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Abstract A sequence of independent Bernoulli trials, each of which is a success with prob-
ability p, is conducted. For k ∈ Z+, let Xk be the number of trials required to obtain k
consecutive successes. Using techniques from elementary probability theory, we present a
derivation which ultimately yields an elegant expression for the probability mass function
of Xk, and is simpler in comparison to what is found in the literature. Following this, we
use our derived formula to obtain explicit closed-form expressions for the complementary
cumulative distribution function and the nth factorial moment of Xk.
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1 Introduction

We consider a well-known problem in applied probability in which independent Bernoulli
trials, each having success probability p ∈ (0, 1), are performed until k consecutive successes
are achieved where k ∈ Z+. Let Xk count the number of trials needed to obtain k consecutive
successes. Clearly, Xk is a discrete random variable (rv) with probability mass function
(pmf) fk(x) = P(Xk = x) on the support set {k, k + 1, k + 2, . . .}. The distribution of Xk

has been studied previously, most notably by Shane (1973), who derived the probability
generating function (pgf) of Xk by developing a recursive formula for its pmf in terms of
his Polynacci polynomials of order k in p. Other related papers followed, particularly those
by Turner (1979), Philippou and Muwafi (1982), and Philippou et al. (1983). In the latter
paper, the authors introduce a particular type of generalized geometric distribution to which
the distribution of Xk belongs (not surprisingly, given the fact that Xk has a geometric
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distribution when k = 1). Specifically, Philippou et al. (1983) shows that

fk(x) =
∑

i1,i2,...,ik

(
i1 + i2 + · · ·+ ik

i1, i2, . . . , ik

)
px
(
1−p

p

)i1+i2+···+ik

, x = k, k + 1, k + 2, . . . , (1)

where the above summation is over all non-negative integers i1, i2, . . . , ik such that

i1 + 2i2 + · · ·+ kik = x− k.

Using the above pmf, Philippou et al. (1983) also derives the associated pgf as a means of
obtaining (through differentiation) the following results for the mean and variance of Xk:

E(Xk) =
1− pk

(1− p)pk
, (2)

and

Var(Xk) =
1− (2k + 1)(1− p)pk − p2k+1

(1− p)2p2k
. (3)

For the sake of completeness, we remark that (2) and (3) also agree with the results found
independently by Woodside (1990).

In this paper, we present an alternative means of obtaining the pmf ofXk, one which sheds
a different light on the problem and ultimately gives rise to a simpler formula for fk(x) which,
unlike (1), does not involve the solutions of a diophantine equation. The approach we use is,
in some sense, less specialized, and is based on a clever conditioning argument which Ross
(2010, Example 3.15, p. 113) successfully employs to obtain E(Xk). By conditioning on the
rv Xk−1 (since one must first obtain k−1 consecutive successes before reaching k) and using
the law of total expectation, Ross develops a recursive formula for E(Xk) which, when solved,
agrees with (2) but does not involve any complicated sum formulas or the differentiation of
a pgf. We adapt this argument to derive the pmf. An added advantage to our approach is
that it leads to an equally elegant formula for the complementary cumulative distribution
function (ccdf) of Xk. Finally, we conclude our paper with a novel derivation revealing an
interesting relationship between the factorial moments of Xk and a sequence of polynomials
with combinatorial significance, namely the exponential partial Bell polynomials.

2 Derivation of the pmf and ccdf of Xk

We adopt the approach used by Ross (2010), as described above, but this time for the pmf.
In particular, conditioning on the rv Xk−1 (for k ≥ 2), we first obtain

fk(x) =
∞∑

ℓ=k−1

P(Xk = x|Xk−1 = ℓ)fk−1(ℓ)

=
x−1∑

ℓ=k−1

P(Xk = x|Xk−1 = ℓ)fk−1(ℓ), (4)
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since P(Xk = x|Xk−1 = ℓ) = 0 for ℓ ≥ x. Now, for k − 1 ≤ ℓ ≤ x − 1, we condition on the
outcome of the (ℓ + 1)th trial. If this trial is a success, then Xk = ℓ + 1 with probability 1.
However, if this trial is a failure, then the counter essentially resets itself following this failed
trial. Altogether, letting q = 1− p, this leads to

