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Abstract: We present a method of stabilizing a sampled-data system that evolves on a matrix
Lie group using passivity. The continuous-time plant is assumed passive with known storage
function, and its passivity is preserved under sampling by redefining the output of the discretized
plant and keeping the storage function. We show that driftlessness is a necessary condition for
a sampled-data system on a matrix Lie group to be zero-state observable. The closed-loop
sampled-data system is stabilized by any strictly passive controller, and we present a synthesis
procedure for a strictly positive real LTI controller. The closed-loop system is shown to be
asymptotically stable. This stabilization method is applied to asymptotic tracking of piecewise
constant references.
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1. INTRODUCTION

Systems on matrix Lie groups are common in engineer-
ing applications. Rotational dynamics, such as those of
UAVs, evolve on SO(3) or SO(2); if translational dy-
namics are also considered, they evolve on SE(3) (Roza
and Maggiore, 2012) or SE(2) (Justh and Krishnaprasad,
2004), respectively. Mobile ground robots can be modelled
on SE(2), and quantum systems on SU(n) (Altafini and
Ticozzi, 2012). The Kuramoto oscillator evolves on the
circle (Dörfler and Bullo, 2014), SO(2).

We refer the reader to (Sachkov, 2009) for a recent treat-
ment of control theory on Lie groups. Control theory on
Lie groups differs from classical control in that the state
space is not a Euclidean vector space. Such systems are
usually controlled using coordinate charts on the Lie group
to represent the system dynamics in local coordinates as
systems in Rn. This effects artificial singularities that arise
from the choice of local coordinates as opposed to being
intrinsic to the system’s dynamics.

Control on Lie groups has also been treated using global
coordinates, for example, motion tracking in SE(3) (Park
and Kim, 2014), the control of UAV (Forbes, 2013) and
spacecraft (Egeland and Godhavn, 1994) orientation on
SO(3), and the synchronization of networks of rigid bodies
on SE(3) (Igarashi et al., 2009). The latter two works
take an input-output approach, specifically the notion of
passivity, for their control design and analysis.

The sampled-data setup, i.e., a continuous-time plant and
a discrete-time controller, is ubiquitous in applied con-
trol systems. In practice, controllers are often designed
in continuous-time and it is assumed that the sampling
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period is small enough that the sampled-data behaviour
will adequately match the theoretical continuous-time be-
haviour. But, in general, such setups are not guaranteed
to even be stable (Nešić and Teel, 2004). Lyapunov-like
sufficient conditions for the preservation of closed-loop
stability of nonlinear systems under sampling were iden-
tified in (Karafyllis and Kravaris, 2009). In addition, the
standard notion of discrete-time passivity is not preserved
under sampling and this directly affects the sampled-data
design (Monaco et al., 2011). Passivity analysis under
sampling has been studied in (Costa-Castelló and Fossas,
2006; Nešić et al., 1999; Stramigioli et al., 2005), but
remains a challenging unsolved problem. In the LTI case
it is known (Hoagg et al., 2004; De La Sen, 2002) that
passivity is preserved under step-invariant discretization,
but the two systems generally have different storage func-
tions (Costa-Castelló and Fossas, 2006).

Analytic solutions to the sampled discrete-time dynamics
of nonlinear systems do not exist, in general. Right in-
variant systems on matrix Lie groups are an exception,
in that their sampled discrete-time time dynamics have
closed-form solutions (Elliott, 2009). The closely related
class of bilinear systems has received some attention in
the discrete-time (Elliott, 2009) and sampled-data set-
tings (Sontag, 1986; Omran et al., 2014).

We present a method of controller design for the stabi-
lization, and consequently setpoint tracking, of passive
continuous-time plants on matrix Lie groups in a sampled-
data setting. The proposed analysis and design is done
entirely in global coordinates. Our contributions are: 1) a
method of preserving passivity for systems on matrix Lie
groups, under sampling based on the results from (Costa-
Castelló and Fossas, 2006); 2) stability analysis and control
design for these systems; 3) proof that driftlessness is a
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usually controlled using coordinate charts on the Lie group
to represent the system dynamics in local coordinates as
systems in Rn. This effects artificial singularities that arise
from the choice of local coordinates as opposed to being
intrinsic to the system’s dynamics.

Control on Lie groups has also been treated using global
coordinates, for example, motion tracking in SE(3) (Park
and Kim, 2014), the control of UAV (Forbes, 2013) and
spacecraft (Egeland and Godhavn, 1994) orientation on
SO(3), and the synchronization of networks of rigid bodies
on SE(3) (Igarashi et al., 2009). The latter two works
take an input-output approach, specifically the notion of
passivity, for their control design and analysis.

