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Abstract

The expected rise in the number of ECUs in an automotive based development environment,
poses additional efficiency risk on developer time and code complexity. This thesis examines
the design and validation of a Hybrid Supervisory Controller, developed for the University of
Waterloo Alternative Fuels Team’s (UWAFT) retrofitted P4 parallel Chevrolet Blazer, in the

EcoCAR Mobility Challenge competition.

The controller, component models and /0 interaction layers are developed in a MathWorks
Simulink environment. The framework discussed, is built to incorporate automation via a
custom developed -Model-Configurator tool. Component models, and functional sub-systems are
converted to masked library blocks within Simulink, that are populated via an object-oriented
class in the MATLAB environment. This opens the possibility for custom environment data
population, swapping of data for models while retaining underlying physics and setting up for
SIL/HIL requirements testing without explicit/contemporary interaction with the Simulink
environment. The advantages of this approach are discussed, along with explanation

accompanying the software framework.

The HSC incorporates interaction models of 9 stock vehicle, and on-board GM ECUs. The
model spans full chassis longitudinal, and powertrain components. The functional controller
incorporates 4 powertrain control layers - fault detection, vehicle state control, torque strategy
and component level execution layers. The test environment switching time is reduced by

>50%, and 86 controls requirements are tested over the course of 3 years.

The test vehicle is tested at the Canadian Technical Center McLaughlin Advanced Technology
Track (CTC MATT) where a non-standard drive cycle is used due to limitations posed by the
COVID-19 pandemic. The vehicle robustly sustains a 91-minute city/highway drive, with a 24%
improvement in fuel economy compared to stock. The vehicle however is short of its VTS
targets which are attributed to the lack of engine start/stop functionality, and a thermally
constrained battery pack. Those remain major design shortcomings and immediate powertrain

improvements are proposed, and efficacy of a well-organized model are discussed.
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Chapter 1

Introduction & Background

1.1 Introduction

The World Economic Forum (WEF) estimates that the world by 2040 compared to 2015, will
see the total number of cars and trucks to grow by two folds [1]. This when paired with the
statistics published by the U.S. Energy Information Administration annual energy report for
2021, estimates that the up to 25% of the world’s energy is spent in the transportation of
people and goods [2]. With over 65% of the energy being sourced directly from petroleum and
natural gas alone, environmental concerns are on the rise with the energy consumption trends

of the automobile.

U.S. energy consumption by sector U.S. energy consumption by fuel
AEO02021 Reference case AEO02021 Reference case
quadrillion British thermal units quadrillion British thermal units
45 2020 45 2020 petroleum
history | projections history | projections and other
40 40 liquids
35 35 //\—\/\f—’/ natural gas
30 industrial 30
25 25 other
transportation renewable
20 20 energy
15 15
coal
10 10 nuclear
5 ~ TV~ r——————— residential 5 hydro
1990 2000 2010 2020 2030 2040 2050 1990 2000 2010 2020 2030 2040 2050

Figure 1: Total energy consumption by end-use sector [2]

Production of Green Houses Gases (GHG) can be broken down into various forms of
pollutants including but not limited to CO & CO2 which are produced directly because of
burning hydrocarbons. Hydrocarbon (HC) emissions lead to environmental degradation in both
air and sea water. Symptoms include smog, rising sea levels and a reduction in ocean bio-
diversity due to rise in temperatures. Nitrogenous oxides (NOy) are formed when combustion
occurs at high enough temperatures and pressures. NO, compounds directly contribute in the

depletion of the ozone layer. Increase in urban expansion, and industrialization is only going to
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add to the contribution of GHGs as purchasing of locomotives that burn hydrocarbons increases,

if other possible propulsive modes are not explored.

U.5. energy-related carbon dioxide (CO2) emissions by sector {(1975-2019) -
million metric tons eia’
2,500

2,000 .
transportation

1,500 electric power

1.000 W industrial
fw FESidEI'Il‘i.EIl and
500 commercial

[]I T T Li T T T T T
1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 2: Global primary energy demand and energy-related CO2 emission, 1975-2019
[3]

Hybrid Electric Vehicles (HEV)s represent a steadily increasing portion of the Electric Vehicle
(EV) market. The demand for global annual passenger car and light-duty hybrid, or electric
vehicle sales is projected to be around 25% by the year 2030 [4]. In the pursuit of complete
transition to EVs. There lie significant infrastructural, design, and political challenges, that
warrant a focus on short term problem solving to not only expose the consumer market to the
pros and cons of EVs, but to reap the benefits of the already existing electrification technologies.
Especially in up and coming Asian, European, and African markets where adoption of full EVs is

not yet feasible.

While Battery Electric Vehicles (BEV)s lead the charge in global electric automobile shares.
Chinese, US, and European markets are all warming up to the idea of owning an electric vehicle
but may not be ready to boot for the cost and “range anxiety” owing to a rising trend in sales of

Plug-in Hybrid Electric Vehicles (PHEV)s and their less complex HEVs derivative.
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EVs: annual passenger-car and light-duty vehicle sales in major regions
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Figure 3: HEVs, PHEVs and EVs share consistent market growth [4]

Predominantly hybrid architectures utilize one or more electric motors, as the added mode of
propulsive torque, in addition to the commonly used Internal Combustion Engine (ICE) for the
purposes of hybridization. Arrangements of the hybridization i.e., the placement of the electric
motor around the ICE dictates the viability of various hybridization architectures for instance
series or parallel hybrids [5]. Moreover, the size of Energy Storage System (ESS) can dictate
whether a hybrid vehicle is a PHEV or an HEV. PHEVs allow for a further reduction in GHGs
emissions due to the ability to plug in to a charge network, allowing for sustained electric

driving only, contributing to an overall more efficient drivetrain.

At the consumer level, the addition of the external ESS allows for the possibility to
incorporate both fuel efficiency and drive quality-oriented features. These include limited range
fully electric driving for daily commutes; higher vehicle acceleration control, regenerative
braking, electric motor assist and possible reduction in size and power of the ICE [6].
Performance of the HEV hybridization is highly dependent on not only the efficiency of the
added powertrain components, but also around the understanding developed around the use
case of said architecture. For instance, the drive schedule in question. Increased utilization of
the ESS is desirable for an HEV or PHEV, however for the ICE and electric motor to work
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seamlessly a higher degree of control is needed over the propulsive units as well as the overall

utilization of energy on-board the vehicle to result in the most energy efficient of outcomes.

1.2 Background

A significant engineering challenge in any an HEV is the optimal control of mechanical and
electrical flow of power through the ICE, electric motor, and the various conversion/reduction
devices. Typically, the added degrees of freedom give way to flexibility in driving modes, better
utilization of the torque application between the ICE and electric motor. Resulting in reduction
of GHG emissions and increase of the overall fuel economy [7]. Preservation of drive quality in
terms of vehicle acceleration profile is another important aspect of the implemented torque

management scheme [8].

This necessitates devising of a Hybrid Supervisory Controller (HSC), that interfaces with all
vehicle level components’ external Electronic Control Unit (ECU)s; performs state estimation;
handles 1/0; performs computation of the vehicle’s torque strategy and executes on operating
points for the component. The vehicle torque strategy is essentially a regimented series of rules
that regulates the operation of the ICE and electric motor. This normally comprises of driver
inputs in the form of accelerator pedal, vehicle level measurements such as speed, battery State
of Charge (SOC) from the ESS, component operating conditions such as temperature, to output
operating points for the propulsive systems or simply turn them On/Off based on the driving

schedule.

The software development of University of Waterloo Alternative Fuel Team’s (UWAFT) HSC
follows a requirements-based software development process. This process is based on the
Model Based Design (MBD) design process used for the creation, testing, and verification of
software [9]. The requirements are developed at multiple levels and correspond to testing at
their levels depending on the nature of the requirement. These can be as high level as a Vehicle
Technical Specification (VTS) such 0-60 mph time or as low level as functional safety of
maximum electric motor speed in rads/s. Due to reusability of the implemented models, the V-
process is used such that the requirements can be frequently revised, and the development

process is made iterative, based on the learning outcomes from the test results.
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UWAFT is participating in the General Motors (GM) and U.S. Departments of Energy’s (DOE)
push to sustainable means of propulsions and advancement of electrification through the 4-year
long EcoCAR Mobility Challenge (EMC) program [10]. This Advanced Vehicle Technology
Competition (AVTC) is one of many in its 30+ years of history. Started in 2018 EMC is pushing
the frontiers of transport in electric utility by providing a competitive landscape for 12 North
American schools the support in hardware and training to produce more eco-friendly, SAE
Level 2 autonomous enabled customer centric vehicles for the Mobility As A Service (MAAS)
market. It is through the EMC'’s provided vehicle research platform, technical training of
software and hardware; and the industry level sponsorships that enabled the development of
the research content for this thesis. This year marks 25 years in the team'’s history of

developing advanced technologies for advanced vehicles.

UWAFT’s architecture of choice is the P4 Parallel through the road hybrid, shown in Figure 4.
The front axle is powered using a 148 kW 2.5L inline GM LCV inline 4 that is mated to a GM 9-
speed M3D transmission. The rear axle is driven by a 150 kW American Axle Manufacturing
(AAM) electric EDU4 electric motor that is powered by a Semikron SKAI2ZHV inverter and a
360V 5.5 kWh (total) 1.5 kWh (nominal) Hybrid Design Services (HDS) Li-lon 96S8P battery
pack.

HDS ESS
130 kW / ~2kWh

Architecture )

GM 2.5L Inline 4 (LCV)
(NA, 148 kW)

[AAM E-Axle EDU&]
150kW

Figure 4: Main Powertrain Components of UWAFT Blazer
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A P4 parallel through the road architecture connects the front axle and rear axle through the
road, allowing for independent operating modes, reducing overall integration complexity, and
allowing for a better front to rear dynamical vehicle weight distribution. The architecture

allows for three main operating modes. ICE only, Parallel and EV only modes.
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Figure 5: Operating Modes for the P4 parallel through road architecture

ICE only made is made possible by letting the stock GM ICE drive the front axle through the
stock transmission while the electric motor in the rear is electrically disconnected from the ESS
through opening of the internal pack contactors. This would result in no power produced or

recovered at the rear axle.

Parallel mode which is the primary operating mode for the HEV operates in an All-Wheel
Drive (AWD) fashion whereby the ICE powers the front axle, and the electric motor powers the
rear axle. The strategy in place is a basic pedal based look up table that is tuned for team
developed stop and go style drive cycle. The team is currently exploring development of a
deterministic rule based continuous Charge Sustaining (CS) mode that aims to ensure the
battery pack State of Charge (SOC) is maintained around a certain SOC level for a given drive
cycle. Since the ESS is 5.5 kWh total, the 33% operating mode results in a 1.5 kWh of usable
drive energy. This goal of the charge sustaining strategy is to maximize the usage of the usable

SOC window in a combined city and highway-based drive cycle. Lastly EV mode, this mode
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requires that the transmission is forced into neutral, and all torque is requested from the rear
axle. At the current state of integration, due to a lack of DC-DC, the team only runs the vehicle in

full hybrid or ICE only modes.

1.3 Objective

In the contemporary implementation of a Hybrid Supervisory Controller, focus is placed on
modelling and simulation of reducing the energy consumption, and consequently minimizing
the environmental impact of a Hybrid Electric Vehicle. In pursuit of this goal, there is generally a
minor emphasis placed on the importance of the simulation framework setup, that ultimately
supports the model testing activities. This can lead to a higher developer workflow inefficiency,
resulting in an increase in repetitive modelling tasks such as initialization, porting to end

hardware such as HIL and testing of requirements.

This primary objective of this thesis is to present the Model Based Design (MBD) framework
implemented in a MATLAB/Simulink environment for the deployment of the Hybrid
Supervisory Controller (HSC) of a P4 Parallel Hybrid Electric Vehicle. Functional and hardware
interaction layers of the HSC are expanded on through a custom Model-Configurator tool that
wraps the simulation model in a class object. Ultimately from a developer standpoint, this thesis
serves as a reference and knowledge transfer document exemplifying the strengths and costs
associated with development and maintenance of a highly organized framework for future

powertrain-oriented HSC development.

The secondary objective of this thesis is to present in detail the roles of the 8 main sub-
systems that form the Hybrid Supervisory Controller which incorporate masked library blocks
populated with data through the configurator tool. These include the driver block, I/0, fault
detection, vehicle state control, torque strategy, component level execution, plant model and
soft-ECU. Testing, and validation of the team retrofitted powertrain are discussed in the final
chapter as per the results collected at MATT CTC, with an in-depth retrospective of the team’s
established Vehicle Technical Specifications (VTS), and the future work needed to rectify

current system limitations.
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1.4 Thesis Outline

This thesis includes six chapters inclusive of this introduction. These chapters are categorized
in sub-sections that are outlined in accordance with the development process of the Hybrid
Supervisory Controller through use of Model Based Design, the results of which the developed

controller then are tested and validated against the prototype vehicle.
Chapter 1 - Introduction & Background

This chapter provides insight into the motivation behind the thesis, outlines and
objective and provides a brief overview of the stakeholders involved with the project. This

chapter also introduces the project vehicle at a high level.
Chapter 2 - Literature Review

Outlines state of the art, pre-existing research on two main topics related to the work

described in this thesis namely Hybrid Vehicle Architectures and Automotive Software.
Chapter 3 - Utilization of MBD in a Requirements Based Development Workflow

This chapter contributes uniquely to the expansion of MBD requirements-based
workflow incorporating Object Oriented Programming principles to ease test environment
switching. Additionally, the process surrounding development of requirements, and systems
safety is outlined to set up the stage for the implementation of the Hybrid Supervisory

Controller.
Chapter 4 - Hybrid Supervisory Controller

This chapter deep dives in the organization, and implementation of the HSC. The
controller, plant model, I/0 and utilization of the tester block is discussed that tie back the
workflow and strategic decision made to test and verify functional and safety requirements

mentioned in the chapter 3.
Chapter 5 - Model Validation Testing & Results

This chapter culminates validated results against the prototype vehicle of the
supervisory controller and plant SIL model. This section also outlines overall vehicle VTS

performance, and potential shortcomings.
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Chapter 6 - Conclusions

This chapter is a summary of achievements, and shortcomings that concluded as a result
of 2 years of pursuing the development process. This section also sheds lights on other research

areas that benefitted from this approach.
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Chapter 2

Literature Review

The advent of combining two types of propulsive units opens the possibility for a myriad of
architectural topologies. The topologies or arrangements are normally centered around the
placement of the electric motor with respect to the ICE. Depending on the size of the ESS,
packaging constraints, and appetite for complexity. The electric motor can be strategically
placed to allow for full EV mode; range extending; charging; and/or fully parallel drive modes
[11]. The foremost function of the hybrid architecture is to capitalize on fuel economy and
emissions, primarily through energy recuperation during deceleration events. The type of
architecture deployed on the vehicle delegates how energy is sourced. For instance, an only a
PO electric motor is able convert energy directly from the engine in series or series-parallel
powertrain. There exist however a band of hyper cars and motorsports examples that serve as
the epitome of energy management, technical prowess, and optimization to serve a singular

purpose which is to go fast around a racetrack [12].

The purpose of this section is outline on the complexities involved with various hybrid
architecture topologies available, the key role of automotive software in the implementation of
the hybrid supervisory controller, and an exploration of the main roles involved in the
development of the HSC. The significance of the work done in said domains will help contrast
the added organization, and workflow that UWAFT has incorporated in its implementation

against the state of the art.

2.1 Hybrid Architecture Topologies

On a scale of ICE only to BEV there lies a degree to which a vehicle can be hybridized. As
earlier mentioned, the architecture requirements stem from the placement of the electric motor
with respect to the ICE. The placement brings along with it software, mechanical and electrical
complexities that ultimately must be spec’d to serve the vehicle’s VTS, derived from studying

the end customer and project needs analysis.
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As the degree of electrification increases, dependance on the ICE diminishes. This diminishing

dependance on the continuous high power, and range available in an ICE only setup, is made

possible through addition of a large ESS and electric motor to retain the vehicle’s VTS

performance in terms of acceleration, range, fuel efficiency measured in miles per gallon (mpg)

as well as GHG emissions.

i ICE for ICE Architecture
ICE coupled ICE partially .
decoupled charging of completely Requirements
batteries only decoupled
0% |CEmmmmmHEY PHEV REEV BEV| 1005  c&ree of
Electrification
Mild Hybrid Strong Hybrid Range Extenqer
(Micro Hybrid) .
Series or Series, Parallel or Series Only Hv_br'd Class &_
Parallel Parallel-Series Split Possible Topologies

Figure 6: Degree of Electrification and Possible Architectural Topologies

To better understand state of the art of HEV technologies. We must look at the extensive
research and industry applications that have taken place to categorize the specific features that
are offered by the various HEV topologies. The topologies at their core can be categorized by the
role the electric motor plays around the ICE. PO is attached to the engine via belt/pulley; P1
spins directly with the engine through a shaft; P2 is post engine pre-transmission -
disconnected through clutch; and P3 incorporates is a pre-differential electric motor; whereas
in a P4 configuration the motor is integrated within the final rear drive ratio housing [13].

Take note however that the terms mild or strong are loose terms, and nod more to the size of
ESS/electric motor pair than have any strong bearings on the overall topology of the hybrid
vehicle. For instance, a mild hybrid can be a parallel with a small PO or P1 assisting the engine

or be a series, working through electric power on a different axle P3 or P4.
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Figure 7: PO, P1, P2, P3 and P4 Hybrid Topologies Motor Placement

The split between series or parallel configurations comes down to how the electrical or
mechanical power from the electric motor and ICE is delivered to the road. In any hybrid
vehicle when the load is driven purely by the electric machine, irrespective of where the power
(ESS or ICE) is sourced from, that is a series configuration. When the electric motor and ICE are
providing the power in tandem, irrespective of whether they share the same axle or not, that is

a parallel operation.

2.1.1 Series Hybrid

In a series operation, a generator spins directly with the engine, charging up the ESS such that
this electric power in turn drives the electric motor. Spinning an engine to drive one electric
motor, only to spin another electric motor may sound a bit ill-advised on paper, but this
topology opens the door for pure electric driving given a large enough battery pack. This is
especially true of the very early hybrid production vehicles such as the GM-EV-1 or the Fisker
Karma, where in effect these vehicles were Range Extending Electric Vehicles (REEV), that were
intended to be driven pure EV all the time. The addition of the ICE was intended to only extend
the range, and not provide power to the wheels ultimately. The choice for series architectures
provides key energy recuperation opportunities at RPMs where the engine is least efficient. [14]
The small window approximately between 2000 and 3500 RPM in Figure 8 shows the region
where the GM 2013 2.5 Ecotec LCV engine has the highest Brake Thermal Efficiency (BTE). This
25



region for instance of the % BTE, would for instance represent the speed-torque spectrum for

designing a suitable PO/P1 generator for series configuration.
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Figure 8: BTE Map shows higher efficiency regions [14]

2.1.1.1 Series Hybrid Pros and Cons

Since power from the fuel tank never meets the tarmac but only through the electric motor.
Series powertrains are relatively easier to package compared to their parallel or parallel series
split counterparts. The series or range extending ICE can be smaller in size; packaged more
compact and can even be used as a damper for reduced Noise Vibration and Harshness (NVH)
providing an improved drive quality experience [15]. Since an ICE is most efficient in a narrow
RPM band, elimination of torque transferring/converting devices such as clutches and
transmission, allow for purpose-built ICEs that are not expected to be high revving. Such is the
example of the low compression Atkinson-cycle adapted ICE in the case of Toyota Prius [16],

that can operate in both series and parallel modes.

The addition of an additional electric motor to drive the vehicle on top of the generator,
penalizes the vehicle architecture in terms of weight, and purchase price. The major weakness
of the series architecture is its predominant inefficiency that arises during sustained load

driving. The coupled losses that are incurred during the mechanical to electrical power
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conversion at the ICE/generator level, are much higher compared to driving the vehicle during

ICE only, or ironically, EV only.

