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Abstract

We propose a dielectric metasurface mirror that focuses one spin state while diverging
the other state and preserves the spin state upon reflection, unlike conventional mirrors.
First, we discuss the working principle of the mirror and introduce an earlier version
of the design to discuss important potential drawbacks to a metasurface design. Then,
we simulate a mirror design that can preserve the spin state up to 99.6%. Overall, the
simulations give 81% reflectivity for the desired spin state, half of which is due to material
loss. A Fabry Pérot optical cavity formed by a pair of such mirrors would have a finesse
of 15 and Q value of 1964. We find the focusing of the mirror to have good quality, with
a Strehl ratio of 0.88. We simulate a cavity numerically to find the mode profile after 120
roundtrips. We estimate a mode volume of 725µm3 for a cavity with length 56µm and
mirror size 15µm. Our metasurface design has potential to be used in quantum optics to
enhance light-matter interactions and optical nonlinearities. The reflectivity of the mirror
can be further enhanced by overcoming material loss, which would allow a high finesse
cavity for single spin state to be built. Last, we construct and characterize with broadband
polarization tomography a fiber integrated quarter-waveplate formed by misaligning and
splicing a short section of polarization maintaining fiber with precise length.
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Chapter 1

Introduction

1.1 Quantum Optics

Light is made up of units of energy called photons, according to particle interpretation of
light. In free space, photons do not interact with each other. However, nonlinear opti-
cal medium can act as a mediator for photon-photon interactions since optical properties
of nonlinear medium depend on the presence of photons. At the same time, the opti-
cal nonlinearities are usually very low when only a few photons are present. Creating
strong interactions at the single photon level has been a major goal of quantum optics re-
search. Different approaches have been developed, such as taking advantage of the strong
nonlinearities in graphene [43, 1], using waveguides to confine light and trap atoms in
close proximity [57], implementing a cavity to a waveguide to further enhance interaction
strength [24, 18], designing photonic structures such as nano-antennas [46], or designing
cavities with high quality factors and low mode volumes [51]. The ratio of spontaneous
emission of atoms coupled to a resonant cavity to atoms in free space can be described by

the Purcell factor: FP = 3
4π2

(
λ0
n

)2 Q
V

[40]. Q describes the temporal confinement of light,
and is a measure of how well light is confined in the cavity, and V describes the mode
volume, which is a measure of spatial confinement. High Q factors and low mode volumes
increase spontaneous emission significantly in a cavity, which leads to stronger interactions.

Another more recent technique for enhancing interactions is using the spin-orbit cou-
pling of light. Circularly polarized (CP) light, whose net electric field vector rotates per-
pendicular to direction of propagation, carries spin angular momentum by an amount ±~
per photon. Photons with spin can interact with atomic transitions by transferring its spin
to/from atomic transitions between energy levels. It is stated by Gonzalez-Ballestero et al.
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Figure 1.1: Fabry Perot cavity integrated with HCPCF. Image obtained from [17].

[20] that interaction with spin can lead to 50% more enhanced entanglement for the case
without spin. Light-matter interactions with spin can enhance the interaction strength
significantly [32]. Furthermore, there exists optical transitions coupled to different values
of spin [32], which have different transition strengths [41] or decay rates [54]. This pro-
vides flexibility to use different spin state for various purposes. Another advantage of spin
is the efficient directionality of light emitted from atoms. Nanophotonic waveguides were
constructed that separate two spin states [38, 45, 7], so that emitters can be coupled to
the respective directions on the waveguide. Research on chiral light-matter interaction in
cavities have been recently developing [54], and this thesis intends to contribute by building
a cavity that supports a single state of spin (circular polarization), such that light-matter
interactions will be significantly enhanced.

In Fig. 1.1, a Fabry Pérot cavity, integrated with a hollow-core photonic crystal fiber
(HCPCF) is given from the study by Flannery et al. [18]. Transverse confinement of light
is implemented by the HCPCF, and the hollow core allows atoms to be injected inside the
fiber [6] to interact with the confined light. Mounting mirrors on both sides will result with
the cavity, where light is confined in the longitudinal direction. Our mirror design aims to
achieve the same operation. First, it should operate as a mirror and preserve the CP state
of incident light, so that cavity supports a single CP state. Second, it should confine light
in the transverse direction, which can be implemented if the mirrors are focusing mirrors.
For this purpose, we have chosen to build our mirror using dielectric metasurfaces.
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1.2 Why Metasurfaces?

Metasurfaces are two-dimensional layers of sub-wavelength sizes, consisting of arrays of
phase elements with sub-wavelength separations which add unique phase to the wavefront.
Their small size and freedom to manipulate light open up a wide range of potential appli-
cations. Conventional optical elements can be made more compactly, and combinations of
bulky optical elements can be implemented by a single structure.

Earlier metasurfaces consisted of plasmonic antennas [56], where the geometry of an-
tennas affect the phase imparted on the field scattered. Quarter wave-plates [55], vortex
plates [19] were created by this design. The performance of these devices in the optical
region were limited due to high plasmonic loss at optical frequencies, insufficient coupling
efficiency for single-layered structures and other sources of loss during phase modulation
[26]. Dielectric metasurfaces overcome these limitations and offer a much efficient interface
for designing metasurfaces in the optical frequencies. Dielectric metasurfaces are imple-
mented as metalenses [58, 29, 16] including lenses with tunable focus [5], and reflectors
[34, 3].

Metasurfaces are particularly useful for exploiting the chiral properties of light, where
chirality refers to a structure whose mirror image is not superimposable on itself by any
rotation or transformation, and circular polarization is a chiral property. Any application
with circular polarization would require complex optical setup, consisting of waveplates,
polarizers and more. Metasurfaces allow combining the effects of multiple objects into
one, such as a metalens that is designed to separate two CP states by having two separate
focal points [23], CP state selective transmittors [53] and waveguides. CP state preserving
mirrors were also implemented using chiral photonic crystal mirrors [42] and chiral meta-
mirrors [28].

Manipulating the phase and CP states of light have been an interest for a long time,
and geometric phase is a common method to implement chiroptical properties [13, 33].
By this method, wavefront of light can be completely reshaped where the phase imparted
on a section of wavefront is controlled solely by the rotation angle of the phase element
on the optical structure, while the CP state is switched [37, 9]. Our proposed structure
has two major properties: Focusing and preserving the CP state, both of which can be
implemented by geometric phase method.

Separation or detection of CP state is particularly useful in biochemistry, as circular
dichroism is observed in nature [21, 44], and detection of polarization of light has been
applied by chiral metamaterials [8, 31] for sensing applications. Our metasurface mirror
has potential applications outside of quantum optics, but this is outside of the scope of
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this thesis.

1.3 Outline of the Thesis

The thesis starts with explaining some background in metasurfaces and optics. Main
ideas like geometric phase and theory of dielectric waveguides are explained. Chapter 2
ends with an introduction of Fabry Pérot cavity. In Chapter 3, we introduce the steps
to building a metasurface mirror design, and discuss some performance issues with an
earlier version of our design. Discussion of these issues are necessary to understand some
changes that were made to the design, and to make sure similar issues are omitted for
other dielectric metasurface mirror designs. In Chapter 4, we update the unit cell design
and analyse its performance. We construct the full mirror and show that it successfully
acts as a focusing mirror. Then, operation of a potential cavity built by this mirror is
analytically discussed. In Chapter 5, we design a fiber integrated quarter-waveplate, where
two polarization maintaining optical fibers are spliced together. Then, we characterize the
fiber using broadband polarization tomography.
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Chapter 2

Metasurfaces and Optics

In this chapter, we will introduce the theory necessary to understand how our metasurface
mirror can implement geometric phase and circular polarization (CP) state preservation
and some key points to consider when designing a metasurface mirror. First, we will
discuss diffraction gratings, which are periodic structures similar to metasurfaces, and show
how we can avoid our structure to act like a diffraction grating to prevent any unwanted
diffraction. Then, we will introduce the CP states of light and its electric field and Jones
matrix representation, which will be useful when discussing the geometric (Berry) phase in
the next section, where we will show that rotating an optical element can induce geometric
phase, and we will argue how having a half-waveplate (HWP) element contributes to both
conservation of CP state and the implementation of geometric phase. Then, we will discuss
how rectangular waveguides can be designed to operate as a HWP, which will be used in
the metasurface design. Last, we will introduce the Fabry Pérot cavity and its properties.

2.1 Diffraction Gratings

Diffraction gratings are optical elements with periodic structures that split the incident
light into several components. A polychromatic light will get separated into its constituent
wavelengths as each component reflects by slightly different angles. Here, we focus on
monochromatic light. When a monochromatic light is incident on a diffraction grating, it
will also get separated upon reflection, according to the diffraction orders m, where m ∈ Z.
Diffraction of monochromatic light by a diffraction grating working in the reflection mode
is sketched in Fig. 2.1. The 0th order of diffraction is equivalent to reflection from a
flat surface where the angle of reflection is the same as angle of incidence. The angle of
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Figure 2.1: Diagram of a diffraction grating with periodicity d. The zeroth order of
diffraction is reflection at an angle same as angle if incidence and is represented by the
blue light ray. The higher orders of diffraction (|m| > 0) are represented by the red light
rays.

reflection is different for higher orders of diffraction. Negative values of m correspond to
negative angle of reflections.

The order of diffraction is determined by the grating equation given in Eqn. 2.1, where
d is the size of one period, θ is the angle of reflection, α is the angle of incidence, m ∈ Z
is the diffraction order and λ is the wavelength.

d(sin θ − sinα) = mλ (2.1)

Non-zero m mean that diffraction occurs, and the incident light reflects at an angle
θ 6= α. The simplest diffraction grating is a barrier with multiple slits. However, a
periodic structure of dielectric elements also act as a diffraction grating, which is the
case for metasurfaces. Non-zero orders of diffraction are not desired for most metasurface
applications, including the mirror application in this study.

Assuming normal incidence (α = 0), we can reorder the terms in Eqn. 2.1 as:

sin θ =
mλ

d
(2.2)

For the minimum non-zero order, m = 1:
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θ = arcsin

(
λ

d

)
(2.3)

Domain of an arcsin function cannot be greater than 1 or less than −1, so no phys-
ical solution to the grating equation exists for λ > d. Therefore, a periodic structure
where the periodicity is shorter than the wavelength of light should not have higher orders
of diffraction. We will see later in Chapter 3 that this puts a limitation to our design
periodicity.

Now the assumption of normal incidence is discarded (α 6= 0), and the structure is
treated as a mirror with some numerical aperture NA. NA is a quantity describing the
operation of an imaging component for maximum possible angle of light incident on the
structure or emitted from the structure, defined by NA = n sinα, where n is the refractive
index of the surrounding medium and α is the angle of incidence (or reflection). For this
system, the surrounding medium is air, so n = 1. Eqn. 2.1 can be rewritten as

d(sin θ −NA) = mλ (2.4)

where the definition of NA is used. Following a similar reordering of terms for m = 1
and m = −1 will result with

θ = arcsin

(
NA± λ

d

)
(2.5)

Here, m = 1 and m = −1 cases are distinguished by the term ±λ/d. In order to
prevent any high orders of diffraction, the domain of the arcsin function has to be > 1
and/or < −1. The four conditions are listed in Table 2.1.

Table 2.1: Diffraction Limitations on Periodicity

arcsin(x) > 1 arcsin(x) < −1

m = 1 d < λ
1−NA d < − λ

NA+1

m = −1 d > λ
NA−1 d < λ

NA+1

The most restricting and physical (d > 0) limitation is d < λ/(NA + 1), considering
that a typical NA of a mirror is less than 1. In Chapter 4, we will see how this relation
between d and NA will be an additional limiting factor for the mirror design.
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2.2 Conservation of Circular Polarization

2.2.1 Polarization of Light

Polarization of light describes the direction of the net electric field vector. Light is linearly
polarized when the x and y components are in phase, and the direction of the electric field
vector stays in the same plane in time and space. In Fig. 2.2, three possible polarizations
are sketched, with the corresponding electric field expressions:

a. E = E0e
i(kz−ωt)̂i = Ex

b. E = E0e
i(kz−ωt)̂j = Ey (2.6)

c. E = E0e
i(kz−ωt)(cos θ̂i + sin θ̂j).
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Figure 2.2: Electric field vector diagram showing three possible states of linear polariza-
tion. In a, light is polarized in the x−direction, in b, light is polarized in the y−direction,
and in c, light has some arbitrary polarization in the x−y plane, which is uniquely described
by the angle θ.

Ex and Ey notations will be used to describe the x and y polarized light respectively.

Light is circularly polarized when the x and y components are out of phase by π/2,
and the electric field is not confined to a plane but rotating in a circle in either clockwise
or counter-clockwise direction.

Consider a wave propagating towards +z direction and has Ex and Ey components of
equal magnitude. If Ex component leads Ey component by π/2 phase (Eqn. 2.8), the wave
is left handed circularly polarized (LHCP), and rotates in the counter-clockwise direction.
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First row of Fig. 2.3 visualizes how a phase lag between Ex and Ey can cause the rotation
of the electric field in the counter-clockwise direction.

El = E0e
i(kz−ωt)

(̂
i + eiπ/2̂j

)
(2.7)

If Ey component leads Ex component by π/2 phase (Eqn. 2.7), the wave is right handed
circularly polarized (RHCP), and rotates in the clockwise direction. Second row of Fig.
2.3 visualizes how a phase lag between Ex and Ey can cause the rotation of the electric
field in the clockwise direction.

Er = E0e
i(kz−ωt)

(̂
i + e−iπ/2̂j

)
(2.8)

If the magnitudes of Ex and Ey are not equal, then the light is elliptically polarized,
where the oscillation of the electric field vector covers an elliptical path rather than circular.

By convention, direction of rotation is defined such that the observer looks towards
the direction of propagation. Therefore, the direction of propagation will be set to +z
throughout the project.
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Figure 2.3: Electric field vector diagram showing the oscillations of Ex (blue) and Ey
(green) over time and the rotation of the net vector (red). The upper row correspond
to LHCP light where the net electric field rotates counter-clockwise and the lower row
correspond to RHCP light where the net electric field rotates clockwise.

9



2.2.2 Jones Calculus

Jones Calculus is an alternative formulation of polarized light where polarization is de-
scribed by Jones vectors and optical elements such as waveplates and mirrors are described
by Jones matrices [15]. Table 2.2 lists some common and relevant Jones vectors and ma-
trices.

2.2.3 Reflection from a Mirror

When a circularly polarized light of certain CP state reflects off a mirror, its state is
reversed. Therefore, simply put, reflection off a mirror will result with the mirror image of
a CP state, i.e. the other state.

In a more elaborate way, let’s assume a LHCP light incident on a mirror, perpendicular
to the surface. The coordinates are defined such that light propagates in the z direction and
x and y axes are on the plane perpendicular to direction of propagation. The right-hand
rule of orientation of axes dictates that ẑ = x̂× ŷ, where × denotes the cross product. At
normal incidence, the electric field components stay the same (magnitude and phase) upon
reflection. However, reflection changes the direction of propagation to −ẑ. In order to
define the CP state of the reflected light, the coordinate system need to be reset where the
new direction of propagation is ẑ′. The limiting condition on the new coordinate system
is ẑ′ = −ẑ. Therefore, x̂′ × ŷ′ = −x̂ × ŷ. Two of many possible conditions to satisfy this
are x̂′ = −x̂ or ŷ′ = −ŷ. Let’s apply the latter and see how the electric field is affected.
Starting from the expression for LHCP light in Eqn. 2.7, we change the sign of Ey.

Eref = E0e
i(kz−wt)

(̂
i− eiπ/2̂j

)
= E0e

i(kz−wt)
(̂
i + e−iπeiπ/2̂j

)
= E0e

i(kz−wt)
(̂
i + e−iπ/2̂j

)
= Er

(2.9)

The reflected light becomes RHCP following the expression in Eqn. 2.7 due to the
change in direction of propagation.

Additionally, as light travels from one medium to another medium with different refrac-
tive indices, different polarization states get reflected and transmitted by different amounts,
which changes the polarization of the reflected and transmitted lights. Two types of po-
larization under consideration are p- and s-polarizations, which are special cases of linear
polarization. P-polarized light is when the electric field is parallel to the plane of incidence,
and s-polarized light is when the electric field is perpendicular to the plane of incidence.
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We will only consider the case for reflection, but a similar result holds for transmission.
Fresnel coefficients describe the reflection of p- and s-polarizations, and are given as

rs =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

rp =
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

(2.10)

n1 and n2 are indices of refraction of the first and second layers and θi and θt are the an-
gles of incidence and transmission respectively. At normal incidence, p- and s-polarizations
have the same orientation relative to the interface, therefore at normal incidence rs = rp.
As the angle of incidence is increased, the reflection coefficients change for both polariza-
tions. If a CP light is incident with θi 6= 0, this would cause its two components to reflect
by different amounts, causing the reflected light to become elliptically polarized. According
to the expression, rp reaches 0 when n1 cos θ2 = n2 cos θ1, so all of p-polarized light gets
transmitted. The angle of incidence at which this condition occurs is called Brewster’s
Angle and is found by θB = tan−1(n2/n1). For angles beyond θB, rp and rs has negative
signs, which means there is π phase offset between the two polarizations.

In general, air-to-metal interfaces have relatively constant Fresnel coefficients for vary-
ing incident angles because of very high refractive indices of metals. Also we are mostly
concerned with close-to-normal incident angles, so its effect should be minimal.

The effect of air-to-dielectric layer will be mentioned in Section 2.4.