The sampled-data setup, i.e., a continuous-time plant and
a discrete-time controller, is ubiquitous in applied con-
trol systems. In practice, controllers are often designed
in continuous-time and it is assumed that the sampling
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period is small enough that the sampled-data behaviour
will adequately match the theoretical continuous-time be-
haviour. But, in general, such setups are not guaranteed
to even be stable (Nešić and Teel, 2004). Lyapunov-like
sufficient conditions for the preservation of closed-loop
stability of nonlinear systems under sampling were iden-
tified in (Karafyllis and Kravaris, 2009). In addition, the
standard notion of discrete-time passivity is not preserved
under sampling and this directly affects the sampled-data
design (Monaco et al., 2011). Passivity analysis under
sampling has been studied in (Costa-Castelló and Fossas,
2006; Nešić et al., 1999; Stramigioli et al., 2005), but
remains a challenging unsolved problem. In the LTI case
it is known (Hoagg et al., 2004; De La Sen, 2002) that
passivity is preserved under step-invariant discretization,
but the two systems generally have different storage func-
tions (Costa-Castelló and Fossas, 2006).

Analytic solutions to the sampled discrete-time dynamics
of nonlinear systems do not exist, in general. Right in-
variant systems on matrix Lie groups are an exception,
in that their sampled discrete-time time dynamics have
closed-form solutions (Elliott, 2009). The closely related
class of bilinear systems has received some attention in
the discrete-time (Elliott, 2009) and sampled-data set-
tings (Sontag, 1986; Omran et al., 2014).

We present a method of controller design for the stabi-
lization, and consequently setpoint tracking, of passive
continuous-time plants on matrix Lie groups in a sampled-
data setting. The proposed analysis and design is done
entirely in global coordinates. Our contributions are: 1) a
method of preserving passivity for systems on matrix Lie
groups, under sampling based on the results from (Costa-
Castelló and Fossas, 2006); 2) stability analysis and control
design for these systems; 3) proof that driftlessness is a
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Ticozzi, 2012). The Kuramoto oscillator evolves on the
circle (Dörfler and Bullo, 2014), SO(2).

We refer the reader to (Sachkov, 2009) for a recent treat-
ment of control theory on Lie groups. Control theory on
Lie groups differs from classical control in that the state
space is not a Euclidean vector space. Such systems are
usually controlled using coordinate charts on the Lie group
to represent the system dynamics in local coordinates as
systems in Rn. This effects artificial singularities that arise
from the choice of local coordinates as opposed to being
intrinsic to the system’s dynamics.

Control on Lie groups has also been treated using global
coordinates, for example, motion tracking in SE(3) (Park
and Kim, 2014), the control of UAV (Forbes, 2013) and
spacecraft (Egeland and Godhavn, 1994) orientation on
SO(3), and the synchronization of networks of rigid bodies
on SE(3) (Igarashi et al., 2009). The latter two works
take an input-output approach, specifically the notion of
passivity, for their control design and analysis.

The sampled-data setup, i.e., a continuous-time plant and
a discrete-time controller, is ubiquitous in applied con-
trol systems. In practice, controllers are often designed
in continuous-time and it is assumed that the sampling
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period is small enough that the sampled-data behaviour
will adequately match the theoretical continuous-time be-
haviour. But, in general, such setups are not guaranteed
to even be stable (Nešić and Teel, 2004). Lyapunov-like
sufficient conditions for the preservation of closed-loop
stability of nonlinear systems under sampling were iden-
tified in (Karafyllis and Kravaris, 2009). In addition, the
standard notion of discrete-time passivity is not preserved
under sampling and this directly affects the sampled-data
design (Monaco et al., 2011). Passivity analysis under
sampling has been studied in (Costa-Castelló and Fossas,
2006; Nešić et al., 1999; Stramigioli et al., 2005), but
remains a challenging unsolved problem. In the LTI case
it is known (Hoagg et al., 2004; De La Sen, 2002) that
passivity is preserved under step-invariant discretization,
but the two systems generally have different storage func-
tions (Costa-Castelló and Fossas, 2006).

Analytic solutions to the sampled discrete-time dynamics
of nonlinear systems do not exist, in general. Right in-
variant systems on matrix Lie groups are an exception,
in that their sampled discrete-time time dynamics have
closed-form solutions (Elliott, 2009). The closely related
class of bilinear systems has received some attention in
the discrete-time (Elliott, 2009) and sampled-data set-
tings (Sontag, 1986; Omran et al., 2014).

We present a method of controller design for the stabi-
lization, and consequently setpoint tracking, of passive
continuous-time plants on matrix Lie groups in a sampled-
data setting. The proposed analysis and design is done
entirely in global coordinates. Our contributions are: 1) a
method of preserving passivity for systems on matrix Lie
groups, under sampling based on the results from (Costa-
Castelló and Fossas, 2006); 2) stability analysis and control
design for these systems; 3) proof that driftlessness is a
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necessary condition for systems on matrix Lie groups to be
zero-state observable; 4) a controller synthesis procedure.

1.1 Notation and Terminology

Let GL(n) denote the real general linear group, i.e., the
group of real, invertible, n × n matrices. If G is a matrix
Lie group 1 , g is its associated Lie algebra. Given a matrix
M ∈ Rn×n, trace(M) denotes its trace; M � 0 (M � 0)
denotes that M is positive (semi) definite.

If A ∈ Rm×n, then A� denotes its transpose
and vec(A) is its vectorization, i.e., vec(A) :=

[A11 · · · Am1 A21 · · · Amn]
� ∈ Rmn. Given A ∈ Rm×n,

B ∈ Rp×q, let A ⊗ B ∈ Rmp×nq denote their Kronecker
product. If x ∈ Rn, then ‖x‖ denotes its Euclidean norm.