P(Xk = x|Xk−1 = ℓ) = pδℓ+1,x + qfk(x− ℓ− 1),

where δi,j denotes the Kronecker delta. Therefore, for k ≥ 2, (4) becomes

fk(x)=
x−1∑

ℓ=k−1

(
pδℓ+1,x + qfk(x−ℓ−1)

)
fk−1(ℓ)

= pfk−1(x−1) + q

x−2∑
ℓ=k−1

fk(x−ℓ−1)fk−1(ℓ), x = k, k+1, k+2, . . . . (5)

However, by defining f0(0) = 1 and f0(x) = 0 when x ∈ Z+, we note that (5) holds true
even when k = 1. Moreover, with fk(x) = 0 when x < k and fk−1(ℓ) = 0 when ℓ < k − 1,
we can extend the bounds on the summation in (5) as well as the range of x to obtain

fk(x) = pfk−1(x− 1) + q
x−1∑
ℓ=0

fk(x− 1− ℓ)fk−1(ℓ), x ∈ Z+. (6)

For k ∈ Z+, let Gk(z) denote the pgf of Xk, given by

Gk(z) =
∞∑
x=0

fk(x)z
x. (7)

If we now multiply both sides of (6) by zx and sum over x ∈ Z+, we obtain

∞∑
x=1

fk(x)z
x = p

∞∑
x=1

fk−1(x− 1)zx + q
∞∑
x=1

(
x−1∑
ℓ=0

fk(x− 1− ℓ)fk−1(ℓ)

)
zx

= pz

∞∑
x=1

fk−1(x− 1)zx−1

+ qz
∞∑
x=1

(
x−1∑
ℓ=0

fk(x− 1− ℓ)fk−1(ℓ)

)
zx−1

= pz
∞∑
x=0

fk−1(x)z
x + qz

∞∑
x=0

(
x∑

ℓ=0

fk(x− ℓ)fk−1(ℓ)

)
zx. (8)

Since fk(0) = 0 for k ∈ Z+, the left-hand side of (8) equals Gk(z). Moreover, the inner sum
in the second expression on the right-hand side of (8) is the convolution of fk(x) and fk−1(x).
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Applying the convolution property for generating functions (e.g., Spivey, 2019, Theorem 13,
p. 122), (8) readily becomes

Gk(z) = pzGk−1(z) + qzGk(z)Gk−1(z),

or equivalently,

Gk(z) =
pzGk−1(z)

1− qzGk−1(z)
, (9)

with initial condition G0(z) =
∑∞

x=0 f0(x)z
x = f0(0) = 1.

We recognize the recurrence relation in (9) as a first-order rational difference equation of
the form

Gk(z) =
a(z)Gk−1(z) + b(z)

c(z)Gk−1(z) + d(z)
,

where a(z) = pz, b(z) = 0, c(z) = −qz, and d(z) = 1. To solve such an equation, we employ
a well-known approach (e.g., Mitchell, 2000) which proceeds in the following manner. Define
η(z) = (pz − 1)/(qz) and yk(z) = (η(z) +Gk(z))

−1, so that

Gk(z) =
1

yk(z)
− η(z). (10)

By means of this change of variable, (9) subsequently becomes

1

yk(z)
− η(z) =

pz
(

1
yk−1(z)

− η(z)
)

1− qz
(

1
yk−1(z)

− η(z)
) ,

1

yk(z)
=

qpz − p(pz − 1)yk−1(z)

q(pzyk−1(z)− qz)
+

pz − 1

qz
,

1

yk(z)
=

qpz2 − pz(pz − 1)yk−1(z) + (pz − 1)(pzyk−1(z)− qz)

qz(pzyk−1(z)− qz)
,

yk(z) = pzyk−1(z)− qz,

with initial condition y0(z) = qz/(z − 1). Since this is a simple linear, first-order difference
equation with constant coefficients, the solution is immediately given by (e.g., Elaydi, 2005,
Equation 1.2.8, p. 4)

yk(z) =

(
y0(z) +

qz

1− pz

)
(pz)k − qz

1− pz
=

qz(1− z + qpkzk+1)

(z − 1)(1− pz)
.