Upsizing the ICE, generator, electric motor and ESS are possible work arounds for allowing
the vehicle to drive more in EV mode, however there are more gains to be had from upscaling
the architecture altogether to make the vehicle more capable, before it is categorically a BEV,

and this is where the parallel architecture comes in to play.

2.1.2 Parallel Hybrid

Parallel as the name suggests does not warrant routing of the mechanical power to electric
before meeting the tarmac. It instead allows for tandem power delivery from the ICE and the
electric motor. A parallel configuration is possible with all PO, P1, P2, P3 and P4 hybrid
configurations. Parallel systems where the electric motor is directly coupled to the engine (PO,
P1 or P2) are generally smaller as compared to when the electric motor is in either post
transmission P3 or integrated as part of rear axle P4. This trade-off is driven due to limitations

of peak torque that is seen on the engine crankshaft, and transmission.

2.1.2.1 Parallel Hybrid Pros and Cons

The parallel hybrid topology is a more efficient method of hybridization as it stands to benefit
from no conversion losses i.e., ICE-generator. Some of the features of the series topology such as
engine start/stop, is both possible and not, depending on the complexity of the topology. For
instance, a PO, P1 or P2 parallel can crank the engine, but a p3 or P4 parallel cannot. More often
than not Original Equipment Manufacturers (OEM)s develop parallel architectures due to the
inherent simplicity of the architecture i.e. use of a simple clutch, over generator integration
such as in the case of series. A similarly sized parallel configuration is generally more powerful
as the electric motor and ICE do not need to share the same axle and can be appropriately sized

larger.

Due to the larger role played by the ICE, a parallel hybrid can be conceptualized with a much
smaller ESS. The smaller ESS size allows the architecture to be less dependent on a grid for
charging, and makes it less complex since an additional onboard HV charger is not needed.
Whereas in a series the ICE is merely a range extender for the unplanned miles and requires the
additional plug-in capability to be considered a robust contender for all types of driving
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conditions, unless the architecture is parallel-series split, which bring us to the parallel-series
split architecture. Overall, the parallel architecture makes for a simpler, less expensive method
to obtain a better fuel economy, faster acceleration, and lesser overall vehicle level emissions

[17].

2.1.3 Parallel-Series Split

The parallel series split architecture combines best of both series and parallel architectures,
allowing for mechanical and electro-mechanical paths for torque transmission to the tarmac. In
this configuration, at least two electric motors are needed, series configuration warrants no
mechanical path from engine to tarmac, which in the parallel-series architecture is generally
supported by use of the two electric motors. This however is not always true such as in the case
of the Toyota Prius which operates a single motor through a planetary gearset allowing for

engine assist, battery charging and full EV driving depending on the driving situation.

2.1.3.1 Parallel-Series Split Hybrid Pros and Cons

Parallel-Series split architectures provide the best of both worlds, plug-in EV charging, energy
recuperation as well as motor assist. Due to the additional capability of this architecture to
displace most amount of fossil fuel through full EV operation - this architecture generally is the
most adopted setup for PHEVs. Due to the higher degree of electrification (larger ESS/motor),
and integration of 2 motors, or 1 motor + planetary gearset, the systems are generally more
expensive to develop. Simultaneously allowing for a more fuel efficient, lower emission and
much smoother ride quality product. This however comes at a higher up front purchase cost,

and directly impacts the external grid system’s ability to support charging loads.

2.2 Automotive Software

Evidence of the first piece of computer code on an automobile date back to 1957. Named
Electrojector, the transistorized electronic fuel injection (EFI) system was designed for the
American Motors Corporation’s 1957 Rambler Rebel by Bendix [18]. Despite its promises on
paper, the technology was only put on pre-production vehicles, of which none were sold as EFI
variants. It is at this point in the history of the automobile that a piece of computer code was

first used to track crank position to pulse fuel pre-ignition. Bosch would perfect their Jetronic
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Fuel Ignition System in ‘68, only seeding the basis of what would be a the most competitive

aspect of the automotive industry in 2021, automotive software [18].

Initial software in the automotive industry were local implementations written in languages
such as C; specific to obtaining functionality outcomes at the hardware level. Typically, these
nodes were run-on low-level software on custom developed ECUs that would interface with
dedicated sensors and actuators. In the late 80s the Controller Area Network (CAN) interface
was introduced as a means for ECUs to communicate with other ECUs, acting as distributed
localized work nodes [19]. This would allow for a bottom-up (build as you go) approach to ECU
development. ECUs would be added as need arose on the pre-existing or additional vehicle CAN
bus. It is estimated that a 2007 BMW 7 series implements some 270 functions, deployed over
65+ embedded platforms [20]. Today this number would exceed 100+ distinct embedded units
[21].

Due to the rise in the number of software domains on a vehicle, spanning safety - both on a
vehicle and user level; infotainment; and powertrain there existed a need for a development
process that was repeatable, at lower cost. In automotive software it is a common practice
during software development process to test software nodes tested against an analyzed set of
requirements to maintain lineage, diagnostic characteristics and tracking of system

improvements before the software would ever be tested on the end target vehicle platform.

2.2.1 Model Based Design

Model Based Design (MBD) is a math-based software development process, that makes it easier
to develop code inside a virtual prototyping environment. This method facilitates visually
understanding algorithm behavior before embedded code is written [22]. MathWorks MATLAB
and Simulink are industry wide used programming tools that place MBD at the center of
systems programming, more so in the case of Simulink than MATLAB [23]. The HSC sits at the
center of all vehicle controls system responsible for estimating vehicle/component(s) state,
monitoring of component thresholds, and deploying the torque strategy, among other things.
The development of HSC in an MBD environment, allows for testing of requirements to occur at

various levels such as SIL, HIL and VIL [24].

As the name suggests, in an MBD design process the model is at the center of the

development workflow. In a real-time system, such as in the case of a hybrid vehicle, a model
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can represent both the soft-ECU (software representation of a physical ECU), where the
embedded states are simulated by the HSC [25], as well the plant model that represents the
physics or data driven drivetrain components. The combined soft-ECU generally constitutes the
plant model and is calibrated and improved over time to gain a higher fidelity representation of

the physical system.

MBD systems need to incorporate the idiosyncrasies that stem from the vehicle architecture,
combining the requirements that encapsulate software feature interaction. There exists the
logical architecture which is based of decomposed component software interactions at the
functional level, which would constitute the structure and layout of the HSC, and the technical
architecture that defines the deployment of the basic software units, which constitutes the

functionality of the HSC. [20]
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Figure 9: Research and requirements both feed in to the design of the HSC [26]

Over the span of the development process, research and logical requirements are generated
at various levels of the V-diagram development process. These can range from high level
requirements such as customer requirements (VTS targets) to component level requirements
(safe torque request). The cascading nature of requirements in degree of fidelity, puts
requirement traceability at the center of the MBD based implementation. These requirements
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can be implemented for a variety of non-real time and real-time testing environments before

end hardware integration.

The use of simulation to verify controller requirements proves extremely useful when
replication of a certain state in a real environment is not desire-able or safe. For instance,
applying exceedingly high torque on the electric motor for estimating thermal system
limitations. Systems modelling based in first principles paired with an understanding of
physicality of the system, enables pre-calibration tuning of the SIL model for performance
estimation. Here the plant model plays a critical role in representing the physical system. For
instance, estimating lowest possible fan speed and coolant pump to maintain electric motor
operating temperature. Real life or VIL calibration plays a key role in improving the model, and
thus reducing the controller effort to obtain a key outcome. Calibration in turn can have its own
performance requirements such as the degree of accuracy required at various operating points

of a physically actuated system. [27]

In the automotive space MBD is extensively utilized to accommodate requirements testing at
the software, hardware, and vehicle levels. The results taken from the testing environments is
fed back to either improve the SIL robustness or go back to the drawing board with the
requirements itself. MBD facilities the incorporation of new code or requirements due to the
ability of the design to accommodate software, interface, and execution segregation [28]. This is
where the HSC plays a key role in the organization of all software code. HSC can be built as per
needs basis without much thought to organization, but as we will see in Chapter 4 of this theses,
the role of the HSC is extremely involved, and properly organizing the model-based design,

becomes a necessity.

2.2.2 Hybrid Supervisory Control (HSC)

In a conventional vehicle, a driver requested vehicle torque command is honored through the
ICE only. The ICE is a localized system that has stood the test of time, and the controls for which
are localized and well understood. From a torque distribution standpoint, the HSC arbitrates
with the up-stream controllers that can request torque such as an autonomous driving
controller or driver pedal, to downstream components such as the high voltage inverter or the
ICE ECU, to meet the acceleration request from the vehicle. The terms upstream and

downstream are used to describe the signal path from the creation of a request to component
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actuation. HSC decision making is feedback driven process, i.e. it is constantly monitoring
hundreds if not thousands of signals coming from various ECUs onboard the vehicle. Typically,
the HSC prototype controller has access to most if not all vehicle CAN communication networks

in a hybrid architecture. [29]

The bottom-up approach of adding functionality as needed, owes to the availability of the
diagnostics, safety, state, and health signals available on the CAN bus message frame that are
leveraged for development of safe system operation for the HEV. The signals constitute basic
feedback signals such as the ESS SOC reported by the Battery Management System (BMS), up to
more advanced - such as triggering of a fault state, in case a component is operating out of it’s
safe boundary limits. The HSC is responsible for at least the control of vehicle (component)
state estimation, housing of the plant model representation and execution of the torque strategy

for the hybrid propulsion systems.

2.2.3 Vehicle (Component) State Estimation

The ECUs onboard the propulsive units of the hybrid vehicle, are all under a high-level
management of the HSC. By design the HSC is developed to balance competing objectives e.g.,
fuel economy and driving performance. Monitoring system limitations such as protection of
components at their limits, ensuring a healthy state of charge for ESS, while also honoring the
driver inputs, often leads to the HSC operation to become exceedingly complex. It is the
responsibility of the HSC to determine the state of a component through the available
communication CAN, Digital or Analog network, to deem a control action safe to command. In
an BEV, the HSC at the very least is arbitrating and keeping track of system states of at least the
BMS, Body Control Module (BCM), the inverter, cooling fan, cooling pump and the motor
controller/inverter [30]. In a hybrid vehicle however, the interaction is even more complex
where the ICE ECU, the Transmission Control Unit (TCU), among other chassis, cabin

components are tracked for purposes of state estimation.

There exists a desire for producing a control architecture that interprets incoming signals and
groups their values to represent them as systems states. To implement systems that can
operate in various states - a system state estimator is developed that allows the HSC to 1) be in
the correct operating state and 2) protect the vehicle from harm through raising of flags. These

systems state generally are non-linear and approaching them analytically is near impossible but
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are required to drive a large amount of decision making. It is for this reason they are
implemented in the form of finite state machines. [31] These finite state machines take in the
messages from the vehicle CAN bus for allowing/disallowing for certain HSC control actions.
From a calibration/testing point of view, the state machines when implemented in an MBD
structure allows for all system states to take form of requirements of the form if x do y -
allowing for implementation of the state estimation layer in the form of finite state machines.
The implementation is more approachable from a viewing, maintenance and troubleshooting

perspective.

The interacting ECUs on-board the component being controlled report among other things to
the HSC the physical parameters such as power, temperature, voltage but also their system
states such as ready, enable, fault, or off from and to each other. For instance, if the ESS HV DC
Link bus is not energized, the internal ECU of the inverter is going to be in a ready, but not
enabled state, thus signaling to the HSC, that honoring a torque request is not possible.
Following is an example of an inverter state machine implementation, publicly available to view

from Cascadia Motion inverter developer, that illustrates the ECU side state machine. [32]

VSM_State Name

Start State

Pre-charge sequence initial state — Turn on the pre-charge relay
Pre-charge sequence active state — Waiting for capacitor to finish charging.

Pre-charge sequence finish state — Completes the final checks before
proceeding to Wait State.

Wait State — waiting for activation of forward or reverse.

Ready State — Activates the inverter state machine to begin energizing the
motor.

Motor Running State — Normal motor running

Fault State — The controller has faulted

Shutdown in Process — In key switch mode 1, user has turned key switch to
off position.

Recycle Power State — This indicates that the power to the controller needs
to be recycled after EEPROM Programming is complete.

~No| o (B w [N oll

—
~
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Figure 10: ECU State Machines track OEM specified ECU states [32]

Pre-calibration tuning and developing an understanding of the physical makeover of
components is an important aspect of state estimation. Fair amount of research has been
conducted in implementing state estimation controllers, that are able to predict systems states

that are not discretely reported as part of the messages on CAN signals [33]. This approach for
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instance is widely used in safety critical active autonomous driving systems where the raw data
from a perception stack may not always be operating in an ideal environment, such in

precipitation or fog.

2.2.4 Plant Model Representation

The plant model represents the physicality of the system the HSC would interface with in a
real time environment. The plant model is generally comprised of mathematical (analytical)
models such as in the case of longitudinal body dynamics, as well as behavioral models whose
parameters are populated through look up tables, that are made available by component
suppliers or that are developed as part of extensive system characterization, such as in the form
of soft-ECUs. The incorporation of plant model within the HSC can be broken in to two different

approaches.

The backwards modelling approach, here the environment is pre-loaded with information
such as vehicle weight, road gradient; and other vehicle characteristics such that the required
tractive force at the wheel is calculated first. Then this force is equated as wheel torque, which
is then propagated backwards through the drivetrain components and then to the engine. This
approach is non-causal, as the static pre-determined efficiency maps are used to determine
operating points for the powertrain components. This approach is also “quasi -static”, since the
speed demand is not propagated but ‘applied’ via the drive cycle through the drivetrain.
Meaning the physical limits, unless captured within the models cannot be explored, and as such

this approach is not scale-able for a Hardware in Loop bench setup. [34]

Speed Force Torque Torgue
Driving | SETPOINT | Vehicle Vehicle Drivetrain ] Engine
Cycle Dynamics Speed
Vehicle Wheel Speed
Speed Speed

Fuel
Consumption

Figure 11: Backwards Modelling Approach [34]

The alternate and more commonly utilized modelling scheme is known as the forwards
modelling approach. This approach uses a driver model, modelled as a PI or in some cases the

Charles MacAdam Driver model [35] such as in the case of UWAFT, to emulate real world driver
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input to system for following the speed-time drive cycle. Here the acceleration target is
determined and is converted directly to a torque request that is then propagated through the
engine, transmission, other transferring/reduction components - ultimately resulting in
commanded torque at the wheels. Due to the closed loop nature of this modelling approach, the
resulting vehicle speed post the plant, is fed back into the driver model, compared, and

consequently nets in a higher or lower acceleration target.

The natural progression of signals is a much closer representation of real-life vehicle driving
and is thus a much better suited environment for controls development and testing, thanks to

its scalability in a HIL test environment. [36]

Vehicle
Speed
Speed
: Torque
Driving | setpoint Driver | Torque | . Torque 9 Farce Vehicl
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Consumption

Figure 12: Forward Modelling Approach [34]

2.2.5 Hybrid Torque Strategy

At the very heart of the HSC, lies the energy management of the hybrid drivetrain. In a
conventional vehicle, the acceleration/deceleration requests from the driver are directly
translated to torque commands from the ICE. Hybrid electric vehicles are built different,
accommodating one or more electric motors powered through an ESS. Due to the complexity
involved with real time power delivery, as well as management of the battery SOC - naturally
inheriting complexity from the energy management problem. An exhaustive amount of research
and approaches have been developed in devising of a hybrid torque strategy. These approaches
place emphasis on different aspects of hybrid energy management strategy such as fault
detection for validation and testing [37], monitoring and control of battery degradation [38],
purely optimality driven solution development for a cost function [39] and real time energy

deployment [40] among many others.
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However, the main objective of an energy management system is to minimize the overall
energy consumption needed over defined drive cycle, while also satisfying the user’s torque
always demands. Energy management strategies can be split in to two main categories -
optimal [7] [39] and rule based [41] [42]. Rule based control strategies comprise of
deterministic and fuzzy logic rule-based methods, whereas optimal strategies utilize methods to

globally optimize for the determination of a control strategy.

2.2.5.1 Rule Based Energy Management

Rule based energy management strategies are based on pre-defined understanding of system
inefficiencies and are generally aimed at deploying heuristics to avoid operating in those
scenarios as much as possible. These heuristics or rules are devised from the understanding
developed around ICE fuel consumption, electric motor/ ESS efficiency maps, and human
experiences. This allows definition of predefined points or threshold for when components will
be used. These are generally implemented in the form of look up tables or in state machine style

format.

Implementations of a rule-based energy management strategy includes fuzzy logic controllers,
as well as deterministic controllers that utilize state machines. Both methods are equally robust
however, computational complexity is higher with a fuzzy logic implementation. [43]
Deterministic rule-based controllers include on/off look-up or finite state machine style control
strategies. The state machine-based control transitions occur between modes based to
primarily facilitate driver demanded torque while taking operating conditions and sub-system

faults in to account. [44]

2.2.5.2 Optimization-Based Methods

There are a few different methods that stem from the optimal control theory, that work around
the optimality criterion, aimed at finding a control law. While having a perfect understanding of
the mathematical models of the system, and knowledge of the control horizon enables devising
optimal control. In a real time, environment however, where the future control horizon is
unknown, the solution is suboptimal. The works of G. Rizzoni et al. [45] [46] discuss various
optimal energy minimization methods including Dynamic Programming (DP) and Equivalent

Consumption Minimization Strategy (ECMS).
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DP utilizes a numerical methods-based approach for solving multistage decision-making
problems. The approach can produce optimal results of any complexity level, granted
computational capabilities. [34] DP is a backwards-looking minimization technique that is only
simulation implementable. This is dictated since the algorithm requires prior knowledge of the
driving conditions such as the drive cycle, grade, driver model, etc. The entirety of the problem
including the model, control and state variables are computed for minimization, at each time
step for the drive cycle. DP can be used to minimize for multiple objectives such as energy
consumption, fuel flow and emissions. The resulting calibration can be in-turn used to define

heuristics, that form a rule-based controller for a practical real time implementation.

This is also true for the ECMS based approach which offers a real-time implementable
optimization instantaneously taking in to account the energy consumption, while maintaining
battery SOC around a reference point. The intuition behind equivalent fuel consumption stems
from the fact that in a traditional HEV, the power within the drivetrain is sourced from the
vehicle’s fuel tank. This includes both the chemical energy sources from the fuel tank as well as
the equivalent energy sourced in the form of electrical energy from the ESS. A cost is then
assigned to the electrical energy, which allows saving (fuel), as part of the objective function.
The approach enables instantaneous minimization to be performed at each time instant of the

drive cycle, without prior knowledge of the drive cycle in its entirety.
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Chapter 3
Utilization of MBD in a Requirements Based

Development Workflow

The goal of chapter 3 is to expand on UWAFT’s implementation of the Model Based Design
framework. Here we start off by describing the broader strokes of the integration state of the
Hybrid P4 UWAFT Blazer. Showcasing at a higher level, the multiple ECUs present within the
vehicle’s CAN architecture that the HSC interacts with. Then we will take an in-depth look at the
workflow, and framework developed for UWAFT’s requirements-based development. This
section is also used to describe the role and organization of UWAFT’s Requirements Trace-
ability Matrix (RTM), in increasing cross-team transparency for both the HSC development for

the PCM sub-team, but also from the viewpoint of other non-software sub-teams.

3.1 Hybrid Platform Conversion

The project 2019 Chevrolet Blazer RS from here on out referred to as the UWAFT Blazer,
started out life as an AWD 3.6 L V6 vehicle. This vehicle from factory comes with the following
VTS. [47]

Table 1: Stock 3.6L V6 Chevrolet Blazer VTS [47]

Vehicle Technical Specification Value
Layout Front Engine, AWD, 5 Door SUV
Engine / Transmission 3.6 LV6 LGX / 9T50 9-Speed
Curb weight (Front%/Rear%) 1985 KG (59%/41%)
0-60 MPH 6.1 sec
60-0 MPH 126 ft
Fuel Economy Combined 21 mpg

38



3.1.1 Market Definition - Mobility As A Service (MAAS)

The integration level modifications of the vehicle platform were driven in part by the team’s
research on customer discovery. Customer discovery was key in devising vehicle level
requirements or VTS, for dictation of the research vehicle’s performance targets. Car sharing is
a sub-set of the MAAS market. Typically, the car sharing service is concentrated in denser
populated urban areas, where a larger and more accessible customer base can be served. For
the definition of the vehicle technical specifications, UWAFT ran an extensive survey with over
162 respondents with age groups ranging from 18 to 45 year(s). The goal of this survey was not
only to develop insights into the sizing and layout of propulsive components that would be
needed for achieving the VTS, but also the vehicle features that are to be achieved in the final

version of the prototype vehicle in the last year of the competition.