A positive definite function V : Rn → R is proper, or
radially unbounded, if there exists a class K∞ function α
such that, for all x ∈ Rn, α(‖x‖) ≤ V (x).

2. CLASS OF SYSTEMS

We consider systems on Lie groups with linear outputs:

Ẋ(t) =

(
A+

m∑
i=1

Biui(t)

)
X(t) (1a)

y(t) = Cvec(X(t)) +Du(t), (1b)

where the input u := [u1 · · · um]
� ∈ Rm, the state X ∈ G,

and A,Bi ∈ g for i ∈ {1, . . . ,m}. Study of this class of
systems is motivated by works such as (Igarashi et al.,
2009) and (Forbes, 2013). Restraining the output to be
linear allows for closed-form expressions of some of our
results, but these results generalize in a straightforward
manner to systems with nonlinear outputs.

Our controller design and stability analysis depend on the
concept of passivity. In Section 4, we assume that (1) is
zero-state observable (Byrnes et al., 1991) and show this
class of system is zero-state observable only if it is driftless,
i.e., A = 0. However, the discussion and results theretofore
do not require driftlessness. We also show that zero-state
observability is preserved under sampling.

Assumption 1. (Passivity). System (1) is passive.

The class of system (1a) is called the class of right invariant
systems on matrix Lie groups 2 . The solution to (1a) for
piecewise constant inputs is (Elliott, 2009, Equation 1.30)

X(t) = exp

(
(t− tk)

(
A+

m∑
i=1

Biui(tk)

))
X(tk), (2)

for t ∈ [tk, tk+1), where 0 < t1 < · · · < tk < tk+1 and u(t)
is constant on each interval [tk, tk+1).

We are interested in the sampled-data plant configuration
illustrated in Figure 1, where H and S are, respectively,
ideal hold and sample operators.

Like LTI systems, system (1a) has a closed-form exact
solution under sampling with period T .

1 G ⊂ GL(n) is a matrix Lie group if it is closed in GL(n).
2 Any right invariant system can be rewritten as the left invariant
system Ẏ = −Y (A+

∑m

i=1
Biui), where Y := X−1.

Fig. 1. Sampled-data plant.

Proposition 2.1. (Step-Invariant Transform). Given the
continuous-time system (1a), the discrete-time system

X+ = exp

(
T

(
A+

m∑
i=1

Biui

))
X, (3)

which is the sampled system illustrated in Figure 1, has
the same step response at the sampling instants.

Proof Set tk := kT , T > 0, in (2), then X(t) =
exp (T (A+

∑m
i=1 Biui(kT )))X(kT ), t ∈ [kT, (k + 1)T ).

Sampling with period T yields (3). �

Note that (3) is an exact discretization for any u that is
constant between the sampling instants.

3. CONTROL OBJECTIVE

We address the problem of stabilizing the identity of (3).
This is itself an important problem, and easily extends to
constant reference tracking, as discussed in Section 6.

3.1 Loss of Passivity under Sampling

The passivity of (1) does not guarantee the passivity of (3)
with output (1b) and the same storage function.

Example 3.1. Consider the system on SO(3):

Ẋ = u×X, y =
1

2
(X −X�)∨, (4)

where × : R3 → so(3) is the standard map from vectors to
skew symmetric matrices, and ∨ is its inverse. We use this
notation for compactness, but (4) can easily be expressed
in the form of (1).

System (4) is passive with storage function V = 1
2 trace(I−

X) in (Igarashi et al., 2009). Its step-invariant trans-
form is X+ = exp(Tu×)X. Then ∆V = 1

2 ( trace(X) −
trace ( exp(Tu×)X)). If X = I, then y = 0 and
∆V = 3

2 − 1
2 trace(exp(Tu

×)). It can be shown that
trace(exp(Tu×)) = 1+2 cos(T‖u‖), so if u[k] �= 0, we have
∆V > 0 = u�y. Thus, passivity is lost under sampling
with this choice of storage function and output. �

Storage functions often have intuitive physical interpre-
tations, e.g., energy. This is useful in passivity-based
control because physical intuition may guide the search
for storage functions. Thus, it is desirable to be able
to use the storage function of the continuous-time sys-
tem for the sampled-data system. Preserving passivity
under sampling with the same storage function may be
achieved by redefining the output of the sampled-data
system (Costa-Castelló and Fossas, 2006). By the Funda-

mental Theorem of Calculus, ∆V [k] =
∫ (k+1)T

kT
V̇ (t)dt =∫ (k+1)T

kT

(
y(t)�u(t) + β(X(t), u(t))

)
dt, where β : G ×

Rm → R is continuous and negative semidefinite,
and exists by the assumption that (1) is passive. Us-
ing u(t) = u(kT ) = u[k] for t ∈ [kT, (k + 1)T ),
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∆V [k] =
∫ (k+1)T

kT
y(t)�dt u[k] + β�, where β� :=∫ (k+1)T

kT
β(X(t), u[k])dt ≤ 0. By the definition of passivity,

the sampled-data system is passive with the same storage
function if the output is redefined as

y�[k] :=
1

T

∫ (k+1)T

kT

y(t)dt. (5)

Note that the factor of 1/T is not necessary for passivity,
but it endows (5) with the interpretation of being the time-
average of the output y over one sampling interval.