2.2.4 Preserving the CP State

It has shown that reflection from a conventional mirror changes the state of CP polarization.
Now, an approach to preserve the CP state will be introduced, which will be useful when
the geometric phase method is discussed. Let’s consider a HWP and a RHCP light incident
on the optical element. HWP is a birefringent optical element which induces a relative π
phase to one linear polarization state along its axis. This switches the RHCP light to
LHCP (and vice versa). Its Jones matrix is given in Table 2.2. A simple way to calculate
the state after HWP is multiplying the Jones matrix of the HWP with the Jones vector of
RHCP light as (

1 0
0 −1

)(
1
−i

)
/
√

2 =

(
1
i

)
/
√

2 (2.11)

It is clear that the resulting vector represents LHCP light.
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Figure 2.4: Poincaré sphere representing the polarization states of light. Two of many
possible paths are shown as light goes through a HWP with rotational degree of freedom.
The phase gained during the path is geometric phase, and is different for the two paths.

Now, let’s add some mirror halfway through the HWP perpendicular to the direction of
propagation. The two configurations are also given in Fig. 2.5 a and c. Now, the incident
light travels half the length of HWP, reflects off the mirror, and travels the same path in
the opposite direction. The propagation length through the HWP is exactly the same,
therefore the CP state is reversed. However, the direction of propagation changes from +z
to −z, which also reverses the CP state, as it was discussed in Section 2.2.3. The overall
effect of the combined operation should preserve the CP state overall. This is the idea of
how geometric phase method also contributes to the preservation of the CP state, but we
will see in detail how it also implements the necessary phase such that the wavefront of
light can be manipulated to construct the focusing mirror.

2.3 Geometric (Berry) Phase Method

Geometric phase method is the main mechanism to understand the working principle of
the CP state preserving focusing mirror. It allows to uniquely manipulate the wavefront of
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light by discrete phase elements, so in order to reshape the wavefront accurately, one needs
complete control over the wavefront of light, i.e. implement phase lag on the wavefront,
ranging from 0− 2π rad. We will see how geometric phase achieves this freedom of control
over the wavefront, as well as preserving the CP state.

First, let’s consider the representation of polarization by Poincaré sphere, given in
Fig. 2.4. Polarized light can be represented by a vector lying on the sphere, and each
axis represents different polarization states. A HWP changes the polarization state from
LHCP to RHCP, so the polarization vector moves from L to R. The polarization vector
can take any path on the sphere, and it is defined by the rotation of the HWP. Different
rotation angles can cause phase to evolve by following different paths, as sketched in the
figure. The distance of the path taken imparts global phase, which is called the geometric
phase [9].

Now, geometric phase will be derived mathematically. Consider a CP plane wave
incident on some transmissive optical element with rotational freedom about z−axis, as
given in Fig. 2.5 b.

It has two optical axes called ordinary and extraordinary axes. The two axes have
different effective refractive indices, so they cause birefringence. They are defined such
that at θ = 0 deg., the two axes are aligned with the x− and y−axes. A general Jones
matrix can be defined for this element, t̂ as

t̂ =

(
txx txy
tyx tyy

)
(2.12)

The components are the transmission coefficients where the first subscript refers to
the incident polarization and the second subscript refers to the output polarization. The
system is simplified such that txy = 0 and tyx = 0, so Ex and Ey are not coupled. Rotation
of the optical element will misalign its optical axes with the incident light polarization.
Therefore, Jones matrix of the optical element is transformed by rotation matrices. The
Jones matrix as a function of angle of rotation (θ) can be written as

t̂(θ) = R(−θ)
(
tx 0
0 ty

)
R(θ) =

(
cos θ sin θ
− sin θ cos θ

)(
tx 0
0 ty

)(
cos θ − sin θ
sin θ cos θ

)
(2.13)

where we have removed one subscript from transmission coefficients. Jones vector of
the incident light is given as êr/l = (x̂∓ iŷ)/

√
2 for two states of circular polarization. The
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Figure 2.5: A three step diagram explaining CP state preservation and geometric phase.
(a) The effect of reflection by a conventional mirror to the CP state. (b) The operation
of a HWP and the geometric phase arising from the rotation of the optical element. The
two axes of the element (ordinary, o, and extraordinary, e) are shown in the figure, which
are aligned with x− and y−axes at θ = 0. (c) Combining the cases in a and b, a mirror is
put halfway through the HWP. One round trip will combine the effects of the two cases,
resulting with CP state preservation and geometric phase. The reflected field is also derived
in text.
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Jones vector of the transmitted light (ê′) can be derived simply by multiplying the incident
Jones vector with the Jones matrix of the optical element.

ê′ = t̂(θ)êr/l =


tx cos2 θ + ty sin2 θ −(tx − ty) cos θ sin θ

−(tx − ty) sin θ cos θ tx sin2 θ + ty cos2 θ




1

∓i

 /
√

2

=


tx cos2 θ + ty sin2 θ ± i(tx − ty) cos θ sin θ

−(tx − ty) sin θ cos θ ∓ i(tx sin2 θ + ty cos2 θ)

 /
√

2

Now, the following trigonometric identities are applied:

sinx cosx =
sin 2x

2

sin2 x =
1− cos 2x

2

cos2 x =
cos 2x+ 1

2

The transmitted Jones vector can be written as

ê′ =


tx

(
cos 2θ + 1

2

)
+ ty

(
1− cos 2θ

2

)
± i(tx − ty)

sin 2θ

2

−(tx − ty)
sin 2θ

2
∓ i
[
tx

(
1− cos 2θ

2

)
+ ty

(
cos 2θ + 1

2

)]
 /
√

2

=


tx + ty

2
+

cos 2θ

2
(tx − ty)± i(tx − ty)

sin 2θ

2

−tx − ty
2

sin 2θ ∓ itx + ty
2
± itx − ty

2
cos 2θ

 /
√

2
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=


tx + ty

2
+
tx − ty

2
(cos 2θ ± i sin 2θ)

∓itx + ty
2
± itx − ty

2
(±i sin 2θ + cos 2θ)

 /
√

2

The trigonometric functions are isolated. Now, Euler’s formula e±ix = cosx ± i sinx
can replace the trigonometric part. Also, the component independent of θ can be separated
into another vector as summation. Jones vector becomes


tx + ty

2

∓itx + ty
2

+


tx − ty

2
e±i2θ

±itx − ty
2

e±i2θ

 /
√

2 =
tx + ty

2

 1

∓i

 /
√

2 +
tx − ty

2
e±i2θ

 1

±i

 /
√

2

ê′ = t̂(θ)êr/l =
tx + ty

2
êr/l +

tx − ty
2

e±i2θêl/r (2.14)

A RHCP light incident on some rotating optical element will have RH and LH compo-
nents depending on the transmission coefficient of the optical element. If (tx + ty)/2 = 1,
the transmitted light will consist of only the incident CP state. If (tx + ty)/2 = 0, the
transmitted light will change its CP state completely. The two cases can be compactly
written as

êt = t̂(θ)êr/l =

êr/l, if
tx + ty

2
= 1

ei2θêl/r, if
tx − ty

2
= 1

(2.15)

The second condition be implemented by setting tx = 1 and ty = −1 or vice versa. This
is equivalent to the operation of a HWP, where ty = −1 can be interpreted as eiπ phase
lag.

If the change of CP state due to reflection is also taken into account in Eqn. 2.14, it
can be rewritten as

êt = t̂(θ)êr/l =
tx + ty

2
êl/r +

tx − ty
2

e±i2θêr/l (2.16)
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Figure 2.6: Diagram of five optical elements demonstrating refraction by geometric phase
method. The optical elements are rotated by steps of π/4 rad., so they induce phase to the
wavefront by an amount of 2θ. The discrete phase levels combine to make a continuous
wavefront.

where the CP state of the output is switched. Another property that arise from this
system is the phase factor in the second term of Eqn. 2.16. The phase ±2θ is gained by
the same CP state of the incident light and is defined as the geometric phase:

φ = ±2θ (2.17)

This is the overall effect of geometric phase when these optical elements are also in-
corporated with a mirror, such that they act as a HWP whilst changing the direction of
propagation of light. The process is summarized in Fig. 2.5.

For a system with a single optical element, this is a global phase on the CP state and
cannot be distinguished by itself. Instead, consider a system with multiple but identical
phase elements given in Fig. 2.6, where each phase element is rotated by a different θ.
There will be phase difference at the output of each phase element. Therefore, wavefront
of light can be manipulated with complete freedom as the phase elements can be rotated
by a range of 0− 2π rad., giving phase manipulation of range 0− 4π rad., which is much
larger than the necessary 0− 2π rad. phase range for complete manipulation of wavefront.

In the given system, refraction of light is demonstrated. The incident plane wave
goes through the phase elements, each rotated between 0 − π rad. by increments of π/4
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Figure 2.7: Ray and wavefront diagram of light being focused by a concave glass lens.
Different positions on the lens cause light to propagate through different thicknesses of
light, changing the shape of the wavefront to spherical.

as shown, and gains phase by increments of π/2, resulting with a phase gradient. The
wavefront becomes a step function right after the optical elements, but they interfere to
create a smooth planar wavefront propagating at an angle relative to the incident light.

This idea of wavefront shaping is identical to how lenses operate. Consider a plane
wave incident on a concave lens surrounded by air, as shown in Fig. 2.7. The incident
wave propagates in the +z direction, and its phase is constant in the x − y plane. As
light enters the lens, which is made up of material with refractive index nm > nair, the
propagation slows down to c/nm, therefore the phase gained by the wave increases, relative
to propagation in air. However, the thickness of the lens is the largest at the center, d1,
and decreases towards the edges, eg. d2. The retardation of the wave is weaker at the tips,
compared to the center. As the plane wave goes through the lens, its phase structure does
not remain planar, as every position in the x− y plane goes through different thickness of
material, resulting with a unique wavefront. This is a spherical wavefront and expressed
by Eqn. 2.18 in the x− y plane for a concave lens, where f is the focal length and λ is the
wavelength.

ψ(x, y) =
2π

λ

(
f −

√
x2 + y2 + f 2

)
(2.18)

Similarly, a planar focusing lens can be constructed by applying the wavefront shaping
technique using the rotation of phase elements. If the phase elements are rotated according
to the spherical wavefront expression given in Eqn. 2.18, the structure acts as a focusing
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lens for an incident plane wave. Simply by adding a reflecting surface, the focusing lens
can also operate as a mirror.

Surely, this implementation of wavefront shaping is different than the wavefront shaping
induced by a lens made up of continuous material (eg. glass). The phase elements induce
a discrete phase to the wavefront, which combine to create the final wavefront. Huygen’s
principle [25] states that light can be represented by superposition of light emitted from
point sources if every point on the wavefront was acting like a point source. With metasur-
faces consisting of discrete phase elements, the wavefront is in fact formed by superposition
of light leaving the phase elements. Intuitively, a small number of phase elements cannot
describe a complicated wavefront. The number of phase elements refer to the discrete
phase levels in the phase range 0− 2π rad. representing the wavefront.

Consider the refraction example discussed above. The wavefront of refracted light will
be more distorted if only two phase elements are used instead of four, and same comparison
can be made for four or more phase elements. Aieta et al. [2] have worked on quantifying
the aberrations of flat focusing lenses caused by finite number of phase elements. They have
defined a wave aberration function (WAF) which is the difference between the wavefront
and the aberration-free wavefront. When 〈WAF 〉2− 〈WAF 2〉 < λ/14, where the brackets
denote the mean value, diffraction is more dominant for the quality of imaging and therefore
aberrations are negligible. They have calculated that this condition is satisfied for number
of phase elements as small as four for a flat lens. Our mirror structure should have much
more than four phase elements covering the phase range, therefore the discreteness should
not distort the wavefront.

2.4 Dielectric Waveguides as Half-Waveplates

As we have established in Section 2.3, a birefringent phase element that will act as a HWP is
a necessary component of our metasurface for implementing geometric phase. Rectangular
dielectric waveguides (the nanopillars in the mirror design) can be used as the required
phase elements. Dielectric materials with refractive indices larger than the surrounding
refractive index can be used as waveguides by a phenomena called total internal reflection
(TIR). TIR is the complete reflection of light as it travels from a high to low index material
and is the working mechanism of fiber optic cables.

Consider the system in Fig. 2.8, where the layers are isotropic media with associated
refractive indices. Light enters the system through layer 1, and reaches the interface
between layers 1 and 2. Snell’s Law describes the angle of refraction as light travels from
layer 1 to layer 2, and is given in Eqn. 2.19.
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Figure 2.8: Total internal reflection (TIR) in a two-material structure. The yellow and
green regions have refractive indices n1 and n2 respectively, where n1 > n2. TIR occurs
for incident angles greater than the critical angle θc. TIR allows the propagation of light
through the yellow region.

n1 sin θ1 = n2 sin θ2 (2.19)

For n1 > n2, there exists some angle of incidence, called the critical angle θc, at which
the angle of refraction is 90 deg. Light incident on the interface by an angle greater than
the critical angle will undergo complete reflection, i.e. TIR. The critical angle can be
calculated from Snell’s Law, and is given as

θc = arcsin
n2

n1

(2.20)

Therefore, high refractive index materials can confine light within the structure and
can be used as waveguides.

A property of dielectric waveguides that is useful here is the dependence of refractive
index on the size of the waveguide for sub-micrometer length scales. This relationship was
analysed computationally using Lumerical’s MODE analysis tool which calculates spatial
profile of waveguide modes by solving Maxwell’s equations at a cross-section of a waveguide.
The simulations also return the effective refractive index experienced by that particular
mode. Details of MODE simulations with Lumerical software can be found in Appendix
A.

Let’s consider a system where a square-shaped waveguide with n = 3 is surrounded by
free space. The variation of neff by a change in D for such system is given in Fig. 2.9.
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Figure 2.9: The effective refractive index of the fundamental mode of square-shaped
waveguides of sizes varying from 100nm to 600nm is given. The four inset figures are the
heat maps of the modes for sizes D = 100nm, D = 200nm, D = 300nm, D = 400nm.

There is a clear variation of neff between given waveguide sizes, and neff → n as
D →∞. The distribution of electric field intensity of the fundamental mode at the cross-
section of the waveguide is also given in the inset figures for certain values of D that are
marked on the figure. Typically, the fundamental mode looks like the distributions in
D = 300nm and D = 400nm, which is a Gaussian function centered within the waveguide.
If the width of the waveguide (D) is very short (eg. less than 100nm), the effective refractive
index reaches the index of the surrounding material because propagating modes are not
supported.

Phase acquired by the propagating light can be expressed as

ΦWG =
2π

λd
neffH (2.21)

where λd is the operating frequency, neff is the effective refractive index, and H is the
length of the waveguide. Now, consider the same system, but the waveguide is rectangular-
shaped with unequal sizes in x and y, where we define the width of two sides W1 and W2
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Figure 2.10: The fundamental x-polarized mode (a) and the fundamental y-polarized
mode (b) of a waveguide with dimensions 100nm× 300nm is plotted as a heat map, where
the brighter regions correspond to higher intensity. The cross-section of the waveguide is
outlined and the associated effective refractive index of the mode is given.

respectively.

Taking W1 = 100nm and W2 = 300nm, the intensity distribution of fundamental
modes of Ex and Ey are given in Fig. 2.10 a and b respectively. In a, light is guided from
the outside of the waveguide due to its small size, while in b light is inside the waveguide.
The corresponding effective refractive indices are n1

eff = 1.044 and n2
eff = 1.726 for Ex and

Ey polarizations. The asymmetry of the waveguide reduces the neff value associated with
a square-shaped waveguide of same size, which was found to be 1.0139 for D = 100nm
and 2.447 for D = 300nm. However, there is a clear difference between the two effective
refractive indices. Ex and Ey components will gain different phases, which means the
waveguide acts as a birefringent element. A HWP can be constructed if the phase difference
gained by the two polarization states differ by π rad. This condition can be expressed as

∆ΦWG =
2π

λd

∣∣n1
eff − n2

eff

∣∣H = π (2.22)

Rectangular waveguides can operate as HWP’s, and due to their shape, rotating them
to induce geometric phase is not challenging. Therefore, they are good candidates for the
dielectric metasurface phase elements.

We have assumed no reflection as light travels from air to the waveguide, but there
will be some reflection described by Fresnel coefficients (Eqn. 2.10). For example, as
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light travels from air to glass (n = 1.5), 4% of light is reflected for both polarizations,
assuming normal incidence. Higher values of n will cause larger reflection. For example, if
our material has n = 3, the amount of light getting reflected becomes 25%, and rp and rs
will have a stronger dependence on the angle of incidence. High amount of reflection can
interfere with the phase transmitted light acquires. In order to account for the reflected
light, waveguide dimensions are set when the net electric field at the output has π phase
difference.

2.5 Fabry Pérot Cavity

2.5.1 Cavity Parameters

A simple cavity can be constructed by positioning two parallel mirrors apart by a distance
d, so that light is confined between the two mirrors. This structure is called a Fabry Pérot
cavity. Let’s consider the system in Fig. 2.11 a. The mirrors have complex reflectivity
coefficients r1 and r2 and transmission coefficients t1 and t2. Light that transmits into the
cavity will either leave the mirror via mirror 2, or reflect from mirror 2 for a round trip.
There will be additional phase shift of ei2mkd for m number of round trips. Therefore, in
the transmission side, there will be field components with m = 1, 2, 3.... We would like to
find the transmission coefficient T , so we can write down the field transmitted though the
cavity as

ET = E0t1t2 + E0t1(r2r1e
i2kd)t2 + E0t1(r2r1e

i2kd)2t2 + ... (2.23)

= E0t1t2
(
1 + (r2r1e

i2kd) + (r2r1e
i2kd)2 + ...

