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Abstract

The year 2019 revealed that some of the policies which have shaped the core structure of

many organizations in different industries for a long time, could result in an absolute failure

in an unprecedented crisis like the COVID-19 pandemic. In the light of such changes, the

interaction between the people is a determining factor to limit an outbreak among the staff

members of an organization to prevent any disruption in the process of the service/product

they provide. Thus, an effective staff scheduling policy can be the clincher to achieve this

goal.

In this work, we consider a staff scheduling problem with the goal of minimizing the

expected number of staff replacements that happens as a result of getting infected during

a pandemic. In this days-off scheduling problem, we discuss a two-stage optimization

approach where we first, determine the optimal scheduling patterns for the staff members

and next, we will assign them to different resources so that the interaction between the

staff members is minimized. In the proposed mathematical formulation for the problem,

we consider the characteristics of the disease and the situation of the public health at

different stages of the pandemic such as the incubation period, the probability of getting

infected on a working day versus a rest-day, and the availability of swab tests. We design a

column generation algorithm to solve the optimization model which requires up to 70% less

computational power compared to the traditional algorithms that solve the problem when

all available patterns are generated. A simulation model is also designed to compare the

effectiveness of our suggested policies with the traditional scheduling policies. We examine

our findings using data from the Grand River Regional Cancer Centre (GRRCC), which

is a comprehensive cancer treatment and research centre located in Kitchener, Ontario.

Particularly, we worked closely with the Department of Medical Physics and Radiation

Oncology who plans and delivers radiation therapy treatments to cancer patients and
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treats over 2000 new patients annually. Our results show that depending on the different

stages of a pandemic, the proposed staff scheduling policies can lead up to 20% less full-

time equivalent staff replacements which have a significant impact on the availability of

the centre’s resources as well as the patient flow in long-term.
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Chapter 1

Introduction

The recent COVID-19 pandemic changed the world in many aspects. A wide range of

services, industries, and events have been extensively disrupted by the disease. From

accommodation and food services to transportation, warehousing, and healthcare, it might

take years for them to get back to their pre-pandemic normal. In healthcare for example,

dealing with the consequences is even much more challenging. On the one hand, healthcare

centres have been under an unprecedented burden of dealing with COVID-19 cases, which

has made them allocate most of their resources to confront the pandemic. On the other

hand, they need to avoid any disruption in the process of care for the patients who are

suffering from other chronic and non-COVID-related diseases. Thus, protecting the health

and well-being of staff members is of utmost importance, in order to deliver their services

and avoid long wait times for patients. The goal of this work is to develop staff scheduling

policies such that the risk of disease transmission to staff members, and the consequent

staff shortage during pandemics is minimized.

Mathematical models have played an important role in policy development to address
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the COVID-19 outbreak [McBryde et al., 2020]. In this work, we provide a mathematical

optimization framework for staff scheduling, which takes into account the probability of

infection transmission among customers and staff, the effect of interaction between staff

members who work in close contact, and the characteristics of the disease such as the

incubation period during which customers and staff members can be asymptomatic. The

proposed approach consists of two mathematical optimization models that are solved con-

secutively. The first optimization model determines an optimal days-off schedule that

minimizes the expected number of replacements as a result of customer-staff interactions.

The second model then uses the output of the first model to assign staff members with

a determined schedule to different teams on working days such that the number of inter-

actions between the staff members are minimized. To solve the first model, which is the

more computationally challenging step, we develop a column generation (CG) algorithm in

which we consider (i) the number of staff members who need to team up for a specific ser-

vice, and (ii) the minimum and maximum number of days staff members can work during

the scheduling time horizon. The second model that we develop would take the optimal

output (patterns) of the first model and assign staff members to different rooms so that the

total number of “new” interactions between the staff members is minimized. We define an

interaction between two staff members as “new” interaction when the pair work on a spe-

cific day while they have not worked during the last τ days where τ denotes the incubation

period of the disease. Finally, through a sensitivity analysis we consider different scenarios

to examine the performance of the proposed scheduling policy in different settings. We

also apply our findings, through a discrete-event simulation, in our partner organization,

Grand River Regional Cancer Centre (GRRCC) which has teams of therapists who cooper-

ate with each other in different radiation therapy rooms. We observe that the optimal staff

scheduling could be highly dependant on the different stages of the pandemic in terms of
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the probability of getting infected at work on a working day or at home, on a rest day. The

simulation results demonstrate that the number of staff replacements because of getting

infected would be up to 20 percent less compared to the on-going traditional scheduling

policies. Note that the proposed CG algorithm is computationally efficient and performs

up to 70% faster compared to the algorithms used to solve the original formulation of the

model where all patterns are generated.
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Chapter 2

Literature Review

2.1 Staff Scheduling

Staff scheduling problem has been studied extensively in the literature of operations re-

search and management. Basically, the problem is dealing with optimizing the staff sched-

ule with regards to different objectives such as minimizing the number of needed staff,

maximizing the utilization, minimizing costs, etc. Usually, the first stage of this problem

is to determine the proper number of staff with different skills to meet the service demand.

In the second stage, each individual staff member is assigned to shifts so that the required

staffing levels at different time periods are met. However, apart from these requirements,

different organizational regulations must not be violated. [Ernst et al., 2004] propose a

taxonomy of staff scheduling in which they suggest a number of modules starting with the

determination of staffing requirements and ending with the specification of the work to be

performed, over a time period, by each individual in the workforce. Below, we discuss the

most common modules of the staff scheduling problem considered in the literature.
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2.1.1 Different Modules of the Staff Scheduling Problem

• Demand Modelling

The goal in this problem is to determine the number of needed staff members for a

specific time horizon. In this module, some predicted patterns of incidents are trans-

lated into associated duties and then the duty requirements are used to determine the

demand for staff. The nature of the demand in this problem is important. In a task-

based demand for example, demand is obtained from a list of tasks that needs to be

performed. These tasks usually have starting time and duration or a time window within

which they must be terminated. The main application of task-based demand is in trans-

portation where the staffing is dealing with crew pairing optimization. To name a few,

[Bazargan, 2016, Zeren and Özkol, 2016, de Armas et al., 2017, Deveci and Demirel, 2018]

consider staff scheduling with task-based demand.

Another case in demand modelling is when the demand is flexible meaning that there

is unknown future demand and prediction/forecasting techniques are needed to find out

the future incidents. There are random arrival rates for future services as well as ran-

dom service times. The aim here is to determine the number of staff required at dif-

ferent times of a day for each day in a time horizon. The application of this case is

usually in police services [Thompson and Goodale, 2006, Todovic et al., 2015], call centers

[Robbins and Harrison, 2010, Taskiran and Zhang, 2017], airport staffing [Soukour et al., 2013,

Zeng et al., 2019], etc. Once the flexible demand pattern has been generated, it is used to

determine the shifts and cover the demand. Another approach is that the demand would

be used in the second stage of the problem as a constraint on the number of staff working

at each time.