Through the target market analysis, it was deduced that the vehicle be a traditional hybrid
vehicle, with like stock cargo space, improved fuel economy/acceleration and have Connected
and Automated Vehicle (CAV) safety features. While the CAV oriented features were developed
alongside the conversion of the stock vehicle to hybrid, those active safety aspects of the vehicle
however are only touched in this thesis to the extent in which they overlap with the focus of the
development of the HSC. Some of the propulsion-oriented performance specs of the modified

UWAFT Blazer include the following.

Table 2: UWAFT Vehicle Technical Specifications

Specifications Units UWAFT VTS
Layout N/A | P4 Parallel Through Road
Engine / Transmission ft 2.5L14 NA LCV / M3D GF9
Curb weight kg 2100
0-60 MPH s 5.5
60-0 MPH ft 158.2
Fuel Economy Combined | mpg 30.83 mpg

Note that weight distribution of the vehicle at the time of study was not determined, however
the final weight change with the addition of the hybrid components such as motor, ESS and

inverter were estimated and are discussed in the next section of this work.
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3.1.2 Vehicle Modification Summary

Over the years 2019 to 2021 the stock GM Blazer underwent a fair degree of modifications.
These modifications include addition of controllers, propulsive EV drivetrain, an energy storage
system, and a thermal system for cooling of the EV components. The main propulsion
components include the HDS 1.5 kWh Li-Ion capacity battery pack, Semikron SKAIZHV Inverter,
and an AAM EDU4 motor. Table 2 summarize the technical specifications for the added

components, and their location relative to the wheels in the vehicle.

Table 3: HEV Components

Component Performance Specifications
Peak discharge power: 121 kW
Continuous discharge: ~28 kW
Total pack capacity: 5.5 kWh
Pack nominal Voltage: 346V
Peak power: 150 kW
AAM EDU4 E-Axle Motor Final drive ratio: 9.04:1,
Peak torque: 346 Nm
HV DC Link Voltage: 50-400V
Peak Power: 150 kVA

HDS Custom ESS

Semikron SKAI2HV Inverter

EMP WP32 Brushless CAN
enabled - Electric Water | Operating voltage: 12 and 24 Volts
Pump

Through the integration process phase the necessary mounts, drive shafts, cooling, compute
units, safety hardware, active safety sensors and thermal systems were integrated to develop
the UWAFT P4 parallel hybrid aimed at the MAAS market. This conversion saw the vehicle’s
overall mass increase by 210 kg, with a 6% shift towards rear bias. This fell within UWAFT’s
earlier described curb mass goals in Table 2. The addition of mass towards the rear can be

attributed to the addition of the motor on the rear axle, as well as the ESS.

Before the vehicle was integrated a series of regulations had to be abided by and followed to
ensure the modified vehicle met the Non-Year Specific Rules (NYSR). These rules include
restrictions around various aspects of the vehicle design. Some of the pertinent rules include
addition of CAN enabled communication systems that interfaced with the stock vehicle body
and driveline components, safety High Voltage Interlock Loop (HVIL). E-Stops and 12V

Disconnect Switches that allow safe and immediate powering down of the ESS High Voltage
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(HV) contactors and HSC controller. This required integration of a fair degree of electrical

components and wiring, as shown below in Figure 13 electric systems integration.

The purpose of showing this image, is to highlight the brevity of ECUs, 12V and analog/digital
components that all communicate with the HSC one way or another for the safe operation of the
HEV. Note that the HSC, the CAV compute device, and the relay control module are all situated
in the rear of the car. This allowed for easier debugging of harnesses and accessing the HSC, for

software flashing as the trunk of the UWAFT Blazer SUV is a relatively large and accessible

space.
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Figure 13: Vehicle Electrical Integration

3.1.3 ECU Layout & Interactions

The HSC interacts with both stock and team added vehicle components. The HSC is developed
on the EMC sponsored dSPACE DS1401/1513 MicroAutoBox (MABXx) II that serves as the
central embedded prototype controller for software deployment. In total there are 5 major CAN

buses on the vehicle. Three of which are stock to the vehicle - two of which are high speed (500

kbps) and one of which is low speed (<33.333 kbps) CAN. The two UWAFT CAN buses are both
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high speeds. These are physically split due to both being responsible for different things. The
CAV HS bus carries vehicle active safety/autonomy signals only that are processed and sent by
the Intel Tank CAV compute unit. While the Prop HS bus interacts with the Relay Control
Module (RCM) for component power toggling through the Relay Control Module (RCM), the
Battery Management System (BMS) and the inverter also referred to as the Motor Control Unit
(MCU). The UWAFT Blazer’s propulsive units are housed on separate axles. The placement of
the CAN buses is shown in Figure 14 which aims to highlight the segregation between stock
system CAN and UWAFT added CAN. Note that the GM CAN buses are clumped and shown as
one CAN bus.
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Figure 14: High level CAN only serial network diagram

This CAN segregation utilizes all 5 CAN bus ports on the MABx. Another important thing to note
is that the MABx also interfaces with the components through Dig [/O - such as in the case of
powering LEDs, and detecting safety switch status, as well as through voltage sensing on analog
ports such as in the case of detecting keep alive circuits such as the HVIL safety loop that is

sourced from the BMS and runs through all HV components.
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3.2 Requirements Based Development Workflow

3.2.1 V-Model Development Process

UWAFT'’s software development process utilizes the V-model based development process
extensively. This process discretizes the code development process to facilitate testing of
developed requirements at multiple levels. Here progression of software development and
testing can be tracked from conception to realization. The V-model of development allows
developers, and requirements generators to incorporate feedback within the software
development workflow, encouraging refinement of requirements and testing schemes through

collaboration between project leads, and component level experts.

On the left side of the V-model, requirements are generated, and code is written to define
system functionality. In the case of UWAFT, the highest level of requirement setting begins at
the customer discovery level, where the Vehicle Technical Specification (VTS) are broken down
into control system level requirements. For instance, in the case of UWAFT’s P4 HEV, the need
to have an HSC is a system level control requirement - this can be further broken down into
smaller functionality level requirements features required for functionality of the HSC, for
instance calculation of component torque limit-based on component temperature and battery
SOC. As we traverse up the right-hand edge on the V-model, the testing moves from SIL to HIL
to VIL - reflecting the target hardware and plant model validation at higher fidelity.
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UWAFT Software Development Process
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Figure 15: UWAFT V-Diagram Development Process for PCM sub-team

3.2.2 Requirements Development & Maintenance

Development of requirements is the first step in code development process, and serves as an
important tool for outlining, and tracking of the development progress. There are two main
types of requirements generated for the HSC development. System safety requirements and
functional requirements. Systems safety requirements are generated through application of
system safety analysis on the causal effects, interactions, and modes of operation a component
or sub-system in a certain state. For instance, forced disengagement of team developed
Adaptive Cruise Control (ACC) upon pressing of the brake pedal. Feature-based requirements
are developed to drive performance and functionality-oriented aspects of the HSC. For instance,
ensuring the actual battery SOC never dips below 30% for the duration of a drive cycle to
prevent long term cell degradation. Interestingly feature based requirements often overlap with
system safety requirements for instance protecting Li-lon degradation from severe low and
high SOC charging/discharging events. The generated requirements are documented, in the
Requirements Trace-ability Matrix (RTM), which is a spreadsheet of requirements, categorized

and organized based on the sub-team involved, and status of incorporation.
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3.2.3 Incorporating Systems Safety into Requirements Development

Systems safety requirements are tracked and kept up to date in the centrally utilized, previously
mentioned RTM. Figure 16 describes the system safety requirements development process that
results in a robust system. Requirements are generated via study of competition safety
requirements, team performance requirements and needs of the individual sub-systems. The
task of reviewing, and developing systems based on these requirements lies with the
developmental sub-teams. At least one member from each sub-team forms the Systems Safety
Analysis Working Group - which is led by the Systems Safety Lead Engineer (SSLE). This
ensures that the safety working group has up to date information about latest system level

developments, and the RTM is updated based on the approval and review of the SSLE.

The role of the safety group is to work with developers on the individual sub-teams for
development of requirements through careful study of component/sub-systems and the
confidential EMC Non-Year Specific Rules (NYSR) to prioritize safe system operation. Once the
requirement is documented, the sub-teams develop the sub-system/code and performs testing,
the results of which are updated within the RTM. Upon verification and validation, a team lead

initials the tested requirements, and the event is dated.
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Figure 16: Individual Sub-Teams and Systems Safety Working Group co-develop

Functional and Safety Requirements

3.2.4 Unintended Vehicle Acceleration System Level Requirement

EMC places an emphasis on team’s ability to ensure safe vehicle operation during testing events.
One of the key safety criteria for on-track testing is for teams to prove through analysis and
system design that the vehicle is never able to accelerate without a user or an active safety-
controlled request. Emphasis is placed on using the Accelerator Pedal Position (APP) and Brake
Pedal Position (BPP) signals as the only means to request positive or negative acceleration.

These signals are gate-wayed by the HSC to ensure it is the sole requester for all on-board ECUs.
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An additional requirement is to ensure the EV systems are de-energized during a key off or E-

Stop event.

Further for team added EV To ensure mitigation strategies are in place for such an event. Sub-
systems are analyzed for unsafe actions using the Systems Theoretic Process Analysis (STPA).
Single Element Fault Analysis (SEFA) as well as Design Failure Mode and Effect Analysis
(DFMEA) are various types of systems safety analyses used for different sub-systems
interactions. The team utilized SEFA extensively, which is a spreadsheet inspired take on the on
the Fault Tree Analysis (FTA). [48] This analysis is conducted through deductive thinking. The
idea behind the analysis is to identify any unsafe resulting states, because of an element
(component) failure, and the diagnostic/mitigation actions that must be in place to avoid an
unintended acceleration event. In the example below, shown is the analysis carried for one
component. In case of a failure of the HSC, all team added EV components are at a risk of being
impacted, as well as systems level interaction control with GM stock systems. This requires that
no other components can request torque from the EV components, and risk of an energized ESS,
is mitigated through the UWAFT-supplier agreed upon resulting state, which is to open
contactors. This is possible as the ESS requires a voltage on the Dig [/0 discharge_enable pin.
This for instance is documented within the ALGO-BAT-9 within the RTM. The unintended
acceleration analysis is applied to all ECUs that can either request (e.g., Intel Tank), command

(e.g., HSC) or actuate (e.g., inverter) torque production.

Documentation 1D in the Requirements Trace-ability Matrix

component analyzed  affected components Impact, Resulting State, Hazard and Diagnostic Method
) I I

S A . A \
[ |

Impact of Immediate
Element Fault | Resulting State
(Impact prior to (State of the Potential Safety . . Mitigation System State
& | any remedial or | system prior to Hazard(s) Diagnastic Method(s) Action(s) | After Mitigation | 1 11D
mitigation any remedial or
| | | actions) mitigation actions)
Normal 1 NORMAL

Item "Operating
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Figure 17: Sample Singular row of the Single Element Fault Analysis shows HSC Operating

Scenario, Diagnostics Measure and resulting Safety IDs for the RTM
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SEFA is applicable for development of safety requirements outside of software, such as in the
development of the electrical or thermal systems in the vehicle. That appropriate diagnostics
exist and resulting system states are understood, to mitigate from any unsafe system ripple
effects. An example of this for instance is that, if two EV components share the same cooling
loop such as in the case of UWAFT’s inverter and motor. Then the peak temperature limit
requirement of the cooling loop is dictated by the component with the lower of the upper limits
of the two components. And as such SEFA must consider that upon failure of the coolant pump
or overheating - how to go about determining safe thermal limits. The diagnosis of this is made
possible through the understanding of the PCM team of the requirements laid out by the

integration performed by the Propulsion Systems Integration (PSI) sub-team.

3.2.5 Requirements Trace-ability Matrix

The Requirements Trace-ability Matrix houses all requirements that are generated as part of
the V-model development process. These include, the earlier described systems safety, as well
as functional requirements developed by the sub-teams. The naming notation within the RTM,
takes the form of a hyphenated compound “ABCD-EFG-#. ##”. Here ‘ABCD’ represents system
level types, such as Mech or Algo. ‘EFG’ identifies the component/subsystem for instance Mot or
Eng, and the last third of the notation, comprises purely of digits. The digits denote IDs that add
hierarchy between a functional requirement from the sub-system level /component level
requirement. This allows sub-teams to easily differentiate between the type of interaction with
the sub-system/component. This is important since a sub-system may have requirements
outside of the software workflow, and those are important. Appendix A - RTM Types &
Identifiers shows the RTM Descriptor Types and Sub-system Identifier’s categories. In total
around ~500 sub-system level requirements are developed for the project thus far, of which

~300 are software oriented, of which ~130 are powertrain HSC oriented.

The RTM remains at the center of the development process for the entire vehicle, as it serves as
a singular document that all sub-teams collaborate and update frequently. Since the RTM is not
limited to just software requirements, all sub-teams use it to determine the function level
expectation of other sub-teams interacting with a certain sub-system. This enables faster
identification of dependencies within the requirements development path, across the entirety

of the team. For instance, a component like the EDU4 motor must be physically installed ‘ELEC-
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MOT-1.1’, INTG-MOT-1’ for the PCM team to verify feasibility of regenerative braking ‘ALGO-
MOT-1, 1.1, 1.2’ as shown in Figure 18.

. Sub-System/Component
Descriptor e
! Identification
. . Brl?f Name of Safety Safety Priority
ABCD-EFG-#.## Functional . Levels
4 2 % . Analysis Spreadsheet
/ Requirement e.g., red.
v v v
Full ID Type Component ID Requirement Origin Link Status Safety Priority Sub-Team(s)
Level Accountable
1 - - x| [ - . - . .
8 |ALGO-MOT-1 ALGO MOT 1 Regen Braking STPA1 Implemented Red Controls
ELEC-MOT-1 ELEC MOT 1 Inverter HV connections shall NYSR-E Implemented Red Electrical
be designed according to
24 internal High Voltage Safety
INTG-MOT-1 INTG MOT 1 Inverter HV connections shall ~ NYSR-E Implemented Red Mechanical
be verified for adherence to
schematic and for meeting
34 internal safety standards
ALGO-MOT-1.1  |ALGO MOT 1.1 Regen braking shall only be STPA1 Implemented Red Controls
active during braking into MIL
55 conditions (>2% on the brake
ALGO-MOT-1.2  |ALGO MOT 1.2 HSC shall ensure regen is zero  STPA1 Implemented Red Controls
when battery/motor is into MIL
disconnected or offline

Figure 18: Requirement Transparency & Sub-team Dependency identified through an ID

and Sub-team categorization setup
3.3 Expanding MBD for faster environment switching

3.3.1 High Level App Setup

At the highest level lies the project (.prj) file. This launches the MATLAB application which
contains information about the included files/description and helps start/end the UWAFT HSC
project. The data from the component suppliers are stored in spreadsheet (.csv) and (.mat)
format files that are loaded directly into the workspace using getter style methods that are run
as part of the model MATLAB scripts (.m). The plant model and controller constants are loaded
into the Simulink environment and applied to the sub-systems via the masked library block
setup. Simulink model properties such drive cycle, environment, grade, and tStop which is the
length for which to execute the simulation are loaded as separate variables in the workspace

accessible by the Simulink simulation model.

49



3.3.2 Model Configurator - MATLAB-Simulink task automation

Over the course of the development of the HSC, time was spent exploring methods to speed up
model interaction tasks. The model configurator tool is developed for speeding certain
simulation tasks and ensuring consistent build environments. The MATLAB scripting language
and model is utilized to encapsulate data for component models, that are represented as
masked library component blocks, described in more detail in the next section. The objects live
in the MATLAB workspace that are accessed by the masked library blocks allowing
simplification of component data and controller parameters initialization. For more procedural
steps such as setting up of real-time/non-real time test environments, and I/0 interactions, the
MATLAB scripting language is leveraged and its powerful handle on properties within a
Simulink environment are co-utilized. This approach significantly reduces the setup time
needed for transitioning between non-real-time and real-time testing and enables a developer

to replicate the simulation environment faster.

The Object-Oriented class structure allows UWAFT to define methods, and properties for the
UWAFT simulation model, facilitating functional interaction with the simulation model as
included in Appendix B - Model Configurator Script. This enables the team to configure testing
environments for HIL, and MABx, provided the limitations of the MATLAB-dSPACE API exposed
to developer. MathWorks provides comprehensive documentation on how to go about
accessing Simulink model environment elements, without requiring the developer to open the
Simulink model manually. Due to the object-oriented nature of the project setup, this setup is

referred to internally as the Model Object.

The class contains three main types of methods as shows under the Class banner in Figure 19.
Firstly, the object constructor that loads the model system, secondly the SIL simulation
interaction methods (e.g., running the model) and thirdly the configuration methods that are
used to initialize simulation data into the workspace, as well as allowing the simulation model
variant to be pre-configured for target HIL hardware or MABx flashing. The drive cycle property
of the model object is modified through the ‘loadHighway()’ method, which in this case would
load the UDDS Highway Drive cycle. Similarly the initialization ‘init()’ method contains other
getter style methods, that fetch the component model data, controller parameters and

simulation time in order to prepare the simulation to be run. Appendix C- Model Based Design
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Framework Overview provides a framework level illustration and interactions of the model

configurator in the development process utilized by UWAFT.

Automated Model Configurator
MATLAB

Class
ModelObj > handle

Properties
modelName //Name of the simulink file

modelData //Model parameters needed S]MULINK
EMC_DriveCycle //Model drive cycle
tStop //Model termination time
simOut //Simulation output

Simulation Object

Workspace

Interactions with data from ModelObj Class:

Simulation Model
Drive Cycle

Component Model Data
Controller Parameters
Simulation Time

Masked Library Blocks Data Population
Inherited Controller Parameters

Signal and Path for SIL, HIL & VIL I/0
Inherited Drive Cycle

Inherited Simulation Time

Methods

//Class Constructor
function obj = modelObj(modelName, dataLoad) {...}

//SIL - Running the Model
function self = openModel(self) {...}
function self = runModel(self) {...}

//Configuring the Model - different drive cycle OR HIL,
VIL

function self = config(self) {...}

function fie adData2Workspace(self) {...}
function self = init (self, model_name) {...}

function self = loadHighway(self) {...

Figure 19: Automated Model Configurator Tool Setup through use of Object-Oriented

Class

During year 1 of EMC, a conscious effort was made to in developing and setting up the
masked library blocks [49] for component models, controllers, and the driver block among
other subsystems within the modelling repository. The motivation behind this was twofold,
firstly during year 1 of EMC the team needed a method whereby the component parameter data
could be easily swapped for powertrain architecture selection studies and secondly, once the
components were finalized the team would work with the component suppliers to obtain data
surrounding various aspects of the component, allowing for retention of underlying physical
model representation. Sub-systems that would operate using parameters, constants, efficiency
maps and/or look up tables were all converted to masked sub-systems. This made the code
base cleaner, as once the sub-system functionality was deemed satisfactory - the data within a
sub-system could be lumped inside a single library workspace struct. The example shown in
Figure 20 below is the EDU4 motor where the ‘loadData2Workspace()’ method from the Model
Object class would call the getter style methods, to load the motor data in to the MATLAB

workspace. In this case a pre-existing MathWorks motor model is re-assigned torque-speed,
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and efficiency datas within the variable ‘mot’. This of course makes it significantly easier to
swap models for a component that shares similar physics in a prototype vehicle development

environment.

