 

the most irregular pattern with the smallest stress drops. More orderly serrations, characterized by 

“hopping” patterns with reduced amplitude, are known as Type B PLC bands. With reduced 

temperature and increased strain rate, a cyclic serration pattern with larger strain drops is observed, 

which is referred to as a Type C PLC band.  
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Figure 10. Schematic stress-strain curves showing different PLC serration patterns and resulting shear bands on specimen 
surfaces [50], [55]. 

Thus, the amplitude and wave pattern of the PLC bands are functions of the solute 

characteristics; in particular their diffusion rates, as determined by the temperature and 

precipitation state, and the subsequent waiting times between the pinning (sticking) and unpinning 

(slipping) of dislocations [52].  

 

2.1.3. Stability of Pre-Aged (PA) Tempers 

Pre-aged tempers are generally susceptible to unintended aging between testing steps, or in 

the case of industry, manufacturing operations. Österreicher et al. [56] have studied the stability 

of several pre-aged conditions of the AA7075 alloy at room temperature. They have found that 

following the solution treatment process, an artificial aging time of two hours at temperatures 

above 90 °C is adequate to stabilize the PA conditions over a three-week period, as illustrated in 

Figure 11 with dark green diamond markers. Such findings help to identify the time sensitivity of 

similar tempers for lab or industrial use.  
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Figure 11. The natural aging response of the pre-aged AA7075 alloy. Error bars represent the standard deviations.[56] 
pa: peak aged temper. W: as quenched temper. 90°C/1h(2h): artificially aged at 90 °C for one hour (two hour) immediately after 

solutionizing process. 

 

2.2. Constitutive Characterization of 7000-Series Aluminum Alloys 

Some high aerospace-grade aluminum alloys (primarily the 7000-series in the context of this 

thesis) are currently under consideration for application in the automotive industry. Efforts are 

currently underway, including the current research in this thesis, to identify suitable manufacturing 

process parameters for these alloys for high volume automotive applications. In the case of 

AA7075, there are a relatively small number of published studies in the literature that have 

evaluated the constitutive behaviour of this alloy at room and elevated temperatures in either the 

pre-aged or peak-aged conditions, as discussed in the following.  

Rahmaan et al. [57], [58] presented a comprehensive report on the constitutive behaviour of 

the AA7075-T6 temper for a range of strain rates from 0.001 s-1 to 1000 s-1 at room temperature. 

Moreover, Wang et al. [28], Sotirov et al. [29], Polak et al. [30] and Österreicher et al. [31] 

evaluated the constitutive characteristics and formability of the AA7075-T6 at elevated 

temperatures. Such studies demonstrated the high forming potential of this alloy given the thermal 

softening effect with reduced flow stresses and extended elongations. However, at the elevated 

testing temperatures, extended aging beyond the peak aged condition (T6) led to a loss in strength 

and ductility, since the material aged beyond the peak age condition [28], [30], [31], [37].  
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Lee et al. [32] delved deeply into the effect of pre-aging of AA7075, which includes a 

constitutive response study at a constant strain rate. As displayed in Figure 12, they revealed that 

the pre-aged conditions have a high work-hardening rate (WHR) and work hardening exponent (n-

value, more in Section 2.2.2), which is indicative of the higher formability potential. Figure 12 

[Right] highlights the reduction of total elongation and the n-value with extended aging. Such 

results provide motivation for the constitutive characterization of pre-aged AA7075 in the current 

study.  

 

Figure 12. [Left] Work-hardening rate vs. true strain response, corresponding to the pre-aged conditions introduced in Figure 8. 
 [Right] n-value and uniform elongation vs. pre-aging period (min) at 120 °C for two pre-aged conditions.  

NA: 7 Days at Room Temperature. PA': (120 °C x 30 min + NA). PA": (120 °C x 240 min + NA). Paint Bake Cycle (PBC): (180 °C x 30 
min) [32]  

As a side note, it should be mentioned that in addition to the instantaneous WHR and the 

averaged n-values, evaluated in the work by Lee et al. [32], given the availability of proper data 

acquisition technology, the instantaneous n-values are also regarded as valuable indicators of 

formability response in the literature [59], [60]. Ratke and Welch [61] defined this metric, 

independent of hardening laws (briefly described in Section 2.2.2) for a specific single stress-strain 

curve, as: 

𝑛𝑖(𝜀) =
𝑑𝑙𝑛(𝜎)

𝑑𝑙𝑛(𝜀)
 

in which 𝑛𝑖(𝜀) is the instantaneous work (strain) hardening exponent, and 𝜎 and 𝜀 are the true 

stress and strains, respectively. This equation can further be simplified as:  

Eq [1] 
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𝑛𝑖(𝜀) =
(
𝑑𝜎
𝜎 )

(
𝑑𝜀
𝜀 )

=
𝜀𝑑𝜎

𝜎𝑑𝜀
  

This simplified equation can be utilized to assess the full history of the formability behaviour 

over the duration of a test as a function of the work hardening exponent, given the experimental 

flow curve.  

Recently, a relevant study by Österreicher et al. [31] on the formability of AA7075, motivated 

by Lee et al. [32], has assessed the effectiveness of forming a pre-aged temper at elevated 

temperatures. The work hardening exponent calculated by Österreicher et al. [31] at different 

temperatures, as a measure of formability, are shown in Figure 13.  

Considering the fact that faster aging kinetics are at play in the warm forming process, a 

lower amount of subsequent aging during the PBC is required to achieve a final peak strength. In 

addition, the evident superiority of the formability responses corresponding to the respective pre-

aged condition versus the peak-aged T6 temper, supports use of this process route, at temperatures 

ranging from 25 °C to approximately 175 °C [31], according to Figure 13. 

 

 

Figure 13. The n-values of the pre-aged temper versus the T6 temper at various temperatures [31]. 
pre-aged: 120 °C for 2 hours, following the solution treatment process. 

Eq [2] 
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With further aging at paint-bake temperatures, the pre-aged alloy reached strength levels 

almost 95% of the peak (T6) strength, mitigating the larger reduction of strength as observed using 

the T6 temper condition [31]. 

2.2.1. Modelling of Precipitation Strengthening 

Numerous studies have been conducted on the precipitation hardening of the 6000 and 7000-

series aluminum alloys subjected to various heat treatment cycles. Deschamps et al. [36] 

introduced a yield strength prediction model given the shearable, non-shearable obstacle strength 

contributions.   

A yield strength model was calibrated by Esmaeili et al. [62] for 6000-series aluminum 

alloys, in which the contributions of the solid solution strengthening (𝜎𝑠𝑠), due to the solute 

concentration, and the precipitation hardening (𝜎𝑝𝑝𝑡), are added to the intrinsic strength of the 

aluminum (𝜎𝑖) [63]–[65]. This additive, which includes the summation of a handful of strong and 

a large aggregate of small obstacles attributable to the precipitate and solute atoms [64], [65], is 

given by:  

𝜎𝑦 = 𝜎𝑝𝑝𝑡 + 𝜎𝑠𝑠 + 𝜎𝑖 

The average obstacle strength was found to be linearly correlated with the growing radius of 

the precipitates until the peak aged condition, followed by a power law correlation, given shearable 

obstacles.  

Cheng et al. [66] presented a flow stress model that integrates the dislocation-induced 

strengthening (work hardening or plastic work), 𝜎𝑑𝑖𝑠
𝑛 , into the existing precipitation hardening 

model, as follows:  

𝜎𝑓𝑙𝑜𝑤 = 𝜎i + 𝜎𝑠𝑠 + (σppt
𝑛 + 𝜎𝑑𝑖𝑠

𝑛 )
1
𝑛 

in which the exponent n describes the interplay between the precipitation and dislocation stress 

contributions.  

Eq [3] 

Eq [4] 
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Omer et al. [67] combined the existing efforts into a union of precipitation hardening models 

(Eq [5]) to predict the flow stress of the die-quenched specimen following a successive aging 

treatment.  

𝜎 = 𝜎i + 𝜎0𝑠𝑠(1 − 𝑓𝑟)
2
3

+

(

 
 
(𝐶1𝑓𝑟

1
2)

1.5+0.5 tanh(

𝑅
𝑅𝐶
−1

𝜒
)

+ (𝜎𝑠 (1 −
𝜃

𝜃0
))

1.5+0.5 tanh(

𝑅
𝑅𝐶
−1

𝜒
)

 

)

 
 

1

1.5+0.5 tanh(

𝑅
𝑅𝐶
−1

𝜒
)

 

 

in which 𝜎0𝑠𝑠 represents the SSS yield strength, and 𝑓𝑟 is the relative volume fraction of the 

precipitates [68]; 𝐶1 is a function of the peak aged yield strength [62]; R is the average precipitate 

radius as a result of the heat treatment process, RC is the average precipitate radius, corresponding 

to the threshold between the shearable and non-shearable states, and 𝜒 is the abruptness measure 

of the shearable to non-shearable transition [68]. Lastly, 𝜎𝑠 is a factor taking the absence of 

precipitates into account, 𝜃0 correlates to the initial rate of hardening of the material, and 𝜃 is the 

instantaneous work-hardening rate [68].  

This amalgamation resulted in an accurate prediction model of the hardening behaviour of 

pre-aged and peak-aged initial conditions [67]. 

2.2.2. Modelling of Plasticity Response 

To model the plasticity of a material, the determination of a yield surface (which distinguishes 

the elastic and plastic behaviour of the material) is one of the first requirements. The first yield 

criterion was introduced by Tresca in 1984, where a maximum shear threshold is defined as the 

initiation point of plastic flow. The von Mises model was another yield criterion, which assumed 

 

Eq [5] 
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that the material yielding occurs when maximum shear stress on the octahedral plane reaches a 

critical value. The Tresca and von Mises yield functions, however, presume isotropic behaviour. 

To consider the anisotropy of materials like aluminum alloys, several anisotropic yield functions 

have been thus far proposed. The Barlat YLD2000 [69] equation is one of most widely-used 

anisotropic yield models. Rahmaan et al. [58] have calibrated the YLD2000 yield function of the 

AA7075-T6 sheet based on tensile testing at every 15° increment from the principal rolling 

direction of the material, as well as shear and through-thickness compression testing [57]. 

With further deformation, yield surfaces are subjected to change. Isotropic hardening is the 

simplest hardening model which assumes the uniform (proportional) expansion of yield surfaces 

within a stress domain with accumulation of plastic work. To mathematically determine such 

hardening response, knowledge about the relation (constitutive equation) between flow stress and 

strain is required, which is acquired by conducting uniaxial-tension tests and then modelling the 

stress-strain response using a suitable hardening law. The most common hardening law is the 

power-law function, Eq [6], with the hardening exponent, n (or n-value), being a commonly 

adopted indicator of the formability response of a given material.  

𝜎𝑓𝑙𝑜𝑤 = 𝐾 ∙ 𝜀
𝑛  

in which K is referred to as the strength coefficient, and n is the hardening, or power law, exponent.  

Furthermore, the Hockett-Sherby [70] hardening model , Eq [7], has shown to be an excellent 

representative of the plastic hardening behaviour of AA7075-T6, as determined by Rahmaan et al. 

[58].  

𝜎𝑓𝑙𝑜𝑤 = 𝜎𝑠𝑠 − (𝜎𝑠𝑠 − 𝜎𝑌) ∙ exp(−𝑁 ∙ 𝜀
𝑃)  

in which, 𝜎𝑠𝑠 and 𝜎𝑌 are the steady state and yield stresses, and N and P are material constants.  

Lastly, a concise assessment of a number of strain-rate and temperature dependant models, 

namely the Extended Nadai, the Bergström, and the Nes models, was undertaken by Kurukuri et 

al. [71] for AA3003 sheet material. Additionally, Omer et al. [70] performed a comprehensive 

study on the constitutive response of AA7075 and a developmental 7000-series alloy during hot 

Eq [6] 

Eq [7] 
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forming using the modified Voce model, Eq [8], with a good agreement with the experimental 

results.  

𝜎 = 𝐴 + (𝐵 + 𝐶√𝜀𝑝) ∙ (1 − 𝑒−𝐷𝜀
𝑝
) 

in which, the parameters A, B, C, and D correspond to polynomial equations as a function of 

temperature and strain rate.  

The models were verified against various strain rate and temperature stress-strain curves, as 

shown in Figure 14. 

 

Figure 14. Constitutive modelling using modified Voce fitting model [72]. 

2.2.3. Characterization Methods for Large Tensile Strains 

One of the main concerns with tensile tests performed at elevated temperatures is the thermal 

uniformity along the gauge length of the tested specimens, as well as the onset of diffuse necking, 

both of which tend to promote a heterogeneous strain field. Thus, a localized stress-strain 

extraction method is required since the existence of a uniform strain within the gauge section rarely 

persists beyond a few per cent strain. One approach to extracting the stress-strain using a local 

technique was proposed by Omer et al. [73] and is referred to as the Area Reduction Method 

Eq [8] 
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(ARM). This method uses Digital Image Correlation (DIC) technology to extract the instantaneous 

local lengthwise and width-wise dimensions of the specimen in the pull-direction of the tensile 

test. Furthermore, using the thickness strains obtained from the volume conservation assumption, 

the instantaneous cross-sectional area is obtained for each frame (image) of the captured data. This 

area is then utilized in combination with the load data from load cells to determine the true stress 

and logarithmic (area) strain at each frame.  

The limits of the validity of ARM, mainly imposed by the requirement to reduce strain-rate 

variation and the intrinsic deviation of the stress state from uniaxial to plane strain,  was considered 

by Omer et al. [72]. The proposed solution was to discard values beyond which the strain rates or 

strain paths had deviated from the intended and nominal input parameter. 

 

Figure 15. Limits of validity of the area reduction method (ARM). The deviations of [Right] Strain rates, and [left] strain paths, 
from the nominal input parameters [72]. 

Alternatively, the phenomenological ARM corrective measures proposed by Choung et al. 

[74], following the work of Scheider et al. [75], have shown to limit the discrepancies caused by 

the increased strain rate and the altered loading condition. These efforts can help utilize the full 

extent of the extracted data using the ARM, but use isotropic and power-law flow response 

assumptions, which may not be applicable to all materials.   

Choung et al.’s [74] correction factor, to be multiplied with the ARM stresses, is presented 

in Eq [9].  

𝜁(𝜀𝑝) = {
1, 𝜀𝑝 ≤ 1.4𝑛

𝛼𝜀𝑝
2 + 𝛽𝜀𝑝 + 𝛾, 𝜀𝑝 > 1.4𝑛

  Eq [9] 
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in which, 𝑛 is the power-law work hardening exponent, 𝛼 = −0.0704𝑛 − 0.0275, 𝛽 =

0.4550𝑛 − 0.2926, and 𝛾 = 0.1592𝑛 + 1.024. These relations are valid for materials with an n-

value of 0.10 – 0.30. 

2.3. Formability of 7000-series Aluminum Alloys 

The Forming Limit Diagram (FLD) is a tool to determine the intrinsic extent of deformation 

of a specific material (or temper in this study) over a range of loading conditions (strain states), 

from drawing to stretching [76]. The FLD is used to mark the limit strains during metal forming 

in order to avoid non-uniform thinning, i.e. necking, local thinning of the material leading to 

fracture, or in some cases, excessive surface roughening. 

  

Figure 16. A representation of a forming limit diagram (FLD) corresponding to different loading conditions [77]. 

A forming limit curve (FLC), consequently, is the curve that demarks the boundary between 

uniform straining and localized necking (solid curve in Figure 16). The work-hardening and strain-

rate (𝜀̇) sensitivity exponents (n and m, respectively) are known as representative parameters 

influencing the formability response of materials. The power law equation modified to 

accommodate the strain rate effects is defined as:  

𝜎𝑓𝑙𝑜𝑤 = 𝐾 ∙ 𝜀
𝑛 ∙ 𝜀̇𝑚 Eq [10] 
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Considering a power-law model, Hill [78] showed that the left-hand side of FLDs is 

controlled by the material work-hardening exponent (see Figure 17). The strain rate sensitivity can 

vary forming limits by influencing the speed at which local necks can grow. A positive strain rate 

sensitivity (i.e. positive m) results in the extension of deformation after the ultimate-tensile-

strength (UTS) point and, therefore, improves formability. Figure 17 shows schematically the 

effects of the n and m parameters on the FLC. As can be seen, the higher the n and m values are, 

the higher the material formability is. 