• Days-off Scheduling
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This module determines how rest days should be interspersed between work days for dif-

ferent working stations. The second phase of such a problem usually deals with the flexible

or shift-based demand staffing. We will elaborate on this module in Section 2.3.

• Shift Scheduling

In the shift scheduling problem, we aim to meet the demand by choosing possible shifts from

a set of available shifts along with allocating enough staff members to the chosen shifts.

Apart from the demand requirements, we also need to consider the organizational rules

and regulations such as the breaks, number of consecutive shifts for each staff members,

etc. [Volland et al., 2017, El Adoly et al., 2018, Seifi et al., 2021] are examples of recent

papers that focus on shift scheduling.

The above-mentioned three modules are the main categories of staff scheduling prob-

lems. In fact, all other modules can be transformed to one of these modules with the nec-

essary modifications. In the next section, we will briefly discuss methods and algorithms

that are used in the literature to solve different modules of staff scheduling problem.

2.1.2 Solution Methods for Staff Scheduling Problem

Perhaps the most known and simple categorization of solution methods for staff scheduling

is proposed by [Bechtold et al., 1991] where they categorize the solutions in two categories

of linear programming and construction-based modeling. [Alfares, 2004] also provide a

comprehensive review of the employee tour scheduling problem which involves the deter-

mination of both work hours of the day and workdays of the week for each employee. In

this section, we discuss some mathematical approaches used in the literature to model the

problem.
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• Linear Programming

The set covering approach proposed by [Dantzig, 1954] is still a very popular method for

shift scheduling problem. The advantage of this formulation is that it provides enough flex-

ibility for adding any required constraints. [Bhatnagar et al., 2007] propose a linear pro-

gramming model to determine the optimal allocation of permanent and contingent workers

to all sub-processes in a framework that balances the significant trade-offs for the induc-

tion of contingent workers in a complex assembly environment. [Corominas et al., 2010]

address a shift scheduling problem by proposing two linear programming models to sched-

ule working time, using working time accounts, at companies in the service industry. In

the first model, they plan working hours with working time accounts (WTA), which is

defined as the record of the hours of work spent by an employee in any given accounting

period that shows ’credit’ or ’debit’ hours. In the next model, they take into account

the need and regularity in the use of WTA working hours. [Dück et al., 2012] address

the reactionary delays which usually takes place because of the crews changing aircraft.

Based on a stochastic model for delay propagation, they propose an indicator for stabil-

ity of airline crew and aircraft schedules. As an integrated formulation for the crew and

aircraft scheduling problem would be a non-linear stochastic recourse function, they sepa-

rate it into different linear problems connected by the objective function. In a close work,

[Hojati and Patil, 2011] decompose the problem of scheduling of heterogeneous, part-time,

service employees with limited availability into two stages of determining good shifts and

then assigning the good shifts to employees, and use a set of small integer linear programs

to solve each part. [Hochdörffer et al., 2018] address a short-term staff scheduling by using

a linear programming based heuristic, which solves the scheduling problem gradually for

each rotation round and generates a holistic job rotation schedule for an entire workday.
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• Mixed-integer Programming

In many settings, due to various constraints such as shift requirement constraints, the

scheduling problem cannot be formulated as a linear program, and thus, other approaches

such as MIP is used to model the problem. [Al-Yakoob and Sherali, 2007] study the prob-

lem of assigning employees to different stations considering the employees’ expressed pref-

erences. Their mixed-integer two-stage approach provides daily schedules for employees

for a given time horizon. [Bhulai et al., 2008] introduce a method for shift scheduling in

multi-skill call centers. At the first stage, staffing levels are determined, and next, in the

second stage, the outcomes are used as input for the staff scheduling problem. Similarly, in

their research, [Fırat and Hurkens, 2012] study scheduling complex tasks with an inhomo-

geneous set of resources. The problem is to assign technicians to tasks with multi-level skill

requirements through an MIP model. [Corominas et al., 2012] develop an MILP to solve

a planning model which integrates production, human resources, and cash management

decisions. They also take into account the consequences that decisions in one area may

have on other areas and allowing all these areas to be coordinated. [Shiau et al., 2020] use

a scheduling case study of the ground staff in aviation industry that includes three different

types of personnel scheduling results: fluctuation-centered, mobility-centered, and project-

centered planning. Their work presents an integrated mixed integer programming (MIP)

model for determining the manpower requirements and related personnel shift designs for

the ground staff at the airline to minimize manpower costs.

• Column Generation

In column generation, large LP models can be solved to optimality without incorporating

all variables in the model at once. It establishes a lower bound to the integer programming
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solution which is guaranteed to be LP optimal. One of the early papers that used CG

approach for solving nurse scheduling problems is [Beliën and Demeulemeester, 2008].

[Al-Yakoob and Sherali, 2008] design a column generation model and an effective heuris-

tic to solve the problem of assigning employees to a number of work centres taking into

account employees’ expressed preferences for specific shifts, off-days, and work centres.

In a close work, [Brunner and Edenharter, 2011] present a strategic model to solve the

long-term staffing problem of physicians in hospitals using flexible shifts. The objective

in their work is to minimize the total number of staff subject to several labor agreements.

They formulate the problem as a mixed-integer program and solve it by applying a column

generation based heuristic. [He and Qu, 2012] propose a hybrid constraint programming

based column generation (CP–CG) approach to model nurse scheduling (rostering) prob-

lems. They consider all the complex real-world constraints in several benchmark nurse

scheduling problems.

Based on the general classification scheme that we mentioned at the beginning of this

section by [Ernst et al., 2004], our work is focusing on “days-off scheduling” module in

which we aim to determine how rest days need to be interspersed between the working

days. Thus, in the following section, we first discuss the staff scheduling literature during

a pandemic and then, we concentrate on the literature of the days-off scheduling problems.

2.2 Staff Scheduling During a Pandemic: COVID-19

The uncertainty in staff scheduling problem is usually studied in terms of workforce de-

mand, availability of resources, and a few papers consider the possible uncertainty around

the staff size when examining the medical staff scheduling problem [Chen et al., 2016].

Staff scheduling with a goal of minimizing the risk of infection transmission among staff
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is a novel emerging aspect that has been the focus of few papers since the start of the

COVID-19 pandemic. [Zucchi et al., 2021] propose a mixed integer linear programming

(MILP) model that minimizes the total deviation between the amount of weekly con-

tractual hours for each worker and the actual working hours of the personnel in a large

pharmaceutical distribution warehouse. Their model meets the contractual working time

of the employees, who are divided into mutually exclusive groups to reduce the risk of con-

tagion. Based on the proposed classification scheme proposed by [Ernst et al., 2004], their

work is categorized as a shift-based scheduling problem. [Guerriero and Guido, 2021] pro-

pose optimization models to address a shift-based staff scheduling during the COVID-19.