MATLAB SIMULINK

MappedMotor

jnot = getMotorData _EDU4 () Subsystem (link) e
strt = getLvStarterData(): TraCed  _ BaltCuml ) spped electric motor model

Wraps the Mapped Motor model from MATLAB's powertrain
blockset.

MotSpd MotTrq| Parameters

patt = getBatteryHDSData_Samsung ()’ =
Parameterized by: Tabulated torque-speed envelope
Parameterize losses by: Tabulated efficiency data

whl = getWheelDatal(); Busvlt = Info.
Local Parameters: | mot i|

Cancel Help

trn.s = .q.r::T:ansData_5T5\’J_M3D_L-’.‘V().'
Model object scripts used to Component models are
populate parameters for masked library blocks
each component

Figure 20: Populating parameters in a Simulink Masked Library Sub-system from

MATLAB

MathWorks ‘sim’ command and ‘getparam()’ function are extensively used to manipulate the
simulation model properties without requiring the developer to explicitly launch the simulation
app. This is a unique but rarely used functionality available in the MATLAB-Simulink
environment, that UWAFT heavily leveraged to automate set up of the model /0 for flashing
code on MABx or for real-time testing in the HIL environment. I/0 which is discussed in more
detail in section 4.1.4 Hardware I/0 setup of this work, utilizes the ‘from’ and ‘goto’ tags as sub-
system input and output. These are accessible by name for removal and/or modification, using
the ‘getparam()’ MATLAB function. This among other commands such as the RTI dSPACE
interactions [50] are programmed within the ‘config()’ method as part of speeding up of
environment setup. For example, to launch the HIL testing environment, a developer would
simply pass the string HIL in to the ‘config()’ method. This would clean up the current working

model, call the dSPACE RTI library, comment out the controller block to prepare for outputting
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of the .sdf, file and make the necessary 1/0 changes for plant outputs to be redirected the HIL
hardware. Once completed a new Simulink model variant would be loaded, which is pre-
configured for HIL flashing. Shown in Figure 21. below is representation of the 1/0 blocks in the
Simulink model for SIL, versus when setup for HIL. Lines 88 to 224 in Appendix B - Model

Configurator Script shows the code written to achieve this.

Automated Switching of I/O
through UWAFT Model Object
“model.config (“HIL")” command

SIL » HIL

Figure 21: Switching of SIL to HIL I/0 - automated for Target Hardware

3.3.3 Collaboration Through Atlassian Products & Version Control

The development of the UWAFT HSC modelling repository over the last 3 years of EMC has been
a breadth heavy software endeavor. Multiple developers and component experts have worked
collaboratively to develop and test a variety of software feature sets. From a project
management perspective this poses a significant risk, warranting a need to ensure development
remains organized, appropriate version control/approval mechanism are in place, and much
importantly through the COVID-19 pandemic, that their remain transparency in workload
assignment. Outside of purely the development environment UWAFT utilized Atlassian Jira [51]

for developer ticket assigning and git [52] for version control.
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Figure 22: Feature Development, Testing and Merging Workflow

As described in earlier section requirements that are generated from the RTM need to be
developed, tested, and merged in the master copy of the development repository. To facilitate
this UWAFT’s development process is supported by a Jira for task creation, assigning and
linking with documentation. Whereas git is used as the main tool for version control, review,
and verification process. To break the project in bite sized chunks throughout the year, UWAFT
adopted the Agile Sprint methodology to track development progress, and burndown rates. The
bite sized chunks are the 2-week Agile sprint, of which there are a total of 18 throughout the
school calendar year excluding Winter and Spring breaks. The developers would use pre-set bi-
weekly dates over the course of the year to determine workload in the form of JIRA tickets that
would be placed on the KANBAN board for the sprint in question. The KANBAN board splits
tickets into columns, that signify the status of the tickets. Any ticket created in the Jira system
can be assigned directly to a developer. Developers can attach supplemental files, story points,
and add descriptions to the ticket. This gives tasks lineage and can be brought up in the future

for discussion.
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Ticket Created in Backlog
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Tickets are assigned to the developer responsible for sub-
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Tickets are compartmentalized based on the use case

within the team

Linked to Confluence Documentation

Figure 23: Ticket, KANBAN Based Development Workflow using Atlassian Jira

Not only do the senior developers need a mechanism to review code, but version control

provides a mechanism to separate development and testing of feature requests through use of

branches. Tickets created in the JIRA system are automatically assigned a unique ticket number.
The ticket number is then used as the name of the feature branch, in which development occurs.

This allows the reviewer developer to be able to go back to the requirements established within

the original ticket and ensure the criteria for completion of the ticket are met.

55




Chapter 4
Hybrid Supervisory Controller

This chapter deep dives into the architecture of the software sub-systems that make up the
Hybrid Supervisory Controller. The organization is systematically organized to facilitate testing
of requirements, functional controller layer both on vehicle and sub-system level as well as
plant modelling. Also described is the I/0 layer that is strategically segregated depending on the
target hardware for the simulation testing. In total there are 10 software sub-systems that
include the driver block, I/0 layer, tester block, the functional supervisory controller, the Soft-
ECUs and the plant model that make up the HSC. The main hybrid controller in the HSC is called
Functional Supervisory Controller (FSC), this comprises of the fault detection layer, vehicle

state control, torque strategy block and the component level execution.

4.1 HSC Development

Historically teams that succeed in past AVTC offerings, are ones that heavily leverage their
SIL, HIL environment workflow. This acts as a reliable surrogate to real vehicle development
reducing time, and ensuring safety requirements are met, and no errors exist in the logic before
VIL testing. The environment must be structured such that a beginner, and/or more
experienced developers on the team, are able to get up to speed and configure with relative
ease. In this sub-section of the work is discussed how model-based design was expanded on, to
support easier SIL, HIL environmental configuration, requirement testing, version control and
HSC role(s) segregation. The team’s ability to leverage the MathWorks MATLAB/Simulink
development environment was key in increasing time spent in development and testing in SIL
and HIL over VIL. This makes sense from a cost perspective but was especially crucial for the
team during the COVID-19 pandemic, for the duration of the EMC year 2, 3 (2019-2021)
development phase, where access to the garage was limited for students working remotely. The
developed framework encouraged the team to rely on tools for adding and testing functionality

but also to streamline workflow around the requirements.
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4.1.1 Structure of UWAFT Simulation Model in Simulink

In a team environment, reducing the time taken to train and bring new developers up to speed
is critical. Just as important is the ability of a developer to understand code structure and roles
of the various subsystems. There was a need to partition the codebase in smaller functional
blocks that serve distinct functions. Simulink offers a visual MBD style of programming
approach. Here, systems are essentially drawn on to the screen as block diagrams. These block
diagrams are interconnected through signals that can be combined like a harness in signal
buses and selectors. This approach makes it easy to monitor signals and backtrack any
simulation level faults. Signal propagation can then be traced through use of Simulink library
components such as the scope, and data inspector. This approach is a well understood, and
popular approach to programming in the current age of automotive systems development,

thanks to the ease of code generation for target embedded hardware [53].

Having developed 4 prototype vehicles using a combination of MathWorks Simulink and
dSPACE products, the team has obtained valuable experience that was ported in to the
development of the UWAFT’s EMC HSC [54] [55] [56] [57]. Simulink as mentioned earlier is
fully integrated with MATLAB and the data within the project’s active workspace. For the latest
AVTC offering, UWAFT has elected to segregate the [/0, FSC and plant model. Before we can
breakdown individual sub-functions, it is important to discuss the roles of the various blocks

shown in Figure 24.

The Simulink model at its root follows the forward modelling approach where acceleration
commands are generated through the longitudinal driver, the controller and the plant that
results in vehicle longitudinal velocity. The tester block serves as gateway point for controller
and plant outputs such that overriding system signals and asserting requirement checks for
various components and sub-systems is possible. This gives the team the ability to inject
intended faults for assessment of controller, and soft ecu behavior. as part of the HSC feedback
loop. The HSC handles state estimation, fault detection, vehicle state control, propulsion torque
strategy, and component level execution. The GM Blazer block contains the soft-ecu
representation of all ECUs for state estimation purposes, as well as the plant model of the
various drive components such as the ICE, transmission, gear reduction units, motor, ESS as

well as longitudinal dynamics of the vehicle body.
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Figure 24: Root level Sub-Systems in the Hybrid Supervisory Controller Simulink Model

4.1.2 Model Tester Block & Simulink Test for Requirement Maintenance

In chapter 3 we discussed the significance of developing safe and functional requirements for
vehicle controls development. However, as the code base grew, and more
components/functionality were added to support new feature sets. The team felt a challenge in
ensuring all requirements were still being met. The team was encouraged to find a method
whereby requirements could be tested altogether within the same environment without the
need to manually test for each. Regression options such as Jenkins - were explored however due
to limitations in developer manpower, continuous changes being made to the model itself, and
the limitations of the COVID-19 pandemic, this option was not chosen. By the end of Year 3 the
team had amassed 132 requirements within the PCM swim lane of which some are safety
critical, and others purely functional. To support simultaneous testing of said requirements, a
new testing framework was introduced in the root directory of the UWAFT controls simulation
model, that would check for all test cases during an SIL simulation. The tester sub-system
shown in the top center of Figure 24 is made up of two parts. The testing override block which

overrides signals for testing purposes and the test cases block, where the requirements have
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been converted to test cases to verify that the testing requirements have been met. This is

organized into various requirements based on the component being tested.
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Figure 25: Tester Block & Testing Framework for requirements in the HSC

The inner structure, high level organization and working of this tester block is shown in Figure
25. For example, in the case of the motor controller - the requirements being tested shows that
the inverter will be disabled if a CAN communication timeout occurs. During normal operation
this should be caught by the Fault Detection layer in the HSC that is described in section 4.1.6.1
Fault Detection Layer. This is an example of a requirement that would ensure the vehicle does
not accelerate unintended based on the safety analysis described in Chapter 3 of this work.
Upon failure of any requirement, the simulation ends with the error message highlighted in red.
The organization and testing of the testing requirements themselves is implemented within the
Simulink environment and is organized through use of Simulink Test. [58] Here a singular
requirement is linked to a singular test to ensure that each requirement is fully tested
individually. This organizational decision allows the team to use the Simulink Test Pre-Load
window where a generic test struct function is called and signal values are overridden, followed

by the signals that need to be overridden for the test to fail and assertion to occur.
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4.1.3 External Inputs (Driver Block & Ambient Environment)

During run-time of the SIL model, there exist two types of external inputs to the HSC and Plant.
The driver input block, which uses the drive cycle as a target speed such that it is fed to the HSC
as an acceleration request, and the ambient environment block. The driver input block utilizes
the Charles McAdam [35] predictive driver block which takes in to account the road gradient
and vehicle feedback speed to generate an acceleration or deceleration request. Driver cabin
controls such as team developed safety switches, and active safety (autonomous) switches are
also present for toggling. The cabin lights and switches are essential for immediate toggling of
certain hybrid and active safety software features that can request longitudinal/lateral
acceleration for safety purposes. These are documented within the RTM. The Simulink
environment imports the drive cycle, and ambient environment parameters from the MATLAB
environment details of which are discussed in Section 3.3.2 Model Configurator - MATLAB-

Simulink . Shown below is the internal structure of the longitudinal driver model.

Boolean
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grade| rade DecelCmd | Decel <Key>
<Decel>
[PRND

Longitudinal Driver Model

5(5)

- boolean Decel_In
drive_cycle_enable drveycle_en

Using the Predictive Driver setting. Pedal Enable Drive Cycle
output and shifting are smoother using
this option

doubie (deg)
<SiAng> o]

Driver

boolean

boolean
boolean 5(5)
boolean Cabin S{fitches
boolean

9
Cabin Switches

boolean
AEB_AGtv |poprear
ACC_Actv fioutte
ACC

= oath ©
ACC_Ref [t CAV
LCC_Actv Hooteam
CAV_Decel

CAV

i Juints
JJH Jetson_Alive <>

Counter

Figure 26: Longitudinal Driver & Team Added Safety Switches Block

The environment block contains ambient information such as grade, wind velocity, external
outside temperature, and barometric pressure. These parameters are useful for certain

simulation scenarios and are fed into the model where extreme external conditions are
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required to find system limits - such as high temperatures and road grade for thermal system

testing.

4.1.4 Hardware 1/0 setup

The 1/0 layer acts as a signal conditioning layer, where all the signals stemming from the HSC
are adapted for the end hardware. In our discussion of the role of using Model Object in section
3.3.2 Model Configurator - MATLAB-Simulink . We have preliminarily touched on the
advantages of initialization the model as an object. How that provides the ability of using the
model to manipulate signal switching to adapt the simulation to be run in the SIL, HIL and VIL
environments. From an MBD standpoint, while there are no explicit requirements for the
implementation of the hardware 1/0 sub-system. The sub-system serves as the only place
within the Simulink model, through which all signals must route in to and out of, before being
sent to the plant model, HIL or VIL layer(s). Figure 24 shows the Hardware 1/0 sub-system at
the bottom of the root of the model. Here currently only the SIL_IO block is active and
uncommented. This is by default and is always the case when the model is initialized as can be

seen in the MATLAB implementation in Appendix B - Model Configurator Script line 88 to 100.

From the perspective of the HSC subs-system all signals being received by the HSC from the
ECM, BCM, Intel Tank, inverter and coolant pump are Rx signals. The vice versa is true for Tx
signals. For the SIL simulation it is important to mimic the nature of feedback, from the real
vehicle since the simulation model runs on non-real, CPU time. In that to simulate a unit delay, a
propagation delay from the signal system buses, for every discrete time-step that the simulation
is solved for, is made possible by adding 1/z discrete unit delay block [59]. The unit delay is
only required as part of the Rx feedback, and generally is appended to the simulated plant
outputs before being received by the HSC. The unit conversion or matching layer is where
signals are first converted to the appropriate type such as double or Boolean, and then are

assigned the appropriate signal name.

Signal names are importantly kept consistent throughout the model depending on the system
being interacted with, and modifications made to the signal. In the case of SIL I/0, the signal
names are represented, per the naming convention of the signal messages described within the
CAN database (DBC) file. Due to confidentiality reasons, the message and signal name

descriptions are not provided in this work.
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Figure 27: SIL I/0 layer

Expanding the idea lines 89 to 250 in Appendix B - Model Configurator Script showcases how
the Simulink model is configured for use with the HIL, and VIL environments. This is made
possible through a series of scripted commands, that follow the manual setup pattern if a
developer were to perform all steps manually. In HIL simulation the plant model block is
commented out, as the HIL takes on the role of representing model for real-time simulation.
Here the CAN, Analog and Digital outputs are physically mapped to the real HYP, and ZIP pins
on the HIL and MABx respectively. The port location and harness development for the pins is
described in dSPACE documentation that is provided as part of the purchase package of
DS1401/1513 MABx Il hardware. Working with hardware that is needed is simply
uncommented and signals are re-routed, through use of the Model Object script. This is done
through the command line, as part of a string parameter passed to function call. It should
however be mentioned that there are other steps involved in setting up dSPACE hardware such
as approving dSPACE licensing, using description files for CAN settings for signal population,
and utilizing the CAN Multi-Message (CANMM) block-set [60] to generate the .sdf file type, such
that it can be flashed on the target hardware. Shown below is the 1/0 setup for HIL testing
established at UWAFT, that is an easily repeatable setup for UWAFT. Setup of the VIL layer is
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very similar, except in that case ALL vehicle CAN signals are populated as part of the CANMM
setup - to be received by the MABx.

Signal Type Mapping

RTI CANMM CAN Trigger & Data Mapping
Blockset PR '

Different Setup for Analog

T

Figure 28: HIL 1/0 layer

4.1.5 Longitudinal Controller (Intel AIOT Tank)

Addition of a secondary torque requesting controller is a new AVTC requirement, that didn’t
exist explicitly pre-EMC. The Intel AIOT Tank is a physical onboard Linux compute systems that
runs within the UWAFT Blazer as the primary CAV controller. This system runs the Robotics
Operating System (ROS) written in C++ programming language that utilizes nodes to separate
functionality. Functionality of the tank includes but is not limited to - performing CAN Tx/Rx,
data filtering, sensor fusion, object association/detection, and updating safety counters within
and external to the system. Representation of this controller in the HSC involves processing
CAV-alive safety counters, driver cabin user selection for ACC modes/gap settings and using the

pre-processed sensor inputs from the tank to generate a torque request.

The longitudinal controller incorporates an adaptive cruise control model that works based
on its understanding of the lead car and the Ego vehicle. The HSC in the case is following
acceleration commands that are generated from the CAV compute unit where the drive cycle
acts as the lead vehicle, and Adaptive Cruise Control (ACC) ego-controller drives autonomously
behind it. The lead car block generates the relative speed and relative position between the two
vehicles, as inputs to the ACC block. The team is currently exploring other active safety features

such Automatic Emergency Braking (AEB) and Lane Keep Assist (LKA).
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Figure 29: Longitudinal (Active Safety) Controller Layout

4.1.6 Functional Supervisory Controller

The Functional Supervisory Controller (FSC) is at the center of all vehicle operations and acts
as the master arbitration controller for all team added components and ECUs. Before the FSC
was developed, a fair bit of thought was put into the structure and layout of the controller. The
UWAFT team wanted a controller structure that was agnostic to the plant model it was
actuating on. Meaning that regardless of the hybrid architecture this structure could be re-used
or expanded on to control more components if needed. The basic structure of the HSC is made
up of 4 main layers. The State Estimation & Fault Detection layer, Vehicle State Control,

Propulsion Strategy Optimization and Component Level Execution.
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Figure 30: Functional Supervisory Controller Structure & Segregation of Roles

4.1.6.1 Fault Detection Layer

The state estimation and fault detection layer take inputs as feedback from the plant during a
SIL simulation and, the CAN bus from the component ECUs. The inputs are measured
component states, and physical parameters that are compared against physical limitations and
unsafe component control combinations as deduced through systems safety analysis as well as
data sheets provided by the component manufacturer. The goal of this layer is to produce
Boolean flags that are evaluated at vehicle state control and soft-ecu level, to ensure vehicle

operates in a correct safe state.

Faults are determined at this level to ensure two things. Firstly, that the vehicle is not
requesting torque from a component that is operating near its limit, and needs to be disabled,
but secondly to ensure the vehicle state control and component level execution subsystems are
able to determine the appropriate operating state such as ICE only, HEV or fault mode. The table

below summarizes the various checks performed at this level.
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Table 4: Functional Requirements Tested at HSC Fault Detection Layer

Component
Inverter Engine ESS Autonomy
HV Bus Active Coolant Minimum Voltage ACCF:I
Discharge Temp W) Override
V) (°C) _ (Nm)
(<50) (>=110) (<=321) (Driver>ACC)
. ESS Discharge o
Running Counter Low Voltage Enable Accel Limit
AN
(>£So) 5) (<=(Y()) 5) (Bool) (IEL/OS 3?
' ' !(Discharge_Enable) '
CAN Signal Integrity BMS In(t'fggfa)l Error
(Bool)
' (CAN_VAL && Brake Press (gsllll 8;1/32;/ \(;gle}cgee” CAV Compute
CAN_MotSpd && J Alive
- CAN_PhaseCurrent && (Sy_og) Cell Ovelrl Temp || (ms)
g CAN_DcLinkVoltage - ol Undor Tenf’ 1 (>250)
g = && Cell Over Currer?t 1
1
5- _ CAN_MotTemp) Cell Under Current)
=
& E 2 Motor Current CAN CAN Time Out | CAV Switches
= -a:.a S (A) Timeout (ms) (Bool)
= /m
EES (>=424) (ms) (>1500 I(ACC Enable
- = (>=170)
] d = -
g = Motor Voltage Over Speed Isolation Error Vehicle Speed
-% & \% (RPM) (Bool) (kph)
= (>=450 || <=321.6) (>=6850) (False) (<40 || >140)
= Max Torque
CAN Timeout (Nm)
(ms) (MaxEngTrq
(>=1250) -PlantTrq >
0)
Motor Speed
(RPM)
(>=13000)
Motor Temperature
(°C)
(>=100)
Low Voltage
V)
(<=10.5)

Note that the failure evaluation condition for CAN timeout or signal integrity timers vary

based on the criticality of the parameter being evaluated. For example, a motor over torque
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signal is evaluated more frequently than a motor over temperature signal, because a motor
casing may withstand a high temperature with active cooling for a slightly longer time, before
permanent damage occurs, whereas a motor over torque condition may snap a torque rated

half shaft immediately, and thus needs to be monitored at a higher rate.

