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Abstract— We propose a linear programming-based method
of interval observer design for systems with uncertain but
bounded model parameters and initial conditions. We assume
that each uncertain parameter in the system model is bounded
by conservative guaranteed bounds, and tighter conditional
bounds. We define a class of systems by the cardinality of
conservative bounds required to bound all uncertain param-
eters. Using robust optimization, we solve only a single linear
program per class of systems to obtain gains for the interval
observer. A conservative upper bound on the worst case steady-
state performance of the interval observers over the specified
class of systems is minimized.

I. INTRODUCTION

In scenarios such as high-volume manufacturing of low-
cost devices, there are many plants characterized by similar
dynamics, whose parameters vary within known bounds.
Each plant is characterized by the same dynamical model
with uncertain parameters. We consider scenarios wherein
the originally conservative bounds on specific parameters
can be tightened for certain plants. For example, if higher-
quality components are used to construct a batch of devices.
We address the problem of state estimator design for such
plants. We propose a method of optimal interval observer
(IO) design using robust optimization. We define a class of
systems using the cardinality of conservative bounds required
to bound all uncertain parameters of the plant dynamics.
Only a single optimization is performed per class of systems.

An IO comprises an upper and lower observer, whose
trajectories bound those of the plant states from above
and below, respectively. IOs are useful when the plant
dynamics are highly uncertain, making classic observers
(e.g., Luenberger, high-gain) unreliable. One of the earliest
dynamical IOs was described in [1], wherein they were
designed for a wastewater treatment management system.
IOs have also been applied to population dynamics [1], algae
cultures [2], and pharmacokinetics [3]. IOs are attractive in
biotechnological applications due to the large parametric and
measurement uncertainty inherent to biological systems. IOs
can be applied to a large class of dynamical systems, e.g.,
any system with bounded state trajectories [1], and any stable
linear system with additive disturbances, by using a time-
varying change of coordinates [4]. Necessary and sufficient
conditions for the existence of IOs, yielding systematic
optimal design procedures, were identified for positive linear
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systems in terms of matrix inequalities in [5], and for
a more general class of nonlinear systems with bounded
uncertainties in terms of linear constraints in [6]. The linear
constraints identified in [6] were used to develop the linear
programs (LPs), which we extend in this paper. Specifically,
we account for uncertainty in the coefficients of these LPs.

Given an instance of a convex optimization problem with
uncertain coefficients, if even relatively small deviations
from nominal coefficient values, called perturbations, are not
accounted for, classic optimization methods may generate
solutions that are far-from-optimal, or even highly infeasible
when implemented [7]. Robust optimization generates deter-
ministically feasible solutions under deterministic set-based
models of uncertainty, at the expense of increased cost in the
nominal problem. Associated with each model of uncertainty
is a budget of uncertainty [7], which characterizes the class
of problem instances for which the robust solution will be
deterministically feasible, as well as the potential deviation
from optimality of the solution to the nominal problem. For
LPs, several models of uncertainty have been considered.
The ellipsoidal [8] and norm [9] models of uncertainty
consider various norms of perturbed vectors and matrices of
coefficients. Notwithstanding a special case in [9], the robust
problem formulations under these models of uncertainty are
second order cone programs. The cardinality constrained
model of uncertainty [10], used in this paper, considers
the cardinality of coefficients that are perturbed from their
nominal values. The robust formulation is implemented as
an LP. Robust optimization has seen varied application,
including antenna [11] and circuit [12] design, constrained
stochastic linear-quadratic control [13], and wireless channel
power control [14]. The reader is referred to [7] for a
comprehensive review of the robust optimization literature.

We propose a method of IO design using the linear
programming-based method of [6] and the robust optimiza-
tion method of [10]. We define a class of systems in terms
of the number of perturbed constraint coefficients in the
robust formulation of the LP of [6]. The designer can tune
the robustness of the solution to improve the bounds on the
steady state error of the proposed IO.

The contributions of this paper are: 1) we provide a novel
application of cardinality constrained robust optimization to
the design of dynamical observers; 2) we develop a tunably
robust interval observer design method; 3) we statistically
characterize the performance of the proposed observer; 4)
we illustrate our results in simulation.
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A. Notation and Terminology

Given a matrix M ∈ Rm×n, the notation Mj denotes the
jth column of M and M−> is the transpose of its inverse.
Given two vectors v1 ∈ Rm and v2 ∈ Rn, define the column
vector col(v1, v2) :=

[
v>1 v>2

]> ∈ Rm+n; the col function
extends to an arbitrary number of arguments; applied to a
matrix M ∈ Rm×n, col(M) := col(M1, . . . ,Mn) ∈ Rmn.
The Kronecker delta δij equals 0 if i 6= j, and 1 if i = j. A
matrix M ∈ Rn×n is said to be Metzler if all its off-diagonal
elements are nonnegative. Given a matrix M ∈ Rn×n and a
locally Lipschitz function ξ : Rn × R→ Rn, the dynamical
system ẋ(t) = Mx(t)+ξ(x, t) is said to be positive if x(0) ≥
0 implies x(t) ≥ 0 for all t ≥ 0. This is true if M is Metzler
and ξ(x, t) ≥ 0 for all t ≥ 0. When applied to vectors
or matrices, the relations >,<,≥,≤ are taken elementwise.
Given matrices A ∈ Rm×n and B ∈ Rm×n, the relation
A � B is defined as A ≤ B, with Aij < Bij for at least
one pair (i, j). Given a scalar c ∈ R or vector v ∈ Rn, the
operator | · | is the elementwise absolute value. Given a set
S, its cardinality is denoted by |S|.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Problem Statement

We consider systems of the form

ẋ = Ax+ ξ(x, t), y = Cx, (1)

where x ∈ Rn is the state vector, A ∈ Rn×n is uncertain
but bounded, the nonlinear function ξ : Rn × R → Rn is
uncertain but bounded, y ∈ Rp is the output, and C ∈ Rp×n.
We assume existence and uniqueness of solutions for x(t) for
all t ≥ 0. We impose the following standing assumptions on
the model (1).