 

 

Figure 17. The effect of work-hardening index (n) [left] and the strain rate sensitivity exponent (m) [right] on the forming limit 
curve. [79] 

 

Moreover, another major parameter commonly affecting the formability behaviour is 

temperature, as discussed in Section 2.2. Bagheriasl et al. [80] evaluated the warm forming 

response of the AA3003 brazed sheet with an AA4045 clad layer. They found a 229% 

improvement in formability at forming temperatures of 250 C compared to room temperature 

forming. Boba et al. [81] also found significant improvements (of nearly tenfold) for the AZ31B 

alloy, with more complex forming mechanisms due to reduced number of slip planes.  

Further, Li et al. [82] have compared the warm-forming response of two automotive 

aluminum sleet alloys, AA6011-T4 and AA5754 (see Figure 18), and have highlighted the reduced 

formability gains at higher temperatures for the 6000-series alloy. DiCecco et al. [83] have also 

confirmed this behaviour on the AA6013-T6 sheet alloy, shown in Figure 18. This response can 
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be attributed to the age hardening characteristics of the 6000-series alloys, which are absent in the 

3000-, 4000-, and 5000-series aluminum alloys [84]. 

     

Figure 18. Warm forming response of 5000 and 6000-series aluminum alloys [82], [83]. 

While the 7000-series aluminum alloys show a lower formability at RT, an increased 

potential for warm forming has been observed (Figure 19) in the studies of Pishyar et al. [85] and 

Sotirov et al. [29]. Such findings demonstrate the higher general thermal softening effects on the 7000-

series alloys, compared to that of the 6000-series aluminum alloys. 

    

Figure 19. Warm formability of high strength aluminum alloys, [Left] AA7075-T6 [29] , [Right] AA7050-T6 [85], as a function of 
forming temperature. 

Other factors influencing the general formability response of metals include, but are not 

limited to imperfections within the matrix of the alloy and the fracture behaviour of the material. 

2.3.1. Evaluation Methods of Formability 

The early methods of the visual evaluation of formability consisted of etching (circular or 

square shaped) grids on the test specimen and then estimate their local strains based on the physical 
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measurement of their initial and final sizes. Such methods have been standardized using various 

test apparatus including the Nakazima [86] and Marciniak [87] forming tool sets, and are used to 

capture local instabilities as opposed to a global instability in the case of deep drawing. 

More advanced methods incorporate the use of non-intrusive data acquisitions methods, such 

as image capturing and analysis, for recording the full history of deformation during the forming 

process [88][89]. The Digital Image Correlation (DIC) technique is one of these methods that has 

led to the development of various necking detection methods, with far greater accuracy and 

precision. A representation of the strain distribution obtained using the DIC method is presented 

in Figure 20 [Left]. 

 

Figure 20. The major strain distribution using DIC [Left] [90], and strain extraction method as outlined in ISO12004-2:2008 
[Right] [91]. 

 

Conventionally, two main schools of thought exists in the field of necking detection methods. 

The ISO12004-2:2008 standard utilizes a spatial analysis in which the strain vs. specimen length 

is fit using a parabolic equation, and the local peak strain point (within the parabola) defines the 

maximum major strain [91]. The second method utilizes a temporal analysis, in which the rapid 

growth of the strain rate or thinning rate of the material (amongst other temporal detection 

methods) defines the initiation of localized necking [92], [93]. However, a comparison study by 

Min et al. [94] concluded that methods combining both temporal and spatial analysis provide the 

most robust outcomes, since the necking is a material instability resulting from both of these factors 

[94].  
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In recent years, DiCecco et al. [83] and Min et al. [95],[96] explored a surface-geometry 

characterization method to detect the initiation of localized necking given the instantaneous change 

in the specimen surface curvature during Marciniak and Nakazima tests. Wang et al. [97] also 

developed a spatio-temporal method in which a sudden increase in the height of the specimen 

surface topology, indicated by the through-thickness strains at the location of necking versus a 

point in the neighbouring uniform deformation region during the forming process, defines the 

localized necking initiation point.  

Most recently, Noder et al. [98] explored a cost and time efficient stress-based forming limit 

prediction method utilizing the constitutive behaviour of the material under analysis, which has 

led to an accurate and universal analytical prediction model. This prediction model was initially 

proposed by Stoughton et al. [99], [100] as a method of circumventing the inaccuracies caused by 

complex non-linear strain paths, independent of the load path.  

Furthermore, with the emergence of artificial intelligence, new algorithms have been trained 

to predict the forming limits of an unknown and untrained forming condition. Examples of which 

include the work of Elangovan et al. [101] and Kotkunde [102]. 

2.4. Summary of Literature Review and Objectives of Current Study 

The formability of the high strength aluminum alloy AA7075 has been the topic of previous 

research, due to its excellent strength-to-weight ratio, for use in complex-shaped automotive 

components. A review of the existing literature has revealed that the formability of this material 

can significantly be improved at elevated temperatures; however, if a peak aged specimen is warm 

formed, over-aging can occur, resulting in deterioration of the final properties. Of particular 

interest, recent work has demonstrated that forming of this material in so-called pre-aged 

conditions can result in improved formability under both room temperature and warm forming 

conditions [31], [32]. It has also been determined that subsequent heat treatment steps, such as 

introduction of an automotive paint bake cycle can also result in good final properties within the 

as-formed part.  

To date, however, there has been only limited study of the warm constitutive behaviour of 

pre-aged AA7075 during the actual warm forming process. In addition, there has been very little 
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systematic study of the formability of this alloy and temper under warm forming conditions. Both 

of these topics require attention in order to support numerical simulation of warm forming of pre-

aged AA7075; the current thesis aims to address these gaps in the published literature. 

Additionally, the post-PBC properties of a selection of optimal warm forming conditions are 

evaluated to address the objective of achieving a high final strength or temper.  
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3. Material & Experimental Procedure 

This chapter presents the material and the experimental procedures used in this research. 

Section 3.1 presents the alloy and composition, while Section 3.2 describes the overall test matrices 

and the ranges of thermo-mechanical processing routes considered. The various mechanical testing 

apparatus are documented in Sections 3.3 to 3.5, which include the individual test settings. Some 

additional information on the test settings and equipment validations are also provided in 

Appendices A and B, as also referenced in the appropriate sections in text. 

3.1. Material Properties 

The material considered in the current study was AA7075 aluminum alloy sheet, a heat-

treatable and work-hardenable alloy with the chemical composition listed in Table 1. The as-

received sheet material, with a thickness of 2 mm, was manufactured by Kaiser Aluminum and 

received in the T6 temper condition. 

Table 1. AA7075 Chemical composition as measured 

Element Mn  Si Cr Mg Ti Cu Zn Fe Zr Al 

Weight % 0.04 0.08 0.19 2.27 0.03 1.38 5.63 0.15 0.01 90.22 

The typical mechanical properties of the alloy are presented in Table 2. The O temper 

(annealed condition) is also listed in addition to the T6 (peak aged) condition, for reference. 

Table 2. The typical mechanical characteristics of AA7075 [103]. 

Temper Tensile Strength (MPa) Yield Strength (MPa) Elongation (%) 

O 227.5 103.4 18 

T6 572.3 503.3 12 

Furthermore, due to the rolling process employed during the manufacturing process of this 

sheet material, anisotropy in the crystal structure (rolling texture) causes differences in the 

mechanical properties when the material is tested in different (rolling vs. transverse) directions. 

This anisotropy is commonly defined by the Lankford coefficient (r-value) and is obtained from 

Eq [11],  
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𝑟 =
𝜀𝑤
𝜀𝑡

 

in which 𝜀𝑤 and 𝜀𝑡 are the true width and thickness strains during uniaxial tensile testing. The r-

value of AA7075 ranges from 0.78 to 1.34 [57]. Lower r-value materials are commonly expected 

to have lower resistance to thinning in a forming process. 

The anisotropy of the AA7075 alloy was shown to remain relatively unchanged for various 

pre-aged conditions (except the O- temper) as determined by Leacock et al. [104]. This behaviour 

is graphically presented in Figure 21. 

   

Figure 21. [Left] the yield strength of various tempers of AA7075 versus the test orientation. [Right] The uniaxial anisotropy (r-
value) of the different tempers as a function of test orientation. The heat treatment temperature was set to 120 °C [104]. 

 

3.2. Thermo-Mechanical Processing Routes 

Several pre-aging heat treatment schedules were considered at temperatures of 80 °C, 100 °C 

and 120 °C, for heat treatment periods of either 1, 2, or 4 hours. An additional as-quenched 

condition with a subsequent natural aging period of two days, as well as the as-received T6 temper, 

were also evaluated to determine the mechanical response of this alloy between the extremes of 

the nearly as-quenched condition and the peak aged condition.  

The experimental program was divided into four “stages” comprising: 

Eq [11] 
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 Stage 1 – Pre-aging followed by room temperature tensile and formability testing; 

 Stage 2 – Pre-aging of selected processing routes followed by warm constitutive 

characterization at various temperatures, heating rates and strain rates; 

 Stage 3 – Pre-aging of selected processing routes, followed by warm formability 

characterization at various temperatures, heating rates and forming speeds; 

 Stage 4 – Paint bake processing of selected as-formed specimens, followed by 

hardness characterization. 

The initial scope in Stage 1 was quite broad, however, a down-selection of material conditions 

was undertaken to reduce the considered tempers and test conditions for each subsequent stage, 

with the general objectives of improving formability, forming stability (absence of PLC effect), 

and achieving a peak final temper (strength). The testing performed in each stage is outlined in the 

following text. 

The heat treatment process for all tensile dog-bone specimens (Figures 30 and 36) used in the 

constitutive characterization experiments was performed in a fluidized (sand) furnace. However, 

due to their larger overall dimensions, the plane strain specimens (Figure 32), used to evaluate the 

warm formability response, were heat-treated in a separate convection furnace. Studies of the 

thermal response for the two furnaces are presented in Appendix A, Sections A.1 and A.2 . After 

heat treatment, the specimens were stored in dry-ice within a low temperature freezer (set to -40 

C) to minimize the precipitation kinetics of the specimens between the pre-aging and testing 

processes. 

 

3.2.1. Stage 1 – Preliminary Room Temperature Temper Evaluation  

The process schedule adopted for the first stage is shown in Figure 22. As illustrated, the as-

received T6 temper specimens were first solution treated at approximately 472 °C for 30 minutes, 

followed by water-quenching – which placed the specimen at a Supersaturated Solid Solution State 

(SSSS). The specimens were then allowed to naturally age for two days (2 day N.A.). This period 
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represents a nominal material handling time in industry and promotes the growth of fine and 

closely spaced GP zones, as observed by Lee et al. [32]. Some specimens were placed in dry-ice 

for testing at this specific aging state. The remaining specimens underwent the artificial aging 

processes at the aforementioned pre-aging temperatures and duration. These specimens were then 

placed in dry-ice until tested at room temperature (RT).  

A summary of all conditions evaluated in this stage, is given in Figure 23, and involved a 

pool of 9 pre-aged conditions, as well as the T6 and 2 day N.A. tempers for reference. This range 

of conditions served to provide a general understanding of constitutive behaviour and formability 

limits as a function of pre-aged condition. The mechanical testing for this first stage was performed 

at room temperature and comprised tensile testing, at a strain rate of 0.01 s-1, and Nakazima dome 

testing, with a punch speed of 0.5 mm/s. Each test condition included four repeats to evaluate the 

repeatability of the results. The testing methodologies for the room temperature tensile and 

formability experiments are given in Sections 3.3.1and 3.3.2, respectively. 

 

 

 

Figure 22. Preliminary (Stage 1) AA7075 pre-aging heat treatment and room temperature testing process parameters. 
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Figure 23. Stage 1 – preliminary room temperature temper evaluation test matrix. 

The terminology used to refer to each one of these PA temper conditions is comprised of the 

aging temperature followed by the aging time at this temperature (i.e. 120C1h refers to the temper 

aged at 120 °C for the duration of 1 hour). 

3.2.2. Stage 2 – Warm Constitutive Characterization of Selected Tempers 

Stage 2 comprised the warm constitutive characterization of selected tempers. In this stage, 

the pre-aged tempers were limited to a 4 hour pre-age duration at either 80 or 100 °C (the rationale 

behind these choices will be presented in Chapter 4). Here, a more comprehensive constitutive 

characterization study was undertaken (Figure 24) at multiple forming temperatures (150, 175 and 

200 °C), heating rates (20 ~ 0.83 °C/s) and deformation rates (0.01, 0.1 and 1.0 s-1, corresponding 

to typical warm forming conditions). The tensile experiments were performed on a Gleeble 3500 

thermo-mechanical simulator and the Gleeble test matrix is presented in Figure 25. The details of 

the methodology for these experiments are given in Section 3.4.1. Similar to the Stage 1 tests at 

room temperature, each test condition was repeated a minimum of four times to evaluate the 

repeatability of results.  



34 
 

  

Figure 24. Stage 2/3 (Gleeble/Warm Nakazima) – AA7075 pre-aging heat treatment and constitutive/formability 
characterization process parameters. 

 

Figure 25. Stage 2 – Gleeble test matrix for the warm constitutive characterization experiments.  

In the Stage 2 experiments, two heating rates were examined to evaluate the effect of aging 

during heating corresponding to a slower conventional heating method and a newly available fast 

contact heating method, utilized in the Nakazima warm forming experiments (Stage 3, Section 

3.4.2). The slow heating parameters were obtained from a pre-existing test apparatus, which used 
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the heated tool and die-set to gradually heat up the specimens in an average time of roughly 3 

minutes. The new fast heating method, was capable of achieving heating times as low as 8 seconds 

to reach the maximum testing temperature of 200 °C. Therefore, a conservative heating rate of 20 

°C/s was adopted for the fast heating process, which was used for all warm tensile tests. 

The Gleeble apparatus was programed to mimic the two heating rates under consideration. 

The fast heating experiments included a dwell period of approximately 10 seconds at the warm 

forming temperatures to simulate the sample transfer and clamping period in the warm forming 

process (discussed in Section 3.4.2). Moreover, this added time also served as a stabilization period 

allowing the Gleeble test specimens to achieve a more uniform temperature distribution across the 

gauge region. The dwell period was not considered necessary for the slow heating cycle. The 

detailed thermal cycle for the Gleeble tests are illustrated in Figure 26. 

 

Figure 26.Thermal cycles in the Gleeble tests. 

The abbreviations for these test conditions (or process routes) comprise the corresponding 

test temperature, followed by the temper, the heating rate, and lastly, the strain rate, in this specific 

order. For example, 150C-100C4h-F-0.01 corresponds to the test performed on the 100C4h 

temper, fast-heated to 150 °C and tested at a strain rate (SR) of 0.01 s-1. 
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3.2.3. Stage 3 – Warm Formability Characterization 

In the third stage of the experimental program, a narrowed selection of the Gleeble testing 

conditions were adopted to perform warm forming experiments using plane strain Nakazima 

specimens in order to assess the effect of temper, forming temperature and heating rate, and punch 

speed on warm formability. The thermo-mechanical process history for the selected forming 

experiments is common to that considered in the Gleeble experiments in Stage 2 (Figure 24), with 

the exception that punch speed replaces strain rate in the diagram. Figure 27 shows the test matrix 

corresponding to the Stage 3 experiments, in which the different punch stroke rates, temperatures 

and heating rates for the three temper conditions are outlined. The motivations for the selection of 

these test conditions is presented in Section 4.2. Up to four repeats were done for each condition 

(only three repeats if the first three experiments exhibited good repeatability).  

 

Figure 27. Stage 3 – warm forming test matrix. 