Proposition 3.2. The passive output (5) at time step k
depends only on values that are available at time t = kT .

Proof Using the change of variable t �→ t− kT we have

y�[k] =
1

T

∫ T

0

y(t+ kT )dt

=
1

T

∫ T

0

(Cvec(X(t+ kT )) +Du(t+ kT ))dt

=
1

T
C

∫ T

0

vec(X(t+ kT ))dt+ TDu(kT ),

where we have used u(t + kT ) = u(kT ) for t ∈ [0, T ).
Since the integral of a matrix is computed elementwise
and vec is smooth, the order of the integral and vec can

be changed. Using (3), we have that
∫ T

0
X(t+kT )dt equals∫ T

0
exp (t (A+

∑m
i=1 Biui(kT ))) dtX(kT ). Thus,

y�[k] = Du(kT )

+
C

T
vec

(∫ T

0

exp

(
t

(
A+

m∑
i=1

Biui(kT )

))
dtX(kT )

)
.

�

Corollary 3.3. The passive output (5) is linear in X[k].

Proof The X term in the expression for y� can be written

C

T

(
I ⊗

∫ T

0

exp

(
t

(
A+

m∑
i=1

Biui(kT )

))
dt

)
vec(X(kT )).

�

Defining C̄ : Rm → Rmn×mn, u �→
1
T C

(
I ⊗

∫ T

0
exp (t (A+

∑m
i=1 Biui(kT ))) dt

)
, we can

write the sampled system (3) with output y� as

X+ = exp

(
T

(
A+

m∑
i=1

Biui

))
X

y� = C̄(u)vec(X) +Du.

(6)

The sampled-data system (6) is of a form similar to the
underlying continuous-time system (1), but the vector field
is in G instead of g and the output is not affine in u.

The integral term in the expression for y� always has
an analytic solution. If H ∈ Rn×n is invertible, then∫ T

0
exp(tH)dt = H−1(eTH − I). If H is singular, then its

Jordan form comprises invertible blocks and strictly upper
triangular blocks. The integral-exponential term for the
latter is straightforward to compute. Thus, y� can always
be computed analytically, as the only other computations
involved are matrix multiplications.

4. CONTROL DESIGN

Our approach to control design uses the well-known fact
that the negative feedback interconnection of passive sys-
tems is passive. Our design leverages existing stability
results for interconnected passive systems that provide
sufficient conditions for closed-loop asymptotic stability.

4.1 Proposed Method

We will prove that the closed-loop sampled-data system is
stabilized by any strictly passive controller, but present a
synthesis procedure for a special class of strictly passive
LTI controllers, as existing passivity results for LTI sys-
tems more readily admit a systematic synthesis procedure.

Since passivity is a characterization of the input-output
behaviour of a dynamical system, in our analysis, we must
appeal to a notion of observability, so that driving the
output to 0 has implications for the behaviour of the states.

Definition 4.1. ((Byrnes et al., 1991, Definition 3.1)). A
dynamical system on a Lie group, (1a) or (3), with output
y ∈ Rm, is locally zero-state observable (LZSO), if
there exists a neighbourhood U of I such that if X ∈ U ,
u = 0, and y = 0, then X = I. ♦
Remark 4.2. We use the term “zero-state”, which refers to
the states being zero, because it is common in the existing
literature for systems on vector spaces.

Lemma 4.3. ((Hill and Moylan, 1976, Lemma 1)). If a
system ẋ = f(x)+ g(x)u, y = h(x)+J(x)u is passive with
storage function V and LZSO, then V is positive definite.

Lemma 4.4. If (1) is passive with storage function V and
LZSO, then V is positive definite.

Proof The dynamics of (1) can be rewritten as vec(Ẋ) =
(I ⊗ A)vec(X) + [(I ⊗B1)vec(X) · · · (I ⊗Bm)vec(X)]u,
which is in the form required by Lemma 4.3. �

Local zero-state observability is crucial for passivity analy-
sis, but it has various implications for systems (1) and (6).

Proposition 4.5. If (1) is LZSO, then it is driftless.

Proof If u(t) = u[k] = 0 and y = y� = 0, implying

X = I, then Ẋ = A and X+ = exp(TA). But since X = I
identically, the systems must be at equilibrium, which is
true if and only if A = 0. �

Because of this result, we make the following standing
assumption, which we impose on all following results.

Assumption 2. (Driftlessness). A = 0 in (1) and (6).

The next result shows that zero-state observability is
preserved under sampling for any sampling period.

Proposition 4.6. Let (6) be the discrete-time system ef-
fected by sampling the continuous-time system (1) with
A = 0, so u(t) = H(u[k]) and X[k] = S(X(t)). Then (6)
is LZSO if and only if (1) is LZSO.