Assumption 1. Given a system of the form (1) there exists
a known constant κ ∈ Rn such that κ ≥ | supt≥0 x(t)|.
Assumption 2. Given a system of the form (1), there exist
known constants x0, x0 ∈ Rn, such that x0 ≤ x(0) ≤ x0.

Assumption 3. Given a system of the form (1) that satisfies
Assumption 1, there exist known constants ξ, ξ ∈ Rn, such
that ξ ≤ ξ(x, t) ≤ ξ, for all t ≥ 0 and all −κ ≤ x ≤ κ.

Assumption 4. Given a system of the form (1), there exist
known matrices A, A↑, A

↓
, A ∈ Rn×n, such that A ≤ A↑ ≤

A
↓ ≤ A and A ≤ A ≤ A.

The matrices (A,A), and (A↑, A
↓
) are called the outer

bounds and inner bounds of A, respectively. The tighter inner
bounds are such that Aij ≤ A

↓
ij and Auv ≥ A↑uv holds for a

subset of pairs (i, j), (u, v). The pairs (i, j), (u, v) for which
these inequalities hold are unknown at design time, but the
cardinality of pairs is known.

Definition II.1. System (1) belongs to uncertainty class
U(u, l) if there exist matrices (Au, Al) such that Al ≤ A ≤
Au, A

↓ ≤ Au ≤ A, and A ≤ Al ≤ A↑ with u elements
of Au satisfying Au

ij > A
↓
ij and l elements of Al satisfying

Al
uv < A↑uv .

An interval observer (IO) comprises an upper observer
x̂u that bounds the true states x from above, and a lower
observer x̂l that bounds the true states from below, i.e.,
for all t ≥ 0, x̂l(t) ≤ x(t) ≤ x̂u(t). This is called the
interval property, and for it to be satisfied, the interval
error e := x̂u − x̂l must satisfy positivity. The observer
pair must also be initialized such that x̂l(0) ≤ x(0) ≤
x̂u(0). If the evolution of the interval error is governed by
positive dynamics, then Assumption 2 means we can choose
x̂u,l(0) :=

(
x̂u(0), x̂l(0)

)
to satisfy the interval property.

Problem II.2. Given constants u and l for a system of
form (1), design an IO whose maximum steady state interval
error, over the uncertainty class U(u, l), is minimized with
respect to the `1-norm, i.e., ‖ē‖1 := lim supt→∞ ‖e(t)‖1.

B. Proposed Approach

An exact solution to Problem II.2 is challenging; even in
the simplest case of u, l = n2, approximations are solved [6,
Theorem 4.2]. Therefore, we too solve an approximation of
Problem II.2, drawing upon the theory of [6] and [10]. As
explained in Section IV-B, we consider an uncertainty class
generated in terms of how the uncertainty in A appears in the
proposed IO design LP; this class contains conservative char-
acterizations of uncertainty that are not physically realizable.
Consequently, we minimize a conservative upper bound on
‖ē‖1, which is at least as great as the maximum ‖ē‖1 over
the class U(u, l).

We use the linear programming-based IO design method
of [6] to address optimality, and apply the robust optimization
method of [10] to optimize over the given uncertainty class.
To ensure the interval property, at runtime we must be given
a pair of matrices (Au, Al) such that Al ≤ A ≤ Au,
A
↓ ≤ Au ≤ A and A ≤ Al ≤ A↑. But since we use robust

optimization, we need not reoptimize for the specific pair
(Au, Al).

The bound on ‖ē‖1 of the proposed IO, although con-
servative, is shown to be strictly less than that (2). If (2)
is constructed using the same (Au, Al) as the proposed IO,
then the proposed IO’s bound on ‖ē‖1 is at least as tight as
that of (2).

III. BACKGROUND

A. Linear Programming-Based Interval Observers

In [6], an IO is constructed for system (1) with dynamics

˙̂xu = Ax̂u + L(y − Cx̂u)− (A−A)φ(x̂u) + ξ

˙̂xl = Ax̂l + L(y − Cx̂l)− (A−A)ψ(x̂l) + ξ

x̂u,l(0) = (x0, x0),

(2)

where ψ(x) := 1
2

(
x + |x|

) [
φ(x) := 1

2

(
x − |x|

)]
retains

the positive [negative] elements of x and maps the negative
[positive] elements to 0.

System (2) is an IO for (1), if and only if the following
LP is feasible [6, Theorems 3.1, 4.3].



Problem III.1.

minimize:
[
2(A−A)κ + ξ − ξ

]>
λ

subject to: A
>
λ− C>Z1n = −1n

A>diag(λ)− C>Z + βI ≥ 0n×n

λ > 0n

The gain matrix L of (2) is defined as

L := diag(λ)−1Z>. (3)

The first and second constraints ensure that
(
A − LC

)
is Hurwitz for all A ≤ A, thereby ensuring stability of
the linear interval error dynamics, and Metzler for all A ≥
A, thereby ensuring positivity of the linear interval error
dynamics, respectively. We hereinafter refer to the first and
second constraint as the Hurwitz and Metzler constraint,
respectively. The third constraint is a technical requirement
related to the first two constraints, derived from the theory
of positive linear systems [6]. Note that, in implementation,
λ > 0n must be replaced with λ ≥ ε1n, where ε > 0 is
arbitrarily small, to effect a closed feasible region.