Similar abbreviations were used to describe the test conditions of this stage, except the strain 

rate designation was replaced by the appropriate stroke rate. For instance, 175C-80C4h-S-1 (mm/s) 

refers to the (Nakazima) formability test, performed on a (plane-strain) specimen with an 80C4h 

temper, slow-heated to 175 °C and tested at a stroke rate of 1 mm/s. 
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3.2.4. Stage 4 – Final Hardness Following PBC 

As the fourth and final stage of this investigation, hardness tests were performed on selected 

pre-and post-paint baked warm formed specimens, extracted from the flange and formed (10% 

strain) regions of the Nakazima samples. The process diagram and test matrix for this final stage 

are shown in Figures 29 and 28, respectively. The paint bake cycle comprised a single heat-

treatment step at a temperature of 177 °C for a duration of 30 minutes.  

Further, the specimens were exposed to an additional one day of natural aging prior to the 

micro-hardness testing. This period at room temperature corresponds to the curing time of 

specimen holders (epoxy pucks), necessary for mounting the specimen on the test apparatus. This 

aging step , however, can be neglected given the findings on the stability of similar tempers 

evaluated by Österreicher et al. [56] (discussed in Section 2.1.3). 

 

Figure 28. Stage 4 – Process diagram of the hardness evaluation tests following the warm forming process. 
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Figure 29. Stage 4 - final hardness test matrix. 

3.3. Room Temperature Mechanical Testing Methods 

3.3.1. MTS Tensile Testing Apparatus 

Room temperature tensile testing for the Stage 1 experiments was performed on a 100 kN 

MTS Criterion 45 servo-electric tensile frame, equipped with a 3D DIC system, as shown in Figure 

29. Note that the DIC system is described in Section 3.5. 

Hardness Tests on Fast Formed 
Specimens

80 °C - 4h

Fast Heating rate

150C

175C

T6

Fast Heating rate

200C

Slow Heating rate

200C

100 °C - 4h

Fast Heating rate

150C

175C
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Figure 30. Room temperature tensile frame. 

The standard ASTM E8 geometry [105] was utilized for room temperature tensile tests. This 

geometry is displayed in Figure 30. The rolling direction was oriented along the tensile straining 

direction, as specified in the ASTM standard. The crosshead speed for the MTS tensile frame was 

adjusted to achieve a nominal strain rate of 0.01 s-1. 

 

Figure 31. ASTM E8 tensile specimen [105] used for the room temperature tensile experiments in Stage 1. 

3.3.2. MTS Dome Tester Apparatus 

The room temperature formability studies (Stage 1) were performed on the MTS formability 

press (dome tester) shown in Figure 31. A 3D DIC system was also available with this hydraulic 

apparatus to extract the full field strain distribution on the formed specimen.  
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A Nakazima [86] punch with a diameter of 101.6 mm (4”) was used in a flat (no lock-bead) 

die-set with binder and die opening diameters of 116 mm and 105.6 mm, respectively. The die 

entry radius was approximately 6 mm. A clamping force of 640 kN was input into the supervisory 

(LabVIEW) software, and the punch speed was set to 0.5 mm/s. 

 

Figure 32. MTS dome tester apparatus. 

The plane-strain (PS) loading state, normally signifying the limiting state (lowest formability) 

of a typical forming process (as illustrated in Figure 16), along with the standard ISO12004-2:2008 

[91] necking detection method, were selected to compare the formability of the different tempers 

and forming conditions. To reduce friction, four layers of Teflon sheets with Vaseline lubrication 

between each layer was used between the punch surface and the blank. 

The adopted specimen geometry, shown in Figure 32, was utilized in accordance with the 

ISO 12004-2: 2008 recommendations [91], and was used to capture the plane strain loading 

condition. This design was optimized to achieve improved geometrical stability, avoiding failure 

at the die entry radius, as verified by experimental results. Furthermore, the specimen major axis 

was selected to be aligned with respect to the transverse direction, since experimental results from 

DiCecco [106] and Pishyar et al. [85] demonstrated that the transverse direction was the limiting 

direction. 
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Figure 33. Nakazima dome specimen geometry (referred to as the “Batarang” geometry) [91]. 

3.4. Elevated Temperature Mechanical Testing Methods 

3.4.1. Gleeble 3500 Tensile Testing Apparatus 

Elevated temperature tensile testing (Stage 2), considering a range of testing temperatures, 

heating rates and strain rates, was performed using a Gleeble 3500 thermomechanical simulator. 

This apparatus utilizes a closed-loop electrical heating circuit with the capability of rapidly 

increasing the specimen temperature. In addition, to achieve a more constant strain rate, the high-

pressure mode was activated for all of the tests performed on this setup. The Gleeble apparatus is 

shown in Figure 33. 
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Figure 34. The Gleeble 3500 with the DIC system. 

The Gleeble apparatus utilizes a resistive heating method in which AC current flows into the 

specimen through the cooled grips. This gripping and heating arrangement, along with the high 

thermal conductivity of the aluminum samples, introduces an undesirable thermal boundary 

condition, resulting in a significant gradient in temperature along the length of the specimen. 

Typically, the temperature at the centre of the specimen is roughly 20 °C higher than at the grip 

regions, as shown in Figure 34 – left hand graph. This temperature gradient results in a lack of 

strain uniformity within the gauge section of the specimen.  Therefore, modifications to the 

boundary conditions (gripper contacts) were made, resulting in noticeable improvements as shown 

in Figure 34. The details of the corrective measures are discussed in further detail in Appendix 

B.1.  

 

Figure 35. The difference in temperature between the set/desired temperature (which is achieved at the center of the specimen), 
5 mm away from the center (Orange), and the furthest end of the gauge region (Grey). The improved temperature difference in 

response to the boundary condition modifications are displayed in the right-hand graph. 
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Given the adverse effects of the temperature gradient along the length of the specimen on the 

resulting strain distribution, the Area Reduction Method (ARM) was implemented to obtain 

localized strain data at the centre of the specimen. This implementation and validation of the ARM 

strain measurements are presented in Appendix B.2. 

Additionally, given the thermal softening effect (presented in Chapter 4.2) and the resulting 

high sensitivity to minor setup misalignments, a modified version of the standard mini JIS (MJIS) 

tensile specimen was designed in collaboration with Lu [107]. Figure 36 displays the dimensions 

of this modified JIS geometry. The methodology for ensuring representative data is further 

discussed in Appendix B. 

 

 

Figure 36. Modified JIS geometry utilized on the Gleeble apparatus. 

3.4.2. Warm Forming Experiments 

The elevated temperature formability experiments (Stage 3 experiments) utilized the warm 

Fast Forming System (FFS) that was recently developed at the University of Waterloo by George 

[108], shown in Figures 37 and 38. This system was used to evaluate the warm formability of a 

range of pre-aged tempers and test conditions, listed in Figure 27. Two furnaces are available to 

achieve different heating rates, namely a conventional DelTech convention furnace and a Can-Eng 

platen (or contact) furnace. Furthermore, an ABB robotic arm was used to rapidly and consistently 

load/unload the specimens into/out of either furnace, and subsequently load into to the heated 

forming tooling.  
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Figure 37. The automated warm forming system, George [108]. 

 

  

Figure 38. [Left] Furnaces and the sample transfer system. [Right] Forming and data acquisition systems, George [108], 
DiCecco[106]. 

Figure 38. [Right] 
Figure 38. [Left] 
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The warm forming tooling (Figure 39) utilized a  heated Nakazima punch, with a diameter of 

101.6 mm (4”), that matches the punch diameter used in the room temperature MTS dome tester 

setup (Section 3.3.2). The plane strain specimen geometry, Figure 32, was also common to the 

room and elevated temperature forming experiments. The die and binder opening diameters were 

both 112 mm with a die entry radius of 8 mm. 

The tooling is actuated within a high speed hydraulic press (manufactured by Macrodyne). 

The press has a 600 Ton main slide and a 300 Ton outer slide. The outer slide was not used in the 

current experiments. For the current experiments, the main slide was operated in a fast approach 

mode that can achieve a closing speed of approximately 170 mm/s at 60 Ton maximum force. The 

adopted closing speed for the faster experiments was limited to 63 mm/s to ensure a nearly constant 

velocity.  

A clamping force of 40 tons (~392 kN) is applied via a hydraulic cushion available on the 

large Macrodyne press system to fully clamp the specimen between the die and binder tooling and 

avoid draw-in during the forming process. A selection of punch speeds, ranging between 

approximately 1 mm/s and 63 mm/s, were used to evaluate the rate sensitivity of the specific 

tempers and test conditions, for comparison with the data obtained from the Gleeble apparatus 

(Stage 2 experiments). In all tests, a low friction condition was achieved using four layers of Teflon 

sheets between the punch tip and the blank. No Vaseline was utilized between the Teflon sheets in 

these experiments to avoid any smeared residues on the tooling, especially given the insignificant 

improvements it offered, as determined by experimental results. 

All tooling components (binder, punch, and upper die) were heated to the target test 

temperatures, simulating an isothermal forming condition, with temperature feedback using 

embedded thermocouples placed close to the contact surface with the blank. The punch tip 

thermocouple location is indicated in Figure 39. Additionally, a pyrometer, integrated into the 

warm forming system, was utilized to validate the starting blank temperature immediately before 

triggering the forming step. All temperature settings and thermal validation studies are presented 

in Appendix A.3.1. 
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Figure 39. Heated tooling and the specimen positioning on the FFS, George [108]. 

The punch was mounted on a stationary post while the die is mounted on the press main slide. 

The binder is mounted on the hydraulic cushion which operates under load control to clamp the 

sheet metal specimen to the die (while translating) during the press stroke. Further, spring loaded 

lifters (or positioners) serve to position the blank and hold it above the tooling surface prior to die 

closure. The specimen is first clamped against the binder and then formed over the stationary punch 

due to the motion of the press slide and die (see Figure 41). One advantage of this tooling 

arrangement is that the punch position is constant such that the focal distance between the tip of 

the punch (and specimen) and camera lenses (also stationary) is constant, maintaining image 

quality over the entire forming stroke. 

CAD images displaying the tooling in isolation and the motion during the forming cycle are 

shown in Figure 40. The key process parameters for the warm forming tests are presented in Table 

3 and displayed graphically in Appendix A.3.2. The temperature profiles over the duration of the 

tests (achieved by the two furnaces and the heated tooling) were planned to roughly reproduce 

those of the Gleeble tests. 

However, some inherent variations existed between the two setups. The specimen removal 

time from the furnaces (roughly 6 s, corresponding to both furnaces), specimen transfer times from 

the furnaces to the die-set positioners (roughly 6 s), and die closure periods (2 to 13 seconds 

corresponding to the different test speeds), introduced the largest source of difference. The time 
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required for the robot to retract and clear the forming die-set was roughly 2 seconds, and is included 

in the die closure period. In the duration of these steps, the specimens were exposed to convectional 

heat transfer (to ambient air) for 14 to 25 s (4 to 15 s longer than what the Gleeble specimens 

experienced). As listed in Table 3 and shown graphically in Figures 93 - 96, the specimen 

temperatures, immediately before the clamping stage, had dropped below the target forming 

temperatures (up to roughly 10 °C), especially for the slower stroke rate tests (although the blank 

temperatures would later increase somewhat after contact with the heated dies during forming). 

Also, the Gleeble system utilized a constant heating rate of 20 °C/s (which translates to 7.5 – 10 s 

of heating time for the different forming temperatures), whereas the FFS was programmed to 

achieve the warm forming temperatures in approximately 8 s across all test temperatures.  These 

differences represent a potential source of error when validating the constitutive models using the 

numerical models presented in Chapter 5 of this thesis.   

 
Figure 40. Isolated Fast Forming process, George [108]. 

Figure 41 demonstrates this forming process in more details, viewed from the section planes. 

 
Figure 41. Detailed section view of the forming process. 
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 Table 3. FFS test parameters. The listed values correspond to a representative test for each 

process route, and are rounded to the nearest integer. All other parameters are common to all 

warm forming tests, performed on this apparatus and are included in the text (above). 

 

The approximate distances between the specimen and the tooling is presented Figure 41. 

   
Figure 42. Relative position of the specimen from the tooling surfaces, George [108]. 

Forming 

temperatures  

(°C) 

Heating 

period 

(s) 

Stroke 

rate 

(mm/s) 

Die and 

Binder 

temperatures 

(°C) 

Punch 

temperature 

(°C) 

Blank 

temperature 

when placed 

on positioners 

(°C) 

Die closure period (s) 

(starting from the 

placement of 

specimen on 

positioners)  

Blank 

temperature 

immediately 

before die closure 

(°C) 

RT N.A. 
1 22 21 20 13 20 

63 21 22 20 2 20 

150 

8 (Fast 

Heat) 

1 150 152 156 13 145 

63 150 151 150 2 149 

180 

(Slow 

Heat) 

1 150 156 156 13 144 

10 150 156 149 3 145 

63 150 153 153 2 149 

175 
8 

1 175 178 181 13 168 

10 175 178 178 3 175 

30 175 179 178 2 175 

63 175 179 175 2 171 

180 1 175 180 180 13 168 

200 

8 
1 200 205 201 13 190 

63 200 204 204 2 200 

180 
1 200 207 208 13 195 

63 200 210 191 2 189 
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3.5. DIC Analysis 

3D digital image correlation (DIC) systems, provided by Correlated Solutions Inc, were 

utilized throughout this study to obtain full field strain measurement over the duration of the tests. 

This non-intrusive technique tracks the motion of high-contrast speckle patterns on deforming 

specimen surface during a test, to determine local deformation, as described by Sutton et al. [88]. 

Random high-contrast speckle patterns, as shown in Figure 42, were obtained by spraying 

black paint on top of a white background. The specimens tested at room temperature were painted 

with the Painter’s Touch 2X Primer spray paints, while the specimens tested at elevated 

temperatures were sprayed using the VHT FlameProof Coating. Two layers of white paint were 

applied, allowing approximately 5 minutes for drying of each layer. The black speckles were then 

sprayed on from approximately 20 cm away, as illustrated in Figure 43, with the nozzle 

perpendicular to the specimens laid flat in a paint booth (spray paint standing upwards on paint 

booth surface).  

 

Figure 43. A tensile sample with black speckles on a white background, used to track the deformation of the gauge region using 

DIC. 

 
Figure 44. Speckling the tensile specimens with the black spray paint. 
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3.5.1. Camera and Lighting Setups 

The MTS Tensile and Dome Tester apparatuses utilized a pair of mid-speed FLIR 

Grasshopper series cameras, capturing images at rates of up to 150 fps with a resolution of 5 MP. 

The FFS employed two high speed Photron AX100 cameras, capturing images at a maximum 

frame rate of 750 fps with a 1024 × 1024 pixel resolution. Lastly, the Gleeble apparatus used a 

pair of 2.2 MP cameras recording at a maximum frame rate of 280 fps. 

The DIC systems employed on the Gleeble and FFS utilized a blue lighting technique which 

is commonly used, along with a blue light filter, to maintain a high-contrast monochromatic image 

in the presence of blackbody radiation, emitted from specimens at higher temperatures. While the 

current warm forming temperatures will not induce any additional light (glow), the blue light 

technique served to increase contrast, and was therefore utilized in this study.  

3.5.2. Quality of DIC Strain Measurement  

In order to develop a standard evaluation metric for the quality of DIC measurements, the 

Virtual Strain Gauge Length (VSGL), discussed by Rahmaan et al. [109], was employed. The 

VSGL is an indication of the resolution of strain in a given DIC setup and is calculated as:  

𝑉𝑆𝐺𝐿 = 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 × 𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 × 𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒          

The resolution of the region of interest is measured as the average size (in mm) of the region 

divided by the corresponding number of pixels, in the longitudinal and transverse directions. The 

Step size and Filter size are variables used in the DIC software to extract the smoothed local strain 

values. Typical VSGL values for standard tensile and dome formability tests are within the range 

of 0.5 – 1 mm and 1 - 1.5 mm, respectively [106], [110].  

The VSGL values of the DIC systems, employed on the MTS Tensile and Dome Tester 

frames were set to approximately 0.86 mm and 1.4 mm, respectively. Further, a VSGL value of 

1.0 mm was utilized for the strain measurements on the Gleeble and the FFS. Table 4 list all 

relevant DIC settings for each test apparatus. 

Eq [12] 
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Table 4. DIC settings for the different apparatuses. 

