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Abstract

In this thesis, we will introduce the concept of containers as they apply to programming
languages. Encapsulation is a common topic in programming languages with well under-
stood benefits. Here, we will investigate its converse, namely containment. This includes a
demonstration of how containers can be integrated into a programming language and what
benefits they can bring.

To support containment, a dependent type system is developed to enforce container
rules. We add the notion of a container label to our types to indicate the container of the
referred object. Around this type system we develop a language enhanced with container
syntax. We use this language to show how containers can enable pass-by-value semantics,
copying of complex objects and object serialization. An interpreter is implemented for
this language to demonstrate its capabilities. Included is a container inferencing algorithm
intended to minimize the extra syntax needed for container specification.

A second formal system is also defined. This includes type rules, operational semantics
and a proof of soundness. We show that correctly-typed programs will obey all container re-
strictions at run-time. We fully type the configuration used by the semantics; this includes
concrete containers as run-time constructs which allow us to verify correct containment.
Mappings are maintained from the container labels of the language to physical run-time
containers. We show that as container labels are translated across scopes (e.g. a function
call), the physical containers remain consistent.

We conclude with a discussion on ways this system can be enhanced in the future to
make containers easier to use, as well as describe additional capabilities such as version
control of objects.

iii



Acknowledgements

A big thanks to my supervisor Ondřej Lhoták who challenged me throughout the process
of this thesis. It’s a mystery to me how Ondřej can be so consistently critical and yet equally
positive and encouraging. The constructive criticism is the foundation of what I’ve learned
and the encouragement kept me moving forward.

To Gregor Richards and Yizhou Zhang, thank you for agreeing to review this thesis
and the work you invested into making it better.

Thank you to Werner Dietl, for identifying key related works in the area of ownership
types.

To all members of the PLG group, the informal daily conversations prior to the Covid-19
lock-down were often amusing, but just as frequently full of random insights into complex
topics. I miss those days and hope all of you are doing well.

To my family who put up with me through this process. Lockdown has affected every-
one, being stuck at home, being cut off from friends, it all takes a heavy toll. This is a
time when we need extra support from each other. Unfortunately a thesis also demands
time and balance is difficult to achieve. We have fortunately persevered and its time for
me to pay back some debts.

iv



Table of Contents

List of Figures viii

1 Introduction 1

1.1 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Ownership Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A Language with Containers 7

2.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Container Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Methods and Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Generic Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Container Inferencing Algorithm . . . . . . . . . . . . . . . . . . . . 18

2.4 Self Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Object Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Equality Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Demonstration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



3 Containers Formalized 27

3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Typing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Type Rule Helper Functions . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Type Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Language Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Operational Semantics 48

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Configuration Typing Environment . . . . . . . . . . . . . . . . . . 54

4.5 Supporting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Frame Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Program Type Annotations . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Special Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.1 Machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8.4 Parameter Passing and Symbol Initialization . . . . . . . . . . . . . 67

4.8.5 Field Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8.6 Object Copy Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8.7 Null De-Reference Guards . . . . . . . . . . . . . . . . . . . . . . . 72

4.8.8 Decomposition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Configuration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



5 Type Safety 83

5.1 Progress and Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Heap Validation Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Frame-Stack Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Logical to Physical Consistency . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Preservation Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Related Work 104

6.1 Ownership Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Future Work 108

7.1 Sub-Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Data Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Conclusion 113

References 115

vii



List of Figures

1.1 Container Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Containment vs. Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Expression, Statement and Container Label Grammar . . . . . . . . . . . . 10

2.2 Declaration Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Container Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Variables as Container Labels . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Paths as Container Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Method Calls with Containers . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Generic Container Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Pseudo-code for Container Label Inferencing . . . . . . . . . . . . . . . . . 20

2.9 Deep Copy On Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Pseudo-code for Deep-Copying a Self-Contained Tuple . . . . . . . . . . . 23

2.11 Pseudo-code for Deep Object Comparison . . . . . . . . . . . . . . . . . . 24

3.1 Representation of Container Types . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Formal Type Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Abstract Language Definition . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Global and Local Typing Environments . . . . . . . . . . . . . . . . . . . . 33

3.5 call() Related Typing Functions . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Field Access Related Typing Functions (1) . . . . . . . . . . . . . . . . . . 35

viii



3.7 Field Access Related Typing Functions (2) . . . . . . . . . . . . . . . . . . 36

3.8 Container Labels for Field Access Expressions . . . . . . . . . . . . . . . . 38

3.9 Mutability and Mobility for Field Access Expressions . . . . . . . . . . . . 38

3.10 Path Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Container Label Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 Type Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 Class Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 Label Map Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.15 Assignment and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.16 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.17 Statement Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.18 Function Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Heap Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Closed Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Open Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Configuration Typing Environment . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Container Mappings Example . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Operational Rules Support Functions (1) . . . . . . . . . . . . . . . . . . . 57

4.9 Operational Rules Support Functions (2) . . . . . . . . . . . . . . . . . . . 58

4.10 Frame Typing (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Frame Typing (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Initial and Terminal Configurations . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Transition Rules — Machinary . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.14 Transition Rules — Statements . . . . . . . . . . . . . . . . . . . . . . . . 65

4.15 Transition Rules — Expressions . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



4.16 Transition Rules — Symbol Initialization . . . . . . . . . . . . . . . . . . . 68

4.17 Transition Rules — Field Initialization (1) . . . . . . . . . . . . . . . . . . 69

4.18 Transition Rules — Field Initialization (2) . . . . . . . . . . . . . . . . . . 70

4.19 Transition Rules — Copy Tuple (1) . . . . . . . . . . . . . . . . . . . . . . 71

4.20 Transition Rules — Copy Tuple (2) . . . . . . . . . . . . . . . . . . . . . . 72

4.21 Transition Rules — Null Pointer Violations . . . . . . . . . . . . . . . . . . 73

4.22 Transition Rules — Decompositions (1) . . . . . . . . . . . . . . . . . . . . 74

4.23 Transition Rules — Decompositions (2) . . . . . . . . . . . . . . . . . . . . 75

4.24 Configuration Typing Rules (1) . . . . . . . . . . . . . . . . . . . . . . . . 76

4.25 Configuration Typing Rules (2) . . . . . . . . . . . . . . . . . . . . . . . . 78

4.26 Local Configuration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.27 Frame-Stack Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Sub-Container Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Data Flow Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



Chapter 1

Introduction

A container’s essential property is the ability to prevent its contents from escaping. In
the context of object oriented-programming languages, a container would prevent objects
within the container from referencing an object outside the container. Within a container,
there could exist an arbitrarily complex graph of objects, but there is no escape. Objects
themselves can be containers, and we’ll call an object which is a container a self-contained
object.

With a container mechanism, there is an opportunity to simplify reasoning about com-
plex programs. In addition to a container mechanism, if there were also restrictions on IO,
then when calling a method of a self-contained object with read-only parameters, there
would be absolute certainty that all side effects will be limited to inside that object. In
complex applications, the relationships and interactions amongst objects may not be read-
ily apparent, and by using containers, operations to an object can be typed such that
there is no possibility of unexpected side effects. Complexity will still exist, but if the
simple self-contained objects are typed as such, it will discourage software developers from
creating undesirable entanglements.

Containment can be thought of as the converse of encapsulation. Encapsulation isolates
private fields of an object from external meddling. It becomes easier to reason about an
object’s internal implementation when you know that there are no external readers or
writers of the fields you are manipulating. The inside is protected from the outside with
no incoming references. Conversely, with containment you can invoke a method on a
contained object free from concern that this method could affect another critical object.
The outside is protected from the inside with no outgoing references.

Although encapsulation features are far more common in programming languages than
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containment, containment is heavily used in computer systems. Perhaps the most well-
known use of containers is the virtual machine. A single physical computer can run multiple
virtual machines with complete isolation, as if they were running on separate hardware. If
an administrator were to attempt to run many services without this separation, there would
be significant risk of downtime due to simple things like a patch to one application requiring
that the system reboot. Processes can also have issues with contention for operating
system resources, e.g., attempting to listen on the same network port number. These
issues disappear when services can be isolated into their own virtual machines.

However, virtual machines have other benefits beyond just isolation. With a defined
container, it becomes easy to clone a virtual machine. It is common practice to take
snapshots of virtual machines at regular intervals. If something catastrophic occurs, the
machine can quickly be restored. Physical hardware, on the other hand, is more difficult
to back up with the same precision. The virtual machine clearly defines what the machine
is. For example, hardware BIOS settings are part of the virtual machine’s definition and
this is something that is not typically saved when a backup is done for a physical machine.
Now, thinking in terms of a programming language, our goal is to show that the simple
act of defining an enforced container boundary makes it easy to copy, serialize and restore
objects.

Drawing once more from our analogy with virtual machines, we can see the role virtual
machines play with scaleable concurrency. Elastic scalability is the ability to quickly add
and remove resources for an application depending on present demand. Here, the virtual
machine is a unit of deployment. Because of its self-contained nature, virtual machines
can be replicated on-demand to add servers and likewise instances can be shutdown when
needed. Again, we can see parallels in programming languages with significant research
efforts working with concurrency models that do not use shared-mutable memory. Isolating
threads from each other can greatly simplify a concurrent program.

Some examples of concurrency models that avoid shared memory are message passing
models, actor models and map-reduce frameworks. One specific example is the use of
channels and go-routines in the Go programming language. These features of Go provide
a convenient way to coordinate threads. However, nothing in this system prevents the
sharing of mutable memory across a channel. Of course a good programmer will know
not to do that, but similarly a good programmer also knows to pass parameters with
the correct types. The latter mistake will be caught by static typing. This can help
to catch the errors that humans inevitably make. But, if we had a language that could
enforce container boundaries, then we could use the type system to prevent a message
from containing external references. The type system could prevent the sharing of memory
across threads.

2



Outer Container

Inner Container

Figure 1.1: Containers: The diagram shows objects within containers (circles). The dotted
red lines represent illegal references, which escape their container. Inward references (in
yellow) are legal.

The goal of this thesis is to demonstrate how a container concept can be added to an
imperative object-oriented language and to further show how containers can help solve
issues such as the deep-vs-shallow-copy problem, serialization and deep comparison. We
can also leverage containers to encourage pass-by-value semantics, reducing the unwanted
aliasing that commonly appears in languages such as Java and Python where pass-by-
reference is the norm.

1.1 Containers

For an object to be within a container c means that any field of the object must only
reference objects which are also contained within c. Typically, a container is an object,
but we also propose that a container could be a scope. For example, the local scope of a

3



function invocation could be a useful container for temporary objects. When an object is
constructed, it is placed into a specific container that can never change.

In addition to objects existing in containers, every reference will be typed with a con-
tainer constraint which we call its container label. This indicates the container of the
object being referenced. For example, a container label could specify that a reference is
constrained to only point to objects contained within local variable x. We can see that
container labels lead to a dependent type system. Every label requires its environment in
order to be properly interpreted. For references that are fields in an object, the container
label must not violate the container boundary of the object. It can be narrower than the
container of the object, but never outside of the container.

We differentiate two kinds of objects in our system. Data objects are self-contained,
meaning that no matter which container the object is placed into, fields of that object
must not reference outside of the object. Entity objects are less strict; here, the container
the object is placed in is the outer bound for references. We’ll show that self-contained
objects have useful properties, making the distinction worthwhile.

In order to enforce container rules, the typing system much check the container labels
on every assignment and passing of parameters. Passing parameters to functions requires
a careful consideration of scoping, as method parameters are declared in a different scope
from the invocation of the method. Typing a function call is where most of the complexity
of this system exists.

In the system developed in this thesis, there is significant tracking of containers at
run-time. However, this exists for the purpose of verification of the type system. The goal
of the type system is to statically check all references for proper containment. In doing so,
the run-time overhead of containers can be zero.

1.2 Ownership Types

Earlier, we compared containment with encapsulation. Continuing this comparison, we
highlight an area of research called ownership types. Chapter 6 discusses specific related
work, but for now, we will outline key similarities and differences. With ownership types,
objects are assigned an owner, which directly corresponds with our placing an object into
a container. Where these systems differ is in their purpose. Ownership types have the
concept of a dominator, where the owning object has exclusive control over the owned
object. In our work with containers, we do not have this concept. Containers permit
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outside aliasing of contained objects. We lose the encapsulation benefits of ownership
types, but we are free to focus on the containment concept in isolation.
class Demo {

// The ’:: self’ notation indicates that reference r refers to an object
// that is ’within’ the instance.
// In an ownership type system, we would say that r is owned by the object
// In this thesis, we say r is contained by the object
ref r : Node :: self;

}

method Main.demo() {
ref demo = Demo(); // Construct a new instance of Demo

ref inner = demo.r; // This would be a compile error in an ownership-type system.
// The field r is owned by demo, which encapsulates it.
// However, in our containment system this line is legal.
// We do not enforce encapsulation.

ref demo2 = Demo(); // Construct another new instance of Demo

demo.r =^ demo2.r; // Reference assignment of the field r from demo2 to demo
// This line is illegal in our containment system, but
// encapsulation is not the reason.
// This is a containment violation.
// The field r in the demo container is not permitted to
// reference an object in the demo2 container.

}

Both ownership and containment use dependent type systems. In terms of type system
mechanics, these two systems are very similar. Having a type be dependant on an owner
versus a container makes little difference from a dependent-types perspective. The primary
distinction between these two systems are the goals. We allow encapsulation violations in
order to examine the potential of containment without the restrictions of ownership types.

1.3 Outline

We begin in chapter 2 by describing a language with container types. The grammar is
introduced and code examples help explain the various behaviors. The container labels are
fully specified and explained. Special attention is given to the handling of method calls and
the use of generic container labels. Also detailed is a container label inferencing system
which allows explicit specification of labels to be omitted in many cases. The language
described has a working interpreter written in Haskell. The chapter ends with notes on
the usage of this interpreter.

5



Containment – No ExitEncapsulation – No Entry

Figure 1.2: Containment vs. Encapsulation

Chapter 3 describes a formalized version of the language. The formal version is re-
duced in scope, but retains the key complication of managing container labels across scope
boundaries. A full description of how types are composed is given, including specifying
immutability and the container label. The grammar for this language is abstract and there
is no container inferencing in this version. Finally, a typing environment is defined as
well as a number of type rules to type the language in general, but also many specifics of
working with container labels.

Chapter 4 defines the operational semantics of the formal container language. A system
of small-step operational semantics is defined running in a configuration that tracks con-
tainer properties. The semantics extend the language with a number of additional frames
needed to execute more complex operations such as tuple initialization, parameter passing
and copying objects. Type rules are provided for the additional frames. Additionally, type
rules are provided to fully type the entire configuration. This includes the heap, frame
stack and variable stack.

Chapter 5 takes the typings defined in chapter 4 and proves their soundness with the
traditional progress and preservation theorems. There are a set of lemmas establishing
that in this dependent type system, the elements that are depended upon are immutable,
therefore typing will be preserved. The most important lemmas work with passing symbols
across scopes to make sure that two distinct but corresponding container labels refer to
the same physical object in the configuration.

Chapter 6 outlines how this thesis relates to other areas of research. And finally, chapter
7 describes areas where this work can be improved and extended.
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Chapter 2

A Language with Containers

This chapter describes a demonstration language that implements a simple object oriented
language which uses containers. We’ll begin introducing the language by example. In the
first example, we declare a reference to an instance of a class called demo. The extra
syntax ":: local" constrains the references to only point at objects inside the container
indicated by local, which refers to the scope of the current function. We call the container
specification a container label.
ref r : DemoLL :: local =^ null; // Operator =^ means assign reference

Objects can be containers as well and in most cases are more useful containers than
the local scope. A container groups a set of objects that can work together (reference each
other) and if you need to temporarily create such a group, then a local container label is
useful. In our second code snippet, we define a class that we’ll use to show how objects
can be containers.
entity class DemoLL( id : Int, ref next : DemoLL :: container )

constructor DemoLL( id : Int ) {
self.id = id;
self.next =^ null; // For clarity, redundant since null is default.

}

Here, we define the class DemoLL which is a simple node of a linked list with two fields.
The next field is declared with the label container. So far, we’ve seen a container label
associated with a reference, but when an instance of DemoLL is created, it is also placed in
a container. The reference field next is given the container label of container which refers
to the container that the object was placed into. This means that the field next can only
reference objects in the same container as the object. Also, note the entity keyword in
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the class declaration. This modifier indicates that the class is permitted to have references
to other objects within a common container. By default, a class is a data class, which
means it is self-contained. The label ":: container" is illegal in a data class because a
reference with that label would violate self-containment. Now, we’ll continue the example
and make use of the DemoLL class in the next code snippet.
class Main ( fixed ref list : DemoLL :: self )
constructor Main() {

self.list =^ DemoLL(1);
self.start.next =^ DemoLL(2);

}

We have a program which begins by instantiating the class Main, invoking its construc-
tor. Main is not declared with entity, so it is a self-contained class. Accordingly, its field
list is declared with the container label self. Two nodes are created for our list and both
are placed in the container self, which is the instance of class Main. When the constructor
call DemoLL(1) was made, how did it know which container to place the new object into?

Container label inferencing allows the container label on the right-hand side of an
assignment to be inferred based on the expectations of the left-hand side. In the example,
self.list is declared with :: self and with this label on the left-hand side, there is
only one correct label choice for placing DemoLL(1) into a container. Similarly, on the next
line, self.start.next also resolves to the label self. The field next is typed with label
container, which in this context refers to the container of self.start.

For containers to be a useful feature, the type checking must catch all container viola-
tions at compile time. We’ll look at a simple error example next.
class Main ( ref list : DemoLL :: self )
constructor Main() {

self.list =^ DemoLL(1);
ref otherList :: local =^ DemoLL(2);

self.list.next = otherList; // COMPILER ERROR!
}

By placing the second instance of DemoLL into container :: local, it is segregated from
objects in :: self. The attempt to assign to self.list.next is detected as a container
violation. This type checking can prevent accidental mixing of objects that have the same
class, but aren’t intended to be used together. As an example, if you were assigning a
partner to a police officer, you would want them both to be based in the same precinct.
All data for a precinct could be in its own container object and the type system would
ensure that any partner assignment operation respects the container boundaries. If a
police management application were structured this way, it would be impossible to assign
an officer a partner from a different precinct.
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So far, we have been focusing on references, but there are also value types and indirect
reference types. Indirect references are denoted by iref.
class Main ()
constructor Main() {

var x = 1;
iref r =^ x; // r’s type is inferred from its initializer
r = 2; // Assign through the indirect reference
print x; // Outputs 2, x has been modified
x = 3
print r; // Outputs 3

var y = x; // Non-references (val & var) are always assign-by-value
x = 4;
print y; // Outputs 3, y is fully indepedent from x

}

Value types are declared using val or var. Only self-contained data classes are per-
mitted to be values. Entity classes are entangled with their environment and considered
unsuitable for pass-by-value semantics, so they must be handled through references. Al-
though the above example used the primitive type Int, the assign-by-value rules are the
same for any self-contained class. When the variable y is initialized, a full deep copy of the
initializer object is made.

With that quick introduction to the language, we will now take a deeper look at the
language specification.

2.1 Grammar

Figures 2.1 and 2.2 detail the grammar of the language. Starting with figure 2.1, a number
of binary operators are implemented. Most are self explanatory, but for == and ==^, the
former tests value equality and the latter tests reference equality. Instances of any self-
contained classes can be compared for equality, no matter how complex. The algorithm
for this comparison is explained in section 2.4.

Expressions include field accesses using a dot as in Java and other languages. However,
we have both value and reference types in our language. In general, the semantics of the
language is to automatically de-reference when needed. Field access, passing a value to
a method and value assignment are all value contexts. Any time a value is expected, if
the input is a reference, then an automatic de-reference is done. In contrast with C++,
we do away with the -> and * operators, but add =^ to distinguish reference assignment
from value assignment. Note that if the left-hand side of an assignment is an iref, then
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bin-op −→ + | - | * | / | or | and | xor | > | == | ==^

e −→ Bool | Integer | String
e −→ e bin-op e
e −→ e . field-name
e −→ e . method-name ( e, . . . , e )
e −→ class-name ( e, . . . , e )
e −→ var-name
e −→ self
e −→ null

s −→ if e { s∗ } ;
s −→ while e { s∗ } ;
s −→ return e ;
s −→ e = e ;
s −→ e =^ e ;
s −→ val var-name = e ;
s −→ var var-name = e ;
s −→ [read-only][fixed] ref var-name [:: container-label ] = e ;
s −→ [read-only][fixed] iref var-name [:: container-label ] = e ;
s −→ save e e ;
s −→ load e e ;
s −→ print e ;

path −→ self
path −→ var-name
path −→ path . field-name

container-label −→ path
container-label −→ container
container-label −→ local
container-label −→ ‘ generic-name
container-label −→ unknown

Figure 2.1: Expression, Statement and Container Label Grammar
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program −→ decl∗

decl −→ [entity] class class-name ( field-decl, . . . , field-decl )
decl −→ [read-only] method class-name .method-name( parm-decl, . . . , parm-decl ) ret-decl
decl −→ constructor class-name ( parm-decl, . . . , parm-decl )

parm-decl −→ [val] field-name : class-name
parm-decl −→ var field-name : class-name
parm-decl −→ [fixed] [read-only] ref field-name : class-name [:: container-label ]
parm-decl −→ [fixed] [read-only] iref field-name : class-name [:: container-label ]

field-decl −→ val field-name : class-name
field-decl −→ [var] field-name : class-name
field-decl −→ [fixed] [read-only] ref field-name : class-name [:: container-label ]
field-decl −→ [fixed] [read-only] iref field-name : class-name [:: container-label ]

ret-decl −→ : class-name
ret-decl −→ [read-only] ref : class-name [:: container-label ]
ret-decl −→ [fixed] [read-only] iref : class-name [:: container-label ]

Figure 2.2: Declaration Grammar

both reference assignment and value assignment are possible. With this extra operator, it
is always clear whether a value or reference is needed.

Method/constructor calls and return statements behave as one would expect, but with
additional consideration of containers. Section 2.3 will detail the handling of containers as
parameters are passed and return values are received. The expression self functions like
the this keyword in familiar languages like C++ and Java. We use the term self-contained
extensively and it was natural for the language to match.

Like many other languages, statements include variable declarations, assignment, and
flow control statements like if, while, return. In the examples, we’ve seen variable
declarations of the various kinds. Also included is a print statement to display an object’s
contents and save/load statements which can save a self-contained object to a file and
then load it back into a variable that will compare as equivalent to the original. These
three IO statements are discussed further in section 2.4.

Also in figure 2.1 is the full definition of the container labels. We have already seen
examples of local, self, container, and the remaining labels will be discussed in the
next section 2.2.

In figure 2.2, the remainder of the grammar is defined. A program is a series of dec-
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larations which can be classes, methods or constructors. Nested within the top-level dec-
larations are individual parameter declarations and in the case of methods a return type
declaration.

Classes are data classes by default, meaning they must be self-contained. The optional
entity keyword enables the declaration of references that point outside of the object.
When fields are declared, the default kind is var and that keyword can be omitted. The
container label of references can be omitted as well with the default being self. Reference
fields can also be typed as fixed and/or read-only. The meaning of fixed is that the
identity of the referred object cannot change and reference assignment is not allowed with
this symbol. For a read-only reference, you are not permitted to modify the referred
object and value-assignment statements are not allowed. Note that read-only doesn’t
guarantee immutability, as another alias could be able to modify the object.

When declaring parameters of methods and constructor calls there are also defaults,
but they are different. If a container label is omitted from a parameter or return value
then the default is unknown, which is useful when the method doesn’t care what container
the object is in. If no kind is specified for a parameter, then val is the default.

When values are returned, they are always immutable. Since value assignment requires
a copy, the mutability of an expression result is of no consequence. Attempting to reference-
assign an expression result value (r-value) to a reference is illegal.

2.2 Container Labels

In this section, we explain in more detail the full set of container labels. The grammar is
repeated in figure 2.3 for convenience. The simplest form of a path container label is a local
variable or the special keyword self. These symbols directly indicate a container object.
Since the container is an object and we know its type, a path can be extended through
field accesses to indicate a more precise container. Section 2.2.1 will explain paths further.

Each of the container labels we’ve seen so far specify a container relative to the current
scope. A mechanism is needed to relate containers as they are passed to a function.
The generic container labels provide the solution. A function can declare its reference
parameters as generic, which enables its implementation to enforce abstract container
constraints without knowing the identity of the containers. Section 2.3 provides a deeper
look into generic container labels.