The cost function of Problem III.1 is an upper bound on
the `1-norm of the steady state supremum of the interval
error [6, Theorem 4.2],

‖ē‖1 ≤ −
[
2(A−A)κ + ξ − ξ

]>
(A− LC)−>1n. (4)

The Hurwitz constraint can be rearranged, using (3) to
eliminate λ and Z, to obtain

‖ē‖1 ≤
[
2(A−A)κ + ξ − ξ

]>
λ. (5)

B. Cardinality Constrained Robust Optimization

In [10], a method is proposed for protecting against
varying numbers of perturbed coefficients, given an LP of
the form
Problem III.2.

minimize: c>q
subject to: Eq ≤ b

l ≤ q ≤ u,

where E ∈ Rm×n, b ∈ Rm, and q, l, u, c ∈ Rn.
All uncertainty is assumed to be in the constraint coef-

ficient matrix E and cost coefficient vector c. The sets J0

and Ji, i ∈ {1, . . . ,m}, contain the indices of the uncertain
coefficients in the cost and ith constraints, respectively. If
j ∈ J0, then the jth cost coefficient lies in the interval
[cj , cj+dj ]; if j ∈ Ji, i ∈ {1, . . . ,m}, then the jth coefficient
of the ith constraint lies in the interval [Eij−Êij , Eij +Êij ].
The values of the perturbation terms dj , Êij ≥ 0 are known
for all i, j. The protection levels Γ0 ∈ Z≥0 and Γi ∈ R≥0,
i ∈ {1, . . . ,m}, specify the number of perturbed coefficients
to protect against in the cost and ith constraints, respectively.
The vector Γ := col(Γ0,Γ1, . . . ,Γm) specifies only the
cardinalities of the sets of protected coefficients — it does
not specify individual coefficients to be protected.

The robust formulation of Problem III.2, as developed
in [10], is given in Problem III.3.

Problem III.3.

minimize: c>q + Ω0(q,Γ0, d)

subject to:
n∑

j=1

Eijqj + Ωi

(
q,Γi, (Ê

>)i
)
≤ bi i ∈ {1, . . . ,m}

l ≤ q ≤ u,

where

Ω0(q,Γ0, d) := max
{S0|S0⊆J0,|S0|≤Γ0}

{ ∑
j∈S0

dj |qj |

}
, (6)

and Ωi

(
q,Γi, (Ê

>)i
)
, i ∈ {1, . . . ,m}, is defined as

max
{Si∪{ti}|Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}

{∑
j∈Si

Êij |qj |

+
(
Γi − bΓic

)
Êiti |qti |

}
.

(7)

The set S0 ⊆ J0 in (6) contains the indices of perturbed
cost coefficients. Maximizing over S0 identifies the set of
coefficients which, when perturbed, result in the greatest
cost for a given solution q. By augmenting the cost with
Ω0, minimizing the cost yields an optimal solution q∗ that
minimizes the maximum cost over the class of perturbed cost
functions defined by Γ0.

If qj > 0 [qj < 0], then Eij is perturbed in the positive
[negative] direction. Notice that Ωi is nonnegative for i ∈
{0, . . . ,m}. The set of indices Si ∪ {ti} identifies the bΓic
constraint coefficients Eij to be perturbed by Êij , j ∈ Si,
and the constraint coefficient Eiti to be perturbed by

(
Γi −

bΓic
)
Êiti , that maximizes the increase in

∑
j Eijqj .

Note that if Γi = 0, i ∈ {0, . . . ,m}, then Ω0(q,Γ0, d) = 0
and Ωi

(
q,Γi, (Ê

>)i
)

= 0, i ∈ {1, . . . ,m}, which renders
Problem III.3 equivalent to Problem III.2.

Problem III.3 has an equivalent linear formulation [10,
Theorem 1], which we use later in this paper, to illustrate
our proposed design method.

IV. ROBUST INTERVAL OBSERVERS

If the inner bounds (A↑, A
↓
) are used in Problem III.1

instead of the outer bounds (A,A), then the attainable opti-
mum cost is minimized. However, the inner bounds cannot
be used unless A↑ ≤ A ≤ A

↓
. By casting Problem III.1

in the framework of Problem III.3, we develop a tunably
robust interval observer (RIO). The designer specifies the
level of robustness of the solution by manipulating a tuning
parameter, which is defined in terms of the cardinality of
entries of A that do not satisfy Aij ≤ A

↓
ij , and the cardinality

of entries of A that do not satisfy Auv ≥ A↑uv . As the
number of elements of A that do not satisfy Aij ≤ A

↓
ij

and Auv ≥ A↑uv increases, the optimal cost also increases.



A. Robust Formulation of the Interval Observer Problem

In the proposed robust formulation of Problem III.1, we
define the inner bounds (A

↓
, A↑) to be the nominal bounds

on A. Therefore, casting Problem III.1 in the robust frame-
work of Problem III.3, the inner bounds (A

↓
, A↑) define the

nominal cost and constraint coefficients. Define ∆A := A−
A
↓
, ∆A := A↑−A; these matrices define the perturbations to

the coefficients of the robust LP. Coefficients corresponding
to A

↓
ij are perturbed to A

↓
ij + ∆Aij = Aij , and coefficients

corresponding to A↑ij are perturbed to A↑ij −∆Aij = Aij .
We wish to allow for perturbations to be applied indepen-

dently to each of the 2n2 elements of (A
↓
, A↑). This requires

that the robust formulation of Problem III.1 have exactly one
decision variable corresponding to each element of A