Their focus is on novel optimization models that take into account demand requirements,

employees’ personal and family responsibilities, and anti-Covid-19 measures. However, like

other works in this new emerging area, they do not consider the characteristics of the dis-

ease in their model. Their multi-objective MIP model aims at maximizing employee work

on-site as well as maximizing remote work. [Geibinger et al., 2021] present a constraint

model that includes the variety of requirements required to ensure day-to-day operations.

They introduce an innovative set of grouping constraints to partition the physicians of a

children’s hospital in Vienna, with the intention to easily isolate a small group in case

of an infection. They develop a Constraint Programming model to minimize the inter-

action between the physicians from different stations in terms of their shift assignments.

Similarly, [Güler and Geçici, 2020] address the physician scheduling problem of a hospital

in Turkey. They develop a MIP model and embed it into a spreadsheet-based decision

support system. In their work, they tend to minimize the deviation of the workload of

the physicians between their regular shifts and the shifts in which they are dealing with

the COVID-19 patients. To the best of our knowledge, there is no papers in the literature

of staff scheduling that considers the risk of losing staff due to infection, characteristics
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of the disease such as the incubation period and the probability of getting infected at the

workplace or at home, as well as pairwise interaction between the staff members.

2.3 Days-off Scheduling

Days-off scheduling has been studied extensively over the past decades. In fact, [Baker, 1976]

proposes the days-off scheduling problem by modifying the set covering formulation that

was proposed by [Dantzig, 1954]. Years after that, [Chen, 1978] develops a simple solution

algorithm for the problem of scheduling workforce for an organization operated seven days

a week. For a given number of full-time workers, the objective was to maximize the total

number of workers who get two consecutive days off. [Alfares, 1998] develop a two-phase

algorithm for cyclic days-off scheduling. The objective in their work is to satisfy daily labor

demands with a minimum cost for workers. They study a specific type of days-off schedul-

ing where each work pattern contains five working days and two consecutive off days per

week. The problem is modelled as a two-phase optimization framework. First, a simple

model was used to calculate the minimum workforce size. Next, they use the minimum

number as a constraint in a continuous linear programming (LP) model of the problem.

[Azmat and Widmer, 2004] categorize the problem of days-off scheduling into single or mul-

tiple shifts depending on the policy which is followed regarding the number and the order

of days that the staff members need to work. They consider a set of legal constraints such

as holiday arrangements to minimize the defined workforce. [van Veldhoven et al., 2016]

study a two-phase decomposition approach to solve the staff scheduling problem. In the

first phase, similar to what we will discuss, they create a days-off schedule that deter-

mines the working and off days for staff members and in the second phase, they assign

shifts to the staff members. Likewise, [Cuevas et al., 2016] propose an MIP model that
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first determines the workers’ days-off schedule and assigns shifts to employees to maxi-

mize the demand for on-duty staff across multiple activities. [Shuib and Kamarudin, 2019]

propose an integer goal programming model to maximize the over-achievement and min-

imize under-achievement of the day-off preference schedule for 43 workers in a selected

department of the power station for 28 days where workers work in three shifts. Based on

the 28-day schedule obtained, the day-off preference’s satisfaction of workers increased by

37.21%. In general, most of the days-off scheduling concentrates on two-stage approaches

which deal with the shift-scheduling. This work introduces a two-stage approach for the

days-off scheduling where we determine the days-off schedule for each staff member in the

first stage. In the second stage, the staff members are assigned to available resources to

minimize the interaction between them.
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Chapter 3

Problem Definition

In many services and industries, a team of staff members need to work together to provide

service to the customers. During a pandemic, the interaction between customers and

service providers increases the risk of infection transmission between both parties. An

outbreak among staff members in many of these services can lead to a potential shortage

of staff, especially in healthcare settings where interactions between healthcare staff and

patients and also among staff members themselves are inevitable. On each day, in case a

staff member is working, we assume that there is a probability of pw that they get infected

from patients. Moreover, the probability of getting infected during a holiday/rest day,

is positive and denoted by ph. Whether pw is greater than ph or not, depends on many

preventive public health policies and their level of implementation. If social distancing

policies are strictly followed for all activities in the society, it may be concluded that the

risk of getting infected for a staff member who works on a specific day is higher than that

of a colleague who is taking a rest day at home. The reason is that there are likely a larger

number of interactions with people on a working day, which increase the risk of disease
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transmission. On the other hand, the availability of specific proper personal protective

equipment in a working setting can decrease the risk of infection compared to that of when

the staff member is at home and does not have access to such equipment, and/or do not

practice safe distancing policies.

There is also another source of infection which is due to the risk of infection transmission

from social interactions among the staff members. To avoid a possible outbreak among the

staff members, the best practice is to limit the number of their interactions as much as pos-

sible. Once a staff member gets infected, he/she must be replaced with a new staff member.

This happens in two occasions: (i) when a staff member shows symptoms of infection, and

(ii) when a staff member has an infection-positive test result. An infected person usually

becomes symptomatic after the incubation period τ is passed. For example, the median

incubation period of COVID-19 is estimated to be at 5 days [Lauer et al., 2020], while the

mean incubation period of SARS is about 7 days [Chan-Yeung and Xu, 2003]. Depend-

ing on the characteristics of the disease, a transmission may or may not occur during the

incubation period. For example, Ebolavirus infected patients do not pass the virus on

to others during incubation period [Eichner et al., 2011] while Norovirus can shed during

the incubation period [Robilotti et al., 2015]. A recent study by [Johansson et al., 2021]

estimates that transmission from COVID-19 infected asymptomatic individuals accounts

for more than half of all transmissions. Even the risk for COVID-19 breakthrough and

passing infection in fully vaccinated people cannot be eliminated as long as there is con-

tinued community transmission of the virus [Centers for Disease Control and Prevention,

2021].

We assume that there is a maximum of m staff members available who need to be

assigned to r resources (i.e., rooms, machines, etc.) on a daily basis. Each resource needs

t staff members to operate. So, on each day at least t× r staff members are needed. The

14
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scheduling time horizon is n days and each staff member should work at least l and at most

u days during the time horizon. There are also test days for staff members and we assume

the same-day results are available. This means that at the end of the day, infected staff

members are identified and must be replaced with new staff members for the remaining

days of the scheduling time horizon. We also assume that at the beginning of the time

horizon, there is no infected staff members. Furthermore, we assume that newly replaced

staff members are not infected either. To find an optimal staff scheduling, we consider

an aggregated objective which aims to optimize the Expected Number of Replacements

(EXNR). The objective minimizes the summation of EXNR for all the staff members

based on their assigned working patterns. Minimizing EXNR aims to address the shortage

of staff due to an outbreak which is an important challenge of many facilities during a

pandemic.

3.1 Problem Formulation

In this section, we first discuss how we obtain EXNR. Next, we discuss the optimization

models that assign each staff member to a working pattern considering the minimum and

maximum number of required working days for each staff member and the required number

of staff members for each resource.