Substituting the above equation into (10), we obtain

Gk(z) =
(z − 1)(1− pz)

qz(1− z + qpkzk+1)
− pz − 1

qz
=

(pz)k(1− pz)

1− pz − qz(1− (pz)k)
. (11)
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We remark that (11) agrees with the result found independently by Woodside (1990, p. 605).
Taking a closer look at (11), however, we find that

Gk(z) =
(pz)k

1− qz(1−(pz)k)
1−pz

= (pz)k
∞∑

m=0

(qz)m
(
(1− (pz)k)

1− pz

)m

= (pz)k
∞∑

m=0

(qz)m
(
1 + pz + · · ·+ (pz)k−1

)m
. (12)

However, we have (
1 + pz + · · ·+ (pz)k−1

)m
=

(k−1)m∑
j=0

(
m

j

)
k

(pz)j,

where the coefficient of (pz)j in the above expansion, namely
(
m
j

)
k
, is the so-called polynomial

coefficient (e.g., Comtet, 1974, p. 77). These coefficients generalize the binomial coefficients,
and since

(
m
j

)
k
= 0, ∀ j /∈ {0, 1, . . . , (k − 1)m}, we can express (12) as

Gk(z) = (pz)k
∞∑

m=0

(qz)m
∞∑
j=0

(
m

j

)
k

(pz)j

=
∞∑

m=0

(qz)m
∞∑
j=0

(
m

j

)
k

(pz)j+k

=
∞∑

m=0

(qz)m
∞∑

x=k+m

(
m

x− k −m

)
k

(pz)x−m

=
∞∑

m=0

(qz)m
∞∑
x=0

(
m

x− k −m

)
k

(pz)x−m

=
∞∑
x=0

(
∞∑

m=0

(
m

x− k −m

)
k

qmpx−m

)
zx. (13)

Equating the forms of (7) and (13), we immediately obtain

fk(x) =
∞∑

m=0

(
m

x− k −m

)
k

qmpx−m, x = k, k + 1, k + 2, . . . . (14)

It is possible to tighten the summation bounds on the above expression for fk(x). To do
so, the following lemma proves to be useful.
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Lemma 1. Suppose k, x ∈ Z+ with x ≥ k ≥ 1. Let

r =

⌊
x− 1

k

⌋
,

where ⌊·⌋ denotes the floor function. Then, for m ≤ r − 1,(
m

x− k −m

)
k

= 0.

Proof. For x ≥ k ≥ 1, we have r ≤ (x− 1)/k by definition. Therefore, if m ≤ r − 1, then

m ≤ x− 1

k
− 1,

km ≤ x− 1− k,

km−m ≤ x− 1− k −m,

(k − 1)m ≤ (x− k −m)− 1 < x− k −m.

Since x− k−m > (k− 1)m and
(
m
j

)
k
= 0 ∀ j /∈ {0, 1, . . . , (k− 1)m}, it immediately follows

that (
m

x− k −m

)
k

= 0.

We are now ready to state our main result.

Theorem 1. The pmf of the random variable Xk, where Xk is the number of trials needed
to obtain k consecutive successes in a sequence of independent Bernoulli trials with success
probability p, is given by

fk(x) =
x−k∑

m=⌊(x−1)/k⌋

(
m

x−k−m

)
k

qmpx−m, x = k, k + 1, k + 2, . . . . (15)

Proof. Apply Lemma 1 to (14) and use the fact that
(

m
x−k−m

)
k
= 0 for m > x− k.

As an immediate consequence of Theorem 1, we are also able to obtain an elegant formula
for the ccdf of Xk.