↓
and

A↑. We introduce the dummy variables λ
(i)
, λ(i) ∈ Rn, i ∈

{1, . . . , n} and define the new vector of decision variables as
Λ := col

(
λ

(1)
, . . . , λ

(n)
, λ(1), . . . , λ(n)

)
∈ R2n2

. The cost
coefficient perturbation vector is given by

d := col
(
2∆Adiag(κ), 2∆Adiag(κ)

)
∈ R2n2

. (8)

Since Λ is 2n2-dimensional, the sets of indices of uncertain
coefficients is Ji ⊆ {1, . . . , 2n2}, i ∈ {0, . . . , n2 + n}. The
maximum cardinality of Ji is equal to n. Since perturbations
to the cost and constraint coefficients have the same physical
interpretation, we stipulate Γ0 =

∑
i 6=0dΓie, to ensure that

the same number of coefficients are perturbed in the cost as
in the constraints.
Remark IV.1. All elements of (A

↓
, A↑) appear in both the

cost and constraints of Problem III.1. In the robust formu-
lation, Γ0 elements of these matrices are perturbed in the
cost function, and

∑
i 6=0dΓie are perturbed in the constraints.

The specific elements of (A
↓
, A↑) perturbed in the cost

and constraints are not necessarily the same. This results in
the robust formulation optimizing over an uncertainty class
whose members are not all physically realizable. �

Perturbations to the coefficients corresponding to λ
(i)

[λ(i)], i ∈ {1, . . . , n}, are interpreted as upward [downward]
perturbations of A

↓
[A↑].

Since the Hurwitz constraint of Problem III.1 is an equal-
ity, we characterize the effect of the protection process
of [10] on strict equality constraints with uncertain coeffi-
cients.

Proposition IV.2. If constraint i in Problem III.3 is an
equality constraint with at least one uncertain coefficient
(Ji 6= ∅) and a nonzero protection level (Γi > 0), then
Problem III.3 is infeasible.

Proof. An equality constraint
∑

j Eijqj = bi can be for-
mulated as two inequality constraints:

∑
j Eijqj ≤ bi and

−
∑

j Eijqj ≤ −bi. Denoting the index of the second
constraint by i′, the robust formulation is

∑
j Eijqj +

Ωi

(
q,Γi, (Ê

>)i
)
≤ bi, −

∑
j Eijqj + Ωi′

(
q,Γi′ , (Ê

>)i
)
≤

−bi. Summing these constraints, we have Ωi

(
q,Γi, (Ê

>)i)+

Ωi′
(
q,Γi′ , (Ê

>)i
)
≤ 0, which is feasible only if Γi = 0.

In light of Proposition III.3, in the robust version of
Problem III.1 we replace the equality Hurwitz constraint with
a non-strict inequality. We show that the non-strict inequality
is always satisfied with equality, provided that Problem III.1
is feasible.

With these definitions and notation, we propose the follow-
ing cardinality constrained robust version of the IO design
problem from [6].

Problem IV.3.

minimize:
[
2(A

↓ −A↑)κ + ξ − ξ
]>
λ+ Ω0(Λ,Γ0, d)

subject to:

A
↓>
i λ

(i) − C>i Z1n + Ωi(λ
(i)
,Γi,∆Ai) ≤ −1

− (A↑jiλ
(i)
j − C

>
i Zj + δijβ) + Ωi(λ

(i),Γr,∆Ai) ≤ 0

λ > 0n

λ
(i)

= λ(i) = λ i, j ∈ {1, . . . , n}, r = ni+ j.

Remark IV.4. The linear implementation of Problem IV.3 has
N =

(
3n2 +pn+n+1+

∑m
i=0 |Ji|

)
decision variables [10],

where |J0| ≤ 2n2, |Ji| ≤ n for the n Hurwitz constraints,
|Ji| ≤ 1 for the n2 Metzler constraints; we assume p ≤ n.

There exist algorithms that can solve LPs in O
(

N3

lnNU
)

time in the worst case [15], where U is the bit length of the
binary encoding of the vectors c, b, and matrix E. Therefore,
Problem IV.3 can be solved in O

(
n6

lnnU
)

time. �

Denote by Γ := col(Γ1, . . . ,Γn2+n) the vector of con-
straint protection levels. Denote by J := {J0, . . . , Jn2+n}
the set of sets of indices of uncertain coefficients, and
define |J | := col

(
|J0|, . . . , |Jn2+n|

)
. Denote by J :=

{J1, . . . , Jn2+n} the set of indices of uncertain constraint
coefficients, and define |J| := col

(
|J1|, . . . , |Jn2+n|

)
.

Theorem IV.5. If Γ = |J |, then Problems III.1 and IV.3 are
equivalent.

To prove Theorem IV.5, we first prove that if Γ = |J |,
then the cost and constraint coefficients in both problems
are equal. We then prove that if Problem III.1 is feasible,
then the Hurwitz constraint in Problem IV.3 is satisfied with
equality.

Lemma IV.6. If Γ = |J |, then Problems III.1 and IV.3 have
the same cost and constraint coefficients.

Proof. Setting Γ0 = |J0| results in Problem IV.3 optimizing
over all uncertain cost coefficients, i.e., S0 = J0, yielding[
2(A

↓ − A↑)κ + ξ − ξ
]>
λ +

∑
j∈J0

{
[2κj∆A

>
j ]λ

(j)
}

+∑
j∈J0

{
[2κj∆A

>
j ]λ(j)

}
. Applying the definitions of λ

(i)
,

λ(i), i ∈ {1, . . . , n}, A↓, A↑, ∆A, and ∆A, this simplifies
to
[
2(A−A)κ+ξ−ξ

]>
λ which is exactly the cost function

of Problem III.1.
Setting Γ = |J| results in Problem IV.3 satisfying feasi-

bility over all admissible constraint coefficient perturbations,
i.e., Si = Ji, i ∈ {1, . . . , n2 +n}. We first examine the Hur-
witz constraint: A

↓>
i λ

(i) − C>i Z1n ≤ −1, i ∈ {1, . . . , n}.
Again, by applying only definitions, this simplifies to A

>
λ−



C>Z1n ≤ −1n, which has the same coefficients as the
Hurwitz constraint of Problem III.1.