)
(2.24)

=
E0t1t2

1− r1r2ei2kd
(2.25)

In the final step, the property of geometric series is used with the assumption r1r2e
i2kd <

1, which should hold for all possible values of r1 and r2. We will only consider the case
where the two mirrors have the same reflectivity and transmission, so r1 = r2 = r and
t1 = t2 = t. The reflection of one mirror is defined as R = r2. The transmission coefficient
for the whole system is then given as

Tc =

∣∣∣∣ETE0

∣∣∣∣2 =
1

1 +
(
2F
π

)2
sin2(kd)

(2.26)
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Figure 2.11: (a) Fabry Pérot cavity diagram where the two mirrors have reflection and
transmission coefficients r1, t1 and r2, t2. The cavity has the size d and electric fields
corresponding to incident, reflected and transmitted light are given in the figure. (b) The
transmission through the cavity is given for different values of finesse.

where F is the finesse of the cavity, expressed as

F =
π
√
R

1−R
(2.27)

Finesse depends only on the reflection coefficient, so it quantifies how much light is
confined within the cavity. The transmission spectrum for different finesse values are given
in Fig. 2.11 b. The peaks correspond to a transmission of 1, regardless of r and t, but the
minimum transmission depends on r and t. The peaks occur when the forward propagating
light destructively interferes with the backwards travelling light before the first mirror and
constructively interferes after the second mirror. This happens when the optical path
length (size of the cavity multiplied with the refractive index of medium between mirrors,
1 in this case) between transmitted light through the first mirror and the light reaching
the first mirror after one round trip is an integer multiple of the wavelength, so it depends
on the cavity size.

Consider the electric field as it travels through a round trip in the cavity, E(t). If the
medium between the mirrors are free-space and mirrors have reflection coefficients r, then
the electric field after one round trip is reduced to

E(t1) = E(t = 0)eiω0t1r2 (2.28)
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We can also define a quantity called the quality factor (Q) of a cavity as

Q = 2π
Optical energy stored in the cavity

Optical energy lost in one round trip
(2.29)

An alternative definition related to the broadening of the cavity resonance frequency
is Q = ω0/∆ω, where ω0 is the resonant frequency of the cavity and ∆ω is the full-width
at half-maximum (FWHM) of the resonance. If the cavity is completely lossless, ∆ω → 0
and Q→∞. However, any physical cavity will have some loss mechanism due to less than
unity reflection, material loss, or light escaping from the cavity by other means etc. The
quality factor is another quantity to describe the performance of the cavity.

For a lossy cavity, the electric field inside the cavity evolves by the following expression

E(t) = E(t = 0)e−ω0t/2Qeiω0t (2.30)

The second exponential term is the oscillatory evolution over time, but the first expo-
nential term describes the decay over time. The decay rate is ω0/2Q, which is inversely
proportional to the quality factor. The two expressions for the electric field as a function
of time (Eqn. 2.28 and 2.30) can be equated at t1, i.e. time for one round trip, to find an
expression for the quality factor.

r2 = e−ω0t1/2Q → 2 ln r2 = −ω0t1/Q → Q =
−ω0t1
ln r4

(2.31)

Time of one round trip can be written as t1 = 2d/c. Putting this into the expression,
the quality factor for this system can be written as

Q =
−2ω0d

c lnR2
(2.32)

Finally, we can define the mode volume of a cavity as

V =

∫∫∫
V
ε(r)|E(r)|2 d3r

max [ε(r)|E(r)|2]
(2.33)

The numerator is the integral of the intensity within the cavity, and the denominator
is the maximum intensity. Mode volume directly depends on the size of the cavity in all
axes, as well as having high intensity due to confinement of light.
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Figure 2.12: Cavity stability curve, where the blue region is considered to form a stable
cavity. Three cavity types are given in the figure at various regions of the curve.

2.5.2 Cavity Stability

When constructing a cavity, it is important to consider the stability, i.e. is light truly
confined within the cavity? For example, the Fabry Pérot cavity given in Fig. 2.11 has
planar mirrors. This configuration is very sensitive to angular misalignments of the mirrors,
and light can escape the cavity by a significant amount in such case. One option is to
replace planar mirrors with concave mirrors. Diagram in Fig. 2.12 shows the region of
stable cavities as a function of mirror and cavity parameters. The g parameter is given
as 1 − d/r for each mirror, where r is the radius of curvature. r is related to the focal
length as r = 2f , so we redefine gi = 1− d/2fi. The red dashed line represents symmetric
mirrors, g1 = g2. As marked on the figure, planar mirrors are right at the edge of the
stability region. Confocal cavity, where d = 2f , lies at the center of the region. One can
construct a confocal cavity with some cavity size d0, then change the cavity size by small
amounts. This will allow the cavity to lie along the dashed line but slightly off from the
center in the stability curve, so that the cavity will be stable. As the cavity size and focal
length of mirrors are related, the possible cavity sizes need to be considered for the design
of the individual mirrors and their focal lengths.
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Table 2.2: List of relevant Jones vectors and matrices

Polarization Jones Vector

H(x)

(
1
0

)
V (y)

(
0
1

)
D

(
1
1

)
/
√

2

A

(
1
−1

)
/
√

2

L

(
1
i

)
/
√

2

R

(
1
−i

)
/
√

2

Optical Element Jones Matrix

Linear (x) Polarizer

(
1 0
0 0

)
Linear (y) Polarizer

(
0 0
0 1

)
QWP

(
1 0
0 ±i

)
HWP

(
1 0
0 −1

)
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Chapter 3

Early Design Analysis

In this chapter, we will put together the ideas that were introduced previously. In Section
2.3, it was shown how geometric phase method can be applied to achieve the two unique
characteristics of the mirror: circular polarization (CP) state preservation and focusing.
In Section 2.4, the working principle of dielectric waveguides acting as a HWP to apply
the theory of geometric phase was discussed. Now, we can develop the design of a CP
state preserving metasurface focusing mirror. First, the key points and choices that need
to be made will be explained. Second, a nanopillar design will be introduced, and its
performance will be discussed. This design is an early version of the final product and has
some performance issues. Finally, the diagnosis of these issues will be studied, which leads
to Chapter 4, where the final product and its results are listed. The goal of this chapter
is to introduce how one can develop a metasurface design and to highlight what kind of
design choices can result with performance reduction. Throughout the chapter, simulations
are run in Lumerical’s Finite Difference Time Domain (FDTD) method unless otherwise
stated. Simulation details are given in Appendix B and the code used in Appendix C.

3.1 Construction of the Unit Cell

In order to develop the design for this metasurface mirror, a step-by-step approach should
be taken.

1. The initial step is to decide what the layers will be, materials used for the layers and
the operating wavelength of the device. For this project, the operating wavelength
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Figure 3.1: Reflectivity spectrum of aluminium (Al), gold (Au) and silver (Ag).

was chosen to be 850nm because the product is expected to be used in experiments
involving cesium atoms, which have the D2 transition line at 852nm [47]. The main
layers are the mirror and dielectric layers. The mirror layer executes the reflection of
light. The two good candidates for the mirror are Bragg mirror, which is a periodic
structure of dielectric layers that can be constructed for any operating wavelength, and
metallic mirror, which is a thin layer of metal that has low absorption at near-infrared
wavelengths. In order to reach high reflectivity, a Bragg mirror needs high periodicity
(∼ 20), which would make the total size in the order of micrometers. Therefore, for
its simple and compact structure, metallic mirror is chosen. The most common metals
used for reflection purposes are aluminium, silver and gold. Metallic sheets of thickness
100nm are simulated. The reflection spectrum for each material are given in Fig. 3.1.
Among the three metals, gold and silver have the highest reflectivity at 850nm, so silver
is chosen with R = 0.987.

The dielectric layer consists of a rectangular nanopillar (i.e. the phase element) that
is a HWP and has rotational freedom, and its material need to be determined. The
final mirror should be as lossless as possible, so the main criteria is low extinction ratio.
The extinction ratio is the imaginary component of refractive index and it determines
the decay in the field as light propagates through the material. In literature, dielectric
metamaterials are commonly devised using silicon nitride (SiN, n ∼ 2) [58, 16], titanium
dioxide (TiO2, n ∼ 2.4) [29, 23] and amorphous silicon (a-Si, n ∼ 3.6) [4, 3]. The
extinction ratios of silicon nitride and titanium dioxide are negligible while amorphous
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silicon has a non-zero extinction ratio according to Pierce et al. [39], but has zero
extinction ratio for wavelengths > 670nm according to Arbabi et al. [3]. Considering the
extinction ratio and the practicality of their fabrication, SiN is chosen for the dielectric
layer.

2. The parameters of the unit cell design (except for W1 and W2) need to be determined.
The aspect ratio of nanopillars (ratio of width to height) should be large enough so that
nanopillars are not too tall or too thin, as nanoscale features with high aspect ratios
are difficult to fabricate. Also, nanopillars should be tall enough for its birefringence to
implement significant phase differences, which is the H term in Eqn. 2.21. Therefore,
the height is fixed at 500nm. The periodicity of the structure (U) is limited by the
operating wavelength from above (as described in Section 2.1), so U < 850nm. Also,
shorter U allows a higher numerical aperture of the mirror. U is limited from below by
fabrication limitations of nanopillar sizes. As a starting point, U is set to 500nm.

Finally, the thickness of the metallic layer needs to be determined. The reflectivity and
transmission of the mirror can be varied by changing the thickness of the layer. The
reflectivity and transmission of the metallic layer can be calculated by matrices where
the reflected and transmitted light are related to the incident light by a matrix.

Consider three regions with refractive indices n1, n2 and n1 (see Appendix D for the
diagram). The three regions can be interpreted as air, metallic layer, and air again for
this case. Light is incident on the right and travels through the three regions in order.
The electric field in the first region can be written as E1 = A1e

−ik1x + B1e
ik1x where

k1 = 2πn1/λ and A1 and B1 are the coefficients of forward and backward (reflected)
travelling waves respectively. Similarly the electric field in the third region can be
written as E3 = A3e

−ik1x where A3 is the coefficient of the forward travelling wave
(transmitted). There is no B3 because there is no backwards-travelling light from the
third region. The coefficients are related by a matrix M such that(

A3

0

)
= M

(
A1

B1

)
=

(
M00 M01

M10 M11

)(
A1

B1

)
(3.1)

The components of the matrix and the derivation of the matrix can be found in Appendix
D. This expression is equivalent to two equations where the unknowns are A3 and B1,
since the matrix elements are known and A1 is the component of the incident field. The
reflectivity is equal to

R =

∣∣∣∣B1

A1

∣∣∣∣2 =

∣∣∣∣M10

M11

∣∣∣∣2 (3.2)
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Figure 3.2: Reflectivity (red) and transmission (blue) of the silver metallic layer over
thickness of the layer, calculated by matrices. The transmission is given in logarithmic
scale.

Similarly, transmission is expressed as

T =

∣∣∣∣A3

A1

∣∣∣∣2 =

∣∣∣∣M00 −
M01M10

M11

∣∣∣∣2 (3.3)

Using these expressions, the reflectivity and transmission of the metallic layer is cal-
culated for varying thicknesses. The results are given in Fig. 3.2. Although highest
reflectivity is desired for strong light-matter interactions, a non-zero transmission is re-
quired to couple light into the cavity. Therefore, the thickness is set to 50nm. The
associated reflectivity is 97.2% and transmission is 0.8%. The remaining 2% is lost in
the structure. The final unit cell structure is given in Fig. 3.3.

3. Now, W1 and W2 are left to determine the unit cell structure of the mirror design.
The nanopillars are expected to induce a π rad. phase difference between Ex and Ey
to act as HWP’s. First, let’s determine if the nanopillars induce the required phase
difference by a proof-of-concept simulation. A periodic structure of the given unit cell
with already-determined parameters is built, except the metallic layer is build up by a
Perfect Electrical Conductor (PEC), which is a built-in structure to Lumerical that acts
as a perfect metallic mirror to make sure no unwanted resonances or excitations within
the metallic layer occur. Light is incident on the structure from above and is given as
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Figure 3.3: Unit cell design of the metasurface mirror. The dielectric nanopillar is SiN,
the spacer is SiO2 and the mirror is silver. On the right, a top view of the unit cell is given
to define the rotation angle of nanopillars.

Ei = E0e
i(kz−ωt)

(̂
i + ĵ

)
(3.4)

It is linearly polarized, so it does not have relative phase difference between Ex and
Ey. After reflection, both components of the electric field are expected to have gained
certain phase, depending on the shape of the nanopillar. The nanopillar is first set to
have square cross-section, so W1 = W2 = 100nm, and W2 is increased while W1 is
kept constant. The phases of Ex and Ey, along with their differences are plotted in Fig.
3.4.

As expected, at W2 = 100nm the phase difference is 0. As W2 is increased, Ey reaches
a phase of 0.5π rad. However, the phase of Ex also increases to a phase of 0.1π rad. In
Section 2.4, it was shown that a change in size in one axis can slightly affect the neff
experienced by the electric field component in the other axis. This is the reason behind
the increase in phase of Ex, even though W1 is kept constant. Regardless, we observe
a clear increase in the phase difference as the structure becomes more asymmetric. It
must be noted that the phase difference is only 0.4π rad., which is much lower than the
expected π rad. phase. The index of SiN, n = 2, is quite low to achieve large phase
difference.

In order to reach the required phase difference, U is gradually increased in small steps.
At each U , possible ranges of W1 and W2 are scanned over by simulating the structure
and extracting the phase difference. A higher value of U allows a better contrast of
nanopillar widths, achieving higher phase differences. Finally, nanopillar dimensions
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Figure 3.4: The results of the proof-of-concept simulation where W2 of the nanopillar
is increased, starting from W2 = W1 = 100nm, where U = 500nm. The nanopillars are
made of silicon nitride with refractive index n = 2. The phase gained by Ex and Ey are
shown in red and blue respectively, along with their difference (dashed line).

that impart π rad. phase difference is found: W1 = 205nm, W2 = 635nm and U =
710nm. This concludes the unit cell design.

4. The final step is to construct the mirror using the unit cell design that is determined. It
was established in Section 2.3 that rotation of optical elements impart geometric phase
by the relation φ = 2θ. To construct a focusing mirror, the nanopillars need to be
rotated following the spherical wavefront function given in Eqn. 2.18. This function is
the phase distribution of the wavefront in the x − y plane, given the light propagates
in the z direction. The nanopillars are rotated according to their positions (x, y), but
there is still an unknown, which is the focal length f of the mirror being constructed.
The focal length is determined freely depending on the application and considering the
cavity size to satisfy stability condition explained in Section 2.5.2. The construction
and analysis of a mirror will be discussed in Chapter 4.
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Figure 3.5: Reflectivity (blue), transmission (orange) and loss (green) of the unit cell
structure are given over nanopillar angles.

3.2 Unit Cell Simulation Results

Now, the design is analysed for CP state preservation and geometric phase. While we
maintain the infinite crystal structure of the unit cell design, the orientation angle of the
nanopillar is swept from 0 to 180 deg. (equivalently 0 to π rad). This range is sufficient
to cover the required 0− 2π rad. geometric phase. For this analysis, the incident wave is
changed to RHCP, given in Eqn. 2.8. The reflection and field information are recorded
after reflection. The analysis includes reflection, transmission, the amount of RH and LH
component after reflection, and the phase acquired by the RH component. Ideally, no LH
component should be detected at the output.

The design gives a phase difference of 3.142 ≈ π rad. and a reflectivity of R = 0.944 at
λ = 850nm and θ = 0 deg.

Reflectivity (R), transmission (T ) and the amount of loss is given in Fig. 3.5. The loss
is defined as 1− (R+ T ). Due to the symmetry of the structure, nanopillars oriented at θ
should have the same result at θ + 90deg. The reflectivity, transmission and loss pattern
of this structure for the first 90 deg. is repeated in the second half of the data. High
reflectivity is maintained at low angles, but especially between 25 and 70 deg., reflectivity
drops significantly to 65%. The energy lost does not get transmitted but is lost inside the
structure. Transmission is close to ∼ 0.8% with insignificant variations.
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Figure 3.6: Right handed (RH) purity is shown by the green region, and left handed
(LH) component is the yellow region by percentage over nanopillar angles. The blue curve
shows the geometric phase on RH component, φRH , which should satisfy φ = 2θ. The data
for RH purity is given in the left y−axis and the data for geometric phase is given in the
right y−axis.

The amount of RH component preserved upon reflection has an equal significance to
having high reflectivity. Any CP state impurity, i.e. LH component, will cause some
amount of light to be lost. Now the same simulation results are analysed for the CP state
at the output. The reflected light is separated into the RH and LH components, and their
intensity and phases are calculated. A quantity called RH purity is defined as the intensity
of RH component relative to the intensity of the output field. This implies the following
normalization

|ERH |2 + |ELH |2 = |Eout|2 (3.5)

where |ERH(LH)|2 is the intensity of the RH (LH) component and |Eout|2 is the intensity
at the output. This allows the separation of material loss and impurity of CP state.

In Fig. 3.6, the purity and phase of the RH component is given in green and blue
respectively. The x−axis is given in the unit of radians, so that the comparison with
the geometric phase will be clearer. The geometric phase is normalized such that at
θ = 0, φ = 0. Similar to the previous result, the design performs well at 0 rad. However,
there is a 4% decrease in purity at angles 0.1π, 0.4π... rad, and a strong dip to 70% at 0.25π
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rad. (45 deg). As explained in Section 2.3, the rotation of nanopillars (x−axis) and the
geometric phase (blue curve) should have 1:2 relationship, following Eqn. 2.17. Overall,
the 1:2 mapping is observed. However, the relation is not linear as expected, with the
imperfection recurring at the 0.25π rad. position.

