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Abstract 

The expected rise in the number of ECUs in an automotive based development environment, 

poses additional efficiency risk on developer time and code complexity. This thesis examines 

the design and validation of a Hybrid Supervisory Controller, developed for the University of 

Waterloo Alternative Fuels Team’s (UWAFT) retrofitted P4 parallel Chevrolet Blazer, in the 

EcoCAR Mobility Challenge competition.  

The controller, component models and I/O interaction layers are developed in a MathWorks 

Simulink environment. The framework discussed, is built to incorporate automation via a 

custom developed -Model-Configurator tool. Component models, and functional sub-systems are 

converted to masked library blocks within Simulink, that are populated via an object-oriented 

class in the MATLAB environment. This opens the possibility for custom environment data 

population, swapping of data for models while retaining underlying physics and setting up for 

SIL/HIL requirements testing without explicit/contemporary interaction with the Simulink 

environment. The advantages of this approach are discussed, along with explanation 

accompanying the software framework. 

The HSC incorporates interaction models of 9 stock vehicle, and on-board GM ECUs. The 

model spans full chassis longitudinal, and powertrain components. The functional controller 

incorporates 4 powertrain control layers - fault detection, vehicle state control, torque strategy 

and component level execution layers. The test environment switching time is reduced by 

>50%, and 86 controls requirements are tested over the course of 3 years.  

The test vehicle is tested at the Canadian Technical Center McLaughlin Advanced Technology 

Track (CTC MATT) where a non-standard drive cycle is used due to limitations posed by the 

COVID-19 pandemic. The vehicle robustly sustains a 91-minute city/highway drive, with a 24% 

improvement in fuel economy compared to stock. The vehicle however is short of its VTS 

targets which are attributed to the lack of engine start/stop functionality, and a thermally 

constrained battery pack. Those remain major design shortcomings and immediate powertrain 

improvements are proposed, and efficacy of a well-organized model are discussed. 
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Chapter 1 

Introduction & Background 

1.1 Introduction 

The World Economic Forum (WEF) estimates that the world by 2040 compared to 2015, will 

see the total number of cars and trucks to grow by two folds [1]. This when paired with the 

statistics published by the U.S. Energy Information Administration annual energy report for 

2021, estimates that the up to 25% of the world’s energy is spent in the transportation of 

people and goods [2].  With over 65% of the energy being sourced directly from petroleum and 

natural gas alone, environmental concerns are on the rise with the energy consumption trends 

of the automobile.  

 

Figure 1: Total energy consumption by end-use sector [2] 

Production of Green Houses Gases (GHG) can be broken down into various forms of 

pollutants including but not limited to CO & CO2 which are produced directly because of 

burning hydrocarbons. Hydrocarbon (HC) emissions lead to environmental degradation in both 

air and sea water. Symptoms include smog, rising sea levels and a reduction in ocean bio-

diversity due to rise in temperatures. Nitrogenous oxides (NOx) are formed when combustion 

occurs at high enough temperatures and pressures. NOx compounds directly contribute in the 

depletion of the ozone layer. Increase in urban expansion, and industrialization is only going to 
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add to the contribution of GHGs as purchasing of locomotives that burn hydrocarbons increases, 

if other possible propulsive modes are not explored.  

 

Figure 2: Global primary energy demand and energy-related CO2 emission, 1975-2019 

[3] 

Hybrid Electric Vehicles (HEV)s represent a steadily increasing portion of the Electric Vehicle 

(EV) market. The demand for global annual passenger car and light-duty hybrid, or electric 

vehicle sales is projected to be around 25% by the year 2030 [4]. In the pursuit of complete 

transition to EVs. There lie significant infrastructural, design, and political challenges, that 

warrant a focus on short term problem solving to not only expose the consumer market to the 

pros and cons of EVs, but to reap the benefits of the already existing electrification technologies. 

Especially in up and coming Asian, European, and African markets where adoption of full EVs is 

not yet feasible.  

While Battery Electric Vehicles (BEV)s lead the charge in global electric automobile shares. 

Chinese, US, and European markets are all warming up to the idea of owning an electric vehicle 

but may not be ready to boot for the cost and “range anxiety” owing to a rising trend in sales of 

Plug-in Hybrid Electric Vehicles (PHEV)s and their less complex HEVs derivative.  
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Figure 3: HEVs, PHEVs and EVs share consistent market growth [4] 

Predominantly hybrid architectures utilize one or more electric motors, as the added mode of 

propulsive torque, in addition to the commonly used Internal Combustion Engine (ICE) for the 

purposes of hybridization. Arrangements of the hybridization i.e., the placement of the electric 

motor around the ICE dictates the viability of various hybridization architectures for instance 

series or parallel hybrids [5]. Moreover, the size of Energy Storage System (ESS) can dictate 

whether a hybrid vehicle is a PHEV or an HEV. PHEVs allow for a further reduction in GHGs 

emissions due to the ability to plug in to a charge network, allowing for sustained electric 

driving only, contributing to an overall more efficient drivetrain.  

At the consumer level, the addition of the external ESS allows for the possibility to 

incorporate both fuel efficiency and drive quality-oriented features. These include limited range 

fully electric driving for daily commutes; higher vehicle acceleration control, regenerative 

braking, electric motor assist and possible reduction in size and power of the ICE [6]. 

Performance of the HEV hybridization is highly dependent on not only the efficiency of the 

added powertrain components, but also around the understanding developed around the use 

case of said architecture. For instance, the drive schedule in question. Increased utilization of 

the ESS is desirable for an HEV or PHEV, however for the ICE and electric motor to work 
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seamlessly a higher degree of control is needed over the propulsive units as well as the overall 

utilization of energy on-board the vehicle to result in the most energy efficient of outcomes.  

1.2 Background 

A significant engineering challenge in any an HEV is the optimal control of mechanical and 

electrical flow of power through the ICE, electric motor, and the various conversion/reduction 

devices. Typically, the added degrees of freedom give way to flexibility in driving modes, better 

utilization of the torque application between the ICE and electric motor. Resulting in reduction 

of GHG emissions and increase of the overall fuel economy [7]. Preservation of drive quality in 

terms of vehicle acceleration profile is another important aspect of the implemented torque 

management scheme [8].  

This necessitates devising of a Hybrid Supervisory Controller (HSC), that interfaces with all 

vehicle level components’ external Electronic Control Unit (ECU)s; performs state estimation; 

handles I/O; performs computation of the vehicle’s torque strategy and executes on operating 

points for the component. The vehicle torque strategy is essentially a regimented series of rules 

that regulates the operation of the ICE and electric motor. This normally comprises of driver 

inputs in the form of accelerator pedal, vehicle level measurements such as speed, battery State 

of Charge (SOC) from the ESS, component operating conditions such as temperature, to output 

operating points for the propulsive systems or simply turn them On/Off based on the driving 

schedule.  

The software development of University of Waterloo Alternative Fuel Team’s (UWAFT) HSC 

follows a requirements-based software development process. This process is based on the 

Model Based Design (MBD) design process used for the creation, testing, and verification of 

software [9]. The requirements are developed at multiple levels and correspond to testing at 

their levels depending on the nature of the requirement. These can be as high level as a Vehicle 

Technical Specification (VTS) such 0-60 mph time or as low level as functional safety of 

maximum electric motor speed in rads/s. Due to reusability of the implemented models, the V- 

process is used such that the requirements can be frequently revised, and the development 

process is made iterative, based on the learning outcomes from the test results.  
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UWAFT is participating in the General Motors (GM) and U.S. Departments of Energy’s (DOE) 

push to sustainable means of propulsions and advancement of electrification through the 4-year 

long EcoCAR Mobility Challenge (EMC) program [10]. This Advanced Vehicle Technology 

Competition (AVTC) is one of many in its 30+ years of history. Started in 2018 EMC is pushing 

the frontiers of transport in electric utility by providing a competitive landscape for 12 North 

American schools the support in hardware and training to produce more eco-friendly, SAE 

Level 2 autonomous enabled customer centric vehicles for the Mobility As A Service (MAAS) 

market. It is through the EMC’s provided vehicle research platform, technical training of 

software and hardware; and the industry level sponsorships that enabled the development of 

the research content for this thesis. This year marks 25 years in the team’s history of 

developing advanced technologies for advanced vehicles.  

UWAFT’s architecture of choice is the P4 Parallel through the road hybrid, shown in Figure 4. 

The front axle is powered using a 148 kW 2.5L inline GM LCV inline 4 that is mated to a GM 9-

speed M3D transmission. The rear axle is driven by a 150 kW American Axle Manufacturing 

(AAM) electric EDU4 electric motor that is powered by a Semikron SKAI2HV inverter and a 

360V 5.5 kWh (total) 1.5 kWh (nominal) Hybrid Design Services (HDS) Li-Ion 96S8P battery 

pack. 

 

Figure 4: Main Powertrain Components of UWAFT Blazer 
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A P4 parallel through the road architecture connects the front axle and rear axle through the 

road, allowing for independent operating modes, reducing overall integration complexity, and 

allowing for a better front to rear dynamical vehicle weight distribution. The architecture 

allows for three main operating modes. ICE only, Parallel and EV only modes.  

 

Figure 5: Operating Modes for the P4 parallel through road architecture 

ICE only made is made possible by letting the stock GM ICE drive the front axle through the 

stock transmission while the electric motor in the rear is electrically disconnected from the ESS 

through opening of the internal pack contactors. This would result in no power produced or 

recovered at the rear axle.  

Parallel mode which is the primary operating mode for the HEV operates in an All-Wheel 

Drive (AWD) fashion whereby the ICE powers the front axle, and the electric motor powers the 

rear axle. The strategy in place is a basic pedal based look up table that is tuned for team 

developed stop and go style drive cycle. The team is currently exploring development of a 

deterministic rule based continuous Charge Sustaining (CS) mode that aims to ensure the 

battery pack State of Charge (SOC) is maintained around a certain SOC level for a given drive 

cycle. Since the ESS is 5.5 kWh total, the 33% operating mode results in a 1.5 kWh of usable 

drive energy. This goal of the charge sustaining strategy is to maximize the usage of the usable 

SOC window in a combined city and highway-based drive cycle. Lastly EV mode, this mode 
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requires that the transmission is forced into neutral, and all torque is requested from the rear 

axle. At the current state of integration, due to a lack of DC-DC, the team only runs the vehicle in 

full hybrid or ICE only modes. 

1.3 Objective  

In the contemporary implementation of a Hybrid Supervisory Controller, focus is placed on 

modelling and simulation of reducing the energy consumption, and consequently minimizing 

the environmental impact of a Hybrid Electric Vehicle. In pursuit of this goal, there is generally a 

minor emphasis placed on the importance of the simulation framework setup, that ultimately 

supports the model testing activities. This can lead to a higher developer workflow inefficiency, 

resulting in an increase in repetitive modelling tasks such as initialization, porting to end 

hardware such as HIL and testing of requirements.   

This primary objective of this thesis is to present the Model Based Design (MBD) framework 

implemented in a MATLAB/Simulink environment for the deployment of the Hybrid 

Supervisory Controller (HSC) of a P4 Parallel Hybrid Electric Vehicle. Functional and hardware 

interaction layers of the HSC are expanded on through a custom Model-Configurator tool that 

wraps the simulation model in a class object. Ultimately from a developer standpoint, this thesis 

serves as a reference and knowledge transfer document exemplifying the strengths and costs 

associated with development and maintenance of a highly organized framework for future 

powertrain-oriented HSC development.  

The secondary objective of this thesis is to present in detail the roles of the 8 main sub-

systems that form the Hybrid Supervisory Controller which incorporate masked library blocks 

populated with data through the configurator tool. These include the driver block, I/O, fault 

detection, vehicle state control, torque strategy, component level execution, plant model and 

soft-ECU. Testing, and validation of the team retrofitted powertrain are discussed in the final 

chapter as per the results collected at MATT CTC, with an in-depth retrospective of the team’s 

established Vehicle Technical Specifications (VTS), and the future work needed to rectify 

current system limitations. 
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1.4 Thesis Outline 

This thesis includes six chapters inclusive of this introduction. These chapters are categorized 

in sub-sections that are outlined in accordance with the development process of the Hybrid 

Supervisory Controller through use of Model Based Design, the results of which the developed 

controller then are tested and validated against the prototype vehicle.   

Chapter 1 – Introduction & Background 

 This chapter provides insight into the motivation behind the thesis, outlines and 

objective and provides a brief overview of the stakeholders involved with the project. This 

chapter also introduces the project vehicle at a high level.  

Chapter 2 – Literature Review 

 Outlines state of the art, pre-existing research on two main topics related to the work 

described in this thesis namely Hybrid Vehicle Architectures and Automotive Software.   

Chapter 3 - Utilization of MBD in a Requirements Based Development Workflow 

 This chapter contributes uniquely to the expansion of MBD requirements-based 

workflow incorporating Object Oriented Programming principles to ease test environment 

switching. Additionally, the process surrounding development of requirements, and systems 

safety is outlined to set up the stage for the implementation of the Hybrid Supervisory 

Controller.  

Chapter 4 – Hybrid Supervisory Controller  

 This chapter deep dives in the organization, and implementation of the HSC. The 

controller, plant model, I/O and utilization of the tester block is discussed that tie back the 

workflow and strategic decision made to test and verify functional and safety requirements 

mentioned in the chapter 3.   

Chapter 5 – Model Validation Testing & Results 

 This chapter culminates validated results against the prototype vehicle of the 

supervisory controller and plant SIL model. This section also outlines overall vehicle VTS 

performance, and potential shortcomings.  
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Chapter 6 – Conclusions 

 This chapter is a summary of achievements, and shortcomings that concluded as a result 

of 2 years of pursuing the development process. This section also sheds lights on other research 

areas that benefitted from this approach. 
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Chapter 2 

Literature Review 

The advent of combining two types of propulsive units opens the possibility for a myriad of 

architectural topologies. The topologies or arrangements are normally centered around the 

placement of the electric motor with respect to the ICE. Depending on the size of the ESS, 

packaging constraints, and appetite for complexity. The electric motor can be strategically 

placed to allow for full EV mode; range extending; charging; and/or fully parallel drive modes 

[11]. The foremost function of the hybrid architecture is to capitalize on fuel economy and 

emissions, primarily through energy recuperation during deceleration events. The type of 

architecture deployed on the vehicle delegates how energy is sourced. For instance, an only a 

P0 electric motor is able convert energy directly from the engine in series or series-parallel 

powertrain. There exist however a band of hyper cars and motorsports examples that serve as 

the epitome of energy management, technical prowess, and optimization to serve a singular 

purpose which is to go fast around a racetrack [12].  

The purpose of this section is outline on the complexities involved with various hybrid 

architecture topologies available, the key role of automotive software in the implementation of 

the hybrid supervisory controller, and an exploration of the main roles involved in the 

development of the HSC. The significance of the work done in said domains will help contrast 

the added organization, and workflow that UWAFT has incorporated in its implementation 

against the state of the art.  

2.1 Hybrid Architecture Topologies 

On a scale of ICE only to BEV there lies a degree to which a vehicle can be hybridized. As 

earlier mentioned, the architecture requirements stem from the placement of the electric motor 

with respect to the ICE. The placement brings along with it software, mechanical and electrical 

complexities that ultimately must be spec’d to serve the vehicle’s VTS, derived from studying 

the end customer and project needs analysis.  
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As the degree of electrification increases, dependance on the ICE diminishes. This diminishing 

dependance on the continuous high power, and range available in an ICE only setup, is made 

possible through addition of a large ESS and electric motor to retain the vehicle’s VTS 

performance in terms of acceleration, range, fuel efficiency measured in miles per gallon (mpg) 

as well as GHG emissions.  

 

Figure 6: Degree of Electrification and Possible Architectural Topologies  

To better understand state of the art of HEV technologies. We must look at the extensive 

research and industry applications that have taken place to categorize the specific features that 

are offered by the various HEV topologies. The topologies at their core can be categorized by the 

role the electric motor plays around the ICE. P0 is attached to the engine via belt/pulley; P1 

spins directly with the engine through a shaft; P2 is post engine pre-transmission – 

disconnected through clutch; and P3 incorporates is a pre-differential electric motor; whereas 

in a P4 configuration the motor is integrated within the final rear drive ratio housing [13].  

Take note however that the terms mild or strong are loose terms, and nod more to the size of 

ESS/electric motor pair than have any strong bearings on the overall topology of the hybrid 

vehicle. For instance, a mild hybrid can be a parallel with a small P0 or P1 assisting the engine 

or be a series, working through electric power on a different axle P3 or P4.  
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Figure 7: P0, P1, P2, P3 and P4 Hybrid Topologies Motor Placement 

The split between series or parallel configurations comes down to how the electrical or 

mechanical power from the electric motor and ICE is delivered to the road. In any hybrid 

vehicle when the load is driven purely by the electric machine, irrespective of where the power 

(ESS or ICE) is sourced from, that is a series configuration. When the electric motor and ICE are 

providing the power in tandem, irrespective of whether they share the same axle or not, that is 

a parallel operation.   

2.1.1 Series Hybrid 

In a series operation, a generator spins directly with the engine, charging up the ESS such that 

this electric power in turn drives the electric motor. Spinning an engine to drive one electric 

motor, only to spin another electric motor may sound a bit ill-advised on paper, but this 

topology opens the door for pure electric driving given a large enough battery pack. This is 

especially true of the very early hybrid production vehicles such as the GM-EV-1 or the Fisker 

Karma, where in effect these vehicles were Range Extending Electric Vehicles (REEV), that were 

intended to be driven pure EV all the time. The addition of the ICE was intended to only extend 

the range, and not provide power to the wheels ultimately. The choice for series architectures 

provides key energy recuperation opportunities at RPMs where the engine is least efficient. [14] 

The small window approximately between 2000 and 3500 RPM in Figure 8 shows the region 

where the GM 2013 2.5 Ecotec LCV engine has the highest Brake Thermal Efficiency (BTE). This 
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region for instance of the % BTE, would for instance represent the speed-torque spectrum for 

designing a suitable P0/P1 generator for series configuration.  

 

Figure 8: BTE Map shows higher efficiency regions [14] 

2.1.1.1 Series Hybrid Pros and Cons 

Since power from the fuel tank never meets the tarmac but only through the electric motor. 