3.1.1 Expected Number of Replacements (EXNR)

Consdier a time horizon with n days and h holidays during which none of the staff mem-

bers work. Thus, there are c = θ(n−h) working patterns for each staff member where θ

represents the number of working status on each day (e.g., full-time, part-time, rest-day).
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For example, suppose that we have 2 days with no holidays in between and assume that

“1” and “0” indicate working and not working, respectively (θ = 2). In this case, we would

have the following 4 patterns:

[day1, day2] = [1, 1], [1, 0], [0, 1], [0, 0]

Depending on the working patterns employed, the expected number of replacements varies.

In the following, we discuss how the expected number of replacements is obtained. Let

τ denote the incubation period of the disease which is the time between exposure to

the virus and the symptom onset. Also, let x denote a random variable that represents

the number of staff replacements as a result of customers-staff infection transmission or

infection transmission from external sources. Then, the expected number of replacements

with θ = 2 can be obtained as follows:

E(x) =

bn/τc+1∑
i=1

i
∑

(j1,..,ji)∈Ai

πj1πj2 ..πji
∏

k∈Bj1,...ji

(1− πk) (3.1)

Ai := {(j1, ...ji) : ∀r, s = 1, ..., i, r 6= s, |jr − js| > τ, j1 < j2 < .. < ji} (3.2)

Bj1,...ji := {1, ..., n}\(
i⋃
l=1

{jl, jl + 1, ...jl + τ}) (3.3)

πi =

 pwi, if i is a working day

phi, if i is a rest day

 (3.4)

For example, assume that the time horizon is 4 days with the third day as a holiday. The

incubation period is 2 days and there is a test day at the beginning and end of time horizon.

Then, the expected number of replacements is calculated as follows:

E(x) = 0 · [(1 − π1)(1 − π2)(1 − π3)(1 − π4)] + 1 · [π1(1 − π4) + (1 − π1)π2 + (1 − π1)(1 −

π2)π3 + (1− π1)(1− π2)(1− π3)π4] + 2 · [π1π4] (3.1.1)
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As mentioned previously, the total number of patterns that we have in this case is 8. To

clarify equation (3.1), consider [π1(1− π4) + (1− π1)π2 + (1− π1)(1− π2)π3 + (1− π1)(1−

π2)(1−π3)π4], which is the second term in (3.1.1). Note that this term covers all outcomes

where there is 1 replacement. The infection can occur on any day during the time horizon

(day 1 up to and including day 4). Consider the final term of the expression which indicates

an outcome that the infection has occurred on day 4. Since we only have one replacement,

there should be no infection occurring on days 1, 2 and 3.

Term (1− π1)π2 is related to an outcome where the infection occurs on day 2. Again,

since there is only one replacement, the infection must not occur on any other days. How-

ever, there is a difference here compared to the previously discussed term. The staff member

is already infected on day 2, and thus, it is certain (the probability is 1) that no infection

occurs on day 3 and 4. The last term in (3.1.1) denotes an outcome (the only one) where

two staff members replacements would happen. An infection occurs on day 1 and when

the staff member is replaced on day 4, the newly replaced staff members gets infected on

the same day. In this way, we enumerate all possible outcomes and calculate the EXNR

accordingly.

3.1.2 “New” Interactions

The most important and effective policy for minimizing the risk of infection transmission

during a pandemic is to limit social interactions. In our problem, assuming that the

presence of a possible infected staff member in different teams could increase the risk

of an outbreak among them, we define a measure that captures the number of “new”

interactions throughout the time horizon for each staff member. We assume that there is a

new interaction between a pair of staff members teamed up on day n if they have not been
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in the same team for the past τ days (i.e, since day (n − τ)+), where τ is the incubation

period. For example, assume there are 5 staff members (m = 5) and 2 resources (r = 2).

Each resource needs 2 staff members to operate on each day (t = 2). Table 3.1 shows the

working patterns of the staff members for 4 days. Assume that the incubation period is

2 days (τ = 2). Take staff member “A” as an example. This staff member has a new

interaction on day 1. However, there is no new interaction for this staff on day 2. The

reason is that staff “A” has already worked with staff “B” on day 1. On day 3, however,

there is a new interaction for staff “A” as this staff has not worked with staff “E” in the

last 2 days (incubation period). On day 4, there is no new interaction for staff “A” because

there was an occasion in the last 2 days that staff “A” teamed up with staff “B”.

Table 3.1: An example to illustrate “New” interaction.

Day 1 Day 2 Day 3 Day 4

Resource1 A A E A

Resource1 B B B B

Resource2 C C A C

Resource2 D D D D

3.1.3 Optimization Models

In this work, we consider two goals. The first goal is to find out the optimal schedule

for the staff members to minimize the EXNR, which is given in (3.1). The second goal

is to minimize the interaction between the staff members as much as it is possible. In
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Figure 3.1: The connection between Model (i) output (optimal scheduling) and Model (ii)

input (optimal teams).

other words, we also seek to minimize the total number of new interactions between the

staff members. To achieve these goals, we design a two-stage optimization framework, as

illustrated in Figure 3.1. Specifically, Model (i) assigns staff members to different working

patterns to minimize EXNR. Then, Model (i) output will be used as an input for Model

(ii) which creates teams of staff members such that the new interactions between the staff

members are minimized.

• Model (i)

A very straightforward formulation would be to generate all the working patterns, and then

determine which pattern should be assigned to each staff member using a mathematical

formulation. Below, we introduce the notations used in the mathematical formulations of

this model.

Sets

• N = {1, 2, .., n}: Set of all days
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• M = {1, 2, ..,m}: Set of all staff members

• W = {1, 2, .., c}: Set of all working patterns

Parameters

• n: Number of days during the scheduling time horizon

• m: Number of available staff members

• t: Number of required staff members on each day and for each resource

• r: Number of available resources

• E(xw): EXNR (cost) of pattern w

• l: Minimum number of days that each staff member is required to work during the

time horizon

• u: Maximum number of days that each staff member is required to work during the

time horizon.

• Jj: The set of all patterns which have “working” state on day j.

Decision Variables

• µij: Binary variable where 1 denotes that staff member i works on day j, and 0

otherwise.

• ywi: Binary variable where 1 denotes that working pattern w is assigned to the staff

member i, and 0 otherwise.