4.1.6.2 Vehicle State Control

The primary function of the vehicle state control subsystem in the HSC is to ensure the
vehicle is operating in the right state based on outputs from the fault detection layer,
propulsion plant model and any executive requests made from the passenger cabin. The vehicle
states include Accessory, Off, Startup, On, Fault and Shutdown states. The vehicle direction
states determine driving direction primarily based on the position of the transmission shifter,
given when vehicle in ON, and not in a fault state. Executive inputs into the state machine are
used to determine state of actions that stem from the user cabin, such as state of the shifter and
ignition button state. The vehicle state control is developed using Simulink Stateflow [61].
Stateflow as the name suggests, makes use of functional state transition diagrams, flow charts
and truth tables for logical decision making within the Simulink model. The state machine can
be further layered to accommodate any transitionary states within the main vehicle states.
Figure 31 illustrates the structure of the vehicle state machine at a high level. Since the vehicle
utilizes a stock GM ICE, the immediate fault state upon an EV related HEV failure is to shut off all
EV component and continue operation in ICE only. Full shutdown occurs if the ICE is detected to

not be running. In this case a full vehicle shutdown is required.

ON
Normal Fault
1 s ICE 7 o ICE Only
E ‘. Accessory 3>‘ Startup | HEV , Ik
A | 3 e | E
. 17 s ° » HEVStartup = Full Shutdown
— ¥ _____ )
| Shutdown -« 1 Vehicle Direction
EI S Idle 414
f 13.’ ‘ 12 \
Reverse 4 ~» Forward

Figure 31: Vehicle Powertrain States
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Table 5: Vehicle State Control state description & state transition condition

State State Action State Transition Condition
1: Entry
OFF All Systems Off 2: System Power Mode: accessory
3: Vehicle Start Request: true; Shift
Accessory System State: Accessory Lever: park
17: !(Vehicle Start Requested)
ESS Contactor Close: true 4: ICE Request: true
Startup Inverter On: true 5. HEV Request: true
EV Cooling: true ' q '
ESS Close Contact: false
Inverter On: false .
Shutdown System State: Shutdown 18: Engine Ready: false; EV On: false
EV Cooling: false
Limp Mode: False 15: Engine Readt}/;ulese; Limp Mode:
ON Limp Shutdown Request: 16: Vehicle Start Request: false ; Limp
False
Mode: true
*k _ . .
ICE HEV State: ICE Fault state - leaving state unintended
- except shutdown
HEV State: ICE
HEV Startup Inverter On: true 6: EV Torque Ready
ESS Close Contactor: true
HEV HEV State: Hybrid 7: ICE Request: true
HEV State: ICE
ICE Onl Inverter On: false 8:is EV faulted: true
y Limp Mode: true ' '
ESS Close Contact: false
Full Shutdown Vehicle State: Shutdown 9: Engine Ready: False
. . . 12: Shift Lever: Drive
Idle Vehicle Direction: Idle 13: Shift Level: Reverse
Reverse Vehicle Direction: Reverse 11: Shift Lever: Park
Forward Vehicle Direction: Forward 14: Shift Lever: Park

Table 5 above describes the resulting output action within each state as well as the outgoing

condition necessary for the states to transition. Note that state ICE is different from ICE Only

state as the input required to be in the former state stems from user input of toggling one of the

cabin safety switches to keep the HEV systems disengaged. This requirement originally

stemmed from the NYSR and was incorporated here to differentiate from the ICE Only state,

where the HEV system is faulted.
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Another important thing to note is that in Simulink Stateflow implementation state actions
can be programmatically prefixed with the en (enter) and du (during) operators that allow
separation of one time and continuous actions, that are not shown in the state table to reduce
unnecessary documentation complexity. Furthermore, the state action and state transition are

enumerated, for ease of programming, which in this case are written in full words.

4.1.6.3 EV Torque Added Strategy

The HEV torque strategy developed for the UWAFT Blazer is a simple Charge Depleting (CD)
strategy, where the front and rear axle operate independently of each other. Meaning that the
torque request is not split between the two axles, instead the EV motor provides additional
torque based on the accelerator pedal position of the driver. This classifies this torque strategy
as arule-based strategy, where the maps are developed through drive testing on a test track.
The intent behind developing a simpler torque strategy was to help the team make the Blazer
robust to drive and operate. Since all EV propulsion systems are team added, naturally a need
was felt to first explore mechanical, electrical, and thermal systems boundary. Secondly since
the inverter and inverter were paired by a third-party supplier, the team wanted to be

confident of the torque application behavior of the rear axle.

4.1.6.4 Drive Cycle Requirements

The torque strategy was developed based on EMC’s requirements for a drive cycle developed
on the team’s local track. The track local to UWAFT through the development of year 3 was the
Waterloo Regional Emergency Services Training and Research Center (WRESTRC). The
WRESTRC is a 1.2 km long oval complex, that the team mapped and adapted to simulate a city
and highway drive cycle section. EMC'’s specific energy consumption course requirements were
two-fold. Firstly, to develop a 36 miles long course that was split up in to 4 repeated
city/highway profiles designed to fit the test location. Secondly to ensure that the city section
above 50 kph with 3, 10 second stops, and highway with speeds above 70 kph and 2, 10 second
stops. Shown below is a map view of the WRESTRC, and the points at which complete stops
were made. Since the track was 1.2 km length, 48 loops of driving were required. The team
decided to drive 12 loop cities, then 12 loop highway and repeat twice to fulfill the drive cycle

requirements.
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Figure 32: WRESTRC test track map view w/ slow down to stop points [62]

4.1.6.5 EV Torque Added Strategy

The torque strategy pedal maps for forward torque and regenerative braking were developed
such that the Blazer could sustain battery SOC when driving the city profile and deplete battery
SOC when driving in highway scenario. This would simulate a charge sustaining behavior below
55 kph and charge depletion above that speed for improvement in the overall fuel economy.
The pedal maps were also tuned for a natural pedal feel that was subjectively developed based

on inputs by multiple drivers.

During the development of the pedal maps, it was determined that upon stopping the vehicle,
the regenerative braking map would cause the vehicle to drive backwards due to the negative
torque application. A switch case was added to allow no EV below 7 kph and retain the stock
vehicle’s slow speed crawl feature. It must also be noted that since the UWAFT Blazer is an HEV
and not a PHEV, charging on demand was deemed a critical feature. For this purpose, the team
added a cabin switch that would request a safe amount of regenerative power for the duration

of the drive, helping charge the ESS.
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Figure 33: Torque added EV strategy

The tuned pedal map for the WRESTRC, resulted in the ESS being able to sustain SOC at city

speeds and deplete SOC at highway speeds for 36-mile drive, as shown in Figure 34 below.

EV Torque Added Strategy Testing on WRESTRC

10 0 1000 2000 3000 4000 5000 6000

VehSpdWhl(kph)

AccPedPos(%) HVBattSOC(%)

Figure 34: Initial SOC Safety Window Verification at WRESTRC

71



4.1.6.6 Component Level Execution

The last major sub-system that forms the functional supervisory controller is implemented
within the Component Level Execution block. The primary function of this sub-system is
tracking of ECU states for the various controllers onboard the vehicle interacting with the HSC
interacts. These states are written in Stateflow similar to the vehicle state control layer, except
in this case, all physical ECUs present on the vehicle are represented. This is important for a
variety of reasons that includes but is not limited to - understanding of the operating states of
the controller, determination of actions possible by the HSC, switching of states based on logic
in the fault detection and vehicle state control layer, and lastly organizing ECU interaction for
ease in troubleshooting in-vehicle. The state determination is made through a combination of

in-HSC outputs as well as raw component CAN signals.

This layer interacts with ECUs of the following components - engine controller, body control
module, inverter, BMS, in-cabin lights, coolant pump, the stock active safety control module, the
rear differential control module, and the relay control module. It must be noted that control
units such as the active safety control module, and rear differential control module were
modified/removed during the vehicle retrofitting, and for the stock GM systems to perceive
normal operation. This layer also populates. the expected GM CAN bus signals so the stock

vehicle systems continue to operate as normal.

As an example of the inner working of this sub-system we can take the example of how the
inverter soft ecu is implemented. Shown in the image below is the inner ECU states for the
inverter, as documented and supplied by the component manufacturer followed by the team
implemented representation. [t may not come as a surprise that there is a striking resemblance,
in the layout, names and direction of state transition arrows. During the development of this
layer, the team worked closely with all component suppliers to ensure the inner workings of the
third-party ECUs was well understood for safety reasons. It is also important to note that some
of the default ECU states are clumped together for ease in troubleshooting of the component.
For instance, the Initialization Failed, Error and Shutting down are grouped together in the

team’s Idle and Shutdown states.
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Figure 35: Inverter State Control - Analogous Implementation

4.2 Vehicle Plant Modelling

The plant model is used in conjunction with the functional supervisory controller for testing of
all controller functions before the code is ever tested on the real vehicle. The plant model
simulates the physics-based behavior of the drivetrain components as well as the longitudinal
chassis dynamics. The ECU model adaptation are termed soft-ecu’s as they are simplified
software representation of the real ECUs operation, that are physically present within the
vehicle. In the case of UWAFT the plant model fidelity, and requirements coverage spans the
longitudinal dynamical, embedded, and thermal models of the drivetrain components. This is
important for the SIL and HIL environment testing of the basic control algorithm, validation of
systems diagnostics as well as refinement of the plant model itself based on calibration data

collected from vehicle testing.
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4.2.1 Soft-ECU Representation

In section 4.1.6.6 Component Level Execution of theses we discussed how component states are
tracked and executed based on executive requests from the vehicle, within the functional
supervisory controller. However, it is the soft-ECU implementation during a SIL/HIL simulation
that mimics the functionally complete representation of inputs, outputs, and possible ECU states
that the HSC needs to interact with. In some cases, such as in the case of the ICE, the soft-ECU
contains the plant model - such that the executive requests can directly be translated to
effective outputs. A well calibrated soft-ECU is necessary for scalability of SIL simulation in real-
time HIL environment, as these ECU outputs are required for exploration of system boundaries
- such as possible component faults, operating states, and physical constraints. The table
included in Appendix D - Plant Soft-ECU Inputs/Outputs Summary summarizes the inputs and
outputs involved with the soft-ECUs. The signals are further grouped, signifying the routing to
the HSC in a VIL test environment, and to plant during a SIL/HIL simulation. The soft-ECUs that
are implemented in the UWAFT Blazer plant model are a combination of soft-ECUs provided by
the OEMs in the form of MathWorks block sets, and team developed soft-ECUs. OEM provided
soft-ECUs include ICE, BCM and transmission soft-ECUs which were provided by GM and
MathWorks and were left untouched. In some cases, such as the ICE, these were simplified to
exclude the inner workings of ICE that were reported by the ECU such as crankshaft angle, and
internal cylinder pressures - which were not useful for the team to keep for the purposes of the
longitudinal simulations. The latter (team developed) soft-ECUs include the inverter, ESS,
coolant fan, coolant pump, cabin switches and the RCM. These soft-ECUs were developed from

ECU behavioral testing and component data sheets studies.

4.2.2 Powertrain Model

The Powertrain model is a single sub-system that contains torque producing and transferring
components. UWAFT heavily utilized the MathWorks Powertrain Blockset [63] for the
development of this sub-system. The Powertrain Blockset provides fully developed models of
automotive powertrain components such as Compression Ignition (CI), Spark Ignition (SI),
electric traction motor, shafts, battery packs and controller model reference applications. These
were adapted to use the parameter data that was provided by the component manufacturers,

through use of the masked library block setup described in section 3.3.2 Model Configurator -
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MATLAB-Simulink of this thesis. The plant model for the powertrain comprises of the ICE,
transmission, ESS, motor, differential, torque transferring shafts, wheel /tyres and body models
all connected to represent the P4 parallel through road architecture as shown in Figure 36

below. Note that the term PowerCube is used by GM and is given to the ICE-transmission pair.

Brake Actuation Model

PowerCube

Front Wheels

; —. SImgp— S ]
| €1
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R i
Transmission |~
4

% |

TransAxle Shaft - o=

k=

) T Rear Wheels

Figure 36: High Level Powertrain Plant Model Overview

4.2.3 ICE & Transmission Model

The ICE and transmission sub-systems are both adapted based on the confidential LCV and M3D
data provided by GM respectively. The ICE sub-system is represented by the “Mapped SI” block,
which is further expanded on by UWAFT to include the starter motor, as well as the catalytic
converter. This data was produced through GM’s experimental results and was stored as 3D
lookup tables within the model which are then imported as masked parameter to populate the
ICE model. As described in the soft-ECU section above, the models are simplified to produce
only the signals needed for UWAFT’s purposes. It's important to note that since the
mathematical representation of the engine is neither required not sought. The engine speed,
engine torque, fuel flow, the Brake Specific Fuel Consumption (BSFC), and the exhaust gas
composition are used instead in the simulation studies. The engine torque and speed are used
to determine drivetrain and ultimately body states, whereas the fuel flow is used as a metric to

calculate fuel consumption.

The transmission model utilizes a fixed-gear transmission model, that is connect to the ICE via a
lock up type torque converter. The torque converter transfers power to the transmission model,

which is populated via the gear ration, timing, gear efficiency, inertia, torque breakpoints and
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speed breakpoints. Note that the torque converter block is unmodified, as calibration data for

this device was unable during the development of the transmission sub-system.
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Figure 37: MathWorks Powertrain Blockset for ICE & Transmission Models

4.2.4 Energy Storage System

UWAFT worked closely with a Hybrid Design Services engineering consultancy firm for the

development of its ESS. At its core the cell powering the battery pack is the Samsung INR18650-

20S Lithium-Ion rechargeable cell. [64] The vehicle’s VTS targets defined from the previous

AVTC offerings - specifically results from the EcoCAR Emissions & Energy Consumption (E&EC)

events were the primary driving factors for the power and electrical requirements of the ESS.

The pack was delivered mid-way through Year 2 of the EMC competition, and the final specs of

the resulting pack are as follows.
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Table 6: HDS ESS Pack Model Characteristics

Requirement Unit Value
Pack Voltage V |1260-403.2
Total Pack Energy kWh 5.5
320 (2)
300 (10)
Discharge Current Characteristics | A(s) | 25 (30)
80 ()
160 (5)
Charge Current Characteristics | A (s) | 100 (10)
32 ()
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Figure 38: ESS 1-RC Model Representation [65]

The Simulink ESS model is represented using a 1-RC Thevenin Equivalent model, that consists

of a an open-circuit voltage, a series resistor and 1 RC pair. The Samsung cells are configured in

a 96S8P configuration. A consortium of tests is performed as a collaboration between the U.S

DOE and HDS to ensure the pack chemistry met the performance targets that the team set out to

achieve. These tests include the constant current constant voltage charge and constant current

discharge for multiple batches of the Samsung cell. These experiments allowed characterization

of the Li-Ion cell for the development of the Li-Bal BMS, as well as the UWAFT Simulink model

ESS. Figure 39 below shows the results of the tests.
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Figure 39: Charge & Discharge Characterization Tests for Samsung S20 Cells conducted in

collaboration with HDS & U.S. DOE [64]

Further a long term 0.7C rated charge/discharge was applied to 8 cells in a parallel
configuration, which would then be scaled up to 96 cells in series to form the overall energy
capacity of the battery pack. These cells would be chosen at random over multiple batches to
obtain the open circuit voltage (OCV) and SOC model curve, and then were averaged to obtain a
lump sum model for the cell charge/discharge behavior. Figure 40 below shows a combined

summary of all the tests conducted and the resulting pack models.
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Averaged Charge/Discharge Curves
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Figure 40: Averaged Charge/Discharge Curves for the HDS ESS

Data from Figure 39 and Figure 40 are used to establish the SOC vs OCV characteristics that are
populated within the 1-RC battery model as look up tables. Note that the testing results are
conducted for batches of 8 cells in parallel, this would allow for any cell degradation/health
characteristics to be averaged out. For the Simulink model this is scaled up to represent 96 cells
in series which is representative of the voltage, current and capacity characteristics of the full

sized ESS.

4.2.5 AAM EDU4 Motor

The e-axle EDU4 is an liquid cooled 1-Spd open differential motor configuration, that is
integrated concentric into the rear axle of the UWAFT Blazer. The internal electric configuration
of this motor is of the Permanent Magnet Synchronous Motor (PMSM) type. The mapped motor
in the Simulink model is an adaptation of the Flux-Based PMSM motor, where the electrical
parameters are left the same, as they were not provided by the motor manufacturer, however
the motor thermal, power and torque characteristics were provided and are adapted to match
the Simulink Mapped Motor model [66]. The torque-speed efficiency curve was used to
determine motor losses, and appropriately size the thermal system. Further the motor torque-
speed power curves were used to determine longitudinal Blazer performance. It must be notes
that the torque value indicated is torque at the e-machine, and not at the wheels which would

be scaled by the internal differential ratio. The combined curves are shown in Figure 41 below.
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Figure 41: AAM EDU4 Torque/Speed/Efficiency Curve Data Incorporated into Simulink
“Mapped Motor” sub-system [66]

The data curves provided by the AAM, where mapped into a look up table and represented in
the mapped motor sub-system to represent the EDU4 motor as shown in the sub-system

implementation below.
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Figure 42: Motor Sub-system with Coupling Dynamics Implementation
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Chapter 5
Model Validation, Testing & Results

In Chapter 3 we have taken a deep dive in to the framework that was utilized by UWAFT to
develop and incorporate PCM oriented system requirements through use of the RTM. In
Chapter 4 we described the various roles and organization of the HSC and interactions with the
vehicle systems. Time in Year 2 of the competition was spent in development of requirements,
and their programming in the MBD based workflow. Despite the limitation posed by the COVID-
19 pandemic a significant amount of time and effort in validation of the HSC model, the

requirements and testing of sub-systems integrated in to the UWAFT Blazer were undertaken.

5.1 Methodology

The plant model and functional requirements are tested in the SIL and VIL environments.
Requirement from the RTM are programmed into the HSC and directly flashed on to the dSPACE
MABX II hardware. Due to restrictions posed by the COVID-19 pandemic, and the targeted
robustness validation of the vehicle required by end of Year 3 of EMC, priority was allotted to
ensure safe and robust vehicle operation. This bottlenecked time available for HIL validation.
The functionality is tested and validated on the UWAFT 2019 Blazer vehicle platform. While
most of the safety testing for the unintended vehicle acceleration, and other HSC safety
requirements were conducted at the University of Waterloo. The plots and graphs used for
model validation, and operation of the HEV system were acquired at the 1.8 km Canadian

Technical Center McLaughlin Advanced Technology Track (CTC MATT) [67] .

5.2 HSC Requirements Test Coverage for the AAM EDU4 & HDS ESS

In section 4.1.2 Model Tester Block & Simulink Test for Requirement Maintenance we have seen
how the tester blocks is developed in path of the HSC feedback loop, and the setup of the test
case assertion blocks to verify system level requirements. This sub-section describes the status
of the critical requirements developed for the team implemented propulsion systems namely the
EDU4 motor and the HDS ESS. Although many requirements exist for the ICE and transmission.

Since the team does not currently have active control of the ECM/TCM - except state estimation
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through feedback signals, validation of the motor and ESS requirement suffices for the level of
functionality achieved leading up to year 3 of the competition. For requirements that are not
possible to be tested in the SIL environment, such as a physical ground fault test - best efforts
are made to describe the validation results gathered from logs gathered during VIL testing. Note
that the RTM ID descriptors described here are kept consistent in the Simulink Environment, as

described in section 3.2.5 Requirements Trace-ability Matrix of this thesis.