Proof Assume (1) is LZSO on U1. If X[k] ∈ U1, y
�[k] = 0,

and u[k] = 0, then Cvec(X[k]) = 0. Since u(t) = H(u[k]),
we have u(t) = 0 if and only if u[k] = 0. Thus y(t) =

Cvec(X(t)) = 0. Since A = 0, if u = 0, then Ẋ = 0 and
X+ = X[k], thusX(t) = X[k], t ∈ [kT, (k+1)T ). The local
zero-state observability of (1) implies X(t) = X[k] = I.
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y(t)�dt u[k] + β�, where β� :=∫ (k+1)T

kT
β(X(t), u[k])dt ≤ 0. By the definition of passivity,

the sampled-data system is passive with the same storage
function if the output is redefined as

y�[k] :=
1

T

∫ (k+1)T

kT

y(t)dt. (5)

Note that the factor of 1/T is not necessary for passivity,
but it endows (5) with the interpretation of being the time-
average of the output y over one sampling interval.

Proposition 3.2. The passive output (5) at time step k
depends only on values that are available at time t = kT .

Proof Using the change of variable t �→ t− kT we have

y�[k] =
1

T

∫ T

0

y(t+ kT )dt

=
1

T

∫ T

0

(Cvec(X(t+ kT )) +Du(t+ kT ))dt

=
1

T
C

∫ T

0

vec(X(t+ kT ))dt+ TDu(kT ),

where we have used u(t + kT ) = u(kT ) for t ∈ [0, T ).
Since the integral of a matrix is computed elementwise
and vec is smooth, the order of the integral and vec can

be changed. Using (3), we have that
∫ T

0
X(t+kT )dt equals∫ T

0
exp (t (A+

∑m
i=1 Biui(kT ))) dtX(kT ). Thus,

y�[k] = Du(kT )

+
C

T
vec

(∫ T

0
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t
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A+

m∑
i=1

Biui(kT )

))
dtX(kT )

)
.

�

Corollary 3.3. The passive output (5) is linear in X[k].

Proof The X term in the expression for y� can be written

C

T

(
I ⊗

∫ T

0

exp

(
t

(
A+

m∑
i=1

Biui(kT )

))
dt

)
vec(X(kT )).

�

Defining C̄ : Rm → Rmn×mn, u �→
1
T C

(
I ⊗

∫ T

0
exp (t (A+
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i=1 Biui(kT ))) dt

)
, we can

write the sampled system (3) with output y� as

X+ = exp

(
T

(
A+

m∑
i=1

Biui

))
X

y� = C̄(u)vec(X) +Du.

(6)

The sampled-data system (6) is of a form similar to the
underlying continuous-time system (1), but the vector field
is in G instead of g and the output is not affine in u.

The integral term in the expression for y� always has
an analytic solution. If H ∈ Rn×n is invertible, then∫ T

0
exp(tH)dt = H−1(eTH − I). If H is singular, then its

Jordan form comprises invertible blocks and strictly upper
triangular blocks. The integral-exponential term for the
latter is straightforward to compute. Thus, y� can always
be computed analytically, as the only other computations
involved are matrix multiplications.

4. CONTROL DESIGN

Our approach to control design uses the well-known fact
that the negative feedback interconnection of passive sys-
tems is passive. Our design leverages existing stability
results for interconnected passive systems that provide
sufficient conditions for closed-loop asymptotic stability.

4.1 Proposed Method

We will prove that the closed-loop sampled-data system is
stabilized by any strictly passive controller, but present a
synthesis procedure for a special class of strictly passive
LTI controllers, as existing passivity results for LTI sys-
tems more readily admit a systematic synthesis procedure.

Since passivity is a characterization of the input-output
behaviour of a dynamical system, in our analysis, we must
appeal to a notion of observability, so that driving the
output to 0 has implications for the behaviour of the states.

Definition 4.1. ((Byrnes et al., 1991, Definition 3.1)). A
dynamical system on a Lie group, (1a) or (3), with output
y ∈ Rm, is locally zero-state observable (LZSO), if
there exists a neighbourhood U of I such that if X ∈ U ,
u = 0, and y = 0, then X = I. ♦
Remark 4.2. We use the term “zero-state”, which refers to
the states being zero, because it is common in the existing
literature for systems on vector spaces.

Lemma 4.3. ((Hill and Moylan, 1976, Lemma 1)). If a
system ẋ = f(x)+ g(x)u, y = h(x)+J(x)u is passive with
storage function V and LZSO, then V is positive definite.

Lemma 4.4. If (1) is passive with storage function V and
LZSO, then V is positive definite.

Proof The dynamics of (1) can be rewritten as vec(Ẋ) =
(I ⊗ A)vec(X) + [(I ⊗B1)vec(X) · · · (I ⊗Bm)vec(X)]u,
which is in the form required by Lemma 4.3. �

Local zero-state observability is crucial for passivity analy-
sis, but it has various implications for systems (1) and (6).

Proposition 4.5. If (1) is LZSO, then it is driftless.

Proof If u(t) = u[k] = 0 and y = y� = 0, implying

X = I, then Ẋ = A and X+ = exp(TA). But since X = I
identically, the systems must be at equilibrium, which is
true if and only if A = 0. �

Because of this result, we make the following standing
assumption, which we impose on all following results.