Although the design performs well at θ = 0 deg., its performance decreases significantly
as the nanopillars are rotated, so the design is not suitable for the final product. This
performance issue is diagnosed in Section 3.3, and it will lead us to the better-performing
design in Chapter 4.

3.3 Problem Diagnostics

There are two hypotheses to the cause of the problem: Plasmonic excitations inside the
silver layer that result in absorption, and cross-coupling between adjacent nanopillars that
disturbs the propagation mode.

3.3.1 Absorption in Metal

The first proposed issue is the loss due to absorption in the metal. First, all the layers in
the structure are covered with 2D monitors that record the transmission of light through
the surface covered by the monitor. Therefore, the amount of light going in and coming
out of all the layers are measured. The source of the 35% loss in the structure reveals itself
in the metallic layer.

For wavelengths greater than ∼ 400nm, metals have high reflectivity. However, a small
amount of light gets absorbed as the light excites electrons. According to the Drude-
Sommerfeld model describing metals [36], the electrons in the metal are not bound, i.e.
free to move around, and their resonance frequency is at plasma frequency ωp, at which the
absorption should be maximum. For silver, the wavelength corresponding to the plasma
frequency is 130nm [11], which is much shorter than the operating wavelength. The amount
of absorption of the silver layer is found as 2% at 850nm without the nanopillars. However,
the field distribution arising from the presence of the nanopillars can result in higher losses
compared to a simple silver layer.

The unit cell structure is simulated where the nanopillars are oriented at 0 deg. first,
then at 45 deg. The magnitude of Poynting vector through a cross-section of the structure
in the x − z plane, where y = 0nm is recorded for both cases. Poynting vector is defined
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Figure 3.7: The distribution of the Poynting vector magnitude in the x− z plane of the
unit cell when the nanopillar is oriented at 0 deg (left) and at 45 deg (right). The outline
of the unit cell structure and angular orientations of nanopillars are sketched on the figure.
The associated loss through the structure for each nanopillar orientation is also given.

as the directional electromagnetic energy flux [22], and is given as S = E ×H where H
is the magnetic field vector inside the material. It quantifies the electromagnetic energy
carried by the propagation of light at a given point. The distribution of |S| through the
cross-section of the structure is given in Fig. 3.7 for θ = 0 deg. (a) and θ = 45 deg. (b). At
θ = 0 deg., the Poynting vector has a ring shape, and the power is distributed somewhat
evenly within the nanopillar. However, at θ = 45 deg., at which the strong loss occurs, the
Poynting vector is very strong at the dielectric-metal interface. Although the magnitude of
the distribution is redundant, there is one order of magnitude difference in the two cases.
Poynting vector inside the metal is also non-zero near the highest energy density region
for both cases, but the energy is 10 times larger for the second case. This can excite the
electrons and phonons more strongly and cause larger amounts of loss.

The metallic layer is replaced with PEC to analyse the performance of the structure
by eliminating the metallic effects, and the same simulations are run. The results (solid),
along with the previous results (dashed) are given in Fig. 3.8. In Fig. 3.8 a, the loss
disappears and the reflectivity is 100%. This means that the strong decrease in reflectivity
is due to the metallic absorption and that there is no absorption in the dielectric layer. In
Fig. 3.8 b, the strong, narrower dip is lost, but a weaker, wider loss in the RH component
still exists. This is an indicator that it is not explained by the metallic absorption, but by
some other phenomena. The geometric phase acquired by the RH component also improves
and is very smooth, and satisfies the relation φ = 2θ.
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Figure 3.8: (a) Reflectivity (blue), transmission (red) and loss (green) of the unit cell
structure over rotation of nanopillars between 0 and π rad. (b) RH purity (green) and the
geometric phase acquired by RH component (blue) of the unit cell structure over rotation
of nanopillars between 0 and π rad. The solid curves correspond to the case where the
metallic mirror is replaced with PEC, and dashed curves are the results with the silver
mirror.

3.3.2 Cross-Coupling

The second proposed cause of impurity is the cross-coupling between nanopillars that act as
waveguides, which is called evanescent waveguide coupling (EWC). EWC occurs when two
waveguides are in close proximity and the field inside one waveguide leaks into the second
waveguide. Usually, this condition is taken advantage of to transfer light between waveg-
uides, most commonly to excite ring resonators [12]. Here, this phenomena is unwanted,
and the extend of its effect is analysed.

Let’s call the modes that are travelling through the nanopillars the propagation mode,
which is independent of the surrounding waveguides, and let’s call the mode that exists
due to a neighbouring waveguide the coupled mode. Using Lumerical’s MODE analysis
tool, the two modes are simulated. The simulation details can be found in Appendix A.
In Fig. 3.9 a, the system under consideration is sketched. The dark blue region is the
cross-section at which the modes are simulated. The waveguides have the dimensions of
the nanopillars, which has a separation of 75nm. Fig. 3.9 b shows the intensity profile
of the coupled mode. The field is intense at the center of the two waveguides, but also
the region between them is excited. This is clearly a result of having multiple nanopillars.
Fig. 3.9 c shows the intensity profile of the propagation mode, where the field is most
intense at the center and the intensity decays towards the end of nanopillars. The two

38



,-,7

4
5

,-,8

'/007 = 1.544

'/008 = 1.520

4
5

:
5

a. b.

waveguide	2

waveguide	1

c.

,;<

Figure 3.9: (a) Simulation setup of MODE analysis of two waveguides representing
nanopillars in the metasurface design. The dark blue region is being simulated, and has size
2U × U . The modes supported in the shaded region are calculated. (b) The fundamental
x−polarized mode profile (coupling mode) is plotted, and the associated neff is given. (c)
The first higher order x−polarized mode profile (propagation mode) is plotted, and the
associated neff is given.

fields propagate independently (no EWC). In both cases, the field is x polarized.

The coupled mode has a different neff than the propagation mode, and it is a function
of separation of nanopillars. As nanopillars get closer to each other, the difference between
neff of propagation and coupling modes become larger. This equivalently means more
coupling occurs as nanopillars are closer.

Assume a system with two waveguides in close proximity. The field is injected into the
first waveguide, while the second waveguide is empty. As light propagates through the first
waveguide, it also leaks into the second waveguide.

The power of light coupled into the second waveguide is given in Eqn. 3.6. Pc is the
power coupled to the second waveguide, P0 is the initial power injected, L is the length of
propagation inside waveguide, λ0 is the wavelength of the field, and ∆n is the difference
in neff of the propagation and coupled modes.
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Figure 3.10: The ratio of coupled power to initial power when two waveguides are placed
in close proximity. The solid line is the plot of Eqn. 3.6 and the dots are simulation data.
The orange dot is the nanopillar separation of the design. The minimum and maximum
waveguide separations are given below each data.

Pc = P0 sin2

(
πL∆n

λ0

)
→ Pc/P0 = sin2

(
πL∆n

λ0

)
(3.6)

∆n is a function of waveguide separation, and is directly obtained from MODE simu-
lations at wavelength of 850nm. The first and second dominant modes are given in Fig.
3.9 b and c respectively for nanopillar parameters (separation of 75nm). The mode in
b is the coupled mode, and the associated nceff is 1.544. The mode in c is the propaga-
tion mode, and the associated npeff is 1.52. ∆n in Eqn. 3.6 is the difference of the two:
∆n = |nceff − n

p
eff | = 0.024. This difference in the effective refractive indices of coupled

and propagation modes is found for various nanopillar separations and the corresponding
Pc/P0 ratio is calculated according to Eqn. 3.6. The results are given in Fig. 3.10. The
blue curve is the plot of Eqn. 3.6 and the dots are ∆n obtained from simulations for
various waveguide separations. The yellow dot is ∆n of the design nanopillar separation,
and the associated ratio is Pc/P0 ∼ 0.0085. In the rectangular lattice, one nanopillar
is surrounded by 4 others, 2 of which are along the longer side. Assuming the central
nanopillar is coupled to the 2 nearest nanopillars independently, we can extend our result
to 2 × Pc/P0 ∼ 0.017 = 1.7%. Taking the square root of this, 1.7% power coupling will
result with a 13% coupling for the fields.
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We concluded that in Fig. 3.8 b, the strong decrease in RH purity is due to the metallic
layer, but there is 10% purity loss when the structure is simulated with a PEC layer. This
can be explained by the excitation of the coupled mode disturbing the phase acquired by
the propagation mode.

It should be noted that the RH purity is closest to 100% at θ = 0 deg., but the distance
between the nanopillars are smallest in this configuration. The distance goes up to 370nm
when the nanopillars are oriented at 45 deg., which is significantly longer than 75nm at 0
deg. orientation. The analysis implies that the purity should be low when nanopillars are
closer together (i.e. at 0 deg.), and it should be high at 45 deg. This is not necessarily true.
The nanopillar dimensions are determined at 0 deg. orientation to provide π rad. phase
difference, where the effect of EWC is at maximum. Then, as nanopillars are rotated,
effect of EWC decreases, revealing the true phase difference induced by the propagation
mode which is not exactly π rad. Therefore, the impurity is caused by the inconsistency
in nanopillar separations, rather than EWC itself.

The large size of the nanopillars cause some EWC between nanopillars, which can
explain the RH impurities that exist when the structure is simulated with PEC. Either
the nanopillar sizes should decrease or the unit cell size should be larger. The latter is not
feasible because U is limited by the wavelength, so the former will be attempted.
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Chapter 4

Final Metasurface Mirror Design

The performance issues with the design in Chapter 3 was diagnosed to arise from accumu-
lation of the field at the dielectric-metal interface and the resulting plasmonic loss inside
the metallic layer. Additionally, close proximity of the nanopillars contributed to evanes-
cent waveguide coupling, which was another factor to the poor performance of the design.
Following these outcomes, major improvements were made to the design. In this Chapter,
these improvements will be introduced, and the analysis of the improved design will be
presented. Furthermore, the full-sized mirror will be constructed by selecting the size and
focal length of the mirror, and its performance for CP state preservation and focusing will
be analysed by simulations. Then, we will discuss how to couple light inside a cavity built
by these mirrors. Finally, by extending the response of the mirror found in simulations nu-
merically for multiple mirror bounces, we will simulate the mode of the cavity, and observe
the effect of 15 roundtrips. Throughout the chapter, simulations are run in Lumerical’s Fi-
nite Difference Time Domain (FDTD) method unless otherwise stated. Simulation details
are given in Appendix B and the code used in Appendix C.

4.1 Updated Unit Cell

First, we discuss the updates made to the design. There are two major updates:

1. The main issue was found to be the accumulation of the field at the metal-dielectric
interface. The proposed solution is to introduce a spacer between the two layers, made
of a lossless material, to prevent the existence of the mode in Fig. 3.7 b. The material
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Figure 4.1: The distribution of the Poynting vector magnitude in the x − z plane of
the early mirror design, updated with a spacer. The two cases are for nanopillar angles
of 0 deg. (left) and 45 deg. (right). The outline of the unit cell structure and angular
orientations of nanopillars are sketched on the figure and the associated loss is given.

is chosen to be SiO2 because it has negligible loss, is robust, and is very flexible with
fabrication in the sense that it can be placed between metallic layers or dielectrics. The
thickness is set to 100nm and the new structure is simulated to check if the accumulation
has disappeared. The distributions of the Poynting vector for θ = 0 deg. and θ = 45
deg. are given in Fig. 4.1. Although the spacer region has high magnitudes of Poynting
vector, the loss is maintained at 5% as the nanopillars are rotated.

Later on, a more optimal spacer thickness has been found, but it was not incorporated
to the design. A spacer thickness that provides an optical path of λ/2 is predicted
to overcome the excitation of electrons in metal. For such optical path length, light
propagating towards and away from the metallic layer will have equal magnitude but
opposite direction of electric field, which will cause destructive interference. This will
reduce the intensity of light at the surface of the metallic layer, thus reducing the
electronic excitations. Therefore, the new proposed thickness is calculated by setting
the optical path length OPL = ntnew = λ/2. As light goes through a higher refractive
index material than air, it slows down. This causes the path taken by light to be
longer than the physical length of the material. Using the expression for OPL, the new
thickness is calculated as tnew = 297nm for n = 1.45. The simulations show that the
metallic loss is reduced to 2% when the spacer thickness is changed, so there is potential
improvements to the design. The nanopillar dimensions need to be altered slightly to
optimize the design. The new design is discussed in Appendix E.

This proposed solution (spacer with thickness of 100nm) fixes the accumulation of the
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Figure 4.2: The phase difference acquired in simulations is given over W2 ranging from
100nm to 400nm, where W1 = 100nm. This is repeated for different values of refractive
index. U = 500nm and H = 500nm.

energy at the boundary, and allows it to get distributed within the nanopillar. The
results of the simulation show that the phase difference is 0.81π rad., while we achieved
π rad. phase difference for the same structure without the spacer. The updated design
was further simulated for different W1 and W2, but π phase could not be achieved for
low refractive index. This leads to the second update.

2. It was shown that EWC has effects on the phase evolution of the field, which reduces the
purity of RH component. The cause of EWC is that nanopillars are in close proximity,
which is the result of using low index dielectric material. To understand the effect of
refractive index on phase difference by a small increase in nanopillar asymmetry, the
proof-of-concept simulation that was presented in Section 3.1 is repeated for different
values of refractive indices. The phase differences obtained from the simulations is given
in Fig. 4.2.

The blue and yellow curves, corresponding to refractive index of 2 and 2.4 do not reach
π rad. phase difference over the given domain of W2. The green and red curves, corre-
sponding to refractive index of 2.8 and 3.2 reach π rad. phase difference at reasonable
values of W2 that would give a nanopillar shape of good aspect ratio and long sepa-
rations. The resonance jumps observed in these two curves can be ignored as long as
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Figure 4.3: Experimental refractive indices of a-Si and Si. The real part is given in a,
and the imaginary part is given in b with logarithmic scale.

the nanopillar design is far from these parameters. These resonances are explained in
Zhan et al. [58]. Clearly, the refractive index of the nanopillars significantly affect their
birefringence, and a higher index material would allow smaller sized nanopillars.

The material is switched to amorphous silicon (a-Si), which has a measured refractive
index of 3.596 according to Arbabi et al. [3], and they have achieved a 0 extinction
coefficient (imaginary component of refractive index) with their fabrication techniques.
However, refractive index of this material highly depends on the fabrication techniques.
Therefore, my colleague from our group, Dr. Rubayet Al-Maruf, has characterized a-Si
and silicon (Si) that is deposited at University of Waterloo’s Quantum Nanofab, so the
simulation parameters will match the experimental parameters.

The experimental real and imaginary refractive indices are given in Fig. 4.3 a and b
respectively. The imaginary component is also called the extinction ratio.

The relevant wavelength is 850nm, so the data associated with this wavelength is listed
in Table 4.1. The imaginary part is crucial to the design because it causes decay in
the field and thus defines the amount of loss through the material. The decay can be
calculated analytically, so that the material loss is predicted before the simulations.
Recall that the magnitude of electric field with arbitrary polarization propagating in
the z direction is represented as

E = E0e
i(knz−wt) (4.1)

When the real and imaginary components are separated, this becomes
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E = E0e
i(knrz−wt)−knimz (4.2)

The last term in the exponential does not oscillate, but causes the decay of the field.

Now, consider the magnitude of the electric field at the output of a dielectric waveguide
of length L. The magnitude of the incident electric field is Ei, and the output electric
field is Eout. Eout is related to Ei by

Eout = Eie
−2πnimL/λ (4.3)

where k = 2π/λ. By rearranging the terms, we get the ratio 1− |Eout/Ei|2, that is the
intensity lost through the material:

Ilost = 1− |Eout/Ei|2 = 1− e−4πkL/λ (4.4)

For our structure, L is two times the height of the nanopillars, as light travels through
the nanopillars twice, so L = 1µm. By inserting the nim values from the experimental
data, the expected material loss is calculated. The last column of Table 4.1 is the
corresponding Ilost.

Table 4.1: Refractive Index and Corresponding Loss of a-Si and Si at 850nm

Material nr nim loss per µm

a-Si 3.018435 0.003752 5.4 %

Si 3.645301 0.002555 3.7 %

Both have similar amounts of losses, so, we choose a-Si considering it has a potential to
reduce the imaginary component with improved fabrication techniques.

Applying the changes to the unit cell design, the new design is given in Fig. 4.4. The
W1 and W2 are found similar to before, and the design successfully induces the π rad.
phase difference when nanopillars are oriented at 0 deg. at 850nm.
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Figure 4.4: Unit cell design of the metasurface mirror. The dielectric nanopillar is a-Si,
the spacer is SiO2 and the mirror is silver. On the right, a top view of the unit cell is given
to define the rotation angle of nanopillars.

4.2 Unit Cell Performance Analysis

Similar to Section 3.2, the infinite crystal structure of the unit cell is simulated by rotating
the nanopillars from 0 to 180 deg. to confirm the conservation of CP state, to verify the
relation between θ and φ and to identify the sources of loss. Here, there are two loss
mechanisms: material loss and CP state impurity. First is due to the energy dissipation
through the materials, and second is due to any LH component left at the output of the
structure. The structure is illuminated with a RHCP plane wave, and the reflected field
is recorded at the output. High reflectivity and 100% RH component at the output are
expected from the simulation results.

Fig. 4.5 shows the reflectivity (R), transmission (T) and loss of the structure when the
nanopillars are rotated covering 0 − 180 deg. about the z-axis. The results are constant
through the domain, with values R ∼ 89.5%, T ∼ 1% and loss∼ 9.5%. Here, only material
loss is observable, with 5.5% lost through the dielectric material and 4% lost through the
metallic layer, measured by monitors recording the transmission in and out of each layer.
The loss through the dielectric layer agrees with the calculated value, given in Table 4.1
as 5.4% per µm. The metallic loss of a silver sheet of thickness 50nm is 1.3% without
nanopillars, but it increases to 4%. One possible source of this increase is the 25% Fresnel
reflection from the dielectric layer (recall Section 2.4) which will cause light to undergo
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Figure 4.5: Reflectivity, transmission and loss of the unit cell design at λ = 850nm are
given over nanopillar angles θ.

many roundtrips within the spacer region, causing multiple reflections from the metal that
might lead to additional loss.