 Step size Filter size VSGL (mm) Subset 

MTS Tensile 3 5 0.86 19 

MTS Dome Tester 5 5 1.4 35 

Gleeble  4 5 0.96 27 

FFS 2 5 ≈1 21 

 

3.5.3. Necking Detection and Strain Extraction Methods 

The ISO12004-2:2008 [91] necking detection method was utilised to evaluate the forming 

limits of the plane strain Nakazima tests. It should be noted that although the ISO procedure 

specifically caters for room temperature tests, this failure detection method was utilized at a variety 

of warm forming temperatures, as well as for the RT experiments.  

Furthermore, given the standard test geometry and procedures of the preliminary RT tensile 

tests (in accordance with ASTM-E8 [105]), and the resultant uniform strain distributions, the 

conventional strain extraction method (using virtual extensometers) was employed.  

However, considering the non-uniform strain distributions along the gauge region of elevated 

temperature (Gleeble) tensile tests, although reduced slightly as mentioned in Chapter 3.4.1, the 

recommended standard strain gauge lengths were deemed unsuitable. Therefore the ARM was 

employed for the local strain extraction, as further described in Appendix B.2. 

 

3.6. Hardness Measurements 

Vickers micro-hardness measurements were performed on the warm formed specimens prior 

to and after forming, as well as following a subsequent paint bake cycle. The measurements were 

performed on a Wilson Hardness 402MVD Microhardness Tester. The applied force on this 

apparatus was set to 1 kgf with 15 seconds of dwell time. Four separate measurements were 

performed on each test specimen to ensure repeatability. The PBC heat treatments were performed 

in the fluidized (sand) furnace.  
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4. Results and Discussion 

This chapter presents the results of the experiments based on the methodologies laid out in 

Chapter 3. The results are presented in order by Stage within the test matrix: 

 Stage 1 - Preliminary Room Temperature Studies of Effect of Pre-Age 

 Stage 2 - Warm Constitutive Characterization of Selected Tempers   

 Stage 3 - Warm Formability Characterization 

 Stage 4 - Final Hardness Following PBC 

 

4.1. Stage 1 – Preliminary Room Temperature Studies of the Effect of 

Pre-Age 

4.1.1. Room Temperature Tensile Results 

Figure 45 shows the room temperature engineering stress-strain response for the range of pre-

aging conditions considered in Stage 1 of the test matrix (Figures 22 and 23). In addition to the 

pre-aged conditions, results for the as-received (AR) T6 temper, an as-quenched (W) and an as-

quenched + 2 day naturally aged (2 day N.A.) temper are also shown for reference. The as-

quenched temper is evaluated for the sole purpose of demonstrating the severity of its PLC effect. 

For clarity, only the “median curves” are plotted for each condition, as being representative of 

each thermal treatment. In general, the scatter in the data was relatively low, as illustrated in Figure 

46 which shows the complete set of curves for two pre-aged conditions.  
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Figure 45. Engineering stress-strain curves corresponding to various pre-aging states.  

From observation of Figure 45, for longer aging times at higher temperatures, the yield 

strengths approach that of the peak T6 temper, but the degree of work hardening is seen to 

decrease. Also, at low pre-aging states, higher dissolved solute concentrations promote PLC 

instabilities [48], as indicated by the observed serrated flow. The PLC type appears to be of type 

A, with the random serrations growing more apparent towards the end of the stress-strain curves. 

The PLC effects are reduced with higher levels of aging, while the largest PLC serrations are 

observed for the as-quenched or W-temper condition. 

 

Figure 46. Illustration of the variability in engineering stress-strain data for the 100C4h [Left], and 80C4h [right] pre-aged 
tempers. 
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The degree of work hardening, measured here as the difference between the true stress at the 

uniform elongation (the strain at UTS) and yield strength, and the total elongation are displayed in 

Figure 47 a) and b) using the median curves in Figure 45 for each material condition. Both 

quantities are of interest as potential indicators of sheet formability performance. Evident reduction 

in the amount of hardening and associated reduction in elongation are observed as the degree of 

aging is increased. Plotting these quantities against each other for every temper, Figure 47 c), also 

clearly demonstrates this response. 

 

Figure 47. a) Extent of work hardening for each temper. b) Percent elongation of each temper. c) Extent of work hardening vs. 
percent elongation for each temper, grouped by aging temperatures. 

In assessing which of the under aged (PA) tempers may be beneficial in improving the 

formability of AA7075, it is evident that the 80C pre-age treatments offer the highest degree of 

work hardening and elongation. In general, the 80C tempers exhibit the highest formability 

potential, in terms of these metrics, and the work hardening and elongation are highest for the 

shorter aging durations. In fact, the W temper (as quenched) and 2d-NA conditions exhibit the 

highest work hardening and elongation. It is important to note, however, that low aging 



55 
 

temperatures and durations result in tensile instabilities in terms of the PLC-induced serrated flow 

evident in Figure 45. The PLC behaviour also results in a reduced level of repeatability in the 

stress-strain response that can be seen by comparing the results for the 80C4h condition in Figure 

46 [Right] versus that of the 100C4h temper [Left]. The 100C4h condition exhibited a muted PLC 

effect, and intermediate formability potential (work hardening and elongation).  

4.1.2. Room Temperature Formability Results 

Figure 48 presents the results of the room temperature Nakazima formability experiments in 

terms of the limiting major strain versus minor strain at onset of necking. It is evident from the 

plot that the minor strains are slightly positive, indicating that the specimen geometry resulted in 

strain states that were slightly more biaxial than a true plane strain condition (zero minor strain). 

The measured variability in the major and minor strains are also shown, from which the 

repeatability is seen to be approximately ± 0.015 strain for both components which is judged to be 

acceptable. The conditions closer to the peak aged state (longer aging times at higher temperatures) 

display reduced scatter, at the cost of somewhat reduced formability. The pre-aged tempers all 

exhibit a higher formability than the as received T6 condition. 

 

Figure 48. Forming limit graph with approximately plane strain data points of evaluated tempers. The error bars represent the 

standard deviation. 1 and 2 are the major and minor strains, respectively. 

The effect of aging duration and temperature on the limiting major strain can be seen more 

clearly in Figure 49. In general, the major strain to onset of necking is not significantly affected 
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by aging duration for the 80 and 100 C pre-aged conditions (for the durations considered and 

observed scatter). The 120 C pre-age results in a loss of formability as aging duration increases 

to 4 hours.   

  

Figure 49. Major true strain (1) vs. Aging time at each temperature. The 2 day N.A and T6 tempers are also included for 
reference. Note: Although major strains are selected as the indicators of higher formability limits in this study, the minor strains 

can also reveal important thinning characteristics (considering the plane strain loading condition).  

 

In down-selecting the pre-age tempers for consideration in the subsequent warm constitutive 

characterization (Stage 2) and warm forming trials (Stage 3), it is evident that the 4h - 80 C pre-

aged temper displayed high formability (Figure 49), work hardening and elongation (Figure 47) 

with relatively mild PLC serrations (Figure 45), compared to the shorter duration aging periods at 

this temperature. As a result, this condition was selected for consideration in Stages 2 and 3 of this 

research. In addition, the 4h - 100 C temper exhibited good formability, as well as a lower PLC 

response and was also selected. Figure 50 shows the original test matrix for the room temperature 

trials in Stage 1, in which the two down-selected pre-age conditions are highlighted. Note that the 

120 C pre-age conditions exhibited lower formability and were dropped from the subsequent 

stages of this work. The forming limit strains for the two selected conditions are overlaid atop the 

T6 FLC obtained by DiCecco [106] in Figure 51. The two reference temper conditions of T6 and 

2 day N.A. are also shown in this figure for comparison purposes.  
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Figure 50. Pre-aged temper conditions selected from Stage 1 room temperature tests. 

 

 

Figure 51. Forming limits of the selected PA conditions plotted against the T6 FLC due to DiCecco [106]. The error bars represent 
the standard deviations. 

 

4.2. Stage 2 – Warm Constitutive Characterization of Selected Tempers 

Elevated temperature tensile tests were performed at different strain rates on the reduced set 

of pre-aged tempers, namely a 4 h pre-age at either 80 or 100 C. The as-received T6 temper was 

also included in this study for comparison purposes. The process parameters and the test matrix 

for this stage of testing are illustrated in Figures 24 and 25, respectively. The median curves were 
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utilized for this comparison study, with the same reasoning as that discussed in Stage 1 (Section 

4.1). 

As described in Chapter 3.2.2, the slower heating rate proposed in this study, corresponds to 

the heating time required for the test specimens to achieve steady state temperatures in a 

conventional warm forming apparatus. A limited number of tests were performed to examine the 

constitutive response under conditions corresponding to the slow heating approach.  

Figure 52 shows the effect of elevated temperatures on the constitutive response of the three 

tempers for the lowest strain rate of 0.01 s-1, and using the slow heating system. Figure 52(a) serves 

to show the reduction in yield strength of the peak temper (T6) condition with the increase of test 

temperature. The T6 material also exhibits the early onset of diffuse necking (corresponding to the 

UTS) at relatively low strain, as well as an increase in the post-UTS elongation relative to the RT 

response. Figure 52 (b) and (c) show the thermal softening that occurs for the two pre-aged 

conditions. The reduction in strength with temperature for the two pre-aged conditions is similar 

to that exhibited by the T6 condition, however, the pre-aged tempers exhibit strong work hardening 

at room and elevated temperature, indicating that the onset of diffuse necking at elevated 

temperatures are significantly delayed relative to the T6 response. The differences in the work 

hardening behaviour is evident in Figure 53 which compares the stress-strain response for each 

alloy at the three different test temperatures. 
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Figure 52.  The thermal softening effect observed in the a) T6, b) 100C4h, and c) 80C4h tempers, heated to test temperatures 
using conventional heating rates.  

 

Figure 53. The thermal softening effect of all tempers heated at the conventional (slow) rates. 
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The strain rate sensitivity (SRS) for two initial tempers of T6 and 80C4h at the various 

temperatures is examined using Figure 54. Plotted are the true stress versus true strain curves for 

the T6 and the pre-aged temper, tested at various strain rates and test temperatures. At room 

temperature, the T6 temper (Figure 54 [Left]) has a slightly positive SRS, which agrees with the 

findings of Rahmaan et al. [111]. With an increase in test temperature, the T6 condition exhibits a 

strong positive SRS. Furthermore, a reduction in total elongation is observed with an increase in 

strain rate. Figure 54 [Right] shows the corresponding data for the 80C4h temper. The pre-aged 

temper also shows a reduction in elongation with an increase in strain rate at elevated temperature, 

although the increase in flow stress with strain rate is noticeably lower than that seen for the T6 

temper.  

 

Figure 54. Effect of strain rate on the true stress versus true strain curves for the [Left] T6, and [Right] 80C4h tempers, heated to 
the test temperatures using conventional heating rates. 

In an effort to quantify the strain rate sensitivities of the different tempers under the different 

test conditions, the true stress at approximately 10% plastic strain is plotted as a function of strain 

rate for each condition. These flow stress values correspond to the vertical intercepts with the 

orange line drawn at roughly 10% plastic strain in Figure 54. The resulting data is plotted in Figure 

55 which uses a logarithmic scale for the strain rate axis in view of the expected exponential 

dependency of flow stress on strain rate [112]. As seen in Figure 55 [Left], the T6 temper displays 

a strong positive SRS at elevated temperatures. In contrast, the pre-aged temper exhibits a rather 

low SRS at elevated temperatures (nearly zero) and a negative rate sensitivity at room temperature. 
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Figure 55. The strain rate sensitivity of the [Left] T6, and [Right] 80C4h tempers at the different temperatures, heated using 
conventional (slow) rates, measured by the true stress values at roughly 10% plastic strain. The error bars represent the 

maximum deviations from the median results. 

The effect of heating rate on the engineering stress-strain response of the three tempers can 

be seen by examining Figure 56. In general, the T6 condition displays mild over-aging in response 

to the reduced heating rates, indicated by the reduction in engineering stresses [31], for the range 

of conditions tested (Note that not all heating rates, temperatures and strain rates were tested for 

all initial tempers due to the large amount of testing that would be required). The pre-aged (under-

aged) tempers do show differences between the stress-strain response for specimens using slow 

versus fast heating. The effect of fast heating is to reduce the extent of aging while the sample is 

heated prior to warm tensile testing which in turn reduces the increase in yield strength during 

heating. As a result, the fast heating stress-strain curves lie below the slow heating curves for the 

same temperature and strain rate. This effect is most pronounced for higher temperature testing 

and is more evident for the 80C4h pre-aged temper (Figure 56 c) compared to the 100C4h 

condition (Figure 56 b). In general, the reduction in yield strength and greater extent of hardening 

for the fast heating conditions is expected to promote increased formability, as investigated in 

Section 1.3. 
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Figure 56. The engineering stress-strain curves of the three different tempers, demonstrating the effect of heating rate on the 
yield strength and subsequent hardening response. 

 The thermal softening exhibited by the T6 temper using both heating rates (for comparison) 

can be seen in Figure 57. The T6 temper exhibits a low strain at UTS and extended post UTS 

elongation at elevated temperatures, with only mild influence of heating rate, as discussed above.  
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Figure 57. The thermal softening effect observed in the T6 temper, in response to the different heating rates. 

Figure 58 serves to compare the thermal softening of all three tempers tested using the fast 

heating approach. The results are similar to the slow heating tests (Figure 53), with the primary 

difference being the enhancement of the hardening behaviour of the pre-aged tempers for fast 

heating to elevated temperatures. 

 

Figure 58. The thermal softening response for all tempers, utilizing the fast heating approach. 
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Figure 59 serves to examine the effect of strain rate on the true stress versus true strain curves 

for the three tempers, at different temperatures using fast heating. The T6 temper displays a clear 

positive strain rate response with an increase in temperature. In contrast, the rate sensitivity is 

much lower for the under-aged tempers. Of particular note, at room temperature, both the 100C4h 

and 80C4h conditions exhibit a negative rate sensitivity which is likely due to dynamic strain aging 

(PLC effect). As temperature increases, the rate sensitivity becomes more positive, but never 

reaches the rate sensitivity of the T6 condition. As in the slow heating cases, all of the initial temper 

conditions experience a reduction in total elongation with increased strain rate.  

 

Figure 59. Strain rate sensitivity as observed in the true stress versus true strain curves of the different tempers, using the fast 
heating rate. 

The strain rate sensitivity of the various initial tempers is further examined in Figure 60 which 

plots true stress values at 10% plastic strain versus strain rate. The T6 temper displays a clear 

positive SRS, increasing with temperature. The 100C4h and 80C4h tempers show a negative SRS 
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at room temperature and mildly positive SRS at the elevated temperatures. Despite the more 

comprehensive test matrix for the fast heating cases, the rate sensitivity trends for fast heating are 

consistent with those observed for slow heating condition (Figures 54 and 55). 

 

Figure 60. The strain rate sensitivity of the three tempers at the different temperatures, using the fast heating system, 
characterized in terms of the true stress value at 10% plastic strain versus log strain rate. The error bars represent the maximum 

deviations from the median results. 

In examining the strain rate sensitivity of the under-aged tempers, it is evident that they 

exhibit a low SRS at elevated temperature and negative SRS at room temperature This behaviour 

can be attributed to the PLC effects observed for the pre-aged tempers, as examined by Halim et 

al. [52] and Aboulfadl et al. [48], which is due to the high solute content at these low levels of 

precipitation  (aging). In contrast, in the peak aged T6 temper, the solute content would be low 

such that PLC effects are not operative and the SRS is increased. Another interesting aspect of the 

under aged (80C4h and 100C4h) tempers is that aging is operative during heating of the sample to 
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the warm testing temperature and during the tensile test itself. The aging during heating was 

discussed above and accounts for the higher yield strength observed for the slow heated samples 

(Figure 56). Aging during the test will be higher for the lower strain rate, longer duration tests and 

could also account to some extent for the lower strain rate sensitivity observed for the under aged 

tempers (Figure 55 [Right] versus Figure 60 b) and c)). In order to separate the effect of mechanical 

strain rate sensitivity from the effect of aging during testing, future work should consider strain 

rate jump tests, similar to that in the work of Kurukuri et al. [71]. 