Series powertrains are relatively easier to package compared to their parallel or parallel series 

split counterparts. The series or range extending ICE can be smaller in size; packaged more 

compact and can even be used as a damper for reduced Noise Vibration and Harshness (NVH) 

providing an improved drive quality experience [15]. Since an ICE is most efficient in a narrow 

RPM band, elimination of torque transferring/converting devices such as clutches and 

transmission, allow for purpose-built ICEs that are not expected to be high revving. Such is the 

example of the low compression Atkinson-cycle adapted ICE in the case of Toyota Prius [16], 

that can operate in both series and parallel modes.  

The addition of an additional electric motor to drive the vehicle on top of the generator, 

penalizes the vehicle architecture in terms of weight, and purchase price. The major weakness 

of the series architecture is its predominant inefficiency that arises during sustained load 

driving. The coupled losses that are incurred during the mechanical to electrical power 
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conversion at the ICE/generator level, are much higher compared to driving the vehicle during 

ICE only, or ironically, EV only.  

Upsizing the ICE, generator, electric motor and ESS are possible work arounds for allowing 

the vehicle to drive more in EV mode, however there are more gains to be had from upscaling 

the architecture altogether to make the vehicle more capable, before it is categorically a BEV, 

and this is where the parallel architecture comes in to play.  

2.1.2 Parallel Hybrid 

Parallel as the name suggests does not warrant routing of the mechanical power to electric 

before meeting the tarmac. It instead allows for tandem power delivery from the ICE and the 

electric motor. A parallel configuration is possible with all P0, P1, P2, P3 and P4 hybrid 

configurations. Parallel systems where the electric motor is directly coupled to the engine (P0, 

P1 or P2) are generally smaller as compared to when the electric motor is in either post 

transmission P3 or integrated as part of rear axle P4. This trade-off is driven due to limitations 

of peak torque that is seen on the engine crankshaft, and transmission.  

2.1.2.1 Parallel Hybrid Pros and Cons 

The parallel hybrid topology is a more efficient method of hybridization as it stands to benefit 

from no conversion losses i.e., ICE-generator. Some of the features of the series topology such as 

engine start/stop, is both possible and not, depending on the complexity of the topology. For 

instance, a P0, P1 or P2 parallel can crank the engine, but a p3 or P4 parallel cannot. More often 

than not Original Equipment Manufacturers (OEM)s develop parallel architectures due to the 

inherent simplicity of the architecture i.e. use of a simple clutch, over generator integration 

such as in the case of series. A similarly sized parallel configuration is generally more powerful 

as the electric motor and ICE do not need to share the same axle and can be appropriately sized 

larger. 

Due to the larger role played by the ICE, a parallel hybrid can be conceptualized with a much 

smaller ESS. The smaller ESS size allows the architecture to be less dependent on a grid for 

charging, and makes it less complex since an additional onboard HV charger is not needed. 

Whereas in a series the ICE is merely a range extender for the unplanned miles and requires the 

additional plug-in capability to be considered a robust contender for all types of driving 
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conditions, unless the architecture is parallel-series split, which bring us to the parallel-series 

split architecture. Overall, the parallel architecture makes for a simpler, less expensive method 

to obtain a better fuel economy, faster acceleration, and lesser overall vehicle level emissions 

[17].  

2.1.3 Parallel-Series Split  

The parallel series split architecture combines best of both series and parallel architectures, 

allowing for mechanical and electro-mechanical paths for torque transmission to the tarmac. In 

this configuration, at least two electric motors are needed, series configuration warrants no 

mechanical path from engine to tarmac, which in the parallel-series architecture is generally 

supported by use of the two electric motors. This however is not always true such as in the case 

of the Toyota Prius which operates a single motor through a planetary gearset allowing for 

engine assist, battery charging and full EV driving depending on the driving situation.   

2.1.3.1 Parallel-Series Split Hybrid Pros and Cons 

Parallel-Series split architectures provide the best of both worlds, plug-in EV charging, energy 

recuperation as well as motor assist. Due to the additional capability of this architecture to 

displace most amount of fossil fuel through full EV operation - this architecture generally is the 

most adopted setup for PHEVs. Due to the higher degree of electrification (larger ESS/motor), 

and integration of 2 motors, or 1 motor + planetary gearset, the systems are generally more 

expensive to develop. Simultaneously allowing for a more fuel efficient, lower emission and 

much smoother ride quality product. This however comes at a higher up front purchase cost, 

and directly impacts the external grid system’s ability to support charging loads.  

2.2  Automotive Software  

Evidence of the first piece of computer code on an automobile date back to 1957. Named 

Electrojector, the transistorized electronic fuel injection (EFI) system was designed for the 

American Motors Corporation’s 1957 Rambler Rebel by Bendix [18]. Despite its promises on 

paper, the technology was only put on pre-production vehicles, of which none were sold as EFI 

variants. It is at this point in the history of the automobile that a piece of computer code was 

first used to track crank position to pulse fuel pre-ignition. Bosch would perfect their Jetronic 
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Fuel Ignition System in ’68, only seeding the basis of what would be a the most competitive 

aspect of the automotive industry in 2021, automotive software [18].  

Initial software in the automotive industry were local implementations written in languages 

such as C; specific to obtaining functionality outcomes at the hardware level. Typically, these 

nodes were run-on low-level software on custom developed ECUs that would interface with 

dedicated sensors and actuators. In the late 80s the Controller Area Network (CAN) interface 

was introduced as a means for ECUs to communicate with other ECUs, acting as distributed 

localized work nodes [19]. This would allow for a bottom-up (build as you go) approach to ECU 

development. ECUs would be added as need arose on the pre-existing or additional vehicle CAN 

bus. It is estimated that a 2007 BMW 7 series implements some 270 functions, deployed over 

65+ embedded platforms [20]. Today this number would exceed 100+ distinct embedded units 

[21].  

Due to the rise in the number of software domains on a vehicle, spanning safety - both on a 

vehicle and user level; infotainment; and powertrain there existed a need for a development 

process that was repeatable, at lower cost. In automotive software it is a common practice 

during software development process to test software nodes tested against an analyzed set of 

requirements to maintain lineage, diagnostic characteristics and tracking of system 

improvements before the software would ever be tested on the end target vehicle platform.  

2.2.1 Model Based Design  

Model Based Design (MBD) is a math-based software development process, that makes it easier 

to develop code inside a virtual prototyping environment. This method facilitates visually 

understanding algorithm behavior before embedded code is written [22]. MathWorks MATLAB 

and Simulink are industry wide used programming tools that place MBD at the center of 

systems programming, more so in the case of Simulink than MATLAB [23]. The HSC sits at the 

center of all vehicle controls system responsible for estimating vehicle/component(s) state, 

monitoring of component thresholds, and deploying the torque strategy, among other things. 

The development of HSC in an MBD environment, allows for testing of requirements to occur at 

various levels such as SIL, HIL and VIL [24].  

As the name suggests, in an MBD design process the model is at the center of the 

development workflow. In a real-time system, such as in the case of a hybrid vehicle, a model 
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can represent both the soft-ECU (software representation of a physical ECU), where the 

embedded states are simulated by the HSC [25], as well the plant model that represents the 

physics or data driven drivetrain components. The combined soft-ECU generally constitutes the 

plant model and is calibrated and improved over time to gain a higher fidelity representation of 

the physical system.  

MBD systems need to incorporate the idiosyncrasies that stem from the vehicle architecture, 

combining the requirements that encapsulate software feature interaction.  There exists the 

logical architecture which is based of decomposed component software interactions at the 

functional level, which would constitute the structure and layout of the HSC, and the technical 

architecture that defines the deployment of the basic software units, which constitutes the 

functionality of the HSC. [20]  

 

Figure 9: Research and requirements both feed in to the design of the HSC [26] 

Over the span of the development process, research and logical requirements are generated 

at various levels of the V-diagram development process. These can range from high level 

requirements such as customer requirements (VTS targets) to component level requirements 

(safe torque request). The cascading nature of requirements in degree of fidelity, puts 

requirement traceability at the center of the MBD based implementation. These requirements 
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can be implemented for a variety of non-real time and real-time testing environments before 

end hardware integration. 

The use of simulation to verify controller requirements proves extremely useful when 

replication of a certain state in a real environment is not desire-able or safe. For instance, 

applying exceedingly high torque on the electric motor for estimating thermal system 

limitations. Systems modelling based in first principles paired with an understanding of 

physicality of the system, enables pre-calibration tuning of the SIL model for performance 

estimation. Here the plant model plays a critical role in representing the physical system. For 

instance, estimating lowest possible fan speed and coolant pump to maintain electric motor 

operating temperature. Real life or VIL calibration plays a key role in improving the model, and 

thus reducing the controller effort to obtain a key outcome. Calibration in turn can have its own 

performance requirements such as the degree of accuracy required at various operating points 

of a physically actuated system. [27] 

 In the automotive space MBD is extensively utilized to accommodate requirements testing at 

the software, hardware, and vehicle levels. The results taken from the testing environments is 

fed back to either improve the SIL robustness or go back to the drawing board with the 

requirements itself. MBD facilities the incorporation of new code or requirements due to the 

ability of the design to accommodate software, interface, and execution segregation [28]. This is 

where the HSC plays a key role in the organization of all software code. HSC can be built as per 

needs basis without much thought to organization, but as we will see in Chapter 4 of this theses, 

the role of the HSC is extremely involved, and properly organizing the model-based design, 

becomes a necessity.  

2.2.2 Hybrid Supervisory Control (HSC) 

In a conventional vehicle, a driver requested vehicle torque command is honored through the 

ICE only. The ICE is a localized system that has stood the test of time, and the controls for which 

are localized and well understood. From a torque distribution standpoint, the HSC arbitrates 

with the up-stream controllers that can request torque such as an autonomous driving 

controller or driver pedal, to downstream components such as the high voltage inverter or the 

ICE ECU, to meet the acceleration request from the vehicle. The terms upstream and 

downstream are used to describe the signal path from the creation of a request to component 
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actuation. HSC decision making is feedback driven process, i.e. it is constantly monitoring 

hundreds if not thousands of signals coming from various ECUs onboard the vehicle. Typically, 

the HSC prototype controller has access to most if not all vehicle CAN communication networks 

in a hybrid architecture. [29]  

The bottom-up approach of adding functionality as needed, owes to the availability of the 

diagnostics, safety, state, and health signals available on the CAN bus message frame that are 

leveraged for development of safe system operation for the HEV. The signals constitute basic 

feedback signals such as the ESS SOC reported by the Battery Management System (BMS), up to 

more advanced - such as triggering of a fault state, in case a component is operating out of it’s 

safe boundary limits. The HSC is responsible for at least the control of vehicle (component) 

state estimation, housing of the plant model representation and execution of the torque strategy 

for the hybrid propulsion systems.  

2.2.3 Vehicle (Component) State Estimation  

The ECUs onboard the propulsive units of the hybrid vehicle, are all under a high-level 

management of the HSC. By design the HSC is developed to balance competing objectives e.g., 

fuel economy and driving performance. Monitoring system limitations such as protection of 

components at their limits, ensuring a healthy state of charge for ESS, while also honoring the 

driver inputs, often leads to the HSC operation to become exceedingly complex. It is the 

responsibility of the HSC to determine the state of a component through the available 

communication CAN, Digital or Analog network, to deem a control action safe to command. In 

an BEV, the HSC at the very least is arbitrating and keeping track of system states of at least the 

BMS, Body Control Module (BCM), the inverter, cooling fan, cooling pump and the motor 

controller/inverter [30]. In a hybrid vehicle however, the interaction is even more complex 

where the ICE ECU, the Transmission Control Unit (TCU), among other chassis, cabin 

components are tracked for purposes of state estimation. 

There exists a desire for producing a control architecture that interprets incoming signals and 

groups their values to represent them as systems states. To implement systems that can 

operate in various states – a system state estimator is developed that allows the HSC to 1) be in 

the correct operating state and 2) protect the vehicle from harm through raising of flags. These 

systems state generally are non-linear and approaching them analytically is near impossible but 
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are required to drive a large amount of decision making. It is for this reason they are 

implemented in the form of finite state machines. [31] These finite state machines take in the 

messages from the vehicle CAN bus for allowing/disallowing for certain HSC control actions. 

From a calibration/testing point of view, the state machines when implemented in an MBD 

structure allows for all system states to take form of requirements of the form if x do y – 

allowing for implementation of the state estimation layer in the form of finite state machines. 

The implementation is more approachable from a viewing, maintenance and troubleshooting 

perspective.  

The interacting ECUs on-board the component being controlled report among other things to 

the HSC the physical parameters such as power, temperature, voltage but also their system 

states such as ready, enable, fault, or off from and to each other. For instance, if the ESS HV DC 

Link bus is not energized, the internal ECU of the inverter is going to be in a ready, but not 

enabled state, thus signaling to the HSC, that honoring a torque request is not possible. 

Following is an example of an inverter state machine implementation, publicly available to view 

from Cascadia Motion inverter developer, that illustrates the ECU side state machine. [32]  

 

Figure 10: ECU State Machines track OEM specified ECU states [32] 

Pre-calibration tuning and developing an understanding of the physical makeover of 

components is an important aspect of state estimation. Fair amount of research has been 

conducted in implementing state estimation controllers, that are able to predict systems states 

that are not discretely reported as part of the messages on CAN signals [33]. This approach for 
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instance is widely used in safety critical active autonomous driving systems where the raw data 

from a perception stack may not always be operating in an ideal environment, such in 

precipitation or fog.  

2.2.4 Plant Model Representation 

The plant model represents the physicality of the system the HSC would interface with in a 

real time environment. The plant model is generally comprised of mathematical (analytical) 

models such as in the case of longitudinal body dynamics, as well as behavioral models whose 

parameters are populated through look up tables, that are made available by component 

suppliers or that are developed as part of extensive system characterization, such as in the form 

of soft-ECUs. The incorporation of plant model within the HSC can be broken in to two different 

approaches.  

The backwards modelling approach, here the environment is pre-loaded with information 

such as vehicle weight, road gradient; and other vehicle characteristics such that the required 

tractive force at the wheel is calculated first. Then this force is equated as wheel torque, which 

is then propagated backwards through the drivetrain components and then to the engine. This 

approach is non-causal, as the static pre-determined efficiency maps are used to determine 

operating points for the powertrain components. This approach is also “quasi -static”, since the 

speed demand is not propagated but ‘applied’ via the drive cycle through the drivetrain. 

Meaning the physical limits, unless captured within the models cannot be explored, and as such 

this approach is not scale-able for a Hardware in Loop bench setup. [34] 

 

Figure 11: Backwards Modelling Approach [34] 

The alternate and more commonly utilized modelling scheme is known as the forwards 

modelling approach. This approach uses a driver model, modelled as a PI or in some cases the 

Charles MacAdam Driver model [35] such as in the case of UWAFT, to emulate real world driver 
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input to system for following the speed-time drive cycle. Here the acceleration target is 

determined and is converted directly to a torque request that is then propagated through the 

engine, transmission, other transferring/reduction components - ultimately resulting in 

commanded torque at the wheels. Due to the closed loop nature of this modelling approach, the 

resulting vehicle speed post the plant, is fed back into the driver model, compared, and 

consequently nets in a higher or lower acceleration target.  

The natural progression of signals is a much closer representation of real-life vehicle driving 

and is thus a much better suited environment for controls development and testing, thanks to 

its scalability in a HIL test environment. [36] 

 

Figure 12: Forward Modelling Approach [34] 

2.2.5 Hybrid Torque Strategy 

At the very heart of the HSC, lies the energy management of the hybrid drivetrain. In a 

conventional vehicle, the acceleration/deceleration requests from the driver are directly 

translated to torque commands from the ICE. Hybrid electric vehicles are built different, 

accommodating one or more electric motors powered through an ESS. Due to the complexity 

involved with real time power delivery, as well as management of the battery SOC - naturally 

inheriting complexity from the energy management problem. An exhaustive amount of research 

and approaches have been developed in devising of a hybrid torque strategy. These approaches 

place emphasis on different aspects of hybrid energy management strategy such as fault 

detection for validation and testing [37], monitoring and control of battery degradation [38], 

purely optimality driven solution development for a cost function [39] and real time energy 

deployment [40] among many others.  
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However, the main objective of an energy management system is to minimize the overall 

energy consumption needed over defined drive cycle, while also satisfying the user’s torque 

always demands. Energy management strategies can be split in to two main categories – 

optimal [7] [39] and rule based [41] [42]. Rule based control strategies comprise of 

deterministic and fuzzy logic rule-based methods, whereas optimal strategies utilize methods to 

globally optimize for the determination of a control strategy.  

2.2.5.1 Rule Based Energy Management  

Rule based energy management strategies are based on pre-defined understanding of system 

inefficiencies and are generally aimed at deploying heuristics to avoid operating in those 

scenarios as much as possible. These heuristics or rules are devised from the understanding 

developed around ICE fuel consumption, electric motor/ ESS efficiency maps, and human 

experiences. This allows definition of predefined points or threshold for when components will 

be used. These are generally implemented in the form of look up tables or in state machine style 

format.  

Implementations of a rule-based energy management strategy includes fuzzy logic controllers, 

as well as deterministic controllers that utilize state machines. Both methods are equally robust 

however, computational complexity is higher with a fuzzy logic implementation. [43] 

Deterministic rule-based controllers include on/off look-up or finite state machine style control 

strategies. The state machine-based control transitions occur between modes based to 

primarily facilitate driver demanded torque while taking operating conditions and sub-system 

faults in to account. [44]  

2.2.5.2 Optimization-Based Methods 

There are a few different methods that stem from the optimal control theory, that work around 

the optimality criterion, aimed at finding a control law. While having a perfect understanding of 

the mathematical models of the system, and knowledge of the control horizon enables devising 

optimal control. In a real time, environment however, where the future control horizon is 

unknown, the solution is suboptimal. The works of G. Rizzoni et al. [45] [46] discuss various 

optimal energy minimization methods including Dynamic Programming (DP) and Equivalent 

Consumption Minimization Strategy (ECMS).  
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DP utilizes a numerical methods-based approach for solving multistage decision-making 

problems. The approach can produce optimal results of any complexity level, granted 

computational capabilities. [34] DP is a backwards-looking minimization technique that is only 

simulation implementable. This is dictated since the algorithm requires prior knowledge of the 

driving conditions such as the drive cycle, grade, driver model, etc. The entirety of the problem 

including the model, control and state variables are computed for minimization, at each time 

step for the drive cycle. DP can be used to minimize for multiple objectives such as energy 

consumption, fuel flow and emissions. The resulting calibration can be in-turn used to define 

heuristics, that form a rule-based controller for a practical real time implementation.  