The output field is separated into RH and LH components to observe the RH purity,
which is defined as the percentage of RH component at the output by intensity, i.e. second
term in Eqn. 2.16. Same definition applies to LH component, i.e. first term in Eqn. 2.16.
This definition allows us to identify the success of CP state conservation while discarding
the material loss. The purities follow the same normalization condition in Eqn. 3.5.

The green curve in Fig. 4.6 a shows the percentage of RH component, while the regions
of RH and LH components are shaded in green and yellow respectively. 99.6% of the output
is RHCP, which confirms that structure is highly CP state preserving. The remaining 0.4%
contributes to overall loss as CP state impurity. The blue curve shows the geometric phase
gained by the RH component as θ is varied. The expected 1:2 relation is achieved by a
smooth linear curve. Any desired wavefront function can be constructed by rotating the
nanopillars by 2θ = ψ(x, y), where ψ(x, y) is a wavefront function, e.g. Eqn. 2.18 for a
focusing mirror. Fig. 4.6 b shows the same result for LH component. The yellow and green
regions are the inverse of the RH plot, but the phase is unique. Unlike the RH component,
LH component does not gain geometric phase and reflects as a plane wave. This agrees
with the Eqn. 2.16, where the coefficient of êl/r does not have the phase term. This should
not be confused with the −φ phase gained by an incident LH field. The mirror diverges
the incident LH field by −φ geometric phase, but LH component arising due to conversion
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Figure 4.6: (a) Right handed (RH) purity at the output is shown by the green region, and
left handed (LH) component is the yellow region over nanopillar angles. The normalization
of the terms is given on the figure. The blue curve shows the geometric phase on RH
component, φRH , which should have 1:2 ratio with θ. The units of θ is switched to radians
to highlight the ratio. (b) Same plot as a, but here LH purity and phase of LH component
is given.

Figure 4.7: Wavelength dependence of the design is given. RRH is the RH component of
the reflected wave, T is transmission and loss includes both the material loss and any LH
component that is reflected.

impurity does not experience geometric phase.
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Figure 4.8: Sensitivity analysis of the design to nanopillar dimensions W1,W2 and H.
(a) The 2D plot shows the RRH quantity for different combinations of W1 and W2, a
maximum of 15nm longer and shorter from the design parameters. (b) RRH quantity is
given for a range of nanopillar heights, a maximum of 15nm longer and shorter from the
design parameter.

Overall, the two sources of loss can be combined to define a new quantity for the overall
efficiency of the mirror, which is the reflected RH component relative to the incident wave:

RRH = |ERH |2 ×R = 89.1% (4.5)

The wavelength dependence of the structure is given in Fig. 4.7. RRH quantity (Eqn.
4.5) is used here to combine two plots, one for reflectivity and one for RH purity, and report
only the combined efficiency. The efficiency, defined as RRH , is maximum at 850nm, and
decreases as the wavelength deviates. The structure is not sensitive to small variations of
wavelength, but it is not a good fit for more broadband applications.

The performance of the device strongly depends on the dimensions of nanopillars, es-
pecially W1 and W2. In Fig. 4.2, the gradient of phase difference over W2 is significant
for higher refractive indices. The fabrication of the structure will have dimensional im-
perfections in the order of nanometers, which will effect the performance by deviating
the phase difference condition from π rad. To quantify this, unit cell simulations are run
with different combinations of W1 and W2 and the reflectivity and the electric field are
recorded. The resulting RRH (defined as Eqn. 4.5) is given in Fig. 4.8 a. Total reflectivity,
R, is constant throughout the whole domain, so the main source of loss is the reduction
in RH purity. A change in width will result with a different neff of the waveguide, so
HWP condition is not fully satisfied. The change in RRH as W1 deviates from 150nm is
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much smaller than when W2 deviates from 222nm. RRH decreases by more than 1% per
nm change of W2, while it decreases by less than 5% over a W1 change of 15nm. Recall
the neff plot in Fig. 2.9 for square-shaped waveguide with n = 3. Comparing this with
the structure here, it is clear that W1 lies within the small tail where the plot is close to
horizontal. Meanwhile W2 is at the region where the gradient of the plot is high. The
sensitivity to height of nanopillars is given in Fig. 4.8 b. The decrease in RRH is weaker,
so the fabrication errors of height is more tolerable compared to W1 and W2.

4.3 Construction and Analysis of the Metasurface Mir-

ror

Now we have a unit cell design which performs well under simulation conditions of the
infinite crystal of the unit cell. However, the real mirror lacks the symmetry where all the
nanopillars have the same angular orientation. Although breaking this symmetry should
not cause any performance issues, it needs to be verified. Therefore, we will attempt to
simulate the finite mirror structure and analyse whether the mirror maintains the CP state
conservation and implements the focusing of light.

4.3.1 Unit Cell to Full-Sized Mirror

First, let’s discuss the real-sized mirror, which will have 100µm long diameter. The nanopil-
lars are rotated according to the spherical wavefront function given in Eqn. 2.18. The only
unknown in the equation is the focal length. To determine the focal length, three things
need to be considered if a cavity will be formed by the mirrors: minimizing the size of the
cavity, numerical aperture and cavity stability. According to the cavity stability condition,
a short cavity size corresponds to a short focal length. One commonly used stable cavity
type is a confocal cavity, where d = 2f . However, shorter focal length results with a high
numerical aperture for the mirror, which has an upper limit of NAmax = 0.7 due to the
unit cell size U = 500nm, as discussed in Section 2.1. The NA limitation puts a lower
limit on the focal length, fmin = 65µm. When the mirror is fabricated, the focal length
can be chosen freely as long as the three conditions are satisfied. However, the simula-
tion of a real-sized mirror is not possible, due to insufficient computational resources. We
will attempt to simulate a smaller mirror structure to predict how the real product would
perform.
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Figure 4.9: The phase profile of the RHCP light reflected off from a rectangular mirror
of size 15µm with f = 15µm (a), f = 30µm (b), f = 60µm (c). This follows the spherical
wave profile given in Eqn. 2.18 and is equivalent to the geometric phase of RH component.
All plots follow the colormap at the right.

The largest possible mirror structure the computer can simulate has a diameter of 15µm.
Now, a suitable focal length need to be chosen. The lower limit on the focal length for this
mirror size due to the maximum numerical aperture value of 0.7 is 9.6µm. Shorter focal
lengths correspond to a larger gradient of phase profile, i.e. the phase of light changes more
quickly per µm in the x− y plane. The mirror can only exhibit good quality of focusing if
the phase profile covers the whole 0− 2π rad. range. This becomes an issue if the mirror
size is small. In Fig. 4.9, the theoretical phase profile of the reflected light is plotted in the
x− y plane for focal lengths 15µm, 30µm and 60µm. This is equivalent to the geometric
phase of RHCP light. The 2π phase coverage is fully satisfied for the case with f = 15µm
and f = 30µm. The phase gradient for f = 15µm is large, which would correspond to
neighbouring nanopillars having large rotation angle differences. A real-sized mirror with
f = 250µm has an average of 10.4 deg. angle difference between neighbouring nanopillars,
while it is 12.9 deg. for the 30µm focal length and 24.1 deg. for the 15µm focal length.
Therefore, in order to represent the real-sized mirror accurately, 30µm is chosen as the
focal length for the demonstration, which corresponds to a NA of 0.25.

The simulation for the mirror is set up in Lumerical. The simulation region covers
the mirror structure, but does not extend to the focal plane at z = 30µm due to limited
computational resources. Instead, the electric field data is collected at the output of the
mirror and light is propagated analytically using Fourier optics. The electric field travels in
free space by the phase evolution term eikzz. For a plane wave, the only operation would be
multiplying the electric field with the phase factor with a known kz and z value. However,
a focusing light consists of many plane waves propagating towards the focal point, where
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each component have a different k vector. Each component need to be multiplied with its
own unique phase factor.

First, the electric field in the physical space is Fourier transformed (2D) into the k-space
to get the amplitude function U(kx, ky). The amplitude function describes the amplitude
of electric field that has the unique (kx, ky) values at z0, where z0 is the position at which
the reflection data is recorded.

U(kx, ky)|z0 =
1√
2π

∫∫ 7.5µ

−7.5µ
E(x, y)|z0ei(kxx+kyy) dx dy (4.6)

After the amplitude function is calculated at z0, the z component of the k vector (k)
is also need to be calculated.

kz =
√
|k|2 − k2x − k2y (4.7)

|k|2 is equal to 2π/λ and is the same for every component of the amplitude function.
Therefore, by evaluating kz, the amplitude function at any desired z position can be found
by

U(kx, ky)|z1 = U(kx, ky)|z0eikz(z1−z0) (4.8)

Now, the electric field is computed by applying inverse Fourier transform (2D) at the
new z position z1.

E(x, y)|z1 =
1√
2π

∫∫ 7.5µ

−7.5µ
U(kx, ky)|z1e−i(kxx+kyy) dkx dky (4.9)

This technique is used to find the intensity of light away from the mirror for various z
positions, including the focal plane zf .

The Fourier transform is implemented using the fast Fourier transform (FFT) tool in
python and the code is given in Appendix C.

4.3.2 Mirror Simulation Results and Focusing

Here, the simulation results for the 15µm sized mirror will be discussed. The set up is given
in Fig. 4.10 a. The nanopillars on the structure are representative and does not reflect the
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Figure 4.10: Simulation setup of full-mirror analysis. (a) The simulation region covers the
structure, but does not extend towards the focal point. The field information is recorded
at the red shaded region, then numerically propagated until the focal point. z0 is 200nm
from nanopillars. (b) The top view of the nanopillars in the mirror structure. The red and
blue circles mark some nanopillars that are rotated by 0 and 180 deg. respectively.

real number or rotation. The nanopillars are rotated according to their position relative
to the center of the structure in the x− y plane, and the top view is given in Fig. 4.10 b.
One of the central nanopillars with θ = 0 deg. is marked by a red circle, and some of the
nanopillars reaching θ = 180 deg. are marked by blue circles to highlight the coverage of
0− 2π rad. phase range.

First, the conservation of CP state and the geometric phase gained by the RH com-
ponent are analysed. As shown in Fig. 4.10 a, the data is extracted from the red region,
which is 200nm away from the top end of nanopillars. The distribution of RRH in the x−y
plane at this position is given in Fig. 4.11. Majority of the region is dark green, which
corresponds to a reflectivity of 89.5% and RH purity of ∼ 100%. However, around the
edges, a significant decrease of RRH occurs, which is a decrease of RH purity. Although
the reason for this is unclear, the nanopillars located farther from the center have larger
angular orientation difference between their neighbouring nanopillars, which gets as high
as 25 deg. for this mirror. This might be a reason why the impurities occur at the edges.
The other reason could be some boundary effect. This issue is recurrent with almost all
of the finite mirror simulations, regardless of nanopillar rotations. This suggests that the
effect could be either a simulation issue or an actual boundary effect which will also ex-
ist in the physical structure. This issue occurs in the space covered by the last or last
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Figure 4.11: The distribution of RRH after the mirror as RHCP plane wave is reflected
from the mirror of D = 15µm. The reflectivity is consistent throughout the region, so low
values correspond to low RH purity.

two nanopillars, which means that its effect should be less dominant for a larger diameter
structure. This impurities cause the average RRH within the x − y plane to decrease to
81%, which means the average RH purity becomes 90.5%.

The geometric phase acquired by the RH component is given in Fig. 4.12. The upper
half of the plot is the simulation results and the lower half is the theoretical phase dis-
tribution, equivalent to Fig. 4.9 b. The two distributions are added to the same plot for
comparison purposes. Both of the plots are symmetric about the x−axis at y = 0nm, so
no significant information is lost. Overall, the geometric phase agrees with the theoretical
distribution except for the offset at the blue-to-red region. The offset is less significant
than it appears because dark blue and dark red represent the same phase. The small
mismatches in phase will reveal itself in the quality of focusing.

Now, the focusing is analysed. First let’s see how the field propagates to and beyond
the intended focal length of 30µm. The field extracted at z0 is propagated using Fourier
optics. Fig. 4.13 shows the intensity of light in the x − z plane at y = 0nm. The blue
curve shows the intensity at the center of the 2D intensity graph with arbitrary units. The
maximum of the blue curve is used to measure the actual focal length, which is found to
be 28µm, 2µm off from the design focal length.

The focusing quality is analysed at the measured focal length. First, let’s discuss the
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Figure 4.12: The geometric phase acquired by the RHCP light as RHCP plane wave is
reflected from the mirror of D = 15µm. The upper half is the simulation results and the
lower half is the expected distribution following the spherical wavefront Eqn. 2.18.

diffraction limit of our system. Consider a plane wave propagating through a 2D barrier
with a single rectangular slit of size a and hitting a screen away from the slit. As light goes
through the slit, it gets diffracted, where each position on the slit acts like a point source
emitting light. The light leaving the slit causes interference patterns at the screen. This
interference pattern describes the diffraction of light. The diffraction on the screen can
be calculated using Fourier transform. The Fourier transform is applied to the aperture
function, which is a function describing a rectangle, A(x, y) = A0 if |x|, |y| < a/2 and
A(x) = 0 if |x|, |y| > a/2. The integral is given as

E(kx, ky) = C(L)

∫ ∞
−∞

A(x)e−ikxx−ikyydxdy (4.10)

where C(L) is an oscillatory term dependent on the distance to the screen only. The
Fourier transform of a rectangle function is the sinc function, defined as sincα = sinα/α,
so the Fourier transform gives

E(kx, ky) = C ′ sinc(kxa/2) sinc(kya/2) = C ′ sinc(ka sin θ/2) sinc(ka sinφ/2) (4.11)
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Figure 4.13: The intensity distribution in the x−z plane as RHCP plane wave is reflected
off the mirror with D = 15µm. The blue plot (of arbitrary unit) is the intensity at x = 0,
which is used to find the observed focal length.

The two angles θ and φ are the angles between k and kx (or ky). The intensity distribu-
tion is simply a sinc2 function, which is the intensity observed at the screen. The diffraction
pattern looks like the orange curve in Fig. 4.14 b. For a concave lens of certain aperture
size, the image created is limited by this diffraction pattern, i.e. light is fundamentally
limited from focusing down to a single spot by diffraction. If light has aberrations, the
width of the image will be greater than the width of the sinc function associated with the
aperture size, so the light will be less focused.

In Fig. 4.14 a, the focal spot is given in the x − y plane. The spot is most intense
at the center and decreases in intensity away from the center, as expected. There are
four secondary intensity peaks around the central dot, which is the result of diffraction
for a rectangular aperture. The secondary peak would form a ring for a circular aperture.
The intensity distribution in the x direction at y = 0µm is given in Fig. 4.14 b. The
blue curve is the result from the simulation and the orange curve is the diffraction limited
distribution. The two curves are very similar in shape, and they are normalized such that
the areas under two curves are the same.

If the focal spot is completely limited by diffraction, the peak of the intensity curve
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Figure 4.14: (a) The intensity distribution at the observed focal plane (28µm) of the
finite mirror structure. (b) The intensity distribution at y = 0, normalized to the Airy
function for rectangular aperture.

would match the peak of diffraction limited curve. A quantity called Strehl ratio is defined
as the peak of the intensity distribution normalized to the diffraction limit, and here
the ratio is 0.88. In general, Strehl ratio greater than 0.80 is considered good quality of
focusing for imaging purposes. For our purposes, the quality of focusing is not of primary
importance, but it shows that the mirror can be effectively applied to chiral imaging
applications if needed.

The resulting FWHM (full width at half maximum) is also measured to be 1.38µm,
which quantifies the beam size at the center of a potential cavity built from these mirrors.

4.4 Fabry Pérot Cavity

In this Section, we consider a Fabry Pérot cavity of length d = 2f = 56µm built by a pair
of this mirror. The diagram of the cavity is given in Fig. 4.15. It supports only RHCP
light, and should have high intensity at the center. Cavity supporting LHCP light can
not be constructed by the same mirror, but another structure where the nanopillars are
rotated by −θ. The quality of the cavity can be represented by finesse and quality factor.
For a Fabry Pérot cavity, the two parameters are given in Eqn. 2.27 and Eqn. 2.32. The
final RH reflection value is 81% for the finite mirror. This reflectivity is used to calculate
F and Q to get F = 15 and Q = 1964.

The strength of light-matter interactions can be described by three parameters: decay
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Figure 4.15: Diagram of a Fabry Pérot cavity supporting RHCP light, where the mirrors
are chiral metasurface mirrors.

rate inside the cavity, κ, spontaneous emission of atoms, γ, and coupling strength between
the cavity mode and the atoms, g. The decay rate is κ = ω/2Q, so high Q factors contribute
to stronger interactions. A Q factor of 2000 is considered to be high quality, but Q factors
reaching the order 109 have been constructed [51]. The spontaneous emission rate of atoms
are enhanced when a cavity is present, compared to free-space, by Purcell factor FP [40].

FP =
3

4π2

(
λ0
n

)3
Q

V
(4.12)

Purcell factor is updated by Yoo et al. [54] for applications with chiral molecules as

FC =
1

4π2

(
λ0
n

)3
Q

VC
(4.13)

where VC = U/max[uC ]. U is the total energy of the cavity, and max[uC ] is the
maximum chiral energy density inside the cavity. Chiral energy density is related to the
degree of chirality of light and helps enhance the Purcell factor.