We next examine the Metzler constraint: −(A↑jiλ
(i)
j −

C>i Zj + δijβ) + ∆Ajiλ
(i)
j ≤ 0. Again, applying only defi-

nitions, this simplifies to A>λ−C>Z + βI ≥ 0n×n, which
is equivalent to the Metzler constraint of Problem III.1.

Lemma IV.7. Using a nonstrict inequality relation in the
Hurwitz constraint of Problem IV.3 instead of equality, as in
Problem III.1, results in

[
2(A−A)κ + ξ − ξ

]>
λ ≤

[
2(A−

A)κ + ξ − ξ
]>
λ′, where (λ, Z, β) and (λ′,Λ′, Z ′, β′) are

optimal solutions to Problems III.1 and IV.3, respectively.

Proof. Consider the two equations: λ = −(A −
LC)−>1n and λ′ = −(A − LC)−>α1n, where α :=
diag(α1, α2, . . . , αn), αi ≥ 1, i ∈ {1, . . . , n}. Since (A −
LC)> is Hurwitz and Metzler by construction, we have that
−(A − LC)−> is nonnegative [16], and since α1n ≥ 1n,
we have λ′ ≥ λ, with equality holding if and only if α = I .
Since α is arbitrary, it follows that λ = −(A− LC)−>α1n

is equivalent to λ ≤ −(A− LC)−>1n.

Before proving that the robust Hurwitz constraint is always
satisfied with equality, we characterize the feasibility of
Problem IV.3, and the effect of inequality on optimality.
Proposition IV.8. Any feasible solution to Problem III.3 for
given Γi, i ∈ {1, . . . ,m}, is also a feasible solution for any
Γ′i ≤ Γi, i ∈ {1, . . . ,m}.

Proof. By construction, a constraint perturbation (7) in-
creases the left-hand side of constraints of the form∑

j Eijqj ≤ bi. Therefore, as Γi increases, thereby in-
creasing the magnitude of Ωi

(
q,Γi, (Ê

>)i), solutions that
satisfy constraint i with insufficient slack become infeasible.
Conversely, as Γi decreases,

∑
j Eijqj decreases, thereby ex-

panding the set of feasible solutions. Consequently, for fixed
E, Ê, b, l, u, the set of feasible solutions to Problem III.3
using the protection levels Γ′i ≤ Γi, i ∈ {1, . . . ,m} is a
superset of the feasible solutions to Problem III.3 using the
constraint protection levels Γi, i ∈ {1, . . . ,m}.

Corollary IV.9. Any feasible solution to Problem III.1 is
also a feasible solution to Problem IV.3.

Proof. By Lemma IV.6, when Γ = |J |, Problem III.1
can be viewed as an instance of Problem IV.3, where the
Hurwitz constraint is a nonstrict inequality, instead of an
equality. If

∑
j Eijqj = bi is feasible, then

∑
j Eijqj ≤ bi

can be satisfied with equality. Therefore, if Γ = |J | and
Problem III.1 is feasible, then Problem IV.3 is also feasible,
and its Hurwitz constraint can be satisfied with equality.
Therefore, by Proposition IV.8, any feasible solution to
Problem III.1 is also a feasible solution to Problem IV.3 for
any Γ � |J|.

Lemma IV.10. If Problem III.1 is feasible, then the Hurwitz
constraint in Problem IV.3 is always satisfied with equality.

Proof. By Corollary IV.9, if Problem III.1 is feasible, then
satisfying the Hurwitz constraint in Problem IV.3 is feasible.

By Lemma IV.7, satisfying the Hurwitz constraint with
equality minimizes the cost.

Proof of Theorem IV.5. By Lemma IV.6, if Γ = |J |, then
Problems III.1 and IV.3 have the same cost and constraint
coefficients, and by Lemma IV.10, the Hurwitz constraint of
Problem IV.3 is always satisfied with equality. Therefore, if
Γ = |J |, then Problems III.1 and IV.3 are equivalent.

B. Class of Systems Considered

We now clarify the class of systems considered by Prob-
lem IV.3.

Define the set of all admissible sets of
indices of uncertain constraint coefficients J :={
PΓ1

(J1), . . . ,PΓn2+n
(Jn2+n)

}
, where PΓk

(Jk) is the set
{J ′k | J ′k ⊆ Jk, |J ′k| ≤ Γk}, and P0(Jk) := ∅. Given pairs
(A
↓
, A↑), (A,A) ∈ Rn×n×Rn×n that satisfy Assumption 4,

a set of sets of indices of uncertain constraint coefficients J,
and a set of sets of indices of perturbed constraint coefficients
S :=

{
{S1∪{t1} ⊆ J1}, . . . , {Sn2+n∪{tn2+n} ⊆ Jn2+n}

}
,

we generate a pair (Au, Al) ∈ Rn×n×Rn×n via the mapping
Ξ : J→ Rn×n × Rn×n, S 7→ (Au, Al), where

Au
ji =


Aji if i ≤ n, j ∈ Si

A
↓
ji +

(
bΓic − Γi

)
∆Aji if i ≤ n, j ∈ {ti}

A
↓
ji otherwise,

Al
ji =


Aji if i, j ≤ n, j ∈ Sni+j

A↑ji − Γi∆Aji if i, j ≤ n, j ∈ {tni+j}
A↑ji otherwise.