This is also true for the ECMS based approach which offers a real-time implementable 

optimization instantaneously taking in to account the energy consumption, while maintaining 

battery SOC around a reference point. The intuition behind equivalent fuel consumption stems 

from the fact that in a traditional HEV, the power within the drivetrain is sourced from the 

vehicle’s fuel tank. This includes both the chemical energy sources from the fuel tank as well as 

the equivalent energy sourced in the form of electrical energy from the ESS. A cost is then 

assigned to the electrical energy, which allows saving (fuel), as part of the objective function. 

The approach enables instantaneous minimization to be performed at each time instant of the 

drive cycle, without prior knowledge of the drive cycle in its entirety.  
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Chapter 3 

Utilization of MBD in a Requirements Based 

Development Workflow  

The goal of chapter 3 is to expand on UWAFT’s implementation of the Model Based Design 

framework. Here we start off by describing the broader strokes of the integration state of the 

Hybrid P4 UWAFT Blazer. Showcasing at a higher level, the multiple ECUs present within the 

vehicle’s CAN architecture that the HSC interacts with. Then we will take an in-depth look at the 

workflow, and framework developed for UWAFT’s requirements-based development. This 

section is also used to describe the role and organization of UWAFT’s Requirements Trace-

ability Matrix (RTM), in increasing cross-team transparency for both the HSC development for 

the PCM sub-team, but also from the viewpoint of other non-software sub-teams.  

3.1 Hybrid Platform Conversion 

The project 2019 Chevrolet Blazer RS from here on out referred to as the UWAFT Blazer, 

started out life as an AWD 3.6 L V6 vehicle. This vehicle from factory comes with the following 

VTS. [47] 

Table 1: Stock 3.6L V6 Chevrolet Blazer VTS [47] 

Vehicle Technical Specification Value 
Layout  Front Engine, AWD, 5 Door SUV 

Engine / Transmission 3.6 L V6 LGX / 9T50 9-Speed 
Curb weight (Front%/Rear%)  1985 KG (59%/41%) 

0-60 MPH 6.1 sec 
60-0 MPH 126 ft 

Fuel Economy Combined 21 mpg 
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3.1.1 Market Definition - Mobility As A Service (MAAS) 

The integration level modifications of the vehicle platform were driven in part by the team’s 

research on customer discovery. Customer discovery was key in devising vehicle level 

requirements or VTS, for dictation of the research vehicle’s performance targets. Car sharing is 

a sub-set of the MAAS market. Typically, the car sharing service is concentrated in denser 

populated urban areas, where a larger and more accessible customer base can be served. For 

the definition of the vehicle technical specifications, UWAFT ran an extensive survey with over 

162 respondents with age groups ranging from 18 to 45 year(s). The goal of this survey was not 

only to develop insights into the sizing and layout of propulsive components that would be 

needed for achieving the VTS, but also the vehicle features that are to be achieved in the final 

version of the prototype vehicle in the last year of the competition.  

Through the target market analysis, it was deduced that the vehicle be a traditional hybrid 

vehicle, with like stock cargo space, improved fuel economy/acceleration and have Connected 

and Automated Vehicle (CAV) safety features. While the CAV oriented features were developed 

alongside the conversion of the stock vehicle to hybrid, those active safety aspects of the vehicle 

however are only touched in this thesis to the extent in which they overlap with the focus of the 

development of the HSC. Some of the propulsion-oriented performance specs of the modified 

UWAFT Blazer include the following.  

Table 2: UWAFT Vehicle Technical Specifications 

Specifications Units UWAFT VTS 
Layout  N/A P4 Parallel Through Road  

Engine / Transmission ft 2.5L I4 NA LCV / M3D GF9  
Curb weight  kg 2100 

0-60 MPH s 5.5 
60-0 MPH ft 158.2 

Fuel Economy Combined mpg  30.83 mpg 
 

Note that weight distribution of the vehicle at the time of study was not determined, however 

the final weight change with the addition of the hybrid components such as motor, ESS and 

inverter were estimated and are discussed in the next section of this work.  
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3.1.2 Vehicle Modification Summary 

Over the years 2019 to 2021 the stock GM Blazer underwent a fair degree of modifications. 

These modifications include addition of controllers, propulsive EV drivetrain, an energy storage 

system, and a thermal system for cooling of the EV components. The main propulsion 

components include the HDS 1.5 kWh Li-Ion capacity battery pack, Semikron SKAI2HV Inverter, 

and an AAM EDU4 motor. Table 2 summarize the technical specifications for the added 

components, and their location relative to the wheels in the vehicle.   

Table 3: HEV Components 

Component Performance Specifications 

HDS Custom ESS 

Peak discharge power: 121 kW 
Continuous discharge: ~28 kW 

Total pack capacity: 5.5 kWh 
Pack nominal Voltage: 346V 

AAM EDU4 E-Axle Motor 
Peak power: 150 kW 

Final drive ratio: 9.04:1, 
Peak torque: 346 Nm 

Semikron SKAI2HV Inverter 
HV DC Link Voltage: 50-400V 

Peak Power: 150 kVA 
EMP WP32 Brushless CAN 
enabled – Electric Water 

Pump 
Operating voltage: 12 and 24 Volts 

  

Through the integration process phase the necessary mounts, drive shafts, cooling, compute 

units, safety hardware, active safety sensors and thermal systems were integrated to develop 

the UWAFT P4 parallel hybrid aimed at the MAAS market. This conversion saw the vehicle’s 

overall mass increase by 210 kg, with a 6% shift towards rear bias. This fell within UWAFT’s 

earlier described curb mass goals in Table 2. The addition of mass towards the rear can be 

attributed to the addition of the motor on the rear axle, as well as the ESS.   

Before the vehicle was integrated a series of regulations had to be abided by and followed to 

ensure the modified vehicle met the Non-Year Specific Rules (NYSR). These rules include 

restrictions around various aspects of the vehicle design. Some of the pertinent rules include 

addition of CAN enabled communication systems that interfaced with the stock vehicle body 

and driveline components, safety High Voltage Interlock Loop (HVIL). E-Stops and 12V 

Disconnect Switches that allow safe and immediate powering down of the ESS High Voltage 
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(HV) contactors and HSC controller. This required integration of a fair degree of electrical 

components and wiring, as shown below in Figure 13 electric systems integration.  

The purpose of showing this image, is to highlight the brevity of ECUs, 12V and analog/digital 

components that all communicate with the HSC one way or another for the safe operation of the 

HEV. Note that the HSC, the CAV compute device, and the relay control module are all situated 

in the rear of the car. This allowed for easier debugging of harnesses and accessing the HSC, for 

software flashing as the trunk of the UWAFT Blazer SUV is a relatively large and accessible 

space. 

 

Figure 13: Vehicle Electrical Integration 

3.1.3 ECU Layout & Interactions 

The HSC interacts with both stock and team added vehicle components. The HSC is developed 

on the EMC sponsored dSPACE DS1401/1513 MicroAutoBox (MABx) II that serves as the 

central embedded prototype controller for software deployment. In total there are 5 major CAN 

buses on the vehicle. Three of which are stock to the vehicle - two of which are high speed (500 

kbps) and one of which is low speed (<33.333 kbps) CAN. The two UWAFT CAN buses are both 
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high speeds. These are physically split due to both being responsible for different things. The 

CAV HS bus carries vehicle active safety/autonomy signals only that are processed and sent by 

the Intel Tank CAV compute unit. While the Prop HS bus interacts with the Relay Control 

Module (RCM) for component power toggling through the Relay Control Module (RCM), the 

Battery Management System (BMS) and the inverter also referred to as the Motor Control Unit 

(MCU). The UWAFT Blazer’s propulsive units are housed on separate axles. The placement of 

the CAN buses is shown in Figure 14 which aims to highlight the segregation between stock 

system CAN and UWAFT added CAN. Note that the GM CAN buses are clumped and shown as 

one CAN bus. 

 

Figure 14: High level CAN only serial network diagram 

This CAN segregation utilizes all 5 CAN bus ports on the MABx. Another important thing to note 

is that the MABx also interfaces with the components through Dig I/O – such as in the case of 

powering LEDs, and detecting safety switch status, as well as through voltage sensing on analog 

ports such as in the case of detecting keep alive circuits such as the HVIL safety loop that is 

sourced from the BMS and runs through all HV components. 
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3.2 Requirements Based Development Workflow 

3.2.1 V-Model Development Process 

UWAFT’s software development process utilizes the V-model based development process 

extensively. This process discretizes the code development process to facilitate testing of 

developed requirements at multiple levels. Here progression of software development and 

testing can be tracked from conception to realization. The V-model of development allows 

developers, and requirements generators to incorporate feedback within the software 

development workflow, encouraging refinement of requirements and testing schemes through 

collaboration between project leads, and component level experts.  

On the left side of the V-model, requirements are generated, and code is written to define 

system functionality. In the case of UWAFT, the highest level of requirement setting begins at 

the customer discovery level, where the Vehicle Technical Specification (VTS) are broken down 

into control system level requirements. For instance, in the case of UWAFT’s P4 HEV, the need 

to have an HSC is a system level control requirement – this can be further broken down into 

smaller functionality level requirements features required for functionality of the HSC, for 

instance calculation of component torque limit-based on component temperature and battery 

SOC. As we traverse up the right-hand edge on the V-model, the testing moves from SIL to HIL 

to VIL - reflecting the target hardware and plant model validation at higher fidelity.  
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Figure 15: UWAFT V-Diagram Development Process for PCM sub-team 

3.2.2 Requirements Development & Maintenance 

Development of requirements is the first step in code development process, and serves as an 

important tool for outlining, and tracking of the development progress. There are two main 

types of requirements generated for the HSC development. System safety requirements and 

functional requirements. Systems safety requirements are generated through application of 

system safety analysis on the causal effects, interactions, and modes of operation a component 

or sub-system in a certain state. For instance, forced disengagement of team developed 

Adaptive Cruise Control (ACC) upon pressing of the brake pedal. Feature-based requirements 

are developed to drive performance and functionality-oriented aspects of the HSC. For instance, 

ensuring the actual battery SOC never dips below 30% for the duration of a drive cycle to 

prevent long term cell degradation. Interestingly feature based requirements often overlap with 

system safety requirements for instance protecting Li-Ion degradation from severe low and 

high SOC charging/discharging events. The generated requirements are documented, in the 

Requirements Trace-ability Matrix (RTM), which is a spreadsheet of requirements, categorized 

and organized based on the sub-team involved, and status of incorporation.  
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3.2.3 Incorporating Systems Safety into Requirements Development 

Systems safety requirements are tracked and kept up to date in the centrally utilized, previously 

mentioned RTM. Figure 16 describes the system safety requirements development process that 

results in a robust system. Requirements are generated via study of competition safety 

requirements, team performance requirements and needs of the individual sub-systems. The 

task of reviewing, and developing systems based on these requirements lies with the 

developmental sub-teams. At least one member from each sub-team forms the Systems Safety 

Analysis Working Group - which is led by the Systems Safety Lead Engineer (SSLE). This 

ensures that the safety working group has up to date information about latest system level 

developments, and the RTM is updated based on the approval and review of the SSLE.  

The role of the safety group is to work with developers on the individual sub-teams for 

development of requirements through careful study of component/sub-systems and the 

confidential EMC Non-Year Specific Rules (NYSR) to prioritize safe system operation. Once the 

requirement is documented, the sub-teams develop the sub-system/code and performs testing, 

the results of which are updated within the RTM. Upon verification and validation, a team lead 

initials the tested requirements, and the event is dated.  
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Figure 16: Individual Sub-Teams and Systems Safety Working Group co-develop 

Functional and Safety Requirements   

3.2.4 Unintended Vehicle Acceleration System Level Requirement 

EMC places an emphasis on team’s ability to ensure safe vehicle operation during testing events. 

One of the key safety criteria for on-track testing is for teams to prove through analysis and 

system design that the vehicle is never able to accelerate without a user or an active safety-

controlled request. Emphasis is placed on using the Accelerator Pedal Position (APP) and Brake 

Pedal Position (BPP) signals as the only means to request positive or negative acceleration. 

These signals are gate-wayed by the HSC to ensure it is the sole requester for all on-board ECUs. 
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An additional requirement is to ensure the EV systems are de-energized during a key off or E-

Stop event.  

Further for team added EV To ensure mitigation strategies are in place for such an event. Sub-

systems are analyzed for unsafe actions using the Systems Theoretic Process Analysis (STPA). 

Single Element Fault Analysis (SEFA) as well as Design Failure Mode and Effect Analysis 

(DFMEA) are various types of systems safety analyses used for different sub-systems 

interactions. The team utilized SEFA extensively, which is a spreadsheet inspired take on the on 

the Fault Tree Analysis (FTA). [48] This analysis is conducted through deductive thinking. The 

idea behind the analysis is to identify any unsafe resulting states, because of an element 

(component) failure, and the diagnostic/mitigation actions that must be in place to avoid an 

unintended acceleration event. In the example below, shown is the analysis carried for one 

component. In case of a failure of the HSC, all team added EV components are at a risk of being 

impacted, as well as systems level interaction control with GM stock systems. This requires that 

no other components can request torque from the EV components, and risk of an energized ESS, 

is mitigated through the UWAFT-supplier agreed upon resulting state, which is to open 

contactors. This is possible as the ESS requires a voltage on the Dig I/O discharge_enable pin. 

This for instance is documented within the ALGO-BAT-9 within the RTM. The unintended 

acceleration analysis is applied to all ECUs that can either request (e.g., Intel Tank), command 

(e.g., HSC) or actuate (e.g., inverter) torque production. 

 

Figure 17: Sample Singular row of the Single Element Fault Analysis shows HSC Operating 

Scenario, Diagnostics Measure and resulting Safety IDs for the RTM 
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SEFA is applicable for development of safety requirements outside of software, such as in the 

development of the electrical or thermal systems in the vehicle. That appropriate diagnostics 

exist and resulting system states are understood, to mitigate from any unsafe system ripple 

effects. An example of this for instance is that, if two EV components share the same cooling 

loop such as in the case of UWAFT’s inverter and motor. Then the peak temperature limit 

requirement of the cooling loop is dictated by the component with the lower of the upper limits 

of the two components. And as such SEFA must consider that upon failure of the coolant pump 

or overheating – how to go about determining safe thermal limits. The diagnosis of this is made 

possible through the understanding of the PCM team of the requirements laid out by the 

integration performed by the Propulsion Systems Integration (PSI) sub-team.   

3.2.5 Requirements Trace-ability Matrix  

The Requirements Trace-ability Matrix houses all requirements that are generated as part of 

the V-model development process. These include, the earlier described systems safety, as well 

as functional requirements developed by the sub-teams. The naming notation within the RTM, 

takes the form of a hyphenated compound “ABCD-EFG-#. ##”. Here ‘ABCD’ represents system 

level types, such as Mech or Algo. ‘EFG’ identifies the component/subsystem for instance Mot or 

Eng, and the last third of the notation, comprises purely of digits. The digits denote IDs that add 

hierarchy between a functional requirement from the sub-system level/component level 

requirement. This allows sub-teams to easily differentiate between the type of interaction with 

the sub-system/component. This is important since a sub-system may have requirements 

outside of the software workflow, and those are important. Appendix A - RTM Types & 

Identifiers shows the RTM Descriptor Types and Sub-system Identifier’s categories. In total 

around ~500 sub-system level requirements are developed for the project thus far, of which 

~300 are software oriented, of which ~130 are powertrain HSC oriented.  

The RTM remains at the center of the development process for the entire vehicle, as it serves as 

a singular document that all sub-teams collaborate and update frequently. Since the RTM is not 

limited to just software requirements, all sub-teams use it to determine the function level 

expectation of other sub-teams interacting with a certain sub-system. This enables faster 

identification of dependencies within the requirements development path, across the entirety 

of the team. For instance, a component like the EDU4 motor must be physically installed ‘ELEC-
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MOT-1.1’, ‘INTG-MOT-1’ for the PCM team to verify feasibility of regenerative braking ‘ALGO-

MOT-1, 1.1, 1.2’ as shown in Figure 18.  

 

Figure 18: Requirement Transparency & Sub-team Dependency identified through an ID 

and Sub-team categorization setup 

3.3 Expanding MBD for faster environment switching 

3.3.1 High Level App Setup 

At the highest level lies the project (.prj) file. This launches the MATLAB application which 

contains information about the included files/description and helps start/end the UWAFT HSC 

project. The data from the component suppliers are stored in spreadsheet (.csv) and (.mat) 

format files that are loaded directly into the workspace using getter style methods that are run 

as part of the model MATLAB scripts (.m). The plant model and controller constants are loaded 

into the Simulink environment and applied to the sub-systems via the masked library block 

setup. Simulink model properties such drive cycle, environment, grade, and tStop which is the 

length for which to execute the simulation are loaded as separate variables in the workspace 

accessible by the Simulink simulation model.  
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3.3.2 Model Configurator - MATLAB-Simulink task automation 

Over the course of the development of the HSC, time was spent exploring methods to speed up 

model interaction tasks. The model configurator tool is developed for speeding certain 

simulation tasks and ensuring consistent build environments. The MATLAB scripting language 

and model is utilized to encapsulate data for component models, that are represented as 

masked library component blocks, described in more detail in the next section. The objects live 

in the MATLAB workspace that are accessed by the masked library blocks allowing 

simplification of component data and controller parameters initialization. For more procedural 

steps such as setting up of real-time/non-real time test environments, and I/O interactions, the 

MATLAB scripting language is leveraged and its powerful handle on properties within a 

Simulink environment are co-utilized. This approach significantly reduces the setup time 

needed for transitioning between non-real-time and real-time testing and enables a developer 

to replicate the simulation environment faster. 

The Object-Oriented class structure allows UWAFT to define methods, and properties for the 

UWAFT simulation model, facilitating functional interaction with the simulation model as 

included in Appendix B - Model Configurator Script. This enables the team to configure testing 

environments for HIL, and MABx, provided the limitations of the MATLAB-dSPACE API exposed 

to developer. MathWorks provides comprehensive documentation on how to go about 

accessing Simulink model environment elements, without requiring the developer to open the 

Simulink model manually. Due to the object-oriented nature of the project setup, this setup is 

referred to internally as the Model Object.   

The class contains three main types of methods as shows under the Class banner in Figure 19. 

