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Abstract

Single photons are naturally suited to quantum information processes as they can carry
entanglement in multiple degrees of freedom and maintain coherence easily. In order to
fully harness single photons for this use, it is vital to be able to mould, manipulate and
measure their properties in all of these degrees of freedom. In the spirit of working towards
this overarching goal, this thesis consists of two experiments that control and evaluate
entangled single photon pairs.

In the first, we generate lattices of spin-orbit entangled photon states which are used
in a remote state preparation protocol. The success of the protocol is confirmed by using
an electron-multiplying intensified CCD camera and a pixelwise tomography technique.
We propose that these hybrid lattice states be used in quantum communications, and
quantum sensing and control. The pixelwise analysis may also be helpful for observing
other spatially-dependent entangled states.

In the second, one partner of an energy-time entangled pair is sent through an ultrafast
switch which functions by the optical Kerr effect. It is a work-in-progress with the goal
of demonstrating a sub-picosecond switching speed for the further manipulation of single
photons. All-optical switching is not limited by electronic speed which makes it important
for applications for classical and quantum communications, and imaging and microscopy
applications. In particular, we propose that this all-optical Kerr switch is used for the
reconstruction of a two-photon entangled state in a third-order cross-correlation.
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Chapter 0: Introduction

This thesis is made up of five chapters. I’ve tried to write this thesis such that each
subsequent chapter builds upon its predecessors, but there are some overlaps. Chapters 1
to 3 cover background material from quantum mechanics, experimental quantum optics,
and ultrafast and nonlinear optics. Chapter 4 contains information regarding the remote
state preparation of spin-orbit lattices, which is often abbreviated as ‘the RSP experiment’
in this thesis. Chapter 5 contains information on the Kerr switching of entangled photons,
which is often shortened to ‘the switching experiment’ in this thesis.
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Chapter 1

A crash course in quantum mechanics

In order to speak about single photons, we will need to know the formalism of quantum
mechanics, as it is the fundamental theory which describes nature around the scale of
subatomic particles. This chapter is a brief summary of some of the necessary elements in
quantum mechanics so that this thesis may be somewhat self-contained (Dirac notation,
for example, is not explained). There are many textbooks which teach quantum mechanics
(e.g. Ref [1] which was liberally perused) and may serve as helpful companions.

Section 1.1 introduces a notation for describing pure and mixed states. Section 1.2
talks about measuring states. Section 1.3 brings up the idea of combining more than one
state into a bigger system and delves into entangled and separable states. Section 1.4 is
about transforming and operating on states, and finally Section 1.5 gives a measure for
comparing states.

1.1 State vectors and density matrices

Any isolated physical quantum system is associated with a Hilbert space H, which is a
complex vector space with an inner product1. The system is completely described by a state
vector |ψ〉, which is a unit vector in the Hilbert space. |ψ〉 contains all of the information
needed to tell us how the system interacts with another system, the environment, and
measurements.

States can be classified as being pure or mixed. A pure state cannot be thought of as a
probabilistic mixture of other states. The converse of a pure state is a mixed state, in that

1This allows lengths and angles to be defined in the state space.
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it has to be made of a probabilistic combinations of pure states. In quantum mechanics,
states are allowed to exist as a superposition of different states, but this is not the same as
a probabilistic mixture of pure states. A superposition of pure states is still a pure state.

An example of a superposition of the states |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
is

|ψ〉pure = α|0〉+ β|1〉 (1.1)

where |α|2 + |β|2 = 1. In the case of an equal superposition, α = β such that:

|ψ〉pure ex. =
1√
2
|0〉+

1√
2
|1〉. (1.2)

Instead of using state vectors to describe a state, we can also use an equivalent formula-
tion known as the density operator or density matrix. It is necessary to use this formalism
to describe a mixed state, as a mixed state cannot be described by a single ket. A pure
state |ψ〉 is related to its density matrix ρ̂ by

ρ̂pure = |ψ〉〈ψ|. (1.3)

Applying Eq. 1.3 to Eq. 1.2 reveals its density matrix to be:

ρ̂pure ex. =
1

2

(
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

)
=

1

2

[(
0
1

)(
0 1

)
+

(
0
1

)(
1 0

)
+

(
1
0

)(
0 1

)
+

(
1
0

)(
1 0

) ]

=
1

2

(
1 1
1 1

)
. (1.4)

A mixed state, in contrast to Eq. 1.3, is a probabilistic mixture of pure states, so its
density matrix is described as a sum:

ρ̂mixed =
∑
i

pi|ψi〉〈ψi|, (1.5)

where
∑

i pi = 1. For example, take the probabilistic mixture of the states |0〉 and |1〉,
as opposed to an equal superposition of the states as represented by Eqs. 1.2 and 1.4. Its
density matrix is

|ψ〉mixed ex. =
1

2
|0〉〈0|+ 1

2
|1〉〈1| (1.6)

=
1

2

(
1 0
0 1

)
. (1.7)

Density matrices should be normalized in that the trace equals 1.
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1.2 Quantum measurements

The most general quantum measurement is a positive operator-valued measure (POVM).
Suppose that we have a collection of measurement operators {M̂m}. These operators act on
the state space of some quantum state |ψ〉 which is equally represented by its density matrix
ρ̂. The index m refers to the measurement outcomes which can occur in an experiment. If
a measurement operator acts on the state |ψ〉, the probability that result m occurs is

p(m) = 〈ψ|M̂ †
mM̂m|ψ〉, (1.8)

Eq. 1.8 is more familiarly known as Born’s rule. Measurement operators also satisfy
the completeness equation because probabilities sum to one:∑

m

M̂ †
mM̂m = 1 (1.9)

1 =
∑
m

p(m) = 〈ψ|M̂ †
mM̂m|ψ〉.