5.2.1 Test Coverage & Validation in Simulation Environment

All requirements that are developed in the simulation environments, end with assertion blocks.
The assertion blocks are tied to logical unit test statements. Upon failure of any test statement, a
non-zero value is generated that causes the assertion block to assert - halting the simulation.
This process is shown in detail for a single test requirement in Figure 25. The following critical
component level requirements taken from the RTM, are tested in the SIL environment. In total
there are 7 ESS, and 17 motor/inverter related requirements that are tested within the tester
block. The diagram below summarizes the requirements, and the status of validation. More than
80% of the requirements are tested and validated. The other 20% are imported from the RTM
but are VIL level requirements, justifications for which are provided in the following VIL
validation sections. Over the span of 3 years, the 132 requirements are developed, 65% of

which have been developed, and validated.

Index D Summary verified
v (k3] uwaFT_Eco.. [
~[51 BAT BAT Companent
\:] 1.1 ALGO-BAT-11  The supervisory controller shall not command the pack contactors to open unless the pack current is less than 10A.
E] 12 ALGO-BAT-12  If ground fault Isolation Is less than 500 ohm times the Instantaenous pack voltage, the battery pack contactors shall be opened.
i_-] 13 ALGO-BAT-14  If ground fault isolation is less than 500 ohm times the instantaenous pack voltage, the driver shall be notified via the ground fault cabin LED.
=] 14 ALGO-BAT-15  If the BMS opens contactars due to a fault, inverter torgue production shall be disabled.
E1s ALGO-BAT-16  The supervisory controller shall not command contactors to close if the inverter reports measuring >=50V DC voltage while the BMS is reporting that contactars are open.
f;] 16 ALGO-BAT-8 If the BMS opens contactors due to a fault, the HSC shall not attempt to close contactors again until the vehicle Is turned off and on again.
1517 ALGO-BAT-9  The HSC shall not request torque from the inverter if: in The BMS is not the discharge state.
~[2 MoT MOT Component
v E] 2.1 ALGO-MOT-2  Inverter shall be disabled if any of the following occur

L—‘] 21.1 ALGO-MOT-2.1 If the motor phase current exceeds +/-424 Arms
L.IJ 2.1.2  ALGO-MOT-2.2 If the DC link voltage is greater than 450 V or less than 321.6 V.
D 213  ALGO-MOT-2.3 If a counter error is detected
E] 214 ALGO-MOT-2.5 If a zero torque command occurs (ALGO-MOT-3) due to torque feedback error (ALGO-MOT-3.1) twice before power cycle
u] 215 ALGO-MOT-2.6 If the measured motor torque, motor speed, DC Link voltage, phase current or motor temperature are no longer valid (based on validity signal from inverter)
v 22 ALGO-MOT-3  Inverter shall command zero torque if any of the following occur
D 2.2.1 ALGO-MOT-3.1 If the feedback torque is less than 90% or greater then 105% of the desired motor torque for over 1 second
E] 222 ALGO-MOT-3.2 If motor speed feedback exceeds +/-13000 rpm
L—IJ 223 ALGO-MOT-3.5 If the mater temperature is less than -40 or greater than 150 degrees Celsius
[£] 224  ALGO-MOT-3.7 If the engine Is not running
E] 225 ALGO-MOT-3.9 The 12V battery voltage is below 10.5V
hd L—] 23 ALGO-MOT-4  The HSC shall limit the motor torque command under the given conditions:
L.Ij 23.1 ALGO-MOT-4.1 When phase current exceeds 320 A or 90% of ESS current limit (whichever value is lower)
(] 232 ALGO-MOT-4.3 When mator speed exceeds +/-12500 rpm
E] 23.3 ALGO-MOT-4.4 When motor temperature is greater than 140 degrees Celsius or less than -35 degrees Celslus
u] 234 ALGO-MOT-4.6 When ESS temperature Is less than -25 or greater than 55 degrees Celsius
5] 24 ALGO-MOT-6  The inverter shall not enter the Enabled state until BMS is in Discharge State
E] 2.5 ALGO-MOT-7  Vehicle must not power motor if the vehicles gear selector is in neutral or park according to NYSR G.1.1.3
E] 26 ALGO-MOT-1.3 Regen braking shall not be active during reverse drive conditions

TN N ([

Figure 43: Simulation Level Requirements Validation for AAM EDU4 Motor and HDS ESS
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5.3 Model Validation

For plant model validation - the data acquired by the team during end of Year 3 testing is
utilized. In particular, the drive cycle developed for vehicle testing followed the same guidelines
as described in section 4.1.6.4 Drive Cycle Requirements except this one was developed for the
CTC MATT facility. Due to the 1.8 km length of the CTC MATT facility - the 36-mile requirement
of the drive cycle posed by EMC, required a total of exactly 32.2 or 33 total rounds of the test
track. The driving was broken in 2 sets of continuous city and highway drives each. The city
driving was limited to 55 kph with 4 full 10 second stops per lap, and the highway to 75 kph

with 2 full 1 second stops per lap. The final drive cycle is shown below.

total distance travelled
~34.99 miles

Hwy — 75 km/h Peak

wor Al Speed Signals

L City — 55 km/h Peak "''"'/
|
wif )

50—

8 City/Loops' w/ 4/- 10 8/City Loops w/ 4 - 10
seconds stops per lap seconds stops per lap

Speed (kph)

.l 8 Hwy Loops w/ 2 - 10 8 Hwy Loops w/2-10
seconds stops per lap seconds stops per lap

ol | I I | I |
0 1000 2000 3000 4000 5000 6000

Figure 44: CTC MATT Energy Consumption Drive Cycle

5.3.1 ESS Model Validation

The ESS voltage data from the CTC MATT is used as the primary source of validation for the ESS
plant model. To obtain this data, the drive cycle shown in Figure 44, is fed back into the HSC as
drive cycle source, and the drive cycle is run as normal. The resulting pack voltage plot is
obtained and is then compared to the real-world values obtained during the energy

consumption testing event to produce the plot below.
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ESS Model Validation
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Figure 45: ESS Model Validation

Through the entirety of the model, there seems to an offset of -9.2V from the model when
compared with the vehicle data acquired from the BMS. This offset is attributed to the starting
voltage that corresponds to a certain SOC, and since the writing of this thesis has been corrected
for. It may also be noted, the model follows the curve intricacies of the pack voltage quite well,

and thus is a good representation of the overall SOC variation.

5.3.2 Motor Model Validation

The commanded motor torque signal is taken from the inverter data logs and is compared to
the drive cycle input to the HSC. The commanded torque is relatively accurate as the motor
must be paired to an inverter through a series of calibration activities before they are able to
operate. This calibration was conducted on behalf of UWAFT by a third-party supplier FEV
gmbh. Due to the enormity of the data and the high amount of overlap, the logged vehicle, and
model data are separately plotted. A few key statistical comparison values are provided on the
plots. It must also be noted that upon closer inspection the vehicle plot shows a much a higher

level of noise as compared to the model.
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Figure 46: Motor Torque Validation

5.3.3 ICE Fuel Flow Model Validation

Validating the ICE is a much more involved process as compared to the motor due to the higher
complexity. Since the purpose of the longitudinal simulation ultimately, is to measure fuel
economy - fuel flow rate measurements are compared. An ICE due to its higher number of
moving parts, differences in design, impacts due to ambient conditions and the type/quality of
fuel used for the ICE testing is prone to a fair amount of variation in the results. It was therefore
anticipated that a high degree of calibration was needed than just the rpm-torque and BSFC,
data that was provided by GM to develop a proper ICE fuel consumption model. This was not
possible due to shut down of campus dyno facilities and more importantly since the team was
not able to travel to its usual full scaled testing events conducted at GM Proving Grounds in
Yuma AZ - as it has been in past AVTC events. It is whence the team logged the fuel flow sensor
on-board the UWFAT Blazer for fuel consumption data and compared with the fuel flow output

from the ICE Simulink model. The ICE fuel flow validation plots are shown in figure xx below.
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Fuel Flow Validation
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Figure 47: ICE Fuel Flow Validation

There are two main differences that can be noted about the status of ICE fuel flow model.
Firstly, that the Simulink model data fuel flow values are much higher than the real-world data,
and secondly that the real-world data is zero for the duration when the comes to a complete
stop. The first difference is to the model over-estimating fuel consumption data through its
BSFC calculation. The second is attributed to the fact that the when the vehicle comes to a stop
in the simulation - the ICE spins to 0 RPM, which is a modelling shortcoming - such is not the
case in real life. Discrepancy in data may also arises from fuel flow sensor itself which may not
be entirely accurate. [68] It must also be noted that the fuel flow sensor on the vehicle measures
fuel flow in 1/s, whereas the model logs in kg/s, which is another source of error, among other
such as the specific calorific value of fuel used in the model vs in real life. Therefore, a nominal
E10 gasoline density of 0.74 kg/L [69] is used to convert the logged vehicle data to reflect the

model.

5.3.4 Longitudinal Drive Trace & Executive APP, BPP Validation

The ability of the simulation model to follow a target vehicle speed is critical for the verification
of performance of all other components. The speed trace plot affirms the simulated powertrain
and body’s ability to match real vehicle acceleration/speed performance for the driven drive

cycle at MATT CTC. The Accelerator Pedal Position (APP) and Brake Pedal Position (BPP)
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speed-trace validation graphs for the real vs simulated data reveals that there exist large and
frequent high APP events, that are not present in real data. This is attributed to the large driver
acceleration request because of the multiple start/stops that are present in the drive cycle. BPP
curves for the model, and recorded data are similar, however the model uses a lesser
magnitude. This is attributed to multiple things including but not limited to brake pad wear,
damp track surface, but also that in real life, a high brake pedal value can be applied while the
vehicle has already come to a stop by the driver, whereas the model only applies the minimal

value needed to decelerate the vehicle.
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Figure 48: Vehicle Executive Inputs Validation
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5.4 Vehicle On-Track Testing

At the MATT CTC facility, UWAFT conducted three major tests to verify systems integrity and
validate vehicle performance targets. Note that due to the confidentially agreements with GM,
the layout and setup at the test track are not shown for the CTC MATT facility. However, since
the tests are regimented with specific requirements, and were conducted in preparation for the
CTC MATT event, the detailed test plans with signal names setup requirements are shown in
Appendix E - Acceleration 0-60 mph Test Plan, Appendix F- Braking 60-0 Test Plan and
Appendix G - Energy Consumption Test Plan.

5.4.1 Unintended Acceleration Safety Evaluation

As described in section 3.2.4 Unintended Vehicle Acceleration System Level Requirement, the
vehicle must not accelerate unintended without explicit system determination of a valid input
signals. In UWAFT’s P4 architecture there lie to propulsive systems - the stock LCV ICE and the
EV propulsion systems powered by the ESS. The APP (Accelerator Pedal Position) is the signal
that is either commanded by the throttle pedal OR is overridden by active safety systems such
as ACC during autonomous driving. There are two main criteria to ensure the vehicle never
accelerates unintended while the vehicle is on a lift. This was a competition pre-requisite before
any of the vehicle performance testing was conducted. Firstly, that the team can prove the
integrity of the APP signal, and that the HV systems are completely de-energized if the
emergency E-Stop is pressed, and when the vehicle is switched out of the On state as described
in Figure 31:. As shown in Figure 49 below, the HV system is de-energized (below 50V in under
10 seconds) when Key off or E-Stop event is triggered - to prevent any possible EV propulsion

and the integrity of the APP signal during on-lift testing.
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Figure 49:Unintended Vehicle Acceleration Validation

5.4.2 0-60 MPH Acceleration Performance Evaluation

The acceleration performance evaluation is an important VTS target that the team intended to
meet as part of its architecture retrofitting for the UWAFT Blazer. The test involved accelerating
the vehicle with Wide Open Throttle (WOT) over a straight-away and repeating the test both

ways along the same strip to find an average 0-60 value. The test is conducted both ways to
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mitigate any effects made to the test due to road gradient or wind. The figure below shows the

annotated 750 ft straight-away at the WRESTRC test center that was replicated at MATT CTC.

Google

Figure 50: 0-60 mph acceleration test [62]

Plots from both runs with averaged time is shown in Figure 51 below. The total time taken for
the Blazer to begin rolling and hit 60 mph or 96 kph is averaged in the table below. The final
average time for the 0-60 mph for the Blazer is 6.75s.

Table 7: 0-60 MPH Run Times

Time - Run 1 (s) | Time - Run 2 (s)
6.62 6.91
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Figure 51: 0-60 Acceleration Runs Both Ways

5.4.3 60-0 MPH Braking Performance Evaluation

The braking performance evaluation is another important VTS target test for which was

conducted at MATT CTC. The test requires the vehicle accelerates to 60 mph and comes to a
complete through full use of vehicle baking, without any regenerative braking. The course is
setup like the acceleration test, except, at the start line the vehicle is already travelling at the

target speed. Two tests were conducted both ways.
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Figure 52: 60-0 Braking Runs Both Ways

The curves gathered from the braking test are integrated over the braking period, over the time
and speed limits annotated in Figure 52. The results are then converted to feet and averaged.

The vehicle can come to a complete stop with an average distance of 168.25 ft.

Table 8: 60-0 Braking Distance

Distance - Run 1 (ft)

Distance - Run 2 (ft)

164.9

171.6
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5.4.4 Energy Consumption Testing

For the energy consumption test the CTC MATT energy consumption drive cycle shown in
Figure 44 was used. UWAFT ran the vehicle for a total of 56.3 km through the CTC MATT drive
cycle. The test run elapsed for 1 hour and 32 minutes, during which the ICE and EV systems
were operational throughout the entirety of the run. The CD torque strategy tuned for the
WRESTRC drive cycle worked well at CTC MATT and allowed the team to retain a safe amount
of SOC of 34% at the end of the drive cycle run. Overall, the team used 6.48 L of fuel as
measured by the competition required fuel flow sensor, and a measured amount of 4.873 L. The
measured fuel amount was calculated by brimming the tank, before the run, and immediately
after ending the run, brimming and weighing the filling cannister. A density value of 0.74 kg/L
[69] for E10 gasoline was applied. Based on the measured data the team concluded testing with

a fuel economy result of 27.6 mpg.

Performing an integration on the amount of amount of net high voltage battery current, the
battery pack depleted 6.391 Ah, which was integrated with respected to time to obtain ~2.25
kWh of energy - provided by the ESS alone. This makes sense as the ESS is ~5.5 kWh in size, and
the SOC went from 80% to 36% which is 46% of depletion. 44% of 5.5 kWh is 2.42 kWh. The
remaining 0.17kWh can be attributed to reported SOC measurement drift that may have

resulted from the long running time of the ESS based on the BMS reported values.
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Figure 53: Energy Consumption Evaluation MATT CTC
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5.5 VTS Recap

The initial UWAFT VTS that was established in year 1 of EMC and is shown in Table 2 of this
work. Upon completion of all tests in year 3 of EMC, the VTS table can be updated as follows.
The overall curb weight and braking distance are within 5% of each the team’s original target
and can be comfortably achieved through swapping of mounts with less denser materials, and
possibly upgrading the vehicle brakes to larger ones. An important item to note is that UWAFT
during its year 1 modelling used regenerative braking when modelling the braking results,
where-as in year 3 testing, the team was not allowed to use regenerative braking during the

braking distance tests. As such the weight and stopping distance are acceptable.

The area of a much higher concern are acceleration and fuel economy numbers. While the
fuel economy figure is ~11% off, the current UWAFT Blazer’s acceleration performance is over

20% off its anticipated target.

Table 9: Measured VTS Results

Specifications Units UWAFT VTS Measured
Layout N/A | P4 Parallel Through Road N/A
Engine / Transmission ft 2.5L14 NALCV / M3D GF9 N/A
Curb weight kg 2100 2066
0-60 MPH s 5.5 6.75
60-0 MPH ft 158.2 168
Fuel Economy Combined | mpg 30.83 27.6

The following section is an in-depth analysis as to why the UWAFT Blazer is not able to
currently meet its acceleration and fuel economy targets and what are the immediate areas of

concern, requiring addressing for the team to succeed in Year 4 of EMC.

5.6 In-Depth Discussion of Testing & VTS Related Limitations

After testing concluded at MATT CTC, a fair amount of time was spent developing an
assessment around the performance of the UWAFT Blazer, and where necessary comparing it to
the model results. The plots included in this section are included as supplementary information
for discussion of the overall results and areas of the UWAFT Blazer that are high priority to be

resolved for improvement in overall fuel economy and system performance.
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5.6.1 ICE & Motor Power Distribution

Another major contributing factor to loss of system performance is the current inability of the
team to turn off the ICE at low power requirements. This especially affected the fuel economy
number as the ICE always remained ON, even during the 10 second recurring vehicle stop
events. Of the 91 minutes of total drive time, the vehicle was at a complete stop for a total of 16
minutes, this a large amount of time where the ICE should’ve been off. The ICE is also most
inefficient at vehicle launch, having engine start/stop functionality would potentially help
displace the initial acceleration to the EV motor, and would allow the team to make up the 10%

off target fuel economy figure.

Engine is always ON, even during Engine should ideally not provide the
vehicle is stopped — this is burning initial starting off torque — this
additional gas should be relegated to the motor —

and the engine should be blended in
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-40
-60
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-100 Regenerative breaking works

Time (s) | and seems to recover a large
amount of energy.

Front ICE Power (kW) ====Rear Motor Power (kW)

e FUE] POWer (kW) e====ESS Power (kW)

5.6.2 EV Thermal Systems

From a thermal systems standpoint the inverter and EDU4 motor share the same water-cooling
loop. As it can be seen, the plateauing nature of the temperatures shows that both components

inline of the thermal loop are well thermally controlled and within the operating spec.

One of the major system limitations, that became apparent during initial testing at Waterloo
was the poor thermal systems design of the HDS battery pack. The HDS battery pack pulls air
from the passenger cabin and exhausts it to the environment. Despite exposing the inlet to

plenty of fresh air, the ESS internal temperature kept rising for the entirety of the test. HDS has
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not provided the team with access to fan control, due to which additional cooling could not be

commanded.

To mitigate this short term and fulfill the drive cycle requirements of the energy consumption
test the team had to resort to restricting power draw from the motor. In effect reducing cell
heating due to inefficiencies. This was achieved through trial and error at WRESTRC during
development and testing for the energy consumption drive cycle. Despite limited power draw
the pack temperatures continued to rise. This is a serious design limitation, that directly
impacted the team’s final fuel economy and acceleration figures, as the team ultimately could
not request a higher forward or regenerative motor torque. The team must work closely with
HDS to try and gain control of the internal fans and find an alternate way to force cooler air in to

the ESS circumventing this issue.

Sustained Operation EV Systems Temperature Plots
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Fan cooled ESS temperatures keep rising during hwy partion of the drive cycle.
Coaling solution is inadequate for the ESS, need to work with ESS supplier to improve o
this somehow — currently team are allowed no cantrol over pack fans. We can set a min

35 fan speed. A control algo is in place but we have not tested it yet,

~
ﬁ —

i
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Water cooled — EV inverter and motor are on the same cooling loops. EV Thermal
systems performing well! Potential under-sizing / optimization possible.
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Figure 54: Sustained Operation EV System Temperature Plots

5.6.3 Limited EV Torque Application

The P4 motor is rated for 190 Nm of forward and regenerative torque application. A Torque-

RPM plot shows that throughout the fuel economy testing, the motor is barely being utilized to
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its full potential. As described in the sections above, this is due to the thermal limitations of the
ESS and is not a result of thermal loop of motor itself. It may also be noted that the DP torque
strategy ultimately is a primitive torque strategy and does not deploy the best possible torque
blending with the ICE, resulting in less ideal drive quality characteristics. The team has yet to
also receive the flashed ECM from GM that allows propagation of a torque command from the

MABx, where the current torque strategy is purely torque additive.

Peak Torque — 175 Nm Peak power used on Torque blending/ramping
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Figure 55: Underutilization of EV systems
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Chapter 6

Conclusions

The presented research identifies the brevity involved in developing a real-time controller that
is organized in such a way to reduce complexity associated with adding functional layers across
the supervisor. Emphasis is placed on appropriate scoping of sub-system functions that are
cascaded for distinct identification of roles, and introduction of new functionality. The decisions
made over 3 years of developed are geared towards ease of feature development, incorporation
of requirements-based testing methodology and a functional supervisory controller that is
agnostic of powertrain architecture. The foundation upon which the simulation model stands is
expanded on through use of object-oriented programming such that developer interactions
facilitate a degree of automation in repetitive tasks such as initialization, test case running, and

launching model variants for SIL, HIL or VIL target hardware flashing.