Then, the problem can be formulated as follows:
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Min

c∑
w=1

m∑
i=1

ywi E(xw) (3.5)

S.t
m∑
i=1

µij = t× r ∀j ∈ N (3.6)

∑
w∈{Jj}

ywi = µij ∀i ∈M,∀j ∈ N (3.7)

c∑
w=1

ywi = 1 ∀i ∈M (3.8)

l ≤
n∑
j=1

µij ≤ u ∀i ∈M (3.9)

ywi = {0, 1} ∀w ∈ W,∀i ∈M (3.10)

The objective is to minimize the summation of EXNR for chosen patterns. Constraint (3.6)

guarantees that on each day, a total of t× r staff members are required. Constraints (3.7)

and (3.8) ensures that the model assigns one pattern to each staff member and constraints

(3.9) determines a lower and upper bound for the number of days that staff members are

allowed to work during the time horizon. The challenge with Model (i) is that we need to

generate all possible working patterns to calculate the expected number of replacements

for each of the patterns. Depending on the number of days (n), working status on each day

(θ), and the number of holidays/non-working days (h), there could be thousands of unique

patterns (θn−h) which would necessitate a substantial computational power and memory

to solve the model. Thus, in the next section, we propose an alternative formulation for

Model (i), which lends itself better to a column generation approach.
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• Alternative Formulation for Model (i)

In this section, we propose a formulation for Model (i) which is well suited to be solved

using column generation. The difference between this formulation and the original one is

that here, φw is a non-negative integer variable denoting the number of working pattern w

that is chosen and ajw indicates whether day j is a working (1) or a non-working (0) day for

pattern w. There are two sets of constraints for this formulation. The first set corresponds

to the number of required staff members on each day, and the second set of constraints

captures the lower bound and the upper bound of the required number of days to work

during the time horizon.

Min
∑
w∈W

φw E(xw) (3.11)

S.t ∑
w∈W

ajwφw = t× r ∀j ∈ N (3.12)

u ≥
∑
j∈N

ajw ≥ l ∀w ∈ W (3.13)

φw ≥ 0 & integer ∀w ∈ W (3.14)

Again, the issue here is that we need to create all working patterns (or at least those within

the upper and lower bound of required working days) and calculate the corresponding

EXNR for each pattern. However, this formulation is suitable to be solved through the

column generation approach where we can avoid generating all possible patterns.

3.1.4 Column Generation Approach

The general idea of CG is that many linear programs are fairly sizable to consider all the

variables. In such problems, usually, most of the variables will be non-basic and would

have a value of zero in the optimal solution. Thus, only a subset of variables need to be
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considered in theory when solving the problem. CG leverages this idea to generate only

the variables which have the potential to improve the objective function. This approach

consists of two problems. The Restricted Master Problem (RMP) which is the original

problem with only a subset of variables (patterns in our case) and the sub-problem (SP)

which is a new problem to identify a new variable that potentially improves the objective

of RMP. In what follows, we demonstrate how our model can be solved using the column

generation approach.

• Restricted Master Problem (RMP)

The restricted master problem starts off with a small number of patterns to solve the

LP relaxation restricted to these variables. Let W ′ denote the small set of feasible patterns

that starts off the algorithm. Then, an LP relaxation of the original problem can be written

as,

Min
∑
w∈W ′

φw E(xw) (3.15)

S.t ∑
w∈W ′

ajwφw = t× r ∀j ∈ N (3.16)

φw ≥ 0 ∀w ∈ W ′ (3.17)

where φw is a non-negative, real-valued variable.

• Sub-problem (SP)
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Generating columns is addressed in the sub-problem where we aim to find a pattern

with the lowest reduced cost. The sub-problem is defined as follows:

Min E(xnew)−
∑
j∈N

yja
j
new (3.18)

S.t

l ≤
∑
j∈N

ajnew ≤ u (3.19)

ajnew ∈ {0, 1} ∀j ∈ N (3.20)

The objective is to create a column (pattern) with the minimum reduced cost. The ob-

jective in the sub-problem has a non-linear term, E(xnew), which is the expected number

of replacements for the new generated pattern. Decision variable ajnew in this problem is

a binary variable. Based on the definition given in (3.1), the objective of the SP contains

a product of binary variables (a1new, a
2
new, .., a

n
new). We can potentially linearize the prod-

uct of binary variables by adding new variables and constraints. However, the number

of variables and constraints of the problem exponentially increase. Note that using the

sub-problem, we aim to find a pattern that improves the objective function of the RMP

model. Thus, we do not really need to solve the sub-problem to global optimality, and

therefore, this non-linear objective function can be easily solved by non-linear approaches.

In our numerical examples, we used the GEKKO Optimization Suite [Beal et al., 2018]

which specializes in dynamic optimization problems for mixed-integer, nonlinear, and dif-

ferential algebraic equations (DAE) problems. In each iteration, a new column is created

and added to the LP relaxed master problem. These iterations continue to a point where

the optimal objective value of the sub-problem becomes greater than or equal to zero,

which is the stopping criteria for the algorithm.
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• IP Formulation for Model (ii)

This model uses the output of Model (i) to assign each working schedule (staff member)

to a room in a way that the total number of new interactions is minimized.

Sets

• N = {1, 2, .., n}: Set of all days

• M = {1, 2, .., t× r}: Set of all chosen patterns

• R = {1, 2, .., r}: Set of all resources

Parameters

• n: Number of days during the scheduling time horizon

• t: Number of required staff members on each day and for each resource

• r: Number of available resources

• aji : The working state of the chosen pattern for staff i on day j

• τ : Incubation period of the disease

Decision Variables

• µkij: Binary variable where 1 denotes that staff member i works on day j with resource

k, and 0 otherwise.

• Skii′j: Binary variable where 1 denotes that staff members i and i′ work with resource

k on day j, and 0 otherwise.
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• Qj
ii′ : Binary variable where 1 denotes that there has been a new interaction between

staff members i and i′ on day j, and 0 otherwise.

Min
∑
i∈M

∑
i′∈M/i

∑
j∈N

Qj
ii′ (3.21)

S.t.

µkija
j
i + µki′ja

j
i′ ≥ 2Sjkii′ ∀i ∈M,∀j ∈ N,∀k ∈ R, ∀i′ ∈ {M | i′ > i} (3.22)

µkija
j
i + µki′ja

j
i′ ≤ Sjkii′ + 1 ∀i ∈M,∀j ∈ N, ∀k ∈ R, ∀i′ ∈ {M | i′ > i} (3.23)

r∑
k=1

Sjkii′ −
r∑

k=1

j−1∑
z=max(1,j−τ)

Szkii′ ≥ τQii′j − τ ∀i ∈M,∀j ∈ N, ∀i′ ∈ {M | i′ > i} (3.24)

r∑
k=1

Skii′j −
r∑

k=1

j−1∑
z=max(1,j−τ)

Szkii′ ≤ τQii′j ∀i ∈M,∀j ∈ N, ∀i′ ∈ {M | i′ > i} (3.25)

µkij, Q
j
ii′ , S

jk
ii′ = {0, 1} ∀i, i′ ∈M,∀j ∈ N, ∀k ∈ R (3.26)

The objective of this model is to minimize the total number of new interactions between

each pair of staff members. Constraints (3.22) and (3.23) deals with the pair-wise inter-

action between two staff members. Thus, Sjkii′ equals to 1 if and only if the pair works

together on a same day and on the same resource. Constraints (3.24) and (3.25) address

the new interaction between a pair on each day. There are 2 conditions for a new interac-

tion. First, a pair of staff members must work together on day j, and second, they must

not have worked together since day (j − τ)+. In this way, we can calculate the pair-wise

new interaction between all staff members and find out what resources the staff members

are assigned to. Since there are usually limited number of staff members and resources and

the size of the problem is not often too large, a branch and bound algorithm can solve this

problem in a reliable time.
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Chapter 4

Case Study: Grand River Regional

Cancer Centre (GRRCC)

In this section, we examine the efficiency of the the proposed staff scheduling models

using data from the Grand River Regional Cancer Centre (GRRCC). It is a comprehensive

cancer treatment and research centre located in Kitchener, Ontario, and the sole provider

of radiation treatment in the Waterloo-Wellington Region in Ontario, serving a population

of over 775,000 people. We particularly worked closely with the Department of Medical

Physics and Radiation Oncology who plans and delivers radiation therapy treatments to

cancer patients and treats over 2000 new patients annually.