Assumption 2. (Driftlessness). A = 0 in (1) and (6).

The next result shows that zero-state observability is
preserved under sampling for any sampling period.

Proposition 4.6. Let (6) be the discrete-time system ef-
fected by sampling the continuous-time system (1) with
A = 0, so u(t) = H(u[k]) and X[k] = S(X(t)). Then (6)
is LZSO if and only if (1) is LZSO.

Proof Assume (1) is LZSO on U1. If X[k] ∈ U1, y
�[k] = 0,

and u[k] = 0, then Cvec(X[k]) = 0. Since u(t) = H(u[k]),
we have u(t) = 0 if and only if u[k] = 0. Thus y(t) =

Cvec(X(t)) = 0. Since A = 0, if u = 0, then Ẋ = 0 and
X+ = X[k], thusX(t) = X[k], t ∈ [kT, (k+1)T ). The local
zero-state observability of (1) implies X(t) = X[k] = I.
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Next consider the case where (6) is LZSO on neighbour-
hood U2 containing I. If X(t) ∈ U2, y(t) = 0, and u(t) = 0,
then Cvec(X(t)) = 0. The latter two equalities imply
y�[k] = Cvec(X[k]) = 0. The local zero-state observability
of (6) implies X[k] = X(t) = I. �

In our main result, we consider a strictly passive controller
of the form

x+
c = f(xc) + g(xc)uc, yc = h(xc) + J(xc)uc, (7)

where f : Rnc → Rnc , g : Rnc → Rnc×mc , h : Rnc → Rmc ,
J : Rnc → Rmc×mc , f(0) = 0, h(0) = 0, and g(xc) is full
rank for all xc ∈ Rnc .

Theorem 4.7. If the plant (1) is passive, driftless, and
LZSO, then (X,xc) = (I, 0) is asymptotically stable for
the negative feedback connection of the sampled plant (6)
and the discrete-time strictly passive controller (7), i.e.,
uc = y� and u = −yc.

Proof By hypothesis, the plant and controller are pas-
sive. Therefore, their respective storage functions satisfy
∆VP ≤ u�y� and ∆VC ≤ u�

c yc. Define the function V :=
VP + VC , which is positive definite, since, by Lemma 4.4,
it is the sum of positive definite functions. Since (7) is
strictly passive, ∆VC ≤ u�

c yc − ψ(xc) for some positive
definite function ψ. Then

∆V = ∆VP +∆VC ≤ u�y� + u�
c yc − ψ(xc) = −ψ(xc).

Thus, ∆V = 0 implies ψ(xc) = 0, which by positive
definiteness implies xc = 0. From (7), xc = 0 identically
implies 0 = f(0) + g(0)uc. Since f(0) = 0 and g(0) is full
rank, we have uc = y� = 0. This implies u = yc = h(0) +
J(0)uc = 0. By Proposition 4.6, y� = 0 implies X = I.

Let c > 0 be sufficiently small such that D := {(X,xc) ∈
G × Rnc : V ≤ c} is compact. Let R := {(X,xc) ∈ D :
∆V = 0}. From the previous discussion, we have R =
{(I, 0)}. Since R is a singleton comprising an equilibrium,
it is itself the largest invariant set contained therein. By
the invariance principle, (X,xc) → (I, 0) as k → ∞. �

Corollary 4.8. If V is radially unbounded and the set U
from the definition of local zero-state observability equals
G, then (6) is globally asymptotically stable.

Proof This follows from the invariance principle argument
in the proof of Theorem 4.7 and (Haddad and Chellaboina,
2008, Theorem 13.5). �

The proposed system topology is illustrated in Figure 2.

Fig. 2. Closed-loop sampled-data system.

4.2 Controller Synthesis

Theorem 4.7 holds for any strictly passive controller, but
its proof is not constructive. For synthesis, we appeal to

a special class of strictly passive LTI systems. Consider a
discrete-time LTI system with minimal realization:

x+
c = Acxc +Bcuc, yc = Ccxc +Dcuc, (8)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×mc , Cc ∈ Rmc×nc , and
Dc ∈ Rmc×mc .

System (8) is strictly positive real (SPR) if and only if
it satisfies the Kalman-Yakubovich-Popov (KYP) Lemma.

Lemma 4.9. (Discrete-Time KYP Lemma). (Hitz and
Anderson, 1969), (Haddad and Chellaboina, 2008,
Theorem 13.28). System (8) is SPR if and only if there
exist matrices P ∈ Rn×n, L ∈ Rq×n, W ∈ Rq×m with
P = P� � 0, and a scalar 0 < ρ < 1 such that

ρP = A�
c PAc + L�L (9a)

0 = A�
c PBc − C�

c + L�W (9b)

0 = Dc +D�
c −B�

c PBc −W�W. (9c)

There is an analogous definition for continuous-time SPR
systems; it is a standard result that such systems are
strictly passive. Although it too is likely a standard re-
sult, we state this result for discrete-time. We omit the
relatively straightforward proof due to lack of space.

Proposition 4.10. If (8) is SPR, then it is strictly passive.