4.2.1. Constitutive Modeling 

As a first step in developing a constitutive fit to the elevated temperature constitutive data, 

the elevated temperature moduli of elasticity were examined. From the experimental results, there 

was a drop in the elevated temperature modulus relative to the room temperature value of 71 GPa. 

However, it was found that the errors associated with calculating the yield strains and stresses 

using the different moduli of elasticity were less than 4%. Nevertheless, the measured moduli of 

elasticity were generally utilized for all analysis presented herein (specifically those that deviated 

noticeably from the room temperature modulus). The details of the modulus calculations are 

presented in Appendix C. 

To evaluate the plastic flow behaviour, a number of models were considered to extrapolate 

the flow response and to smooth out the inherent noise in the measured data. Figure 61 displays 

the results of these fits using a number of the common constitutive models for the 100C4h temper, 

fast heated and tested at 150 °C with a strain rate of 1 s-1. The Hockett-Sherby (H-S) model (as 

also reported by Rahman et al. [57]) was found to be provide the most accurate representation of 

the flow behaviour up to the UTS point for each temper condition, displaying the highest 

coefficients of determination (R2).  



67 
 

 

Figure 61. Some common constitutive models fit to the experimental data for the 150C-100C4h-F condition, tested at a strain 
rate of 1 s-1.  

For context, all models displayed a high coefficient of determination, as shown in Table 5, 

with the minimum R2 of 89.4% - corresponding to the Holloman fitting model (for the 175-T6-S-

0.01 test condition). All other models displayed a minimum R2 average of 99.7% with a maximum 

standard deviation of 0.3%. The highest average R2 coefficient corresponds to the H-S model 

(99.9%) with a standard deviation of 0.07%.  

Table 5. The flow curve fitting model attributes. 

R2\Fitting model Holloman Ludwik Voce Swift Hockett Sherby Gosh Generalized Voce 

Min 0.894 0.993 0.985 0.995 0.997 0.992 0.988 

Max 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

Average 0.962 0.998 0.997 0.998 0.999 0.998 0.998 

STDV.S 0.029 0.002 0.003 0.001 0.001 0.002 0.003 

Therefore, given the excellent fit quality of the H-S model, as well as the desirable asymptotic 

flow response, with saturating stress limits (also observed with the Voce models – see Figure 61), 

the H-S model (Eq [7]) was selected as the best fitting model for all further studies. Additionally, 

the H-S model has shown to be of great interest in the industry, given its implementation in a broad 

range of numerical analysis software including AutoForm. 

Figure 62 demonstrates the fitted models pertaining to the flow curves for the 100C-4h 

temper, warm formed at the elevated temperature of 175 °C, utilizing the Fast Heating approach. 
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The underlying red curves are the corresponding measured data obtained using the ARM technique 

(employed for local strain measurements as discussed in Section 3.4.1 and Appendix B.2). In 

general, the fit quality is judged as reasonable for each case. Table 6 lists the Hockett-Sherby fitting 

parameters of all test conditions evaluated on the Gleeble apparatus, along with their 

corresponding coefficients of determination. The fit qualities were high for all fits. 

 

Figure 62. Comparison of the Hockett-Sherby model fits to the measured data (in red) for the 175C-100C4h-F condition tested at 
the three strain rates of 0.01, 0.1, and 1 s-1. 
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Table 6. The Hockett-Sherby fitting parameters. 

Condition 𝜎𝑌 (MPa) 𝜎𝑠𝑠(MPa) 𝑁 𝑃 𝑅2 

150-80C4h-F-0.01SR 255.53 766.35 1.36 0.53 0.9996 

150-80C4h-F-0.1SR 274.19 508.17 6.72 0.78 0.9998 

150-80C4h-F-1SR 224.81 520.14 5.84 0.76 0.9999 

150-80C4h-S-1SR 242.48 503.26 7.85 0.82 0.9999 

150-100C4h-F-0.01SR 316.90 791.48 1.22 0.53 0.9998 

150-100C4h-F-0.1SR 303.29 533.95 6.14 0.76 0.9998 

150-100C4h-F-1SR 339.70 544.24 8.93 0.89 0.9999 

150-T6-F-0.01SR 455.21 1121.57 0.46 0.64 0.9986 

150-T6-F-0.1SR 471.72 595.77 5.28 0.80 0.9990 

150-T6-F-1SR 487.80 606.00 7.86 0.90 0.9999 

150-T6-S-1SR 447.00 1154.94 0.49 0.45 0.9988 

175-80C4h-F-0.01SR 232.69 966.03 0.65 0.47 0.9995 

175-80C4h-F-0.1SR 223.93 473.12 4.83 0.73 0.9999 

175-80C4h-F-1SR 205.92 452.74 7.53 0.80 0.9997 

175-80C4h-S-0.01SR 241.81 1161.99 0.50 0.47 0.9993 

175-80C4h-S-1SR 210.28 460.67 6.86 0.74 0.9999 

175-100C4h-F-0.01SR 290.02 1205.50 0.43 0.48 0.9997 

175-100C4h-F-0.1SR 291.22 504.30 4.51 0.68 0.9998 

175-100C4h-F-1SR 292.26 484.09 9.05 0.84 0.9999 

175-100C4h-S-0.01SR 300.79 1206.37 0.43 0.50 0.9995 

175-T6-F-0.01SR 416.31 1165.89 0.32 0.68 0.9982 

175-T6-F-0.1SR 445.31 554.45 4.13 0.76 0.9984 

175-T6-F-1SR 461.31 552.72 9.12 0.90 0.9995 

175-T6-S-0.01SR 413.97 1246.34 0.29 0.71 0.9978 

175-T6-S-1SR 412.73 1170.11 0.38 0.38 0.9994 

200-80C4h-F-0.01SR 217.13 533.42 2.02 0.62 0.9999 

200-80C4h-F-1SR 210.63 394.21 8.16 0.83 0.9996 

200-80C4h-S-0.01SR 236.93 588.21 1.36 0.53 0.9999 

200-80C4h-S-1SR 215.51 425.46 5.43 0.67 0.9998 

200-100C4h-F-0.01SR 253.79 648.63 1.09 0.50 0.9997 

200-100C4h-F-1SR 270.13 421.10 11.10 0.88 0.9996 

200-100C4h-S-0.01SR 267.34 796.25 0.65 0.47 0.9998 

200-T6-F-0.01SR-F 348.45 1080.23 0.28 0.60 0.9974 

200-T6-F-0.1SR 389.53 535.69 2.30 0.63 0.9982 

200-T6-F-1SR 411.30 491.33 10.33 0.89 0.9999 

200-T6-S-0.01SR 350.03 1074.44 0.28 0.63 0.9975 

200-T6-S-1SR 342.24 594.43 1.51 0.35 0.9989 

RT-80C4h-0.01SR 343.11 709.84 6.15 0.92 0.9999 

RT-80C4h-0.1SR 345.68 681.93 7.02 0.96 0.9999 

RT-80C4h-1SR 367.38 653.16 8.92 1.05 0.9999 

RT-100C4h-0.01SR 385.73 738.09 5.21 0.89 0.9998 

RT-100C4h-0.1SR 392.66 687.71 7.05 0.98 0.9998 

RT-100C4h-1SR 407.28 665.89 9.00 1.08 1.0000 

RT-T6-0.01SR 543.38 671.12 19.94 1.17 0.9995 

RT-T6-0.1SR 543.69 747.07 6.34 0.97 0.9999 

RT-T6-1SR 552.32 689.95 15.50 1.17 0.9999 

Note 1: The flow curves with unrealistically high saturation stresses (𝜎𝑠𝑠 – approaching 1000 MPa) should not be extrapolated, 
and should only be used for interpolations. Note 2: It is advantageous to include a simulated vs experimental uniform elongation 
(UE) comparison of the models in this table, for accuracy validations. However, given that the H-S fits were utilized to smoothen 
the experimental results (utilized to determine the Considère point – Section 4.2.2) this comparison may not be a good indicator 
of the models’ accuracies. 
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In order to extend the range of useful tensile data beyond the UTS point, Choung et al.’s [74] 

correction factor, Eq [9], was considered. This method corrects for the onset of local necking and 

the increase of local strain rates at the higher plastic strains, based on the material hardening 

exponent or n-value obtained from a fitted Holloman model. Figure 63 compares the results of 

Choung’s correction method for the three strain rates tests of the 175C-4h100C-F condition, 

against an ARM correction (constraining) approach proposed by Omer et al. [5] (described in 

Appendix B.2). The Hockett-Sherby fits for each of the two flow curve correction methods are 

included in this figure to demonstrate the amplified differences at higher strains. 

As illustrated, Choung’s approach was most effective when applied to the lower strain rate 

tests, for which the higher elongations satisfied the minimum thresholds (𝜀𝑝 > 1.4𝑛) required in 

order to apply correction method [74]. At the nominal strain rate of 1 s-1, for this example, the 

minimum required plastic strain threshold was never met and, therefore, no modifications were 

made to the flow response.   

 

Figure 63. Implementation of Choung et al.’s [74] ARM correction approach. 

This approach was considered despite our knowledge of the anisotropic behaviour of this 

alloy (Choung’s correction method was developed for isotropic materials), in favour of the flow 

curve correction advantages. However, as later discussed in Chapter 5.1.1, the implementation of 

this correction method (in the material models used in numerical simulations) made little 

difference and was therefore discarded. 
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4.2.2. Uniform and Total Elongation in the Tensile Tests 

The smooth fitted flow curves were used to determine the initiation of diffuse necking as 

predicted by the Considère criterion. Eq [13] defines the threshold at which uniform elongation is 

maintained by the work hardening of the material, referred to as the Considère point. Beyond this 

point, onset of diffuse necking is expected.  

𝑑𝜎

𝑑𝜀
> 𝜎          𝑂𝑅 →          

𝑑𝜎

𝑑𝜀
− 𝜎 > 0 

Typical curves showing flow stress and work hardening rate (WHR) versus plastic strain are 

plotted in Figure 64 and graphically illustrate the Considère point, which corresponds to their 

intersection, for a 150C-80C4h-F-0.01 sample condition. This point is indicated by the red 

diamond symbol, beyond which the flow stress exceeds the WHR and diffuse necking is expected 

to ensue. Using the fitted H-S models, the right hand equation was utilized to numerically 

determine the Considère points for all tensile tests performed on the Gleeble apparatus. This 

equation is also plotted as a function of plastic strain in Figure 65, in which the intersection of the 

smooth H-S curve with the horizontal axis denotes the Considère point. The raw experimental data 

is also presented as the faded orange curve, signifying the noise canceling advantages of the fitted 

models.   

 

Figure 64. Graphical demonstration of the Considère point, at the location where the flow stress and the instantaneous WRH 
intersect.  The 150-80C4h-F condition tested at a strain rate of 0.01 s-1 was used here, for demonstration purposes. 

 

Eq [13] 
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Figure 65. A visual demonstration of the Considère point evaluation with the vertical axis set to the right hand equation (Eq [13]) 
and the horizontal axis defining the plastic strain. The faded orange curve represents the noisy experimental data and is 

included for comparison purposes. The 150-80C4h-F condition tested at a strain rate of 0.01 s-1 was used here, for 
demonstration purposes. 

The total elongation up to the point of local necking or fracture (obtained using the ARM 

technique) for each of the evaluated conditions, is compared in the bar chart in Figure 66. Also 

plotted is the limit of diffuse necking, shown as symbols. The maximum and typical standard 

deviations for the Considère points for the conditions listed in this chart were ± 1% and ± 0.5%, 

respectively. The maximum deviations correspond to the 200-100C4h-F-1SR temper. Note that 

although the obtained data exhibit a significant amount of noise, the fitted data were quite smooth 

and repeatable, and were utilized when determining the standard deviations. Further, the standard 

deviations in the measured elongations were generally larger with maximum and typical values of 

nearly ± 3% and ± 0.75%. The 175-T6-F-0.01SR condition defined the upper threshold in 

deviation in elongation. The room temperature tests performed on this apparatus displayed quite 

low deviations in the total elongation results, with a typical standard deviation of ± 0.4%. 

In Figure 66, an increase in uniform elongation is generally observed for the lower pre-aging 

states. Interestingly, while an increase in forming temperature normally improves the total 

elongation, the uniform elongations are shown to be reduced as temperature increases. This effect 
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is observed for all three tempers. Further, the elongations are reduced at higher strain rates, as 

previously discussed.  

 

Figure 66. Comparison of the Considère point (uniform elongation, plotted as connected diamond symbols) and the total 
elongation (plotted as bars) for the various test conditions. Each value corresponds to the median result for the respective test 

condition. Variability is discussed in the text. 

4.2.3. Selection of Initial Tempers for Warm Forming Experiments 

The down-selection of the test conditions for the warm formability experiments was 

undertaken using the obtained constitutive data. Up until this point, given the different process 

routes that the AA7075 alloy has been exposed to, the following general behaviours have been 

observed: 

 Thermal softening enhances total elongation, but reduces uniform elongation. 

 Strain rate sensitivities (SRS) of the three selected tempers: 
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o T6 has shown a positive SRS, with a strong positive correlation with 

temperature. 

o 100C4h has shown a negative SRS at room temperature, and a positive SRS 

at the elevated temperatures. 

o 80C4h has exhibited a low to negative SRS at all temperatures. 

 PLC effects have been observed with the pre-aged tempers, influencing the 

repeatability of the results. 

 A coupled effect between SRS and aging is at play and evident in the pre-aged 

tempers in which aging during testing (and specimen heating) leads to increased 

strength for the lower strain rate experiments – this phenomenon is also expected to 

take place during the warm forming experiments. 

 Through the use of the fast heating approach, some unintended aging can be avoided. 

Considering these effects, the down-selection of process routes was conducted through the 

use of some quantitative measures, complimented by graphical comparisons. Further, to determine 

the desired test conditions, the potential to achieve higher formability limits and superior stability 

(i.e. lower PLC effect) were held as important objectives. In addition, forming at lower 

temperatures with the lower yield strengths (whether caused by thermal softening or pre-aging) 

presents a more energy efficient approach to forming, and was therefore taken into consideration 

in the selection process.  

Detailed calculation and ranking of these performance measures is given in Appendix D, for 

brevity. Based on this ranking (Table 10), a number of processing routes were selected for 

consideration in Stage 3 of the test matrix which comprises the warm forming characterization 

experiments. These conditions are highlighted in a re-plot of the Gleeble test matrix, shown in 

Figure 67. In general, the T6 condition was considered in light of its strong positive strain rate 

sensitivity and good increase in elongation at elevated temperatures. Both under-aged tempers 

were considered due to their strong hardening rates and high elongations. Experiments considering 

both slow and fast heating were included in the warm forming test matrix. Finally, the effect of 

punch speed (strain rate) was considered in view of the strong effect it exerts on tensile elongation. 
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Figure 67. The selected Gleeble tensile testing process routes, down-selected for warm formability characterization. 

4.3. Stage 3 – Warm Formability Characterization  

The complete set of formability results are plotted on a forming limit diagram in Figure 68, 

from which the general enhancement in limit strains due to elevated temperature forming can be 

observed. Similar to the results of the preliminary room temperature tests (Chapter 4.1.2), the 

minor strain limits are slightly positive. The repeatability for both the major and minor strain is 

within ± 0.037, which is slightly higher than that observed for the room temperature formability 

tests, but is once again considered acceptable. A notable condition with a low scatter in forming 

limits tested at different stroke rates is the 100C4h temper, heated using the platen furnace (fast 

heat) and warm formed at the temperature of 175 °C (bolded blue borders). 
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Figure 68. The measured limit major and minor strains from the warm forming experiments shown on a forming limit 
diagram plot. The error bars represent the standard deviations. 

The forming limits of the slower forming speed tests (1 mm/s), as defined by major limit 

strains (determined using the ISO12004-2:2008 standards) and the corresponding dome heights,  

are plotted as a function of forming temperature for the three tempers in Figure 69. A clear increase 

in the limit strains with temperature is observed in the left hand graph for all tempers. The T6 

temper (grey symbols) shows significant improvements, achieving the highest major strains at the 

warm forming temperature of 200 °C. Furthermore, the fast heating process routes tend to display 

better forming response as compared to their corresponding slow heating routes. 