Firstly, the object constructor that loads the model system, secondly the SIL simulation 

interaction methods (e.g., running the model) and thirdly the configuration methods that are 

used to initialize simulation data into the workspace, as well as allowing the simulation model 

variant to be pre-configured for target HIL hardware or MABx flashing. The drive cycle property 

of the model object is modified through the ‘loadHighway()’ method, which in this case would 

load the UDDS Highway Drive cycle. Similarly the initialization ‘init()’ method contains other 

getter style methods, that fetch the component model data, controller parameters and 

simulation time in order to prepare the simulation to be run. Appendix C- Model Based Design 
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Framework Overview provides a framework level illustration and interactions of the model 

configurator in the development process utilized by UWAFT. 

 

Figure 19: Automated Model Configurator Tool Setup through use of Object-Oriented 

Class 

During year 1 of EMC, a conscious effort was made to in developing and setting up the 

masked library blocks [49] for component models, controllers, and the driver block among 

other subsystems within the modelling repository. The motivation behind this was twofold, 

firstly during year 1 of EMC the team needed a method whereby the component parameter data 

could be easily swapped for powertrain architecture selection studies and secondly, once the 

components were finalized the team would work with the component suppliers to obtain data 

surrounding various aspects of the component, allowing for retention of underlying physical 

model representation. Sub-systems that would operate using parameters, constants, efficiency 

maps and/or look up tables were all converted to masked sub-systems. This made the code 

base cleaner, as once the sub-system functionality was deemed satisfactory - the data within a 

sub-system could be lumped inside a single library workspace struct. The example shown in 

Figure 20 below is the EDU4 motor where the ‘loadData2Workspace()’ method from the Model 

Object class would call the getter style methods, to load the motor data in to the MATLAB 

workspace. In this case a pre-existing MathWorks motor model is re-assigned torque-speed, 



 

 52 

and efficiency datas within the variable ‘mot’. This of course makes it significantly easier to 

swap models for a component that shares similar physics in a prototype vehicle development 

environment.  

 

 

 

Figure 20: Populating parameters in a Simulink Masked Library Sub-system from 

MATLAB 

MathWorks ‘sim’ command and ‘getparam()’ function are extensively used to manipulate the 

simulation model properties without requiring the developer to explicitly launch the simulation 

app. This is a unique but rarely used functionality available in the MATLAB-Simulink 

environment, that UWAFT heavily leveraged to automate set up of the model I/O for flashing 

code on MABx or for real-time testing in the HIL environment. I/O which is discussed in more 

detail in section 4.1.4 Hardware I/O setup of this work, utilizes the ‘from’ and ‘goto’ tags as sub-

system input and output. These are accessible by name for removal and/or modification, using 

the ‘getparam()’ MATLAB function. This among other commands such as the RTI dSPACE 

interactions [50] are programmed within the ‘config()’ method as part of speeding up of 

environment setup. For example, to launch the HIL testing environment, a developer would 

simply pass the string HIL in to the ‘config()’ method. This would clean up the current working 

model, call the dSPACE RTI library, comment out the controller block to prepare for outputting 
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of the .sdf, file and make the necessary I/O changes for plant outputs to be redirected the HIL 

hardware. Once completed a new Simulink model variant would be loaded, which is pre-

configured for HIL flashing. Shown in Figure 21. below is representation of the I/O blocks in the 

Simulink model for SIL, versus when setup for HIL. Lines 88 to 224 in Appendix B - Model 

Configurator Script shows the code written to achieve this.  

 

Figure 21: Switching of SIL to HIL I/O - automated for Target Hardware  

3.3.3 Collaboration Through Atlassian Products & Version Control  

The development of the UWAFT HSC modelling repository over the last 3 years of EMC has been 

a breadth heavy software endeavor. Multiple developers and component experts have worked 

collaboratively to develop and test a variety of software feature sets. From a project 

management perspective this poses a significant risk, warranting a need to ensure development 

remains organized, appropriate version control/approval mechanism are in place, and much 

importantly through the COVID-19 pandemic, that their remain transparency in workload 

assignment. Outside of purely the development environment UWAFT utilized Atlassian Jira [51] 

for developer ticket assigning and git [52] for version control.  



 

 54 

 

Figure 22: Feature Development, Testing and Merging Workflow 

As described in earlier section requirements that are generated from the RTM need to be 

developed, tested, and merged in the master copy of the development repository. To facilitate 

this UWAFT’s development process is supported by a Jira for task creation, assigning and 

linking with documentation. Whereas git is used as the main tool for version control, review, 

and verification process. To break the project in bite sized chunks throughout the year, UWAFT 

adopted the Agile Sprint methodology to track development progress, and burndown rates. The 

bite sized chunks are the 2-week Agile sprint, of which there are a total of 18 throughout the 

school calendar year excluding Winter and Spring breaks. The developers would use pre-set bi-

weekly dates over the course of the year to determine workload in the form of JIRA tickets that 

would be placed on the KANBAN board for the sprint in question. The KANBAN board splits 

tickets into columns, that signify the status of the tickets. Any ticket created in the Jira system 

can be assigned directly to a developer. Developers can attach supplemental files, story points, 

and add descriptions to the ticket. This gives tasks lineage and can be brought up in the future 

for discussion.  
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Figure 23: Ticket, KANBAN Based Development Workflow using Atlassian Jira 

Not only do the senior developers need a mechanism to review code, but version control 

provides a mechanism to separate development and testing of feature requests through use of 

branches. Tickets created in the JIRA system are automatically assigned a unique ticket number. 

The ticket number is then used as the name of the feature branch, in which development occurs. 

This allows the reviewer developer to be able to go back to the requirements established within 

the original ticket and ensure the criteria for completion of the ticket are met.  
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Chapter 4  
Hybrid Supervisory Controller  

This chapter deep dives into the architecture of the software sub-systems that make up the 

Hybrid Supervisory Controller. The organization is systematically organized to facilitate testing 

of requirements, functional controller layer both on vehicle and sub-system level as well as 

plant modelling. Also described is the I/O layer that is strategically segregated depending on the 

target hardware for the simulation testing. In total there are 10 software sub-systems that 

include the driver block, I/O layer, tester block, the functional supervisory controller, the Soft-

ECUs and the plant model that make up the HSC. The main hybrid controller in the HSC is called 

Functional Supervisory Controller (FSC), this comprises of the fault detection layer, vehicle 

state control, torque strategy block and the component level execution.  

4.1 HSC Development  

Historically teams that succeed in past AVTC offerings, are ones that heavily leverage their 

SIL, HIL environment workflow. This acts as a reliable surrogate to real vehicle development 

reducing time, and ensuring safety requirements are met, and no errors exist in the logic before 

VIL testing. The environment must be structured such that a beginner, and/or more 

experienced developers on the team, are able to get up to speed and configure with relative 

ease. In this sub-section of the work is discussed how model-based design was expanded on, to 

support easier SIL, HIL environmental configuration, requirement testing, version control and 

HSC role(s) segregation. The team’s ability to leverage the MathWorks MATLAB/Simulink 

development environment was key in increasing time spent in development and testing in SIL 

and HIL over VIL. This makes sense from a cost perspective but was especially crucial for the 

team during the COVID-19 pandemic, for the duration of the EMC year 2, 3 (2019-2021) 

development phase, where access to the garage was limited for students working remotely. The 

developed framework encouraged the team to rely on tools for adding and testing functionality 

but also to streamline workflow around the requirements.  
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4.1.1 Structure of UWAFT Simulation Model in Simulink 

In a team environment, reducing the time taken to train and bring new developers up to speed 

is critical. Just as important is the ability of a developer to understand code structure and roles 

of the various subsystems. There was a need to partition the codebase in smaller functional 

blocks that serve distinct functions. Simulink offers a visual MBD style of programming 

approach. Here, systems are essentially drawn on to the screen as block diagrams. These block 

diagrams are interconnected through signals that can be combined like a harness in signal 

buses and selectors. This approach makes it easy to monitor signals and backtrack any 

simulation level faults. Signal propagation can then be traced through use of Simulink library 

components such as the scope, and data inspector. This approach is a well understood, and 

popular approach to programming in the current age of automotive systems development, 

thanks to the ease of code generation for target embedded hardware [53].  

Having developed 4 prototype vehicles using a combination of MathWorks Simulink and 

dSPACE products, the team has obtained valuable experience that was ported in to the 

development of the UWAFT’s EMC HSC [54] [55] [56] [57]. Simulink as mentioned earlier is 

fully integrated with MATLAB and the data within the project’s active workspace. For the latest 

AVTC offering, UWAFT has elected to segregate the I/O, FSC and plant model. Before we can 

breakdown individual sub-functions, it is important to discuss the roles of the various blocks 

shown in Figure 24.  

The Simulink model at its root follows the forward modelling approach where acceleration 

commands are generated through the longitudinal driver, the controller and the plant that 

results in vehicle longitudinal velocity. The tester block serves as gateway point for controller 

and plant outputs such that overriding system signals and asserting requirement checks for 

various components and sub-systems is possible. This gives the team the ability to inject 

intended faults for assessment of controller, and soft ecu behavior. as part of the HSC feedback 

loop. The HSC handles state estimation, fault detection, vehicle state control, propulsion torque 

strategy, and component level execution. The GM Blazer block contains the soft-ecu 

representation of all ECUs for state estimation purposes, as well as the plant model of the 

various drive components such as the ICE, transmission, gear reduction units, motor, ESS as 

well as longitudinal dynamics of the vehicle body.   



 

 58 

 

Figure 24: Root level Sub-Systems in the Hybrid Supervisory Controller Simulink Model 

4.1.2 Model Tester Block & Simulink Test for Requirement Maintenance 

In chapter 3 we discussed the significance of developing safe and functional requirements for 

vehicle controls development. However, as the code base grew, and more 

components/functionality were added to support new feature sets. The team felt a challenge in 

ensuring all requirements were still being met. The team was encouraged to find a method 

whereby requirements could be tested altogether within the same environment without the 

need to manually test for each. Regression options such as Jenkins - were explored however due 

to limitations in developer manpower, continuous changes being made to the model itself, and 

the limitations of the COVID-19 pandemic, this option was not chosen. By the end of Year 3 the 

team had amassed 132 requirements within the PCM swim lane of which some are safety 

critical, and others purely functional. To support simultaneous testing of said requirements, a 

new testing framework was introduced in the root directory of the UWAFT controls simulation 

model, that would check for all test cases during an SIL simulation. The tester sub-system 

shown in the top center of Figure 24 is made up of two parts. The testing override block which 

overrides signals for testing purposes and the test cases block, where the requirements have 
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been converted to test cases to verify that the testing requirements have been met. This is 

organized into various requirements based on the component being tested.  

 

Figure 25: Tester Block & Testing Framework for requirements in the HSC 

The inner structure, high level organization and working of this tester block is shown in Figure 

25. For example, in the case of the motor controller - the requirements being tested shows that 

the inverter will be disabled if a CAN communication timeout occurs. During normal operation 

this should be caught by the Fault Detection layer in the HSC that is described in section 4.1.6.1 

Fault Detection Layer. This is an example of a requirement that would ensure the vehicle does 

not accelerate unintended based on the safety analysis described in Chapter 3 of this work. 

Upon failure of any requirement, the simulation ends with the error message highlighted in red. 

The organization and testing of the testing requirements themselves is implemented within the 

Simulink environment and is organized through use of Simulink Test. [58] Here a singular 

requirement is linked to a singular test to ensure that each requirement is fully tested 

individually. This organizational decision allows the team to use the Simulink Test Pre-Load 

window where a generic test struct function is called and signal values are overridden, followed 

by the signals that need to be overridden for the test to fail and assertion to occur.  
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4.1.3 External Inputs (Driver Block & Ambient Environment) 

During run-time of the SIL model, there exist two types of external inputs to the HSC and Plant. 

The driver input block, which uses the drive cycle as a target speed such that it is fed to the HSC 

as an acceleration request, and the ambient environment block. The driver input block utilizes 

the Charles McAdam [35] predictive driver block which takes in to account the road gradient 

and vehicle feedback speed to generate an acceleration or deceleration request. Driver cabin 

controls such as team developed safety switches, and active safety (autonomous) switches are 

also present for toggling. The cabin lights and switches are essential for immediate toggling of 

certain hybrid and active safety software features that can request longitudinal/lateral 

acceleration for safety purposes. These are documented within the RTM. The Simulink 

environment imports the drive cycle, and ambient environment parameters from the MATLAB 

environment details of which are discussed in Section 3.3.2 Model Configurator - MATLAB-

Simulink . Shown below is the internal structure of the longitudinal driver model. 

 

Figure 26: Longitudinal Driver & Team Added Safety Switches Block 

The environment block contains ambient information such as grade, wind velocity, external 

outside temperature, and barometric pressure. These parameters are useful for certain 

simulation scenarios and are fed into the model where extreme external conditions are 
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required to find system limits – such as high temperatures and road grade for thermal system 

testing. 

4.1.4 Hardware I/O setup 

The I/O layer acts as a signal conditioning layer, where all the signals stemming from the HSC 

are adapted for the end hardware. In our discussion of the role of using Model Object in section 

3.3.2 Model Configurator - MATLAB-Simulink . We have preliminarily touched on the 

advantages of initialization the model as an object. How that provides the ability of using the 

model to manipulate signal switching to adapt the simulation to be run in the SIL, HIL and VIL 

environments. From an MBD standpoint, while there are no explicit requirements for the 

implementation of the hardware I/O sub-system. The sub-system serves as the only place 

within the Simulink model, through which all signals must route in to and out of, before being 

sent to the plant model, HIL or VIL layer(s). Figure 24 shows the Hardware I/O sub-system at 

the bottom of the root of the model. Here currently only the SIL_IO block is active and 

uncommented. This is by default and is always the case when the model is initialized as can be 

seen in the MATLAB implementation in Appendix B - Model Configurator Script line 88 to 100.  

From the perspective of the HSC subs-system all signals being received by the HSC from the 

ECM, BCM, Intel Tank, inverter and coolant pump are Rx signals. The vice versa is true for Tx 

signals. For the SIL simulation it is important to mimic the nature of feedback, from the real 

vehicle since the simulation model runs on non-real, CPU time. In that to simulate a unit delay, a 

propagation delay from the signal system buses, for every discrete time-step that the simulation 

is solved for, is made possible by adding 1/z discrete unit delay block [59]. The unit delay is 

only required as part of the Rx feedback, and generally is appended to the simulated plant 

outputs before being received by the HSC.  The unit conversion or matching layer is where 

signals are first converted to the appropriate type such as double or Boolean, and then are 

assigned the appropriate signal name.  

Signal names are importantly kept consistent throughout the model depending on the system 

being interacted with, and modifications made to the signal. In the case of SIL I/O, the signal 

names are represented, per the naming convention of the signal messages described within the 

CAN database (DBC) file. Due to confidentiality reasons, the message and signal name 

descriptions are not provided in this work.  
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Figure 27: SIL I/O layer 

Expanding the idea lines 89 to 250 in Appendix B - Model Configurator Script showcases how 

the Simulink model is configured for use with the HIL, and VIL environments. This is made 

possible through a series of scripted commands, that follow the manual setup pattern if a 

developer were to perform all steps manually. In HIL simulation the plant model block is 

commented out, as the HIL takes on the role of representing model for real-time simulation. 

Here the CAN, Analog and Digital outputs are physically mapped to the real HYP, and ZIP pins 

on the HIL and MABx respectively. The port location and harness development for the pins is 

described in dSPACE documentation that is provided as part of the purchase package of 

DS1401/1513 MABx II hardware. Working with hardware that is needed is simply 

uncommented and signals are re-routed, through use of the Model Object script. This is done 

through the command line, as part of a string parameter passed to function call. It should 

however be mentioned that there are other steps involved in setting up dSPACE hardware such 

as approving dSPACE licensing, using description files for CAN settings for signal population, 

and utilizing the CAN Multi-Message (CANMM) block-set [60] to generate the .sdf file type, such 

that it can be flashed on the target hardware. Shown below is the I/O setup for HIL testing 

established at UWAFT, that is an easily repeatable setup for UWAFT. Setup of the VIL layer is 
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very similar, except in that case ALL vehicle CAN signals are populated as part of the CANMM 

setup - to be received by the MABx.   

 

Figure 28: HIL I/O layer 

4.1.5 Longitudinal Controller (Intel AIOT Tank) 

Addition of a secondary torque requesting controller is a new AVTC requirement, that didn’t 

exist explicitly pre-EMC. The Intel AIOT Tank is a physical onboard Linux compute systems that 

runs within the UWAFT Blazer as the primary CAV controller. This system runs the Robotics 

Operating System (ROS) written in C++ programming language that utilizes nodes to separate 

functionality. Functionality of the tank includes but is not limited to – performing CAN Tx/Rx, 

data filtering, sensor fusion, object association/detection, and updating safety counters within 

and external to the system. Representation of this controller in the HSC involves processing 

CAV-alive safety counters, driver cabin user selection for ACC modes/gap settings and using the 

pre-processed sensor inputs from the tank to generate a torque request.  

The longitudinal controller incorporates an adaptive cruise control model that works based 

on its understanding of the lead car and the Ego vehicle. The HSC in the case is following 

acceleration commands that are generated from the CAV compute unit where the drive cycle 

acts as the lead vehicle, and Adaptive Cruise Control (ACC) ego-controller drives autonomously 

behind it. The lead car block generates the relative speed and relative position between the two 

vehicles, as inputs to the ACC block. The team is currently exploring other active safety features 

such Automatic Emergency Braking (AEB) and Lane Keep Assist (LKA).  
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Figure 29: Longitudinal (Active Safety) Controller Layout 

4.1.6 Functional Supervisory Controller  

The Functional Supervisory Controller (FSC) is at the center of all vehicle operations and acts 

as the master arbitration controller for all team added components and ECUs. Before the FSC 

was developed, a fair bit of thought was put into the structure and layout of the controller. The 

UWAFT team wanted a controller structure that was agnostic to the plant model it was 

actuating on. Meaning that regardless of the hybrid architecture this structure could be re-used 

or expanded on to control more components if needed. The basic structure of the HSC is made 

up of 4 main layers. The State Estimation & Fault Detection layer, Vehicle State Control, 

Propulsion Strategy Optimization and Component Level Execution.  
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Figure 30: Functional Supervisory Controller Structure & Segregation of Roles 

4.1.6.1 Fault Detection Layer 

The state estimation and fault detection layer take inputs as feedback from the plant during a 

SIL simulation and, the CAN bus from the component ECUs. The inputs are measured 

component states, and physical parameters that are compared against physical limitations and 

unsafe component control combinations as deduced through systems safety analysis as well as 

data sheets provided by the component manufacturer. The goal of this layer is to produce 

Boolean flags that are evaluated at vehicle state control and soft-ecu level, to ensure vehicle 

operates in a correct safe state.  