A pair Au,l defines a set in Rn×n by

{A ∈ Rn×n : Al ≤ A ≤ Au}. (9)

Further, given constraint protection levels Γ, using Ξ we
define the mapping

A : J× Rn2+n
≥0 → Rn×n × Rn×n

(J,Γ) 7→
{
Au,l | (∃ S ∈ J )

(
Ξ(S) = Au,l

)}
.

(10)

The set (10) comprises all pairs of upper and lower state
matrices effected by perturbing no more than Γ elements of
the boundaries of the interval induced by the pair (A↑, A

↓
)

as defined by (9).

C. Robust Interval Observer Dynamics and Performance

In this section, we define the dynamics of the proposed
IO and characterize its performance.

Define FL,FL
R(J,Γ) ⊂ Rn×p to be the sets of all feasible

observer gain matrices constructed using optimal solutions
to Problems III.1 and IV.3, respectively. By Corollary IV.9,
any feasible solution to Problem IV.3 is also a feasible
solution to Problem III.1, i.e., FL

R(J,Γ) ⊇ FL. Define the
set LR(J,Γ) ⊂ FL

R(J,Γ) to be the set of all matrices L
constructed using optimal solutions to Problem IV.3 for a
given J and Γ. Similarly, define the set L ⊂ FL to be the
set of all matrices L constructed using optimal solutions to
Problem III.1.



We propose the following robust interval observer (RIO),
whose gain matrix (3) is constructed using an optimal
solution to Problem IV.3 for a given J and Γ.

˙̂xu = Aux̂u + L(y − Cx̂u)− (Au −Al)φ(x̂u) + ξ

˙̂xl = Aux̂l + L(y − Cx̂l)− (Au −Al)ψ(x̂l) + ξ

x̂u,l(0) = (x0, x0), Au,l ∈ A(J,Γ).
(11)

Define the mapping

ē`1 : Rn×p ×A
(
J, |J|

)
→ R≥0

(L,Au,l) 7→ −
[
2(Au −Al)κ + ξ − ξ

]>
(Au − LC)−>1n.

(12)
By (4), the mapping (12) upper bounds ‖ē‖1 of an IO with
dynamics (11), constructed with the state matrix pair Au,l.
Proposition IV.11. The optimal cost of Problem IV.3 is
greater than or equal to the tightest bound (5) on ‖ē‖1 of
the RIO (11).

Proof. Given the optimal state matrix pair (Au, Al) con-
structed using the mapping Ξ, by construction of (5), the
optimal cost is equal to the tightest bound (5) if and only if
the optimal perturbed cost vector is equal to[

2(Au −Al)κ + ξ − ξ
]
. (13)

Since we stipulate that Γ0 =
∑

i 6=0dΓie, exactly as many
cost coefficients will be perturbed as constraint coefficients,
so (13) is always a feasible perturbed cost vector. By
construction, Problem IV.3 perturbs

[
2(A

↓ −A↑)κ + ξ − ξ
]

such that the maximum cost is minimized. Therefore, the
optimal cost cannot be less than the bound (5), as this
would violate optimality. However, if (13) does not effect
the greatest maximum cost, then (13) will not be the optimal
perturbed cost vector.

Theorem IV.12. Given a system of the form (1) that satisfies
Assumptions 1, 2, 3, 4, with A � A, indices of uncertain cost
coefficients J0, indices of uncertain constraint coefficients
J, cost protection level Γ0 < |J0|, and constraint protection
levels Γ � |J|, the proposed RIO (11) effects a smaller upper
bound on ‖ē‖1 than the IO (2), and a maximum upper bound
on ‖ē‖1 over the set of state matrices A(J,Γ) no greater
than that if it were constructed instead using L ∈ L, i.e.,

max
Au,l∈A(J,Γ)

ē`1(LR, A
u,l)

≤ max
Au,l∈A(J,Γ)

ē`1
(
L,Au,l

)
< ē`1

(
L, (A,A)

)
.

(14)

Proof. By (4), for a fixed L, choosing any state matrices
Ãu,l := (Ãu, Ãl) such that (Ãu − Ãl) � (Au − Al),
necessarily reduces the upper bound on ‖ē‖1. Since (A,A) /∈
A(J,Γ) for any Γ � |J|, we have(
∀ Γ0 < |J0|

)(
∀ Γ � |J|

)(
Ãu,l ∈ A(J,Γ)

)
=⇒

(
ē`1(L, Ãu,l) < ē`1(L,

(
A,A)

))
.

(15)

Therefore, constructing the observer (2) with state matrices
Au,l ∈ A(J,Γ), Γ � |J|, instead of (A,A), effects a smaller
upper bound on ‖ē‖1.

By Proposition IV.11, the optimal cost of Problem IV.3 is
no less than maxAu,l∈A(J,Γ) ē`1(L,Au,l), i.e., the maximum
upper bound on the `1-norm of the steady state supremum of
the interval error over all state matrix pairs Au,l ∈ A(J,Γ).
By Corollary IV.9, the set of feasible L matrices admitted
by Problem IV.3 is a superset of the feasible L matrices
admitted by Problem III.1, and by the optimality of L ∈ LR,
we have that there exists no L ∈ L that effects a smaller
maximum upper bound on ‖ē‖1 over the set of state matrix
pairs A(J,Γ). Combining this with (15), we verify (14).