The design of the HSC, and the inline placement of the tester assertion blocks ties the RTM
requirements right into the HSC allowing for test case to be automatically asserted when a
requirement is not met. This ensures minimal logic errors or faults to propagate during HIL or
VIL testing. Thus far 86 requirements out of a total of 132 controls requirements are validated,
the other of which are pending development for year 4 of EMC. The structure and heavy use of
the RTM centralizes development across all sub-teams ensuring team-wide transparency, and
recognition of dependency. The COVID-19 pandemic limited use of the HIL in model validation,

due to restriction in garage access.

New and more experienced developers benefit from the segregated roles and functions of the
HSC, in a few different ways. Development efficiency is improved as a parallel version control-
oriented development environment is made possible minimizing merge conflict possibilities
when pull requests are generated to incorporate new features. A well thought out structure
exists for adding future components, and/or component/vehicle functionality. Code ownership
and sub-system specific testing is improved as developers take on smaller, more modular sub-

systems to develop.
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The expansion of Model Based Design with UWAFT’s Model Configurator tool provides
several benefits over manual Simulink based model interaction. The model initialization, and
switch-over to HIL setup is improved from a ~9 minutes process to ~4 minutes process due to
reduced manual dSPACE RTI hardware setup, and instantiation of a new model for HIL based
/0 configuration. Component parameter population and modification is simplified through use

of masked library blocks to encapsulate data and constants for 7 team added ECUs.

The rule-based torque strategy is successfully able to sustain robust HEV operation and safe
SOC charge through the MATT CTC E&EC testing. The Blazer is currently off of its VTS
acceleration target by 20%, and its fuel economy target by 11%. The team must work with the
HDS ESS supplier to uncap the significant thermal constraint, for a possible improvement in
higher electric regenerative braking capability and higher forward torque value. The 16-minute
idle time in the MATT CTC fuel economy significantly contributes to a lower mpg value, as no
miles are driven during that time.

One of the operationally viable - full EV mode, is currently not possible as the team does not
have 1) a fully analyzed 12V system, that can support all vehicle ECUs, thermal, brake and
steering systems to be fully ON. 2) development of TCM signal gate-waying through MABx, for

forcing neutral when the shifter is in Drive.
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Appendix A - RTM Types & Identifiers

Type Descriptor (ABCD-***.* *¥)

ID Type Description
MECH Mechanical Anything related to the mechanical team system design (ex fuel system,
design thermal systems)
ELEC Electrical Anything related to the electrical team system design (schematics, fuses or
design system loops)
Supervisory Algorithm requirements for controllers (includes CAV and HSC, can extend
ALGO L .
Controller, CAV to additional controllers if they can be programmed)
USER User Requirements for physical components the driver interacts with — HMI,
Interaction steering wheel, gas pedal etc.
INTG Integration Requirements for ver|f|catlon of test§ completed, systems integrated
according to best practices and standards
MAIN Maintenance Requirements for maintaining integrity of vehicle (calibration, etc)

Component/Subsystem Identification (****-EFG-*.**)

ID Subsystem
MOT Motor
ENG Engine
FUEL Fuel System
BAT Battery
TRN Transmission
CAV Autonomy sensors
BDY Vehicle features
DVLN Driveline
DYN Dynamics
AEB Automatic emergency braking
ACC Adaptive Cruise Control
LCC Lane Centering Control
OBJ Object identification
COM Communications
HV High Voltage
LV Low Voltage
EXST Exhaust
GEN General
HIL Hardware-in-the-Loop
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HMI Human Machine Interface
HSC Hybrid Supervisory Controller
SSPN Suspension
THRM Thermal
PWTN Powertrain
RDR Rear Drivetrain
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Appendix B - Model Configurator Script

1.

2. classdef modelObj < handle

3. % modelClassBased

4. % Model scripts rewritten using OOP. Initialize using modelClassBased
5.

6. properties
7 modelName % Name of the simulink file
8 modelData % Model parameters needed

9. EMC_DriveCycle % Model drive cycle
10. tStop % Model termination time

11. simOut % Simulation outputs

12. initialized = false; % Has Wheellnit been called?
13. notes % Blank variable, use for whatever

14. end

15.

16. methods(Hidden)
17.  function fields = loadData2Workspace(self)

18. % Puts model parameters in base workspace

19. fori = 1:length(fieldnames(self.modelData))

20. fields = fieldnames(self.modelData);

21. assignin('base’, fields{i,1}, ...

22. self. modelData.(fields{i,1}))

23. end

24. end

25.

26.  function loadDriveCycle2Workspace(self)

27. % Puts Drive cycle parameters in base workspace
28. assignin('base’, 'tStop’, self.tStop);

29. assignin('base’, 'EMC_DriveCycle', self. EMC_DriveCycle);
30. end

31.

32.  function workspaceCleanup(self, fields)

33. assignin(‘base’, 'fields’, fields);

34. for i = 1:length(fieldnames(self.modelData))

35. assignin('base’, 'i', i);

36. evalin('base’, 'clearvars(fields{i,1})")

37. end

38. evalin('base’, ...

309. 'clearvars(''fields","i",""tStop"," EMC_DriveCycle")")
40. end

41. end
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42.
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.

methods(Static)
function cleanUpBuild()
% Cleans up the build folder
pattern = (".sdf");
dinfo = dir;
for i = 1:length(dinfo)
directory = dinfo(i).name; %fjust the name
if directory == "build"
cd(directory)
build_contents = dir;
for idx = 1:length(build_contents)
if build_contents(idx).isdir == 0 &&

~endsWith(build_contents(idx).name,pattern)

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

delete(build_contents(idx).name)
end
end
end
end
cd("../")

end

function buildCheck()

% Used to Check if current directory is the build folder

current_folder = pwd ;
if regexp(current_folder, ".+?build")
cd('../")
end
end

end

methods(Access = public)% Pre simulation, data processing, preparation

function obj = modelObj(modelName, datalLoad)
% modelClassBased Construct an instance of this class

% Inputs:
% modelName: string, name of model, eg.
% 'UWAFT_Blazer_P4_4WD_Opt'

% dataLoad: struct, containing all necessary model parameters
% Call using: objName = modelClassBased(modelName, dataLoad);

obj.modelData = dataLoad;

obj.modelName = modelName;

load_system(modelName);
end
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88. function self = init(self, model_name)

89. % Compiles model to fix rolling resistance problem

90. % called by object, but also provides public interface to use

91. % Wheellnit

92. % in case runModel() was not called, load data to workspace

93. selfloadData2ZWorkspace();

94, selfloadDriveCycle2Workspace();

95. if nargin ==

96. model_name = self modelName;

97. end

98. Wheellnit(model_name);

99, self.initialized = true;

100. end

101. function self = config(self, buildEnv)

102. %Builds SIL, HIL or MABx model

103.

104. switch buildEnv

105. case 'HIL'

106. rti1006;

107. target _file = 'rti1006.tlc’;

108. case '"MABx'

109. rtil401;

110. target _file = 'rti1401.tlc’;

111. case 'SIL'

112. target_file = "grt.tlc’;

113. end

114.

115. if buildEnv == "SIL"

116. load_system(self.modelName);

117. else

118. open_models = get_param(Simulink.allBlockDiagrams(),'Name"); %checking for
any open models, to close them

1109. if ~isempty(open_models) ==1

120. for i = 1:length(open_models)

121. if regexp(open_models{i},'UWAFT")

122. bdclose('all")

123. end

124. end

125. end

126. %modelObj.cleanUpBuild;

127. open_system(self.modelName)

128. end

129. fields = loadData2Workspace(self);

130.

131.

132. % find goto and from blocks

133. HSC_In = find_block_by_type(self. modelName, 'Goto', 'HSC_In");
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134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

ECU_In = find_block_by_type(self.modelName, 'Goto', '"ECU_In");
HSC_Out = find_block_by_type(self.modelName, 'From', '"HSC_Out");
ECU_Out = find_block_by_type(self. modelName, 'From', 'ECU_Out");
% delete all line connections

delete_line_connections(HSC_In);
delete_line_connections(HSC_Out);
delete_line_connections(ECU_In);
delete_line_connections(ECU_Out);

% comment out all blocks
comment_block_list(self.modelName, {' MABx_IO', 'HIL_IO’, 'SIL_IO"}, 'on');
set_param(sprintf('%s/MABx_IO’, self. modelName),'Commented’,'on");

% connect lines
switch buildEnv
case 'SIL'
comment_block_list(self. modelName, {'SIL_I0', 'MABX', 'GM Blazer', 'Tank’,

'Longitudinal Driver', 'Environment', 'Visualization', 'Logging'}, 'off");

151.
152.
153.
154.
155.
156.

add_line(self. modelName, 'ECU_Out/1', 'SIL_I0/2");
add_line(self.modelName, '"HSC_Out/1', 'SIL_I0/1");
add_line(self.modelName, 'SIL_10/1', '"ECU_In/1");
add_line(self. modelName, 'SIL_10/2', '"HSC_In/1");

case 'HIL'
comment_block_list(self.modelName, {'"HIL_IO', 'GM Blazer’, 'Longitudinal

Driver', '"Environment'}, 'off’);

157.

comment_block_list(self.modelName, {'Tank’, 'MABx', 'Visualization',

'Logging'}, 'on');

158.
159.
160.
161.
162.
163.
164.
165.

add_line(self.modelName, 'ECU_Out/1', 'HIL_I0/1");
add_line(self.modelName, 'HIL_10/1', 'ECU_In/1");
build_file_name = "UWAFT_Blazer HIL';
delete_block_name = 'MABx_IO";
io_sys_name = 'HIL_IO";
case 'MABx'
comment_block_list(self.modelName, {'MABx_IO', 'MABx'}, 'off");
comment_block_list(self. modelName, {'GM Blazer', 'Tank’,'Longitudinal

Driver', 'Environment’, 'Visualization', 'Logging', 'Tester'}, 'on');

166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.

add_line(self.modelName, '"HSC_Out/1','MABx_I0/1");
add_line(self.modelName, 'MABx_10/1', '"HSC_In/1");
build_file_name = "UWAFT_Blazer MABx';
delete_block_name = 'HIL_IO";
io_sys_name = 'MABx_I0";

end

%Build Model
if stremp(buildEnv, 'SIL")
set_param(self. modelName, 'SolverType', 'Variable-step')
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177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
step_time));
205.
206.

set_param(self. modelName, 'SystemTargetFile', target_file)
loadDriveCycle2Workspace(self);
return;
else
modelObj.buildCheck()
end

cd build;

save_system(self. modelName, build_file_name);
delete_block(sprintf('%s/%s', build_file_name, delete_block_name));
set_param(build_file_name, 'SystemTargetFile', target_file);
set_param(build_file_name, "TRCGenerateLabels’, true)
set_param(build_file_name, 'BlockReduction’, false);
set_param(build_file_name, 'LoadAfterBuild’, false);

if stremp(buildEnv, 'HIL")
% fastest HIL can currently run is 2 ms, which is able to
% satisfy all CAN message rate requirements
% if you change the HIL step time you will have to manually
% update the step time of the drive cycle block!
step_time = 0.002; % 2 ms
else
% MABX is capable of running faster than HIL
step_time = 0.001; % 1 ms
set_param(build_file_name, 'StopTime', 'Inf"); % MABX runs infinitely
end

set_param(build_file_name, 'SolverType', 'Fixed-step’, 'FixedStep', sprintf('%s’,

open_system(sprintf('%s/%s’, build_file_name, io_sys_name), 'tab");
waitfor(msgbox('Please manually build RTICANMM blocks and then click OK?!',

'Manual Input Required!"));

207.
208.
2009.
210.
211.
212.
213.
214.
215.
216.
217.
218.
2109.
220.
221.

if stremp(buildEnv, 'HIL")
if ~isempty(self.tStop)
selfloadDriveCycle2Workspace();
else
self.tStop= 30;
self. EMC_DriveCycle = zeros(30,2);
self. EMC_DriveCycle(:,1) = [1:30]';
selfloadDriveCycle2ZWorkspace();
end
self.init(build_file_name); % force Wheellnit
end

rtwbuild(build_file_name);
close_system(build_file_name, 0);
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222. workspaceCleanup(self,fields)

223. delete(build_file_name);

224. modelObj.buildCheck()

225.

226. function comment_block_list(md]l, block_names, on_off)

227. for n =1 : length(block_names)

228. set_param(sprintf('%s/%s', mdl, block_names{n}), '‘Commented’, on_off);

229. end

230. end

231.

232. function delete_line_connections(block_handle)

233. line_handles = get_param(block_handle, 'LineHandles');

234. for 1 = line_handles.Inport

235. if1>0

236. delete_line(1);

237. end

238. end

239. for 1 = line_handles.Outport

240. if1>0

241. delete_line(1);

242. end

243. end

244. end

245.

246. function h = find_block_by_type(md], type, name)

247. h = find_system(md], 'SearchDepth’, 1, 'FindAll', 'On’, "Type', 'block’, 'BlockType',
type, 'Name', name);

248. end

249. end

250.

251. function self = openModel(self)

252. % public interface to open the underlying simulink model

253. open_system(self.modelName);

254. end

255.

256. function self = runModel(self)

257. % Runs the simulation

258. % Outputs the updated object containing simulation results

259. % Run using: objName = objName.runModel();

260.

261. % setup model to run in SIL

262. self.config('SIL");

263.

264. % loads ModelData and EMC_DriveCycle to workspace

265. fields = loadData2Workspace(self);

266. loadDriveCycle2Workspace(self);

267.
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268. % initialize model if necessary (but don't waste time if not)
269. if ~self.initialized

270. self.init()

271. end

272.

273. % Runs the simulation and stores simulation outputs into object
274. % for logging

275. self.simOut = sim(strcat(self. modelName), ...

276. 'StopTime', num2str(self.tStop));

2717.

278. % Clean up workspace

279. % workspaceCleanup(self, fields)

280. end

281.

282. function runTests(self, test_file_path, test_suite_name, test_case_name)
283. %loads and runs MABx tests

284.

285. if nargin == 4

286. sltest.testmanager.view;

287. test_case =

sltest.testmanager.TestFile(test_file_path).getTestSuiteByName(test_suite_name).getTestCaseB
yName(test_case_name);

288. if ~self.initialized

289. self.init()

290. end

291. run(test_case)

292. elseif nargin ==

293. sltest.testmanager.view;

294. %Get path to modelObj.m

295. path_folder_arr = convertCharsToStrings(split(mfilename('fullpath’), filesep));

296. %Remove last two sections of path to get project directory

297. path_folder_arr = strjoin(path_folder_arr(1:end-2), filesep);

298. %Get all .mldatx files in requirements/Main

299. file_list = dir(fullfile(path_folder_arr, "requirements”, "Main", "*.mldatx"));

300. %fast restart allows for reuse of a single compiled model

301. set_param(self. modelName, 'FastRestart’, 'on")

302. for i = 1:numel(file_list)

303. sltest.testmanager.load(fullfile(file_list(i).folder,
file_list(i).name));

304. end

305. if ~self.initialized

306. self.init()

307. end

308. sltest.testmanager.run;

3009. %need to turn off fast restart to avoid issues with running

310. %the model

311. set_param(self. modelName, 'FastRestart', 'off")
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312. else

313. disp("runTests() in class modelObj takes either 3 or no
arguments.")

314. end

315. end

316.

317.  function self = clearLoggers(self)

318. % Find all ports with data logging enabled

3109. ports = find_system(self.modelName, 'FindAll', 'on’, "Type’, 'Port’, 'Datalogging’,
‘on’);

320. % Disable all logging

321. for x=1:length(ports)

322. set_param(ports(x), 'DataLogging’, 'off");

323. end

324. end

325.

326.  function self = rosBuild(self, CavType)

327. %CavType: String of 'ACC', 'AEB’, or 'LCC'

328. %All CAV Controllers follow the same format:

329. %1 publisher for their controller output

330. %71 subscriber to target object for AEB and ACC

331. %1 subscriber to raw lane data for LCC

332. %1 subscriber from drive control inputs for ACC

333.

334, folder = cd;

335. if(any(folder(length(folder)-26+1:length(folder)) ~=
'ecmc_architecture_modeling'))

336. cd.;

337. end

338.

339. open_models = get_param(Simulink.allBlockDiagrams(),'Name"); %checking for
any open models, to close them

340. if ~isempty(open_models) ==1

341. for i = 1:length(open_models)

342. if regexp(open_models{i},'UWAFT")

343. bdclose('all")

344. end

345. end

346. end

347. newsys = new_system(CavType);

348. buildfilename = strcat(self.modelName, '/Tank/',CavType);

349, ACC = add_block(buildfilename, strcat(CavType,'/',CavType)); %CAV File to new
system

350.

351. Publish = 'Publish’;

352. add_block('robotlib/Publish’, strcat(CavType,'/’, Publish));

353. set_param(strcat(CavType,'/’, Publish), 'topicSource','Specify your own");
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354.

set_param(strcat(CavType,'/’, Publish),

'messageType',strcat('common/' lower(CavType),'_output_msg'));

355.

set_param(strcat(CavType,'/’, Publish), 'topic’,

strcat('/',lower(CavType),' _output_msg'));

356.
357.
358.
359.

Blank = 'Blank’;
add_block('robotlib/Blank Message', strcat(CavType,'/', Blank));
set_param(strcat(CavType,'/’, Blank),

'entityType',strcat('common/'lower(CavType),' _output_msg'));

360.
361.
362.

BusAssign = 'BusAssign’;
add_block('simulink/Signal Routing/Bus Assignment’,

strcat(CavType,'/',BusAssign));

363.
364.
365.
366.
367.
368.
369.
370.
371.

add_line(CavType, strcat(Blank, '/1"),'BusAssign/1');
add_line(CavType, strcat(BusAssign,'/1"), 'Publish/1');
switch CavType
case 'ACC'
TargetObj = 'target_output’;
add_block('robotlib/Subscribe’, strcat(CavType,' /', TargetObj ));
set_param(strcat(CavType,'/', TargetObj), 'topicSource’,'Specify your own');
set_param(strcat(CavType,'/', TargetObj),

'messageType',strcat('common/' lower(TargetObj),'_msg"));

372.
373.
374.
375.
376.
377.

set_param(strcat(CavType,'/', TargetObj), 'topic’, strcat('/', TargetObj));

DriveCtrl = 'drive_ctrl_input’;

add_block('robotlib/Subscribe’, strcat(CavType,'/’, DriveCtrl));
set_param(strcat(CavType,'/',DriveCtrl), 'topicSource','Specify your own');
set_param(strcat(CavType,'/',DriveCtrl),

'messageType',strcat('common/' lower(DriveCtrl),'_msg'));

378.
379.
380.

set_param(strcat(CavType,'/',DriveCtrl), 'topic’, strcat('/’, DriveCtrl));

add_block('simulink/Commonly Used

Blocks/Terminator',strcat(CavType,' /Terminatorl'));

381.

add_block('simulink/Commonly Used

Blocks/Terminator',strcat(CavType,'/Terminator2'));

382.
383.
384.
385.
386.

add_line(CavType,strcat(TargetObj,'/1"),'Terminator1/1");
add_line(CavType,strcat(DriveCtrl, '/1'),'Terminator2/1");

add_block('simulink/Signal Routing/Bus

Selector’,strcat(CavType,'/BusSelectorl'));

387.

add_block('simulink/Signal Routing/Bus

Selector',strcat(CavType,'/BusSelector2'));

388.
389.
390.

add_line(CavType, strcat(TargetObj,'/2"), 'BusSelector1/1");
add_line(CavType, strcat(DriveCtrl,'/2"), 'BusSelector2/1");
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391.
392.
393.
394.
395.
396.

case 'AEB'
TargetObj = 'target_output’;
add_block('robotlib/Subscribe’, strcat(CavType,' /', TargetObj ));
set_param(strcat(CavType,'/', TargetObj), 'topicSource','Specify your own');
set_param(strcat(CavType,'/', TargetObj),

'messageType',strcat('common/'lower(TargetObj),'_msg'));

397.
398.
399.

set_param(strcat(CavType,'/', TargetObj), 'topic’, strcat('/', TargetObj));

add_block('simulink/Commonly Used

Blocks/Terminator',strcat(CavType,' /Terminatorl"));

400.
401.

add_line(CavType,strcat(TargetObj,'/1"),'Terminator1/1");
add_block('simulink/Signal Routing/Bus

Selector’,strcat(CavType,'/BusSelector1'));

402.
403.
404.
405.
406.
407.
408.
409.

add_line(CavType, strcat(TargetObj,'/2"), '‘BusSelector1/1");

case 'LCC'
%Still need raw lane data msg
end

open_system(CavType);
waitfor(msgbox('Please link bus to controller with appropriate message signals’,

'Manual Input Required!"));

410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424,
425.
426.
427.
428.
429.
430.
431.
432.
433.

cd build

rosinit;
set_param(CavType,'SystemTargetFile', 'ert.tlc");
set_param(CavType, 'HardwareBoard', 'Robot Operating System (ROS)");

loadData_UWAFT;
rtwbuild(CavType);
close_system(CavType, 0);
delete(strcat(CavType,'slx'));
clearvars -except self
rosshutdown;

cd..;

end

function self = loadLog(self, path)
% This function is used to load a log file thats been converted
% via blf2mat (https://github.com/uwaft/blf2mat) tool. Giving the
% channel which contains VehSpdAvgDrvn will load the drivecycle
% that was driven in the log

if self modelName == "UWAFT_Blazer_Stock_4WD"
blockPath = strcat(self. modelName,'/Drive Cycle Source');
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434, else

435. blockPath = strcat(self.modelName, '/Longitudinal Driver");

436. end

437. set_param(blockPath, 'cycleVar','Workspace variable")

438. set_param(blockPath, 'wsVar', '"EMC_DriveCycle');

439.