Faults are determined at this level to ensure two things. Firstly, that the vehicle is not 

requesting torque from a component that is operating near its limit, and needs to be disabled, 

but secondly to ensure the vehicle state control and component level execution subsystems are 

able to determine the appropriate operating state such as ICE only, HEV or fault mode. The table 

below summarizes the various checks performed at this level.  
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Table 4: Functional Requirements Tested at HSC Fault Detection Layer 

 Component 
 Inverter Engine ESS Autonomy 
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HV Bus Active 
Discharge 

(V) 
(<50) 

Coolant 
Temp 
(ºC) 

(>=110) 

Minimum Voltage 
(V) 

(<=321) 

Accel 
Override  

(Nm) 
(Driver>ACC) 

Running Counter 
(s) 

(>=0.5) 

Low Voltage 
(V) 

(<=10.5) 

ESS Discharge 
Enable 
(Bool) 

!(Discharge_Enable) 

Accel Limit 
(m/s^2) 

(>0.3) 

CAN Signal Integrity 
(Bool) 

! (CAN_VAL && 
CAN_MotSpd && 

CAN_PhaseCurrent && 
CAN_DcLinkVoltage 

&& 
CAN_MotTemp) 

Brake Press 
(%) 

(>=5) 

BMS Internal Error 
(Bool) 

(Cell Over Voltage || 
Cell Under Voltage 

|| 
Cell Over Temp || 

Cell Under Temp || 
Cell Over Current || 
Cell Under Current) 

CAV Compute 
Alive 
(ms) 

(>250) 

Motor Current 
(A) 

(>=424) 

CAN 
Timeout 

(ms) 
(>=170) 

CAN Time Out 
(ms) 

(>1500) 

CAV Switches  
(Bool) 

!(ACC Enable) 

Motor Voltage 
(V) 

(>=450 || <=321.6) 

Over Speed 
(RPM) 

(>=6850) 

Isolation Error 
(Bool) 
(False) 

Vehicle Speed 
(kph) 

(<40 || >140) 

CAN Timeout 
(ms) 

(>=1250) 

Max Torque 
(Nm) 

(MaxEngTrq
-PlantTrq > 

0) 

  

Motor Speed 
(RPM) 

(>=13000) 
   

Motor Temperature 
(ºC) 

(>=100) 
   

Low Voltage 
(V) 

(<=10.5) 
   

 

Note that the failure evaluation condition for CAN timeout or signal integrity timers vary 

based on the criticality of the parameter being evaluated. For example, a motor over torque 
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signal is evaluated more frequently than a motor over temperature signal, because a motor 

casing may withstand a high temperature with active cooling for a slightly longer time, before 

permanent damage occurs, whereas a motor over torque condition may snap a torque rated 

half shaft immediately, and thus needs to be monitored at a higher rate.  

4.1.6.2 Vehicle State Control 

The primary function of the vehicle state control subsystem in the HSC is to ensure the 

vehicle is operating in the right state based on outputs from the fault detection layer, 

propulsion plant model and any executive requests made from the passenger cabin. The vehicle 

states include Accessory, Off, Startup, On, Fault and Shutdown states. The vehicle direction 

states determine driving direction primarily based on the position of the transmission shifter, 

given when vehicle in ON, and not in a fault state. Executive inputs into the state machine are 

used to determine state of actions that stem from the user cabin, such as state of the shifter and 

ignition button state. The vehicle state control is developed using Simulink Stateflow [61]. 

Stateflow as the name suggests, makes use of functional state transition diagrams, flow charts 

and truth tables for logical decision making within the Simulink model. The state machine can 

be further layered to accommodate any transitionary states within the main vehicle states. 

Figure 31 illustrates the structure of the vehicle state machine at a high level. Since the vehicle 

utilizes a stock GM ICE, the immediate fault state upon an EV related HEV failure is to shut off all 

EV component and continue operation in ICE only. Full shutdown occurs if the ICE is detected to 

not be running. In this case a full vehicle shutdown is required.  

 

Figure 31: Vehicle Powertrain States  
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Table 5: Vehicle State Control state description & state transition condition 

State State Action State Transition Condition 

OFF All Systems Off 
1: Entry 

2: System Power Mode: accessory 

Accessory System State: Accessory 
3: Vehicle Start Request: true; Shift 

Lever: park 
17: !(Vehicle Start Requested) 

Startup 
ESS Contactor Close: true 

Inverter On: true 
EV Cooling: true 

4: ICE Request: true 
5: HEV Request: true 

Shutdown 

ESS Close Contact: false 
Inverter On: false 

System State: Shutdown 
EV Cooling: false 

18: Engine Ready: false; EV On: false 

ON 
Limp Mode: False 

Limp Shutdown Request: 
False 

15: Engine Ready: false; Limp Mode: 
true 

16: Vehicle Start Request: false ; Limp 
Mode: true 

ICE HEV State: ICE 
**Fault state – leaving state unintended 

-  except shutdown 

HEV Startup 
HEV State: ICE 

Inverter On: true 
ESS Close Contactor: true 

6: EV Torque Ready 

HEV HEV State: Hybrid 7: ICE Request: true 

ICE Only 

HEV State: ICE 
Inverter On: false 
Limp Mode: true 

ESS Close Contact: false 

8: is EV faulted: true 

Full Shutdown Vehicle State: Shutdown 9: Engine Ready: False 

Idle Vehicle Direction: Idle 
12: Shift Lever: Drive 

13: Shift Level: Reverse 
Reverse Vehicle Direction: Reverse 11: Shift Lever: Park 
Forward Vehicle Direction: Forward 14: Shift Lever: Park 

 

Table 5 above describes the resulting output action within each state as well as the outgoing 

condition necessary for the states to transition. Note that state ICE is different from ICE Only 

state as the input required to be in the former state stems from user input of toggling one of the 

cabin safety switches to keep the HEV systems disengaged. This requirement originally 

stemmed from the NYSR and was incorporated here to differentiate from the ICE Only state, 

where the HEV system is faulted.  
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Another important thing to note is that in Simulink Stateflow implementation state actions 

can be programmatically prefixed with the en (enter) and du (during) operators that allow 

separation of one time and continuous actions, that are not shown in the state table to reduce 

unnecessary documentation complexity. Furthermore, the state action and state transition are 

enumerated, for ease of programming, which in this case are written in full words.  

4.1.6.3 EV Torque Added Strategy 

The HEV torque strategy developed for the UWAFT Blazer is a simple Charge Depleting (CD) 

strategy, where the front and rear axle operate independently of each other. Meaning that the 

torque request is not split between the two axles, instead the EV motor provides additional 

torque based on the accelerator pedal position of the driver. This classifies this torque strategy 

as a rule-based strategy, where the maps are developed through drive testing on a test track. 

The intent behind developing a simpler torque strategy was to help the team make the Blazer 

robust to drive and operate. Since all EV propulsion systems are team added, naturally a need 

was felt to first explore mechanical, electrical, and thermal systems boundary. Secondly since 

the inverter and inverter were paired by a third-party supplier, the team wanted to be 

confident of the torque application behavior of the rear axle.  

4.1.6.4 Drive Cycle Requirements 

The torque strategy was developed based on EMC’s requirements for a drive cycle developed 

on the team’s local track. The track local to UWAFT through the development of year 3 was the 

Waterloo Regional Emergency Services Training and Research Center (WRESTRC). The 

WRESTRC is a 1.2 km long oval complex, that the team mapped and adapted to simulate a city 

and highway drive cycle section. EMC’s specific energy consumption course requirements were 

two-fold. Firstly, to develop a 36 miles long course that was split up in to 4 repeated 

city/highway profiles designed to fit the test location. Secondly to ensure that the city section 

above 50 kph with 3, 10 second stops, and highway with speeds above 70 kph and 2, 10 second 

stops. Shown below is a map view of the WRESTRC, and the points at which complete stops 

were made. Since the track was 1.2 km length, 48 loops of driving were required. The team 

decided to drive 12 loop cities, then 12 loop highway and repeat twice to fulfill the drive cycle 

requirements.  
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Figure 32: WRESTRC test track map view w/ slow down to stop points [62] 

4.1.6.5 EV Torque Added Strategy 

The torque strategy pedal maps for forward torque and regenerative braking were developed 

such that the Blazer could sustain battery SOC when driving the city profile and deplete battery 

SOC when driving in highway scenario. This would simulate a charge sustaining behavior below 

55 kph and charge depletion above that speed for improvement in the overall fuel economy. 

The pedal maps were also tuned for a natural pedal feel that was subjectively developed based 

on inputs by multiple drivers. 

During the development of the pedal maps, it was determined that upon stopping the vehicle, 

the regenerative braking map would cause the vehicle to drive backwards due to the negative 

torque application. A switch case was added to allow no EV below 7 kph and retain the stock 

vehicle’s slow speed crawl feature. It must also be noted that since the UWAFT Blazer is an HEV 

and not a PHEV, charging on demand was deemed a critical feature. For this purpose, the team 

added a cabin switch that would request a safe amount of regenerative power for the duration 

of the drive, helping charge the ESS.  
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Figure 33: Torque added EV strategy 

 The tuned pedal map for the WRESTRC, resulted in the ESS being able to sustain SOC at city 

speeds and deplete SOC at highway speeds for 36-mile drive, as shown in Figure 34 below. 

 

Figure 34: Initial SOC Safety Window Verification at WRESTRC 



 

 72 

4.1.6.6 Component Level Execution  

The last major sub-system that forms the functional supervisory controller is implemented 

within the Component Level Execution block. The primary function of this sub-system is 

tracking of ECU states for the various controllers onboard the vehicle interacting with the HSC 

interacts. These states are written in Stateflow similar to the vehicle state control layer, except 

in this case, all physical ECUs present on the vehicle are represented. This is important for a 

variety of reasons that includes but is not limited to - understanding of the operating states of 

the controller, determination of actions possible by the HSC, switching of states based on logic 

in the fault detection and vehicle state control layer, and lastly organizing ECU interaction for 

ease in troubleshooting in-vehicle. The state determination is made through a combination of 

in-HSC outputs as well as raw component CAN signals.  

This layer interacts with ECUs of the following components – engine controller, body control 

module, inverter, BMS, in-cabin lights, coolant pump, the stock active safety control module, the 

rear differential control module, and the relay control module. It must be noted that control 

units such as the active safety control module, and rear differential control module were 

modified/removed during the vehicle retrofitting, and for the stock GM systems to perceive 

normal operation. This layer also populates. the expected GM CAN bus signals so the stock 

vehicle systems continue to operate as normal.  

As an example of the inner working of this sub-system we can take the example of how the 

inverter soft ecu is implemented. Shown in the image below is the inner ECU states for the 

inverter, as documented and supplied by the component manufacturer followed by the team 

implemented representation. It may not come as a surprise that there is a striking resemblance, 

in the layout, names and direction of state transition arrows. During the development of this 

layer, the team worked closely with all component suppliers to ensure the inner workings of the 

third-party ECUs was well understood for safety reasons. It is also important to note that some 

of the default ECU states are clumped together for ease in troubleshooting of the component. 

For instance, the Initialization Failed, Error and Shutting down are grouped together in the 

team’s Idle and Shutdown states.  
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Figure 35: Inverter State Control - Analogous Implementation 

4.2 Vehicle Plant Modelling  

The plant model is used in conjunction with the functional supervisory controller for testing of 

all controller functions before the code is ever tested on the real vehicle. The plant model 

simulates the physics-based behavior of the drivetrain components as well as the longitudinal 

chassis dynamics. The ECU model adaptation are termed soft-ecu’s as they are simplified 

software representation of the real ECUs operation, that are physically present within the 

vehicle. In the case of UWAFT the plant model fidelity, and requirements coverage spans the 

longitudinal dynamical, embedded, and thermal models of the drivetrain components. This is 

important for the SIL and HIL environment testing of the basic control algorithm, validation of 

systems diagnostics as well as refinement of the plant model itself based on calibration data 

collected from vehicle testing.  
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4.2.1 Soft-ECU Representation  

In section 4.1.6.6 Component Level Execution of theses we discussed how component states are 

tracked and executed based on executive requests from the vehicle, within the functional 

supervisory controller. However, it is the soft-ECU implementation during a SIL/HIL simulation 

that mimics the functionally complete representation of inputs, outputs, and possible ECU states 

that the HSC needs to interact with. In some cases, such as in the case of the ICE, the soft-ECU 

contains the plant model – such that the executive requests can directly be translated to 

effective outputs. A well calibrated soft-ECU is necessary for scalability of SIL simulation in real-

time HIL environment, as these ECU outputs are required for exploration of system boundaries 

– such as possible component faults, operating states, and physical constraints. The table 

included in Appendix D - Plant Soft-ECU Inputs/Outputs Summary summarizes the inputs and 

outputs involved with the soft-ECUs. The signals are further grouped, signifying the routing to 

the HSC in a VIL test environment, and to plant during a SIL/HIL simulation. The soft-ECUs that 

are implemented in the UWAFT Blazer plant model are a combination of soft-ECUs provided by 

the OEMs in the form of MathWorks block sets, and team developed soft-ECUs. OEM provided 

soft-ECUs include ICE, BCM and transmission soft-ECUs which were provided by GM and 

MathWorks and were left untouched. In some cases, such as the ICE, these were simplified to 

exclude the inner workings of ICE that were reported by the ECU such as crankshaft angle, and 

internal cylinder pressures – which were not useful for the team to keep for the purposes of the 

longitudinal simulations. The latter (team developed) soft-ECUs include the inverter, ESS, 

coolant fan, coolant pump, cabin switches and the RCM. These soft-ECUs were developed from 

ECU behavioral testing and component data sheets studies.  

4.2.2 Powertrain Model  

The Powertrain model is a single sub-system that contains torque producing and transferring 

components. UWAFT heavily utilized the MathWorks Powertrain Blockset [63] for the 

development of this sub-system. The Powertrain Blockset provides fully developed models of 

automotive powertrain components such as Compression Ignition (CI), Spark Ignition (SI), 

electric traction motor, shafts, battery packs and controller model reference applications. These 

were adapted to use the parameter data that was provided by the component manufacturers, 

through use of the masked library block setup described in section 3.3.2 Model Configurator - 
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MATLAB-Simulink  of this thesis. The plant model for the powertrain comprises of the ICE, 

transmission, ESS, motor, differential, torque transferring shafts, wheel/tyres and body models 

all connected to represent the P4 parallel through road architecture as shown in Figure 36 

below. Note that the term PowerCube is used by GM and is given to the ICE-transmission pair.  

 

Figure 36: High Level Powertrain Plant Model Overview 

4.2.3 ICE & Transmission Model 

The ICE and transmission sub-systems are both adapted based on the confidential LCV and M3D 

data provided by GM respectively. The ICE sub-system is represented by the “Mapped SI” block, 

which is further expanded on by UWAFT to include the starter motor, as well as the catalytic 

converter.  This data was produced through GM’s experimental results and was stored as 3D 

lookup tables within the model which are then imported as masked parameter to populate the 

ICE model. As described in the soft-ECU section above, the models are simplified to produce 

only the signals needed for UWAFT’s purposes. It’s important to note that since the 

mathematical representation of the engine is neither required not sought. The engine speed, 

engine torque, fuel flow, the Brake Specific Fuel Consumption (BSFC), and the exhaust gas 

composition are used instead in the simulation studies. The engine torque and speed are used 

to determine drivetrain and ultimately body states, whereas the fuel flow is used as a metric to 

calculate fuel consumption.  

The transmission model utilizes a fixed-gear transmission model, that is connect to the ICE via a 

lock up type torque converter. The torque converter transfers power to the transmission model, 

which is populated via the gear ration, timing, gear efficiency, inertia, torque breakpoints and 
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speed breakpoints. Note that the torque converter block is unmodified, as calibration data for 

this device was unable during the development of the transmission sub-system.  

 

Figure 37: MathWorks Powertrain Blockset for ICE & Transmission Models  

4.2.4 Energy Storage System 

UWAFT worked closely with a Hybrid Design Services engineering consultancy firm for the 

development of its ESS. At its core the cell powering the battery pack is the Samsung INR18650-

20S Lithium-Ion rechargeable cell. [64] The vehicle’s VTS targets defined from the previous 

AVTC offerings – specifically results from the EcoCAR Emissions & Energy Consumption (E&EC) 

events were the primary driving factors for the power and electrical requirements of the ESS. 

The pack was delivered mid-way through Year 2 of the EMC competition, and the final specs of 

the resulting pack are as follows.  
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Table 6: HDS ESS Pack Model Characteristics 

Requirement Unit Value 
Pack Voltage V 260-403.2 

Total Pack Energy kWh 5.5 

Discharge Current Characteristics A (s) 

320 (2) 
300 (10) 
250 (30) 
80 (∞) 

Charge Current Characteristics A (s) 

160 (5) 
100 (10) 
32 (∞) 

 

 

Figure 38: ESS 1-RC Model Representation [65] 

The Simulink ESS model is represented using a 1-RC Thevenin Equivalent model, that consists 

of a an open-circuit voltage, a series resistor and 1 RC pair. The Samsung cells are configured in 

a 96S8P configuration. A consortium of tests is performed as a collaboration between the U.S 

DOE and HDS to ensure the pack chemistry met the performance targets that the team set out to 

achieve. These tests include the constant current constant voltage charge and constant current 

discharge for multiple batches of the Samsung cell. These experiments allowed characterization 

of the Li-Ion cell for the development of the Li-Bal BMS, as well as the UWAFT Simulink model 

ESS. Figure 39 below shows the results of the tests.  
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Figure 39: Charge & Discharge Characterization Tests for Samsung S20 Cells conducted in 

collaboration with HDS & U.S. DOE [64] 

Further a long term 0.7C rated charge/discharge was applied to 8 cells in a parallel 

configuration, which would then be scaled up to 96 cells in series to form the overall energy 

capacity of the battery pack. These cells would be chosen at random over multiple batches to 

obtain the open circuit voltage (OCV) and SOC model curve, and then were averaged to obtain a 

lump sum model for the cell charge/discharge behavior. Figure 40 below shows a combined 

summary of all the tests conducted and the resulting pack models.   



 

 79 

 

Figure 40: Averaged Charge/Discharge Curves for the HDS ESS 

Data from Figure 39 and Figure 40 are used to establish the SOC vs OCV characteristics that are 

populated within the 1-RC battery model as look up tables. Note that the testing results are 

conducted for batches of 8 cells in parallel, this would allow for any cell degradation/health 

characteristics to be averaged out. For the Simulink model this is scaled up to represent 96 cells 

in series which is representative of the voltage, current and capacity characteristics of the full 

sized ESS.    