The partner organization has a growing concern about the possibility of facing a short-

age of resources during the pandemic, particularly with an increase in the number of

infected staff. Any interruption and delay in the care process for the radiation therapy

patients can be highly detrimental towards the efficiency of their treatment. Thus, the

scheduling of radiation therapy staff has become an increasingly challenging task during
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the COVID-19 pandemic to avoid an outbreak among their staff members and the con-

sequent shortage of staff members. The radiation therapy process starts with patients

undergoing a Computed Tomography (CT) simulation to determine their clinical condi-

tion. The full dose of radiation is usually divided into a number of smaller doses called

fractions. The patients get their pre-planned fractions in consecutive days until the treat-

ment process terminates. Radiation therapists are responsible for positioning the patient

and for delivering the radiation dose. So, on most occasions, interaction between therapists

and patients is inevitable and therefore, infected patients, whether they are symptomatic

or asymptomatic, may transmit infection to the therapists. Because of the importance

of the continuity of treatment for these patients, even in some cases, symptomatic pa-

tients need to get their required radiation dose according to the physicians’ decision. Since

COVID-19 can remain asymptomatic for several days and there is a high probability of

disease transmission during this time, it is extremely hard to identify infected patients and

normal protocols cannot be applied. It is also impossible to test all patients for the virus

mostly because the number of tests required exceeds the capacity of hospitals and labs,

especially since cancer patients must visit the hospital every day for several weeks. More-

over, an infected therapist may transmit the infection to his/her colleague with a higher

probability and this can trigger an outbreak among the therapists and paralyze the whole

care process.

Since the start of the pandemic, GRRCC implemented different preventive staff schedul-

ing policies such as full isolation policy where teams of therapists do not interact with each

other. There are four radiation rooms, and each room needs a team of three radiation

therapists to operate. A 5-day schedule is repeated for two weeks and then modified on a

biweekly basis (10 working days), and there are a total of 16 radiation therapists. Their

full isolation policy is maintained through four specific therapists who are assigned to each
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room for a specific scheduling time horizon. Figure 4.1 shows the current scheduling policy

of four therapists which is the same for each room. There is one therapist who works 0.6

FTE (full-time equivalent) and three other works 0.8 FTE.

4.1 Numerical Examples

In this section, we first discuss the results of the proposed models based on the parameters

given in Table 4.1. Next, we will perform a sensitivity analysis to find out the behaviour of

the model in different scenarios. All our experiments have been solved using the discussed

algorithm and the ILOG CPLEX software and carried out on a Core i7-7700K with 4.2

GHz and 32 GB RAM.

Table 4.1: Models inputs and default values

Input Default Values

incubation period (τ) 5 days

Scheduling time horizon (n) 14 days (with Sat and Sun as hol-

idays)

Maximum number of therapists (m) 16 therapists

Number of needed therapists in each team (t) 3 therapists

Minimum and Maximum needed days of working (l, u) 6 and 8 days

Number of teams/rooms (r) 4 rooms

Probability of getting infected on a working day (pw) 0.05, 0.1

Probability of getting infected on a rest day (ph) 0.1,0.05

We discuss the results under two different scenarios, namely, pw > ph and pw < ph. As
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mentioned before, each of these scenarios could be possible at any stage of the pandemic.

At the early stages, where the PPEs are limited and are not yet designed to be the most

efficient, being present in a hospital and interacting with numerous patients would probably

be riskier than staying at home especially in case of lockdowns. In contrast, at some points

during the pandemic, staying at home and interacting with other people while there are no

high-quality PPEs, could be more hazardous than being in a safer working environment.

We explain the inputs of the model and their default values in Table 4.1.

4.1.1 Integer Feasible Solution

In order to find an integer feasible solution for Model (i), in each iteration of the column

generation algorithm, we store the unique final optimal solution (patterns) of LP relaxed

master problem to a set S. Set S will finally contain small number of patterns that finding

the integral optimal solution from this set is just a matter of enumeration. Table 4.2 shows

the integrality gap between our suggested algorithm versus the optimal solution of the LP

relaxed column generation as a lower bound of the problem.

Figure 4.1: Current scheduling of therapists at each room of GRRCC (Dark: Not working/

White: working).
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Table 4.2: Integrality gap between the proposed algorithm and the LP relaxation optimal

solution

t× r m Gap% t× r m Gap%

2 2 0 6 9 1.4

2 3 0.7 6 12 1.5

2 4 0.65 12 15 0.95

2 5 0.62 12 18 1.01

3 4 1.2 15 20 1.32

3 5 1.1 15 25 1.78

4 5 0.94 20 24 1.03

4 6 0.98 20 25 0.96

4.1.2 The Risk of Getting Infected on a Working Day is Higher

In this section we assume that pw > ph. We numerically observe that the minimization of

the new interactions, considered as the objective of Model (ii), leads to the full isolation

policy. This means that 4 therapists are assigned to each room with no interaction between

the therapists of different rooms during the time horizon. The schedule for each therapist

is shown in Figure 4.2. As indicated, there are more consecutive rest days in general

compared to the current scheduling of the clinic. The reason mostly lies in the fact that

the risk of getting infected on a working day is higher, and therefore, there is a higher

probability that a new therapist who replaces an infected therapist, gets infected on a rest

day, which has a lower probability of getting infected. Thus, the expected total number of

replacements would be approximately 4% (13.2 vs 13.7) less than the current schedule.
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Figure 4.2: Optimal Schedule for each room when there is a higher chance to get infected

at the hospital (Dark:Not working/ White: working).

4.1.3 The Risk of Getting Infected on a Rest Day is Higher

In this section, we assume that pw < ph. In this setting, the model tries to create more

gaps between working and rest days vis a vis the incubation period so that a possible new

infection takes place on a working day, which has a lower risk. Note that in this scenario as

well as the scenario discussed in Section 4.1.2, we made assumptions and set the inputs in

a way that they would be similar to the current setting. For example, we consider that all

available therapists need to work and m = 16. Nevertheless, in this scenario, the expected

number of replacements is about 5% lower than the expected number of replacements based

on the current schedule.

In both scenarios (i.e., pw > ph and pw < ph), we have sufficient resources to main-

tain a full isolation policy. However, the shortage of staff members is an important

challenge faced by frontline health and social care workers during COVID-19 pandemic

[Nyashanu et al., 2020]. An interesting scenario is that there are not sufficient therapists

to maintain a full isolation policy and some of the therapists need to switch teams during

the time horizon.