It was previously shown (Appendix D) that the conditions exhibiting a high extent of work 

hardening, and an increasing instantaneous strain hardening exponent displayed high total 

elongation. This response is also confirmed here, as the conditions meeting both criteria have in 

fact resulted in high forming limit strains.  
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The limiting dome height data Figure 69 [Right], identified by the visible load-drops in the 

load-displacement plots, provides an alternative measure of formability. Interestingly, the T6 

temper (which had shown the largest increase in formability limits in response to increased 

temperature) displays only a mild increase in dome height with forming temperature. Here, it can 

be deduced that the high strain levels of the T6 tempers were not uniformly distributed across the 

Nakazima plane strain dome geometry. This effect is consistent with the early onset of diffuse 

necking observed in the engineering stress-strain curves of the T6 temper (described in Chapter 

4.2) and the elongation comparison chart in Figure 66. 

In contrast to the T6 behaviour, the pre-aged tempers display an increase in dome height with 

forming temperature, with the fast heating routes, again, displaying superior limits. At forming 

temperatures of 150 and 175 °C, the pre-aged tempers exhibit a peak in forming limits as observed 

in both the limit strain data and the limit dome height results. Further, the 80C-4h temper shows 

the highest limit strains of the two pre-aged tempers, and the largest limiting dome heights across 

all tempers. 

 

Figure 69. [Left] The major limit strains from the slow (1 mm/s) punch stroke tests. [Right] The maximum dome heights of 
the slow (1 mm/s) punch stroke tests. Initial tempers and heating rates (F-fast, S-slow) are indicated. 

Figure 70 displays the limit strains and maximum dome heights for the three tempers as a 

function of forming speed. The faster stroke rate tests resulted in lower forming limits which is 

consistent with the effect of strain rate on elongation observed in the engineering stress-strain data. 
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Figure 70. The major limit strains [Left hand graphs] and maximum dome heights [Right hand graphs] of the three tempers 
tested at different forming temperatures and heating rates vs. forming speed.  

Figure 71 provides a summary of the measured limit strains and dome heights for all of the 

warm forming trials. It is evident that the pre-aged conditions benefit from the higher extent of 

work hardening imparted by the lower extent of aging (yield strength) prior to forming, as 

compared to the T6 temper. With higher test temperatures, the limit strains have generally shown 

a positive increase. This response is also reflected in the dome heights.  

The quantitative formability limit improvements observed with the slower (1 mm/s) test 

results of the175-80C4h-F and 175-100C4h-F conditions with respect to the reference T6-RT 

condition is approximately 83 and 77 % in terms of major limit strains and 42 and 40 % in terms 
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of dome heights, respectively. The faster rate tests (63 mm/s) displayed improvements of 28 and 

25 % with respect to strains and 37 and 36 % with respect to dome heights. Furthermore, the 150C-

80C4h-F condition has shown the highest increase in dome heights, compared to the RT-T6 

condition, corresponding to 53 % for the 1 mm/s tests and 39 % for the 63 mm/s tests (which 

correspond to major strain increases of 53 and 33 %, respectively.  

 

Figure 71. Limiting major strains and dome heights for all of the warm forming test conditions. The error bars represent the 
standard deviations. 

A selection of the most favourable under-aged (PA) conditions from the warm forming trials, 

along with the T6 tempers (included as a reference) were selected to examine the final hardness of 

the formed parts following a paint bake cycle (PBC). The specimens tested at the higher stroke 

rate of 63 mm/s were considered for this study, since this forming speed is closer to that used in 

industrial forming operations. The conditions selected for paint bake thermal processing are 

highlighted in the re-plot of the warm forming test matrix in Figure 72. 

 



80 
 

 

Figure 72. The selected warm forming conditions considered to evaluate hardness following PBC. 

 

4.4. Stage 4 – Final Hardness Following PBC 

The selected warm formed specimens were utilised to examine the final hardness following 

paint bake cycling. Hardness measurements were taken from formed parts, both within regions 

deformed to approximately 10% strain, as well as from flange regions that experienced the same 

thermal treatments, but with no deformation. Hardness values were also measured for the same 

regions following paint bake cycling, thus representing the final properties of the material that are 

to be expected within a warm formed and paint baked automotive part. The test matrix in Figure 

73 displays the conditions that were selected from the warm forming experiments, to be evaluated 

in this study. All micro-hardness measurements were evaluated on the through-thickness (cross-

sectional) plane of the specimens. 
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Figure 73. The final hardness test matrix, highlighting the selected forming process routes. 

The hardness results are presented in Figure 74. An interesting effect is observed for the T6 

tempers, in which some characteristics of retrogression and re-aging, as evaluated by Karaaslan et 

al. [113], are observed. The hardness values following the warm forming process are reduced, 

below that of the initial T6 temper. However, the heat treatment involved in the PBC appears to 

return the hardness values to those of the T6 peak aged temper. This effect is observed for both 

heating rate process routes, for the formed and flange regions.  

Also interesting are the hardness results from the 175C-100C4h-F process route, which 

exhibited a considerable hardness increase in response to the PBC. The corresponding average 

hardness value achieved from this forming route is approximately 97% of that of the peak T6 

temper.  

Moreover, Deschamps et al. [44] have reported a dislocation annihilation effect observed 

during deformation of age-hardenable Al-Zn-Mg alloys. This effect seems to be present in the 150-

80C4h-F-63 hardness results, apparent from the reduced hardness values of the warm formed state 

compared to the initial temper’s hardness readings. However, given the heat treatment involved in 
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the PBC, these conditions subsequently gained a large increase in hardness values, likely, due to a 

similar retrogression and re-aging effect, observed for the T6 temper. 

 

Figure 74. Hardness measurements of the as formed (10% strain) and flange regions of the top performing test conditions. The 
error bars represent the standard deviations. 

Considering the excellent response of the 175-100C4h-F process route to the PBC, this 

condition has been shown to satisfy all of the selection criteria set in this thesis (discussed in 

Section 4.2.3). The high levels of formability (and good repeatability), the high precipitation 

hardening potential, and the relatively low initial yield strength favour the use of this condition in 

warm forming processes. Moreover, the warm forming temperature for this route is also relatively 

low compared to the optimal temperatures for the T6 condition [29], and other high-strength 

aluminum alloys of the 6000-series designation [82], [83]. 
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5. Numerical Modelling – Constitutive 

Model Assessment 

A series of thermo-mechanical numerical simulations of the tensile and the plane strain 

Nakazima tests were undertaken in order to validate the constitutive fits developed in Section 4.2.1. 

The simulations were performed using the LS-DYNA (R12.0.0) finite element software. The static 

implicit and dynamic explicit formulations were adopted for the plane strain formability and tensile 

tests, respectively. The tensile test validations are presented first, followed by the Nakazima model 

results. 

5.1. Tensile numerical analysis  

A numerical study of the Gleeble experiments (Figure 36) was conducted to evaluate the 

accuracy of the constitutive models. This numerical study utilized a single component tensile 

geometry, as shown in Figure 75, comprised of quadrilateral elements. An element size of 0.3 mm 

was used in the gauge region of this geometry. Five integration points through the 2 mm thick 

specimen were evaluated with a fully integrated in-plane shell element formulation (ELFORM = 

16). A fixed boundary condition was assigned to the left hand nodes of the simplified geometry 

shown in Figure 75. The nodes at the right hand of the specimen were pulled at constant speeds of 

0.29, 2.9, and 29 mm/s, corresponding to the cross-head speeds of the Gleeble apparatus for 

nominal strain rates of 0.01, 0.1, and 1 s-1, respectively. Lastly, the specimens were treated as 

isothermal (constant temperature) and the test temperature associated with each test (150, 175 or 

200 °C) was assigned to all elements in the model. 

 

Figure 75. The meshed Gleeble geometry, utilized for the tensile numerical analysis. 
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5.1.1. Material Model 

The material work hardening response was modelled using the fitted Hockett-Sherby flow 

curves (Section 4.2.1) which provided a smoothed and extrapolated hardening behaviour for each 

test condition. The fitted parameters are given in Table 6. Further, the Barlat YLD2000 yield 

surface, calibrated by Rahmaan et al. [58], was used to characterize the anisotropic yield surface. 

No fracture/failure criteria were employed to simulate the tensile tests. 

A 3D table containing the point-wise discretized Hockett-Sherby curves for the different 

strain rates at the different forming temperatures were input into the MAT_133 

(MAT_BARLAT_YLD2000) material card.  Each temper and heating rate was treated as a 

different material and was, therefore, assigned a dedicated material card. Figures 76, 77 and 78 

display the input constitutive dataset for each of the three tempers (T6, 100C4h, and 80C4h, 

respectively) at the two heating rates. The flow curves in this figure defined the elastic moduli and 

plastic behaviour for each strain rate and temperature condition. Moreover, interpolation between 

strain rate data was performed when possible (curves marked by the asterisks). 

 

 

Figure 76. Flow curve data-set input to the material card, corresponding to the T6 temper, [Left] fast heating condition, [Right] 
slow heating condition. The flow curves denoted by the asterisk are interpolations between the strain rate dataset. 
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Figure 77. Flow curve data-set input to the material card, corresponding to the 100C4h temper, [Left] fast heating condition, 
[Right] slow heating condition. 

 

Figure 78. Flow curve data-set input to the material card, corresponding to the 100C4h temper, [Left] fast heating condition, 
[Right] slow heating condition. The flow curves denoted by the asterisk are interpolations between the strain rate dataset. 

As examined by Leacock et al. [104], the precipitation process during aging is not expected 

to exert significant influence on the anisotropy of  this alloy (also described in Chapter 3.1). In this 

study, R-values (acquired in the rolling direction) were obtained using the local strains from the 

ARM strain data, over a typical range of through-thickness strain of approximately 2 - 6 %. This 

range corresponds to the region with linear correlation between the width and thickness strains 

(prior to the onset of diffuse necking). A graphical summary of the R-values is presented in Figure 

79. As can be seen, the R-values range from approximately 0.5 to 0.58, which are lower than the 

r-values of 0.78 reported by Rahmaan et al. [57] for this alloy. This difference may be due to the 

different r-value evaluation range of 0 – 6 % plastic strain. Nevertheless, given the more 

comprehensive study on the r-values (in multiple directions) conducted by Rahmaan et al. [57], 

their findings were utilized in this numerical study. 
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Figure 79. R-values of all conditions tested on the Stage 2 (Gleeble) of the process route selection. 

Moreover, a preliminary study was conducted to evaluate the strain rate and strain path 

correction methods proposed by Choung et al. [74] and Omer et al. [73] (described in Appendix 

B.2). This numerical study evaluated the effects of the two correction methods on the tensile and 

Nakazima test models for the selected condition of 175C-100C4h-F. The slower 0.01 s-1 strain rate 

and 1 mm/s stroke rates tests were used for this study given the more noticeable effects when 

implementing the Choung et al.’s correction method, as shown in Figure 63 of Section 4.2.1. 

As displayed in Figure 80 [Left], the difference in the results obtained using the Choung et 

al. [74] correction method was negligible, compared to those of the constrained ARM approach 

proposed by Omer et al. [73]. Similar behaviour has been observed in the Nakazima simulation 

results, Figure 80 [Right] (the Nakazima models are documented below).  
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Figure 80. Evaluation of the Choung et al.’s correction method as assessed by [Left] Gleeble tests and [Right] Nakazima 
formability simulations, on the 175C-100C4h-F condition. 

Therefore, due to the use of unnecessary assumptions (discussed in Chapter 2.2.3) and the 

insignificant effects that the Choung et al,’s correction method has shown on the simulated results, 

this approach was no longer considered. 

5.1.2. Tensile Predictions 

The numerical simulations accurately predicted the load-displacement response of the 

majority of Gleeble test conditions. As shown in Figures 81 and 82, the room temperature 

simulations are in good agreement with the experimental results.  

 

Figure 81. The room temperature predictions for the 100C4h temper at different strain rates.  
Note: The simulated curves were cut-off at the onset of load-drops.  
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Figure 82. The room temperature predictions for the T6, 100C4h, and 80C4h tempers at the strain rate of 0.1 s-1. 
Note: The simulated curves were cut-off at the onset of load-drops.  

 

However, at the elevated temperatures, some of the models failed to capture the full 

elongation, particularly at the lower (0.01 and 0.1 /s) strain rates, as seen in Figures 83 and 84. 

 

Figure 83. The elevated temperature predictions for the 100C4h temper at different strain rates. 
Note: The simulated curves were cut-off at the onset of load-drops.  

 

 

Figure 84. The elevated temperature predictions for the T6 temper at different strain rates. 
Note: The simulated curves were cut-off at the onset of load-drops.  

 

The predicted load-displacements are in good agreement up to the point of local necking, 

which occurs sooner than observed in the experiments. The premature onset of necking is likely 

due to the measured material rate sensitivity which is obscured in the Gleeble testing by the 

coupled effects of strain rate sensitivity and the dynamic aging during deformation, as discussed 
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in Chapter 4. It is anticipated that the actual elevated temperature strain rate sensitivity is higher 

than that measured using constant strain rate tensile tests; future work should consider strain rate 

jump tests to better separate strain rate sensitivity and aging effects during testing. In addition, the 

onset of local necking is known to be influenced significantly by the accuracy of the yield surface 

in the plane strain condition, which is not explicitly calibrated in the work by Rahmaan et al. [58]. 

Further work is required to improve the predictions to higher strain levels. 

5.2. Warm Forming Numerical Analysis 

This section provides details of the numerical warm forming model. The simulation results 

are assessed in terms of the predicted the load-displacement responses versus the measured data.  

5.2.1. Finite Element Mesh 

A quarter symmetry representation of the specimen and tooling, as shown in Figure 85 and 

86. A fully integrated shell element formulation (ELFORM = 16) and five integration points were 

used to describe the deformable 2 mm blank. The tooling was treated as rigid. The dimensions of 

the plane strain blank were derived from the geometry in Figure 33. Further, the critical dimensions 

(i.e. die radius, die entry radius and the punch radius, along with relative positions) were identical 

to those described in Section 3.4.2. 

  

Figure 85. The quarter symmetry mesh used for the Nakazima dome specimen model (units in mm). 
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Figure 86. Plane Strain Nakazima simulation assembly. 

 

 The Gauss-Lobatto through-thickness integration approach was employed to predict the 

strains on the surface of the specimen. The shell elements used in this study are all comprised of 

quadrilateral elements with a minimum size of 0.5 mm at the center of the blank.  

5.2.2. Boundary Conditions  

 

5.2.2.1. Tooling Motion and Loads 

A variable velocity, aiming to simulate the tooling motion during the warm forming process, was 

assigned to the moving toolset. Once the specimen was fully clamped in the die-set, the punch was 

assigned to advance into the blank. Following the force controlled clamping process, 5% of the 

punch displacement was allocated to the acceleration and deceleration on each end of the stroke 

motion. The remaining 90% was assigned as constant velocity, corresponding to the different 

experimental stroke rates. A quarter symmetry binder load of 10 tons (≈ 98 kN), was applied to 

prevent draw-in during deformation.  

5.2.2.2. Temperature History 

Furthermore, although relatively small deviations from the forming temperatures were 

measured on the heated tooling and the blanks, the full thermal histories were utilized in the 
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simulations to improve the accuracy of the model. Appendix A.3.2 presents the temperature curves 

corresponding to the warm forming components (tooling and blank) utilized in this numerical 

simulation. The timings for each step of the simulation, starting from blank insertion, were derived 

from these temperature histories. Table 3 in Chapter 3.4.2 also lists the key process parameters for 

all tests performed using the warm forming system. Moreover, the heat transfer coefficients, 

utilized in the thermal contact definitions, were adopted from the work of Omer et al. [114] (Table 

7).  

Table 7. The heat transfer coefficients of AA7075-T6 versus contact pressure obtained by Omer 

et al. [114] 

Contact Pressure (MPa) HTC (W/m2-K) 

2 355 

5 501 

10 620 

20 750 

40 1010 

60 1800 

80 2803 

 

5.2.2.3. Friction 

The coefficient of friction (COF) values utilized in this study were adopted from the work of 

Noder et al. [115]. The COF values of 0.007 and 0.037 – corresponding to the elevated and room 

temperature conditions, respectively – were utilized for the lubricated (Teflon) contact between 

the punch and the blank. For the unlubricated contact (clamping) regions (between the blank and 

the die-set) a COF of 0.35 was employed. 