The coupling strength is defined by the coupling constant as [48]

g = −ε̂ · dge
√

ω

2ε0~V
(4.14)
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Figure 4.16: (a) Intensity of the two CP states and (b) geometric phase gained by two
CP states in the cavity when a anti-diagonally polarized light is incident on the mirror
from the back.

where ε̂ is the direction of electric field polarization on the atom and dge is the dipole
matrix element for the atomic transition between ground and excited states and is 3.8 ×
10−29Cm for cesium D2 transition [47]. It is inversely proportional to the mode volume,
thus it can be enhanced by decreasing V .

The metasurface mirrors can be held in space by mounting them on optical fiber tips,
which have similar diameter. The mounting procedure can be found in Appendix F. In
this configuration, light can be directly coupled into the cavity from these optical fibers.
However, the polarization of light need to be well defined. For some metasurface mirror
structures, such as in [42], the incident light need to be circularly polarized. A fiber
integrated QWP is also designed for such application, and the details are given in Chapter
5.

In the rest of this Chapter, coupling of light to the cavity mode will be discussed, then
the cavity will be simulated for 120 roundtrips to find the mode distribution at the focal
plane.

4.4.1 Coupling Into the Cavity

Coupling light from the back side of the mirror is not trivial because the nanopillars act as
QWP’s if light travels through them by a distance H, and their rotation will change the
polarization state. The unit cell simulation is run, where anti-diagonally polarized light is
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incident on the mirror from the metallic side, and the nanopillars are rotated. The electric
field can be expressed as

Ei = E0e
i(kx−wt)

(̂
i− ĵ

)
(4.15)

Fig. 4.16 a shows the CP state of the light over the rotation angle of nanopillars.
Unlike the operation of the mirror, the CP state is not constant throughout this range.
This configuration would allow 50% of incident light to be coupled into the cavity mode.
In Fig. 4.16 b, the geometric phase acquired by the two CP states is given. RH component
gains positive phase while LH component gains negative phase. For the RH component,
the 1 : 2 relation of θ and φ is roughly observed, but the curve is not linear. The wavefront
of light inside the cavity will not be following a smooth spherical wavefront function, but
it will be focused to some extend. This allows RH component to be captured by the cavity
mode unlike the LH component, which will diverge.

Furthermore, the metallic layer allows 0.8% transmission. To increase the electric field
inside the cavity, the mirror separation can be fine-tuned to a multiple of the wavelength of
light. The electric field spectrum also have a Lorentzian shape, similar to the transmission
curve in Fig. 2.11 b, so fine-tuning the cavity size will allow more than 0.8% coupling,
which can reach as high as 100%.

4.4.2 Cavity Mode

Here, the shape of cavity mode is determined and mode volume is calculated. Multiple
mirror reflections is simulated numerically in python. As FDTD simulation sizes are limited
by computational resources, the operation of the mirror is imitated numerically. First, the
output of the first mirror reflection (FDTD results) is propagated by Fourier optics, same
technique as discussed in Section 4.3.1. Then, electric field is separated into phase and
magnitude. Focusing is applied by adding the phase profile in Fig. 4.12 to the phase of the
incident light on the second mirror. The rotation of nanopillars should always induce the
same geometric phase with the relation 2θ = φ. To find the mode shape that is supported
by the cavity, light is simulated to travel 100 roundtrips inside the cavity. Then, the next 20
roundtrips were summed up to represent the mode shape. The two-dimensional intensity
distribution found by this method is given in Fig. 4.17 at the focal plane. Intensity is
normalized to the maximum value.

The modes supported by a cavity differ for the case with linear polarization and circular
polarization. When linearly polarized light is trapped in a cavity, where the cavity size is
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Figure 4.17: Total intensity after 120 roundtrips inside the cavity at the focal plane, at
y = 0µm, normalized to the maximum value.

a multiple of wavelength, therefore the field is a standing wave with nodes and antinodes.
Nodes are the points where the electric field is zero, and antinodes are the points where
the electric field magnitude is maximum. This results with high and low intensity regions
among the longitudinal direction of the cavity. However, when circularly polarized light is
trapped in the cavity, the electric field vector is rotating. Therefore, the zero electric field
regions at the nodes do not form.

To estimate the mode volume, this calculation is repeated for 10 different x− y planes
inside the cavity. Following Eqn. 2.33, the 10 two-dimensional distributions are inte-
grated and divided by the maximum intensity. The resulting mode volume is 725µm3 =
1180(λ/n)3, which is 17 times smaller than the physical cavity volume of 12600µm3. In
general, a mode volume of order 100(λ/n)3 is common, but smaller mode volumes reaching
(λ/n)3 have also been constructed [51]. With this value of V , we can estimate the cavity
parameters Purcell factor (Eqn. 4.12), coupling constant (Eqn. 4.14) and cavity decay
rate (κ = ω/2Q). Purcell factor is found to be FP = 0.0421. Purcell factor describes
the enhancement of spontaneous emission in the cavity mode, compared to free-space, and
higher values correspond to stronger interactions. Purcell factor of 147 is calculated for
an emitter in a micropost microcavity of V = 2(λ/n)3 and Q = 4800 by Vuc̆ković et al.
[52]. The coupling constant of our cavity for the cesium D2 transition is calculated as
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g = 2π × 245MHz. Buck and Kimble have constructed a cavity using microspheres that
reach coupling constants of g = 2π× 750MHz with Q factors 0.8× 107 [14] for cesium D2
transition. In another study, Hunger et al. have constructed a Fabry Pérot cavity with
a finesse of 130000 and they estimate a coupling constant of 2π × 200MHz for rubidium
D2 transition [27]. Our value for the coupling constant is comparable to similar studies.
Our decay rate is κ = 2π × 89GHz. This is larger by three orders of magnitude than the
decay rates found by Hunger et al. which is of order ∼ 2π × 10MHz [27], and by Buck
and Kimble as 2π × 22MHz [14]. This is because our Q factor is at the lower end of the
high quality factor cavity values, which are generally between 104 − 109.

We have shown that our cavity have potential to enhance light-matter interactions sig-
nificantly, but a larger Q factor would enhance the interactions significantly, and increasing
the reflectivity of the mirrors is the main source for this improvement.
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Chapter 5

Fiber Integrated Quarter-Waveplate

In Section 4.4, we proposed that metasurface mirrors can be mounted on fiber tips to
be held in free space. This fiber is typically a polarization maintaining (PM) fiber, such
that light being coupled into the cavity can have well defined polarization. Although our
metasurface design does not require circularly polarized light for coupling, this gives us mo-
tivation for creating a fiber integrated QWP, where linearly polarization will be converted
into circular polarization. The design will allow replacing bulky optics for converting lin-
early polarized light to circular polarization, as well as providing an effective method for
coupling CP light to metasurfaces mounted on fiber tips, such as the chiral mirror design
by Semnani et al. [42]. Creating quarter-waveplates out of fibers have been an interest to
many studies, especially for optic-fiber current sensor applications. In a study by Temkina
et al. [49], a birefringent PM fiber is used to implement the required phase lag between
two linear polarization components. Unlike the method proposed in this Chapter, they
do not uniquely define the length of the fiber, but change the phase difference imparted
using a electro-optical modulator (EOM). Therefore, the phase difference is determined
precisely by varying the voltage applied to EOM. Another study by Bertoncini et al. [10]
have constructed a QWP by fabricating a Fresnel Rhomb, a tiny phase retarder, on a PM
fiber. Our design includes splicing of two PM fibers and precise control of the length of
one PM fiber. In this Chapter, we will explain the working principle of fiber integrated
QWP, and introduce a broadband polarization tomography procedure for measuring the
polarization state of light. Then, initial characterization of a fiber-QWP sample will be
discussed.
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Figure 5.1: (a) Cross-section of a commercial polarization maintaining fiber from Thor-
labs, PM780-HP. (b) Cross-section of another PM fiber, rotated 45 deg. clockwise from
the first fiber and coupled to it. Black arrows show the fast and slow axes of the second
fiber, and the red arrows show the fast and slow axes of the first fiber. H polarized light
is coupled from first to second fiber, so the electric field is split into two.

5.1 Theory

The cross-section of a commercial PM fiber from Thorlabs (PM780-HP) [50] is given in
Fig. 5.1 a. The two grey circles are called stress members, and they help preserving the
linear polarization along both slow and fast axes. Therefore, if linearly polarized light,
polarized along either of the axes, is coupled to the PM fiber, its polarization will be
maintained. Two orthogonal components of linearly polarized light, aligned to fast and
slow axes, will gain different phase according to the neff of each axis. According to the
technical specification of the fiber, there is birefringence of amount ∆n = 3.5× 10−4. This
means linearly polarized light aligned with the fast axis will evolve by a different neff
than linearly polarized light aligned with the slow axis. The net phase difference, after
propagating by length L, is given as

∆Φ =
2π

λ
∆nL (5.1)

Let’s consider horizontally polarized light coupled to the PM fiber, along the fast axis.
Another PM fiber is put in close proximity, but 45 deg. rotated, as shown in Fig. 5.1
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b. The incident H polarized light will be split into two components along the fast and
slow axes of the second fiber, which are 45 deg. misaligned with the axes of the initial
fiber. Due to the birefringence between fast and slow axes, the two components will acquire
different phase. If this phase difference is π/2 rad., then the structure will operate as a
QWP. Similarly, a HWP can be implemented by setting the phase difference as π rad. The
phase difference depends on the distance traveled in the second piece of fiber, i.e. L term
in Eqn. 5.1 to satisfy ∆Φ = π/2. For λ = 850nm and ∆n = 3.5 × 10−4, L is found to
be 607µm for a QWP. Therefore, if a PM fiber is spliced to a second PM fiber, which is
45 deg. misaligned to the first fiber and is exactly 607µm long, then the birefringence of
the second fiber will impart π/2 rad. phase difference to the incident linearly polarized
light, generating circularly polarized light. A clockwise rotation will result with RHCP
light because x polarization is coupled to the slow axis, so it lags behind y polarization,
while a counter-clockwise rotation will result with LHCP.

5.2 Experimental Setup

The two fibers need to be spliced at a specific rotational alignment, as well as the second
fiber piece should have certain length. In order to achieve this, the two fibers are spliced
together by Vytran GPX3600 Glass Processor, which allows precise control over the rota-
tion angle of both fibers and achieves a ∼ 50% success rate in splicing fibers. The second
fiber is cleaved by Vytran LDC401 Fiber Cleaver, which allows precise control over the
length, accurate to ∼ 10µm. The operation procedures of the two devices can be found
online.

A sample of spliced fiber can be found in Fig. 5.2, where the spliced region is visible.
The length of the second fiber piece is measured to be 600µm, which is 7µm off from the
required length. This gives an error of 1.2% for the π/2 rad. phase difference.

Polarization state tomography is used to measure the polarization of the electric field
leaving the PM fiber. The tomography setup is given in Fig. 5.3. The two waveplates and
the linear polarizer shown by the dashed rectangle are the main components of tomography
measurements. Prior to taking measurements, the setup need to be calibrated according
to a known horizontal polarization. First, the linear polarizer is rotationally aligned such
that it will define the horizontal polarization in the system, according to the horizontally
polarized source. The polarizer is rotated until it provides maximum power for the known
horizontally polarized source. Then, the waveplates are calibrated in order, such that
their fast axis will be aligned with the horizontal polarization of the linear polarizer. This
can be done by using a horizontally polarized source, inserting the waveplates and the
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Figure 5.2: Microscope image of the spliced PM fiber. The spliced region is circled, and
the length of the second piece is measured as 600µm.
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to	PM	fiber

Lens
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Figure 5.3: Experimental setup of polarization state tomography. QWP: Quarter-
waveplate (motorized), HWP: Half-waveplate (motorized), LP: Linear polarizer.

linear polarizer, and maximizing the power at the output. The angle of the waveplates are
controlled by a software called ELLO. The aligned position of the waveplates should be
set to home position of waveplates on the software. This defines the zero angle rotation of
waveplates. Then, to measure the amount of each polarization, the waveplates are rotated
at certain angles, and the intensity recorded by the spectrometer gives the relative strength
of each polarization state. The rotation angles allow each desired polarization state to be
converted to horizontal polarization, which is the only component that gets transmitted
at the linear polarizer, into the spectrometer. Table 5.1 lists the angles of the waveplates
corresponding to measuring each polarization state.

To represent the polarization state, Stokes parameters need to be introduced. They are
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Table 5.1: Tomography Measurement Waveplate Angles

Spectrometer Output QWP angle (deg.) HWP angle (deg.)

|EH |2 0 0

|EV |2 0 45

|ED|2 45 22.5

|EA|2 45 337.5(−22.5)

|ER|2 45 45

|EL|2 45 0

defined as [35]:

S0 = |EH |2 + |EV |2

S1 = |EH |2 − |EV |2

S2 = |ED|2 − |EA|2

S3 = |EL|2 − |ER|2 (5.2)

The Stokes parameters can easily be computed by tomography, as all six polarization
states are measured by tomography. Stokes parameters allow representing the complete
polarization by three parameters, so one can determine the position of the polarization
vector on the Poincaré sphere, as represented by the green vector on Fig. 5.4. S0 does not
have an interpretation for the Poincaré sphere, while S1, S2 and S3 represent each axis.
S0 is the total intensity and is used to compute the purity of polarization of light. Purity
of polarization, p is defined as

p =

√
S12 + S22 + S32

S0
(5.3)

For completely polarized light, p = 1 and the vector is on the Poincaré sphere, and for
partially polarized light, 0 < p < 1 and the vector is inside the Poincaré sphere.

The measurement process is automated using Elliptec’s motorized piezoelectric rotation
system, where the rotation of waveplates are controlled in Matlab. The spectrometer is
also integrated to Matlab, so that the full measurement can be done by running a single
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Figure 5.4: Poincaré sphere representing the polarization states of light. The Stokes
parameters define each axis and the polarization of light can be represented by a vector on
the sphere, as represented by the green vector.

script. The codes required for tomography are developed by my colleague Yujia Yuan, and
can be found in Github [30].

5.3 Polarization Tomography Results

First, polarization tomography is tested by a source with known polarization. A linear
polarizer and a HWP is placed before the tomography setup and they are calibrated ac-
cording to the defined horizontal polarization. Then, the tomography is run for different
HWP angles. In order to get accurate results, the spectrometer signal (number of counts)
is kept at ∼ 4 × 104 using an attenuator. Noise in the spectrometer is ∼ 1500 counts,
so low levels of input signal results with lower purities. Spectrometer signal saturates as
7× 104, and signal close to this value also results with wrong purity results.

The tomography results for different HWP angles are given in Fig. 5.5, with 22.5
deg. increments. In a, purity of 0.94 is observed, and S1 is the major Stokes parameter,
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Figure 5.5: Testing the polarization tomography setup using a source with known polar-
ization, where the polarization of the source is changed by rotating a HWP. Tomography
results are given for HWP angles 0 deg. (a), 22.5 deg. (b), 45 deg. (c) and 67.5 deg. (d).

which means light is horizontally polarized, as expected. As the HWP is rotated, the
Stokes parameters show that light is converted to anti-diagonal polarization, then vertical
polarization, and finally diagonal polarization. This is the expected pattern for the given
HWP angles. Also, purity levels are very close to unity, except for the last result where
purity is 1.05, slightly above 1.

Then, the polarization of a 1m long PM fiber is measured to determine the output
polarization without the QWP piece. Light is coupled to the PM fiber directly from a
horizontally polarized source, and the output of the fiber is sent through the tomography
setup. The results of the tomography is given in Fig. 5.6. Each Stokes parameter are
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Figure 5.6: Stokes parameters and purity of a PM fiber sample over a range of wavelengths
within the operation bandwidth of the fiber, recorded by the spectrometer.

plotted, normalized to S0 (total incident power), and the purity is also included. The
strongest Stokes parameter is S2 with a mean magnitude of 0.35, and a maximum magni-
tude of 0.44, while the magnitudes of S1 and S3 are below 0.1. This means light leaving the
PM fiber is diagonally polarized relative to the linear polarizer, which was set to horizontal
polarization.

This 1m PM fiber is spliced with a second piece, which is the fiber sample in Fig. 5.2.
The polarization of this sample is measured by the same procedure. The results of the
tomography is given in Fig. 5.7. Here, S3 is the strongest Stokes parameter, reaching a
magnitude of 0.4, while S1 and S2 are close to 0.0. This means the output of the fiber
sample is circularly polarized.

In both cases, purity levels are close to 0.4, which implies that 60% of light is unpolar-
ized. However, we predict that the propagated mode in the PM fiber should be polarized
by definition of the fiber. During tomography measurements, we have observed irregular
purities because of the measurement of S0. To check this, we propose repeating the ex-
periment with monochromatic light coupled to the fiber samples, manually rotating the
waveplates using the software ELLO, and recording the output power with a power meter
instead of a spectrometer. This allows more control on the experiment and overcomes any
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Figure 5.7: Stokes parameters and purity of the fiber-integrated QWP sample over a range
of wavelengths within the operation bandwidth of the fiber, recorded by the spectrometer.

issues that might have caused by the spectrometer such as noise and saturation of signal.
Although the purity results are unclear, the strongest Stokes parameter should be accu-
rate. This concludes that the fiber-integrated QWP is working in principle, as it outputs
circularly polarized light, but more work is needed to determine the quality of polarization.