Theorem 2. The ccdf of the random variable Xk, denoted by F̄k(x) = P(Xk > x), is given
by (for x = k − 1, k, k + 1, . . .)

F̄k(x) = (1− pk)x−k+2 +
x−k+1∑

m=⌊x/k⌋

qm
k(m+1)∑
y=x+1

(
m

y−k−m

)
k

py−m. (16)
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Proof. Using (15), we have that

F̄k(x) =
∞∑

y=x+1

y−k∑
m=⌊(y−1)/k⌋

(
m

y−k−m

)
k

qmpy−m. (17)

Interchanging the order of summation in (17) leads to

F̄k(x)=
∞∑

m=⌊x/k⌋

km+k∑
y=max{x+1,k+m}

(
m

y−k−m

)
k

qmpy−m

=
x−k+1∑

m=⌊x/k⌋

qm
k(m+1)∑
y=x+1

(
m

y−k−m

)
k

py−m +
∞∑

m=x−k+2

qm
k(m+1)∑
y=k+m

(
m

y−k−m

)
k

py−m.

(18)

Looking at the second term on the right-hand side of (18), note that

∞∑
m=x−k+2

qm
k(m+1)∑
y=k+m

(
m

y−k−m

)
k

py−m =
∞∑

m=x−k+2

qm
(k−1)m∑
j=0

(
m

j

)
k

pj+k

= pk
∞∑

m=x−k+2

qm(1+p+· · ·+pk−1)m

= pk
∞∑

m=x−k+2

[(1−p)(1+p+· · ·+pk−1)]m

= pk
∞∑

m=x−k+2

(1−pk)m

= (1− pk)x−k+2. (19)

Substituting (19) into (18) yields the desired formula.

3 Derivation of the factorial moments of Xk

We now turn our attention to finding an expression for the nth factorial moment of Xk, given
by

E(Xn
k ) = E(Xk(Xk − 1) · · · (Xk − n+ 1)), n ∈ Z+.

Using (15), we have that

E(Xn
k ) =

∞∑
x=k

x−k∑
m=⌊(x−1)/k⌋

xn

(
m

x− k −m

)
k

qmpx−m. (20)
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Interchanging the order of summation in (20) leads to

E(Xn
k ) =

∞∑
m=0

km+k∑
x=m+k

xn

(
m

x− k −m

)
k

qmpx−m

= pn
∞∑

m=0

(
q

p

)m (k−1)m∑
y=0

(
m

y

)
k

(y +m+ k)n py+m+k−n

= pn
∞∑

m=0

(
q

p

)m
dn

dpn

(
hm(p)p

m+k
)
, (21)

where hm(p) =
∑(k−1)m

j=0

(
m
j

)
k
pj = (1+ p+ · · ·+ pk−1)

m. Applying Leibniz’s product rule for

differentiation (and keeping in mind that the zeroth derivative corresponds to the function
itself), (21) becomes

E(Xn
k ) = pn

∞∑
m=0

(
q

p

)m n∑
ℓ=0

(
n

ℓ

)
dℓ

dpℓ

(
hm(p)

)
(m+ k)n−ℓ pm+k−(n−ℓ)

= pk
∞∑

m=0

qm
n∑

ℓ=0

(
n

ℓ

)
(m+ k)n−ℓ pℓ

dℓ

dpℓ

(
gm(h1(p))

)
, (22)

where hm(p) = gm(h1(p)) with gm(u) = um and

h1(p) = 1 + p+ · · ·+ pk−1 =
1− pk

1− p
.

For notational convenience, let g
(i)
m (u) = di

dui (gm(u)) and h
(i)
1 (p) = di

dpi
(h1(p)), i = 0, 1, 2, . . . .