• Insufficient Staff for Full Isolation
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Figure 4.3: Optimal schedule for each room when there is a higher chance to get infected

at home (rest day) (Dark:Not working/ White: working).

In this scenario, some of the staff members (therapists) must work with different team-

mates during the time horizon. Assume that we have 2 rooms, and each room needs 3 staff

members to operate on each day, the maximum number of available therapists is 7 and no

therapists is allowed to work for the full time-horizon (u = n − 1). In this scenario some

therapists need to switch between the teams inevitably. As shown in Figure 4.4, therapist

Figure 4.4: A scenario where full isolation policy cannot be maintained (pw < ph).

G is switching between teams. Again here, since the probability of getting infected on a

working day is higher than a rest day, therapist G works in consecutive days. Moreover,

his starting day is delayed as much as possible so that in case of an infection, the new
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therapist who replaces G, would be in less danger of getting infected. On the other hand,

in Figure 4.5, we can see that since the probability of getting infected on a working day

is higher, the extra therapists who switch between the teams start their schedule as early

as possible. In the next section, we perform a sensitivity analysis to examine how the

Figure 4.5: A scenario where full isolation policy cannot be maintained (pw > ph).

proposed models behave in different circumstances.

4.1.4 Sensitivity Analysis

• pw and ph

As illustrated in Figure 4.6, the model shows higher sensitivity to the change of ph

when pw is fixed as it has a steeper slope. This means that as the probability of getting

infected on a rest day increases, the current scheduling policy gets more and more risky

for the operations of the clinic. On the other hand, higher probability of getting infected

on a working day does not necessarily leads to wider gap between the two policies.

In extreme situation where the infectivity is dramatically higher in the working place,

the gap between the two policies starts to shrink. Such situations may happen in case
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Figure 4.6: The EXNR gap between the optimal and current schedules for different proba-

bilities.

of an outbreak in the clinic, or a variant of the virus with very high infectivity rate that

makes PPEs less effective.

• Incubation Period (τ)

As it is shown in Figure 4.7, the widest gap between the optimal solution and the

current schedule would take place when the incubation period is less than 6 days. The

underlying reason of the decrease in the gap from τ = 7 is that when the incubation period

increases, the effect of scheduling policy becomes negligible and finally the gap converges to

zero (τ = n). Interestingly, the highest difference between the scheduling policies happens

when τ is between 4 and 6 days which is the most documented incubation period for

COVID-19 virus [Lauer et al., 2020, McAloon et al., 2020, Tan et al., 2020].

Changes of τ has a direct impact on the number of “new” interactions resulted from

Model (ii) as illustrated in Figure 4.8. Intuitively, it makes sense that when the incubation
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Figure 4.7: The EXNR gap between the optimal and current schedules for different incu-

bation periods.

period of a contagious disease is long, there are less means of preventing an outbreak at

the workplace. However, regular testing for the staff members can be helpful to limit the

spread of the disease.
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Figure 4.8: Number of new interactions for different incubation periods.

• l and u

The minimum and maximum number of days to work is closely related to the number

of available therapists. For example, it is not possible that in case of m = 4 and t = 3,

all therapists work full-time. Here, all other parameters fixed, we change the value of l

and u to evaluate the effects of these two parameters on the EXNR while the feasibility

is maintained. As shown in Figures 4.9 and 4.10, in case of inflexibility for the lower and

upper bounds of needed working days for each therapist (l and u), the optimal policy might

change. For example, when it is decided that all therapists need to work for at least 8 days

and the risk of getting infected is higher on a rest day, the optimal scheduling is to schedule

all therapists to work either 8 or 9 days to have lower EXNR.
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Figure 4.9: EXNR for different values of u and l (pw > ph) .

4.2 Performance of the Models

The main advantage of the propose CG algorithm is that there is no need to create all

available patterns to find the optimal solution. This hugely helps in terms of memory

usage and accordingly, the computation time. Depending on the value of θ, there would

be situations where it is impossible to generate all available patterns (θn−h) because of the

memory limitations. Therefore, the supposedly simple “original formulation”, is impossible

to be solved. Table 4.3 provides the average computation times (in seconds) required

to solve the proposed CG algorithm and the original formulation. It also provides the

standard deviation of the computation time in parenthesis. In fact, the CG algorithm

computation time in the table consists of the time to solve both Models (i) and (ii).

For the original formulation, we consider the time to generate all patterns, the time to

calculate the cost of each pattern, as well as the time to solve the model. To be consistent

with the assumptions provided in previous sections, we assume that there are only two

different working status on each day (θ = 2). Note that when θ increases, the number
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Figure 4.10: EXNR for different values of u and l (pw < ph) .

of possible patterns increases dramatically, and thus, the CG algorithm outperforms the

Original formulation in even more instances. As expected, for both CG algorithm and the

branch and bound algorithm used to solve the original formulation, the larger the number

of working days, the larger the computation time needed to find the optimal solution.

However, as shown in Figure 4.11, the marginal increase in computation time for the branch

and bound algorithm that solves the original model is greater than the computation time of

the CG algorithm. When the number of working days increases, the computation time of

the original formulation increases significantly because of high computation power required

to generate and calculate the cost of all possible patterns while the CG algorithm solves

the model with limited number of patterns.
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Table 4.3: Computation times comparison between the models (standard deviation is given

in parenthesis)

4.3 Simulation

In this section, we develop a discrete-event simulation (DES) to compare the output of the

proposed models with some other possible scheduling policies. In the simulation model,

we consider all assumptions that we made for the optimization models and add the impact

of interaction such that an infected therapist, on each day, might pass the infection to the

uninfected teammates. Let p̂ν denote the probability of getting infected from teammates

if there are ν infected therapists in the team on a specific day. Similar to the previous

sections, we assume that an infected therapist would be replaced with a new therapist

after τ days, or on a test day at the end of the scheduling time horizon (day 14). In the

following, we explain the scheduling policies that we consider in the simulation.

• Policy 1: current scheduling policy

The current scheduling of the clinic is illustrated in Figure 4.1 where in each room, 3

therapists work 0.8 FTE and 1 therapist works 0.6 FTE. Under this policy, a full isolation

is followed where 4 therapists are assigned to each of 4 available rooms (m = 16).
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Figure 4.11: Computation time comparison

• Policy 2: interaction between the members of different rooms (optimization model’s

outcome)

Under this policy, illustrated in Figures 4.4 and 4.5, we assume that there are 7 therapists

for each two rooms (m = 14). One therapist (0.6 FTE) switches between the teams and

other 3 therapists (0.9 FTE) remain in the same room and have no interaction between 3

therapists of the other room.

• Policy 3: full-isolation (optimization model’s outcome)

This scenario is the closest policy to the current scheduling in terms of the FTE of the ther-

apists and the total number of therapists. The optimal scheduling policy of this scenario

is discussed in Sections 4.1.2 and 4.1.3.