Remark IV.13. When only x(0) is uncertain, i.e., A = A and
ξ(x, t) ≡ ξ(y, t), an interval observer with dynamics similar
to (11) can be constructed [17], such that limt→∞ e = 0. An
LP similar to Problem IV.3, with the same constraints but
different cost function, is used to design the L matrix. The
transient behaviour of the observer is optimized, specifically,
‖e‖1 =

∫∞
0
‖e(t)‖1dt. �

D. Implementation
In this section, we delineate and illustrate the design

process of the proposed RIO (11).
1) Identify x0, x0, A, A, A

↓
, A↑, κ; 2) set Γ to the

elementwise smallest value such that for each possible state
matrix A, there exists a state matrix pair Au,l ∈ A(J,Γ),
which contains A as defined in (9); 3) using c :=

[
2(A

↓ −
A↑)κ + ξ − ξ

]
and d as defined in (8), solve Problem IV.3

using the constraint λ ≥ ε1n, where ε ∈ R>0 is an arbitrarily
small constant; 4) using the optimal λ and Z, construct the
observer gain matrix L := diag(λ)−1Z>; 5) construct the
RIO (11) with the pair Au,l ∈ A(J,Γ) that induces the
elementwise smallest interval (9) such that Al ≤ A ≤ Au,
for all possible A.

The resultant RIO with gain matrix L, is optimal in the
sense that the maximum cost, which upper bounds ‖ē‖1, over
all state matrix pairs Au,l ∈ A(J,Γ) is minimized, and is
optimal in this sense for any state matrix pair in A(J,Γ). By
stipulating that Au,l be chosen such that the set (9) contains
A, we ensure the interval property; by setting Γ as small as
is possible while ensuring the interval property, we minimize
the attainable optimum cost.

For a class of systems A(Γ,J), we perform only a
single optimization, i.e., design only a single L. This is
advantageous when the dynamical parameters of the plant
are guaranteed to lie within some range, but under certain
circumstances, this range can be refined. The original IO (2)
of [6], is optimal only for a single Au,l, and would need to
be optimized for each state matrix pair in A(J,Γ).
Example IV.14. To illustrate the proposed approach, we con-
struct and implement a RIO for a three stage fish population
model, based on that in [1],

A =

−1.4 0 0
0.9 −1.3 0
0 0.8 −0.1


ξ =

[(
0.1 sin(t)+0.3

)
x3

0.1+x3
0 −

(
0.05 cos(t) + 0.15

)
x3

]>
C =

[
0 0 1

]
,



where the states x1, x2, and x3, are the biomass of larval,
juvenile, and adult stocks, respectively. The measured output
y is taken to be the adult stock, as these fish are larger, and
therefore are easier to detect and count.

We define the constants x0 =
[
0.9 0.8 0.55

]>
, x0 =[

0.5 0.4 0.45
]>

, ξ =
[
0.35455 0 −0.033

]>
, ξ =[

0.15349 0 −0.156
]>

, κ =
[
0.9 0.8 0.78

]>
. De-

fine A = 1.25A, A = 0.75A, A
↓

= 1.125A, A↑ =
0.875A, which induces the cost vector and cost pertur-
bations c =

[
0.83106 0.925 0.482

]>
, d1 = d10 =

0.315, d2 = d11 = 0.2025, d5 = d14 = 0.26, d6 =
d15 = 0.16, d9 = d18 = 0.0195, dj = 0, j ∈
{3, 4, 7, 8, 12, 13, 16, 17}. The indices of uncertain cost co-
efficients are those corresponding to nonzero elements of
d, J0 = {1, 2, 5, 6, 9, 10, 11, 12, 14, 15, 18}. The indices of
uncertain constraint coefficients are those corresponding to
nonzero elements of the constraint coefficient perturbation
matrix, which correspond to the elements of ∆A = 0.125A
and ∆A = 0.125A, which yield J1 = {1, 2}, J2 = {5, 6},
J3 = {9}, Ji = ∅, i ∈ {6, 7, 10, 11}, Ji = {6 + i},
i ∈ {4, 5, 8, 9, 12}. Lastly, we set ε = 10−3.

The IO of [6] is constructed with Au,l = (A,A). We
compare the cost of the optimal solution to the proposed
robust problem, Problem IV.3, to that of the original IO
problem, Problem III.1, as well as ‖ē‖1 of the RIO (11) and
the original IO (2). These values, and the percent reductions
thereof effected by using the proposed approach, are pre-
sented in Table I for various Γ. For ease of exposition, define
the simulation parameters ΓH ,ΓM ∈ R≥0. The protection
levels for the Hurwitz constraints, i.e., Γi, i ∈ {1, 2, 3}, are
all set to min(ΓH , |Ji|), e.g., ΓH = 2 effects Γ1 = 2, Γ2 = 2,
and Γ3 = 1; the protection levels for the Metzler constraints,
i.e., Γi, i ∈ {4, . . . , 12}, are all set to min(ΓM , |Ji|), e.g.,
ΓM = 1 effects Γi = 1, i ∈ {4, 5, 8, 9, 12}, and Γi = 0,
i ∈ {6, 7, 10, 11}. Recall that Γ = |J | yields the same
solution as Problem III.1. Plots of the trial ΓH ,ΓM = 0.5 are
presented in Figure 1. The reductions in cost and ‖ē‖1 are

TABLE I
COMPARISONS FOR VARIOUS Γ.

ΓH ΓM Γ0 Cost ‖ē‖1
% Reduction
Cost ‖ē‖1

0.5 0.5 8 4.27 0.475 12.9 21.2

0
0 0 2.10 0.397 57.1 34.2
1 5 3.71 0.423 24.3 29.9

1
0 3 4.05 0.539 17.3 10.6
1 8 4.74 0.564 3.27 6.47

2
0 5 4.69 0.578 4.29 4.15
1 10 4.90 0.603

modest to significant, ranging from 3.27% to 57.1%, and
4.15% to 34.2% respectively; the data suggest a positive
correlation.