Applying Faà di Bruno’s formula generalizing the chain rule to higher order derivatives (e.g.,
Riordan, 1946), we have that

dℓ

dpℓ

(
gm(h1(p))

)
=

ℓ∑
j=min{1,ℓ}

g(j)m (h1(p))Bℓ,j

(
h
(1)
1 (p), h

(2)
1 (p), . . . , h

(ℓ−j+1)
1 (p)

)

=
ℓ∑

j=min{1,ℓ}

mj h1(p)
m−jBℓ,j

(
h
(1)
1 (p), h

(2)
1 (p), . . . , h

(ℓ−j+1)
1 (p)

)
,

(23)

where Bℓ,j(x1, x2, . . . , xℓ−j+1) is the so-called exponential partial Bell polynomial with argu-
ments ℓ and j (e.g., Comtet, 1974, pp. 133–134). Substituting (23) into (22) and noting
that

qmh1(p)
m−j = qj(qh1(p))

m−j = qj[(1− p)(1 + p+ · · ·+ pk−1)]m−j = qj(1− pk)m−j,
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we subsequently obtain

E(Xn
k ) = pk

n∑
ℓ=0

(
n

ℓ

)
pℓ

ℓ∑
j=min{1,ℓ}

qjBℓ,j

(
h
(1)
1 (p), h

(2)
1 (p), . . . , h

(ℓ−j+1)
1 (p)

)
×

∞∑
m=0

(m+ k)n−ℓmj (1− pk)m−j. (24)

Two remarks can be made concerning the formula given by (24). First of all, it is a
straightforward application of Leibniz’s product rule for differentiation which yields

h
(i)
1 (p) =

i!

(1− p)i+1
− i!

i∑
w=0

(
k

w

)
pk−w

(1− p)i+1−w
, i ∈ N.

Note that this formula even holds true for i ≥ k, correctly giving h
(i)
1 (p) = 0 in this case.

Secondly, it is possible to simplify the infinite series which appears in (24). To aid us in this
regard, we provide the following lemma.

Lemma 2. If 0 < α < 1 and x, y ∈ N, then

κi =
∞∑

w=0

(w + x+ y)i(1− α)w+y =
i∑

v=0

iv (x+ y)i−v (1− α)v+y

αv+1
, i ∈ N. (25)

Proof. We define the generating function

H(z) =
∞∑

w=0

zw+x+y(1− α)w+y =
zx+y(1− α)y

1− z(1− α)
, |z| < (1− α)−1,

from which it immediately follows that

H(z)[1− (1− α)z] = (1− α)yzx+y. (26)

Differentiating both sides of (26) i times (with respect to z) leads to

i∑
j=0

(
i

j

)
H(j)(z)

di−j

dzi−j

(
1− (1− α)z

)
= (1− α)y(x+ y)i zx+y−i,

H(i)(z)[1− (1− α)z]− iH(i−1)(z)(1− α) = (1− α)y(x+ y)i zx+y−i.

Plugging in z = 1 into the above equation (noting that κi−1 = H(i−1)(1) and κi = H(i)(1))
yields the recursive equation

ακi − i(1− α)κi−1 = (1− α)y(x+ y)i,

or equivalently,

κi =

(
1− α

α

)
iκi−1 +

(1− α)y(x+ y)i

α
. (27)

With κ0 = H(0)(1) = H(1) = (1−α)y/α, the use of induction verifies that (25) is the explicit
solution to (27).
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If we now consider the infinite series in (24) and let α = pk, note that

∞∑
m=0

(m+k)n−ℓmj (1−pk)m−j =
∞∑

m=j

(m+k)n−ℓmj (1−α)m−j

=
∞∑

w=0

(w+j+k)n−ℓ (w+j)j (1−α)w

=
∞∑

w=0

(w+j+k)n−ℓ (−1)j
dj

dαj

(
(1−α)w+j

)
=(−1)j

dj

dαj

{ ∞∑
w=0

(w+j+k)n−ℓ (1−α)w+j

}
. (28)