• Policy 4: lower FTE for each therapist (optimization model’s outcome)
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In this scenario, we assume that we have sufficient flexibility to assign 6 therapists to each

room with no interaction between the teams (m = 24). Furthermore, no therapists is

allowed to work more than 2 consecutive days. Figure 4.12 illustrates the schedule of the 6

therapists in each room where 3 therapists work 0.6 FTE and 3 therapists work 0.4 FTE.

Figure 4.12: A 2-2 scheduling policy

Table 4.4 shows the parameters and their default values that are used in the simulation

model.

4.3.1 Simulation Results

We present the results of the simulation under two scenarios, namely, pw > ph and pw < ph.

We run the simulation for 1000 times and we report two measures. The first measure is

the average total number of replacements, which is the objective of Model (i) discussed in

Section 3.1.3. The second measure is the average FTE number of replacements which is the

average number of replacements per each scheduling pattern times the FTE of the pattern.

The second measure provides a good estimation for the decision makers to know how

each scheduling policy might affect their available resources in terms of FTE. As shown in
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Table 4.4: Simulation parameters

Parameter Default Values

incubation period (τ) 5 days

Scheduling time horizon (n) 60 days with testing day at the

end every 2 weeks

Probability of getting infected on a working day (pw) 0.05, 0.1

Probability of getting infected on a rest day (ph) 0.1,0.05

Probability of getting infected if there is 1 infected ther-

apist in the team (p̂1)

0.7

Probability of getting infected if there are 2 infected ther-

apists in the team (p̂2)

0.9

Figures 4.13 and 4.14, in most instances, there is not much variation between the patterns

with the same FTE. There are only differences in part (a) of Figures 4.13 and 4.14 where

some patterns have less average of replacements compared to the other patterns with the

same FTE. The reason is mainly because of the effect of interaction where the switching

therapists probably passed the infection from one team to the other team members. The

question here is that to what extent this policy can cause replacements compared to the

other 3 scenarios where we have full isolation and no inter-teams connection.

As shown in Figure 4.15, Policy 2 has the lowest total number of replacements and it’s

partly because we have less number of therapists compared to the other scenarios. In fact,

although the probability of getting infected through interaction is very high, the effect is

not significant enough to cause an outbreak among the staff members. In terms of FTE

though, Policy 4 has the least number of replacements. It’s because of the high turnover

of the therapists in this scenario and less working days. However, we cannot neglect that
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Figure 4.13: Average replacements per each working pattern (pw > ph) for a: Policy 2, b:

Policy 3, c: Policy 1, d: Policy 4

in most occasions, and specially during an unprecedented workload during a pandemic, it

is not possible to recruit and use large number of staff members.

The gap between Policy 1 and Policy 4 is around 21%. This means that in situations

where there is a lower risk of getting infected at work place, in long term there are 21% less

FTE replacements if a policy with more therapists and lower FTE per therapist is followed.

In case of low flexibility of the total number of therapists, Policy 3 leads to around 8%

less FTE replacements. When pw < ph (Figure 4.16), the full isolation policy (Policy 3) is

the best policy in terms of FTE replacements. Compared to the current policy (Policy 1),

there is about 5% less FTE replacements when the order of the working days is changed
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Figure 4.14: Average replacements per each working pattern (pw < ph) for a: Policy 2, b:

Policy 3, c: Policy 1, d: Policy 4

according to what our model suggests.
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Figure 4.15: Comparison between the policies (pw > ph) (left: Total number of replace-

ments, Right: FTE number of replacements)
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Figure 4.16: Comparison between the policies (pw < ph) (left: Total number of replace-

ments, Right: FTE number of replacements)
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Chapter 5

Discussion

In this work, for the first time, we introduced a mathematical framework for staff scheduling

during a pandemic with focusing on the characteristics and nature of the disease causing

the pandemic. As [Mascha et al., 2020] discussed, there is a high chance that staffing

along with epidemiological considerations reduce the healthcare workers shortage. Amid

the low rates of vaccination in developing countries, as well as the uncertainty around the

efficacy of available vaccines against COVID-19 and its new variants in developed world,

the importance of an optimal scheduling policy to minimize the risk of staff shortage

in undeniable. We showed that the optimal staff scheduling policies could be different

depending on the characteristics of the disease such as the incubation period and the

public health policies at different stages of the pandemic.

At early stages of the pandemic where the nature of the disease is unknown and the

availability of PPEs is limited, there is probably a higher risk for staff members to get

infected from the workplace on their working days (pw > ph). In this situation, our

findings show that the staff members should be scheduled in a way that in case of getting
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infected, they become symptomatic (and replaced with a new staff member) on a rest day

where there is a lower chance of getting infected for the new staff member. On the other

hand, in situations like mid-2021 in COVID-19 pandemic, it seems that there is a higher

probability for a healthcare staff member to get infected on a rest-day in the absence of

social distancing, rather than getting infected in a secured, well monitored workplace. The

probable reason behind it is that step by step, the knowledge about the characteristics of

the disease improves and vaccines are developed which leads to relaxed lockdown policies

while there are uncertainties about the vaccines’ efficacy on the new variants.

In contrast to the previous situation, our findings from Model (i) suggest that with

respect to the holidays and the incubation period, the rest days should be interspersed

in consecutive days so that there is a less probability to get infected on a working day

for new replaced therapists. Thus, the optimal scheduling policy is highly dependant on

the parameters and characteristics of the disease at each time and it is essential that the

models be solved in reliable time according to the needs of each organization.

To address this matter, we designed a Column Generation algorithm which is able to

solve the proposed models without generating all working patterns.More importantly, in

terms of memory usage, it is much more efficient since generating all possible working

patterns will become impossible when the number of working days during the scheduling

time horizon increases.

On the other hand, Model (ii) is designed to assign the staff members to different teams

so that the interaction between them is minimized. This will help to avoid outbreaks

as much as it is possible especially in cases where there are not enough resources (staff

members) for a full isolation policy and some staff members must switch between the

teams inevitably.
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Our results showed that for our partner organization, we can reduce the Expected

Number of Replacements (EXNR) by up to 20% in some occasions compared to the current

scheduling policy.Our optimization and simulation models can be used as managerial tools

to implement, examine and compare different scenarios in different settings. For example,

in our case, if there is no flexibility for the minimum number of working days for each

therapist, when pw > ph, it is better that each therapist works between 7 and 8 days rather

than 7 and 9 or 10 days. In another example, in case there is a higher risk to get infected

at work, it is better to follow a scheduling policy where more people are assigned to each

room. This leads to less FTE for each therapist and more rest days. However, it should

be carefully analyzed by the decision makers to find out if it is possible to hire more staff

members to maintain a 21% less FTE replacements. Even in the lack of flexibility in terms

of the total number of staff members, just by re-ordering the days that the therapists work,

our results suggest that there could be up to 8% less FTE replacements.
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