5.2.3. Warm Forming Predictions 

The numerical models of the warm forming experiments provided fair predictions of the 

experimental data, with the faster stroke rate results being slightly more accurate than those of the 

slower tests. A similar systematic error has been observed across all tested conditions. 
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The predicted versus measured load-displacement curves for the 80C-4h temper are displayed 

in Figures 87 and 88 for forming temperatures of 150 and 175 °C, respectively. In these figures, 

the sudden drops in the experimental load-displacement curves correspond to the onset of failure.  

Although the predictions are generally in good agreement with the experimental results, the 

simulations tend to initially underestimate, and later over-estimate the measured loads. Near the 

midpoint of the test, the slopes of the predicted load-displacements are shown to increase more 

rapidly compared to the experimental response, resulting in an overshoot in response.  

  

Figure 87. The load-displacement responses from the Nakazima formability experiments, for the 80C-4h temper, warm formed 
at 150 °C with the fast heating rates, at the stroke rates of [Left] 1 mm/s and [Right] 63 mm/s; compared to the corresponding 

simulated results. 

 

Figure 88. The load-displacement responses from the Nakazima formability experiments, for the 80C-4h temper, warm formed 
at 175 °C with the fast heating rates, at the stroke rates of [Left] 1 mm/s and [Right] 63 mm/s; compared to the corresponding 

simulated results. 

Similar behaviours are observed for the 100C-4h tempers at the different forming 

temperatures, stroke rates, and heating rates as shown in Figures 89, 90 and 91. 
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Figure 89. The load-displacement responses from the Nakazima formability experiments, for the 100C-4h temper, warm formed 
at 175 °C with the fast heating rates, at the stroke rates of [Left] 1 mm/s and [Right] 10 mm/s; compared to the corresponding 

simulated results. 

 

Figure 90. The load-displacement responses from the Nakazima formability experiments, for the 100C-4h temper, warm formed 
at 175 °C with the fast heating rates, at the stroke rates of [Left] 30 mm/s and [Right] 63 mm/s; compared to the corresponding 

simulated results. 

 

 

Figure 91. The load-displacement responses from the Nakazima formability experiments, for the 100C-4h temper, warm formed 
at 200 °C with the fast heating rates, at the stroke rate of 1 mm/s; compared to the corresponding simulated results. 



94 
 

Similarly, the T6 temper exhibited comparable trends as shown in Figures 92 and 93. The 

reduced elongations for the 1mm/s tests are likely caused by the rapid increase in the strain rates, 

and due to the lower ductility of this alloy, impaired by the same discrepancy in capturing an 

accurate strain rate sensitivity response as described in Section 5.1.2.  

 

 

Figure 92. The load-displacement responses from the Nakazima formability experiments, for the T6 temper, warm formed at 200 
°C with the fast heating rates, at the stroke rates of [Left] 1 mm/s and [Right] 63 mm/s; compared to the corresponding 

simulated results. Note: The simulated curve of the 1 mm/s test was cut-off at the onset of load-drop. 

 

Figure 93. The load-displacement responses from the Nakazima formability experiments, for the T6 temper, warm formed at 200 
°C with the slow heating rates, at the stroke rates of [Left] 1 mm/s and [Right] 63 mm/s; compared to the corresponding 

simulated results. Note: The simulated curve of the 1 mm/s test was cut-off at the onset of load-drop. 

From this numerical study it can be deduced that the load displacement simulations of the 

Nakazima formability tests generally provide a moderately good prediction when compared to the 

experimental results; and follow the observed trends with systematic errors. The slow heating 

routes have yielded similar results, since the slightly over-aged specimens have also been exposed 

to similar thermo-mechanical processes during warm forming. The slightly more accurate response 
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of the faster stroke rate tests is likely due to the reduced effects of aging during deformation since 

the time at elevated temperature is reduced.  

In this study, a different material card was produced for each of the three tempers, essentially 

treating them as different materials. However, integrating a dedicated precipitation hardening 

model, similar to the work of Omer et al. [67] and Kurukuri et al.[71], may be possible which 

would make use of all of the data obtained in this thesis within a unified material model. This 

integration may also help to decouple the aging and strain rate sensitivity effects within the 

constitutive response, as discussed in Chapter 5.2. To this end, strain rate jump tests, in which the 

strain rate is rapidly varied during a tensile test would be helpful to identify strain rate sensitivity 

for a given “aging state”. Using this approach, the strain rate sensitivity can be better separated 

from the aging effects.  Such methods can be expected to improve the prediction accuracies and 

provide a more complete material model for a larger range of process routes.  
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6. Conclusions and Recommendations 

The peak (T6) temper of AA7075 aluminum alloy sheet has excellent specific strength, but 

exhibits inferior formability at room temperature. The current thesis has served to put forth a 

process route to enhance the manufacturability of AA7075, utilizing warm forming of under-aged 

(pre-aged) tempers, as well as warm forming of the T6 temper, to improve formability. The 

constitutive characteristics obtained at the different testing conditions were also characterized and 

utilized to devise the optimal process parameters to form this alloy.  

6.1. Conclusions 

The following conclusions are drawn: 

 The pre-aged tempers displayed an enhanced work hardening response, compared to that of 

the T6 condition, and therefore better elongation and formability. PLC effects were prevalent 

for lower aging durations and temperatures, and impaired the repeatability of the results, 

however, PLC effects were much lower for the 4-hour pre-age conditions.  

 Warm forming promoted increased formability, in terms of measured limit strain, for all 

selected temper conditions (T6, 100C4h, 80C4h). However, the measured increase in limit 

strain for the T6 temper was local; as a result, only marginal increases in dome height were 

observed for this temper. The lack of improvement in dome height for the T6 temper is 

attributed to the early onset of diffuse necking at elevated temperatures.  

 In contrast to the T6 results, the under aged tempers exhibited strong work hardening at room 

and elevated temperature that delays the onset of diffuse necking. As a result, the under aged 

tempers exhibited significant improvement in both limit strain and dome heights to failure at 

elevated temperatures. 

 Rapid heating reduced the extent of pre-aging and generally led to an increase in forming limit 

for the under aged tempers (up to 8% and 13% in terms of dome heights and major limit 

strains relative to the slow heated sample, respectively).  



97 
 

 From the numerical simulations, the Hockett-Sherby constitutive fits were shown to provide 

accurate predictions of the measured load-displacement response in the tensile experiments 

and moderately accurate predictions for the warm forming experiments. 

 Based on the evaluation of the hardness of the different tempers before and after a PBC, 

following the forming process, the following conclusions were drawn: 

o Over-aging of the T6 temper is observed in response to the warm forming 

processes. However, this effect might be desirable if an over-aged T76 temper 

is sought for its superior stress corrosion cracking resistance. 

o The PBC process has shown to increase the hardness values of the warm 

formed T6 specimens, as a manifestation of the retrogression and re-aging 

effect. Evidence of this phenomena lies in the reduction in hardness values of 

the post warm formed T6 specimens, and the regain of the hardness values 

after a subsequent PBC. 

o The hardness of the 100C-4h temper, after paint bake and warm forming  at 

175 °C using the fast heating method, approached 97% of the hardness of the 

peak aged (T6) condition. 

6.2. Recommendations  

The constitutive dataset acquired in this work, along with the preliminary modelling work 

(Hockett-Sherby fits), represent a solid foundation for the further development of a more complete 

constitutive model. This model should include separate terms for in situ aging and recovery during 

warm forming with decoupling of strain rate sensitivity, along with work hardening and thermal 

softening effects. To decouple aging (during warm forming) and strain rate effects, strain rate jump 

tests should be performed for a range of initial aging conditions. Moreover, a parallel study on the 

boundary conditions and the size of the shell elements should also be devised to ensure optimal 

numerical model accuracy. 
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A full FLC characterization is recommended for the high performing conditions of 175C-

100C4h, 175C-80C4h and 200C-T6, at a range of stroke rates (recommended 10-63 mm/s) using 

the fast heating approach. Further, large-scale component forming experiments should follow this 

characterization study for industrial validation of the warm forming process and models. 

A detailed friction study is recommended with precise load cells to capture the low 

coefficients of friction observed with the current lubrication method. Also, considering the 

relatively low forming temperatures, industrial lubrications, such as FUCHS Forge Ease AL278 

and RENOFORM 2502, should be examined to evaluate the friction levels achievable in warm 

forming (since Teflon is not a realistic option for large scale manufacturing). 

Furthermore, tensile tests performed on parts subjected to warm forming (pre-straining), 

before and after the PBC, are needed to complement the hardness evaluation study presented in 

this thesis, and provide a more complete characterization of the post-formed states. Additionally, 

it is also recommended to evaluate the stress corrosion cracking response of the high performing 

conditions in future work. 

Lastly, a longer pre-aging duration (more than 4 hours) at the lowest pre-aging temperature 

of 80 °C should be considered to examine the potential reduction in the PLC effect and 

improvement in formability with further aging.  
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Appendix 

A. Process Control - Temperature Validation 

This appendix provides supporting data concerning the temperature settings and process 

histories associated with the various furnaces and heating apparatuses, utilized in the heat 

treatment and warm forming of the tested specimens. Note that the Gleeble heating apparatus is 

presented in the Appendix B. Temperature histories in the duration of the heating processes are 

provided to showcase the temperature uniformity and stability for each apparatus. 

A.1.  Heat Treatment Furnace  

A convection DelTech furnace (DT-20) was utilized to heat treat (solutionize and pre-age) 

the Nakazima dome test specimens. This section presents results from a study of the steady state 

and transient conditions within the furnace to verify the heat treatment temperatures and durations.  

First, a frame was fabricated to support multiple blanks within the furnace and enable batch 

processing during the heat-treatment process. This frame was also used to evaluate the temperature 

distribution within the furnace. To assess the initial thermal state of the furnace, instrumented 

specimens (utilizing K-type thermocouples, or TCs) were placed on the fixture as shown in Figure 

94.  
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Figure 94. The batch heat-treatment processing fixture. The Thermocouples (TCs) attached to the instrumented blanks were 

numbered, from 3 to 16 (TC_3 to TC16). 

 The large variance in the temperature data (Figure 95) close to the furnace door on the 

lower shelves of the frame (TC_3 and TC_5), denote the severity of the non-uniform temperature 

distribution within the DT-20 convection furnace. A reverse CFD analysis, Figure 96, highlights 

the thermal gradients within the furnace. 

 

 

Figure 95. The Temperature history of the ‘MiniMac’ DT-20 furnace. The first 40 minutes denote the ramp-up period of the 
furnace from room temperature to the (roughly) steady-state target temperatures. 
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Figure 96. The average temperature distribution within the furnace, as obtained from reverse CFD analysis. 

 

With improved thermal insulation and air circulation turned on a more uniform temperature 

distribution (from approximately 50 to 7 °C of temperature gradient) was observed near the centre 

of the furnace, as confirmed by the thermal history in Figure 97. This region was, therefore, utilized 

for batch heat-treatment processing of the Nakazima dome specimens. 
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Figure 97. The improved temperature history of instrumented specimen between the front and centre of the furnace. As with all 

temperature history graphs, a room temperature (RT) thermocouple has been included to ensure proper connectivity of the data 

acquisition system’s (DAQ’s) input module. This thermocouple was placed in room temperature, close to the DAQ.  

A.2. Temperature Uniformity in the Fluidized Sand Furnace. 

The on-site Sand Furnace at the University of Waterloo has shown to provide the most stable 

and uniform stand-alone heat-treatment solution. To evaluate the stability, a thermocouple was 

sandwiched between two ASTM E8 tensile specimens, as shown in Figure 98. This instrumented 

sample was then placed in a typical heat treatment batch (of about 10 to 12 specimens per batch) 

and inserted into the Sand Furnace set to 475 °C.  

  

Figure 98. Instrumented tensile specimens used in the Sand Furnace. 
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The resulting thermal response is shown in Figure 99. As can be seen, the steady state 

temperature is within 1 °C of the set target temperature.  

 
Figure 99. The thermal history of the probed specimens inside the Sand Furnace. 

A shortcoming of this furnace was its small opening, which prevented larger (Nakazima 

dome) specimens from fitting in. Therefore, only the smaller (tensile) specimens were heat-treated 

using this apparatus.  

A.3. Warm Forming System Furnace Validation 

A.3.1. Furnace Settings 

In order to achieve the prescribed (short) heating periods within the two furnaces, the furnace 

temperatures were set to exceed the desired specimen temperatures. The resulting specimen 

temperature histories are shown in Figures 100 and 101 for the convection (Deltech) and contact 

(Can-Eng) furnaces, respectively. The initial heating trials shown in these figures were utilized to 

determine the furnace temperature settings for each condition, through interpolation. The 

calculated furnace temperature settings are listed in Tables 8 and 9. 
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Figure 100. Measured specimen temperature-time histories for a range of furnace set point temperatures (legend) using the 
Deltech convection furnace. Interpolation between the specimen temperature curves determined the rough furnace set points 

for achieving the desired blank temperature at the target heating time of 180 s  [108]. 

Table 8. Convection Furnace temperature settings corresponding to a heating time of 3 minutes [108]. 

Desired blank 

temperatures after 

180 s in furnace 

Set temperatures 

150 °C 270 °C 

175 °C 300 °C 

200 °C 335  °C 
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Figure 101. Measured specimen temperature-time histories for a range of furnace set point temperatures (legend) using the 

Can-Eng contact furnace. Interpolation between the specimen temperature curves determined the rough furnace set points for 
achieving the desired blank temperature at the target heating time of roughly 8 s  [108]. 

Table 9. Conduction (platen) furnace temperature settings corresponding to a heating time of 8 seconds [108]. 

Desired temperatures Set temperatures 

150 °C 190 °C 

175 °C 217 °C 

200 °C 250  °C 

 

A.3.2. Warm Forming In Situ Temperature Histories  

The thermal histories of the specimens during the indicated forming condition in the Fast 

Forming System is shown in the following figures. These figures include the infrared (IR) 

pyrometer’s thermal measurements of the specimen surface, as well as the temperatures of the 

heated die-set and the punch, utilizing their embedded thermocouple sensors. These graphs were 

used to define the process parameter in the numerical simulations.  

The outer and inner thermocouples in the die-set correspond to the pair of sensors placed 6 

mm from the contact surface, at different radial distances from the center of the die-set, with the 

inner being closer to the center of the specimen. The Punch thermocouple location is displayed in 
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Figure 39. Moreover, the die closure defined the limit of validity for the IR pyrometer, due to 

reflections. Therefore, all succeeding data were discarded for this specific sensor.  

 

Figure 102. Warm forming cycle temperatures - 150 °C, Fast Heat. 
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Figure 103. Warm forming cycle temperatures - 175 °C, Fast Heat. 

 

 
Figure 104. Warm forming cycle temperatures - 200 °C, Fast Heat. 
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Figure 105. Warm forming cycle temperatures - 200 °C, Slow Heat. 
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B. Gleeble 3500 System Validation and Corrective Measures 

B.1. Temperature Distribution 

Given the excellent thermal conductivity of the aluminum specimens, conventional heat 

insulation methods, such as utilizing stainless steel grippers and minimizing the contact area, were 

not sufficient to maintain a uniform temperature distribution across the tensile specimen. As shown 

in Figure 106, a temperature drop of approximately 25 °C was observed across the small gauge 

length of 19.6 mm on an older (thermally optimized) tensile specimen geometry. This thermal 

gradient would further translate into a substantial strain non-uniformity within the gauge length, 

as illustrated in Figure 107.   

 

Figure 106. The thermal gradient across the initial specimen geometry with no insulation. Dimensions in mm. 
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Figure 107. The strain distribution at UTS for a T6 specimen tested at the temperature of 200 °C and a strain rate of 0.01 s-1, 

without insulation. 