We’ve seen the label container in our previous examples. When this label is used in
the type of a field, it refers to the container of the object holding the field. When used
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in a method, it refers to the container of the implicit self parameter. When used with
parameters, the label container behaves just like a generic label. It can be modeled as
an implicit self :: ‘container-of-self declaration. The label self has a similar dual
meaning depending on context. For fields, it represents the object holding the field and
for parameters, it represents the implicit self parameter.

The label unknown is typically used implicitly by omitting the :: for a parameter. The
normal use case would be a reference parameter of a method. Container labels are only
needed when two or more objects are related to each other by a common container. A
method may call methods on another object without knowing its container as long as the
called method doesn’t have a parameter typed with :: container. If the called method
did have such a parameter, then our outer method would be unable to pass a parameter
with the correct label.

container-label −→ path
container-label −→ container
container-label −→ local path −→ self
container-label −→ ‘generic-name path −→ var-name
container-label −→ unknown path −→ path.field-name

Figure 2.3: Container Labels

2.2.1 Paths

Figure 2.4 shows an example of a local variable as a container label. Notice that the
variables x and y are declared as fixed, meaning that they can’t be re-assigned. The code
of this example would not compile otherwise and you would receive a compile error at r1
=^ r2. The reason the error would be raised is that x could have been re-assigned between
the initialization of r1 and r2. Without full data-flow analysis, the compiler doesn’t know
that r1 and r2 reference the same container. With path container labels, every component
of the path must be fixed. With explicit container labels, you will receive an error if you
attempt to declare an unfixed label. If you declare a reference without an explicit label and
the inferred label is unfixed, then the reference is implicitly declared with label unknown.
This stability requirement means that in the dependent type system, all dependencies are
immutable and types are preserved.

The example of figure 2.4 continues and declares a variable y and then attempts to mis-
match containers. The compiler will not allow r1 =^ y.v1 because r1 can only reference
objects contained with x.
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class Info( id : Int, v1 : Int, v2 : Int )
constructor Info( id : Int, v1 : Int, v2 : Int ) {

self.id = id;
self.v1 = v1;
self.v2 = v2;

}

class Main ()
constructor Main() {

fixed var x = Info( 1, 10, 100 );

iref r1 :: x =^ x.v1; // The local variable x is the container
iref r2 =^ x.v2; // The container is inferred as x based on rhs
r1 =^ r2; // Legal because the containers match

fixed var y = Info( 2, 20, 200 );
r1 =^ y.v1; // COMPILER ERROR!

}

Figure 2.4: Variables as Container Labels

Figure 2.5 contains a more complex example of paths using field accesses. References
r1 and r2 have matching containers as before, but this time the path to the container
has been extended to include a field access. Container labels can be declared where the
container isn’t directly in the current scope. In this case, we reach inside the variable x to
find the container.

As mentioned before, every element of a path must be immutable. The local variable
x is declared as fixed as well as the fields i1 and i2. This means that the expression
x.i1 always evaluates to the same container and we can rely on it as a type. Similar to
the last example, figure 2.5 also shows a compile error where the there is an attempt to
reference-assign an object contained in x.i2 to a reference typed with label x.i1.

Generally, container labels must be an exact match when doing a reference assignment.
One exception is that null can be assigned to any reference. A second exception is when a
reference is declared with label unknown, which allows for the reference to point within any
container. There is no reflection mechanism to narrow a reference typed with an unknown
label into a specific container label and this means that you are limited in what you can
do with an unknown container label. Fields are not permitted to use the unknown label
because a field is always restricted to the container of its object.
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class Inner( id : Int, v1 : Int, v2 : Int )
constructor Info( id : Int, v1 : Int, v2 : Int ) {

self.id = id;
self.v1 = v1;
self.v2 = v2;

}

class Outer( fixed ref i1 : Inner, fixed ref i2 : Inner )
constructor Info( id1 : Int, id2 : Int ) {

self.i1 =^ Inner( id1, id1 * 10, id1 * 100 );
self.i2 =^ Inner( id2, id2 * 10, id2 * 100 );

}

class Main ()
constructor Main() {

fixed var x = Outer( 1, 2 );

ref r1 :: x.i1 =^ x.i1.v1; // The field i1 of local variable x is the container
iref r2 =^ x.i1.v2; // The container is inferred as x.i1 based on rhs
r1 =^ r2; // Legal because the containers match

r1 =^ x.i2.v1; // COMPILER ERROR! x.i2 is distinct from x.i1
}

Figure 2.5: Paths as Container Labels

2.3 Methods and Constructors

The checking of container labels for parameters and return values of methods requires a
correspondence between symbols in two different scopes. We’ll begin with an example
shown in figure 2.6. We have a method called setTest() which takes a fixed reference r1
as its first parameter and this serves as the container we’ll be focusing on. The second
parameter r2 has r1 as its container label so we know that r2 is within r1 and if we modify
r2, then part of r1 will change as well. The method updates the value referenced by r2,
then dumps the entirety of r1 to reveal what has changed.

Now, looking at each of the calls to setTest(), we can see that the first two correct
cases pass a second parameter which is contained within the first parameter. And, to
demonstrate the error case, the third example mismatches x and y.

When type checking a method call like this, a mapping is built for all of the labels in the
function call’s parameters. First, when processing the first parameter, the container label
r1 from the method’s scope is associated with the container label x in the caller’s scope.
Then, when type checking the second parameter, we can use the mapping established by
the first parameter to take the declared container label r1 of the second parameter and
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class Info( v1 : Int, v2 : Int )
constructor Info( v1 : Int, v2 : Int ) {

self.v1 = v1;
self.v2 = v2;

}

class Main ()
method Main.setTest( fixed ref r1 : Info, iref r2 : Int :: r1, v : Int ) : Int {

r2 = v; // Assign through the indirect reference
print r1.v1;
print r1.v2;

return 0; // Currently the language doesn’t permit returning void
}

constructor Main() {
fixed var x = Info( 1, 10 );

self.setTest( x, x.v1, 2 ); // Outputs 2, 10
self.setTest( x, x.v2, 20 ); // Outputs 2, 20

fixed var y = Info( 5, 50 );
self.setTest( x, y.v1, 6 ); // COMPILER ERROR! y.v1 is not in x

}

Figure 2.6: Method Calls with Containers

map it into the caller’s scope. With this mapping complete, we can type check the second
parameter, which must have label x.

The first call to setTest() modifies v1 and the second call modifies v2. Because of the
explicit specification of container, the side effect of r1 being changed when r2 is modified
should not be a surprise. Perhaps more important than knowing what will change after an
operation is certainty about what cannot change. It is impossible for the line r2 = v to
modify anything other than the object r1.

When returning references, the same mapping process occurs. A method could return
a reference contained within any of its parameters or the implicit self parameter. You
can also pass and return references contained within the container of any parameter. We’ll
see how this can be done with generic container labels.

2.3.1 Generic Containers

In the previous example in figure 2.6, we declared a container label to be a previously
declared parameter, but in many cases there is no need to pass the container itself, just the
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pieces we intend to interact with. With generic container labels, we can pass a parameter
with an abstract container label. Figure 2.7 demonstrates this capability. Here, we’ve
implemented a linked list insert method twice, and each implementation has a distinct
container label. Now, in Main, we create a linked list with 3 elements in it. First, notice that
when we call the constructor of DemoLL, we never explicitly need to place it in a container;
it happens automatically. In the first construction, the container label is inferred from
the left-hand side of the assignment as we’ve seen before. However, for the the inserted
elements, the containers for the newly constructed nodes are inferred based on the expected
parameter types of the method calls. This is interesting because the parameter types are
generic and also must be resolved.

The next section will outline the inferencing algorithm, but for now we will reason
through the inferencing steps specific to this example. With the method self.insert(),
the generic container label ‘c appears three times. As long as one of those instances has a
definite container label in the method call, then the other two instances become fixed and
their definite labels can be used for further inferencing.

A constructor’s return type doesn’t appear visually in the code, but to the inferencing
system, every constructor returns a reference with a container label of :: container. This
label becomes a concrete container at the call site by the same inferencing techniques used
to resolve generics in the parameter labels.

Returning to the call to self.insert(), we see that its first parameter has the container
label :: self which then becomes the label of the second parameter. Next, the constructor
call to DemoLL(2) has an expected return type with label :: self which fully resolves the
labels for the construction. Last, the return value of self.insert() is also contained
within :: self.

The insertion of the third list element uses a different insert method, but the method’s
container labels map to the same containers in the caller’s scope, allowing it to be com-
patible. The final call to DemoLL.insert() is a method call on the return value from
Main.insert(), which in this example is the second node of the list with the container label
:: self which refers to the instance of Main. The parameter newNode of DemoLL.insert()
is typed with container label :: container and the mapping of this label into the caller’s
scope is inferenced using knowledge of the implicit self parameter’s container label ::
self. As before, the return container label for the call to DemoLL(3) can be determined
since we now know the label for the parameter to DemoLL.insert().

This is a contrived example and the inferencing process for generics is complex. How-
ever, from a programmer’s perspective when implementing a method, the parameter labels
are abstract and there is no need to be concerned about how they will later resolve. As a
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entity class DemoLL( id : Int, ref next : DemoLL :: container )

constructor DemoLL( id : Int ) {
self.id = id;

}

method DemoLL.insert( ref newNode : DemoLL :: container ) ref : DemoLL :: container {
newNode.next =^ self.next;
self.next =^ newNode;
return newNode;

}

method Main.insert(ref node : DemoLL :: ‘c, ref newNode : DemoLL :: ‘c) ref : DemoLL :: ‘c
{

newNode.next =^ node.next;
node.next =^ newNode;
return newNode;

}

class Main ( fixed ref list : DemoLL :: self )
constructor Main() {

self.list = DemoLL(1);
self.insert( self.list, DemoLL(2) ).insert( DemoLL(3) );

}

Figure 2.7: Generic Container Labels

programmer calling a method, some care needs to be taken to ensure that the parameters
have matching container labels, but there is no need to understand every detail of how the
mapping between caller labels and callee labels is established.

2.3.2 Container Inferencing Algorithm

A goal of this project was to minimize the syntactic burden of specifying container labels
and an inferencing algorithm was developed to allow the container label to be omitted in
many cases. A bi-directional typing algorithm was developed to infer labels for variable
initialization, assignment statements and method/constructor calls. Note that inferencing
only occurs within a single statement. When each expression is typed, an expected con-
tainer label is provided and this assists with the typing of constructor calls and methods
that return generic labels. We’ll look at the method call reasoning in detail.

When a method call is typed, we have multiple sources of information; the expected
return container label is provided by higher-level code, typing information is in the method
declaration. We also have the expressions passed to the method from the program’s ab-
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stract syntax tree. Specifically, we have an expression for the implicit self parameter and
each of the explicit parameters.

For each expression passed to the method call, we designate a fresh generic container
label symbol. Then, we type each of the parameter expressions using the respective gener-
ated generic labels as the expected container label for the expression. E.g., typeExpr(expr,
generated-generic-label). Often, expressions will immediately be typed with a concrete
container label, but if an expression type comes back with the same generic type we passed
in, then we know that the expression is free in its container label. At this point in the
process, we have a list of expressions as well as preliminary typings for each of them. Note
that after the inferencing process completes, we will re-type these expressions.

Next, we need to deal with the fact that the method is declared with container labels
relative to the method’s own scope. We need to take the method signature and asso-
ciate the labels declared with each parameter with labels in the calling scope. To do
this, we first use a function called expressionToContainerLabel(), which can take each
of the parameter expressions and determine what the container label should be if that
expression result is used as a container. Recall the example in figure 2.6, where the sec-
ond parameter was contained within the first parameter. If a situation like that occurs,
then expressionToContainerLabel() tells us what the appropriate label should be in the
caller’s scope. We now have a mapping from parameter names to caller-centric labels.
Using this mapping, we map the method’s declared container labels into the scope of the
caller.

The inferencing can now be done in the container label space of the caller. Figure 2.8
presents pseudo code for this operation. For simplicity, we’ve flattened the inputs to just
two lists of labels: decl-labels and passed-labels. These represent the labels for each passed
parameter, based on their preliminary typing, as well as the expected return label. The two
lists are aligned to each other, meaning index i in each list represents the ith parameter.

The inferencing consists of three steps. First, we create a map with the domain be-
ing the set of generic container labels declared in the method signature. These generic
container labels should not be confused with the temporary unique free-generics that we
injected when we typed the parameter expressions; these generic labels are from the method
signature. Each generic label may appear in the method signature more than once, and for
each generic, we record the passed-in container labels corresponding to the generic label.
The function findGenericParameters implements this operation in figure 2.8. The result
is a map from generic labels to a list of the passed container labels.

For each generic mapping, we merge the list of labels into a single label. The function
mergeAllLabels does the merging. In this process, the injected free-generics are replaced
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inferGenericParameters( free-generics, decl-labels, passed-labels ) =
let

// Map each declared generic label to a list of passed labels
generic-map = findGenericParameters( zip(decl-labels, passed-labels ) )

// For all generics, merge the occurrences
mergedGenericMap = genericMap.mapRange( mergeAllLabels )

// If any free generics remain after merging then the program
// has no concern for which label is chosen so we use - local
mergedGenericMap = mergedGenericMap.substRange[label ∈ free-generics -> local]

findGenericParameters [] = {}
findGenericParameters( 〈decl-label, passed-label〉 ◦ tail) =

let
generic-map = findGenericParameters( tail )

in
if decl-label is generic then

if decl-label ∈ dom(generic-map) then
generic-map.set( decl-label 7→ passed-label ◦ generic-map.get(decl-label) )

else
generic-map.set( decl-label 7→ [passed-label] )

mergeLabels( unknown-cont, label2 ) = error: unknown-cont is incompatible with label2
mergeLabels( label1 , unknown-cont ) = error: unknown-cont is incompatible with label1
mergeLabels( null-cont, label2 ) = label2
mergeLabels( label1 , null-cont ) = label1
mergeLabels( label1 , label2 ) =

if label1 ∈ free-generics
if label2 ∈ free-generics

label1 // Both are free, keep label1
else

label2 // Use the non-free label
else if label2 ∈ free-generics

label1 // Use the non-free label
else if label1 == label2 then

label1
else

error Labels label1 and label2 are incompatible

mergeAllLabels( [ label1 ] ) = label1
mergeAllLabels( label1 ◦ tail-labels ) =

mergeLabel( label1 , mergeAllLabels(tail-labels ) )

Figure 2.8: Pseudo-code for Container Label Inferencing
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with container labels from the caller’s scope. Errors are raised if there are inconsistencies.
The final result is that we have a concrete container label for every generic container label
in the method signature.

With this map in place, the typing of the method call can be completed. As a final
step, each parameter expression is re-typed now that we know the exact container label
needed for each expression. This is how we can call a method and pass a constructor call
as one of the parameters. Once the specific parameter knows its container label, then the
constructor call is re-typed, which sets the container for the newly constructed object.

With this inferencing logic in place, most container specification can be eliminated from
code. Declarations of methods and fields will need explicit syntax, but there are defaults
in place that can help there as well. Any proposed language feature faces a cost/benefit
analysis and the inferencing logic was developed to reduce the overhead cost of using
container types.

2.4 Self Containment

In this section, we look at four capabilities of self-contained objects. The language allows
you to declare data classes and entity classes, which mean self-contained and non-self-
contained. This distinction allows for extra capabilities to be added only for self-contained
objects.

An entity is entangled with its environment. Imagine a machine that could clone a
person. After one person becomes two, then which one will receive a pay check from their
employer? Which one gets to live with their spouse? The point of this example is that
copying an object that has relationships to its environment is complicated. Logic to copy
an entity class needs to be customized for that particular class. Our language takes the
opinion that entities should never be copied automatically. Similar to Java, you can write
a clone method if you desire, but there is no language support. This can be seen by the
rule that entity objects are always managed by reference, never by value.

Self-contained objects, on the other hand, are pure data. It is natural to copy them
because they have no entanglements with their environment. One novel aspect of this sys-
tem is that inside a data object, there can exist entity objects with complex relationships.
Entity objects are copied as part of copying the outer data object, but an entity is never
copied by itself. The well-defined boundary means we can recreate an identical graph of
the inner entities.

21



constructor Main(){
var x = Data();
x.populate();

var y = x;
}

x y
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Figure 2.9: Deep Copy On Assignment: Assigning by value creates a new disjoint object.

Contrast this to a language like C++. If you built a class using shared smart pointers,
you will get a shallow copy from the default copy constructor. If you use direct containment,
then then you get a deep copy. There is no in-between. If you have a nested object with
multiple aliases, then there is no immediate way to copy the nested object only once and
have every alias in the copy point at the new nested object. Of course, you can implement
this yourself, but there is no automatic support. Next, we’ll explain how we can solve the
deep copy vs. shallow copy problem for self-contained objects.

2.4.1 Object Copying

By declaring a class as self-contained and having the type system enforce that containment,
you can be certain that every object reachable from the self-contained object belongs to
the object and should also be copied. After a deep-copy operation, the resulting object is
completely disjoint from the original and modifications to the original will have no effect
on the copy. If the original object had multiple aliases that could modify the object
unexpectedly, then a local, unaliased copy can be created, which is immune to outside
mutation.

22



copySelfContained( heap, src-location, class )
// Begin the copy process with an empty copy-map
〈copy-map, dst-location〉 = copy(heap, ∅, src-location, class)
return dst-location

// Recursively copy a tuple within an accumulated copy-map
// Tuples that have already been copied simply return the heap location
// of the copy.
copy( heap, copy-map, src-location, class )

if src-location ∈ copy-map then
return 〈copy-map, copy-map(src-location)〉

dst-location = heap.alloc( class )
copy-map = copy-map[src-location 7→ dst-location]
src-fields = heap(src-location)

for( i = 0; i < len(src-fields); i++ )
if src-fields[i] is primitive then

heap(dst-location)[i] = src-fields[i]
else

〈copy-map, dst-field〉 =
copy(heap, copy-map, src-fields[i], classOf(src-fields[i]))

heap(dst-location)[i] = dst-field

return (copy-map, dst-location)

Figure 2.10: Pseudo-code for Deep-Copying a Self-Contained Tuple

Copying objects in the container language is automatic and there is no copy function or
operator. Copying occurs automatically when assigning by value or passing a parameter by
value. As an example, once you can treat an object like data, then a feature like an undo
button in a word processor could simply be implemented by taking periodic snapshots of
the document and simply reverting to an earlier snapshot when needed.

Figure 2.10 outlines the algorithm to deep-copy tuples. The key component is the copy-
map, which records a mapping of old source tuples to their copied counterparts. The copy
process is recursive, and when a tuple is found for the first time, it is copied and added
to the map. If there is a second alias to the tuple, then a map lookup is used to find the
matching copied tuple and avoid copying the same tuple multiple times. This ensures that
cycles of references are handled correctly and the code does not get stuck in an infinite
loop.
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compareTuple( heap, compare-map, lhs-location, rhs-location, class )
if lhs-location ∈ compare-map then

// If we are comparing a tuple we compared before, then the lhs must also be the
same tuple

return 〈compare-map, compare-map(lhs-location) == rhs-location〉
else

compare-map = compare-map[lhs-location 7→ lhs-location]
lhs-fields = heap(lhs-location)
rhs-fields = heap(rhs-location)
field-types = getFieldTypes( class )

// Process each field
for( i = 0; i < len( lhs-fields ); i++ )

if field-types[i] is primitive then
if lhs-fields[i] != rhs-fields[i] then

return 〈compare-map, false〉
else if (lhs-fields[i] == null and rhs-fields[i] != null) or

(lhs-fields[i] != null and rhs-fields[i] == null) then
return 〈compare-map, false〉

else
〈compare-map, same〉 = compareTuple( heap, compare-map, lhs-fields[i],

rhs-fields[i], field-types[i].class )
if not same then

return 〈compare-map, false〉
return 〈compare-map, true〉

Figure 2.11: Pseudo-code for Deep Object Comparison

2.4.2 Equality Comparison

Another benefit of self-containment is a well-defined equality comparison. Comparison by
reference equality is common practice in object oriented-languages. Here, we have the
ability to compare complex objects by their content using the common == operator. The
process works very much like the copy algorithm. When two tuples are compared, a map
is kept to associate nested tuples with the corresponding tuples in the other object. Figure
2.11 outlines a comparison algorithm. The algorithm is recursive and it short-circuits when
a tuple is encountered a second time, just like the copy algorithm.

This algorithm would work on a non-self-contained object as well, however, we disallow
it based on the opinion that entities are better compared by reference. As with copying ob-
jects, custom comparison code can be written for entities. Custom code has the advantage
of knowing the purpose of an entity’s outside relationships and can make better decisions
than a generic comparison.
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2.4.3 Serialization

The last benefit of self-contained objects we’ll discuss is serialization. The language sup-
ports the statements load and save that can be used to persist and reload any self-
contained object. Serialization can be done using the similar recursive logic with a map
tracking previously encountered objects as was used to copy objects. By using containers,
we can guarantee that an object serialized to a file and then de-serialized back into a new
object will compare as equal to the original using the == operator.

Serialization of data covers a wide range of use cases such as persistence and messaging
between threads or processes across a network. By requiring self-containment, we don’t
require additional meta-data in order to marshal data correctly. Because of container
enforcement, there is also nothing a programmer could do to make a self-contained class
un-serializable.

2.5 Demonstration System

The demonstration language was implemented in Haskell and implemented as an interpreter
using a style that loosely resembles small-step semantics. This design was chosen so that
this code base could inform the subsequent work to formalize the language. The source
code for the project can be found on gitlab at https://git.uwaterloo.ca/mthode/woven-c.

There are a large number of test cases in the test/ folder and although they were
written for testing, they would also be useful to a human looking to get a feel for how
the language works. On a Linux system, the interpreter can be built using the build
command in the root directory. The ghc Haskell compiler must be installed beforehand.
In particular, the test test/stmt29.woven would be a good example to start with. It
implements a linked list and implements a sort method on the list. Each test also includes
a .chk file which verifies the output when the -t option is used.

Usage: woven [args] (<source-file> | <test-name>)
-t Testing Mode. Runs a test if specified, otherwise runs all tests
-i Interactive execution
-vt Verbose output of scanned tokens
-va Verbose output of abstract syntax tree
-vta Verbose output of annotated/typed abstract syntax tree
-ve Verbose output of the type environment
-vx Verbose output of each step of execution
-vg Write graph file graph.dot after completion
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The interpreter breaks execution down into steps, which can be observed using the -i
command line option. When this option is used, the heap and stack are displayed after
each step is executed. Also of interest is the -vg option, which will output a diagram of
the heap into a file called graph.dot which can be interpreted by the Graphviz appliction.
This was a useful tool to verify object copying semantics were working correctly.

dot -T pdf graph.dot > graph.pdf
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Chapter 3

Containers Formalized

In this chapter, we will formalize a type system and language for containers. The language
is reduced in scope for the system described in chapter 2 to reduce the complexity. Methods
have been replaced with functions. At the beginning of development, it was assumed that
methods would need special treatment in order to manage their containers. However,
through the development of generic containers, it was found that the special containers self
and container-of-self could be supported by the same generic container mechanism
used for other parameters. Since no special treatment was necessary, the formal system
was simplified to plain functions and constructors were replaced with a tuple initializer
command.

Indirect references were also removed for two reasons. Firstly, in the demonstration
system, the implementation of iref didn’t add any significant challenges beyond what
was needed for plain ref variables. Secondly, this work in its present state hasn’t properly
motivated iref’s existence. In chapter 7 there is a brief discussion about adding a concept
of a role to the language, and iref was meant to be a building block for that work.

Primitive types and operators have also been removed, as these can be modeled as
special tuples and functions. With these changes in mind, significant complexity still
remains and we are left with many details that are often omitted in formal works. Types
are defined as a 5-tuple in order to include container information as well as carefully
tracking properties like mutability which are critical to the type rules.

Although methods are replaced with functions in the formalism, tuples remain a key
ingredient and the intent is still to consider these tuples as objects even though an abstrac-
tion mechanism and polymorphism are not present. We will refer to a tuple’s definition as
a class, remaining consistent with object-oriented terminology.
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In addition to the planned changes for the abstract language, there were many incre-
mental changes made as the formalism was developed. Even though the interpreter was
implemented in a style similar to the formalism, modifications were needed in order to fa-
cilitate proving the soundness of the semantics. There is no claim that the soundness of the
formalism implies soundness of the demonstration system as there are many differences.
No doubt, some of the changes that were needed in the abstract language represent bugs
in the demonstration system.

The type system defined in this chapter is a dependent type system which introduces
significant complexity. The types defined in this chapter include a container label which
refers to a another in-scope construct (object or scope) to indicate the container of an object
or the container constraint of a reference. One of the primary concerns of this formalism
is stability and the importance of types depending solely on immutable symbols.