4.2.5 AAM EDU4 Motor  

The e-axle EDU4 is an liquid cooled 1-Spd open differential motor configuration, that is 

integrated concentric into the rear axle of the UWAFT Blazer. The internal electric configuration 

of this motor is of the Permanent Magnet Synchronous Motor (PMSM) type. The mapped motor 

in the Simulink model is an adaptation of the Flux-Based PMSM motor, where the electrical 

parameters are left the same, as they were not provided by the motor manufacturer, however 

the motor thermal, power and torque characteristics were provided and are adapted to match 

the Simulink Mapped Motor model [66]. The torque-speed efficiency curve was used to 

determine motor losses, and appropriately size the thermal system. Further the motor torque-

speed power curves were used to determine longitudinal Blazer performance. It must be notes 

that the torque value indicated is torque at the e-machine, and not at the wheels which would 

be scaled by the internal differential ratio. The combined curves are shown in Figure 41 below. 
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Figure 41: AAM EDU4 Torque/Speed/Efficiency Curve Data Incorporated into Simulink 

“Mapped Motor” sub-system [66] 

The data curves provided by the AAM, where mapped into a look up table and represented in 

the mapped motor sub-system to represent the EDU4 motor as shown in the sub-system 

implementation below.  

 

Figure 42: Motor Sub-system with Coupling Dynamics Implementation  
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Chapter 5   

Model Validation, Testing & Results 

In Chapter 3 we have taken a deep dive in to the framework that was utilized by UWAFT to 

develop and incorporate PCM oriented system requirements through use of the RTM. In 

Chapter 4 we described the various roles and organization of the HSC and interactions with the 

vehicle systems. Time in Year 2 of the competition was spent in development of requirements, 

and their programming in the MBD based workflow. Despite the limitation posed by the COVID-

19 pandemic a significant amount of time and effort in validation of the HSC model, the 

requirements and testing of sub-systems integrated in to the UWAFT Blazer were undertaken.  

5.1 Methodology 

The plant model and functional requirements are tested in the SIL and VIL environments. 

Requirement from the RTM are programmed into the HSC and directly flashed on to the dSPACE 

MABX II hardware. Due to restrictions posed by the COVID-19 pandemic, and the targeted 

robustness validation of the vehicle required by end of Year 3 of EMC, priority was allotted to 

ensure safe and robust vehicle operation. This bottlenecked time available for HIL validation. 

The functionality is tested and validated on the UWAFT 2019 Blazer vehicle platform. While 

most of the safety testing for the unintended vehicle acceleration, and other HSC safety 

requirements were conducted at the University of Waterloo. The plots and graphs used for 

model validation, and operation of the HEV system were acquired at the 1.8 km Canadian 

Technical Center McLaughlin Advanced Technology Track (CTC MATT) [67] . 

5.2 HSC Requirements Test Coverage for the AAM EDU4 & HDS ESS 

In section 4.1.2 Model Tester Block & Simulink Test for Requirement Maintenance we have seen 

how the tester blocks is developed in path of the HSC feedback loop, and the setup of the test 

case assertion blocks to verify system level requirements. This sub-section describes the status 

of the critical requirements developed for the team implemented propulsion systems namely the 

EDU4 motor and the HDS ESS. Although many requirements exist for the ICE and transmission. 

Since the team does not currently have active control of the ECM/TCM - except state estimation 
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through feedback signals, validation of the motor and ESS requirement suffices for the level of 

functionality achieved leading up to year 3 of the competition. For requirements that are not 

possible to be tested in the SIL environment, such as a physical ground fault test - best efforts 

are made to describe the validation results gathered from logs gathered during VIL testing. Note 

that the RTM ID descriptors described here are kept consistent in the Simulink Environment, as 

described in section 3.2.5 Requirements Trace-ability Matrix of this thesis. 

5.2.1 Test Coverage & Validation in Simulation Environment 

All requirements that are developed in the simulation environments, end with assertion blocks. 

The assertion blocks are tied to logical unit test statements. Upon failure of any test statement, a 

non-zero value is generated that causes the assertion block to assert – halting the simulation. 

This process is shown in detail for a single test requirement in Figure 25. The following critical 

component level requirements taken from the RTM, are tested in the SIL environment. In total 

there are 7 ESS, and 17 motor/inverter related requirements that are tested within the tester 

block. The diagram below summarizes the requirements, and the status of validation. More than 

80% of the requirements are tested and validated. The other 20% are imported from the RTM 

but are VIL level requirements, justifications for which are provided in the following VIL 

validation sections. Over the span of 3 years, the 132 requirements are developed, 65% of 

which have been developed, and validated. 

 

Figure 43: Simulation Level Requirements Validation for AAM EDU4 Motor and HDS ESS 
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5.3 Model Validation  

For plant model validation - the data acquired by the team during end of Year 3 testing is 

utilized. In particular, the drive cycle developed for vehicle testing followed the same guidelines 

as described in section 4.1.6.4 Drive Cycle Requirements except this one was developed for the 

CTC MATT facility. Due to the 1.8 km length of the CTC MATT facility – the 36-mile requirement 

of the drive cycle posed by EMC, required a total of exactly 32.2 or 33 total rounds of the test 

track. The driving was broken in 2 sets of continuous city and highway drives each. The city 

driving was limited to 55 kph with 4 full 10 second stops per lap, and the highway to 75 kph 

with 2 full 1 second stops per lap. The final drive cycle is shown below.   

 

Figure 44: CTC MATT Energy Consumption Drive Cycle 

5.3.1 ESS Model Validation 

The ESS voltage data from the CTC MATT is used as the primary source of validation for the ESS 

plant model. To obtain this data, the drive cycle shown in Figure 44, is fed back into the HSC as 

drive cycle source, and the drive cycle is run as normal. The resulting pack voltage plot is 

obtained and is then compared to the real-world values obtained during the energy 

consumption testing event to produce the plot below.  
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Figure 45: ESS Model Validation 

Through the entirety of the model, there seems to an offset of -9.2V from the model when 

compared with the vehicle data acquired from the BMS. This offset is attributed to the starting 

voltage that corresponds to a certain SOC, and since the writing of this thesis has been corrected 

for. It may also be noted, the model follows the curve intricacies of the pack voltage quite well, 

and thus is a good representation of the overall SOC variation.  

5.3.2 Motor Model Validation  

The commanded motor torque signal is taken from the inverter data logs and is compared to 

the drive cycle input to the HSC. The commanded torque is relatively accurate as the motor 

must be paired to an inverter through a series of calibration activities before they are able to 

operate. This calibration was conducted on behalf of UWAFT by a third-party supplier FEV 

gmbh. Due to the enormity of the data and the high amount of overlap, the logged vehicle, and 

model data are separately plotted. A few key statistical comparison values are provided on the 

plots. It must also be noted that upon closer inspection the vehicle plot shows a much a higher 

level of noise as compared to the model. 
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Figure 46: Motor Torque Validation 

5.3.3 ICE Fuel Flow Model Validation  

Validating the ICE is a much more involved process as compared to the motor due to the higher 

complexity. Since the purpose of the longitudinal simulation ultimately, is to measure fuel 

economy – fuel flow rate measurements are compared. An ICE due to its higher number of 

moving parts, differences in design, impacts due to ambient conditions and the type/quality of 

fuel used for the ICE testing is prone to a fair amount of variation in the results. It was therefore 

anticipated that a high degree of calibration was needed than just the rpm-torque and BSFC, 

data that was provided by GM to develop a proper ICE fuel consumption model. This was not 

possible due to shut down of campus dyno facilities and more importantly since the team was 

not able to travel to its usual full scaled testing events conducted at GM Proving Grounds in 

Yuma AZ – as it has been in past AVTC events. It is whence the team logged the fuel flow sensor 

on-board the UWFAT Blazer for fuel consumption data and compared with the fuel flow output 

from the ICE Simulink model. The ICE fuel flow validation plots are shown in figure xx below.  
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Figure 47: ICE Fuel Flow Validation 

There are two main differences that can be noted about the status of ICE fuel flow model. 

Firstly, that the Simulink model data fuel flow values are much higher than the real-world data, 

and secondly that the real-world data is zero for the duration when the comes to a complete 

stop. The first difference is to the model over-estimating fuel consumption data through its 

BSFC calculation. The second is attributed to the fact that the when the vehicle comes to a stop 

in the simulation – the ICE spins to 0 RPM, which is a modelling shortcoming - such is not the 

case in real life. Discrepancy in data may also arises from fuel flow sensor itself which may not 

be entirely accurate. [68] It must also be noted that the fuel flow sensor on the vehicle measures 

fuel flow in l/s, whereas the model logs in kg/s, which is another source of error, among other 

such as the specific calorific value of fuel used in the model vs in real life. Therefore, a nominal 

E10 gasoline density of 0.74 kg/L [69] is used to convert the logged vehicle data to reflect the 

model.  

5.3.4 Longitudinal Drive Trace & Executive APP, BPP Validation 

The ability of the simulation model to follow a target vehicle speed is critical for the verification 

of performance of all other components. The speed trace plot affirms the simulated powertrain 

and body’s ability to match real vehicle acceleration/speed performance for the driven drive 

cycle at MATT CTC. The Accelerator Pedal Position (APP) and Brake Pedal Position (BPP) 
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speed-trace validation graphs for the real vs simulated data reveals that there exist large and 

frequent high APP events, that are not present in real data. This is attributed to the large driver 

acceleration request because of the multiple start/stops that are present in the drive cycle. BPP 

curves for the model, and recorded data are similar, however the model uses a lesser 

magnitude. This is attributed to multiple things including but not limited to brake pad wear, 

damp track surface, but also that in real life, a high brake pedal value can be applied while the 

vehicle has already come to a stop by the driver, whereas the model only applies the minimal 

value needed to decelerate the vehicle.  

 

Figure 48: Vehicle Executive Inputs Validation 
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5.4 Vehicle On-Track Testing  

At the MATT CTC facility, UWAFT conducted three major tests to verify systems integrity and 

validate vehicle performance targets. Note that due to the confidentially agreements with GM, 

the layout and setup at the test track are not shown for the CTC MATT facility. However, since 

the tests are regimented with specific requirements, and were conducted in preparation for the 

CTC MATT event, the detailed test plans with signal names setup requirements are shown in 

Appendix E - Acceleration 0-60 mph Test Plan, Appendix F- Braking 60-0 Test Plan and 

Appendix G - Energy Consumption Test Plan. 

5.4.1 Unintended Acceleration Safety Evaluation 

As described in section 3.2.4 Unintended Vehicle Acceleration System Level Requirement, the 

vehicle must not accelerate unintended without explicit system determination of a valid input 

signals. In UWAFT’s P4 architecture there lie to propulsive systems – the stock LCV ICE and the 

EV propulsion systems powered by the ESS. The APP (Accelerator Pedal Position) is the signal 

that is either commanded by the throttle pedal OR is overridden by active safety systems such 

as ACC during autonomous driving. There are two main criteria to ensure the vehicle never 

accelerates unintended while the vehicle is on a lift. This was a competition pre-requisite before 

any of the vehicle performance testing was conducted. Firstly, that the team can prove the 

integrity of the APP signal, and that the HV systems are completely de-energized if the 

emergency E-Stop is pressed, and when the vehicle is switched out of the On state as described 

in Figure 31: . As shown in Figure 49 below, the HV system is de-energized (below 50V in under 

10 seconds) when Key off or E-Stop event is triggered - to prevent any possible EV propulsion 

and the integrity of the APP signal during on-lift testing. 
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Figure 49:Unintended Vehicle Acceleration Validation 

5.4.2 0-60 MPH Acceleration Performance Evaluation 

The acceleration performance evaluation is an important VTS target that the team intended to 

meet as part of its architecture retrofitting for the UWAFT Blazer. The test involved accelerating 

the vehicle with Wide Open Throttle (WOT) over a straight-away and repeating the test both 

ways along the same strip to find an average 0-60 value. The test is conducted both ways to 
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mitigate any effects made to the test due to road gradient or wind. The figure below shows the 

annotated 750 ft straight-away at the WRESTRC test center that was replicated at MATT CTC.  

 

Figure 50: 0-60 mph acceleration test [62] 

Plots from both runs with averaged time is shown in Figure 51 below. The total time taken for 

the Blazer to begin rolling and hit 60 mph or 96 kph is averaged in the table below. The final 

average time for the 0-60 mph for the Blazer is 6.75s.  

Table 7: 0-60 MPH Run Times 

Time - Run 1 (s) Time - Run 2 (s) 
6.62 6.91 
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Figure 51: 0-60 Acceleration Runs Both Ways 

5.4.3 60-0 MPH Braking Performance Evaluation 

The braking performance evaluation is another important VTS target test for which was 

conducted at MATT CTC. The test requires the vehicle accelerates to 60 mph and comes to a 

complete through full use of vehicle baking, without any regenerative braking. The course is 

setup like the acceleration test, except, at the start line the vehicle is already travelling at the 

target speed. Two tests were conducted both ways.  

 

Figure 52: 60-0 Braking Runs Both Ways 

The curves gathered from the braking test are integrated over the braking period, over the time 

and speed limits annotated in Figure 52. The results are then converted to feet and averaged. 

The vehicle can come to a complete stop with an average distance of 168.25 ft. 

Table 8: 60-0 Braking Distance 

Distance - Run 1 (ft) Distance - Run 2 (ft) 
164.9 171.6 
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5.4.4 Energy Consumption Testing 

For the energy consumption test the CTC MATT energy consumption drive cycle shown in 

Figure 44 was used. UWAFT ran the vehicle for a total of 56.3 km through the CTC MATT drive 

cycle. The test run elapsed for 1 hour and 32 minutes, during which the ICE and EV systems 

were operational throughout the entirety of the run. The CD torque strategy tuned for the 

WRESTRC drive cycle worked well at CTC MATT and allowed the team to retain a safe amount 

of SOC of 34% at the end of the drive cycle run. Overall, the team used 6.48 L of fuel as 

measured by the competition required fuel flow sensor, and a measured amount of 4.873 L. The 

measured fuel amount was calculated by brimming the tank, before the run, and immediately 

after ending the run, brimming and weighing the filling cannister. A density value of 0.74 kg/L 

[69] for E10 gasoline was applied. Based on the measured data the team concluded testing with 

a fuel economy result of 27.6 mpg.  

Performing an integration on the amount of amount of net high voltage battery current, the 

battery pack depleted 6.391 Ah, which was integrated with respected to time to obtain ~2.25 

kWh of energy - provided by the ESS alone. This makes sense as the ESS is ~5.5 kWh in size, and 

the SOC went from 80% to 36% which is 46% of depletion. 44% of 5.5 kWh is 2.42 kWh. The 

remaining 0.17kWh can be attributed to reported SOC measurement drift that may have 

resulted from the long running time of the ESS based on the BMS reported values.  

 

Figure 53: Energy Consumption Evaluation MATT CTC 
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5.5 VTS Recap 

The initial UWAFT VTS that was established in year 1 of EMC and is shown in Table 2 of this 

work. Upon completion of all tests in year 3 of EMC, the VTS table can be updated as follows. 

The overall curb weight and braking distance are within 5% of each the team’s original target 

and can be comfortably achieved through swapping of mounts with less denser materials, and 

possibly upgrading the vehicle brakes to larger ones. An important item to note is that UWAFT 

during its year 1 modelling used regenerative braking when modelling the braking results, 

where-as in year 3 testing, the team was not allowed to use regenerative braking during the 

braking distance tests. As such the weight and stopping distance are acceptable.  

The area of a much higher concern are acceleration and fuel economy numbers. While the 

fuel economy figure is ~11% off, the current UWAFT Blazer’s acceleration performance is over 

20% off its anticipated target.  

Table 9: Measured VTS Results 

Specifications Units UWAFT VTS Measured  
Layout  N/A P4 Parallel Through Road  N/A 

Engine / Transmission ft 2.5L I4 NA LCV / M3D GF9  N/A 
Curb weight  kg 2100 2066 

0-60 MPH s 5.5 6.75 
60-0 MPH ft 158.2 168  

Fuel Economy Combined mpg  30.83 27.6 
 

The following section is an in-depth analysis as to why the UWAFT Blazer is not able to 

currently meet its acceleration and fuel economy targets and what are the immediate areas of 

concern, requiring addressing for the team to succeed in Year 4 of EMC.  

5.6 In-Depth Discussion of Testing & VTS Related Limitations  

After testing concluded at MATT CTC, a fair amount of time was spent developing an 

assessment around the performance of the UWAFT Blazer, and where necessary comparing it to 

the model results. The plots included in this section are included as supplementary information 

for discussion of the overall results and areas of the UWAFT Blazer that are high priority to be 

resolved for improvement in overall fuel economy and system performance.  
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5.6.1 ICE & Motor Power Distribution 

Another major contributing factor to loss of system performance is the current inability of the 

team to turn off the ICE at low power requirements. This especially affected the fuel economy 

number as the ICE always remained ON, even during the 10 second recurring vehicle stop 

events. Of the 91 minutes of total drive time, the vehicle was at a complete stop for a total of 16 

minutes, this a large amount of time where the ICE should’ve been off. The ICE is also most 

inefficient at vehicle launch, having engine start/stop functionality would potentially help 

displace the initial acceleration to the EV motor, and would allow the team to make up the 10% 

off target fuel economy figure.   

 

5.6.2 EV Thermal Systems 

From a thermal systems standpoint the inverter and EDU4 motor share the same water-cooling 

loop. As it can be seen, the plateauing nature of the temperatures shows that both components 

inline of the thermal loop are well thermally controlled and within the operating spec.  

One of the major system limitations, that became apparent during initial testing at Waterloo 

was the poor thermal systems design of the HDS battery pack. The HDS battery pack pulls air 

from the passenger cabin and exhausts it to the environment. Despite exposing the inlet to 

plenty of fresh air, the ESS internal temperature kept rising for the entirety of the test. HDS has 
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not provided the team with access to fan control, due to which additional cooling could not be 

commanded.  

To mitigate this short term and fulfill the drive cycle requirements of the energy consumption 

test the team had to resort to restricting power draw from the motor. In effect reducing cell 

heating due to inefficiencies. This was achieved through trial and error at WRESTRC during 

development and testing for the energy consumption drive cycle. Despite limited power draw 

the pack temperatures continued to rise. This is a serious design limitation, that directly 

impacted the team’s final fuel economy and acceleration figures, as the team ultimately could 

not request a higher forward or regenerative motor torque. The team must work closely with 

HDS to try and gain control of the internal fans and find an alternate way to force cooler air in to 

the ESS circumventing this issue.  