440. timeseries_table = load(path);

441. try

442, self. EMC_DriveCycle =
timeseries_table.timetable.PPEI_Vehicle_Speed_and_Distance.VehSpdAvgDrvn;

443. self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1;

444. catch ME

445. switch ME.identifier

446. case 'MATLAB:nonExistentField'

447. warning('Channel does not contain VehSpdAvgDrvn')

448. end

449, disp(ME)

450. end

451. end

452,

453.  function self = loadDriveCycle(self, time, speed)

454. % Two ways of running this method:

455. % Loads two m by 1 vectors containing time data and speed

456. % data

457. % Call using: objName = objName.loadDriveCycle(time, speed)

458. % Or:

459. % Loads in a drive cycle saved in the drive cycle block

460. % Call using:

461. % objName = objName.loadDriveCycle('nameOfDriveCycle')

462.

463. if self. modelName == "UWAFT_Blazer_Stock_4WD"

464. blockPath = strcat(self. modelName, '/Drive Cycle Source');

465. else

466. blockPath = strcat(self.modelName, '/Longitudinal Driver');

467. end

468.

469. if nargin == 3 % Time and speed vectors

470.

471. try

472. self. EMC_DriveCycle = [time, speed];

473. catch

474, % Something to try and fit the vectors together

475. error('Time and speed vectors not identical")

476. end

477. self.tStop = time(end);

478.

479. set_param(blockPath, 'cycleVar','Workspace variable')
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480. set_param(blockPath, 'wsVar', 'EMC_DriveCycle");
481.

482. elseif nargin == 2 % Drive cycle string

483.

484. try

485. set_param(blockPath, 'cycleVar', time);

486. catch

487. error(strcat(time, 'is not a valid drive cycle'))
488. end

489.

490. if self. modelName == "UWAFT_Blazer_Stock_ 4WD"
491. baseBlockPath = strcat(blockPath, ...

492. 'Driver/Enable Drive Cycle/Drive Cycle Source");
493. else

494, baseBlockPath = strcat(blockPath, ...

495. '/Driver/Enable Drive Cycle/Drive Cycle Source');
496. end

497. self.tStop = get_param(baseBlockPath, 'tfinal’);

498. self.tStop = split(self.tStop, ' ");

499. self.tStop = str2double(self.tStop{1,1});

500.

501. else

502. error('Incorrect number of inputs')

503. end

504.

505. % Verifies what the drive cycle has been set to

506. disp(newline)

507. disp(strcat('Drive cycle block set to: ', ...

508. get_param(blockPath, 'cycleVar')))

5009.

510. end

511.

512. function self = loadVTS(self)

513. % Loads the 0-60, 50-70, 60-0 drive cycle to the object
514. % Call using: objName = objName.loadVTS();

515.

516. % Ensures drive cycle block is set to workspace variable
517. if self modelName == "UWAFT_Blazer_Stock_4WD"
518. blockPath = strcat(self.modelName,'/Drive Cycle Source');
5109. else

520. blockPath = strcat(self.modelName, '/Longitudinal Driver");
521. end

522. set_param(blockPath, 'cycleVar','Workspace variable')
523. set_param(blockPath, 'wsVar', '"EMC_DriveCycle');

524.

525. FILE_NAME = 'Acceleration Test Cycle.xIsx’;

526. XL_RANGE ="'A1:B430";
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527. self. EMC_DriveCycle = xlsread(FILE_NAME, XL_RANGE);
528.

529, self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1;
530. end

531.

532. function self = loadTopSpeed(self)

533. % Loads the max velocity drive cycle to the object

534. % Call using: objName = objName.loadTopSpeed();

535.

536. % Ensures drive cycle block is set to workspace variable
537. if self. modelName == "UWAFT_Blazer_Stock_4WD"

538. blockPath = strcat(self.modelName,'/Drive Cycle Source');
539. else

540. blockPath = strcat(self.modelName, '/Longitudinal Driver");
541. end

542. set_param(blockPath, 'cycleVar','Workspace variable')
543. set_param(blockPath, 'wsVar', 'EMC_DriveCycle");

544.

545. FILE_NAME = "Top Speed Test Cycle.xlsx’;

546. XL_RANGE ='A1:B1001";

547. self EMC_DriveCycle = xlsread(FILE_NAME, XL_RANGE);
548.

549. self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1;
550. end

551.

552. function self = loadCity(self)

553. % Loads the city drive cycle into the object

554.

555. FILE_NAME = 'Offical EMC Drive Cycles.xlsx’;

556. SHEET =1;

557. XL_RANGE ="'A2:B7392";

558. MPH_TO_SI = 0.44704; % mph to m/s

559.

560. drive_cycle = xlsread(FILE_NAME, SHEET, XL_RANGE);
561. % split into time and speed vectors and call loadDriveCycle
562. selfloadDriveCycle(drive_cycle(:,1),...

563. drive_cycle(:,2) * MPH_TO_SI);

564. end

565.

566. function self = loadHighWay(self)

567. % Loads the highway drive cycle into the object

568.

569. FILE_NAME = 'Offical EMC Drive Cycles.xlsx’;

570. SHEET = 2;

571. XL_RANGE ="A2:B29622";

572. MPH_TO_SI = 0.44704; % mph to m/s

573.
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574. drive_cycle = xIsread(FILE_NAME, SHEET, XL,_RANGE);

575. % split into time and speed vectors and call loadDriveCycle
576. selfloadDriveCycle(drive_cycle(:,1),...

577. drive_cycle(:,2) * MPH_TO_SI);

578. end

579.

580. function self = loadDegenTuning(self)

581. % Loads the highway drive cycle into the object

582.

583. FILE_NAME = 'degenTuningDriveCycle.xlsx’;

584. SHEET = 1;

585. XL_RANGE ="A1:B37012";

586. MPH_TO_SI = 0.44704; % mph to m/s

587.

588. drive_cycle = xlsread(FILE_NAME, SHEET, XL_RANGE);
589. % split into time and speed vectors and call loadDriveCycle
590. selfloadDriveCycle(drive_cycle(:,1),...

591. drive_cycle(:,2) * MPH_TO_SI);

592. end

593.

594. function self = writeNote(self, note)

595. self.notes = note;

596. end

597.

598. end

599. end
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Appendix C- Model Based Design Framework
Overview

System Safety Analysis
DFMEA, STPA, FIA, SEFA

Requirements Trace-ability Matrix (RTM)

Requirements Generation &

/." A v
’ Documentation h
Functional Supervisory Controller “ - .
Development Testing | SIL

System Level

Sub-system Level

Implementation

Plant & Soft-ECU Models

Plant & Soft-ECU
Model Configurator
(00P)
Data |
Sim Properties
Masked Library Block Methods() Requirements Test /
Initialization / Simulation Data (I0) Manipulation /
Property Editing Model Variant Generation T
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Appendix D - Plant Soft-ECU Inputs/Outputs

Summary
Component Input Qutput To Plant / To HSC
LV Voltage Inverter Relay
Power Command 1 BMS Relay To Plant
Relays Power Command 2 ECM Relay
Power Command 3
Power Command 4 N/A To HSC
Effective Acc Pedal Position Gear State To Plant
Vehicle Speed Gear State
TCM Clutch Locked TCM Fault To HSC
TCM RNG Value TCM State
Shift Pos PRNDL State
N/A To Plant
BCM Engine Running Power Mode
Key State Engine State Request To HSC
ECU Power
Torque Command Out
Starter Motor On To Plant
Engine Speed Steering Wheel Angle
Engine Torque Command ECM Power
Ambient Pressure Torque Command Out
ECM Relay Engine Speed Out
Engine On Request Engine Torque
ECM ECM Rng Value PRNDL State
Engine Fault Effective Pedal
Accelerator Pedal In Engine Running To HSC
Brake Pedal In Accelerator Pedal
Vehicle Speed In Brake Pedal
Transmission Gear Steering Angle
Engine Torque Feedback CAV Decel
Vehicle Speed Out
Engine Coolant Temp
Low Voltage Contactors Closed To Plant
Discharge Enable Contactors Closed
Temperature BMS On
Current In System State
BMS Voltage In Current Out
S0C Usable SOC To HSC
Minimum Fan Speed Real SOC
HVIL Analog Low Voltage Out
HVIL Analog High Charge Current Fault
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Resistance to Ground

Discharge Current Fault
Over Voltage Fault
Under Voltage Fault
Over Temperature Fault
HVIL Low
HVIL High
Ground Isolation Fault
Charge Current Available
Discharge Current Available
Pack Temperature High

Pack Temperature Low
Inverter Relay Actual Torque Command To Plant
Motor Speed Inverter State
Battery Voltage Motor Speed
Battery Current Motor Voltage
Motor Torque Motor Current
Control Mode Discharge State
Inverter Clear Error Inverter On
Power Limit Motor Temp To HSC
Torque Command Motor Phase Current
Restart Request ESS DC Link Voltage
Active Discharge Motor Temperature
Ambient Temperature Inverter Power Loss
Coolant Speed Max Junction Temp
Power Loss Max Junction Temperature
N/A To Plant
Pump On/Off Direction Output Speed
Coolant PumpPump Power Hold Command Controller Status
Pump Motor Speed Measured Power To HSC
Ignition Motor Direction
Coolant On
Hybrid Fan Speed Request N/A To Plant
Coolant Fan Engine Coolant Fan On Fan speed To HSC
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Appendix E - Acceleration 0-60 mph Test Plan

Tust Hams
Authoels) Timothy =, Will Stairs, Madih Bouriaves
Test Summary T cualuzsa the wehicle's ity to scalorta from IV 1o 60 mph 3 quickly 32 possible

Data of Tasting, Duration of Test

Apl 16/17. Tost duration, 2 hours per day

Fecuired Test Equiperent/Faciiiies Faclities
T Training sl h 7T} Test Track
= Lang reel ups massure
= ke takdks
= sgwanch
= Damlaggeg equipmant
Reruired Conditions Oy track (s rin or snow)
Parsonnal Required = Oetr
® Passangr deRamal it ogging. manf Uack cundrns and stata o wehic)
= Observer track satup}
ehidla Check Procecirs Mota: Tha 7 that is Kssed In both accalerztion and Thesa S0 the vekica & tor s passed.
1. Flowly drive at 15 mgh for a quartar miks. d right ta chack lateral

ot thas than b, ndicating ragen att
4. Partcem 3 guick acecoration to 15 mph 2nd pencoed 12 3 hard beske.
tessas ot 15 mph, g staps 1 14 for 30 mph, 45 mph, and 60 meh (or sop Scceleration requirad for testing).
. Porem & el sl nspdcticn of the vahicla Lnckrbady, snging by, and dacteonlcs i ha rear. Enues nohing i 1ooss, out of lacs, and that nokales an prosant.
B i s 0N, procoed 10 tasting.

Test Satup Froceda

1. Baviow Accelaration EOD.
2. Mark cot tha staeting Ena [shown In the ciagrams balcw) with pyllmi.
2.Secure any th h vl
B tha acoslerstion 16t & baing done besars the braking tast, p.m-m e shaksdiown chack 5 cutined in "Viicla Chack Procedurs” 10 ans.es the vehicla & nuneing as sxpected. Ceherwiss, this test shoukd already ba campleted.
5. Dot that tha osting arua ki cear.  tha sarting i b covarad In It ancl g, swaep the arza 2 bost 25 Fossbia o Mmaskmize taction.
6. Mot Maks sure o masimiz the SO0 betora every non. Diiva conststantly for 30kph whil the pResenger kiaps an ey on tha SOC. Sap when masimisd
7. Db 10 the stating lirs.
8.5at up catakogger and Bt rcord
5. Partorm avert per Event Procsdure.
0. Save recorcled CAN Hla.
1. Repaat stops 5 - 10 far 3 total ot 6 test s,
12. Powwsr o catalogger.

MNota: Delvars i sfip on Launch drivars ara ot allowad to
pertorm *neutral diops” but are llowed 1o "power braks” thek g i andif
o cool-dawn laps am alowed for this evant. & & ot recommended 1o die ths @vant on wet parversng dus 2 1he rducticn Inracion.

1. Tha drivar will antar 2 fshorem below) and come ta wna.
2. Tha kengeh o tha track Bing usod far e VM 60 mph tast should ba vartied dar of ebatructions and of appropelats
KNGS fo 1 Test (500 TaST SETUP PIOCOLID Section Sar datais).
3.Tha passanger should begin recarding data
4.Wihin dzes reccrding his started and the track b ckar of ctatnacians, the diver wil accdlorita & quickly s
posshla o capera tha VM 80 meph
a. Tha drivar bs raspen y Fegp
qmn 15 PR TaEENGAL

-0 the track oon 1 the g

WM 20
X ommwnmls cormpiata, e patsceer ok and tha ocording.

2. WOTE: Des ot end the recoeting anca & mph b5 raachod Rneord for 3 fow 5000 axtra b0 enaur tha data from the run & ot tancated
651k nurs o the accalerstion test wil be pertormed Thay willall s driven In the sam direction dua 1o track restrictions.

AN Notwarks =10
Prop
canigns Nt - AN of these 3ss frem the spreadshest on ANL Sharspeint (all logged at 100 Hek

“TTesting ¥ HEMC_¥3_RecpadrecDamSionali fav.atee”
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Appendix F- Braking 60-0 Test Plan

Tust Nams
Authes) Timothy Er, WAl Stairs, Masih Bouriayes
Test summary sty Ph 1o D i gpaickly i posibia

Dt of Testing, Duraticn of Test | Apnl 16/17. Test duraticn, 2 hoass per diy

Racuirad Test Equipesnt/Facibtios Ik

= Watorkon Region Emergency Services Training and Resasech Cantre (WRESTD) Test Track

Test Equipment:
= Lang raal tpe mazsure
. Wi talks
. atch
= Data lagging equipmant
Raruirad Conditions Doy track (i rin ar sncw]
Parsonna| Required = Debar
* Passcner etcenal Gt lgging, manior rack andions and stats of il
= Observar (3 track setup}
ehicla Check Procecurs Hote: Tha 7 that Is bssexd n both aceslsration and Thesa @ 50 tha vehica & tor s passad.
1. Slowty driva at 15 mgih for 3 quartar mik. 4 figh

a. Liten for nbling noscs.
b, Chesck for rastrictad Fravamiet.
2. Znsura regan k cn. Per 15 e thrcstle, the car with
3. Ensura regan k cet. Perform stop 2, tha car should have a decslorstion rata thit b much lowar thin bators, Indicating regen b ott.
4, Parorm a quidk sccalration to 15 mph and proceed 10 3 hard bk,
5 kesugs at 15 mph, peort g $tips | 10 4 for 30 mph, 45 mph, and 60 mah (or tap accdaration requind for tetingl.
6. Parform 3 beled wisaal inspaction of the vebicla Ledsrbody, soging nay'.am‘l slacmenics in the rear. Ensure ncehing is loase, cut of place, and that ne kaks are prasent.
B i lssues found, procoed 10 tasting.

Satup Procedur 1. Reviwr Braking EOD.
2. Mark ot tha starting kna for tist diroctions 1 and 2 {shown In the ciagrams becw) with pylons.
3. Mark ot tha braking kna for test directions 1and 2 fshawn in the mgmm bidcan) with ykans.
4. Socure any the
5.5 the besking st Is beng dona baton the sccelertion tast, pmn'n he shaksdcwn chck & cetined in “Vidhicls Chock Procadur® 10 erc.es the wehicha ks runeing as expectiad Dtherwtis, The 6 shoukd alrazcy ba complited.
6. Distarmring that the tasting and Is ckar. B tha Braking zona & covired in dint and ckbrs, Swisp the ars 5 bt i poasbio 1o madimine ractin.
7. Make: e regenarative braking b5 disabld.
8. Db 10 the starting lies of test divection 1.
5. Sat up catakgger and Kt record.
0. Partorm avont par ovan proced.m.
1. Save racorded CAN 1.
12. Detvs 10 thet starting lirs: of tess disection 2
13, 50t L catakogger and Bt record
14, Partorm voet o Gvan procedr.
1. Savi racordid CAN 1o,
16, Rapaat staps & - 15 far a tosal af 3 sefs.
7. Powar down catalogger.
Evaluation Frocedur 1 Tha dverwil et 2 predfined coura fian i the lagrams bedow and corms 1.3 completa i ot 3 marked tting bre.
2. Tha kength ot track Bieing used for the &0 od clear
Tangth foe tha hist [s06 Evant Flanning s Satsp sacticn for detals).
3. Tha pessanger should begin recardng data.
4. Whan clat recording his starid and the track b ckiar of clatnuctions, the driver wil acedorto 1o 60 mgh and,
o Ehey achio/Satillze that spesd, will Begin to brka.
5 tor th tha Brakss must wtcarad]) and tha civar
I eulrog 2 apply brskes 2 this marke. Tha citvar wil coatim ‘wheeher ASS chittar oceurs 1 tha vatic fres
ok, the vehicla does ot Stop within the required distancs, of the-vehicla dsplays sny Lntsorble dyamics, tams
shodd abort further testing and avakaats tha vahkk foe fapsrs o modfications.
6. Tha drivar is responsibke i toliow sataty Fegulations, aven It tha braking rn mest be calkd o
7. Thesa sets of the braking s ot 2 test s, tha track.
a. This aitsats the ottects of varying track grades an the s
AN Netwarks MRS
Prp
AN Signads Nt - AN of these 2es fram the spresdshect an ANL Shasspsint (all logged at 100 Hele

“T\Testing ¥ SEME_¥_RoquirerDataSinals Ravstoe”
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Appendix G - Energy Consumption Test Plan

Table 1: Test Plan

Tast Hams
Autheelsy Asad, Hoachong, Too
Test Summary Enirgy Cansumption Testing

Date of Testing, Duration of Test

Raysinad Test Bqupement Faciities GOPro OF CENer Caman with SuCtion oup Pedded

Cones

Vector CAN cases

Warking logging satup (camp excad file 4 3
Heed a scale fo measure Sl added
Appandis C pringed ot on & pice of papsr
Sring a clipheard » Pan
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