3.1 Types

This section details the structure of a container-type. Figure 3.1 defines the formal repre-
sentation of a type including a list of the possible container labels. We’ll discuss each of
the components in turn.

Variables and fields have a kind, which can be either a ref or a value, and each variable
also has a mobility and mutability component, which are represented with the symbols
δ and γ, respectively. Mobility is similar to Java’s final keyword. Here, a reference is
considered movable if the identity of the object referred to can change. Mutability indicates
whether the destination of a reference can be modified. We also need to distinguish between
an object being mutable and a reference that is able to mutate the object it refers to; the
former being a guarantee that a referenced object will never change, and the latter simply a
permission granted to the reference. These distinctions are essential because the container
language uses dependent types which require certainty that all dependent properties are
preserved.

One option considered was representing mutability as two properties: one describ-
ing the reference (this-alias-has-mutation-permission) and the other describing the object
(this-object-is-mutable). One issue is that they are not orthogonal, because you can’t have
permission to modify something that is immutable. This scheme was rejected in favor
of a single property with three possible values mutable, read-only, immutable. The
read-only state disallows a reference from modifying its object, but it does not guaran-
tee that the object can’t be modified by another alias. Therefore the type rules will be
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Identifiers
C Class name
F Function name
f Field name
v Variable name (parameter or local variable)
g Generic container label name

Container Labels
Path ::= tuple | var(v) | step(path, f) path ∈ Path
ContainerLabel ::= unknown-label θ ∈ ContainerLabel

| null-label
| local
| container-of-tuple
| generic(g)
| path

Types
Kind ::= value | ref kind ∈ Kind
Mutability ::= mutable | read-only | immutable δ ∈Mutability
Mobility ::= movable | unfixed | fixed γ ∈Mobility
Type ::= 〈kind, C, θ, δ, γ〉 T ∈ Type

Type Deconstructors
With T = 〈kind, C, θ, δ, γ〉
T(kind) = kind T(class) = C T(label) = θ T(mut) = δ T(mob) = γ

Figure 3.1: Representation of Container Types
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pessimistic, and read-only will disqualify an expression from being used to indicate the
container of a symbol.

Having a read-only state simplified the type rules because it allows uncertainty about
the true mutability of the object. Precise knowledge of every object’s mutability would be
a nice property to have, but functions would lose generality if immutable parameters were
distinct from read-only-mutable parameters.

References can’t be declared as immutable following the principle above about the
generality of passed parameters. It’s not permitted for values to be declared as read-only;
this wouldn’t make sense because there is no ambiguity at the original declaration site.
Ambiguity of the mutability of an object only arises after aliases are created and passed
around.

The story is similar for mobility, where movable means that a symbol can be moved
to reference a different object. Only when an expression types with γ = movable can that
expression be used on the left-hand side of an assignment statement. The other use of
mobility is to help determine when an expression can be converted into a container label.
This is important for typing field access expressions, which will be discussed further in
section 3.4.1. Only when γ = fixed can an expression be converted into a container label.
Similar to read-only, unfixed is a middle ground where stability is not guaranteed and
assignment is not possible.

The final component of a type is the container label, which indicates the container
relative to symbols in the current scope or to the scope itself. This is the key feature of
this system which enables the typing of containers.

ref r : Foo :: local =^ null; // <ref, Foo, local, mutable, movable>
ref r : Foo :: x.y =^ null; // <ref, Foo, step(var(x), y), mutable, movable>
readonly ref r : Foo :: local =^ null; // <ref, Foo, local, read-only, movable>
fixed ref r : Foo :: local =^ null; // <ref, Foo, local, mutable, fixed>

val x : Bar = Bar(); // <value, Bar, local, immutable, fixed>
var x : Bar = Bar(); // <value, Bar, local, mutable, movable>
fixed var x : Bar = Bar(); // <value, Bar, local, mutable, fixed>

Figure 3.2: Formal Type Examples: Type declarations mapped to their formal represen-
tation.

When references are typed with container labels, they describe the container of the
referred object. Value types behave differently, and as we’ll see in the next section, the
type rules require that value symbols must be typed with self-contained classes. This
means that unlike references, the container for values is always the scope in which they are
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declared. For example, a local variable of a self-contained class will always have container
label local and a field value will always have container label tuple. In chapter 2, details
like this were implicit, whereas in the formalism everything is made explicit.

The label unknown-label can be used whenever the code has no concern for which
container a referenced object belongs in. As mentioned in chapter 2, a goal is to minimize
the burden of writing code with containers, and unknown-label allows for the omission
of a definite label. Fields are an exception: unknown-label is not permitted as the label
for a field. Since objects exist within containers, a field cannot be unknown-label, as that
would allow for container violations, because all fields in an object must obey the object’s
container boundaries.

A special label exists solely for typing the expression null, namely null-label. It’s
not permitted to declare a symbol with this label. The label local represents the scope
of a function invocation, and all references constrained by label local can only reference
local variables. The label var(v) indicates that the container is a parameter or variable
within the current typing environment.

The labels local and var(v) are dependent on their scope, and this raises the question
of how parameters can be passed across scopes and retain the correct container label. For
example, how can a reference to a local variable in the caller scope be passed to the callee?
This issue is solved by the use of generic container labels. Functions that use parameters
typed with generic labels are generic functions parameterized by the set of generic labels
appearing in the parameter types. When calling such a function, the generic substitutions
are made based on the container labels of the passed parameters. Parameters, return values
and local references with generic container labels are indicated by the label generic(g).
Note that function parameters can only be generic in their labels; no mechanism is provided
for parameters to be generic in their class.

For reference fields, the labels container-of-tuple and tuple are used, with
container-of-tuple meaning the container of the tuple that the field belongs to, and
tuple meaning the tuple itself is the container.

The last container label to discuss is path. A path begins with a root container label
that is also an object; this excludes local and container-of-tuple. Starting with the
root, a series of field accesses can be taken to reach the final container. This allows you to
declare a reference as contained within a series of nested fields.

In all, there are 5 components to a type, with each playing a role in the correct en-
forcement of containment. The type rules are defined in section 3.4, but first comes the
definition the abstract language.
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ClassContainment ::= self-cont | by-container cc ∈ ClassContainment
ClassDefinition ::= 〈f : T , cc〉 class-def ∈ ClassDefinition
FunctionSignature ::= 〈p : T , Tret〉 S ∈ FunctionSignature
FunctionDefinition ::= 〈S, s〉
LabelMap ::= {θcallee −→ θcaller} φ ∈ LabelMap
Expression ::= var(v) e ∈ Expression

| field(e, f)
| call(F, φ, e)
| init(C, φ, e)
| null

Statement ::= seq(s1, s2) s ∈ Statement
| let(T, v, e, s)
| assign-value(T, elhs, erhs)
| assign-ref(elhs, erhs)
| return(e)

Figure 3.3: Abstract Language Definition

3.2 Language

The grammar of our abstract container language is in figure 3.3. Class definitions consist
of a list of fields and their types as well as a ClassContainment setting, which determines
if instances of this class are self-contained, meaning no reference can point to an external
object, or contained by the container that the object is placed into. Function signatures
contain a list of parameter types and the return type.

A LabelMap holds a mapping of container labels mapping labels in a callee scope back
to labels in the caller’s scope. Chapter 2 described an algorithm which could calculate this
mapping, however we omit this complication in this abstract language. The specification
of the LabelMap φ is part of the program.

There are five forms of expressions: variable access, field access, function call, tuple
initialization and the null literal. Both call() and init() take a φ parameter. For
functions, it maps parameter labels, and for tuple initialization, φ provides a mapping for
the container-of-tuple label.

For statements we have seq() that simply allows multiple statements to exist in a
function body, which by definition is a single statement. The statement let defines a new
local variable and initializes it. The final parameter to let is a statement which runs with
the new variable defined. Once this statement completes, the symbol is out of scope and
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Γ ::= {C −→ ClassDefinition | F −→ FunctionDefinition}
∆ ::= 〈{v −→ T}, Tret〉

With ∆ = 〈{. . . , vi 7→ Ti, . . . }, Tret〉
∆(vi) = Ti
∆(ret) = Tret
∆[vnew 7→ Tnew] = 〈{. . . , vi 7→ Ti, . . . , vnew 7→ Tnew}, Tret〉

Figure 3.4: Global and Local Typing Environments

not available to subsequent statements. There are two assignment statements to assign
values and references. The distinction between these two statements isn’t as important as
it was in the demonstration language in chapter 2 because there is no indirect reference
kind where you could assign a value through a reference. In this formalism, the left-hand
side of assign-ref must always be a reference and the left-hand-side of assign-value
must always be a value. Finally, the return statement returns a value from a function as
one would expect.

3.3 Typing Environments

For typing environments, we use the symbol Γ for global definitions of classes and functions.
For typing of local environments for statements and expressions, ∆ is used. Both are defined
in figure 3.4 as well as notation for deconstructing components from ∆ and adding new
symbols to ∆.

3.4 Type Rules

In this section, we define the typing rules for the abstract container language. To determine
if a program is valid, all classes in Γ must satisfy Γ ` class-ok (figure 3.13) and all func-
tions must satisfy Γ ` 〈S, s〉 func-ok (figure 3.18). However, there are many components
of classes and functions that need individual validation and we will begin by defining a set
of functions needed to support the type rules.
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// Find the set of container labels use by the parameters of F
// that need to be in the domain of phi.
distinctParameterLabels(Γ, F) =

let
function(_, 〈p : T , Tret〉, _) = Γ(F )

in
distinctParameterLabels2(Tret ◦ T)

distinctParameterLabels2(T1 ◦ T) =
let

distinct = distinctParameterLabels2(T)
θ = requiredLabelMapping(T1(label))

in
if θ 6= unknown-label ∧ θ /∈ distinct

then θ ◦ distinct else distinct

requiredLabelMapping(θ)
case θ of

var(v) −→ var(v)
generic(g) −→ generic(g)
step(θbase, f) −→ requiredLabelMapping(θbase)
otherwise −→ unknown-label

// Take a container label relative to a scope and compose a
// container label relative to the callers scope based on phi.
mapLabel(φ, θ) =

case θ of
step(base, f) −→

step(mapLabel(φ, base), f)
otherwise −→

φ(θ)

// Take a type relative to the current and compose a type relative to
// the calling scope based
exportType(φ, T) = 〈T(kind), T(class), mapLabel(φ, T(label)), T(mut), T(mob)〉

// Construct a new type environment for the body of a function.
// The function’s parameters populate the scope.
funcEnv(Γ, F)
let
〈p : Tp, Tret〉 = Γ(F )

in
〈p −→ Tp, Tret〉

Figure 3.5: call() Related Typing Functions
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expressionToLabel(Γ,∆, e) =
Γ; ∆ ` e : T
if T(mob) 6= fixed then

// The expression e does not evaluate to a fixed container
unknown-label

else
case e of

var(v) −→ var(v)
field(eobj , f) −→

case expressionToLabel(Γ,∆, eobj) of
path −→ step(path, f)
otherwise −→ unknown-label

otherwise −→ unknown

Figure 3.6: Field Access Related Typing Functions (1)

3.4.1 Type Rule Helper Functions

The first set of functions in figure 3.5 help with typing function calls. In order to determine
if the φ label mapping parameter to call() is correct, we need to know what the domain
of φ should be. The distinctParameterLabels() function builds the list of labels that
must be in the domain of φ. This list includes all of the generic and var container labels
appearing in the function parameters.

The function mapLabel() takes care of applying the φ mapping. Its main behavior is
to look up φ(θcallee), but when paths are present, it recursively processes the paths until
it reaches the root, then the root is replaced according to φ and the path is reconstructed
using the new root. The exportType() function is essentially a wrapper around mapLabel()
to map the entire type tuple. All components other than the container label are directly
mapped.

The function funcEnv() builds the initial ∆ typing environment for the function con-
taining the types of each parameter and Tret for the return value.

The functions defined in figures 3.6 and 3.7 all relate to the typing of the field access
expression. When accessing a field we immediately know the type of the field with respect
to the tuple it is defined in, but type we need must be relative to the local scope and a
translation is needed.

Fields are typed with container labels relative to either tuple or container-of-tuple
and these must be converted to labels relative to the current scope. For example, using the
field access notation of the demonstration language, in expression a.b.c, we begin with the
tuple-relative type of c. If c is typed with a container label rooted in container-of-tuple,
then the container label of a.b.c is the same as the container label of a.b, which can be
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// Take a field’s declared container label and compose a new label
// relative to the local scope
mapFieldLabel(Γ,∆, θcont, θtuple, θfield) =
case θfield of

container-of-tuple −→ θcont
tuple −→ θtuple
step(θbase, f) −→ case mapFieldLabel(Γ,∆, θcont, θtuple, θbase) of

unknown-label −→ unknown-label
θ′base −→ step(θ′base, f)

// Determine the type of a field access expression
fieldAccessType(Γ,∆, eobj , f)
let

Γ; ∆ ` eobj : Tobj
Tfield = Γ(T(class))(f)
θtuple = expressionToLabel(eobj)
θ = mapFieldLabel(Γ,∆, Tobj(cont), θtuple, Tfield(cont))

δ = if Tfield(kind) == value then
// When a value field is mutable, the expressions mutability
// is inherited from the base object which might not be mutable
if Tfield(mut) == mutable then

Tobj(mut)
else

immutable
else

// Field is a reference
if Tobj(mut) == mutable ∧ Tfield(mut) == mutable then

mutable
else

read-only

γ = if Tfield(kind) == ref ∧ θ == unknown-label then
// If we can’t determine a precise container then no updates
// to references are allowed
unfixed

else if Tfield(mob) = movable then
if Tobj(mut) = mutable then

movable
else

unfixed // Object immutability overrides a movable field
else

// Field is fixed
if Tobj(mob) == fixed then

fixed
else

// When the base expression is unstable then everything
// following is also unstable
unfixed

in
〈Tfield(kind), Tfield(class), θ, δ, γ〉

Figure 3.7: Field Access Related Typing Functions (2)
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determined by recursion.

Otherwise, if field c had the container label tuple, then the container is the object that
the expression a.b evaluates to. The function expressionToLabel() shown in figure 3.6 is
used to make the conversion from an expression to a container label. It builds a container
label path from a root variable and a series of field-access steps. There are many expressions
that can’t be converted to a specific container label. In these cases, unknown-label will
be returned. Container labels need to be stable, so all dependencies present in them must
be immutable. For an expression to be converted, it must only contain fixed variables
and fields.

The final two functions in figure 3.7 determine the type of a field access expression.
There is special logic for the container label, mutability and mobility of the type. The
function fieldAccessType() makes use of expressionToLabel() to determine θtuple which
is the container label representing the object eobj evaluates to. With θtuple computed,
mapFieldLabel() does the appropriate substitutions to create a label for the accessed field
which is relative to the symbols in the local scope.

The remainder of fieldAccessType() computes the mutability and mobility compo-
nents of the type. For δ, value fields can have their mutability overridden by the object.
For example, if a field is mutable but the object is immutable, then you should not be able
to modify the field. References are treated similarly, but read-only is always used instead
of immutable.

Figure 3.8 provides two examples of container label determination for field access ex-
pressions. First all the relevant information is gathered, then mapFieldLabel() selects the
appropriate container label. In figure 3.9, the if-then-else logic of figure 3.7 is unraveled.
The tables show the full set of possibilities for determination of δ and γ for a field access
expression. The final column shows the the result that fieldAccessType() will return,
based on the values in the proceeding columns.

For the mobility component, the determination of γ also takes into account the pre-
viously computed θ. The reason is that unknown-label is overloaded in meaning. When
a reference parameter or local variable is declared with container label unknown-label, it
indicates that it doesn’t matter which container it references. This means that the type
rule for reference assignments permits any right-hand-side container label to be assigned
to unknown-label. However, in all other areas, unknown-label should be taken liter-
ally, as there is no knowledge available about what container the referred object is inside.
To resolve this ambiguity, expressions typed with unknown-label that are not actually
don’t-care are also typed with γ = unfixed to prevent assignments that would break the
containment system. The expression var(v) is the only expression that can be typed with
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Figure 3.8: Container Labels for Field Access Expressions

Field Kind Field δ Base Expr. δ Expression δ
value mutable θ θ
value immutable any immutable
ref mutable mutable mutable
ref read-only any read-only
ref any not mutable read-only

Field Kind Expr θ Field γ Base Expr. γ Base Expr. δ Expr. γ
ref unknown any any any unfixed
any any movable any mutable movable
any any movable any not mutable unfixed
any any fixed fixed any fixed
any any fixed not fixed any unfixed

Figure 3.9: Mutability and Mobility for Field Access Expressions
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both movable and unknown-label.

The remainder of the logic for γ determination is less subtle. An immutable object
prevents assignments to a field which is movable, and fixed fields become unfixed if the
object is not also fixed. This ensures that any attempt to convert this expression’s type
into a container label only succeeds when both the object and field are fixed.

3.4.2 Type Validation

T-SP-Step
Γ; ∆; 〈C, f : T 〉 ` path : Cbase Cbase 6= C T = Γ(Cbase)(f) T(mobility) = fixed

Γ; ∆; 〈C, f : T 〉 ` step(path, f) : T(class)

T-SP-Self-Step
Γ; ∆; 〈C, f : T 〉 ` path : Cbase Cbase = C f = fi ∈ f : T Ti(mobility) = fixed

Γ; ∆; 〈C, f : T 〉 ` step(path, f) : Ti(class)

T-SP-Tuple
C ∈ Γ

Γ; ∆; 〈C, f : T 〉 ` tuple : C

T-SP-Var
T = ∆(v) T(mobility) = fixed

Γ; ∆; 〈∅,∅〉 ` var(v) : T(class)

T-SP-Parm
v = vi ∈ v : T Ti(mobility) = fixed Ti(kind) = ref

Γ;∅; 〈∅, v : T 〉 ` var(v) : Ti(class)

Figure 3.10: Path Validation

With our helper functions defined, we can begin defining the type rules, beginning
with container label path validation. In figure 3.10, the judgment Γ; ∆; 〈C, f : T 〉 `
step(path, f) : T(class) determines if a container label path is valid. Paths are distinguished
from other container labels in that they refer to containers that must be objects and type
as a class instance. This isn’t true for container labels local, container-of-tuple and
generic(g).

The class name C indicates that the path exists in a class declaration context in the
container label of a field. A field’s type must only reference preceding fields so that de-
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pendencies can be initialized beforehand, and the specification of C enables this logic.
Otherwise, ∅ is used in place of C when not in a class declaration context.

The v : T part of the judgment is also for managing the order of dependencies. Both
parameter declarations and field declarations populate a list of previous declarations. When
local variables are typed, ∅ is used and variables are found in ∆ by the rule T-SP-Var.
When field and parameter declarations are typed, ∆ will be empty.

The critical feature that all four path typing rules share is T(mobility) = fixed. This
ensures that all steps along a path are stable and that a container label will continue
to specify the same container throughout its lifetime. Parameters have an additional
restriction that any dependency must be a reference parameter. Since value parameters
are passed by value, a copy is made when the function is invoked. Therefore, no other
passed parameter could reference this fresh object.
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V-Field-Label
kind = ref

Γ; 〈C, f : T 〉; kind ` container-of-tuple label-ok-f

V-Field-Label-Path
Γ;∅; 〈C, f : T 〉 ` step(path, f) : C

Γ; 〈C, f : T 〉; kind ` step(path, f) label-ok-f

V-Parameter-Label-Local
θ = local kind = value

Γ; v : T ; kind ` θ label-ok-p

V-Parameter-Label
θ ∈ {unknown-label, generic(_)} kind = ref

Γ; v : T ; kind ` θ label-ok-p

V-Parameter-Label-Path
Γ; ∆; 〈∅, v : T 〉 ` step(path, f) : C kind = ref

Γ; v : T ; kind ` step(path, f) label-ok-p

V-Local-Label-Local
θ = local

Γ; ∆; kind ` θ label-ok-l

V-Local-Label
θ ∈ {unknown-label, generic(_)} kind = ref

Γ; ∆; kind ` θ label-ok-l

V-Local-Label-Path
Γ; ∆; 〈∅,∅〉 ` step(path, f) : C kind = ref

Γ; ∆; kind ` step(path, f) label-ok-l

Figure 3.11: Container Label Validation

The remainder of the container label validation rules are in figure 3.11. Here, there are
different judgments for fields, parameters and local variables. Different rules are applied
for these contexts. For example, a field is not permitted to be labeled as unknown-label.
Only container-of-tuple and a path are valid for fields. This is because objects are
placed in containers and a reference field can never be more permissive than its object.

For typing parameter labels, there are restrictions where parameters can only depend
on parameters declared before them. The label unknown-label is permitted, so function
parameters can be declared without needing to specify a generic container label when there
is no need to know the container. Reference parameters are not allowed to be contained
within value parameters. This is because the pass-by-value semantics make a fresh copy of
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value parameters, so no passed reference parameter could refer to the fresh object.

The typing of values is consistent in that their container is the scope they are declared
in, meaning tuple for fields and local for parameters and local variables. Other labels
are only used for references.

V-Field-Type
Γ ` T type-ok-common Γ;T(kind) ` T(label) label-ok-f

Γ; 〈C, f : T 〉 ` T type-ok-f

V-Parameter-Type
Γ ` T type-ok-common Γ; ∆;T(kind) ` T(label) label-ok-p

Γ; v : T ` T type-ok-p

V-Local-Type
Γ ` T type-ok-common Γ; ∆;T(kind) ` T(label) label-ok-l

Γ; ∆ ` T type-ok-l

V-Common-Type
Γ ` T(class) class-ok T(kind) = ref ∨ (T(class))(containment) = self-cont

Γ ` T type-ok-common

Figure 3.12: Type Validation

The verification of types is also broken into separate judgments for the three contexts
that symbols can appear in. The rules defined in figure 3.12 are straightforward as the
complexities are all handled in the label-ok judgments. The rule V-Common-Type checks
that the class is well defined and that values can only be declared for self-contained classes.
The reason for the self-contained restriction is that value types have pass-by-value and
assign-by-value semantics and non-self-contained objects can’t be copied.
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V-Fields
f1 : T1 = head(f : T ) Γ; 〈C, fdep : Tdep〉 ` T1 type-ok-f

Γ; 〈C, (f1 : T1) ◦ fdep : Tdep〉 ` tail(f : T ) fields-ok

Γ; 〈C, fdep : Tdep〉 ` f : T fields-ok

V-Class
Γ; 〈C,∅〉 ` f : T fields-ok

Γ ` C class-ok

Figure 3.13: Class Validation

To validate a class, the judgment Γ ` C class-ok is defined in figure 3.13. Each field
must satisfy type-ok-f where the context consists of the fields declared before it.

3.4.3 Language Typing

V-Initializer-Label-Map
Γ; ∆caller ` φ(container-of-tuple) label-ok-l

Γ; ∆caller ` 〈tuple, φ〉 lmap-ok

V-Function-Label-Map
∆ = funcEnv(Γ, F ) ∀θ ∈ distinctParameterLabels(Γ, F ). θ ∈ dom(φ)

∀θ ∈ dom(φ). Γ; ∆ ` θ label-ok-l ∀θ ∈ range(φ). Γ; ∆caller ` θ label-ok-l

Γ; ∆caller ` 〈F, φ〉 lmap-ok

Figure 3.14: Label Map Validation

Label maps play an important role in managing containers. Before a function call can
be type checked, there needs to be a way to compare labels in the caller’s scope with labels
in the callee. The φ mapping takes labels as they were declared in the function and maps
them back to the caller’s symbol space. For example, if the function contains a reference
parameter with label generic(g), then the mapping must contain that label in its domain.
The function distinctParameterLabels() establishes the set of labels that must appear
in the domain of φ.

43



The lmap-ok judgment verifies that the domain of φ is valid with respect to function
F , and then validates each label in the domain in the scope of the function and each label
in the range of φ in the caller’s scope.