 

Figure 54: Sustained Operation EV System Temperature Plots 

5.6.3 Limited EV Torque Application  

The P4 motor is rated for 190 Nm of forward and regenerative torque application. A Torque-

RPM plot shows that throughout the fuel economy testing, the motor is barely being utilized to 
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its full potential. As described in the sections above, this is due to the thermal limitations of the 

ESS and is not a result of thermal loop of motor itself. It may also be noted that the DP torque 

strategy ultimately is a primitive torque strategy and does not deploy the best possible torque 

blending with the ICE, resulting in less ideal drive quality characteristics. The team has yet to 

also receive the flashed ECM from GM that allows propagation of a torque command from the 

MABx, where the current torque strategy is purely torque additive.  

 

 

Figure 55: Underutilization of EV systems 
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Chapter 6 

Conclusions  

The presented research identifies the brevity involved in developing a real-time controller that 

is organized in such a way to reduce complexity associated with adding functional layers across 

the supervisor. Emphasis is placed on appropriate scoping of sub-system functions that are 

cascaded for distinct identification of roles, and introduction of new functionality. The decisions 

made over 3 years of developed are geared towards ease of feature development, incorporation 

of requirements-based testing methodology and a functional supervisory controller that is 

agnostic of powertrain architecture. The foundation upon which the simulation model stands is 

expanded on  through use of object-oriented programming such that developer interactions 

facilitate a degree of automation in repetitive tasks such as initialization, test case running, and 

launching model variants for SIL, HIL or VIL target hardware flashing.  

The design of the HSC, and the inline placement of the tester assertion blocks ties the RTM 

requirements right into the HSC allowing for test case to be automatically asserted when a 

requirement is not met. This ensures minimal logic errors or faults to propagate during HIL or 

VIL testing. Thus far 86 requirements out of a total of 132 controls requirements are validated, 

the other of which are pending development for year 4 of EMC. The structure and heavy use of 

the RTM centralizes development across all sub-teams ensuring team-wide transparency, and 

recognition of dependency. The COVID-19 pandemic limited use of the HIL in model validation, 

due to restriction in garage access.  

New and more experienced developers benefit from the segregated roles and functions of the 

HSC, in a few different ways. Development efficiency is improved as a parallel version control-

oriented development environment is made possible minimizing merge conflict possibilities 

when pull requests are generated to incorporate new features. A well thought out structure 

exists for adding future components, and/or component/vehicle functionality. Code ownership 

and sub-system specific testing is improved as developers take on smaller, more modular sub-

systems to develop. 
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The expansion of Model Based Design with UWAFT’s Model Configurator tool provides 

several benefits over manual Simulink based model interaction. The model initialization, and 

switch-over to HIL setup is improved from a ~9 minutes process to ~4 minutes process due to 

reduced manual dSPACE RTI hardware setup, and instantiation of a new model for HIL based 

I/O configuration. Component parameter population and modification is simplified through use 

of masked library blocks to encapsulate data and constants for 7 team added ECUs. 

The rule-based torque strategy is successfully able to sustain robust HEV operation and safe 

SOC charge through the MATT CTC E&EC testing. The Blazer is currently off of its VTS 

acceleration target by 20%, and its fuel economy target by 11%. The team must work with the 

HDS ESS supplier to uncap the significant thermal constraint, for a possible improvement in 

higher electric regenerative braking capability and higher forward torque value. The 16-minute 

idle time in the MATT CTC fuel economy significantly contributes to a lower mpg value, as no 

miles are driven during that time.  

One of the operationally viable – full EV mode, is currently not possible as the team does not 

have 1) a fully analyzed 12V system, that can support all vehicle ECUs, thermal, brake and 

steering systems to be fully ON. 2) development of TCM signal gate-waying through MABx, for 

forcing neutral when the shifter is in Drive. 
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Appendix A - RTM Types & Identifiers 

Type Descriptor (ABCD-***-*.**) 
ID Type Description 

MECH 
Mechanical 

design 
Anything related to the mechanical team system design (ex fuel system, 

thermal systems) 

ELEC 
Electrical 

design 
Anything related to the electrical team system design (schematics, fuses or 

system loops) 

ALGO 
Supervisory 

Controller, CAV 
Algorithm requirements for controllers (includes CAV and HSC, can extend 

to additional controllers if they can be programmed) 

USER 
User 

Interaction 
Requirements for physical components the driver interacts with – HMI, 

steering wheel, gas pedal etc. 

INTG Integration 
Requirements for verification of tests completed, systems integrated 

according to best practices and standards 

MAIN Maintenance Requirements for maintaining integrity of vehicle (calibration, etc) 

 

Component/Subsystem Identification (****-EFG-*.**)  

ID Subsystem  

MOT Motor  

ENG Engine  

FUEL Fuel System  

BAT Battery  

TRN Transmission  

CAV Autonomy sensors  

BDY Vehicle features  

DVLN Driveline  

DYN Dynamics  

AEB Automatic emergency braking  

ACC Adaptive Cruise Control  

LCC Lane Centering Control  

OBJ Object identification  

COM Communications  

HV High Voltage  

LV Low Voltage  

EXST Exhaust  

GEN General  

HIL Hardware-in-the-Loop  
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HMI Human Machine Interface  

HSC Hybrid Supervisory Controller  

SSPN Suspension  

THRM Thermal  

PWTN Powertrain  

RDR Rear Drivetrain  
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Appendix B - Model Configurator Script 

1.  
2. classdef modelObj < handle 
3.     % modelClassBased 
4.     % Model scripts rewritten using OOP. Initialize using modelClassBased 
5.     
6.     properties 
7.         modelName % Name of the simulink file 
8.         modelData % Model parameters needed 
9.         EMC_DriveCycle % Model drive cycle 
10.         tStop % Model termination time 
11.         simOut % Simulation outputs 
12.         initialized = false; % Has WheelInit been called? 
13.         notes % Blank variable, use for whatever 
14.     end 
15.  
16.     methods(Hidden) 
17.        function fields = loadData2Workspace(self) 
18.             % Puts model parameters in base workspace 
19.             for i = 1:length(fieldnames(self.modelData)) 
20.                 fields = fieldnames(self.modelData); 
21.                 assignin('base', fields{i,1}, ... 
22.                          self.modelData.(fields{i,1})) 
23.             end 
24.        end 
25.          
26.        function loadDriveCycle2Workspace(self) 
27.             % Puts Drive cycle parameters in base workspace 
28.             assignin('base', 'tStop', self.tStop); 
29.             assignin('base', 'EMC_DriveCycle', self.EMC_DriveCycle); 
30.        end 
31.         
32.        function workspaceCleanup(self, fields) 
33.             assignin('base', 'fields', fields); 
34.             for i = 1:length(fieldnames(self.modelData)) 
35.                 assignin('base', 'i', i); 
36.                 evalin('base', 'clearvars(fields{i,1})') 
37.             end 
38.             evalin('base', ... 
39.                 'clearvars(''fields'',''i'',''tStop'',''EMC_DriveCycle'')') 
40.        end 
41.     end 
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42.         
43.     methods(Static) 
44.        function cleanUpBuild()   
45.        % Cleans up the build folder 
46.            pattern = ('.sdf'); 
47.            dinfo = dir; 
48.             for i = 1:length(dinfo) 
49.               directory = dinfo(i).name;  %just the name 
50.               if directory == "build" 
51.                   cd(directory) 
52.                   build_contents = dir; 
53.                   for idx = 1:length(build_contents) 
54.                       if build_contents(idx).isdir == 0 && 

~endsWith(build_contents(idx).name,pattern) 
55.                          delete(build_contents(idx).name)  
56.                       end 
57.                   end 
58.               end 
59.             end 
60.            cd('../') 
61.        end 
62.         
63.        function buildCheck()   
64.        % Used to Check if current directory is the build folder 
65.        current_folder = pwd ; 
66.             if regexp(current_folder, '.+?build') 
67.                 cd('../')   
68.             end 
69.        end 
70.         
71.    end 
72.      
73.     methods(Access = public)% Pre simulation, data processing, preparation  
74.          
75.         function obj = modelObj(modelName, dataLoad) 
76.             % modelClassBased Construct an instance of this class 
77.             % Inputs: 
78.             %   modelName: string, name of model, eg. 
79.             %              'UWAFT_Blazer_P4_4WD_Opt' 
80.             %   dataLoad: struct, containing all necessary model parameters 
81.             % Call using: objName = modelClassBased(modelName, dataLoad); 
82.                       
83.             obj.modelData = dataLoad; 
84.             obj.modelName = modelName; 
85.             load_system(modelName); 
86.         end 
87.          
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88.         function self = init(self, model_name) 
89.             % Compiles model to fix rolling resistance problem 
90.             % called by object, but also provides public interface to use 
91.             % WheelInit 
92.             % in case runModel() was not called, load data to workspace 
93.             self.loadData2Workspace(); 
94.             self.loadDriveCycle2Workspace(); 
95.             if nargin == 1 
96.                 model_name = self.modelName; 
97.             end 
98.             WheelInit(model_name); 
99.             self.initialized = true; 
100.         end 
101.         function self = config(self, buildEnv)  
102.            %Builds SIL, HIL or MABx model 
103.  
104.             switch buildEnv 
105.                 case 'HIL' 
106.                     rti1006; 
107.                     target_file = 'rti1006.tlc'; 
108.                 case 'MABx' 
109.                     rti1401; 
110.                     target_file = 'rti1401.tlc'; 
111.                 case 'SIL' 
112.                     target_file = 'grt.tlc'; 
113.             end 
114.  
115.             if buildEnv == "SIL" 
116.                load_system(self.modelName); 
117.             else 
118.                 open_models = get_param(Simulink.allBlockDiagrams(),'Name'); %checking for 

any open models, to close them 
119.                 if ~isempty(open_models) == 1               
120.                     for i = 1:length(open_models) 
121.                         if regexp(open_models{i},'UWAFT') 
122.                             bdclose('all') 
123.                         end 
124.                     end 
125.                 end 
126.                 %modelObj.cleanUpBuild; 
127.                 open_system(self.modelName) 
128.             end 
129.             fields = loadData2Workspace(self); 
130.              
131.              
132.             % find goto and from blocks 
133.             HSC_In = find_block_by_type(self.modelName, 'Goto', 'HSC_In'); 
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134.             ECU_In = find_block_by_type(self.modelName, 'Goto', 'ECU_In'); 
135.             HSC_Out = find_block_by_type(self.modelName, 'From', 'HSC_Out'); 
136.             ECU_Out = find_block_by_type(self.modelName, 'From', 'ECU_Out'); 
137.             % delete all line connections 
138.             delete_line_connections(HSC_In); 
139.             delete_line_connections(HSC_Out); 
140.             delete_line_connections(ECU_In); 
141.             delete_line_connections(ECU_Out); 
142.  
143.             % comment out all blocks 
144.             comment_block_list(self.modelName, {'MABx_IO', 'HIL_IO', 'SIL_IO'}, 'on'); 
145.             set_param(sprintf('%s/MABx_IO', self.modelName),'Commented','on'); 
146.  
147.             % connect lines 
148.             switch buildEnv 
149.                 case 'SIL' 
150.                     comment_block_list(self.modelName, {'SIL_IO', 'MABx', 'GM Blazer', 'Tank', 

'Longitudinal Driver', 'Environment', 'Visualization', 'Logging'}, 'off'); 
151.                     add_line(self.modelName, 'ECU_Out/1', 'SIL_IO/2'); 
152.                     add_line(self.modelName, 'HSC_Out/1', 'SIL_IO/1'); 
153.                     add_line(self.modelName, 'SIL_IO/1', 'ECU_In/1'); 
154.                     add_line(self.modelName, 'SIL_IO/2', 'HSC_In/1'); 
155.                 case 'HIL' 
156.                     comment_block_list(self.modelName, {'HIL_IO', 'GM Blazer', 'Longitudinal 

Driver', 'Environment'}, 'off'); 
157.                     comment_block_list(self.modelName, {'Tank', 'MABx', 'Visualization', 

'Logging'}, 'on'); 
158.                     add_line(self.modelName, 'ECU_Out/1', 'HIL_IO/1'); 
159.                     add_line(self.modelName, 'HIL_IO/1', 'ECU_In/1'); 
160.                     build_file_name = 'UWAFT_Blazer_HIL'; 
161.                     delete_block_name = 'MABx_IO'; 
162.                     io_sys_name = 'HIL_IO'; 
163.                 case 'MABx' 
164.                     comment_block_list(self.modelName, {'MABx_IO', 'MABx'}, 'off'); 
165.                     comment_block_list(self.modelName, {'GM Blazer', 'Tank','Longitudinal 

Driver', 'Environment', 'Visualization', 'Logging', 'Tester'}, 'on'); 
166.                     add_line(self.modelName, 'HSC_Out/1', 'MABx_IO/1'); 
167.                     add_line(self.modelName, 'MABx_IO/1', 'HSC_In/1'); 
168.                     build_file_name = 'UWAFT_Blazer_MABx'; 
169.                     delete_block_name = 'HIL_IO'; 
170.                     io_sys_name = 'MABx_IO'; 
171.             end 
172.  
173.              
174.             %Build Model 
175.             if strcmp(buildEnv, 'SIL') 
176.                 set_param(self.modelName, 'SolverType', 'Variable-step') 
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177.                 set_param(self.modelName, 'SystemTargetFile', target_file) 
178.                 loadDriveCycle2Workspace(self); 
179.                 return; 
180.             else 
181.                 modelObj.buildCheck() 
182.             end 
183.  
184.             cd build; 
185.             save_system(self.modelName, build_file_name); 
186.             delete_block(sprintf('%s/%s', build_file_name, delete_block_name)); 
187.             set_param(build_file_name, 'SystemTargetFile', target_file); 
188.             set_param(build_file_name, 'TRCGenerateLabels', true) 
189.             set_param(build_file_name, 'BlockReduction', false); 
190.             set_param(build_file_name, 'LoadAfterBuild', false); 
191.              
192.             if strcmp(buildEnv, 'HIL') 
193.                 % fastest HIL can currently run is 2 ms, which is able to 
194.                 % satisfy all CAN message rate requirements 
195.                 % if you change the HIL step time you will have to manually 
196.                 % update the step time of the drive cycle block! 
197.                 step_time = 0.002; % 2 ms 
198.             else 
199.                 % MABx is capable of running faster than HIL 
200.                 step_time = 0.001; % 1 ms 
201.                 set_param(build_file_name, 'StopTime', 'Inf'); % MABx runs infinitely 
202.             end 
203.              
204.             set_param(build_file_name, 'SolverType', 'Fixed-step', 'FixedStep', sprintf('%s', 

step_time)); 
205.             open_system(sprintf('%s/%s', build_file_name, io_sys_name), 'tab'); 
206.             waitfor(msgbox('Please manually build RTICANMM blocks and then click OK!', 

'Manual Input Required!')); 
207.              
208.             if strcmp(buildEnv, 'HIL') 
209.                 if ~isempty(self.tStop) 
210.                     self.loadDriveCycle2Workspace(); 
211.                 else 
212.                     self.tStop= 30; 
213.                     self.EMC_DriveCycle = zeros(30,2); 
214.                     self.EMC_DriveCycle(:,1) = [1:30]'; 
215.                     self.loadDriveCycle2Workspace(); 
216.                 end 
217.                 self.init(build_file_name); % force WheelInit 
218.             end 
219.              
220.             rtwbuild(build_file_name); 
221.             close_system(build_file_name, 0); 



 

 114 

222.             workspaceCleanup(self,fields) 
223.             delete(build_file_name); 
224.             modelObj.buildCheck() 
225.  
226.             function comment_block_list(mdl, block_names, on_off) 
227.                 for n = 1 : length(block_names) 
228.                     set_param(sprintf('%s/%s', mdl, block_names{n}), 'Commented', on_off); 
229.                 end 
230.             end 
231.  
232.             function delete_line_connections(block_handle) 
233.                 line_handles = get_param(block_handle, 'LineHandles'); 
234.                 for l = line_handles.Inport 
235.                     if l > 0 
236.                         delete_line(l); 
237.                     end 
238.                 end 
239.                 for l = line_handles.Outport 
240.                     if l > 0 
241.                         delete_line(l); 
242.                     end 
243.                 end 
244.             end 
245.  
246.             function h = find_block_by_type(mdl, type, name) 
247.                 h = find_system(mdl, 'SearchDepth', 1, 'FindAll', 'On', 'Type', 'block', 'BlockType', 

type, 'Name', name); 
248.             end 
249.        end 
250.          
251.         function self = openModel(self) 
252.             % public interface to open the underlying simulink model 
253.             open_system(self.modelName); 
254.         end 
255.          
256.         function self = runModel(self) 
257.             % Runs the simulation 
258.             % Outputs the updated object containing simulation results 
259.             % Run using: objName = objName.runModel();        
260.              
261.             % setup model to run in SIL 
262.             self.config('SIL'); 
263.              
264.             % loads ModelData and EMC_DriveCycle to workspace 
265.             fields = loadData2Workspace(self); 
266.             loadDriveCycle2Workspace(self); 
267.              
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268.             % initialize model if necessary (but don't waste time if not) 
269.             if ~self.initialized 
270.                 self.init() 
271.             end 
272.              
273.             % Runs the simulation and stores simulation outputs into object 
274.             % for logging 
275.             self.simOut = sim(strcat(self.modelName), ... 
276.                         'StopTime', num2str(self.tStop)); 
277.              
278.             % Clean up workspace 
279.             % workspaceCleanup(self, fields) 
280.         end 
281.          
282.        function runTests(self, test_file_path, test_suite_name, test_case_name) 
283.            %loads and runs MABx tests 
284.              
285.             if nargin == 4 
286.                 sltest.testmanager.view; 
287.           test_case = 

sltest.testmanager.TestFile(test_file_path).getTestSuiteByName(test_suite_name).getTestCaseB
yName(test_case_name); 