The controller can be designed using emulation, as the
bilinear transform preserves positive realness (Hoagg et al.,
2004), or using direct design, as discussed below.

The KYP lemma provides necessary and sufficient condi-
tions for an LTI system to be SPR, but does not itself pro-
vide a method for synthesizing such systems. We present
one method for designing a discrete-time SPR controller.

1) Set Ac := 0 and choose invertible diagonal Bc; 2)
Choose 0 < ρ < 1 and diagonal L ∈ Rnc×nc , L � 0,
then set P := L2/ρ, which is also diagonal; 3) Letting λ
be the minimum eigenvalue of −PB2

c , set Dc := |λ|I; 4)
Set W :=

√
2Dc − PB2

c ; 5) Set Cc := WL.

We now outline our justification for the proposed SPR
controller synthesis procedure.

For Ac = 0 and L � 0 diagonal, (9a) reduces to the
equation in step 2. Thus P � 0 exists and is diagonal
for any 0 < ρ < 1.

If Bc and Dc are diagonal, then (9c) reduces to W�W =
2Dc − PB2

c , which is diagonal, thus its eigenvalues are its
diagonal elements. If Dc = |λ|I, as defined in step 3, then
|λ| > 0 bounds the eigenvalues of W�W from below. Since
2Dc − PB2

c � 0 is diagonal, its square root is computed

elementwise. Thus W =
√
2Dc − PB2

c � 0 is diagonal.

For Ac = 0, (9b) reduces to the equation in step 5.
Since W � 0 and L � 0 are diagonal, Cc � 0 is
diagonal. Since Bc and Cc are invertible, (Ac, Bc) is
controllable and (Ac, Cc) is observable, thus the KYP
applies. Ac, Bc, Cc, Dc, ρ satisfy the KYP by construction.

Remark 4.11. This procedure ensures asymptotic stability
of the closed-loop system, but provides no information
about the dynamic response of the closed-loop system.

Note that the foregoing procedure is presented only to
provide a systematic method to design SPR controllers.
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Suitable controllers could also be designed, for example,
using frequency-domain design.

5. SIMULATIONS

To illustrate our results, we compare the performance of a
discrete-time SPR (DSPR) controller to a continuous-time
SPR controller that has been discretized using the bilinear
transform. The plant is (4) with initial condition

R(0) = R[0] =




0.5 1/
√
2 −0.5

0.5 −1/
√
2 −0.5

−1/
√
2 0 −1/

√
2


 .

Note that system (4) is LZSO. If u = 0 and X = I, then
y = 0. The topologies of the DSPR- and SPR-controlled
systems are illustrated in Figures 2 and 3, respectively.

Fig. 3. Closed-loop SPR-controlled system.

The DSPR controller is designed using the algorithm in
Section 4.2 with B = L = I and ρ = 0.5:

GDSPR[z] = I ⊗ 2z +
√
2

z
. (10)

The SPR controller is the lead-lag compensator

GSPR(s) = I ⊗ s+ 1000

s+ 100

s+ 0.005

s+ 0.05
, (11)

which satisfies the continuous-time KYP lemma (Khalil,
2002, Lemma 6.3). This controller was tuned to generate
control signals similar in magnitude to those of (10) and
discretized using the bilinear transform.

We plot the trajectories of (4) in roll-pitch-yaw coordi-
nates. IfR = I, then roll, pitch, and yaw are 0. If we sample
relatively quickly, for example, with T = 0.01, then both
topologies achieve asymptotic stability. We simulate using
T = 0.2. Figure 5 shows that the DSPR controller in the
proposed topology achieves asymptotic stability, whereas
Figure 4 shows that the näıve sampled-data topology using
the discretized SPR controller does not. Even though (11)
is SPR, the sampled plant is not passive from u to y, as
shown in Example 3.1, so Theorem 4.7 does not apply.

6. STEP TRACKING

Stabilizing the identity extends to reference tracking by
letting Xref be the reference value for the states, and
defining the error E := XX−1

ref , stabilizing the point
E = I implies X → Xref . The error E has dynamics
Ė = ẊX−1

ref = (
∑m

i=1 Biui)XX−1
ref = (

∑m
i=1 Biui)E, which

are the same as the plant’s, with X replaced by E. Thus,
the results in Section 4 easily extend to setpoint tracking.
The reference tracking topology is illustrated in Figure 6.
If Xref = I, then the topology reduces to that in Figure 2.

Example 6.1. Consider the same plant and initial condi-
tions used to demonstrate our passivity-based controller

0 1 2 3 4 5
−π/2

−π/4

0

π/4

π/2

3π/4

π

t

 

 
Roll

Pitch

Yaw

Fig. 4. Local trajectories of (4) using GSPR[z], T = 0.2.
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Yaw

Fig. 5. Local trajectories of (4) using GDSPR[z], T = 0.2.

in Section 5, with controller (10). The topology is similar
to that illustrated in Figure 2, except E := XX−1

ref , instead
of X, is fed to the Passive output computer block; this is
possible because X and Xref are known in discrete-time.