Value-Initializable
Tlhs(kind) = value Trhs(class) = Tlhs(class)

Γ; ∆ ` Tlhs�̃Trhs

Ref-Initializable
Tlhs = 〈ref, C, θlhs, δlhs,_〉 Trhs = 〈_, C, θrhs, δrhs,_〉
δlhs = δrhs ∨ δlhs = read-only Γ; ∆ ` θlhs l-match θrhs

Γ; ∆ ` Tlhs�̃Trhs

Value-Assignable
Tlhs = 〈value, C,_,_, movable〉 Trhs(class) = C

Γ; ∆ ` Tlhs � Trhs

Ref-Assignable
Tlhs = 〈ref, C, θlhs, δlhs, movable〉 Trhs = 〈_, C, θrhs, δrhs,_〉
δlhs = δrhs ∨ δlhs = read-only Γ; ∆ ` θlhs l-match θrhs

Γ; ∆ ` Tlhs�̂Trhs

Container-Label-Match
θlhs = θrhs ∨ θlhs = unknown-label ∨ θrhs = null-label

Γ; ∆ ` θlhs l-match θrhs

Figure 3.15: Assignment and Initialization

Next, in figure 3.15, we define a set of rules to determine which types are assignable
to which destination types. The operator �̃ is used for initialization where the mobility
of the type is ignored. For regular assignments, � is used for value assignment, and �̂
is used for reference assignment. Value assignment has fewer conditions than reference
assignment, because a copy of the right-hand side is made and the mutability of the copy
is independent of the original. The left-hand side type must be a value and the classes
must match in order to be value-assignable. No subtyping is implemented in this system.

For reference assignment, the mutability of the left-hand side must match the right-
hand side, unless the left-hand side is typed as read-only, which is universally compatible.
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The container labels must also match using the l-match judgment.

The normal case for labels to be compatible by l-match is if the left-hand side has the
same label as the right-hand side. There are two special cases. First, if the left-hand side
has label unknown-label, then any right-hand side label is permitted. Second, if the right-
hand side is null-label (can only occur with the null expression) then the assignment is
permitted.

T-Field-Access
Γ; ∆ ` e : Te

Te(class) = C Γ(C) = 〈f : T ,_〉 f ∈ f T = fieldAccessType(Γ,∆, e, f)

Γ; ∆ ` field(e, f) : T

T-Call-Function
Γ(F ) = 〈p : Tp, Tret〉 Γ; ∆ ` 〈F, φ〉 lmap-ok

∆ ` F sig-ok Γ; ∆ ` e : Te ∆ ` exportType(φ, Tp)�̃Te g ∈ Tp ∪ Tret
Γ; ∆ ` call(F, φ, e) : exportType(φ, Tret)

T-Init
Γ ` C class-ok Γ; ∆ ` 〈tuple, φ〉 lmap-ok Γ(C) = 〈f : Tf ,_〉 Γ; ∆ ` e : Te

θ = mapLabel(φ, container-of-tuple) Γ; ∆ ` exportType(φ, Tf )�̃Te
Γ; ∆ ` init(C, φ, e) : 〈ref, C, θ, mutable, fixed〉

T-Variable
∆(v) = T

Γ; ∆ ` var(v) : T

T-Null
Γ ` C class-ok

Γ; ∆ ` null : 〈ref, C, null-cont, immutable, unfixed〉

Figure 3.16: Expression Typing

With the building block rules defined, we can now type the expressions and statements
of the language. Figure 3.16 contains the type rules for expressions. For typing field
accesses, most of the work is done in the function fieldAccessType() which was described
in section 3.4.1. Otherwise, the base expression must type correctly as Te and field f must
be defined in the class of Te.

In the rule T-Call-Function, we see how label maps are used in practice. The
exportType() function (figure 3.5) applies the map φ to the parameter types and return
type of the call() to map them into the container label space of the caller. Once they are
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mapped, the type of each passed parameter is checked using the �̃ relation. Finally, the
return type is also mapped and becomes the type of the call() expression.

The rule T-Init behaves in a very similar way to a function call. The semantics of
init() is simply to allocate a new tuple in the heap and initialize each of the fields using
the passed parameters. Even though there is no function code to run in a new scope, the
new tuple is a scope with container labels relative to the tuple. Each parameter’s type is
checked against the respective field’s type after it has been mapped into the space of the
caller using φ. Here, φ is much simpler than call() and only container-of-tuple is in
its domain.

The rules for var(v) and null are straightforward. The C in T-Null is a free variable.

T-Let
Γ ` T ok-l

∆ ` e : Tinit ∆ ` T �̃Tinit Γ; ∆[vars 7→ ∆(vars) ∪ 〈v, T 〉] ` s : Void

Γ; ∆ ` let(T, v, e, s) : Void

T-Statement-Sequence
Γ; ∆ ` s1 : Void Γ; ∆ ` s2 : T

Γ; ∆ ` seq(s1, s2) : T

T-Assign-Value
Γ; ∆ ` elhs : Tlhs

Γ; ∆ ` erhs : Trhs Tlhs = 〈value,_,_,_, movable〉 ∆ ` Tlhs � Trhs

Γ; ∆ ` assign-value(Tlhs, elhs, erhs) : Void

T-Assign-Reference
Γ; ∆ ` elhs : Tlhs

Γ; ∆ ` erhs : Trhs Tlhs = 〈ref,_,_,_, movable〉 ∆ ` Tlhs�̂Trhs
Γ; ∆ ` assign-ref(elhs, erhs) : Void

T-Return
∆(ret) = Tret ∆ ` e : Te ∆ ` Tret�̃Te

Γ; ∆ ` return(e) : Te

Figure 3.17: Statement Typing

The rules for statements are defined in figure 3.17. The first rule T-Let types statement
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s with variable v : T added to its environment. For the assignment statements, the left-
hand-side expression must be movable and the details of what types can be assigned are
specified in figure 3.15. The last statement is return where the return expression e : T
must be initialization-assignable to the return type.

V-Parameters
v1 : T1 = head(p : T )

Γ; pdep : Tdep ` T1 type-ok-p Γ; (p1 : T1) ◦ pdep : Tdep ` tail(p : T ) parms-ok

Γ; pdep : Tdep ` p : T parms-ok

V-Signature
S = 〈p : Tp, Tret〉

Γ;∅ ` p : T parms-ok Γ ` Tret type-ok-p Tret(mob) = unfixed

Γ ` S sig-ok

V-Function
S = 〈p : Tp, Tret〉 Γ ` S sig-ok ∆ = funcEnv(Γ, F ) Γ; ∆ ` s : Tret

Γ ` 〈S, s〉 func-ok

Figure 3.18: Function Validation

The final set of rules complete the typing of the container language and are defined in
figure 3.18. These rules type function definitions, which are a pair of a function signature
and a function body statement: 〈S, s〉. All parameters and the return value must satisfy
type-ok-p. The parameter labels can only be dependent on parameters that come before
and the return value must have the additional constraint that its mobility is unfixed
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Chapter 4

Operational Semantics

In this chapter, we define a small-step operational semantics for the language defined in
chapter 3. We follow the methodology of structural operational semantics developed by
Gordon Plotkin [17]. More directly, the style of our semantics were inspired by the MJ
system by G.M. Bierman et al. [4].

4.1 Overview

The semantics of the language operate within a configuration which contains the program
heap, stack and all other constructs needed to evaluate a program. This is illustrated
in figure 4.1. The semantic rules relate a configuration to its subsequent configuration
C −→ C ′.

The heap consists of references, boxes and tuples stored at abstract locations and the
program is expressed by frames. A frame encodes an operation to be evaluated by the
abstract machine. Frames include all of the expressions and statements of the language,
but in addition, there are extra frames to support complex operations, which need to be
decomposed into multiple scalar steps.

The configuration holds a current frame, which represents the next operation to be
evaluated. In addition, the configuration contains a stack of stacks. The outer stack
holds local configurations, which represent the state for a function invocation. Within a
local configuration, there is a stack of frames, which we call the frame-stack. During the
evaluation of a function, frames will be pushed and popped from the frame-stack as needed.
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Configuration

Local Configuration Stack
Heap

Current Frame

Figure 4.1: Configuration Overview

There are many definitions needed before we can present the semantic rules. In the
next section, we will formally define the structure of the heap.

4.2 Heap

The heap structure shown in figure 4.2 is a mapping from an abstract location to a heap
construct. There are three different constructs in the heap: tuples, boxes and references.
We distinguish heap locations by which construct they refer to. A heap location is either a
TupleLocation or a SymbolLocation, with SymbolLocation further subdivided into a BoxLo-
cation or a RefLocation. The mappings for tuple locations are immutable once a tuple’s
fields are fully initialized. Mappings for symbol locations are mutable.

A tuple construct itself is an immutable mapping from field names to SymbolLocations.
Later, we will see that local variables are also an immutable mapping from symbols to
SymbolLocations. All mutation of the fields of a tuple occurs by modifying the individual
Box and Ref constructs.

The distinction between Box and Ref is that a Box maps to a value tuple (self-
contained) which is assigned by value, meaning the source tuple must be copied and the
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Location ::= TupleLocation | SymbolLocation ` ∈ Location
SymbolLocation ::= BoxLocation | RefLocation
Tuple ::= FieldName −→ SymbolLocation
Box ::= TupleLocation
Ref ::= TupleLocation | null-ref
Heap ::= {TupleLocation −→ Tuple H ∈ Heap

|BoxLocation −→ Box
|RefLocation −→ Ref }

Figure 4.2: Heap Structure. TupleLocation, BoxLocation and RefLocation are abstract
addresses in the heap. The tuple construct is immutable once fully initialized, but boxes
and references can be updated.

box’s mapping is set to a fresh tuple. The Ref construct, on the other hand, may reference
objects that are not self-contained and is also permitted to be null-ref. No copy is made
when a reference is assigned.

4.3 Frames

Our language consists of statements and expressions, but in order to implement a small-
step semantics for this language, we need to introduce a number of additional frames to
the language. Frames are the unit of computation, and each step of the machine applies a
rule to the current frame to produce the next state of the configuration.

In addition to the statement and expression frames, figure 4.3 introduces a number of
new frames. Expressions evaluate to a Result frame, which is a pair of a heap location
and the type of that heap location. The frame void is simply the result of executing a
statement. The statement let introduces a symbol that is only in scope for the let body
statement and pop-local(v) is responsible for removing the variable when it goes out of
scope.

The remainder of the frames relate to initialization of symbols and copying tuples. The
frame init-symbols is used to marshal parameters for a function call, with init-symbol
handling individual parameters. Similarly, init-fields and init-field are responsible
for initializing a new tuple’s fields.

There are a number of rules associated with copying an object. Although this process is
similar to initializing a new tuple, the addition of a copy environment is required to track
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Result ::= 〈Location, Type〉
CopyResult ::= CopyEnv | 〈Result,CopyEnv〉
AnyResult ::= Result | CopyResult
CopyEnv ::= {Location −→ Location}
Frame ::= ClosedFrame | OpenFrame

ClosedFrame ::= Statement
| Expression
| AnyResult
| void
| pop-local(VarName)
| init-symbols( 〈Name,Result〉 )
| init-symbol( Name,Result )
| init-fields (Result, 〈Name,Result〉 )
| init-field (Result, Name,Result )
| assign-copied( Result,Result )
| copy-tuple( Type, Result )
| copy-tuple2( Type, Result, CopyEnv )
| copy-fields( Result, 〈Name,Result〉, CopyEnv )
| copy-init( Result, Name, 〈Result,CopyEnv〉 )
| discard-copy-env( 〈Result,CopyEnv〉 )

R ∈ Result R(loc) = ` where R = 〈`, T 〉
R ∗ ∈ AnyResult
A ∈ CopyEnv
F ∈ Frame
CF ∈ ClosedFrame

Figure 4.3: Closed Frames
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OpenFrame ::= let(T , l, �, s)
| assign-value(T , �, e)
| assign-value(T , l, �)
| assign-ref(�, e)
| assign-ref(l, �)
| return(�)
| field(�, f)
| call(F , φ, R1 . . .Ri−1,�, ei+1 . . . en)
| init(C, φ, R1 . . .Ri−1,�, ei+1 . . . en)
| init-symbol(v,�)
| init-field (Rtuple, f,�)
| copy-fields(Rtuple, 〈f,R 〉, � )
| copy-init(Rtuple, f,�)
| discard-copy-env(�)

OF ∈ OpenFrame

Figure 4.4: Open Frames

which tuples have already been copied. CopyEnv maps tuples contained within the source
tuple to new tuples constructed within the destination tuple. When recursively processing
the source tuple, a nested tuple could be aliased multiple times and cycles could also exist.
The mapping ensures that each tuple in the source is only copied once, and when an alias
is encountered, the destination reference is set to A(`src-tuple).

The frame copy-tuple is the entry point into the copy environment. An empty Copy-
Env is created and a discard-copy-env frame is pushed to the frame-stack to strip the
CopyEnv from the resulting copied tuple. The frame copy-tuple2 is then set as the current
frame. Any recursive copies bypass copy-tuple and directly use the frame copy-tuple2
so they can continue to use the same environment. As copies are made, the environment A
accumulates the tuple mappings. The frames copy-fields and copy-init behave much
like init-fields and init-field except that they contain the copy environment as an
extra parameter. The last frame associated with copying tuples is assign-copied, which
completes an assign-value operation after the copy has been done.

Complex statements and expression must be evaluated in multiple steps. To facilitate
this, there are decomposition rules which will extract the next sub-expression from a com-
plex frame and replace it with a hole which is written as �. A frame is closed if it has no
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Variables ::= Name −→ SymbolLocation V ∈ V ariables
FrameStack ::= Frame F ∈ FrameStack
ScopeID ::= Z+ ID ∈ ScopeID
Context ::= initial | tuple | FunctionName ctx ∈ Context
LocalConfig ::= 〈V ,F , 〈ctx, φ〉, ID〉 L ∈ LocalConfig

With L = 〈V ,F , 〈ctx, φ〉, ID〉
L(vars) = V L[vars 7→ V ′] = 〈V ′,F , 〈ctx, φ〉, ID〉
L(fstack) = F L[decl v 7→ `] = 〈(v 7→ `) ◦ V ,F , 〈ctx, φ〉, ID〉
L(ctx,lmap) = 〈ctx, φ〉 L[fstack 7→ F

′
] = 〈V ,F ′, 〈ctx, φ〉, ID〉

L(lmap) = φ L[push F ] = 〈V ,F ◦ F , 〈ctx, φ〉, ID〉
L(id) = ID L[push Fnext ] = 〈V ,Fnext · F , 〈ctx, φ〉, ID〉

Config ::=

 Heap
LocalConfig
ClosedFrame

 C ∈ Config C =

 H
L ◦ L

CF


Figure 4.5: Configuration

holes and open if there is a hole. After a sub-expression has completed, the result will be
used to fill the hole and execution can continue. Figure 4.4 lists each of the open frames.
Note that some frames will contain lists of expressions that will progress through a series
of nested evaluations and hole-filling before the complete set of results can be operated
upon.

4.4 Configuration

The state of the abstract machine as well as its component parts are defined in figure 4.5.
The heap, stack and current frame are the three components of the configuration, which
is written as a vertical vector. We’ve previously defined the heap and closed frames, but
the stack is new and we’ll introduce it now. The configuration contains a stack of local
configurations, with each local configuration representing a scope. When a function call is
made, a new local configuration is created and pushed onto the stack. When tuples are
initialized, a new local configuration is also created.

Within a local configuration, variables and a frame-stack are stored. Variables map local
symbols and function parameter symbols to locations in the heap. The frame-stack contains
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frames that represent the remainder of the code that needs to run within a function. There
are two common patterns of usage with the frame-stack. The first is when the current frame
evaluates to a result with an open frame at the top of the stack. The open frame will have
a hole (�) in it and the result will fill in the hole, making a closed frame which becomes the
new current frame. The other main pattern is when the current frame is void, indicating
that a statement has completed. In this case, a frame is popped off the frame-stack to
become the new current frame.

With the stack of local configurations and a nested frame-stack within each local con-
figuration, we have a stack of stacks. This decision was originally made to support an early
return in the middle of a function, as is commonly supported in mainstream imperative
languages. When a function returned early, the remaining inner frame-stack in the local
configuration could be immediately discarded and control would pop directly back to the
caller using the outer stack. However, other features required for a short-circuit return
did not make it into this formalism so we are left with the complexity without the payoff.
Despite this limitation, the stack of stacks complication was manageable and could be used
in future research. Perhaps exceptions and break statements could be supported as well
using this technique.

There are two more bookkeeping components of a local configuration. First is LabelMap,
linking the container labels of the current scope with the caller’s scope. Along with the
mapping is the context for the mapping so that the stack typing rules can validate the
map. The context in the normal case is the name of the current function. Otherwise, it is
the context marked as tuple, which indicates a tuple initialization context, or initial,
which is a special context which calls main() to bootstrap the machine.

The last component of the local configuration is a unique identifier for the scope. This
identifier is used for configuration typing which will be explained in the next section.

Also in figure 4.5 are notations for extracting sub-components of a local configuration L
and also notations for updating L. These are used heavily in the rules for the operational
semantics.

4.4.1 Configuration Typing Environment

In order to show soundness for the operational semantics, we need to type the configuration
including all of our new frames. But before we address the typing, we need to introduce
the configuration typing environment and basic definitions of physical types in contrast
with the logical types that we have discussed so far. The new definitions are in figure 4.6.
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Container ::= TupleLocation | ScopeID | unknown-cont | null-cont
PhysicalType ::= 〈Class,Container,Mutability,Mobility〉
ContainerMap ::= {ContainerLabel −→ Container}
Uninitialized ::= {TupleLocation}
ConfigTyping ::= 〈{Location −→ PhysicalType}, {ScopeID 7→ ContainerMap}〉

Θ ∈ Container T ∈ PhysicalType
M ∈ ContainerMap Σ ∈ ConfigTyping

With Σ = 〈physical-types, container-maps〉
Σ(`) = physical-types(`)
Σ(cmap)(ID) = container-maps(ID)

Figure 4.6: Configuration Typing Environment

Container labels are relative to their scope, and the same container can be represented
with different container labels in different scopes. When a reference parameter is passed to
or returned from a function, we need to know that the container indicated in both scopes
is indeed the same physical construct in the configuration.

We used lowercase θ as a container label and the physical configuration construct will
be represented with uppercase Θ. A physical container can be a tuple location in the
heap or the unique identifier of a local configuration. Where container labels can only
be interpreted relative to their scope, physical containers are global and can be compared
independently of their origin.

Along with a physical container, we need a physical type T , which is similar to our
logical types T except the container label is replaced by a physical container. With these
physical constructs defined, any typing we do will need to be able to convert logical types
to physical types. We’ll soon define the ptype() function in figure 4.8, which performs
these conversions, but for now we introduce the mapping M . We saw in chapter 3 the φ
mapping which maps labels to labels in the calling scope. Here, M maps container labels to
physical labels for a specific scope. Notation for accessing Σ is also presented in figure 4.6.
An example is provided in figure 4.7, with two scopes shown, a caller and callee. Concrete
mappings are shown to demonstrate how the container labels and physical containers are
connected.

With these definitions in place, Σ is the typing environment for the configuration.
Every location in the heap is mapped to a physical type. The environment Σ also contains
a container-map for every local configuration, which allows container labels to be mapped
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method Main.demo( fixed ref o : Outer::` c, ref i : Inner :: o) : Int {
...

}

constructor Main() {
var v = Outer();
ref r = self.demo(v, v.inner)

}

Main() Local
Configuration
Scope id =1

demo() Local 
Configuration
Scope id =2

:: o↦ location #22
:: `c↦ scope #1

= {}

= {} :: o↦ v
:: `c↦ local

Heap

vLocation #22 : Outer

Figure 4.7: Container Mappings Example

56



// Build a PhysicalType for a type with respect to a configuration
ptype(Σ, H , L, T) =

〈T(class), labelToCont(Σ, H , L, T(label)), T(mut), T(mob)〉

// Determine the physical container for a container label within a
// local environment
labelToCont(Σ, H , L, θ) =

case θ of
unknown-label -> unknown-cont
null-label -> null-cont
variable(v ) -> locToCont(H ,L(vars)(v))
step(base, f) ) ->

let `tuple = labelToCont(Σ, H , L, base ) in
locToCont(H , H (`tuple)(f ))

θ -> Σ(cmap)(L(id))(θ)

// De-reference references and boxes
locToCont(H , l ) =
case l of
TupleLocation -> l
BoxLocation -> H (l )
RefLocation -> locToCont(H , H (l))

// De-reference references and boxes
toTuple(H , l ) =
case l of
TupleLocation -> l
BoxLocation -> H (l )
RefLocation -> H (l )

Figure 4.8: Operational Rules Support Functions (1)

to their physical container. Finally, we also introduce U which is a set of uninitialized
tuples. Combined, Σ; U comprise the entire typing environment for a configuration. The
operational semantics do not depend on Σ or U in any way; they exist solely to enable the
type safety proofs.

4.5 Supporting Functions

Similar to chapter 3, there are a number of supporting functions needed to type the con-
figuration. Two important functions are reused from chapter 3, namely exportType() and
mapLabel(), defined in figure 3.5.
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// Create an initial local configuration for tuple initialization
tupleLocalConfig(φ,ID) = 〈{},∅, 〈tuple, φ〉, ID〉

// Create an initial local configuration for function F
// with the function body s placed on the frame-stack
funcLocalConfig(F, φ, s∆) = 〈{}, s∆, 〈F, φ〉, uniqueID()〉

// Create a mapping for container labels to physical containers for
// a function body scope
labelMappings(Σ, H , Lcaller, φ) =

{θi 7→ labelToCont(Σ,H ,Lcaller, φ(θi)) | θi ∈ dom(φ)} ∪ {local 7→ L(id)}

// Create a mapping for container labels to physical containers for a tuple scope
tupleMappings(Σ, H , Lcaller, φ, Θtuple) =

let θcont = φ(container-of-tuple) in
{container-of-tuple 7→ labelToCont(Σ,H ,Lcaller, θcont), tuple 7→ Θtuple}

// Take a type relative to the caller’s scope current and compose a type
// relative to the current scope.
importType(Tcaller, Tlocal) = 〈Tcaller(kind), Tcaller(class), Tlocal(label), Tcaller(mut), Tcaller(mob)〉

Figure 4.9: Operational Rules Support Functions (2)

Figure 4.8 defines four functions. The first, ptype(), is used extensively; it converts
a logical type T to a physical type T . The components for class, mutability and mobil-
ity are directly copied and the container label is converted to a physical container using
labelToCont(). The conversion is handled by cases. When the container is a variable, the
physical container is simply the heap location of that variable. To obtain that address, the
function locToCont() automatically follows references.

When converting a label of step(base, f), the base is recursively processed, yielding a
tuple location. From that tuple, the field f is accessed, resulting in the desired container.
For all other container labels, for example generic(g), the physical container is derived
from the mapping M , which is associated with every local configuration.

The fourth function of figure 4.8, toTuple(), is used in the operational semantics to
automatically follow references if present and return the location of the desired tuple.

Next, there are 5 additional functions in figure 4.5, which are all related to establishing
new local configurations and label-to-container mappings. The function tupleLocalConfig()
creates a new scope for initialization of a new tuple. The ID parameter in this case must
be the heap location of the tuple. The uniqueID() function is abstract and generates a
globally unique identifier. We rely on global uniqueness to permit a tuple heap location to
also serve a double duty as the key for Σ(cmap).
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When initializing a new scope for a function call, funcLocalConfig() builds the initial
local configuration to execute the body of a function. The statement body s∆ is placed on
the frame-stack, the mapping φ is recorded and a unique identifier is assigned.

The labelMappings() function takes care of building the mapping M for a new function
body scope. We have the label-to-label mapping φ, which maps container labels in the
callee’s scope to the caller’s scope. We also have the mapping Mcaller, so we can take a
callee-relative label, convert it into a caller-relative label and finally use the caller’s Mcaller

to obtain the appropriate physical container. These steps are taken for all container labels
in φ to generate M .

4.6 Frame Typing

Each of our frames requires typing. All statements and expressions of the language are
frames, and these frames retain their typing as in figures 3.16 and 3.17. However, for
the new frames, we need new rules, which in turn need an extended typing environment.
Statements and expressions are typed in context Γ; ∆ and the extended frames are typed
within Γ; ∆; Σ; H ; L. However, for the purposes of frame typing, we consider these to be
the same judgment with the original statement and expression typing simply ignoring the
extra configuration context.

Figures 4.10 and 4.11 define the typing rules for our new frames. Most rules are straight-
forward in that they the validate their component parts. A few rules make use of judgments
that have not been defined yet. For reference, the judgment t-match is defined in figure
4.24 and copy-map-ok is in figure 4.25. Although a hole (�) is not a frame, it needs to
be typed, as it represents a future result. To do so, we add its type to ∆ and use the rule
T-Hole to type it.

The rule T-Location in particular does more than just type a location. It also estab-
lishes consistency between the location’s logical and physical types. This type of consis-
tency requirement is discussed in full in section 4.9, but for now it suffices to understand
that frames are typed in the configuration typing context Σ and must be consistent with
their corresponding physical types.