72



Chapter 6

Conclusion

In this thesis, we have proposed a dielectric metasurface mirror design for the enhancement
of light-matter interactions. First, we introduced the geometric phase and showed that
dielectric waveguides have birefringent effects when they have small sizes and asymmetrical
shapes. We also introduced the Fabry Pérot cavity and its properties. Then, the procedure
for designing the unit cell structure was introduced, and an early version of the design was
analysed. It had performance issues at certain nanopillar angles, which was solved by
introducing a spacer, using a higher refractive index material and increasing the distance
between neighbouring nanopillars. These changes were applied to get the final version of
the design.

The unit cell structure provides 99.6% conservation of circular polarization state by in-
tensity and induces a well-defined geometric phase according to the rotation of nanopillars,
which proves the theoretical operation of our metasurface. The design has 9.5% material
loss, 5.5% of which is through the dielectric layer and 4% of which is due to the metallic
layer. In literature, a-Si is reported to be lossless [3], so improved fabrication techniques
is promising to decrease the extinction ratio of a-Si. Alternatively, the material could be
switched to TiO2, which is used in metasurfaces [23] and is lossless, but has a lower re-
fractive index. The metallic layer can be replaced with a dielectric mirror, but it would be
more challenging to fabricate and would decrease the compactness of the overall structure.
Instead, the optical path length of the spacer layer was changed to λ/2, so on the surface of
the metal, destructive interference could overcome the plasmonic excitations. Simulations
show that this change reduces loss to 2% from 4%, but does not eliminate it completely.
It has not been incorporated to the design, but it is a potential update.

Next, the unit cell design is extended to the full-sized mirror (diameter 15µm), where
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each nanopillar is rotated at different angles. Conservation of the circular polarization state
decreased to 90.5%, but the imperfections are due to the edge or boundary effects, which
should be less significant for a larger mirror of diameter ∼ 100µm. Focusing quality of the
mirror is analysed. The mirror implements good quality of focusing with Strehl ratio of
0.88, which means the distribution of light at the focal plane is close to the diffraction limit
of a rectangular aperture. Overall, the mirror is 81% efficient for reflecting the relevant
circular polarization state.

Our main motivation for this mirror is building a free-space Fabry Pérot cavity for
light-matter interactions. Some qualities of a potential cavity was analysed. Using the
final reflectivity of one circular polarization state, the finesse and Q factor of the cavity
is calculated as F = 15 and Q = 1964. We discussed that high Q factors and low mode
volumes enhance light-matter interactions significantly by decreasing κ and/or increasing
FC and g , and our chiral metasurface mirror can achieve this. We also showed that
if an anti-diagonal light is incident from the back of the mirror to couple light into the
cavity, 50% will be lost to LH mode, but the remaining RH mode will be focused with
some imperfections in the phase profile. Finally, we simulated 120 roundtrips in the cavity
to find the mode shape at the focal plane. We have calculated the cavity parameters.
The coupling constant is found to be comparable with similar studies, but reflectivity of
the mirrors need to be enhanced to increase Purcell factor and to decrease cavity decay.
Further analysis to confirm the numerical aperture, and to quantify the response of the
mirror when the incident light is not perpendicular to the structure is important for this
mirror design. In real-life applications, cavity mode diverges strongly from the focal point
to the mirror, and the mirror should be able to perform well under such case.

The next step for this project is the fabrication and characterization the mirror to
confirm simulation results.

Last, we introduced a fiber integrated quarter-waveplate to create circularly polar-
ized light without the need of bulky optics for metasurface applications. The procedure for
measuring the tomography of polarization state, which will also be useful for the character-
ization of the mirror, is introduced. A fiber sample has been constructed, and polarization
tomography is applied to the sample. Preliminary results show that the fiber-integrated
QWP is successful for converting a linearly polarized light to circular polarization. More
work is needed to determine the purity of polarization (i.e. how much light is polarized)
after the sample.
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Appendix A

MODE Simulation Details

Figure A.1: MODE simulations setup screen.

MODE simulations are done in Section 2.4 to calculate the modes and the associated neff
in rectangular waveguides, and in Section 3.3 to calculate the coupling and propagation
modes. The general procedure for MODE simulations is presented here. In Fig. A.1,
the main simulation GUI is given. On the left, the list of structures, monitors and the
simulation region is given. Finite difference eigenmode (FDE) solver calculates the field
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profile of modes by solving Maxwell’s equations over a cross-section of the waveguide (see
Fig. 3.9 a). The solver calculates the mode field profiles and effective refractive indices of
the modes.

When the simulation is run, the results view is activated, given in Fig. A.2. On lower
left, the wavelength (or frequency) of the modes can be entered, and at the bottom of the
page (not seen here), the button ”calculate modes” starts the simulation, and the list of
modes at the top appears. Clicking on each mode shows the associated field profile in the
lower right region. The information about the modes are listed at the top. TE polarization
fraction (Ex) shows the fraction of light that is Ex polarized. This means the first two
modes are Ey, while the third mode is Ex. In Fig. 3.9 b, the coupling mode is said to be
Ex, but here, it is Ey. This inconsistency is due to the different choice of axis in Fig. 3.9
b compared to here.

Figure A.2: MODE simulations eigensolver results view. The current result correspond
to the coupling mode in Fig. 3.9 b.
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Appendix B

FDTD Simulation Details

FDTD is the main method used to design and analyse the metasurface mirror structure.
For the simulation of the unit cell and whole mirror, here are some simulation settings:

1. Periodic boundary conditions in x and y, and PML boundary condition in z. PML
profile is set to ”steep angle,” which is the best setting if PML is used with periodic
boundary conditions.

2. Set the sources to correct phase depending on the simulation purpose. Linearly
polarized input for recording phase difference, and right-handed circularly polarized
light for finding the purity.

3. Simulation time is set to 5000× 10−15s. If there is unexpected loss in the simulation
region or unexpected field oscillations, auto shutoff might need to be turned off.

4. Higher mesh setting allows finer representation of the structures, which is necessary
when nanopillars are rotated. Typically, mesh is set to 4, and additional mesh region
is inserted around the nanopillars for the unit cell simulations. Also, mesh can be set
to 8, without the additional mesh, but simulation will take a longer time. The large
mirror simulations are done with mesh setting of 2, because larger mesh require more
computer memory. Mesh refinement is set to ”conformal variant 1,” which provides
better convergence when metals are simulated.

5. The size of FDTD boundaries is the unit cell size for the unit cell simulations, and
is the diameter for the mirror.
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The following script is used to set up a sweep over any parameter and to record the
electric field and reflectivity information to a text file, which is then processed in python
(see Appendix C). The Lumerical FDTD files to run the scripts can be found on [30].

# SWEEP OVER ANGLE OR WIDTH

index_850 = 1; # 1 if monochromatic, otherwise index of 850nm

No_of_points = 180;

range_min = 0;

range_max = 180;

variable = range_min;

inc = (range_max - range_min) / No_of_points;

for(i=1:No_of_points){ # Sweeping over the variable range

switchtolayout;

select("::model"); # Material properties are scripted into model

set("theta",variable); # change to any parameter that "variable" is

representing

run;

E1 = getresult("R", "E");

y1 = E1.lambda;

Ex = E1.getattribute("Ex");

Xph = angle(Ex);

Ey = E1.getattribute("Ey");

Yph = angle(Ey);

ph_diff = abs(Xph - Yph);

R = getresult("field_far","T");

R = R.T;

T = getresult("field_below","T");

T = T.T;

for (i=1:length(y1)){

str = num2str(variable)+", "+num2str(y1(i))+", "+num2str(R(i))+",

"+num2str(T(i))+", "+num2str(Ex(i))+", "+num2str(Ey(i))+",

"+num2str(ph_diff(i));

write("NaSi_des_swth.txt",str); # Save data in a txt file, processing it in

python

}

84



variable = variable + inc;

}

# To make a 2D sweep, include another "for" loop for the second variable

For the simulation of the entire mirror (15µm), electric field and reflectivity information
is extracted and recorded into text files by the following script.

index_850 = 1;

mirror_span = 15e-6;

D = 15e-6;

run;

E = getresult("field_near" , "E"); # monitor named field_near, located at the

top of nanopillars

x = E.x;

y = E.y;

z = E.z;

lambda = E.lambda;

E_ = E.E;

E_mag = pinch(sqrt(E.E2), 4,index_850);

Ex = pinch(E.Ex , 4, index_850);

Ey = pinch(E.Ey , 4, index_850);

Ez = pinch(E.Ez , 4, index_850);

R1 = getresult("field_near" , "T");

Rnear = R1.T;

T1 = getresult("field_below" , "T"); # monitor named field_near, located below

the metal layer

T = T1.T;

n = 1;

for (i=1:length(x) ) {

for (j=1:length(y) ) {

str = num2str(x(i))+", "+num2str(y(j))+", "+num2str(Ex(n))+",

"+num2str(Ey(n))+", "+num2str(Ez(n))+", "+num2str(Rnear)+",

"+num2str(T);

n = n+1;

filename = "NaSi_fab_spacer_15um_f30_E_all_xy_pixel"+num2str(p)+".txt";

write(filename,str);

# field monitor located at z = 700nm
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Appendix C

Python Code for Full Mirror
Analysis and Fourier Propagation

This is the python code for extracting the results from simulations of unit cell, recorded
into text files and analyse the data.

import numpy as np

import pylab as pl

import scipy.special as sp

#import integration2 as integ

import scipy.optimize as opt

import cmath

import matplotlib.patches as patches

import matplotlib as mpl

dim_x = 60 # dimensionality of the first variable

dim_y = 1 # dimensionality of the second variable, set to 1 if single wavelength

filename = "NaSi_des_swH2copy.txt"

with open(filename) as f:

lines = f.readlines() # each line is y = y’

print("number of data: ", len(lines))

no_of_colmn = 14 # if working with complex no, each coln is counted twice

Matrix = np.zeros([no_of_colmn,len(lines) ])
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x = 0 # column index of the matrix set to zero

y = 0 # row index of the matrix set to zero

for i in lines[ :len(lines)]:

a = ’’ # data is in string, initialize each

data a

for j in i:

a = a + j # Update reading

if j == ’,’: # Data seperation reached

a = a[:len(a)-1] # Subtract ,

a = ’’.join(a.split())

a=a.replace("i","j",1)

# print(a)

Matrix[x,y] = complex(a).real

x = x + 1

Matrix[x,y] = complex(a).imag

x = x + 1 # Going along the row

a = ’’

a = a[:len(a)-1] # Subtract ,

a = ’’.join(a.split())

a=a.replace("i","j",1)

Matrix[x,y] = complex(a).real

x = x + 1

Matrix[x,y] = complex(a).imag

y = y + 1 # Next row

x = 0 # Back to the first column

# First variable, usually W1 or nanopillar angle

x = np.zeros([dim_x])

for i in range(dim_x):

x[i] = Matrix[0][i*dim_y]

# Second variable, usually the wavelength or W2

y = Matrix[2][0:dim_y]

# R and T are extracted

Rin = Matrix[4].reshape(dim_x,dim_y)

Tin = -Matrix[6].reshape(dim_x,dim_y)

# real and imag parts of E are extracted separately

Ex_Real = Matrix[8].reshape(dim_x,dim_y)

Ex_Im = Matrix[9].reshape(dim_x,dim_y)

Ey_Real = Matrix[10].reshape(dim_x,dim_y)
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Ey_Im = Matrix[11].reshape(dim_x,dim_y)

""" If multiple wavelengths and we want to get 850nm result """

#for i in range(len(y)):

# if y[i] < 850e-9:

# break

#index_850 = i

""" If the simulation is run only for 850nm, unindent this part of code """

index_850 = 0

theta = x

Exreal = np.zeros(dim_x)

Eyreal = np.zeros(dim_x)

Eximag = np.zeros(dim_x)

Eyimag = np.zeros(dim_x)

R = np.zeros(dim_x)

T = np.zeros(dim_x)

for i in range(len(Ex_Real)):

Exreal[i] = Ex_Real[i][index_850]

Eyreal[i] = Ey_Real[i][index_850]

Eximag[i] = Ex_Im[i][index_850]

Eyimag[i] = Ey_Im[i][index_850]

R[i] = Rin[i][index_850]

T[i] = Tin[i][index_850]

loss = 1 - (R+T)

""" If the variable is wavelength, unindent this part of code """

#theta = y

#R = Rin[0]

#T = Tin[0]

#Exreal = Ex_Real[0]

#Eyreal = Ey_Real[0]

#Eximag = Ex_Im[0]

#Eyimag = Ey_Im[0]

#loss = 1 - (R+T)
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""" Electric field vector manipulation """

Exvector = (Exreal + 1j * Eximag) / np.sqrt(2) # Ex = [re(Ex) + i im(Ex)]

/sqrt(2)

Eyvector = (Eyreal + 1j * Eyimag) / np.sqrt(2) # Ey = [re(Ey) + i im(Ey)]

/sqrt(2)

Ercp = (Exvector + Eyvector*1j) / np.sqrt(2) # E_rcp = Ex + i Ey

Elcp = (Exvector + Eyvector*-1j) / np.sqrt(2) # E_lcp = Ex - i Ey

""" Separate phase and magnitude of E vectors """

def magnitude_phase(E_in):

Eph = np.zeros([len(E_in)])

Er = np.zeros([len(E_in)])

for i in range(len(E_in)):

Er[i], Eph[i] = cmath.polar(E_in[i])

return Er , Eph

Elcpr , Elcpph = magnitude_phase(Elcp) # mag and ph of LHCP

Ercpr , Ercpph = magnitude_phase(Ercp) # mag and ph of RHCP

Exr , Exph = magnitude_phase(Exvector) # mag and ph of Ex

Eyr , Eyph = magnitude_phase(Eyvector) # mag and ph of Ey

E_mag = np.sqrt(abs(Exvector) **2 + abs(Eyvector)**2) # |E| = sqrt(|Ex|**2 +

|Ey|**2)

ph_diff = abs(Exph - Eyph) / np.pi # ph(Ex) - ph(Ey) normalized to pi

""" next is plotting figures / analysis of data for specific cases like phase

normalization """

This is the python code for the analysis of the whole mirror structure, including focusing
and cavity analysis:

import numpy as np

import pylab as pl

import scipy.special as sp

import scipy.optimize as opt

import cmath
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import scipy.fftpack as sfft

radius = 7.5e-6

R = 0.895

monitor = 0.7e-6

focalp = 28e-6

wavelength = 850e-9

filename = "NaSi_fab_15um_f30_E_all_xy_pixel1.txt"

with open(filename) as f:

lines = f.readlines() # Each line is y = y’

# info = lines[0]

print("lines " ,len(lines))

no_of_data_each_row = 14

sweep_dimensionx = int(np.sqrt(len(lines)))

sweep_dimensiony = int(np.sqrt(len(lines)))

Matrix = np.zeros([no_of_data_each_row,len(lines)])

x = 0 # column index of the matrix set to zero

y = 0 # row index of the matrix set to zero

for i in lines[:len(lines)]:

a = ’’ # Data is in string, initialize each

data a

for j in i:

a = a + j # Update reading

if j == ’,’: # Data seperation reached

a = a[:len(a)-1] # Subtract ,

a = ’’.join(a.split())

a=a.replace("i","j",1)

Matrix[x,y] = complex(a).real

x = x + 1

Matrix[x,y] = complex(a).imag

x = x + 1 # Going along the row

a = ’’

a = a[:len(a)-1] # Subtract ,

# Matrix[x,y] = float(a) # Final term doesnt have comma at the end

a = ’’.join(a.split())

a=a.replace("i","j",1)

Matrix[x,y] = complex(a).real
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x = x + 1

Matrix[x,y] = complex(a).imag

y = y + 1 # Next row

x = 0 # Back to the first column

x1 = np.zeros([sweep_dimensionx])

for i in range(sweep_dimensionx):

x1[i] = Matrix[0][i*sweep_dimensiony]

y1 = Matrix[2][0:sweep_dimensiony]

Exreal = Matrix[4].reshape(sweep_dimensiony,sweep_dimensionx)

Eyreal = Matrix[6].reshape(sweep_dimensiony,sweep_dimensionx)

Ezreal = Matrix[8].reshape(sweep_dimensiony,sweep_dimensionx)

Eximag = Matrix[5].reshape(sweep_dimensiony,sweep_dimensionx)

Eyimag = Matrix[7].reshape(sweep_dimensiony,sweep_dimensionx)

Ezimag = Matrix[9].reshape(sweep_dimensiony,sweep_dimensionx)

Exvector = Exreal + 1j * Eximag / np.sqrt(2)

Eyvector = Eyreal + 1j * Eyimag / np.sqrt(2)

Ercp = (Exvector + Eyvector*1j) / np.sqrt(2)

Elcp = (Exvector + Eyvector*-1j)/ np.sqrt(2)

""" Get phase and magnitude of LCP and RCP """

def magnitude_phase(E_in):

Eph = np.zeros([len(E_in)])

Er = np.zeros([len(E_in)])

for i in range(len(E_in)):