 

In order to reduce the variation in temperature across the specimen, a variety of gripper 

designs and materials, in addition to a number insulating materials were examined. The evaluation 

metrics used in this study were the overall thermal uniformity across the specimen and 

repeatability (which was an important factor as arcing across contact imperfections resulted in a 

large scatter in the data). The selected insulation was determined to be a thin sheet (0.4 mm) of 

white Muscovite, and the corresponding thermal gradient is shown in Figure 108. As illustrated, 

the thermal difference across the sample was reduced to approximately 5 °C, or 20% of the original 

value.  
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Figure 108. The thermal gradient across the initial specimen geometry with insulation. Dimensions in mm.   

 Moreover, a new geometry, developed in collaboration with Lu [107], was introduced in 

order to reduce the exaggerated bending effects within the small gauge region,  produced by 

inherent alignment issues with the Gleeble apparatus. The new Gleeble specimen and the 

corresponding final gripper geometry (integrated into a  nested gripper assembly designed by Lu 

[107]) are shown in Figures 36 and 109, respectively. This apparatus was used for the entirety of 

the warm constitutive characterization in this report. 

 

Figure 109. Gleeble specimen gripper and insulation subassembly. 
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The gauge length temperature distribution of the instrumented Gleeble specimen, shown in 

Figure 109, during a tensile test at a temperature of 200 °C and strain rate of 0.01 s-1, is shown in 

Figure 110. The strain distribution for this condition is shown in Figure 111.  

 
Figure 110. The thermal history of an instrumented specimen during a 200 °C test. 

*Note: The fourth thermocouple, symmetric to TC2 had failed to record due to an input error. 

 

Figure 111.The strain distribution at UTS for a T6 specimen tested at the temperature of 200 °C and a strain rate of 0.01 s-1, 

using insulation. 

 

* 
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B.2. Area Reduction Method (ARM) Validation Approach 
 

Although the strain uniformity was significantly improved by addressing the temperature 

gradient across the specimen, this issue was not completely resolved. Therefore, two solutions 

were proposed. The first was to reduce the region of interest (ROI) as shown in Figure 112. 

However, the concern with this approach was the consistency between various test conditions with 

different severity in strain gradients, and operator dependency error. 

   

Figure 112. The reduced region of interest (ROI) due to the strain gradient in the gauge region. 

An alternative approach was to use the novel area reduction method (ARM) proposed by 

Omer et al. [72], in which the local strains at the fracture point were used to evaluate the 

constitutive characteristics of the alloy. Nevertheless, this method also had its limitations, which 

were addressed by Omer et al. [72] and are validated with the existing dataset.  

The two concerns, as discussed in Section 2.2.3, were the rapid increase in strain rate and the 

deviation of the strain path from a linear path, near the end of the local necking region. Similar to 

Omer et al.’s [72] approach, the data extraction was limited by physical limitations on achievable 

strain rates (which correspond to the deviations in strain paths) as illustrated in Figure 113.  



124 
 

 

Figure 113. The Strain rate jump [Left, and Strain Path [Right] corresponding to the fast heating and slow forming (0.01 s-1 SR) 

of a T6 temper formed at 200 C 

 

Furthermore, the extracted flow stress response obtained from the ARM was overlaid on top 

of the results obtained from the conventional data extraction method (using virtual strain gauges 

in the DIC VIC-3D software). Figure 114 shows the excellent correlation from the yield point up 

to the UTS limit. 

 

Figure 114. The flow curves of three different tests obtained from ARM versus the conventional (virtual strain gauge) method. 

Finally, the analytical dimensions of the fractured section obtained from the ARM were 

compared to those measured using a Keyence VHX 5000 optical microscope. The errors were 

calculated to be < 2%, as shown below: 
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The average measured width for the ductile condition (80C-4h at 200 C), as shown in Figure 

115, was calculated as: 

 

 

 

𝐴𝑉𝐺𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑖𝑑𝑡ℎ =
11.072 + 10.925 

2
  

≈ 11.00 mm 

 

 

 

 

 

Moreover, the width approximation from the ARM was found as: 

𝐴𝑉𝐺𝐴𝑅𝑀 𝑤𝑖𝑑𝑡ℎ = 𝑊𝑖𝑑𝑡ℎ𝐷𝐼𝐶 ∗ 𝑊𝑖𝑑𝑡 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ≈ 10.89 𝑚𝑚  

 

Where, 𝑊𝑖𝑑𝑡ℎ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟  

=
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑖𝑑𝑡ℎ𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑖𝑑𝑡ℎ𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑏𝑦_𝐷𝐼𝐶
 

 

 

 

 

Therefore, the error was 

calculated to be: 

%𝐸𝑟𝑟𝑜𝑟 =
𝐴𝑉𝐺𝐴𝑅𝑀 𝑤𝑖𝑑𝑡ℎ −𝐴𝑉𝐺𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑖𝑑𝑡ℎ

𝐴𝑉𝐺𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑖𝑑𝑡ℎ
≈ −𝟎. 𝟗𝟓%  

 

Similarly, the error in thickness prediction was found as: 

Figure 116. The width correction factor diagram. 

Figure 115. Optical measurements of the specimen's fractured width. 
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%𝐸𝑟𝑟𝑜𝑟 =
𝐴𝑉𝐺𝐷𝐼𝐶 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 𝐴𝑉𝐺𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐴𝑉𝐺𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
= −𝟏. 𝟗𝟐% 

   

Figure 117. Optical measurements of the specimen's fractured thickness. 
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B.3. Noisy Load Signal 

The Gleeble apparatus did not include an external load output for the DIC system, since this 

was a part of a module purchased separately. The signal from available analog output ports 

contained a significant amount of undesired electromagnetic noise induced by the resistive heating 

circuit of the Gleeble setup, as shown in Figure 118. 

 

Figure 118. Raw load data obtained from the unfiltered Gleeble auxiliary ports by the DIC system. 

There was, nevertheless, an output file for each test in the Origin software on the Gleeble 

computer (integrated with the Gleeble controls software), as shown in Figure 119. The data 

extracted from the Gleeble computer exhibited a substantial reduction in noise, given an 

acquisition rate harmonized with the power frequency of the heating circuit.  

However, a few inconsistencies between the two data sources existed. First and foremost, the 

time scales were not synchronized. This concern was addressed using statistical regression 

correlations from the much cleaner stroke data, as shown in Figures 120 and 121. The second 

concern was the load magnitude correction factor that, although close, did not match the accuracy 

obtained from the original Gleeble data (red dotted line). Therefore, it was necessary and 

advantageous to make use of the existing data from the Gleeble PC. 
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Figure 119. Raw outputs obtained by the DIC system from the unfiltered auxiliary ports on the Gleeble machine, and the filtered 

signals obtained from the Gleeble computer. 

The synchronization was achieved by merging the interception of the two pairs of lines 

(overlaying the raw stroke data), as shown in Figure 120. The two lines labelled as  are the linear 

best fits corresponding to the inclined region for each of the two data sources. The other two lines 

labelled as  represented the local stationary region immediately before the start of the tensile 

test. The criteria used to identify this region were comprised of the co-occurrence of the lowest 

first derivative values (for a selection of neighbouring data points) that also display the highest 

regression correlation coefficient (R2), as shown in Figure 121. 

Aligning the intersection of the two pairs of lines yielded proper synchronization, 

independent of sampling frequency from either the DIC or Gleeble DAQs. 
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Figure 120. The illustration of the synchronization method using stroke data obtained from the unfiltered auxiliaries and the 

filtered data on the Gleeble PC. 

 

Figure 121. The statistical regression and first derivative conditions employed for the detection of the local static region prior to 

the start of a tensile test. 

A final step to verify the synchronization results was carried out by means of a user interface 

window where manual adjustments were made, as shown in Figure 122. The final result of this 

synchronization technique is presented in Figure 123, overlaying the initial (noisy) load curve. The 

small error caused by the approximate load scale factor is also apparent in this figure. 
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Figure 122. The user interface window for verifying and tweaking the synchronized data. 

 

 

Figure 123. The synchronized filtered load curve, overlaying the initial noisy curve. 

The synchronized load data was further smoothed, given the larger number of samples from 

the higher sampling frequency of Gleeble DAQ, using a 5 point weighted moving average method 

(see Figure 124). 
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Figure 124. The 5-point weighted moving averaging of the load curve. 

The extracted data combined with the DIC images were used to determine the appropriate 

constitutive behaviour of the specimens on the Gleeble setup. 
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B.4. Thermocouple Welding Effects on the Aging Kinetics of Specimens 

The close loop thermal control system utilizes thermocouples spot-welded at the centre of the 

specimen. One concern was the heat treatment that some of the highly unstable specimens may go 

through. For this reason, two thermocouples were pre-welded to the specimen to evaluate the 

temperature spike caused by the welding process. One is welded right at the back and one right 

beside (1mm) the region of interest. The thermal response for a typical thermocouple welding 

process (which occasionally takes up to two attempts) is displayed in Figure 125. 

 

Figure 125. The thermal history of a Gleeble specimen during the thermocouple welding process 

Therefore, given the short period and the relatively low peak temperatures, negligible aging 

was assumed at this spot. 
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C. Verification of the Modulus of Elasticity (E) 

The yield point calculation requires the determination of the Young’s modulus (E) which is 

examined in this appendix.  Figure 126 [Left] is a scatter plot of the early (low-strain) stress-strain 

response for the median cases of all tested conditions, which highlights the extremes of the 

strengths considered in the constitutive modelling effort. This data was used to extract the slope 

of the elastic portion of the outlying curves – which have shown to deviate from the typical (or 

assumed) room temperature modulus [103]. These slopes correspond to the measured values of 

Young’s Modulus as summarized in Figure 126 [Right] (black line with orange markers). In 

general, there is a reduction in modulus with increased test temperature, and reduced pre-aging. 

Also shown in the right hand figure are the estimated yield strengths that were calculated using the 

measured and assumed (71 GPa) moduli for the outlier conditions (orange and blue bars, 

respectively).  

It was found that the difference in yield strengths calculated using the assumed versus the 

measured moduli resulted in a maximum error of less than 4%. Further, the errors pertaining to the 

elastic strains were determined to be less than 15% of the total elastic strains. However, given that 

the total plastic strains are all less than 1% strain (Figure 126 [Left]), it is not known whether this 

error is due to the natural scatter of the data or due to a real phenomena. It should be noted that 

although more accurate elastic moduli can be obtained using other advanced techniques such as 

piezo-electric sensors [116], the DIC approximations were deemed sufficient for this simple 

demonstrative study. Nevertheless, in spite of these small errors (specifically in the yield strengths, 

if the assumed modulus was to be used across all conditions), the measured moduli of elasticity 

were employed for all outlying cases. 
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Figure 126. Evaluation of the elastic moduli for the outlying tempers. [Left] Demonstration of the variance in the elastic response 
for the various tempers. [Right] The comparison of the Assumed and Effective elastic moduli. Note that for the case of RT-T6, the 

slower strain rate data were used (as representative data) since the reduced scatter, and the larger number of data points 
provided a higher level of confidence with the calculated, or measured E. 
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D. Warm Forming Selection Criteria – Application of the Gleeble 

Constitutive Data 

In order to narrow down the search for ideal forming conditions, a set of indicators were 

utilized. Such indicators were derived from the constitutive response of the alloy; these include: a) 

the uniform and total elongations (Figure 66), b) the instantaneous work hardening rate (WHR), 

c) the degree of work hardening (difference between the UTS and the yield strength), and d) the 

instantaneous work hardening exponent (n). The work hardening rates and exponents, b) and d), 

are graphically shown in Figures 127 and 128, while a) and c) can be obtained numerically, and 

therefore, can be measured quantitatively.  

The quantitative measures and their combined responses were considered to rank and select 

the desired process routes. The different strain rate sensitivity results (when available) for each 

temper, heating rate, and test temperature was also considered in this comparison to provide a more 

informed prediction of forming performance for the different conditions. 

Furthermore, the instantaneous work hardening responses were utilized as a graphical 

assessment of formability and are presented in Figure 127. The highlighted curves in this figure 

represent the conditions with the generally higher WHR, inspired by the aforementioned 

quantitative rankings. These selections group the data obtained at the different strain rates for each 

of the thermally treated states together. This is done to portray a more complete image of the 

expected forming response.  

As shown, the pre-aged conditions take advantage of a higher extent of work hardening (areas 

under the curves) and the instantaneous WHR – especially at higher plastic strains, resisting the 

rapid growth of local necks. The sub-figure in Figure 127 displays the engineering curves 

corresponding to the lowest strain rate tests of each of these conditions. 
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Figure 127. The work hardening response of the conditions tested on the Gleeble machine, with the conditions of interest 
highlighted. 

It should be noted that although the grouping of strain rates is meant to identify the better 

pre-aged condition, the final precipitation aging states are not uniform across the specimens tested 

at different strain rates. The slower tests allowed a longer period of aging during deformation, as 

previously discussed. 

The instantaneous strain hardening exponent as defined by Eq [2] for each of the selected 

conditions were plotted and evaluated in Figure 128. From this graph, it can be seen that although 

the n-values (work hardening exponents) are significantly lower for the case of T6, the steady 

increase of this variable helps with the elongated and extended necking region. The results for the 

two strain rates of 0.01 and 1 s-1 (when available) were utilized in the calculations to capture the 

effects of strain rates. 
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Figure 128. The instantaneous strain (work) hardening exponent history with respect to the plastic major strain for the selected 

tempers. 

The process routes evaluated on the Gleeble apparatus are ranked and listed Table 10. Only 

the top 15 conditions were considered, in order to reduce the warm forming test matrix to a 

reasonable size. Further, the last column of this table normalizes the combined effects of work 

hardening potential and total elongation, with respect to the yield strength, in order to favor 

conditions with lower yield stresses. The rationale behind each selection is listed in the second 

column of this table. 
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Table 10. Quantitative measures for process route evaluation.  

 

 

  
Ranking in each metric & numeric values (Units) 

Condition 
Selection 

rationale 
Total e1 

(UTS − YS) 0.01+1 𝑆𝑅 
(MPa) 

((UTS − YS) × e1)
0.01+1 𝑆𝑅

 

(MPa) 

((UTS − YS) ×
e1

YS
)
0.01+1 𝑆𝑅

 

RT-T6 
Evaluated for 

reference.  
14 (18) 11 (65.4) 14 (1191) 14 (2.2) 

RT-80C4h 
Great formability 

at RT 

11 

(26.4) 
1 (297.4) 1 (7719) 5 (22.5) 

RT-

100C4h 

Good formability 

at RT (selected for 

reference) 

13 

(26.4) 
6 (239.2) 6 (5741) 6 (15) 

150-

80C4h-F 

Excellent 

formability with 

reduced YS 

1(35.8) 3 (280.3) 3 (7231) 2 (29.4) 

150-

80C4h-S 

Beneficial HT 

during WF  

– Great formability  

(considering single 

SR of 1/s) 

4 (21.3) 2 (162.3) 2 (3454) 3 (15.5) 

150-

100C4h-F 
Repeatable  

12 

(26.6) 
7 (191.8) 7 (4574) 11 (14) 

150-

100C4h-S 
For reference  NA NA NA NA 

175-

80C4h-F 

Excellent 

formability with 

reduced YS 

2 (35.4) 5 (251.5) 4 (6755) 1 (31.2) 

175-

80C4h-S 

Beneficial HT 

during WF 
3 (33.4) 4 (251.6) 5 (6515) 4 (29.3) 

175-

100C4h-F 

Very repeatable, 

decent formability 
5 (24.7) 8 (176.7) 8 (4138) 8 (14.2) 

175-

100C4h-S 

Beneficial HT 

during WF   

– stable flow and 

large e1 

(considering single 

SR of 0.01/s) 

7 (31.5) 13 (72) 9 (2262) 10 (7.5) 

200-

100C4h-F 

Stability - Reduced 

formability  

– stiff flow curve 

8 (29.2) 9 (153) 10 (3724) 7 (14.2) 

200-

100C4h-S 

Beneficial HT 

during WF 

stable and large e1 

(considering single 

SR of 0.01/s) 

6 (32.5) 14 (63.5) 11 (2066) 9 (7.62) 

200-T6-F 

Evaluated for 

reference. 

Excellent post 

UTS elongation.  

9 (28.3) 12 (61.8) 13 (1423) 13 (4.2) 

200-T6-S 
Evaluated for 

reference.  
10 (28) 10 (106) 12 (2379) 12 (7) 