4.6.1 Program Type Annotations

All frames are typed prior to applying any semantic rules. As part of the typing process,
we create an annotated version of the program where each frame is tagged with the typing
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T-Hole
� : T ∈ ∆

Γ; ∆; Σ; H ; L ` � : T

T-Void

Γ; ∆; Σ; H ; L ` void : Void

T-Location
Σ(`) = T = ptype(Σ; H ,L, T ) Σ; H ; L ` T t-match T

Γ; ∆; Σ; H ; L ` 〈`, T 〉 : T

T-CopyEnv
Σ ` A copy-map-ok

Γ; ∆; Σ; H ; L ` A : CopyEnv

T-Location-CopyEnv
Σ ` A copy-map-ok Γ; ∆; Σ; H ; L ` 〈`, T 〉 : T

Γ; ∆; Σ; H ; L ` 〈〈`, T 〉,A〉 : 〈T,CopyEnv〉

T-Pop-Local
v ∈ ∆

Γ; ∆; Σ; H ; L ` pop-local(v) : Void

T-Copy-Discard-Env
Σ ` A copy-map-ok Γ; ∆; Σ; H ; L ` 〈`, T 〉 : T

Γ; ∆; Σ; H ; L ` copy-discard-env(〈〈`, T 〉,A〉) : T

T-Init-Symbols
Ti = ∆(vi) Γ; ∆; Σ; H ; L ` `initi : Tiniti (Ti(kind) = ref ∧ Ti�̃Tiniti) ∨ (Ti = Tiniti)

Γ; ∆; Σ; H ; L ` init-symbols(〈v, 〈`init, Tinit〉〉) : Void

T-Init-Symbol
T = ∆(v) Γ; ∆; Σ; H ; L ` `init : Tinit

(T(kind) = ref ∧ T �̃Tinit) ∨ (T = Tinit) T(kind) = ref ∨ `init 6= null

Γ; ∆; Σ; H ; L ` init-symbol(v, 〈`init, Tinit〉) : Void

T-Init-Fields
C = Ttuple(class) Tfieldi = Γ(C)(fi)

Γ; ∆; Σ ` `initi : Tiniti (Tfieldi(kind) = ref ∧ Tfieldi�̃Tiniti) ∨ (Tfieldi = Tiniti)

Γ; ∆; Σ; H ; L ` init-fields(〈`tuple, Ttuple〉, 〈f, 〈`init, Tinit〉) : Ttuple

T-Init-Field
C = Ttuple(class) Tfield = Γ(C)(f)

Γ; ∆; Σ; H ; L ` `init : Tinit (Tfield(kind) = ref ∧ Tfield�̃Tinit) ∨ (Tfield = Tinit)
Tfield(kind) = ref ∨ `init 6= null

Γ; ∆; Σ; H ; L ` init-field(〈`tuple, Ttuple〉, f, 〈`init, Tinit〉) : Void

Figure 4.10: Frame Typing (1)
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T-Copy-Tuple
Γ; ∆; Σ ` `src : Tsrc Tdst � Tsrc

Γ; ∆; Σ; H ; L ` copy-tuple(Tdst, 〈`src, Tsrc〉) : Tdst

T-Copy-Tuple-2
Γ; ∆; Σ ` `src : Tsrc

Γ ` Tdst type-ok-common Tdst � Tsrc Σ ` A copy-map-ok

Γ; ∆; Σ; H ; L ` copy-tuple2(Tdst, 〈`src, Tsrc〉,A) : 〈Tdst,CopyEnv〉

T-Copy-Fields
C = Ttuple(class)

Γ; ∆; Σ ` `tuple : Ttuple Tfieldi = Γ(C)(fi) Γ; ∆; Σ ` `initi : Tiniti
(T(kind) = ref ∧ Tfieldi�̃Tiniti) ∨ (Tfieldi = Tiniti) Σ ` A copy-map-ok

Γ; ∆; Σ; H ; L ` copy-fields(〈`tuple, Ttuple〉, 〈f, 〈`init, Tinit〉〉,A) : CopyMap

T-copy-init
C = Ttuple(class) Tfield = Γ(C)(f) Γ; ∆; Σ; H ; L ` `tuple : Ttuple

Γ; ∆; Σ; H ; L ` `init : Tinit (T(kind) = ref ∧ Tfield�̃Tinit) ∨ (Tfield = Tinit)
T(kind) = ref ∨ `init 6= null Σ ` A copy-map-ok

Γ; ∆; Σ; H ; L ` copy-init(〈`tuple, Ttuple〉, f, 〈〈`init, Tinit〉,A〉) : CopyEnv

T-Assign-Copied
Γ; ∆; Σ; H ; L ` 〈`lhs, Tlhs〉 : Tlhs

Γ; ∆; Σ; H ; L ` 〈`rhs, Trhs〉 : Trhs Tlhs(mobility) = movable Trhs = Tlhs

Γ; ∆; Σ; H ; L ` assign-copied(〈`lhs, Tlhs〉, 〈`rhs, Trhs〉) : Void

Figure 4.11: Frame Typing (2)
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environment that it is typed in. For example, if we have the judgment Γ; ∆ ` e : T , then in
the annotated program, we will write e∆, making both e and ∆ available to the conditions
of the rules. By binding ∆ to each frame, we enable further configuration typing judgments
to be made.

4.7 Special Configurations

Initial-Config

Cinitial =


∅

{〈∅,∅, 〈initial,∅〉, 0〉}
call("main",∅,∅)

Σ = ∅


Terminal-Result H
{〈∅,∅, 〈initial,∅〉, 0〉}

〈`, T 〉


Terminal-Exception H

L
NPE


Figure 4.12: Initial and Terminal Configurations

Figure 4.12 defines Cinitial which is the initial configuration. All programs are expected
to have a main() function defined. There are no variables in this special initial scope
and the heap is empty. Also shown in a boxed region is the initial configuration typing
environment. The boxing is intended to separate distinct concerns. Primarily, we are
defining the semantics (unboxed), which do not require Σ. However, as the rules of the
operational semantics are defined, we also show how Σ should be updated to reflect any
new typing needed after a rule is applied.

Also in 4.12 are two terminal state patterns. Terminal-Result represents normal
termination of a program with ` as the heap address containing the return value of main().
Similarly, Terminal-Exception represents termination of a program after an attempt to
de-reference null. No further rules can be applied if the configuration matches one of these
patterns.
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4.8 Transition Rules

In this section, we define the rules of the operational semantics. The rules are written
with the current configuration in the lower left, related to the subsequent configuration in
the lower right (C −→ C ′). When relevant, the typing environment Σ is shown boxed as a
fourth element of the configuration’s vertical vector and information about uninitialized
tuples U appears boxed to the right of the heap component H . Again, this is typing
information distinct from the operational semantics. Most rules operate with U = ∅, and
in these cases, we omit any mention of U in the rules. However, for initialization-related
frames that do operate with uninitialized tuples, there will be a box describing how the
rule impacts U.

Above the line are the conditions required for the rule. Some conditions are simply
definitions of symbols used to compose the next configuration. In general, most rules have
their conditions formatted into two columns with the more significant ones in the left
column and simple definitions on the right. This convention is broken in a few cases for
better layout with lengthy conditions.

4.8.1 Machinery

First we look at three simple foundational rules in figure 4.13. First, rule Next-Frame
runs after a statement rule completes and leaves its void result as the current frame. A
closed-frame is popped from the frame-stack and set as the new current frame.

For processing expression results, the rule Next-Frame takes a result, pops an open
frame from the frame-stack and replaces the � in the open frame with the result. The
now-closed frame is set as the new current-frame.

The last of our utility rules is Pop-Local which removes a local variable from the local
configuration after a let statement has completed its execution.

4.8.2 Statements

The next set of rules are for statements and are defined in figure 4.14. The rule for let
statements pushes s∆′ and a pop-local frame which removes the variable v after the body
of the let has completed. The current frame is set to init-symbol which defines and
initializes the new variable.
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Next-Frame
L(fstack) = CF ◦ F H

L ◦ L
void

 −→
 H

L[fstack 7→ F ] ◦ L
CF


Consume-Result

L(fstack) = OF ◦ F H
L ◦ L

R ∗

 −→
 H

L[fstack 7→ F ] ◦ L
OF [� 7→ r]


Pop-Local

V ′ = L(vars) \ {v} H
L ◦ L

pop-local∆(v)

 −→
 H

L[vars 7→ V ′] ◦ L
void


Figure 4.13: Transition Rules — Machinary

The rule for assign-value uses copy-tuple to implement assign-by-value semantics.
After the copy is complete, assign-copied consumes the result and completes the as-
signment by updating the heap with the left-hand side Box updated to reference the new
tuple. For reference assignment, assign-ref doesn’t have assign-by-value, semantics so it
directly updates the heap to reference the right-hand side tuple.

For return statements there are two rules, one for values and one for references. When
returning a value, copy-tuple is invoked, but it runs in the scope of the calling function
and the result of the copy is directly consumed by the calling function. Note the use of the
exportType() function, which converts the return type’s container labels to be relative to
the function caller’s scope. Again, returning references is similar, but skips the copy-tuple
steps.

4.8.3 Expressions

Rules for expressions appear in figure 4.15. For field access expressions, field-access first
normalizes `tuple using toTuple(), which automatically de-references `tuple if it is a reference.
The field is then found in the heap by looking up symbol f in the tuple structure. The
logic for var(v) is also simple. The local configuration holds the local variables in L(vars).

In the rule Call-Function, there are a number of critical steps. Recall that one of
the most important aspects of this system is the management of container labels when
passing parameters across scopes. The first mapping φ is provided by the program, and
it maps labels in the new called function body back to the caller’s scope. The φ map is
stored in the newly created local configuration Lfn. The second map M is built using the
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Let
∆′ = ∆[v 7→ T ] H

L ◦ L
let∆(T, v,Rinit, s)

 −→
 H

L[push s∆′ ◦ pop-local∆′
(v)] ◦ L

init-symbol∆(v,Rinit)


assign-value

`rhs′ = toTuple(H , `rhs) H (`rhs) 6= null-ref
Fnext = assign-copied∆(〈`lhs, Tlhs〉,�) `lhs ∈ BoxLocation H

L ◦ L
assign-value∆(〈`lhs, Tlhs〉, 〈`rhs, Trhs〉)

 −→
 H

L[push Fnext] ◦ L
copy-tuple∆(Tlhs, 〈`′rhs, Trhs〉)


Assign-Copied

`lhs ∈ BoxLocation
`rhs ∈ TupleLocation H

L ◦ L
assign-copied∆(〈`lhs, Tlhs〉, 〈`rhs, Trhs〉)

 −→
H [`lhs 7→ `rhs]

L ◦ L
void


assign-ref
`′rhs = toTuple(H , `rhs) `lhs ∈ RefLocation H

L ◦ L
assign-ref∆(〈`lhs, Tlhs〉, 〈`rhs, Trhs〉)

 −→
H [`lhs 7→ `′rhs]

L ◦ L
void


Return-Value

H (`ret) 6= null-ref
`′ret = toTuple(H , l) T(kind) = value H

L ◦ L
return∆(T, 〈`ret, Tret〉)

 −→
 H

L
copy-tuple∆(T, 〈`′ret, exportType(L(lmap), Tret)〉)


Return-Ref

`′ret = toTuple(H , `) T(kind) = ref H
L ◦ L

return∆(T, 〈`ret, Tret〉)

 −→
 H

L
〈`′ret, exportType(L(lmap), Tret)〉


Figure 4.14: Transition Rules — Statements

65



field-access
`′tuple = toTuple(H , `tuple) H (`tuple) 6= null-ref
`field = `′tuple(f) Γ; ∆ ` field(. . . ) : Tfield H

L ◦ L
field∆(〈`tuple, Ttuple〉, f)

 −→
 H

L ◦ L
〈`field, Tfield〉


var

T = ∆(v)
` = L(vars)(v) H

L ◦ L
var∆(v)

 −→
 H

L ◦ L
〈`, T 〉


call-function

Γ{F} = function(_, S, s)
Lfn = funcLocalConfig(F, φ, s∆fn) S = 〈p : T ,_〉

T ′init = importType(Tinit, T )
H

L ◦ L
call∆(F, φ, 〈`init, Tinit〉, s∆fn)

Σ

 −→


H
Lfn ◦ L ◦ L

init-symbols∆fn(〈p, 〈`init, T ′init〉〉)
Σ[Lfn(id)

cmap7−→ labelMappings(Σ,H ,L, φ)]


Initialize

Γ{C} = 〈f : T , c〉
Σ′ = Σ[`

cmap7−→ tupleMappings(Σ,H ,L, φ, `new)] `new = uniqueID()

Ltuple = tupleLocalConfig(φ, `new) θ = container-of-tuple
H ′ = H [`new 7→ ∅] Tnew = 〈ref, C, θ, mutable, movable〉

T ′init = importType(Tinit, T )
H

L ◦ L
init∆(C, φ, 〈`init, Tinit〉)

Σ

 −→


H ′ U = {`new}
Ltuple ◦ L ◦ L

init-fields∆(〈`new, Tnew〉, 〈f, 〈`init, T ′init〉〉)
Σ′[`new 7→ ptype(Σ′,H ,Ltuple, Tnew)]


Figure 4.15: Transition Rules — Expressions
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labelMappings() function, and it translates container labels into physical containers for
the new scope.

With both of these maps established, the function call operation begins with the frame
init-symbols which takes each passed parameter from 〈`init, Tinit〉 and defines the respec-
tive symbols within the new scope. The function funcLocalConfig() places the function
body into the new frame-stack.

The rule for init() initializes a new tuple using the passed parameters as the initial
values. It works like a function call even though there is no function body to run. Here,
the frame init-fields handles the parameters. The function tupleLocalConfig per-
forms the same role as funcLocalConfig() and tupleMappings performs the same role as
labelMappings().

The unique portion of init() is the allocation of a new heap location `new and its
insertion into U recognising it as an uninitialized tuple. When the init-fields operation
completes, it will remove `new, and U will be empty again.

4.8.4 Parameter Passing and Symbol Initialization

Figure 4.16 details rules dealing with symbol initialization and passing parameters to func-
tions. The frame init-symbols takes a list of variables to be initialized and processes
the first variable. Either Init-Symbols-Value or Init-Symbols-Ref can apply depend-
ing on the kind of the first variable. When initializing a value, a copy must be made
using copy-tuple, and in this case, init-symbol is pushed onto the stack to consume
the copy and do the variable assignment. After init-symbol is complete, the remainder
of the variables are processed by another init-symbols frame, which is also pushed to
the stack. When the variable list becomes empty, rule Init-Symbols-Value returns void
which completes the operation.

Rule Init-Symbols-Ref is simpler, as it bypasses the copy-tuple step. Rules Init-
Symbol-Value and Init-Symbol-Ref add the symbol v to the local configuration and
map the variable to a newly allocated and initialized Box or Ref . The mapping from v to
Box/Ref is fixed and access to the actual value of a variable requires a heap lookup.

4.8.5 Field Initialization

Field initialization behaves similarly to parameter initialization. Instead of defining sym-
bols in the local configuration, the tuple construct in the heap has fields added to it
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Init-Symbols-Value
T(kind) = value

`′init1 = toTuple(H , `init1) H (`init1) 6= null
Fnext = init-symbol∆(v1,�)

◦ init-symbols∆(tail(〈v, 〈`init, Tinit〉〉)) T1 = ∆(v1) H
L ◦ L

init-symbols∆(〈v, 〈`init, Tinit〉〉)

 −→
 H

L[push Fnext] ◦ L]
copy-tuple∆(T1, 〈`′init1, Tinit1〉)


Init-Symbols-Ref

`′init1 = toTuple(H , `init1) T1 = ∆(v1)

Fnext = init-symbols∆(tail(〈v, 〈`init, Tinit〉〉)) T1(kind) = ref H
L ◦ L

init-symbols∆(〈v, 〈`init, Tinit〉〉)

 −→
 H

L[push Fnext] ◦ L
init-symbol∆(v1, 〈`′init1, Tinit1〉)


Init-Symbols-Complete H

L ◦ L
init-symbols∆(∅)

 −→
 H

L ◦ L
void


Init-Symbol-Value

T = ∆(v)
T(kind) = value

H ′ = H [`dst-box 7→ `init] `dst-box = uniqueID()
H

L ◦ L
init-symbol∆(v, 〈`init, Tinit〉)

Σ

 −→


H ′

L[decl v 7→ `dst-box] ◦ L
void

Σ[`dst-box 7→ ptype(Σ,H ′,L, T )]


Init-Symbol-Ref

T = ∆(v)
T(kind) = ref

H ′ = H [`dst-ref 7→ `init] `dst-ref = uniqueID()
H

L ◦ L
init-symbol∆(v, `init)

Σ

 −→


H ′

L[decl v 7→ `dst-ref] ◦ L
void

Σ[`dst-ref 7→ ptype(Σ,H ′,L, T )]


Figure 4.16: Transition Rules — Symbol Initialization
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incrementally. When all fields have been initialized, the tuple is removed from the set of
uninitialized tuples U. Rules for field initialization are defined in two figures: 4.17 and
4.18. Each of the five rules is similar to its counterpart for parameter initialization. Also
similar is the immutability of a tuple as each field name maps to a location in the heap for
that field.

Init-Fields-Value
Tfield = Γ(Ttuple)(f)
Tfield(kind) = value
`′init1 = toTuple(H , `init1)
Fnext = init-field∆(Rtuple, f1,�)

◦ init-fields∆(Rtuple, tail(〈f, 〈`init, Tinit〉)) H U ∪ Rtuple(loc)

L ◦ L
init-fields∆(Rtuple, 〈f, 〈`init, Tinit〉)

 −→
 H U ∪ Rtuple(loc)

L[push Fnext] ◦ L]
copy-tuple∆(Tfield, 〈`′init1, Tinit1〉)


Init-Fields-Ref

Tfield = Γ(Ttuple)(f)
Tfield(kind) = ref
`′init1 = toTuple(H , `initn)

Fnext = init-fields∆(Rtuple, tail(〈f, 〈`init, Tinit〉)) H U ∪ Rtuple(loc)

L ◦ L
init-fields∆(Rtuple, 〈f, 〈`init, Tinit〉)

 −→
 H U ∪ Rtuple(loc)

L[push Fnext] ◦ L
init-field∆(Rtuple, f1, 〈`′init1, Tinit1〉)


Init-Fields-Complete H U ∪ `tuple

L ◦ L
init-fields∆(〈`tuple, Ttuple〉,∅)

 −→
 H U

L
〈`tuple, exportType(L(lmap), Ttuple)〉


Figure 4.17: Transition Rules — Field Initialization (1)
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Init-Field-Value
Tfield = Γ(Ttuple)(f)

tuple = H (`tuple)[f 7→ `dst-box] T(kind) = value
H ′ = H [`dst-box 7→ `init, `tuple 7→ tuple] `dst-box = uniqueID()

H U ∪ `tuple
L ◦ L

init-field∆(〈`tuple, Ttuple〉, f, 〈`init, Tinit〉)
Σ

 −→


H ′ U ∪ `tuple
L ◦ L
void

Σ[`dst-box 7→ ptype(Σ,H ′,L, Tfield)]


Init-Field-Ref

Tfield = Γ(Ttuple)(f)

tuple = H (`tuple)[f 7→ `dst-ref] T(kind) = ref
H ′ = H [`dst-ref 7→ `init, `tuple 7→ tuple] `dst-ref = uniqueID()

H U ∪ `tuple
L ◦ L

init-field∆(〈`tuple, Ttuple〉, f, 〈`init, Tinit〉)
Σ

 −→


H ′ U ∪ `tuple
L ◦ L
void

Σ[`dst-ref 7→ ptype(Σ,H ′,L, Tfield)]


Figure 4.18: Transition Rules — Field Initialization (2)

4.8.6 Object Copy Rules

The rules to copy objects are a third instance of the initialization strategy we’ve discussed
with parameter and field initialization. We are initializing fields, so the greatest similarity
is to tuple initialization. However, there is also another layer of complexity with copying,
because we carry an accumulated record of all tuples that have been copied as we recursively
copy a self-contained object.

The copy-map A has tuple heap locations as its domain and range. The domain repre-
sents the source tuple being copied and the range are the new tuples. At the completion
of the copy process, the domain of A will contain the original tuple to copy plus all tuples
reachable from that tuple. The copy-map is used to make sure that source tuples are only
copied once. When a nested tuple is encountered a second time through a second alias,
the copy-map is used to determine the appropriate tuple location that should be used for
the respective alias in the copy. As an example, if a self-contained tuple contains a cycle
of references within it, the use of the map will prevent an infinite loop.
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Copy-Tuple
F
′
= copy-discard-env∆(�) ◦ L(fstack) H

L ◦ L
copy-tuple∆(Tdst, 〈`src, Tsrc〉)

 −→
 H

L[fstack 7→ F
′
] ◦ L

copy-tuple2∆(Tdst, 〈`src, Tsrc〉,∅)


Copy-Tuple-2

Σ′ = Σ[`new
cmap7−→ tupleMappings(Σ,H ,L, φ, `new)]

φ = {container-of-tuple 7→ T(cont)}
Tnew = 〈Tdst(kind), Tdst(class), θ, Tdst(mut), Tdst(mob)〉 〈f : T ,_〉 = Γ(Tsrc(class))

Lnew = tupleLocalConfig(φ, `new) f 7→ ` = H (`src)
A ′ = A[`src −→ `new] `new = uniqueID()
H ′ = H [`new 7→ ∅] θ = container-of-tuple

H U
L ◦ L

copy-tuple2∆(Tdst, 〈`src, Tsrc〉,A)

Σ

 −→


H ′ U ∪ `new
Lnew ◦ L ◦ L

copy-fields∆(〈`new, Tnew〉, 〈f, 〈`, T 〉〉,A ′)
Σ′[`new 7→ ptype(Σ,H ′,L, Tdst)]


Copy-Value

T1(kind) = value ∨ `′1 /∈ dom(A)
Tfield1 = Γ(Tdst(class))(f1)
`′1 = toTuple(H , `1)
Fnext = copy-init∆(Rtuple, f1,�)

◦ copy-fields∆(Rtuple, tail(〈f, 〈`, T 〉〉),�) H U ∪ Rtuple(loc)

L ◦ L
copy-fields∆(Rtuple, 〈f, 〈`, T 〉〉,A)

 −→
 H U ∪ Rtuple(loc)

L[push Fnext] ◦ L
copy-tuple2∆(Tfield1, 〈`′1, T1〉,A)


Copy-Ref

T1(kind) = ref ∧ (`′1 ∈ dom(A) ∨ `′1 = null-ref)
`′1 = if `1 = null-ref then null-ref else A(toTuple(H , `1))

Fnext = copy-fields∆(Rtuple, tail(〈f, 〈`, T 〉〉),�) H U ∪ Rtuple(loc)

L ◦ L
copy-fields∆(Rtuple, 〈f, 〈`, T 〉〉,A)

 −→
 H U ∪ Rtuple(loc)

L[push Fnext] ◦ L
copy-init∆(Rtuple, f1, 〈〈`′1, T1〉,A〉)


Figure 4.19: Transition Rules — Copy Tuple (1)
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Copy-Complete H U ∪ `tuple
L ◦ L

copy-fields∆(〈`tuple, Ttuple〉,∅,A)

 −→
 H U

L
〈〈`tuple, exportType(L(lmap), Ttuple)〉,A〉


Copy-Init-Value

Tfield = Γ(Ttuple)(f)

tuple = H (`tuple)[f 7→ `dst-box] T(kind) = value
H ′ = H [`dst-box 7→ `, `tuple 7→ tuple] `dst-box = uniqueID()

H U ∪ `tuple
L ◦ L

copy-init∆(〈`tuple, Ttuple〉, f, 〈〈`, T 〉,A〉)
Σ

 −→


H ′ U ∪ `tuple
L ◦ L

A
Σ[`dst-box 7→ ptype(Σ,H ′,L, Tfield)]


Copy-Init-Ref

Tfield = Γ(Ttuple)(f)

tuple = H (`tuple)[f 7→ `dst-ref] T(kind) = ref
H ′ = H [`dst-ref 7→ `, `tuple 7→ tuple] `dst-ref = uniqueID()

H U ∪ `tuple
L ◦ L

copy-init∆(〈`tuple, Ttuple〉, f, 〈〈`, T 〉,A〉)
Σ

 −→


H ′ U ∪ `tuple
L ◦ L

A
Σ[`dst-ref 7→ ptype(Σ,H ′,Lnew, Tfield)}


Copy-Discard-Env H

L ◦ L
copy-discard-env∆(R ,A〉)

 −→
 H

L ◦ L
R


Figure 4.20: Transition Rules — Copy Tuple (2)

4.8.7 Null De-Reference Guards

There are a number of places where the transition rules require access to a tuple. In these
cases, if a null-ref were used as the tuple, the machine would break. To prevent this,
there are a number of rules defined in figure 4.21 to trap null violations and safely halt the
machine. There is one rule for each frame that cannot tolerate a null-ref.
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Assign-Value-NPE
H (`rhs) = null-ref H
L ◦ L

assign-value∆(〈`lhs, Tlhs〉, 〈`rhs, Trhs〉)

 −→
 H

L ◦ L
NPE


Return-Value-NPE

H (`ret) = null-ref H
L ◦ L

return∆(T, 〈`ret, Tret〉)

 −→
 H

L ◦ L
NPE


Field-NPE

H (`tuple) = null-ref H
L ◦ L

field∆(〈`tuple, Ttuple〉, f)

 −→
 H

L ◦ L
NPE


Init-Symbols-NPE
T = ∆(v1) T(kind) = value H (`init1) = null-ref H

L ◦ L
init-symbols∆(〈v, 〈`init, Tinit〉〉)

 −→
 H

L ◦ L
NPE


Init-Fields-NPE
T = ∆(v1) T(kind) = value H (`init1) = null-ref H

L ◦ L
init-fields∆(〈`tuple, Ttuple〉, 〈f, 〈`init, Tinit〉)

 −→
 H

L ◦ L
NPE


Copy-Fields-NPE
T = ∆(v1) T(kind) = value H (`init1) = null-ref H

L ◦ L
copy-fields∆(〈`tuple, Ttuple〉, 〈f, 〈`, T 〉〉,A)

 −→
 H

L ◦ L
NPE


Figure 4.21: Transition Rules — Null Pointer Violations
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4.8.8 Decomposition Rules

Our final set of transition rules in figure 4.22 and 4.23 take care of decomposing complex
frames into discrete operations. Sub-expressions are removed from their parent frame,
leaving a hole (�) in place of the expression. The expression is placed on the frame-stack
and becomes a result after it is executed. Some frames contain a list of expressions (e.g.,
call()) and each one is extracted in turn until all sub-expressions have been replaced with
results. At this stage, the completed frame is ready to be applied to one of previous rules
we’ve discussed.