A reduction in the upper bound on ‖ē‖1 also occurs by
constructing the IO of [6] with tighter upper and lower
state matrices. For comparison, we identify the greatest
upper bound on ‖ē‖1 effected by constructing the IO
of [6] with Au,l ∈ A(J,Γ), Γ � |J|, and compute

the percent reduction in the maximum upper bound on
‖ē‖1 effected by using the RIO instead of the IO, i.e.,

100

(
1−

max
Au,l∈A(J,Γ)

ē`1

(
LR,Au,l

)
max

Au,l∈A(J,Γ)
ē`1

(
L,Au,l

) ) .
TABLE II

WORST-CASE COMPARISONS.

ΓH ΓM Γ0
ē`1

‖ē‖1 % Reduction
RIO IO RIO IO ē`1

‖ē‖1
0.5 0.5 8 3.19 3.67 0.474 0.474 13.1 0.00

0 1 5 2.99 3.78 0.423 0.423 20.9 0.00

1
0 3 3.44 3.57 0.539 0.539 3.64 0.00
1 8 4.53 4.69 0.564 0.564 3.41 0.00

2 0 5 3.78 3.78 0.578 0.577 0.00 −0.173

We see in Table II that the reduction in cost over the set of
state matrix pairs A(J,Γ) is modest to significant, ranging
from 0.00% to 20.9%. The difference in ‖ē‖1 is negligible,
but for ΓH = 2, ΓM = 0, the ‖ē‖1 increases by 0.173%.
This is possibly a consequence of the conservativeness of the
cost of Problem IV.3, as described in Proposition IV.11. N

V. MONTE CARLO ANALYSIS

We conduct a Monte Carlo analysis to characterize the
reduction in cost effected by using the proposed RIO (11),
instead of the IO (2) of [6].

The elements of the matrices A,A,A
↓
, A↑ ∈ Rn×n are

seeded by uniform random variables on the intervals Ãij ∈
[0, 1], i, j ∈ {1, . . . , n}, i 6= j, Ãii ∈

[
− 2n,−n

]
i ∈

{1, . . . , n}, which ensures the Hurwitz property. Although
we do not simulate a specific dynamical system, we assume
that ξ is such that the solutions of ẋ = Ax + ξ(x, t) are
bounded, which is sufficient to satisfy Assumption 1. The
seed matrix Ã ∈ Rn×n is modified to generate the state
matrices such that ‖A − A‖1 = 1, A

↓ − A↑ ≥ 2
n3 1n×n,

which provides consistency in the sizes of the state matrix
intervals (9) across trials. The matrix C ∈ Rp×n is generated
as a uniform random variable on the interval C ∈ [0, 1]p×n.
We define the constants ξ = 0.11n, ξ = −0.11n, κ =
2max(|x0|, |x0|), where max is taken elementwise.

Define the simulation parameter Γ? ∈ Z≥0. The pro-
tection levels for the Hurwitz constraints are set to Γi =
min
(
Γ?, |Ji|

)
, i ∈ {1, . . . , n}, and a randomly populated set

I ⊆ {n + 1, . . . , n2 + n} of cardinality nΓ?, contains the
indices of the Metzler constraints that have their protection
levels set to 1. This causes nΓ? elements of both A

↓
, and

nΓ? elements of A↑, to be perturbed in each trial. The cost
protection level is set to Γ0 =

∑
i 6=0 Γi.

Five thousand trials are conducted for each of several
combinations of n, p, and Γ?. In each trial, Problems III.1
and IV.3 are solved for the same parameters, and the relative
difference between their costs is recorded. The arithmetic
means µ and standard deviations σ of these values for rep-
resentative values of n, p, and Γ? are presented in Table III.

The data in Table III suggest that the reduction in cost
correlates positively with n and negatively with p, making the
proposed RIO (11) increasingly attractive as the number of
states increases, and as the number of outputs decreases. The
negative correlation with p can be interpreted as the robust
formulation compensating for the reduction in the number
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Fig. 1. Comparison of proposed the RIO x̂ and the original IO x̂?.

TABLE III
RELATIVE DECREASE IN BOUND ON ‖ē‖1 FOR SELECT n, p, AND Γ0 .

n p Γ? µ σ
2

1 1

0.076 0.062
3 0.15 0.080
4 0.19 0.083

5

1

1

0.22 0.080
2 0.20 0.051
3 0.17 0.056
4 0.074 0.043

5 4

2 0.011 0.013
3 0.0052 0.0062
4 0.0025 0.0044

of measurements. A practical implication is that the robust
formulation can be used to justify using fewer sensors. For
many combinations of n, p, and Γ?, the standard deviation
is greater than the mean, which suggests that the reduction
is highly dependent upon the specific plant being observed.

VI. CONCLUSIONS

We applied the robust optimization method of [10] to
the linear programming-based IO design procedure of [6].
We proved that the cost of the proposed RIO is strictly
less than that of the original IO. The Monte Carlo analysis
suggests that the cost reduction effected by the proposed RIO
correlates positively with the number of states, and negatively
with the number of outputs. However, the standard deviations
of the cost reduction were high, indicating that the reduction
is highly dependent upon the specific plant being observed.

Future work should identify analytic bounds on the cost
reduction effected by using the proposed RIO over the
IO of [6]. Also, an objective function should be identified
for simultaneous optimization of transient and steady state
performance. The cost of the proposed RIO problem is
conservative, as the cost and constraint perturbations may
be mismatched; a method should be identified for coupling
the perturbing of coefficients that correspond to the same
dynamical parameters.
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