However, recognizing that the expression within curly brackets in (28) is κi from Lemma 2
with x = k, y = j, and i = n− ℓ, we have that

dj

dαj

{ ∞∑
w=0

(w + j + k)n−ℓ (1− α)w+j

}

=
n−ℓ∑
v=0

(n− ℓ)v (j + k)n−ℓ−v dj

dαj

{
(1− α)v+j

αv+1

}
, (29)

where

dj

dαj

{
(1− α)v+j

αv+1

}
=

j∑
z=0

(
j

z

)
dz

dαz

(
(1− α)v+j

) dj−z

dαj−z

(
α−(v+1)

)
=

j∑
z=0

(
j

z

)
(−1)z(v + j)z (1− α)v+j−z(−1)j−z(v + j − z)j−z α−(v+j−z+1)

= (−1)j
(v + j)!(1− α)v

v!αv+1

j∑
z=0

(
j

z

)(
1− α

α

)j−z

= (−1)j
(v + j)!(1− α)v

v!αv+1

(
1 +

1− α

α

)j

= (−1)jα−(j+1) (v + j)!

v!

(
1− α

α

)v

. (30)
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Using the results of (29) and (30), (28) becomes

∞∑
m=0

(m+ k)n−ℓmj (1− pk)m−j

=
n−ℓ∑
v=0

(n− ℓ)!(j + k)!

(n− ℓ− v)!(j + k − n+ ℓ+ v)!
p−(j+1)k (v + j)!

v!

(
1− pk

pk

)v

= (n− ℓ)! p−(j+1)k

n−ℓ∑
v=0

(
j + k

n− ℓ− v

)
(v + j)!

v!

(
1− pk

pk

)v

. (31)

We can now state our simplified formula for the nth factorial moment of Xk.

Theorem 3. The nth factorial moment of the random variable Xk, where Xk is the number
of trials needed to obtain k consecutive successes in a sequence of independent Bernoulli
trials with success probability p, is given by

E(Xn
k ) = n!

n∑
ℓ=0

pℓ

ℓ!

n−ℓ∑
v=0

(p−k−1)v

v!

ℓ∑
j=min{1,ℓ}

(
j + k

n− ℓ− v

)
(v + j)!

(
1− p

pk

)j

×Bℓ,j

(
h
(1)
1 (p), h

(2)
1 (p), . . . , h

(ℓ−j+1)
1 (p)

)
. (32)

Proof. Substitute (31) into (24) and simplify the resulting expression.

We demonstrate the use of (32) by determining E(Xn
k ) for n = 1, 2, 3, 4. This requires

knowledge of the following Bell polynomials:

B0,0(x1) = 1,

B1,1(x1) = x1,

B2,1(x1, x2) = x2, B2,2(x1) = x2
1,

B3,1(x1, x2, x3) = x3, B3,2(x1, x2) = 3x1x2,

B4,1(x1, x2, x3, x4) = x4, B4,2(x1, x2, x3) = 3x2
2 + 4x1x3,

B3,3(x1) = x3
1,

B4,3(x1, x2) = 6x2
1x2, B4,4(x1) = x4

1.

After some tedious but straightforward algebra, the first four factorial moments of Xk are:

E(X1
k) =

1− pk

(1− p)pk
, (33)

E(X2
k) =

2 + 2(1− p)p2k − 2[k + 2− (k + 1)p]pk

(1− p)2p2k
, (34)
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E(X3
k) =

{
6− 6(1− p)2p3k + 3(k + 2)[k + 3− (k + 1)p](1− p)p2k

− 6[2k + 3− 2(k + 1)p]pk
}[

(1− p)3p3k
]−1

, (35)

E(X4
k) =

{
24+24(1−p)3p4k−4(k+2)(k+3)[k+4−(k+1)p](1−p)2p3k+

24(2k+3)[k+2−(k+1)p](1−p)p2k−24[3k+4−3(k+1)p]pk
}

×
[
(1− p)4p4k

]−1
. (36)

We remark that (33) agrees with the known result for the mean given by (2). Moreover, it
is easily verified that (33) and (34) correctly combine to yield the result for variance given
by (3). To the best of our knowledge, the results for (35) and (36) are new.
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