D-Let H
L ◦ L

let∆(T, l, e, s)

 −→
 H

L[fstack 7→ let(T, `,�, s) ◦ L(fstack)] ◦ L
e∆


D-Assign-Value-1 H

L ◦ L
assign-value∆(T, elhs, erhs)

 −→
 H

L[push assign-value(T,�, erhs)] ◦ L
e∆
lhs


D-Assign-Value-2 H

L ◦ L
assign-value∆(T, `lhs, erhs)

 −→
 H

L[push assign-value(T, `lhs,�)] ◦ L
e∆
rhs


D-Assign-Reference-1 H

L ◦ L
assign-ref∆(elhs, erhs)

 −→
 H

L[push assign-ref(�, erhs)] ◦ L
e∆
lhs


D-Assign-Reference-2 H

L ◦ L
assign-ref∆(`lhs, erhs)

 −→
 H

L[push assign-ref(`lhs,�)] ◦ L
e∆
rhs


Figure 4.22: Transition Rules — Decompositions (1)
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D-Return H
L ◦ L

return∆(e)

 −→
 H

L[push return(�)] ◦ L
e∆


D-field H

L ◦ L
field∆(e, f)

 −→
 H

L[push field(�, f)] ◦ L
e∆


D-Call-Function H

L ◦ L
call∆(F, φ, `1 . . . `i−1, ei . . . en)

 −→
 H

L[push call(F, φ, `1 . . . `i−1,�, ei+1 . . . en)] ◦ L
e∆
i


D-Initialize-Tuple H

L ◦ L
init∆(C, `1 . . . `i−1, ei . . . en)

 −→
 H

L[push init(C, `1 . . . `i−1,�, ei+1 . . . en)] ◦ L
e∆
i


Figure 4.23: Transition Rules — Decompositions (2)

4.9 Configuration Typing

With the transitions rules defined, we turn our attention back to typing. We typed our
frames in section 4.6 and now we address the remainder of the configuration. Figure 4.24
contains the config-ok judgment, which validates the entire configuration. This includes
fully typing the heap, all frame-stacks and all local variables. Establishing config-ok
relies on many other rules to type each of the various components. First, we’ll look at the
heap-ok judgment.

The heap is comprised of a set of abstract locations, and one of the conditions of
heap-ok is that every location have a corresponding typing in Σ. For each of these loca-
tions we apply the location-ok judgment to ensure that the heap and its typing are in
agreement.

There are four rules, also in figure 4.24, that establish location-ok. The rule Object-
OK handles all tuple locations that are fully initialized (not in U). It looks up the set of
fields from Γ and confirms that each field is present and the heap location associated with
the field has a compatible type using the f-match judgment which we’ll detail soon.
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Configuration-OK
Γ; Σ; U ` H heap-ok Γ; Σ; H ` L[push CF ∆] ◦ L : (Void −→ T ,U −→ ∅)

Γ; Σ; U `

 H
L ◦ L
CF ∆

 config-ok

Heap-OK
∀ `i ∈ H . Γ; Σ; H ` `i location-ok dom(H ) = dom(Σ)

Γ; Σ; U ` H heap-ok

Object-OK
` ∈ TupleLocation ` /∈ U Tobj = Σ(`)

∀fi ∈ Γ(Tobj(class)). Σ; H ; ` ` Γ(Tobj(class))(fi) f-match Σ(H (`)(fi))

Γ; Σ; U; H ` ` location-ok

Object-OK-Uninit
` ∈ TupleLocation ` ∈ U

Tobj = Σ(`) ∀fi ∈ H (`). Σ; H ; ` ` Γ(Tobj(class))(fi) f-match Σ(H (`)(fi))

Γ; Σ; U; H ` ` location-ok

Null-Ref-OK
` ∈ RefLocation H (`) = null-ref

Γ; Σ; U; H ` ` location-ok

Ref/Box-OK
` ∈ SymbolLocation

H (`) 6= null-ref Tref = Σ(`) Ttuple = Σ(H (`)) Tref p-match Ttuple

Γ; Σ; U; H ` ` location-ok

Figure 4.24: Configuration Typing Rules (1)
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For uninitialized objects, the rule Object-OK-Uninit is used and the validation is
similar, but the set of fields that are type checked are only the fields that are currently
present in the heap. Next we have a special rule, for reference heap locations that are set
to null-ref. This case requires no further validation, as all reference types are permitted
to be null-ref.

For the normal reference case as well as boxes, rule Ref/Box-OK is used. This validates
that the physical type of the box or reference matches the physical type of the tuple that
is referenced by the box or reference.

In figure 4.25, we have the next set of rules. The f-match judgment is defined in the rule
Field-Match, and contains the condition within, which is perhaps the most important
condition for establishing proper containment properties. The within judgment is defined
in rule Containment and requires that for a container Θ1 to be considered within another
container Θ2, it either must be the same container (Θ1 = Θ2) or the container of Θ1

must be within Θ2. Nested containers unwrap as many layers of containers as needed to
find the container of interest. Note that we are considering physical containers, which are
identified by a heap location scope identifier within the configuration. Establishing this
properly means that containers behave the way our common sense dictates they should.
This means that no reference that is inside the container may refer to an object that is
outside container.

Returning to the judgment f-match, it relies on three additional judgments: t-match,
to compare logical to physical types, p-match, which checks that two physical types match,
and finally c-match, which checks that containers match. We’ll now look at this sequence
of judgments in more detail.

The second condition of f-match is t-match which verifies that the logical type T is
compatible with its physical type T . The t-match judgment uses the ptype() function to
convert it into a physical type. Now, with two physical types, we validate them using the
p-match judgment.

p-match validates the sub-components of the physical type. For a class there must
be an exact match. For mutability, there must either be a match or the left-hand side
container must be read-only. This mutability logic mirrors the type rules of the language.
The third condition validates the containers and delegates this to our last matching rule
c-match.

The rule Container-Match takes two physical containers Θref and Θvalue, and deter-
mines if they are compatible. Either Θref = Θvalue or Θref must be set to unknown-cont,
which indicates that it is compatible with any container.
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Field-Match
L = tupleLocalConfig(∅, `)

Σ ` T(cont) within Σ(`tuple)(cont) Σ; H ; L ` T t-match T
Σ; H ; `tuple ` T f-match T

Type-Match
ptype(Σ,H ,L, T ) p-match T

Σ; H ; L ` T t-match T

Physical-Match
Tref(cont) c-match Ttuple(cont)

Tref(class) = Ttuple(class) Tref(mut) = Ttuple(mut) ∨ Tref(mut) = read-only

Tref p-match Ttuple

Container-Match
Θref = Θvalue ∨Θref = unknown-cont

Θref c-match Θvalue

Vars-OK
∀vi ∈ dom(V ). Γ; ∆ ` var(vi) : Ti Σ; H ; L ` Ti t-match Σ(V (vi))

Γ; ∆; Σ; L ` V vars-ok

Containment
Θ1 = Θ2 ∨Θ2 = null-cont ∨ Σ(Θ1)(cont) within Θ2

Σ ` Θ1 within Θ2

Copy-Map-OK
∀`i ∈ dom(A). `i ∈ Σ ∧ `i /∈ range(A) ∀`j ∈ range(A). `j ∈ Σ

Σ ` A copy-map-ok

CMap-OK
F ∆caller = head(Lcaller(fstack)) Γ; ∆caller ` L(ctx,lmap) lmap-ok

φ = L(lmap) M = Σ(cmap)(L(id)) dom(φ) = dom(M )
∀θi ∈ dom(M ). M (θi) = labelToCont(Σ,H ,L, θi) = labelToCont(Σ,H ,Lcaller, mapLabel(φ, θi))

Σ; H ` Lcaller cmap-ok L

Figure 4.25: Configuration Typing Rules (2)
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We’ve completed the fields discussion, and move on to the vars-ok judgment in the
rule Vars-OK. Like fields, each variable must satisfy the t-match judgments. Unlike fields,
there is no check needed for within, because local symbols aren’t fields of contained objects.

The copy-map-ok is a simple rule that ensures that when copying an object, none of
the tuples reachable from the source tuple appear in the range of A. The converse case
must be true as well; none of the new tuples in the range of A can appear in the domain.

The last rule of figure 4.25 is CMap-OK. Recall that a container map M converts
container labels in a scope L to physical containers. Also, container maps are built using
information from mapping φ as well as physical container labels from the parent scope
Lcaller. The judgment, written Σ; H ` Lcaller cmap-ok L, is judging M relative to a caller
and callee. All labels in M must be mapped to physical containers which are in agreement
with the physical containers of the corresponding container labels in the caller’s scope.

This completes all the judgments needed to validate the heap in our configuration.
What remains is the stack of local configurations and the frame-stacks within them.

Local Configuration Typing

The second component of our master config-ok judgment is the typing of the local config-
uration stack, which is typed by the rules in figure 4.26. This judgment works by induction,
but first we’ll look at how it validates the current local configuration L. The local variables
in L are checked using vars-ok. Scope L is created by scope head(L) and these two scopes
are used to validate L’s container map M using cmap-ok. The frame-stack of L is validated
using the frame-stack typing rules in the next section.

The last condition of the local configuration typing is the inductive step to verify
the tail of the local configuration stack. The final typing of the stack is of the form
(T −→ T ′′,U −→ ∅). The first relation T −→ T ′′ means that this local configuration stack

T-Local-Config-Stack
Γ; ∆; Σ ` L vars-ok Σ; H ` head(L) cmap-ok L

Γ; Σ; H ; L ` L(fstack) : (T −→ T ′,U −→ U′) Γ; Σ; H ` L : (T ′ −→ T ′′,U′ −→ ∅)

Γ; Σ; H ` L ◦ L : (T −→ T ′′,U −→ ∅)

T-Local-Config-Stack-Empty

Γ; Σ; H ` ∅ : (T −→ T ,U −→ U)

Figure 4.26: Local Configuration Typing
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is a computation taking T as input and producing T ′′ as output. The first T matches the
input type of L(fstack) and the T ′′ matches with the inductive typing of the stack tail.

The second component of the typing is U −→ ∅, which indicates that this stack begins
with a configuration where the heap locations in U are uninitialized and the computation
ends with no uninitialized objects.

Returning to the definition of config-ok, notice how it melds the current frame into
the current local configuration’s frame-stack before typing it. By placing the current frame
CF into L(fstack) before typing the local configuration stack, we don’t need to special case
the typing of CF as it happens automatically as part of the local configuration typing.

Frame-Stack Typing

To type the frame-stacks, we first separate the frames into groups. Open frames are typed
differently than closed frames, and frames that work with uninitialized tuples need special
treatment. Except for stacks with the frame return on the top, all frame-stacks can be
typed generically without specific rules for each frame. Return statements have special
treatment to support the case of returning early from a function, and as mentioned earlier,
this capability is not taken advantage of in the current system.

UFsame = {R ∗, void, copy-tuple-2, init-field, copy-init}
UFdone = {init-fields, copy-fields, copy-complete}
UF = UFdone ∪ UFsame

We define sets of frames to split them according to their usage of uninitialized tuples.
Frames that type with U −→ U are in UF same and frames that type as U ∪ ` −→ U are
in UF done. No frame-stack type ever needs to add elements to U, because frames that do
expand U always push an additional frame to the stack to remove the new uninitialized
tuple. This preserves the U −→ U typing.

The frame-stack typing rules appear in figure 4.27. Similar to local configuration typing,
frame-stacks are typed as (T −→ T ′,U −→ U′). The different rules vary based on which frame
is on the top of the stack. In general, the top frame is typed directly and the remainder
of the stack is typed inductively, with the rule T-Empty-Stack terminating the induction.
The output of the top frame must be consistent with the input of the inductively typed
frames. Frames are logically typed as T , and the frame-stack uses physical types T . The
function ptype() is found in each rule to do the conversion.

Stacks with an open frame OF on top only differ from stacks with closed frames CF in
that the input type is always void in the rule T-Closed-Stack, and it’s the type of the
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T-Empty-Stack

Γ; Σ; H ; L ` [] : (T −→ T ,U −→ U)

T-Open-Stack
OF /∈ UF

CF 6= return(_) Γ; ∆ ∪ {� : T}; Σ ` OF : T ′ Γ; Σ; H ; L ` F : (T ′ −→ T ′′,∅ −→ ∅)
T = ptype(Σ,H ,L, T ) T ′ = ptype(Σ,H ,L, T ′)

Γ; Σ; H ; L ` OF ∆ ◦ F : (T −→ T ′′,∅ −→ ∅)

T-Closed-Stack
CF /∈ UF CF 6= return(_) Γ; ∆; Σ; H ; L ` CF : T

T = ptype(Σ,H ,L, T ) Γ; Σ; H ; L ` F : (T −→ T ′,∅ −→ ∅)

Γ; Σ; H ; L ` CF ∆ ◦ F : (Void −→ T ′,∅ −→ ∅)

T-Immediate-Return
Γ; ∆; Σ; H ; L ` return(CF ) : Tcallee

T = exportType(L(lmap), Tcallee) T = ptype(Σ,H ,L, T )

Γ; Σ; H ; L ` return∆(CF ) ◦_ : (Void −→ T ,∅ −→ ∅)

T-Uninit-Closed-Stack
CF ∈ UFsame Γ; ∆; Σ; H ; L ` CF : T

T = ptype(Σ,H ,L, T ) Γ; Σ; H ; L ` F : (T −→ T ′,U −→ U′)

Γ; Σ; H ; L ` CF ∆ ◦ F : (Void −→ T ′,U −→ U′)

T-Uninit-Open-Stack
OF ∈ UFsame Γ; ∆ ∪ {� : T}; Σ ` OF : T ′ Γ; Σ; H ; L ` F : (T ′ −→ T ′′,U −→ U′)

T = ptype(Σ,H ,L, T ) T ′ = ptype(Σ,H ,L, T ′)

Γ; Σ; H ; L ` OF ∆ ◦ F : (T −→ T ′′,U −→ U′)

T-Uninit-Closed-Stack-Done
CF ∈ UFdone Γ; ∆; Σ; H ; L ` CF : T Γ; Σ; H ; L ` F : (T −→ T ′,U −→ U′)

T = ptype(Σ,H ,L, T ) T ′ = ptype(Σ,H ,L, T ′)

Γ; Σ; H ; L ` CF ∆ ◦ F : (Void −→ T ′,U ∪ {`} −→ U′)

T-Uninit-Open-Stack-Done
OF ∈ UFdone

Γ; ∆ ∪ {� : T}; Σ; H ; L ` CF : T ′ Γ; Σ; H ; L ` F : (T ′ −→ T ′′,U −→ U′)
T = ptype(Σ,H ,L, T ) T ′ = ptype(Σ,H ,L, T ′)

Γ; Σ; H ; L ` OF ∆ ◦ F : (T −→ T ′′,U ∪ {`} −→ U′)

Figure 4.27: Frame-Stack Typing
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open frame in the rule T-Open-Stack.

The rules T-Uninit-Closed-Stack and T-Uninit-Open-Stack mirror the rules for
working with frames that always run with U = ∅. The only difference is that they type
with a free variable U rather than explictly specifying ∅.

The last two rules handle frames that remove an element from U. These are rules
that complete an initialization operation. Here, there is an extra free variable ` which is
removed from U. Otherwise, these rules operate like the others.

This completes the frame-stack typing, which is also the final set of rules needed to
establish config-ok. With our configuration fully typed, the next chapter will prove the
soundness of the operational semantics.
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Chapter 5

Type Safety

Here, we establish type safety for our container operational semantics and show that con-
tainer restrictions expressed by the type rules are indeed obeyed during execution. Given
a properly typed program and a configuration initialized to Initial-Config as defined in
section 4.8.1, the machine will either reach a terminal state or run forever.

Recall that the specification of the operational semantics in chapter 4 simultaneously
defined the semantics as well as configuration typing rules which were segregated into boxed
regions. We will write 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉 to refer to the combined relation defined
by the rules of chapter 4. In general, arguments will begin with a valid configuration, a
configuration typing, as well as the set of uninitialized heap locations, and will show that
the subsequent state is also valid. This relation is also a function, however, we do not
require determinism for this proof and we will ignore this fact.

Following the approach developed by Wright and Felleisen [20], progress and preser-
vation theorems are presented. Note that the key novel property of this system that we
are proving is the enforcement of container restrictions. This property is encoded into
the configuration typing; the within judgment defined in the rule Containment gives us
the result we want. Showing that the config-ok property holds establishes the contain-
ment result as well. In other words, any program that satisfies the container type rules is
guaranteed to execute with correct containment.

5.1 Progress and Preservation

Theorem 5.1.1 Progress
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If Γ; Σ; U ` C config-ok then the current frame of C will either be in a terminal state or
there exists a rule to advance the configuration such that 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉.

Proof: First we make the observation that for each frame defined in figure 4.3 there is
at least one rule defined in section 4.8. However, many of the rules have conditions that
must be satisfied, and it must be shown that for each frame, the conditions will indeed be
satisfied.

First we’ll address sub-expressions. For every frame that contains sub-expressions there
exists a decomposition rule in section 4.8.8. Further, none of these rules impose any
conditions. For the remainder of the frames we will discuss, it is assumed that all sub-
expressions have been evaluated and will appear as results in their respective frames.

There are 6 frames that are handled by rules with no conditions: void, null, result,
statement-seq, copy-tuple and copy-discard-environment. The remainder of the
frames will be addressed individually.

pop-local: By rule T-Pop-Local variable v ∈ ∆ and by Vars-OK v is present in the
local configuration.

assign-value: The rule Assign-Value-NPE catches any null de-reference attempt. The
type rule T-Assign-Value asserts that the left-hand-side is a movable and a value which
ensures that `lhs is a BoxLocation. T-Location ensures `lhs and `rhs are valid heap ad-
dresses.

assign-ref: The type rule T-Assign-Ref asserts that the left-hand-side is a movable and
a ref which ensures that `lhs is a RefLocation. T-Location ensures `lhs and `rhs are valid
heap addresses.

return: Either the rule Return-Value or Return-Ref is used depending on the kind of
return value and Return-Value-NPE will protect against null de-reference. The type rule
T-Location ensures `ret is a valid heap address.

field: The rule Field-NPE catches any null de-reference attempt. The rule T-Field
requires that the field f exists in the class of `tuple. The rules T-Location and heap-ok
ensure that `tuple is a valid heap address referring to an object with a field f .

variable: The rule T-Variable requires that the variable v exists in ∆ and Vars-OK
assures that it is also present in the local configuration.

call-function: The rule T-Function requires that the function f exists in Γ.

init: The rule T-Init requires that the class C exists in Γ.
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init-symbols: When T(kind) = value, Init-Symbols-NPE will protect against null de-
reference. Heap locations `init are valid by T-Location.

init-symbol: The rule T-Init-Symbol ensures v ∈ ∆ and that there is no null de-
reference.

init-fields: When T(kind) = value, Init-Fields-NPE will protect against null de-
reference. Heap locations in `init are valid by T-Location.

init-field: The rule T-Init-Field ensures that f is a field of `tuple and that there is no
null de-reference.

copy-tuple2: The rule T-Copy-Tuple-2 ensures that Tdst is a valid type and T-Locations
ensures that `src is valid.

copy-fields: When T(kind) = value, Copy-Fields-NPE will protect against null de-
reference. Heap locations in `init are valid by T-Location.

copy-init: The rule T-copy-init ensures that f is a field of `tuple and that there is no
null de-reference.

Therefore, all well typed frames have corresponding rules to process them and progress
is assured.

Theorem 5.1.2 Preservation
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉
then Γ; Σ′; U′ ` C ′(heap) config-ok

Proof: By lemma 5.2.1, the heap-ok condition is satisfied in C ′, and the local configuration
stack is satisfied by lemma 5.3.1. Therefore, config-ok is preserved in C ′.

5.2 Heap Validation Lemmas

Lemma 5.2.1 Heap OK
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉
then Γ; Σ′; U′ ` C ′ heap-ok

Proof: By lemma 5.2.3, we know that all non-modified heap locations are properly typed.
Lemma 5.2.4 establishes the typing for newly allocated heap locations. And finally, lemma
5.2.6 shows that modified heap locations preserve their typing. Therefore, we know all heap
locations in C ′ are location-ok.
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To establish that dom(H ) = dom(Σ), we observe that for the eight rules that expand the
heap ( Init-Symbol-Value, Init-Symbol-Ref, Init-Field-Value, Init-Field-Ref, Copy-
Tuple-2, copy-init-Value, copy-init-Refand Initialize), each makes equivalent addi-
tions to both H and Σ. No operation removes elements from either set.

Lemma 5.2.2 Immutable Heap Locations
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉
then ∀ ` ∈ H where ` /∈ U and Σ(`)(mobility) = fixed. H ′(`) = H (`)

Proof: We consider the two rules in the operational semantics that modify existing heap
locations: Assign-Copied and Assign-Ref. Both of these rules are typed with lhs :
T(mobility) = movable, which implies that the physical type T = Σ(`) will match with
T(mobility) = movable since the ptype() function preserves the mobility property. Therefore,
these assignment rules cannot change the values stored in fixed locations.

Lemma 5.2.3 Non-Interference
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap)
then ∀ ` ∈ H where H ′(`) = H (`). Γ; Σ; U; H ′ ` ` location-ok

Proof: config-ok implies that ` is location-ok in C . Of all the conditions in location-ok
across its four rules, the only one that depends on heap contents at locations other than `
is f-match. For initialized tuples, the f-match judgment was satisfied in C and continues
to hold in C ′ by lemma 5.5.3 for all fields of `.

Otherwise, if ` ∈ U, we know we are currently initializing the fields of tuple ` in an
order that respects their dependencies. This means any previous field cannot depend on the
contents of subsequent fields and no other heap locations are modified during initialization of
a tuple. Thus, f-match must continue to hold for the initialized fields by lemma f-match.

Therefore, for all unmodified heap locations, if the location-ok judgment held in C , it
will continue to hold in C ′.

Lemma 5.2.4 New Locations OK
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap), ` ∈ H ′ and
` /∈ H
then Γ; Σ; U; H ′ ` ` location-ok

Proof: There are eight rules in the operational semantics that introduce new heap locations.
For each, we show that location-ok holds.
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Case Init-Symbol-Value
This rule allocates a new box `dst-box : T and initializes it. By the frame typing, we know
that 〈`init, Tinit〉 satisfies T-Location and Tdst-box = Tinit. Therefore, Tinit = Σ(`init) =
ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tdst-box) in Σ. After updating
the heap with `dst-box 7→ `init, we have satisfied the p-match condition of Ref/Box-OK,
because the Tdst-box = Tinit equality makes the two invocations of ptype() identical.