288.                 if ~self.initialized 
289.                     self.init() 
290.                 end 
291.                 run(test_case) 
292.       elseif nargin == 1 
293.                 sltest.testmanager.view;     
294.                 %Get path to modelObj.m 
295.                 path_folder_arr = convertCharsToStrings(split(mfilename('fullpath'), filesep)); 
296.                 %Remove last two sections of path to get project directory 
297.                 path_folder_arr = strjoin(path_folder_arr(1:end-2), filesep); 
298.                 %Get all .mldatx files in requirements/Main 
299.                 file_list = dir(fullfile(path_folder_arr, "requirements", "Main", "*.mldatx")); 
300.                 %fast restart allows for reuse of a single compiled model 
301.        set_param(self.modelName, 'FastRestart', 'on') 
302.                 for i = 1:numel(file_list) 
303.         sltest.testmanager.load(fullfile(file_list(i).folder, 

file_list(i).name)); 
304.                 end 
305.                 if ~self.initialized 
306.                     self.init() 
307.                 end 
308.                 sltest.testmanager.run; 
309.                 %need to turn off fast restart to avoid issues with running 
310.                 %the model 
311.                 set_param(self.modelName, 'FastRestart', 'off') 
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312.             else 
313.        disp("runTests() in class modelObj takes either 3 or no 

arguments.") 
314.             end 
315.        end 
316.         
317.        function self = clearLoggers(self) 
318.             % Find all ports with data logging enabled 
319.             ports = find_system(self.modelName, 'FindAll', 'on', 'Type', 'Port', 'DataLogging', 

'on'); 
320.             % Disable all logging 
321.             for x=1:length(ports) 
322.                set_param(ports(x), 'DataLogging', 'off'); 
323.             end 
324.        end 
325.         
326.        function self = rosBuild(self, CavType) 
327.            %CavType: String of 'ACC', 'AEB', or 'LCC' 
328.            %All CAV Controllers follow the same format:  
329.            %1 publisher for their controller output 
330.            %1 subscriber to target object for AEB and ACC 
331.            %1 subscriber to raw lane data for LCC  
332.            %1 subscriber from drive control inputs for ACC  
333.             
334.            folder = cd;  
335.            if(any(folder(length(folder)-26+1:length(folder)) ~= 

'ecmc_architecture_modeling')) 
336.                 cd ..;  
337.            end 
338.             
339.            open_models = get_param(Simulink.allBlockDiagrams(),'Name'); %checking for 

any open models, to close them 
340.                 if ~isempty(open_models) == 1               
341.                     for i = 1:length(open_models) 
342.                         if regexp(open_models{i},'UWAFT') 
343.                             bdclose('all') 
344.                         end 
345.                     end 
346.                 end 
347.            newsys = new_system(CavType);  
348.            buildfilename = strcat(self.modelName, '/Tank/',CavType);  
349.            ACC = add_block(buildfilename, strcat(CavType,'/',CavType)); %CAV File to new 

system            
350.             
351.            Publish = 'Publish'; 
352.            add_block('robotlib/Publish', strcat(CavType,'/', Publish)); 
353.            set_param(strcat(CavType,'/', Publish), 'topicSource','Specify your own');  



 

 117 

354.            set_param(strcat(CavType,'/', Publish), 
'messageType',strcat('common/',lower(CavType),'_output_msg')); 

355.            set_param(strcat(CavType,'/', Publish), 'topic', 
strcat('/',lower(CavType),'_output_msg'));         

356.             
357.            Blank = 'Blank';  
358.            add_block('robotlib/Blank Message', strcat(CavType,'/', Blank));  
359.            set_param(strcat(CavType,'/', Blank), 

'entityType',strcat('common/',lower(CavType),'_output_msg')); 
360.             
361.            BusAssign = 'BusAssign'; 
362.            add_block('simulink/Signal Routing/Bus Assignment', 

strcat(CavType,'/',BusAssign)); 
363.             
364.            add_line(CavType, strcat(Blank, '/1'),'BusAssign/1');  
365.            add_line(CavType, strcat(BusAssign,'/1'), 'Publish/1');  
366.            switch CavType 
367.                case 'ACC' 
368.                   TargetObj = 'target_output';  
369.                   add_block('robotlib/Subscribe', strcat(CavType,'/',TargetObj )); 
370.                   set_param(strcat(CavType,'/', TargetObj), 'topicSource','Specify your own');  
371.                   set_param(strcat(CavType,'/', TargetObj), 

'messageType',strcat('common/',lower(TargetObj),'_msg')); 
372.                   set_param(strcat(CavType,'/', TargetObj), 'topic', strcat('/',TargetObj)); 
373.                    
374.                   DriveCtrl = 'drive_ctrl_input';  
375.                   add_block('robotlib/Subscribe', strcat(CavType,'/', DriveCtrl));  
376.                   set_param(strcat(CavType,'/',DriveCtrl), 'topicSource','Specify your own');  
377.                   set_param(strcat(CavType,'/',DriveCtrl), 

'messageType',strcat('common/',lower(DriveCtrl),'_msg')); 
378.                   set_param(strcat(CavType,'/',DriveCtrl), 'topic', strcat('/', DriveCtrl)); 
379.                    
380.                   add_block('simulink/Commonly Used 

Blocks/Terminator',strcat(CavType,'/Terminator1')); 
381.                   add_block('simulink/Commonly Used 

Blocks/Terminator',strcat(CavType,'/Terminator2')); 
382.                    
383.                   add_line(CavType,strcat(TargetObj,'/1'),'Terminator1/1');  
384.                   add_line(CavType,strcat(DriveCtrl, '/1'),'Terminator2/1'); 
385.                    
386.                   add_block('simulink/Signal Routing/Bus 

Selector',strcat(CavType,'/BusSelector1')); 
387.                   add_block('simulink/Signal Routing/Bus 

Selector',strcat(CavType,'/BusSelector2'));        
388.                    
389.                   add_line(CavType, strcat(TargetObj,'/2'), 'BusSelector1/1'); 
390.                   add_line(CavType, strcat(DriveCtrl,'/2'), 'BusSelector2/1'); 



 

 118 

391.                    
392.                case 'AEB' 
393.                   TargetObj = 'target_output';  
394.                   add_block('robotlib/Subscribe', strcat(CavType,'/',TargetObj )); 
395.                   set_param(strcat(CavType,'/', TargetObj), 'topicSource','Specify your own');  
396.                   set_param(strcat(CavType,'/', TargetObj), 

'messageType',strcat('common/',lower(TargetObj),'_msg')); 
397.                   set_param(strcat(CavType,'/', TargetObj), 'topic', strcat('/',TargetObj)); 
398.                    
399.                   add_block('simulink/Commonly Used 

Blocks/Terminator',strcat(CavType,'/Terminator1')); 
400.                   add_line(CavType,strcat(TargetObj,'/1'),'Terminator1/1');  
401.                   add_block('simulink/Signal Routing/Bus 

Selector',strcat(CavType,'/BusSelector1')); 
402.                   add_line(CavType, strcat(TargetObj,'/2'), 'BusSelector1/1'); 
403.  
404.                case 'LCC' 
405.                    %Still need raw lane data msg  
406.            end 
407.             
408.            open_system(CavType); 
409.            waitfor(msgbox('Please link bus to controller with appropriate message signals', 

'Manual Input Required!')); 
410.             
411.            cd build  
412.             
413.            rosinit;  
414.            set_param(CavType,'SystemTargetFile', 'ert.tlc'); 
415.            set_param(CavType, 'HardwareBoard', 'Robot Operating System (ROS)');  
416.             
417.            loadData_UWAFT;  
418.            rtwbuild(CavType); 
419.            close_system(CavType, 0); 
420.            delete(strcat(CavType,'.slx')); 
421.            clearvars -except self  
422.            rosshutdown;  
423.            cd ..; 
424.        end 
425.         
426.        function self = loadLog(self, path) 
427.           % This function is used to load a log file thats been converted 
428.           % via blf2mat (https://github.com/uwaft/blf2mat) tool. Giving the 
429.           % channel which contains VehSpdAvgDrvn will load the drivecycle 
430.           % that was driven in the log 
431.            
432.            if self.modelName == "UWAFT_Blazer_Stock_4WD" 
433.                blockPath = strcat(self.modelName,'/Drive Cycle Source'); 
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434.            else 
435.                blockPath = strcat(self.modelName, '/Longitudinal Driver'); 
436.            end  
437.             set_param(blockPath, 'cycleVar','Workspace variable') 
438.             set_param(blockPath, 'wsVar', 'EMC_DriveCycle'); 
439.                          
440.             timeseries_table = load(path); 
441.             try  
442.                 self.EMC_DriveCycle = 

timeseries_table.timetable.PPEI_Vehicle_Speed_and_Distance.VehSpdAvgDrvn;  
443.                 self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1 ; 
444.             catch ME 
445.                 switch ME.identifier 
446.                     case 'MATLAB:nonExistentField' 
447.                         warning('Channel does not contain VehSpdAvgDrvn') 
448.                 end 
449.                 disp(ME) 
450.             end 
451.        end 
452.         
453.        function self = loadDriveCycle(self, time, speed) 
454.             % Two ways of running this method: 
455.             %   Loads two m by 1 vectors containing time data and speed  
456.             %   data 
457.             %   Call using: objName = objName.loadDriveCycle(time, speed) 
458.             % Or: 
459.             %   Loads in a drive cycle saved in the drive cycle block 
460.             %   Call using:  
461.             %   objName = objName.loadDriveCycle('nameOfDriveCycle') 
462.              
463.             if self.modelName == "UWAFT_Blazer_Stock_4WD" 
464.                 blockPath = strcat(self.modelName, '/Drive Cycle Source'); 
465.             else 
466.                 blockPath = strcat(self.modelName, '/Longitudinal Driver'); 
467.             end 
468.              
469.             if nargin == 3 % Time and speed vectors 
470.                  
471.                 try 
472.                     self.EMC_DriveCycle = [time, speed]; 
473.                 catch 
474.                     % Something to try and fit the vectors together 
475.                     error('Time and speed vectors not identical') 
476.                 end 
477.                 self.tStop = time(end); 
478.                  
479.                 set_param(blockPath, 'cycleVar','Workspace variable') 



 

 120 

480.                 set_param(blockPath, 'wsVar', 'EMC_DriveCycle'); 
481.                  
482.             elseif nargin == 2 % Drive cycle string 
483.                                  
484.                 try  
485.                     set_param(blockPath, 'cycleVar' , time); 
486.                 catch 
487.                     error(strcat(time, ' is not a valid drive cycle')) 
488.                 end 
489.                  
490.                 if self.modelName == "UWAFT_Blazer_Stock_4WD" 
491.                     baseBlockPath = strcat(blockPath, ... 
492.                     'Driver/Enable Drive Cycle/Drive Cycle Source'); 
493.                 else 
494.                     baseBlockPath = strcat(blockPath, ... 
495.                         '/Driver/Enable Drive Cycle/Drive Cycle Source'); 
496.                 end 
497.                 self.tStop = get_param(baseBlockPath, 'tfinal'); 
498.                 self.tStop = split(self.tStop, ' '); 
499.                 self.tStop = str2double(self.tStop{1,1}); 
500.                  
501.             else 
502.                 error('Incorrect number of inputs') 
503.             end 
504.              
505.             % Verifies what the drive cycle has been set to 
506.             disp(newline) 
507.             disp(strcat('Drive cycle block set to: ', ... 
508.                 get_param(blockPath, 'cycleVar'))) 
509.              
510.         end 
511.          
512.         function self = loadVTS(self) 
513.             % Loads the 0-60, 50-70, 60-0 drive cycle to the object 
514.             % Call using: objName = objName.loadVTS(); 
515.              
516.            % Ensures drive cycle block is set to workspace variable 
517.            if self.modelName == "UWAFT_Blazer_Stock_4WD" 
518.                blockPath = strcat(self.modelName,'/Drive Cycle Source'); 
519.            else 
520.                 blockPath = strcat(self.modelName, '/Longitudinal Driver'); 
521.            end  
522.             set_param(blockPath, 'cycleVar','Workspace variable') 
523.             set_param(blockPath, 'wsVar', 'EMC_DriveCycle'); 
524.                          
525.             FILE_NAME = 'Acceleration Test Cycle.xlsx'; 
526.             XL_RANGE = 'A1:B430'; 
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527.             self.EMC_DriveCycle = xlsread(FILE_NAME, XL_RANGE);  
528.              
529.             self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1 ; 
530.         end 
531.          
532.         function self = loadTopSpeed(self) 
533.            % Loads the max velocity drive cycle to the object 
534.            % Call using: objName = objName.loadTopSpeed(); 
535.              
536.            % Ensures drive cycle block is set to workspace variable 
537.            if self.modelName == "UWAFT_Blazer_Stock_4WD" 
538.                blockPath = strcat(self.modelName,'/Drive Cycle Source'); 
539.            else 
540.                blockPath = strcat(self.modelName, '/Longitudinal Driver'); 
541.            end  
542.             set_param(blockPath, 'cycleVar','Workspace variable') 
543.             set_param(blockPath, 'wsVar', 'EMC_DriveCycle'); 
544.                          
545.             FILE_NAME = 'Top Speed Test Cycle.xlsx'; 
546.             XL_RANGE = 'A1:B1001'; 
547.             self.EMC_DriveCycle = xlsread(FILE_NAME, XL_RANGE);  
548.              
549.             self.tStop = ((size(self.EMC_DriveCycle,1)) / 10.0) - 1 ; 
550.         end 
551.          
552.         function self = loadCity(self) 
553.             % Loads the city drive cycle into the object 
554.              
555.             FILE_NAME = 'Offical EMC Drive Cycles.xlsx'; 
556.             SHEET = 1; 
557.             XL_RANGE = 'A2:B7392'; 
558.             MPH_TO_SI = 0.44704; % mph to m/s 
559.              
560.             drive_cycle = xlsread(FILE_NAME, SHEET, XL_RANGE); 
561.             % split into time and speed vectors and call loadDriveCycle 
562.             self.loadDriveCycle(drive_cycle(:,1),... 
563.                                 drive_cycle(:,2) * MPH_TO_SI); 
564.         end 
565.          
566.         function self = loadHighWay(self) 
567.             % Loads the highway drive cycle into the object 
568.              
569.             FILE_NAME = 'Offical EMC Drive Cycles.xlsx'; 
570.             SHEET = 2; 
571.             XL_RANGE = 'A2:B29622'; 
572.             MPH_TO_SI = 0.44704; % mph to m/s 
573.              
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574.             drive_cycle = xlsread(FILE_NAME, SHEET, XL_RANGE); 
575.             % split into time and speed vectors and call loadDriveCycle 
576.             self.loadDriveCycle(drive_cycle(:,1),... 
577.                                 drive_cycle(:,2) * MPH_TO_SI); 
578.         end 
579.          
580.         function self = loadDegenTuning(self) 
581.             % Loads the highway drive cycle into the object 
582.              
583.             FILE_NAME = 'degenTuningDriveCycle.xlsx'; 
584.             SHEET = 1; 
585.             XL_RANGE = 'A1:B37012'; 
586.             MPH_TO_SI = 0.44704; % mph to m/s 
587.              
588.             drive_cycle = xlsread(FILE_NAME, SHEET, XL_RANGE); 
589.             % split into time and speed vectors and call loadDriveCycle 
590.             self.loadDriveCycle(drive_cycle(:,1),... 
591.                                 drive_cycle(:,2) * MPH_TO_SI); 
592.         end 
593.          
594.         function self = writeNote(self, note) 
595.             self.notes = note; 
596.         end 
597.          

598.     end 

599. end 
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Appendix C- Model Based Design Framework 
Overview 
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Appendix D - Plant Soft-ECU Inputs/Outputs 
Summary 

Component Input Output To Plant / To HSC 

Relays 

LV Voltage 
Power Command 1 
Power Command 2 
Power Command 3 
Power Command 4 

Inverter Relay 
BMS Relay 
ECM Relay 

To Plant 

N/A To HSC 

TCM 

Effective Acc Pedal Position 
Vehicle Speed 
Clutch Locked 

TCM RNG Value 
Shift Pos 

Gear State To Plant 
Gear State 
TCM Fault 
TCM State 

PRNDL State 

To HSC 

BCM 
Engine Running 

Key State 

N/A To Plant 
Power Mode 

Engine State Request 
ECU Power 

To HSC 

ECM 

Engine Speed 
Engine Torque Command 

Ambient Pressure 
ECM Relay 

Engine On Request 
ECM Rng Value 

Engine Fault 
Accelerator Pedal In 

Brake Pedal In 
Vehicle Speed In 

Transmission Gear 
Engine Torque Feedback 

Torque Command Out 
Starter Motor On 

Steering Wheel Angle 
To Plant 

ECM Power 
Torque Command Out 

Engine Speed Out 
Engine Torque 
PRNDL State 

Effective Pedal 
Engine Running 

Accelerator Pedal 
Brake Pedal 

Steering Angle  
CAV Decel 

Vehicle Speed Out 
Engine Coolant Temp 

To HSC 

BMS 

Low Voltage 
Discharge Enable 

Temperature  
Current In 
Voltage In 

SOC 
Minimum Fan Speed 

HVIL Analog Low 
HVIL Analog High  

Contactors Closed To Plant 
Contactors Closed 

BMS On 
System State 
Current Out 
Usable SOC 

Real SOC 
Voltage Out 

Charge Current Fault 

To HSC 
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Resistance to Ground Discharge Current Fault 
Over Voltage Fault 

Under Voltage Fault 
Over Temperature Fault 

HVIL Low  
HVIL High 

Ground Isolation Fault 
Charge Current Available 

Discharge Current Available 
Pack Temperature High 
Pack Temperature Low 

Inverter 

Inverter Relay  
Motor Speed 

Battery Voltage 
Battery Current 
Motor Torque 
Control Mode 

Clear Error 
Power Limit 

Torque Command 
Restart Request 
Active Discharge 

Ambient Temperature 
Coolant Speed 

Power Loss 

Actual Torque Command To Plant 
Inverter State 
Motor Speed 

Motor Voltage 
Motor Current 
Discharge State 

Inverter On  
Motor Temp 

Motor Phase Current 
ESS DC Link Voltage 
Motor Temperature 
Inverter Power Loss 
Max Junction Temp 

Max Junction Temperature 

To HSC 

Coolant Pump 

Pump On/Off Direction 
Pump Power Hold Command 

Pump Motor Speed 
Ignition 

N/A To Plant 
Output Speed 

Controller Status 
Measured Power 
Motor Direction  

Coolant On 

To HSC 

Coolant Fan 
Hybrid Fan Speed Request 

Engine Coolant Fan On  
N/A To Plant 

Fan speed To HSC 
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Appendix E - Acceleration 0-60 mph Test Plan 
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Appendix F- Braking 60-0 Test Plan 
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Appendix G - Energy Consumption Test Plan 

 