The sampling period is T = 0.2. The reference is defined
in roll-pitch-yaw coordinates ξ ∈ R3, which in turn define
Xref(t) ∈ SO(3): ξ(t) =

[
−π

4
π
3

π
4

]
, t ∈ [0, 3], ξ(t) =[

π
4 −π

3 −π
4

]
, t ∈ (3, 6]. Figure 7 shows that asymptotic

tracking is achieved. �

7. CONCLUSIONS

We proposed a method of stabilizing sampled-data sys-
tems on matrix Lie groups using passivity-based control
design. We proved that under certain assumptions that
the resultant closed-loop system is asymptotically stable.
The proposed method was compared to an emulation-
based control design and topology in simulation, which
suggested that the proposed method is more robust to high
sampling periods. The proposed method was also shown to
be applicable to constant reference tracking.

Future research includes revising our DSPR synthesis
procedure to optimize dynamical performance, developing
a nonlinear strictly passive controller synthesis procedure
based on the KYP-like conditions in (Navarro-López,
2007), and identifying KYP-like conditions for systems on
matrix Lie groups to help identify storage functions.
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Suitable controllers could also be designed, for example,
using frequency-domain design.

5. SIMULATIONS

To illustrate our results, we compare the performance of a
discrete-time SPR (DSPR) controller to a continuous-time
SPR controller that has been discretized using the bilinear
transform. The plant is (4) with initial condition

R(0) = R[0] =


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0.5 1/
√
2 −0.5

0.5 −1/
√
2 −0.5

−1/
√
2 0 −1/

√
2


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Note that system (4) is LZSO. If u = 0 and X = I, then
y = 0. The topologies of the DSPR- and SPR-controlled
systems are illustrated in Figures 2 and 3, respectively.

Fig. 3. Closed-loop SPR-controlled system.

The DSPR controller is designed using the algorithm in
Section 4.2 with B = L = I and ρ = 0.5:

GDSPR[z] = I ⊗ 2z +
√
2

z
. (10)

The SPR controller is the lead-lag compensator

GSPR(s) = I ⊗ s+ 1000

s+ 100

s+ 0.005

s+ 0.05
, (11)

which satisfies the continuous-time KYP lemma (Khalil,
2002, Lemma 6.3). This controller was tuned to generate
control signals similar in magnitude to those of (10) and
discretized using the bilinear transform.

We plot the trajectories of (4) in roll-pitch-yaw coordi-
nates. IfR = I, then roll, pitch, and yaw are 0. If we sample
relatively quickly, for example, with T = 0.01, then both
topologies achieve asymptotic stability. We simulate using
T = 0.2. Figure 5 shows that the DSPR controller in the
proposed topology achieves asymptotic stability, whereas
Figure 4 shows that the näıve sampled-data topology using
the discretized SPR controller does not. Even though (11)
is SPR, the sampled plant is not passive from u to y, as
shown in Example 3.1, so Theorem 4.7 does not apply.

6. STEP TRACKING

Stabilizing the identity extends to reference tracking by
letting Xref be the reference value for the states, and
defining the error E := XX−1

ref , stabilizing the point
E = I implies X → Xref . The error E has dynamics
Ė = ẊX−1

ref = (
∑m

i=1 Biui)XX−1
ref = (

∑m
i=1 Biui)E, which

are the same as the plant’s, with X replaced by E. Thus,
the results in Section 4 easily extend to setpoint tracking.
The reference tracking topology is illustrated in Figure 6.
If Xref = I, then the topology reduces to that in Figure 2.

Example 6.1. Consider the same plant and initial condi-
tions used to demonstrate our passivity-based controller
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Fig. 4. Local trajectories of (4) using GSPR[z], T = 0.2.
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in Section 5, with controller (10). The topology is similar
to that illustrated in Figure 2, except E := XX−1

ref , instead
of X, is fed to the Passive output computer block; this is
possible because X and Xref are known in discrete-time.

The sampling period is T = 0.2. The reference is defined
in roll-pitch-yaw coordinates ξ ∈ R3, which in turn define
Xref(t) ∈ SO(3): ξ(t) =

[
−π

4
π
3

π
4

]
, t ∈ [0, 3], ξ(t) =[

π
4 −π

3 −π
4

]
, t ∈ (3, 6]. Figure 7 shows that asymptotic

tracking is achieved. �

7. CONCLUSIONS

We proposed a method of stabilizing sampled-data sys-
tems on matrix Lie groups using passivity-based control
design. We proved that under certain assumptions that
the resultant closed-loop system is asymptotically stable.
The proposed method was compared to an emulation-
based control design and topology in simulation, which
suggested that the proposed method is more robust to high
sampling periods. The proposed method was also shown to
be applicable to constant reference tracking.

Future research includes revising our DSPR synthesis
procedure to optimize dynamical performance, developing
a nonlinear strictly passive controller synthesis procedure
based on the KYP-like conditions in (Navarro-López,
2007), and identifying KYP-like conditions for systems on
matrix Lie groups to help identify storage functions.
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Fig. 6. Passivity-based reference tracking topology.

0 1 2 3 4 5 6
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Yaw

Fig. 7. Series of step responses of (4) controlled by GSPR[z]
in local coordinates. The local coordinates of the plant
and reference states are represented by the solid and
dotted lines, respectively.
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