Case Init-Symbol-Ref
This rule allocates a new reference `dst-box : T and initializes it. By the frame typing, we
know that 〈`init, Tinit〉 satisfies T-Location and Tinit�̃Tinit. Therefore, Tinit = Σ(`init) =
ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tdst-box) in Σ. After updating
the heap with `dst-box 7→ `init, we satisfy the p-match condition of Ref/Box-OK by lemma
5.2.5.

Case Init-Field-Value
This rule allocates a new box `dst-box : Tfield and initializes it. By the frame typing, we
know that 〈`init, Tinit〉 satisfies T-Location and Tfield = Tinit. Therefore, Tinit = Σ(`init) =
ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tfield) in Σ. After updating
the heap with `dst-box 7→ `init, we have satisfied the p-match condition of Ref/Box-OK
because Tfield = Tinit makes the two invocations of ptype() identical.

Case Init-Field-Ref
This rule allocates a new reference `dst-ref and initializes it. By the frame typing, we
know that 〈`init, Tinit〉 satisfies T-Location and Tfield�̃Tinit. Therefore, Tinit = Σ(`init) =
ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tfield) in Σ. After updating
the heap with `dst-box 7→ `init, we satisfy the p-match condition of Ref/Box-OK by lemma
5.2.5.

Case Copy-Tuple-2
The Copy-Tuple-2 rule creates a new uninitialized tuple at location `new, which trivially
satisfies Object-OK-Uninit because currently no fields of this tuple have been initialized
yet.

Case Copy-Init-Value
This rule allocates a new box `dst-box : Tfield and initializes it. By the frame typing, we
know that 〈`init, Tinit〉 satisfies T-Location and Tfield = Tinit. Therefore T = Σ(`init) =
ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tfield) in Σ. After updating
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the heap with `dst-box 7→ ` we have satisfied the p-match condition of Ref/Box-OK because
Tfield = Tinit makes the 2 invocations of ptype() identical.

Case Copy-Init-Ref
This rule allocates a new reference field `dst-ref : Tfield and initializes it. By the frame
typing, we know that 〈`init, Tinit〉 satisfies T-Location and that Tfield�̃Tinit. Therefore,
T = Σ(`) = ptype(Σ,H ,L, Tinit) and we define `dst-box 7→ ptype(Σ,H ,L, Tfield) in Σ. After
updating the heap with `dst-ref 7→ `, we have satisfied the p-match condition of Ref/Box-
OK by lemma 5.2.5.

Case Initialize
This rule adds a new uninitialized tuple to the heap. Because the tuple has all fields unini-
tialized, the Object-OK-Uninit rule will be trivially satisfied.

Lemma 5.2.5 Ref-Initializable Implies p-match
If Γ; Σ; U ` C config-ok and two types: Tsrc and Tdst, defined within scope L ∈ C
such that Tdst�̃Tsrc and Tdst(kind) = ref then the associated physical types will match;
Tdst p-match Tsrc.

Proof: With Tdst = ptype(Σ,H ,L, Tdst) and Tsrc = ptype(Σ,H ,L, Tsrc), we know that the
ptype() function preserves the class and mutability sub-components which have the same re-
quirements in Ref-Initializable and Physical-Match. Finally, the container-labels must
either match resulting in matching ptype() output or Tdst(label) = unknown which maps to
unknown-cont and satisfies p-match. Therefore, Tdst�̃Tsrc implies Tdst p-match Tsrc.

Lemma 5.2.6 Modified Locations OK
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap), ` ∈ H ,
H ′(`) 6= H (`)
then Γ; Σ′; U′; H ′ ` ` location-ok

Proof: By cases across the eight rules that make heap modifications; for each case, we show
that location-ok holds for `.

Cases Init-Field-Value, Init-Field-Ref, copy-init-Value and copy-init-Ref
These four cases are all proved by the same argument; the proof for Init-Field-Value is
presented.

This rule updates the uninitialized heap location `tuple to add a new field f located
at `dst-box, which we know is location-ok by lemma 5.2.4. We have T = Σ(`dst-box) =
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ptype(Σ,H ′,L, Tfield) as the right-hand side of the f-match condition in rule Object-
OK-Uninit for this new field f . Now, the sub-condition t-match requires that
ptype(Σ,H ′,L, Tfield) p-match T , which is satisfied because the LHS is identical to the
RHS.

All other fields in `tuple are unchanged, satisfied f-match in H and will continue to
satisfy f-match in H ′ by lemma 5.5.3. Therefore, all conditions of Object-OK-Uninit
are satisfied and location-ok holds.

Case Assign-Ref
For Assign-Ref, we know that if the RHS is null then location-ok is trivially satisfied
by rule Null-Ref-OK. If non-null then Ref/Box-OK is the relevant rule to establish
location-ok for our modified heap location `lhs. We must show Tlhs p-match Trhs. From
the type rule T-Assign-Ref, we know that Tlhs�̂Trhs. Further, from the typing of the
Assign-Ref frame, we know that 〈`lhs, Tlhs〉 and 〈`rhs, Trhs〉 satisfy the T-Location rule.
Therefore, Tlhs = Σ(`lhs) = ptype(Σ,H ,L, Tlhs) and Trhs = Σ(`rhs) = ptype(Σ,H ,L, Trhs).
After updating the heap with `lhs 7→ `rhs, we can apply lemma 5.4.1, and we have satisfied
the p-match condition of Ref/Box-OK.

Case Assign-Copied
In this case, we must satisfy Ref/Box-OK. From the type rule T-Assign-Copied, we
know that Tlhs = Trhs and 〈`lhs, Tlhs〉 and 〈`rhs, Trhs〉 satisfy the T-Location rule. There-
fore, Tlhs = Σ(`lhs) = ptype(Σ,H ,L, Tlhs), and for the left-hand side Trhs = Σ(`rhs) =
ptype(Σ,H ,L, Trhs). After updating the heap with `lhs 7→ `rhs, we have satisfied the
p-match condition of Ref/Box-OK, because the Tlhs = Trhs equality makes the two invo-
cations of ptype() identical.

Cases Init-Fields-Complete and Copy-Complete
These two cases simply remove `tuple from U. With all fields populated, the check for
Object-OK-Uninit covers every field and is identical to Object-OK.

5.3 Frame-Stack Lemmas

Lemma 5.3.1 Local Configuration Stack OK

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ′

CF ′


then Γ; Σ; H ` L ′[fstack 7→ CF ′ ◦ L(fstack)] ◦ L ′ : (T −→ T ′′,U −→ ∅)
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Proof: The conditions of T-Local-Config-Stack are established in two lemmas. The
cmap-ok condition is satisfied by lemma 5.3.2. For the frame-stack typing and vars-ok,
the combined consideration of the frame-stack typing of L ′ as well as the tail of the local
configuration stack are satisfied by lemma 5.3.3.

Lemma 5.3.2 Container Map OK

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ′

CF ′


then Σ; H ′ ` head(L ′) cmap-ok L ′

Proof: By lemma 5.5.5, the cmap-ok condition will continue to be satisfied for existing
pairs of local configurations in the stack. To cover the remaining cases, we now consider
the three operations that add new scopes to the stack.

Call-Function
With Lcallee = funcLocalConfig(), we have L ′ ◦ L ′ = Lcallee ◦ L ◦ L

We can see that Σ; H ` L cmap-ok Lcallee by first observing that lmap-ok is satisfied
by the typing of call() and that dom(φ) = dom(M ) by construction.

To establish the container equality condition, we can see that the mapping
M = Σ(cmap)(Lfn(id)) is explicitly set by the labelMappings() function to satsify this condi-
tion of cmap-ok. By definition, ∀θ ∈ dom(M ). M (θ) = labelToCont(Σ,H ,L, mapLabel(φ, θ))
which is the right-hand side of the container equality condition in rule CMap-OK. On the
left-hand side, we have labelToCont(Σ,H ,Lcallee, θ). Examining the implementation of
labelToCont(), we can see that it returns M (θ) for mapped labels, which as we’ve seen
was defined as labelToCont(Σ,H ,L, mapLabel(φ, θ)), thus showing that the two sides of
the container equality condition are equivalent. Therefore, Call-Function satisfies all of
the conditions of cmap-ok.

Initialize and Copy-Tuple-2
The reasoning for these two cases is identical; Initialize is presented.
With Ltuple = tupleLocalConfig(), we have L ′ ◦ L ′ = Ltuple ◦ L ◦ L

We can see that Σ; H ` L cmap-ok Lcallee by observing that lmap-ok is satisfied by the
typing of init() and that dom(φ) = dom(M ) by construction.

The logic for satisfying the container equality condition is the same as it was for the
Call-Function case. Briefly, the mapping M = Σ(cmap)(Ltuple(id)) is explicitly set by
the tupleMappings() function such that label-matching condition of cmap-ok is satisfied.
Therefore, rules Initialize and Copy-Tuple-2 satisfy all the conditions of cmap-ok.
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Lemma 5.3.3 Local Configuration Frame-Stack OK

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ′

CF ′


then Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,U −→ U′) and
Γ; Σ′; H ′ ` L ′ : (T −→ T ′,U′ −→ ∅)

Proof: We prove this lemma by parts and we’ll group rules of the operational semantics by
how they modify the frame-stack.

First, lemma 5.3.4 proves our claim for operations that add a new local configuration
to the stack. This includes function calls, which is the most complex case and directly
demonstrates the management of container labels and containers across scopes.

Similarly, lemma 5.3.5 proves our claim for operations that remove local configurations
from the stack. It shows that containers are managed properly for returned values.

We address a simpler group of rules in lemma 5.3.6, where operations make changes to
to the current frame-stack, but do not create or remove scopes from the local configuration
stack.

Finally, the simplest cases are proven by lemma 5.3.7. Here, no changes are made to
the local configuration stack.

The combination of the four lemmas above proves the entire claim.

Lemma 5.3.4 Local Configuration Frame-Stack OK (open scope)

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ◦ L
CF ′

,

Γ; Σ; H ` L ◦ L : (T −→ T ′,U′ −→ ∅)

then Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,U −→ U′) and
Γ; Σ′; H ′ ` L ◦ L : (T −→ T ′,U′ −→ ∅)

Proof: The type of L ◦ L is preserved in C ′ by lemma 5.5.7.

To pass values across scopes, our reasoning must also take into account that the de-
termination of physical types from logical types depends on scope. Each local configuration
has a mapping φ to map container labels to equivalent labels in a parent scope as well as
an associated mapping M which is used by ptype() to determine the physical type. When
passing a parameter of type T1 in Lcaller to a child scope as type T2 in Lcallee, we must show
that ptype(Σ,H ,Lcaller, T1) = ptype(Σ,H ,Lcallee, T2).
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New scopes do not contain any variables, so they trivially satisfy vars-ok.

We prove the type of L ′[fstack 7→ CF ′ ◦ L ′(fstack)] by cases.

Call-Function
We must determine the type of L ′[fstack 7→ CF ′ ◦ L ′(fstack)] where
CF ′ ◦ L ′(fstack) = {init-symbols(), s}

For the new scope, we require L cmap-ok L ′, and lemma 5.3.2 establishes this judg-
ment. By the typing of T-Call-Function and V-Function, we know that frame init-symbols()
types as Void, since the input parameters will match by lemma 5.4.4. Further, from the
call typing, we know the function body frame s in Lcallee will evaluate to Tret. We have

Γ; ∆; Σ; H ; L ` call-function(. . . ) : exportType(φ, Tret)
φ = L ′(lmap)
T = ptype(Σ,H ,L, exportType(φ, Tret))
L ′ = funcLocalConfig(...)
Tret = ptype(Σ,H ,L ′, Tret)

To establish T = Tret, we apply lemma 5.4.2. Therefore, the new frame-stack has the
required type of Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,∅ −→ ∅) with U and
U′ empty.

Initialize and Copy-Tuple-2
The proofs of these two cases follow the same reasoning; Initialize is presented.

We must determine the type of L ′[fstack 7→ CF ′ ◦ L ′(fstack)] where
CF ′ ◦ L ′(fstack) = {init-symbols()}

For the new scope, we require L cmap-ok L ′, and lemma 5.3.2 establishes this judg-
ment. By the typing of T-init, we know that frame init-fields() types as Void, since
the input parameters will match by lemma 5.4.4. We have

Γ; ∆; Σ; H ; L ` init(. . . ) :
Tnew = 〈ref, container-of-tuple, θ, mutable, movable〉
φ = L ′(lmap)
T = ptype(Σ,H ,L, exportType(φ, Tnew))
L ′ = tupleLocalConfig(...)
Tret = ptype(Σ,H ,L ′, Tnew)

To establish T = Tnew, we apply lemma 5.4.2. Therefore, the new frame-stack has the
required type of Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,U −→ U ∪ {`new}).
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Lemma 5.3.5 Local Configuration Frame-Stack OK (close scope)

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
Lpop ◦ L ◦ L

CF

, C ′ =

 H ′

L ◦ L
CF ′


then Γ; Σ′; H ′ ` L[fstack 7→ CF ′ ◦ L(fstack)] : (Void −→ T ,U −→ U′) and
Γ; Σ′; H ′ ` L : (T −→ T ′,U′ −→ ∅)

Proof: The type of L is preserved in C ′ by lemma 5.5.7.

To return a value to the calling scope our reasoning must also take into account that the
determination of physical types from logical types depends on scope. Each local configuration
has a mapping φ from container labels to equivalent labels in a parent scope as well as an
associated mapping M which is used by ptype() to determine the physical type. When
returning a construct of type T1 in Lcallee to the parent scope as type T2 in Lcaller, we must
show that ptype(Σ,H ,Lcallee, T1) = ptype(Σ,H ,Lcaller, T2).

Return-Value and Return-Reference
We must determine the type of L[fstack 7→ CF ′ ◦ L(fstack)] where
CF ′ ◦ L(fstack) = 〈`ret, exportType(φ, Tret))〉 ◦ L and φ = Lpop(lmap).

From T-Local-Config-Stack we know that Lpop cmap-ok L and the returned value
will match the expected input to L, preserving the type of the new frame-stack. We have

Γ; ∆; Σ; H ; Lpop ` return(. . . ) : Tret
Tret = ptype(Σ,H ,Lpop, Tret)
T = ptype(Σ,H ,L, exportType(φ, Tret))

To establish T = Tret, we apply lemma 5.4.2. Therefore, the new frame-stack has the
required type of Γ; Σ′; H ′ ` L[fstack 7→ CF ′ ◦ L(fstack)] : (Void −→ T ,∅ −→ ∅).

Copy-Complete and Init-Fields-Complete
We must determine the type of L[fstack 7→ CF ′ ◦ L(fstack)] where
CF ′ ◦ L(fstack) = 〈`tuple, exportType(φ, Ttuple))〉 ◦ L and φ = Lpop(lmap).

From T-Local-Config-Stack, we know that Lpop cmap-ok L and the returned value
will match the expected input to L, preserving the type of the new frame-stack. We have

Γ; ∆; Σ; H ; Lpop ` copy-fields(. . . ) : Ttuple
Ttuple = ptype(Σ,H ,Lpop, Ttuple)
T = ptype(Σ,H ,L, exportType(φ, Ttuple))

To establish T = Ttuple, we apply lemma 5.4.2. Therefore, the new frame-stack has the
required type of Γ; Σ′; H ′ ` L[fstack 7→ CF ′ ◦ L(fstack)] : (Void −→ T ,U ∪ Ttuple −→ U).
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Lemma 5.3.6 Local Configuration Frame-Stack OK (same scope)

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L
CF ′

,
L(id) = L ′(id)
then Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,U −→ U′) and
Γ; Σ′; H ′ ` L : (T −→ T ′,U′ −→ ∅)

Proof: The set of rules we are considering here modify the current local frame-stack, but
do not create new scopes or modify parent scopes. By lemma 5.5.7, we know that the type
of L is preserved, as well as the type of each individual unmodified frame by lemma 5.5.9.
We must show the type of CF ◦ L(fstack) is the same as the type of CF ′ ◦ L ′(fstack) so that
T-Local-Config-Stack retains the same typing.

When reasoning about the type of the frame-stack, we break the stack into a modified
portion and a stable tail portion as follows; CF ◦L = Fold ◦Ftail and CF ′ ◦L ′ = Fnew ◦Ftail.
The argument in each of the cases below is that the type of Fold is the same as Fnew. Then,
by lemma 5.5.8, Ftail preserves its type. With these two results combined, we have completed
the typing of CF ′ ◦ L ′(fstack) in C ′ and show it to be the same as in C .

Where the typing of the new frames is non-obvious, there will be further justification
based on the conditions of the relevant type rule.

Next-Frame
Fold = {void} : (Void −→ Void,U −→ U)
Fnew = {} : (Void −→ Void,U −→ U)

Consume-Result
Fold = {result,OF } : (Void −→ T ,U −→ U)
Fnew = {OF [� 7→ result]} : (Void −→ T ,U −→ U)
The resulting closed frame will be well typed because its components inherited from the open
frame were well typed and the substituted result has the same typing as �.

Pop-Local
Fold = {pop-local∆∪v(v)} : (Void −→ Void,∅ −→ ∅)
Fnew = {void∆(v)} : (Void −→ Void,∅ −→ ∅)
pop-local() will remove v from L(vars) and we know the corresponding change is also made
to ∆ from the previous frame-stack typing. The remainder of the conditions in vars-ok
are as they were in C , thus vars-ok is preserved in C ′.

Let
Fold = {let∆(v)} : (Void −→ Void,∅ −→ ∅)
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Fnew = {init-symbol∆(v), s∆∪v, pop-local∆∪v(v)} : (Void −→ Void,∅ −→ ∅)
The new frame’s components are all extracted from well typed components from the original
let frame. Frame init-symbol() will add v to L(vars) and pop-local(v) will remove it,
leaving the vars-ok conditions as they were in C . Thus vars-ok is preserved in C ′.

Assign-Value
Fold = {assign-value()} : (Void −→ Void,U −→ U)
Fnew = {copy-tuple(), assign-copied(�)} : (Void −→ Void,U −→ U)
The new frame’s components are all extracted from well typed components from the original
assign-value frame. assign-copied() consumes the result from copy-tuple() resulting
in a frame of type Void.

Init-Symbols-Value
Fold = {init-symbols()} : (Void −→ Void,∅ −→ ∅)
Fnew = {copy-tuple(), init-symbol(�), init-symbols()} : (Void −→ Void,∅ −→ ∅)
The new frame’s components are all extracted from well typed components from the original
init-symbols frame. init-symbol() consumes the result from copy-tuple(), resulting in
a frame of type Void. The next init-symbols() is also typed as Void, so the new stack
retains its type.

Init-Symbols-Ref
Fold = {init-symbols()} : (Void −→ Void,∅ −→ ∅)
Fnew = {init-symbol(), init-symbols()} : (Void −→ Void,∅ −→ ∅)
The new frame’s components are all extracted from well typed components from the original
init-symbols frame.

Init-Symbol-Value and Init-Symbol-Ref
Fold = {init-symbol(v)} : (Void −→ Void,∅ −→ ∅)
Fnew = {void∆∪v} : (Void −→ Void,∅ −→ ∅)
init-symbol() will add v to L(vars) in agreement with the frame typing of init-symbol.
The remainder of the vars-ok conditions are as they were in C , thus vars-ok is preserved
in C ′.

Init-Fields-Value
Fold = {init-fields()} : (Void −→ Void,U −→ U)
Fnew = {copy-tuple(), init-field(�), init-fields()} : (Void −→ Void,U −→ U)
The new frame’s components are all extracted from well typed components from the original
init-fields frame. init-field() consumes the result from copy-tuple() resulting in a
frame of type Void, and the next init-fields() is also typed as Void, so the new stack
retains its type.

Init-Fields-Ref
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Fold = {init-fields()} : (Void −→ Void,U −→ U)
Fnew = {init-field(), init-fields()} : (Void −→ Void,U −→ U)
The new frame’s components are all extracted from well typed components from the original
init-fields frame.

Copy-Tuple
Fold = {copy-tuple()} : (Void −→ T ,∅ −→ ∅)
Fnew = {copy-tuple2(), discard-copy-env()} : (Void −→ T ,∅ −→ ∅)
The frame typing conditions of copy-tuple2 are satisfied by the typing of copy-tuple. Af-
ter simplifying the result of copy-tuple2() using discard-copy-env(), the typing matches
the original and the new stack retains its type.

Copy-Value
Fold = {copy-fields()} : (Void −→ Void,U −→ U)
Fnew = {copy-tuple2(), copy-init(�), copy-fields()} : (Void −→ Void,U −→ U)
The new frame’s components are all extracted from well typed components from the original
copy-fields frame. copy-init() consumes the result from copy-tuple(), resulting in a
frame of type Void, and the next copy-fields() is also typed as Void. copy-tuple2()
adds location `new to U and copy-fields() removes it, therefore the new stack retains its
type.

Copy-Ref
Fold = {copy-fields()} : (Void −→ Void,U −→ U)
Fnew = {copy-init(), copy-fields()} : (Void −→ Void,U −→ U)
The new frame’s components are all extracted from well typed components from the original
init-fields frame.

Lemma 5.3.7 Local Configuration Frame-Stack OK (simple replacement)

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ◦ L
CF ′


then Γ; Σ′; H ′ ` L ′[fstack 7→ CF ′ ◦ L ′(fstack)] : (Void −→ T ,U −→ U′) and
Γ; Σ′; H ′ ` L ′ : (T −→ T ′,U′ −→ ∅)

Proof: Here we consider rules that only modify the current frame, leaving the the frame-
stack unmodified. By lemma 5.5.7, we know the typing of the L is unaltered in C ′. We will
show that the new frame has the same type as the old frame; CF : T and CF ′ : T . This
equality ensures that T-Closed-Stack will return the same stack typing after by applying
lemma 5.5.8. Therefore Γ; Σ′; H ′ ` L[fstack 7→ CF ′ ◦ L(fstack)] : (Void −→ T ,U −→ U′) will
have the same type as before.
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Rule CF Type CF ′ Type
Copy-Discard-Env T 〈`, T 〉 : T by lemma 5.2.3
Assign-Copied Void void : Void
Assign-Ref Void void : Void
Field-Access Tfield 〈`′field, Tfield〉 : Tfield by lemma 5.2.3
Variable-Access T 〈`, T 〉 : T by lemma 5.2.3
Init-Field-Value Void void : Void
Init-Field-Ref Void void : Void
copy-init-Value CopyEnv A : CopyEnv by old frame typing
copy-init-Ref CopyEnv A : CopyEnv by old frame typing

5.4 Logical to Physical Consistency

Lemma 5.4.1 Logical to Physical Type Match

If Γ; Σ; U `

 H
L ◦ L

CF

 config-ok

and two frames Γ; ∆; Σ; H ; L ` Flhs : Tlhs and Γ; ∆; Σ; H ; L ` Frhs : Trhs such that
Tlhs�̂Trhs,
then there will also be a match between physical types with
ptype(Σ; H ,L, Tlhs) p-match ptype(Σ; H ,L, Trhs)

Proof: The Ref-Initializable rule which defines Tlhs�̂Trhs provides enough information
to meet the three conditions of Physical-Match. First we consider both the class and
mutability sub-components of the type, both of which ptype directly maps into the physical
type. The requirements of Ref-Initializable are the same as Physical-Match, so these
two conditions will be satisfied. For the container condition, we look at two sub-cases. If
the left-hand-side container label is unknown, then ptype() will map it to unknown-cont,
which will satisfy Physical-Match. Otherwise, the container labels must be equal and map
to the same physical container to satify the condition.

Lemma 5.4.2 Returned Values Match

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ Lcaller ◦ L

CF


and a type T in scope L then
ptype(Σ; H ,L, T) p-match ptype(Σ; H ,Lcaller, exportType(L(lmap), T))
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Proof: ptype() and exportType() both directly map the class, mutability and mobility
components directly into the physical type, guaranteeing that they will match. For the
container label, exportType() maps the label using mapLabel(φ, T(label)), which will map
correctly by lemma 5.4.3, and all components of the physical types will match.