Er[i], Eph[i] = cmath.polar(E_in[i])

return Er , Eph

Elcpr , Elcpph = magnitude_phase(Elcp) # mag and ph of LHCP

Ercpr , Ercpph = magnitude_phase(Ercp) # mag and ph of RHCP

Exr , Exph = magnitude_phase(Exvector) # mag and ph of Ex

Eyr , Eyph = magnitude_phase(Eyvector) # mag and ph of Ey

E_mag = np.sqrt(abs(Exvector) **2 + abs(Eyvector)**2) # |E| = sqrt(|Ex|**2 +
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|Ey|**2)

ph_diff = abs(Exph - Eyph) / np.pi # ph(Ex) - ph(Ey) normalized to pi

""" Calculating the phase profile and RH purity """

phi_spherical = np.zeros([len(x1),len(y1)])

for i in range(len(x1)):

for j in range(len(y1)):

phi_spherical[j][i] = 2*np.pi/wavelength * (focalp -

np.sqrt(x1[i]*x1[i] + y1[j]*y1[j] + focalp*focalp))

if phi_spherical[j][i] < -2*np.pi:

phi_spherical[j][i] = phi_spherical[j][i] + 2*np.pi

if phi_spherical[j][i] < -np.pi:

phi_spherical[j][i] = phi_spherical[j][i] + 2*np.pi

pl.figure(1)

pl.contourf(x1*1e6, y1*1e6, phi_spherical/np.pi, 500, cmap =’jet’)

cbar = pl.colorbar(ticks=np.arange(-1,1+0.01,0.5))

cbar.ax.tick_params(labelsize=13)

cbar.set_label(’$\phi_{sp}$ ($\pi$ rad)’, fontsize=14)

pl.xlabel("x ($\mu$m)", fontsize=13)

pl.ylabel("y ($\mu$m)", fontsize=13)

PHASEOVERALL = np.zeros([len(x1),len(y1)])

PHASEOVERALL[0:int(len(x1)/2)] = phi_spherical[0:int(len(x1)/2)]/np.pi

PHASEOVERALL[int(len(x1)/2):-1] = Ercpph[int(len(x1)/2):-1]/np.pi

phasemirror = Ercpph

pl.figure(2)

pl.contourf(x1*1e6 , y1*1e6 , PHASEOVERALL , 500, cmap =’jet’)

pl.xlabel("x ($\mu$m)",fontsize=13)

pl.ylabel("y ($\mu$m)",fontsize=13)

pl.xticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

pl.yticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

cbar = pl.colorbar(ticks=np.arange(-1,1.1,0.5))
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cbar.ax.tick_params(labelsize=13)

cbar.set_label(’$\phi_{RH}$ ($\pi$ rad)’, fontsize=14)

pl.plot([-7.5,7.5],[0,0], ’k--’,linewidth=1,alpha=1)

pl.text(-2, -7, "theoretical", fontsize=13 , color = ’k’)

pl.text(-3, 6.5, "simulation result", fontsize=13 , color = ’k’)

#pl.savefig("NaSi_15um_RHphase_compare.jpg",dpi= 1000)

ratio = Ercpr / (Ercpr+Elcpr)

sum(sum(ratio)) / len(lines)

purity = Ercp*np.conj(Ercp) / (Ercp*np.conj(Ercp)+Elcp*np.conj(Elcp))

print("ratio of Ircp to Iout is :", sum(sum(purity)) / len(lines))

print("ratio of Ircp to Iin is :", sum(sum(purity)) / len(lines) * R)

""" """

pl.figure(3)

pl.contourf(x1*1e6 , y1*1e6 , purity*89.5/100, 100, cmap =’RdYlGn’)

#pl.colorbar()

pl.xlabel("x ($\mu$m)",fontsize=13)

pl.ylabel("y ($\mu$m)",fontsize=13)

cbar = pl.colorbar(ticks=np.arange(0,1.1,0.2))

cbar.ax.tick_params(labelsize=13)

cbar.set_label(’$R_{RH}$’, fontsize=14)

pl.xticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

pl.yticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

#pl.savefig("NaSi_15um_RHpurity.jpg",dpi= 1000)

#pl.title("Amount of RCP component in reflected wave, z = 0.6um")

#pl.title("|Ercp|**2/(|Ercp|**2+|Elcp|**2), z = 0.6um")

""" Propagation by FFT after one reflection """

""" Set k vectors """

x = x1

y = y1

dx = x[5]-x[4]

kx = np.fft.fftfreq(len(x) , d=dx)*2*np.pi

ky = kx

k0 = 2*np.pi /(wavelength)
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kz = np.ones([len(kx),len(ky)])*1j

for i in range(len(kx)):

for j in range(len(ky)):

kz_n = k0**2 - kx[i]**2 - ky[j]**2

if kz_n < 0:

kz[i][j] = 1j*np.sqrt(np.abs(k0**2 - kx[i]**2 - ky[j]**2))

else:

kz[i][j] = np.sqrt(k0**2 - kx[i]**2 - ky[j]**2)

""" Propagation function """

def propagate(E_in, z): # returning the field and intensity in 2D

Urcp = E_in

Urcp_tilde = np.fft.fft2(Urcp)

Urcp_tilde_z = Urcp_tilde * np.exp(1j * kz * z)

U_z = (np.fft.ifft2(Urcp_tilde_z))

I = U_z * np.conj(U_z)

return U_z, I

""" Propagate through z axis in 2D """

def Power_yz_lcp(z): # Returns the 2D LHCP electric field z distance away from

the mirror

P_out = np.zeros([len(z) , len(y1)])

for i in range(len(z)):

zf = z[i] - monitor

U_zf, I = propagate(Elcp, zf)

for j in range(len(I[int(sweep_dimensionx/2)])):

P_out[i][j] = (I[int(sweep_dimensionx/2)][j])

return P_out

def Power_yz_rcp(z): # Returns the 2D RHCP electric field z distance away from

the mirror

P_out = np.zeros([len(z) , len(y1)])

for i in range(len(z)):

zf = z[i] - monitor

U_zf, I = propagate(Ercp, zf)

for j in range(len(I[int(sweep_dimensionx/2)])):

P_out[i][j] = (I[int(sweep_dimensionx/2)][j])

return P_out
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z = np.linspace(focalp - 25e-6 , focalp + 20e-6 ,500)

Poweryzlcp = Power_yz_lcp(z)

Poweryzrcp = Power_yz_rcp(z)

Poweryzall = Poweryzlcp+Poweryzrcp

PoweryzrcpT = Poweryzrcp.T #Transpose

PoweryzlcpT = Poweryzlcp.T

# y = 0 intensity distribution

Powerzall = (PoweryzrcpT[int(len(x1)/2)]+PoweryzlcpT[int(len(x1)/2)])

pl.figure(5)

pl.plot(z*1e6 , Powerzall)

pl.xlabel("z ($\mu$m)")

pl.ylabel("Intensity(MV/m2)")

pl.title("Intensity vs distance from mirror (FT)")

##pl.axis([2.3,2.6,80,100])

pl.figure(6, figsize =(18,7))

pl.contourf(z*1e6 , x*1e6, Poweryzall.T , 500, cmap =’hot’)

pl.plot(z*1e6 , (1e-6*Powerzall*1e6/10)-7)

pl.xlabel("z ($\mu$m)", fontsize=13)

pl.ylabel("x ($\mu$m)", fontsize=13)

pl.xticks(np.arange(3, 48, 5),fontsize=13)

#pl.savefig("NaSi_15um_focusing2.jpg",dpi= 1000)

""" Focal Plane """

zf = focalp - monitor

E_focal, I = propagate(Ercp, zf)

pl.figure(7)

pl.contourf(x*1e6 , y*1e6, (I)*1e-6 , 500, cmap =’hot’)

#cbar = pl.colorbar(ticks=np.arange(0,6+0.1,1))

#cbar.ax.tick_params(labelsize=13)

pl.colorbar()

pl.xlabel("x ($\mu$m)", fontsize=13)

pl.ylabel("y ($\mu$m)", fontsize=13)
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pl.xticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

pl.yticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

#pl.plot([145,150],[222,222],c=’w’,linewidth=1,alpha=0.7)

#pl.text(146, 222.6, "5 nm", fontsize=12 , color = ’w’)

#pl.plot([150,150],[207,236],"--",c=’k’)

#pl.savefig("NaSi_15um_focuspoint.jpg",dpi= 1000)

""" Normalize to Airy disk 1D intensity """

x2 = np.linspace(-radius, radius+0.001e-6,1006)

th = np.arctan(x2 / focalp)

a = radius*2

focalp = 28e-6

def integ_data(x,y): # Integrating functions with finite data points using

trapezoidal rule

h = (x1[5]-x1[4])*1e6

return (2*sum(y) - y[0] - y[-1]) * h /2

def Airy_circ(x): # Airy function for circular aperture

th = np.arctan(x/focalp)

return (2*sp.j1(k0*a*np.sin(th))/(k0*a*np.sin(th)))**2

def Airy_rect(x): # Airy function for rectangular aperture

th = np.arctan(x/focalp)

return np.sinc(k0*a*np.sin(th)/(2*np.pi))**2 *np.sinc(k0*a*np.sin(0)/2)**2

def integration_difference(Amax): # Computes the difference in integral of Airy

func and data

I1 = integ_data(x1 , I[int(sweep_dimensionx/2)])*Amax # Integral of data

I2 = integ_data(x1 , Airy_rect(x1)) # Integral of Airy function

return np.abs(I1 - I2)

A = opt.fmin(integration_difference,[1/100])

pl.figure(9)

pl.plot(x*1e6 , I[int(sweep_dimensionx/2)]*A)

pl.plot(x*1e6 ,Airy_rect(x2))

##pl.plot(xEx*1e6 , result[67]*759.8973)
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pl.xlabel("x ($\mu$m)", fontsize = 13)

pl.ylabel("Intensity", fontsize = 13)

#pl.xticks(np.arange(-50, 50+0.1, 25),fontsize=13)

#pl.yticks(np.arange(0, 1.01, 0.2),fontsize=13)

#pl.title("Intensity at focal point 1D, f = 10 um")

#pl.legend(["Intensity (FT)","Diffraction Limit"],fontsize=13,

# loc=(0.53,0.75))

pl.axis([-0.75,-0.6,0.48,0.52])

#pl.savefig("NaSi_15um_1DAiry.jpg",dpi= 1000)

dx = (x[5]-x[4])*1e6

FTI = np.fft.fft(I[int(sweep_dimensionx/2)]*A)

FTAiry = np.fft.fft(Airy_rect(x))

""" Cavity Multiple Mirror """

def reflect(E_in, phaseprofile):

Eref = E_in.reshape(len(lines),1)

phaseprofile = phaseprofile.reshape(len(lines),1)

Ercpph_n = np.zeros([len(Eref)])

Ercpr_n = np.zeros([len(Eref)])

for i in range(len(Eref)):

Ercpr_n[i] , Ercpph_n[i] = cmath.polar(Eref[i])

Ercpph_n[i] = Ercpph_n[i] + phaseprofile[i]

if Ercpph_n[i] < -np.pi:

Ercpph_n[i] = Ercpph_n[i] +2*np.pi

if Ercpph_n[i] > np.pi:

Ercpph_n[i] = Ercpph_n[i] -2*np.pi

Eref[i] = (Ercpr_n[i])*np.cos(Ercpph_n[i]) +

1j*(Ercpr_n[i])*np.sin(Ercpph_n[i])

Eref = Eref.reshape(sweep_dimensiony,sweep_dimensionx)

Ercpr_n = Ercpr_n.reshape(sweep_dimensiony,sweep_dimensionx)

Ercpph_n = Ercpph_n.reshape(sweep_dimensiony,sweep_dimensionx)

return Eref

""" Second mirror """

E_focal, I = propagate(Ercp , focalp)

E2_m, I2_m = propagate(E_focal , focalp)
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E2_m = E2_m.reshape(len(lines),1)

phasemirror = phasemirror.reshape(len(lines),1)

Ercpph2 = np.zeros([len(E2_m)])

Ercpr2 = np.zeros([len(E2_m)])

for i in range(len(E2_m)):

Ercpr2[i] , Ercpph2[i] = cmath.polar(E2_m[i])

Ercpph2[i] = Ercpph2[i] + phasemirror[i]

if Ercpph2[i] < -np.pi:

Ercpph2[i] = Ercpph2[i] +2*np.pi

if Ercpph2[i] > np.pi:

Ercpph2[i] = Ercpph2[i] -2*np.pi

E2_m[i] = (Ercpr2[i])*np.cos(Ercpph2[i]) + 1j*(Ercpr2[i])*np.sin(Ercpph2[i])

E2_m = E2_m.reshape(sweep_dimensiony,sweep_dimensionx) *np.sqrt(R)

E2focalp, I2 = propagate(E2_m, focalp)

print("Intensity sum of I2 / no of data:", sum(sum(I2))/len(lines))

print("Intensity ratio to initial, I2:", sum(sum(I2))/sum(sum(I)))

pl.figure()

pl.contourf(x*1e6 , y*1e6, (I2) , 500, cmap =’hot’)

cbar = pl.colorbar(ticks=np.arange(0,6+0.1,1))

cbar.ax.tick_params(labelsize=13)

pl.xlabel("x ($\mu$m)", fontsize=13)

pl.ylabel("y ($\mu$m)", fontsize=13)

pl.xticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

pl.yticks(np.arange(-7.5, 7.5+0.1, 7.5),fontsize=13)

#pl.title("I2")

#pl.savefig("intensity_on_second_focalp.jpg", dpi=1000)

""" This code is repeated for 20 mirrors, i.e. 15 roundtrips """
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Appendix D

Derivation of the Matrix for Mirror
Reflectivity Calculations

The reflectivity and transmission of the metallic layer will be calculated numerically. We
will derive the matrix for the calculation for a single mirror, but this analysis is usually
done for periodic structures with any two materials. Let’s consider the structure in Fig.
D.1. Two materials of refractive indices n1 and n2 are present. For our purposes, the white
material is air (n1 = 1) and the gray material is silver (n2 = 0.15267 − 5.6903i). The
electric field at each region can be written as

E1 = A1e
−ik1z +B1e

ik1z (D.1)

E2 = A2e
−ik2z +B2e

ik2z

E3 = A3e
−ik1z

At the first boundary, denotes by in the diagram, E1 = E2 and dE1/dz = dE2/dz
according to the continuity of field at a boundary.

A1e
−ik1d +B1e

ik1d = A2e
−ik20 +B2e

ik20 (D.2)

−ik1A1e
−ik1d + ik1B1e

ik1d = −ik2A2e
−ik20 + ik2B2e

ik20

This can be written in the matrix form
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Figure D.1: Diagram for the structure used to derive the matrix for calculating the
reflectivity and transmission of a structure.

(
e−ik1d eik1d

−ik1e−ik1d ik1e
ik1d

)(
A1

B1

)
=

(
e−ik20 eik20

−ik2e−ik20 ik2e
ik20

)(
A2

B2

)
(D.3)

The same can be written for the second boundary.

A2e
−ik2t +B2e

ik2t = A3e
−ik10 (D.4)

−ik2A2e
−ik2t + ik2B2e

ik2t = −ik1A3e
−ik10

In its matrix form

(
e−ik2t eik2t

−ik2e−ik2t ik2e
ik2t

)(
A2

B2

)
=

(
e−ik10 eik10

−ik1e−ik10 ik1e
ik10

)(
A3

0

)
(D.5)

We set B3 = 0 because there is no backwards-travelling wave for this case. Now we
can combine the two results and write a matrix that will relate the coefficients of the first
region with the coefficient of the third region.
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(
e−ik2t eik2t

−ik2e−ik2t ik2e
ik2t

)(
1 1
−ik2 ik2

)−1(
e−ik1d eik1d

−ik1e−ik1d ik1e
ik1d

)(
A1

B1

)
(D.6)

=

(
1 1
−ik1 ik1

)(
A3

0

)
(D.7)

The first and final coefficients are related by a matrix M, such that

(
A3

0

)
= M

(
A1

B1

)
(D.8)

where the matrix is defined as

M =

(
1 1
−ik1 ik1

)−1(
e−ik2t eik2t

−ik2e−ik2t ik2e
ik2t

)(
1 1
−ik2 ik2

)−1(
e−ik1d eik1d

−ik1e−ik1d ik1e
ik1d

)
(D.9)
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Appendix E

Analysis of Design with Optimized
Spacer Thickness

A new spacer thickness is proposed to improve the metallic loss. The new thickness provides
and optical path of λ/2, which is calculated to be 293nm for glass spacer. It is found to
reduce the metallic loss by 2%, but it does not overcome the full metallic loss. A new unit
cell design is found by this thickness since the phase difference is found to change slightly.
The design parameters are the same as Fig. 4.4, but the only change is W2 = 228nm.

This unit cell design is simulated by rotating the nanopillars from 0 to 180 deg. Reflec-
tivity and transmission are 92% and 0.8% respectively and are constant throughout this
range. The RH purity and geometric phase plots are given in Fig. E.1.
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Figure E.1: Right handed (RH) purity at the output is shown by the green region, and
left handed (LH) component is the yellow region over nanopillar angles for the design with
new spacer thickness. The blue curve shows the geometric phase on RH component, φRH ,
which should have 1:2 ratio with θ.
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Appendix F

Mounting Mirrors on Fibers

The method for mounting metasurface mirrors on fiber tips is used by Dr. Jeremy Flannery,
and is the method planning to be used here. The procedure for a photonic crystal mirror
is given in Fig. F.1. The steps are as follows:

1. A sharp tungsten probe (50µm diameter) is dipped into epoxy (Norland Optical
Adhesive 88) to transfer epoxy to the tip of the probe. Then, the probe is lowered
to the chip holding the mirror sample to create two epoxy droplets of similar size.

2. The optical fiber (HCPCF in the figure, PM fiber for this project) is lowered to the
droplets to transfer the droplets to the fiber tip.

3. Epoxy covered fiber tip is lowered on to the mirror sample, making sure the fiber
and the mirror are aligned and the fiber is perpendicular to the mirror by using two
side cameras to check for verticality. The epoxy is cured with UV light.

4. The fiber is removed, with the mirror attached to the tip.

Our mirror structure is layered such that the lowest layer is a homogeneous layer of
SiO2. Therefore, the droplet sizes and separations have more flexibility, as long as the tip
of the fiber is parallel to the mirror.
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Figure F.1: Procedure for mounting metasurface mirrors to optical fiber tips. The steps
are explained in text. The figure is obtained from [17].
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