Lemma 5.4.3 Returned Containers Match

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ Lcaller ◦ L

CF

,

φ = L(lmap) and a heap location Γ; ∆; Σ; H ; L ` ` : T with container label θ = T(label) then
labelToCont(Σ; H ,Lcaller, mapLabel(φ, θ)) c-match labelToCont(Σ; H ,L, θ)

Proof: If θ ∈ dom(φ), then we can immediately see that the CMap-OK condition of T-
Local-Config-Stack gives us the result we need. If, on the other hand, θ is a path,
then the root container θroot of θ must exist in φ by type rule lmap-ok. CMap-OK then
guarantees that
labelToCont(Σ; H ,L, θroot) c-match labelToCont(Σ; H ,Lcaller, mapLabel(φ, θroot))

With the base of the path correctly mapped, following the path is a deterministic sequence
of immutable field accesses which will lead to the same final container and satisfy c-match.

Lemma 5.4.4 Passed Parameters Match

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ Lcaller ◦ L

CF

,

φ = L(lmap), and type Tpassed in Lcaller and Tparm in L such that exportType(φ, Tparm)�̃Tpassed
then ptype(Σ; H ,L, importType(Tpassed, Tparm)) p-match ptype(Σ; H ,Lcaller, Tpassed)

Proof: First, focusing on the container component of the physical type, note that the
importType() function simply swaps the container label of Tpassed and sets it to the la-
bel from Tparm. The ptype() function maps labels to containers using the labelToCont()
function, and for p-match to hold, c-match must be satisfied. With θpassed = Tpassed(label)
and θparm = Tparm(label), we must show that
labelToCont(Σ; H ,L, θparm) c-match labelToCont(Σ; H ,Lcaller, θpassed).

From the definition of �̃ we know that mapLabel(φ, θparm) l-match θpassed, then with
l-match established, lemma 5.4.5 provides the c-match judgment we need.

For the remaining components of the physical types, the ptype function simply maps
them unchanged, and by the �̃ relation, we know those components will be satisfied in
p-match.
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Lemma 5.4.5 Passed Containers Match

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ Lcaller ◦ L

CF

,

φ = L(lmap), and container label θpassed in Lcaller and θparm in L such that
mapLabel(φ, θparm) l-match θpassed
then labelToCont(Σ; H ,L, θparm) c-match labelToCont(Σ; H ,Lcaller, θpassed)

Proof: From the definition of l-match, we know that either θpassed = mapLabel(φ, θparm)
or that θparm = unknown. We’ll first consider the equality case. By lemma 5.4.3, we know
that the inverse mapping holds
labelToCont(Σ; H ,Lcaller, mapLabel(φ, θparm)) c-match labelToCont(Σ; H ,L, θparm)
By our equality, we can substitute in θpassed, yielding
labelToCont(Σ; H ,Lcaller, θpassed) c-match labelToCont(Σ; H ,L, θparm) which is backwards
from what we need. However, we have already assumed that θparm 6= unknown, which means
that c-match degrades to a simple equality check, which is symmetric. Therefore the terms
can be swapped, giving the desired result.

In the case where θparm = unknown, labelToCont(Σ; H ,L, θparm) will evaluate to
unknown-cont which satisfies c-match.

5.5 Preservation Lemmas

This section contains a series of lemmas showing that the rules of the dependent type
system are such that the typing only depends on immutable objects. This leads to the
useful property that a typing that is valid in configuration C will continue to be valid in a
subsequent configuration C ′.

Lemma 5.5.1 Stable ptype() Evaluation

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ′

CF ′

,

Γ; ∆; Σ; H ; L ` F : T , T = ptype(Σ,H ,L, T ), L(id) = L ′(id)
then T = ptype(Σ′,H ′,L ′, T ).

Proof: We examine the implementation of ptype() and note that the class, mutability
and mobility components pass directly from T to T unaffected by the heap or configuration
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typing. The final component of the physical type is the container, which ptype() computes
using the function labelToCont(). By lemma 5.5.2, we know that
labelToCont(Σ,H ,L, T(label)) = labelToCont(Σ′,H ′,L ′, T(label)).
Therefore, all components of the physical types are identical and ptype() is stable.

Lemma 5.5.2 Stable labelToCont() Evaluation

If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, C =

 H
L ◦ L

CF

, C ′ =

 H ′

L ′ ◦ L ′

CF ′

,

Γ; ∆; Σ; H ; L ` F : T , Θ = labelToCont(Σ,H ,L, T(label)), L(id) = L ′(id)
then Θ = labelToCont(Σ′,H ′,L ′, T(label)).

Proof: For θ = T(label), we consider the cases in the implementation of the labelToCont()
function, first addressing the simple cases. The cases unknown-label and null-label
are simple constants with no dependencies on any environment. The default case returns
Σ(cmap)(L(id))(θ), which will be consistent because the container map is immutable.

Finally, when θ is a path, the heap will be accessed. Since type T is a valid type, the
path of θ has satisfied path-ok. By rules V-SP-Tuple or V-SP-Var, the base of the path
must be fixed. Further, by the rule V-SP-Step, any fields accessed along the path will
also be fixed, and by lemma 5.2.2, we know that all of these locations will have the same
value in H and H ′. Therefore, all heap information that the path depends on is the same
in H and H ′, which forces the results to match.

Therefore, for all possible values for θ, labelToCont() is stable.

Lemma 5.5.3 f-match Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap), ` ∈ H ,
Σ; H ; ` ` T f-match T
then Σ′; H ′; ` ` T f-match T

Proof: We know from t-match in C that T = ptype(Σ,H ,L, T ) and by lemma 5.5.1 we
know that T = ptype(Σ′,H ′,L, T ). Therefore the t-match condition of f-match continues
to hold.

The second condition of interest is the within judgment, which is preserved by lemma
5.5.4. If all dependencies of fmatch are preserved, we conclude that fmatch is also pre-
served.

Lemma 5.5.4 Containment — within Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap), Σ `
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Θ1 within Θ2

then Σ′ ` Θ1 within Θ2

Proof: The within judgment uses Σ to recursively look up parent containers. The type
environment only grows and is never modified. Therefore Σ′(Θ1) = Σ(Θ1), making the
entire judgment preserved in C ′.

Lemma 5.5.5 CMap-OK Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, Σ; H ` Lcaller cmap-ok Lcallee,
L ′caller ∈ C ′,L ′caller(id) = Lcaller(id), L ′callee ∈ C ′,L ′callee(id) = Lcallee(id)

then Σ′; H ′ ` L ′caller cmap-ok L ′callee
Proof: Looking at each of the conditions in rule CMap-OK, we’ll start with lmap-ok, which
is a pure typing rule and independent from the configuration. The lookup of ∆ from the
caller scope is equivalent in C ′, because the frame-stack of the caller is fixed while the callee
executes. Therefore, the lmap-ok condition continues to hold in C ′.

Both φ and M are immutable, which leaves the final container equality to consider.
Here, we appeal to lemma 5.5.2 to establish that the left and right sides of this equality will
evaluate to the same values in C and C ′ for each θi ∈ dom(M ). Since the equality held in
C , it will continue to hold in C ′

Lemma 5.5.6 vars-ok Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉,L ∈ C ,L ′ ∈ C ′,L(vars) = L ′(vars)
then Γ; ∆; Σ′ ` L ′(vars) vars-ok

Proof: We know that we have heap-ok in C , which means that every local symbol is
mapped to a box or reference which is location-ok. Tvariable = Tbox/ref implies that
Σ(`box/ref) = ptype(Σ,H ,L, Tbox/ref) = ptype(Σ; H ,L, Tvariable). Therefore, we conclude
that the t-match judgment is satisfied for all local variables.

Lemma 5.5.7 Local Configuration Stack Typing Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap), Γ; Σ; H `
L ◦ L : (T −→ T ′′,U′ −→ ∅)
then Γ; Σ′; H ′ ` L ◦ L : (T −→ T ′′,U −→ ∅)

Proof: The cmap-ok judgment continues to hold in C ′ by lemma 5.5.5. Since the set of
variables on the stack has not changed, the vars-ok judgment remains true, by lemma
5.5.6. Next, by lemma 5.5.8, we have Γ; Σ′; H ′ ` L(fstack) : (T −→ T ′,U −→ U′)
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Finally, by induction on this lemma, we have Γ; Σ′; H ′ ` L : (T ′ −→ T ′′,U′ −→ ∅) . Rule
T-Local-Config-Stack-Empty provides the base case and guarantees that the induction
terminates. Therefore, all conditions of the rule T-Local-Config-Stack are met, and we
can conclude that an unmodified stack of local configurations retains its typing in C .

Lemma 5.5.8 Frame-Stack Typing Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap),
Γ; Σ; H ; L ` F : (T −→ T ′′,U −→ U′)
then Γ; Σ′; H ′; L ` F : (T −→ T ′′,U −→ U′)

Proof: We consider the conditions of the frame-stack typing rules as defined in section 4.9
in their entirety. There is significant similarity among the rules, and we’ll reason by cases
over the kinds of conditions that need to be satisfied rather than over each rule individually.

First, all conditions of the form T = ptype() will continue to hold by the stability
of ptype() established in lemma 5.5.1. All induction on the tail of the frame-stack is
satisfied by induction on this lemma. The base case is typed by rule T-Empty-Stack,
which guarantees that the induction terminates. Finally, typing of individual frames is
preserved by lemma 5.5.9. This completes the set of conditions common to most of the
frame-stack typing rules.

The rule T-Immediate-Return is special, and we consider its unique condition T =
exportType(L(lmap), Tcallee). We know Tcallee is preserved by lemma 5.5.1 and L(lmap) is
immutable. Therefore, this condition is also preserved, and we conclude that all conditions
appearing in the frame-stack typing rules continue to hold in C ′.

Lemma 5.5.9 Frame Typing Preserved
If Γ; Σ; U ` C config-ok, 〈C ,Σ,U〉 −→ 〈C ′,Σ′,U′〉, H = C(heap), H ′ = C ′(heap),
Γ; ∆; Σ; H ; L ` F : T
then Γ; ∆; Σ′; H ′; L ′ ` F : T

Proof: Here, we distinguish frames that are the original statements and expressions of the
language from the extended frames that are typed in section 4.6. For the proper language
components, we don’t need to concern ourselves with the extended typing environment as the
rules only depend on Γ and ∆. Therefore we conclude that all statements and expressions
have the same typing in C ′.

For the extended typing rules of section 4.6, we use the same strategy of lemma 5.5.8
and show preservation for the various kinds of conditions in these rules rather than address
each rule directly. All type lookups in Γ,∆ or Σ will be the same because Γ and ∆ are the
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same and existing entries in Σ are immutable. For frames that hold other frames and
inductively type those sub-frames, we inductively apply this lemma to show the sub-frames
retain their same typing.

Simple logical predicates on types will remain the same, because all the type information
consumed is preserved. For example, the condition (Ti(kind) = ref∧Ti�̃Tiniti)∨(Ti = Tiniti)
from rule T-Init-Symbols is composed of typings that are preserved.

For rules that test copy-map-ok, we know that this condition will hold, because A is the
same as before. Note that in each instance of A in the rules, it is part of the frame itself,
and this lemma is only concerned with typing identical frames.

Finally, the rule T-Location has a ptype() condition, which is preserved by lemma
5.5.1, and a t-match condition which does not depend on the heap.

Therefore, all of the conditions present in the rules of section 4.6 will be preserved in
C ′.
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Chapter 6

Related Work

6.1 Ownership Types

Aliasing causes many problems for imperative programs. Reasoning about a system with
aliases is problematic. Generally, when considering a method’s behavior, there will be
limited or no knowledge of what external aliases can exist. This interferes with proving
code correctness and forces an optimizing compiler to make pessimistic choices.

Although aliasing is not the focus of our container language, there can be reductions in
aliasing with this system. We encourage pass-by-value semantics by providing well-defined
copying. Once you’ve made a fresh copy of an object, external aliasing is eliminated.
Although our semantics define a potentially expensive copy algorithm, an alternative im-
plementation could use persistent data structures like a functional language. The cost of
a copy would become zero at the expense of increased update time. If such a system were
implemented, pass by value wouldn’t incur a performance penalty and aliasing could be
avoided in many cases.

Ownership types were first proposed by David G. Clarke et al. in [9] as a way to enforce
encapsulation, which results in all aliasing concerns being local and easier to reason about.
Significant work in this area has been continued by many researchers and two surveys can
be found in [8] and [14].

Although our containment system doesn’t involve owners, the fact that a container has
no outgoing references means it is self-contained and implicitly everything in the container
is owned by the container. We make no attempt to enforce encapsulation, but an extension
of container-typing could add restrictions on the use of containers. If a container is declared
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as encapsulated, then only privileged code would be able to hold references into that
container.

In this thesis, we are focused on containment, which is converse of encapsulation in
that it disallows outgoing references rather than incoming. However, despite having con-
verse goals, the fundamental type-system machinery needed to manage containment has
similarities to ownership types. With ownership types, an object can contain references to
owned sub-objects. Types are augmented to indicate that certain fields represent owned
objects. When an object is owned, the type system must prevent the creation of external
aliases. Both systems must control the assignment of references.

The paper Sheep Cloning with Ownership Types by Paley et al. [12] recognizes that
ownership types can be leveraged for the purpose of object copying. This thesis funda-
mentally builds on their insight. They recognize the difficulty in manually implementing
cloning code, and they present a hybrid between deep cloning and shallow cloning. Their
work uses the declared owner of nested objects to determine which objects should be copied.
Our approach mirrors theirs, and although we use containers instead of owners, there is
fundamental similarity. This thesis, differs in that we remove the goals of ownership types
so that we can exclusively focus on automated functionality related to self-contained ob-
jects. Their hybrid approach contrasts with our system as we have chosen to explicitly
prevent a hybrid copy. Their work is further refined in [16]. Here, they refactor their work
to facilitate proving its soundness.

Although still firmly encapsulation-focused, the work of Bettini et al. [3] introduces the
concept of boxes, which is similar to our notion of a container. They recognize that making
every object encapsulated is to too restrictive. Their duality between boxed and un-boxed
classes is similar to the data and entity classes of the container language. In contrast, the
ownership type system of Boyapati et al. [5] also tries to make a less restrictive system,
but takes a different approach. It uses module boundaries as encapsulation barriers. Inner
classes would have full access to objects owned by the outer class. It’s appealing that they
could avoid introducing a new concept like a box or container, but using a module as a
container would be too broad, and we would lose pass-by-value semantics.

Ownership types are a dependent type system, as is our container type system. In
Ownership Type Systems and Dependent Classes, Dietl et al. [10] implement ownership
types on top of a dependent type system. They conclude that specialized syntax for
ownership types is still desirable, even though ownership types can be fully expressed in
a more general way. However, by establishing an implementation of ownership types in
a general dependent-type system, they have shown a new way to reason about ownership
types. A similar treatment of our container work could yield additional insights.
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The work of Cameron et al. [7] also evaluates ownership types from a more theoretical
viewpoint and compares them with more fundamental dependent type systems such as
Dependent ML. Again, applying this type of analysis to our container type system would
be an worthwhile exercise.

Huang et al. [11] develop type inferencing of ownership types. They argue that the
overhead of ownership specification hinders the adoption of ownership types. We make a
similar argument with respect to containers. Any adoption is unlikely unless systems like
these are simple and easy to use.

6.2 Serialization

Serialization in object-oriented systems is another broad field of research and is also widely
used in practice. In our system, we claim that objects that are candidates for serialization
should always be self-contained, and our container system enforces that property. This
greatly simplifies the problem of serialization. Here, we’ll compare our container system
to a number of other systems.

In Instant Pickles by Miller et al. [13], they develop a pickle combinator with the
flexibility to customize to many data formats. To enhance our system so the output format
could be customized would require a reflection system. If this was in place, containment
could continue to provide the nice property that no per-class code would be needed for
serialization. A generic piece of code could reflect on the meta-data and using an algorithm
similar to the one presented in this thesis, produce a custom serialized form of a self-
contained object. This paper also considers inheritance and versioning which is absent
from our work.

In the Fibonacci system [1], Albano et al. have developed a programming language for
object databases. They build a system with similar ideas to an entity-relationship model.
They state that “any value, irrespective of its type, has the same rights to persistence”.
Here, we take a different stance, where non-self-contained objects can only be persisted as
part of a larger self-contained object. Although this language is object oriented, they have
added concepts like associations, which effectively create a data model like the database
schema in a relational database.

Nestmann et al. [15] develop a system not to copy objects, but to migrate them. They
go to great lengths to achieve transparency in their distributed system with surrogate
objects working locally to forward calls to remote objects. Effectively, they extend their
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application’s heap across physical machines. This work is pursuing a goal opposite to ours
in that we want to make message passing easier to reduce the need for a shared heap.

6.3 Operational Semantics

The operational semantics of chapter 4 were initially modeled using the MJ technical report
[4] as inspiration, although the design drifted apart as our semantics were developed. In
the frame stack typing of the MJ system, they duplicated logic from their type rules in
order to re-build an equivalent typing environment needed for the stack typing. In our
system, with many more frames to consider, this would have become unmanageable. Like
the MJ system, we need the typing environment for our frame-stack typing as well. Our
typing environment is only built by the type rules, and we bind it to our frames to avoid
rebuilding it a second time. This blunt-force strategy worked well and saved significant
duplication of work which would have cluttered the frame stack typing.
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Chapter 7

Future Work

This chapter looks at three areas where the ideas of this thesis can be extended and presents
ideas to address them.

7.1 Sub-Containers

One significant issue with the container type system is that it requires precise specification
of a container. For example, if a reference has container c, then that reference is not
allowed to point to an object contained with c.nested. This could be fixed by introducing
a sub-container constraint for references. For example, figure 7.1 contains a proposed ::>
specifier which constrains a reference to be within a container and not necessarily have that
precise container. This allows for nesting containers without exposing internal structure.

With an imprecise container constraint, it would then also be natural to allow narrowing
a reference to a specific container. This could be done by a matching predicate which refines
the type to a precise container label. E.g. if r within nested then ...

One concern with this narrowing behavior is that up until now, the soundness of the
container type checking implied that there is no extra run-time overhead associated with
container typing. In order to support the narrowing behavior, there would need to be an
extra field in each object to indicate which container it was in. Perhaps this could be
minimized with global optimization as only objects that participate in narrowing would
require this extra overhead.
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class Inner( value : Int )
constructor Inner( value : Int ) {

self.value = value;
}

class Outer( fixed nested : Inner )
constructor Outer( value : Int ) {

self.nested = Inner( value );
}

class Main ()
constructor Main() {

fixed var multiLevel = Outer(1);

iref r1 : Int :: multiVar =^ null;
r1 =^ multiLevel.inner.value; // COMPILER ERROR! container mismatch

iref r2 : Int :: multiVar.nested =^ null;
r2 =^ multiLevel.inner.value; // OK, containers match

iref r3 : Int ::> multiVar =^ null;
r3 =^ multiLevel.inner.value; // OK, with new ::> sub-container!

}

Figure 7.1: Sub-Container Notation

7.2 Roles

In chapter 2 we presented an algorithm to do a deep comparison between two self-contained
tuples (figure 2.11). Conceptually, this algorithm must assign an identity to each of the
nested objects. A mapping is created indicating a correspondence between nested tuples,
saying tuple x on the left hand side matches with tuple y on the right hand side. A natural
extension of this is to say that an entity has an identity relative to its container. This is
in contrast to the typical instance-identity notion, where the event of an object’s creation
defines its identity. With a container-relative identity, it becomes possible to have two
container objects and relate nested entities that fulfill the same role with respect to their
container.

The identities from the deep comparison algorithm are simply the first path to reach a
nested object by a depth-first search. If a concept of a role were added to the language,
then this mechanically-derived identity could be replaced with something more meaningful.
The idea would be that all entities would be assigned a role. The indirect reference iref
shown in the demonstration language was added with the idea that it would be a reference
to a role. In the most direct case, an entity could be described as a having the role granted
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by a special role field of a container object. This idea can be extended by longer paths
to reach nested entities. Every entity’s identity could be described in the form (role-of-
granting-object).role-name. This would be a meaningful description rather than a memory
address. Identities would be preserved over a serialization and de-serialization round trip.

Descriptive identities can also be represented directly in the language as data. A non-
self-contained entity class could be converted into a pure data class by replacing all refer-
ences with materialized identity paths. Conversion functions could be automatically gen-
erated. The inverse operation (data to entity) is simply a function that takes a container
object and an identity path of a nested entity and returns a reference.

With descriptive identities materialized as data, entities can be translated into pure
data objects and can then be serialized. Additional functionality can be built on this as
well. We’ve looked at boolean equality comparison, but you could also compare two objects
and return the difference between them. With descriptive identity paths, you could return
a list of new, deleted and modified entities. It’s commonplace to diff two text files to see
what has changed. Version control systems store a sequence of modifications to text and
can re-create any version of a file by applying the recorded changes. This capability would
also be useful in a distributed system. Replicas of data could be synchronized by sending
only changes to the data. Many such systems like this exist, but not directly supported by
a programming language.

If features like those in a version control system could be brought into an object-oriented
language, then implementing an undo button would be a trivial task. You would be able
to roll back the state of the program after an exception is caught.

Many details have been glossed over in this description, however with additional effort,
the foundation of containers can be extended to become a richer data model with enhanced
capabilities.

Although this work was not completed in this thesis, research related to roles was
reviewed and we’ll compare two of those works now.

In the work of Steimann [18], the connection is made between an object assigned to
a variable and a role. Variables have purposes and when a variable refers to an object,
it gives that object a role. The paper then argues that variables should be typed with
interfaces specific to the role needed by the variable. Further, the design of interfaces
should be role-centric, essentially making interfaces and roles the same thing. Although
this paper is more focused on object oriented modeling, parallels can be drawn with our
proposal. The recognition that the roles of an object can change throughout its lifetime
is an important one. If we develop a system that links object identity to roles, then we
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class Demo( v1 : Int, v2 : Int )
constructor Demo() {

v1 = 1;
v2 = 2;

}

method Main.test( iref r1 : Int :: ‘c, iref r2 : Int :: ‘c } {
...

}

class Main ()
constructor Main() {

var demo = Demo();
self.test( demo.v1, demo.v2 ); // COMPILER ERROR! demo is not fixed!
// The paths demo.v1 and demo.v2 clearly have the same container, but because
// var demo is not declared as fixed, the container labels are ’unknown’

}

Figure 7.2: Data Flow Example

need to fully consider how to handle object identity when roles change. This will be a
challenging problem.

An alternative approach to identity is proposed in [19] by Vaziri et al.. Here they
introduce an explicit concept called a relation-type, where a programmer designates a set
of immutable fields to act as that object’s identity. The class of an object is also considered
part of its identity, so the fields only need to be unique with respect to their class. This
model is similar to a relational database and makes identity a concrete part of every object.
This system will inherit the difficulties databases have with unique key generation, such
as the efficient allocation of unique keys across a distributed system. However, explicit
identity nicely bypasses the problem of changing roles. Their relation-type model would
work well to satisfy our goal of easy serialization.

7.3 Data Flow Analysis

We have the restriction that all container labels can only depend on fixed symbols. This
restriction can be an annoyance in some cases, one of which is outlined in figure 7.2. Here,
we have a method that requires both of its parameters to be within the same container. The
code in Main clearly passed two references that are within the same container, but because
the variable demo is not declared as fixed, the type system asserts that the container labels
are unknown and the method call does not type check.

111



This issue could be fixed with data flow analysis. If a symbol is determined to be fixed
within a region of code, then an automatic rewrite could be applied to inject a temporary
reference that is fixed.
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Chapter 8

Conclusion

In this thesis, we’ve taken the abstract idea of a container isolating its contents from the
outside world and built two systems based on this idea. First, a broader implementation
in Haskell that attempted to solve pragmatic issues such as reducing the amount of extra
syntax needed using a container inferencing algorithm. By developing example code and
test cases, we have a sense of what programming in a container language could be like. This
system is too immature to evaluate its suitability as an implementation language for real
object-oriented programs. However, in the code that has been written, no major problems
have been found and simple data structures such as a linked list with containment were
easy to develop.

The second system of operational semantics showed that our dependent type system
is sound. Code using containers can be statically typed such that there will be no run-
time violation of containers. This is an important result since it means that all container
type information can be erased at run-time and a container system can run without any
additional overhead compared to an equivalent system without containers.

Adding the ability to enforce self-containment creates a kind of object which is simple to
reason about. There are a number of algorithms that are easy to implement when an object
is self contained, but extremely tricky otherwise. Serialization, deep object copying and
deep object equality comparisons can be built into the language. The opportunity exists
to eliminate a significant amount of glue code by leveraging containers and self-contained
objects.

A great deal of work would be required to turn this demonstration system into a
practical programming language. This thesis has shown that core idea of containment
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is sound, and demonstrated that containers can have practical benefits. We hope this work
will motivate future research into containers.
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