Now we define a POVM element which is a positive operator:

Êm ≡ M̂ †
mM̂m. (1.10)

As above,
∑

m Êm = 1 and also p(m) = 〈ψ| Êm |ψ〉 = Tr[ρÊm]. A POVM is a set of these

operators {Êm} measured in a Hilbert space. A POVM is sufficient to determine the prob-
abilities of different measurement outcomes, but cannot reveal the post-measurement state
of a system, since we are not given the actual measurement operators {M̂m} themselves.

Projective measurements are a special subclass of POVM measurements. This is the
case that {Êm} are orthogonal projection operators, which shall now be labelled as {P̂m}
for clarity:

P̂mP̂m′ = δm,m′P̂m. (1.11)

In only this instance, all of the POVM elements are actually the measurement operators
themselves as Êm ≡ P̂ †mP̂m = P̂m. The projectors can be written as

Êi = P̂i = |ki〉 〈ki| . (1.12)

where |k〉 is a set of vectors on the Hilbert space. Consider again the example of the
quantum state |ψ〉 with density matrix ρ̂. In the case of projective measurement, Eq. 1.8
simplifies to

p(m) = 〈ψ| P̂m |ψ〉 = Tr[ρ̂P̂m]. (1.13)

4



Given that m is the outcome, then the state of the quantum system after measurement
is definitively

P̂m |ψ〉√
p(m)

. (1.14)

Here is a classic example from the quantum information field. Let there be some state
|ψtrial〉 = α |0〉 + β |1〉 where again, α, β are complex and |α|2 + |β|2 = 1. This state is
said to be written in the computational basis, which consists of |0〉 and |1〉 with the same
definitions as previously introduced in Section 1.1. Let M̂0 be the projector which reads
out m = 0 and M̂1 be the projector which reads out m = 1. Then

M̂0 = |0〉 〈0| =
[
1 0
0 0

]
M̂1 = |1〉 〈1| =

[
0 0
0 1

]
.

M̂0 and M̂1 are orthogonal since 〈0| 1〉 = 0, so I relabel the measurement operators as
P̂0 and P̂1. The probability of obtaining the measurement outcome 0 is

p(0) = 〈ψtrial| M̂ †
0M̂0 |ψtrial〉 = 〈ψtrial| M̂0 |ψtrial〉 = |α|2, (1.15)

and the final state of |ψtrial〉 is

P̂0 |ψ〉√
p(m)

=
α

|α|
|0〉 . (1.16)

General POVMs are not used in the experiments in this thesis, only projectors.

1.3 Composite systems and entanglement

Suppose now that we have two isolated systems, A and B, combined in a composite system.
The state of the bipartite system |ψAB〉 is also a normalized vector in a Hilbert space defined

HAB = HA ⊗HB. (1.17)

The combined Hilbert space is made up of the tensor product between the individual
Hilbert spaces of the subsystems A and B. The joint state of the system, given that |ψA〉
and |ψB〉 are the state vectors of the subsystems, is now

|ψAB〉 = |ψA〉 ⊗ |ψB〉 (1.18)

5



which is more commonly abbreviated as |ψA〉 |ψB〉 = |ψAψB〉. Eqs. 1.17 and 1.18 can
be generalized to any number of subsystems, although this thesis is limited to bipartite
systems. Due to the superposition principle, any normalized sum of the two state vectors
from each subsystem is a valid state vector of the bipartite system. However, all the
possible states created by superposition do not share the same characteristics.

Any state in HAB which can be represented in the exact form in Eq. 1.18 is a separable
pure state. The most general form of a separable state is

|ψ〉separable =
∑
m

pmρ̂
A
m ⊗ ρ̂Bm. (1.19)

Following the notation in the previous sections, ρ̂Am and ρ̂Bm are the density matrices of a
state, respectively in subsystems A and B, when measured with some outcome m indi-
vidually (systems A and B have not yet combined at the time of measurement). pm is
the probability that result m occurs. pm ≥ 0 and

∑
m pm = 1. Any state which can be

decomposed into Eq. 1.19 has classical correlations. This is to say separable states can be
created using classical physics: only local operations and classical communication (LOCC)
are necessary2. I think this is easily seen with the description of Eq. 1.19 by Ref. [2]. Say
the systems A and B each have a remote with settings m = 1, ..., n, and that by setting m
the systems produce states ρ̂Am and ρ̂Bm. Say that a random number generator is responsible
for producing the numbers m = 1, ..., n with probability pm. The physical “source” of the
correlations is the random number generator which can be a purely classical device.

By definition, an entangled state is one which is not separable [3, 4]. Colloquially, a
maximally entangled state means that the subsystems have such strong correlations with
each other that they cannot be described separately but rather collectively (you can replace
the word ‘state’ with ‘particles’, if you like)3. Entangled states can be pure or mixed. Just
as entangled states cannot be created with local operations (only global operations), local
operations cannot affect the degree of entanglement [5]. Local operations can, however, be
used to distinguish certain entangled states [6], as is the case in this thesis. See Section 4.2.2
later.

Important examples of pure maximally entangled bipartite states in quantum informa-

2Briefly, a local operation in this context refers to a product operation. It acts on one of the subsystems
but not the others. Results obtained at one location are independent of any actions performed with space-
like separation [3]. Classical communication is communication in the regular sense e.g. one scientist calling
up another to tell them of their results.

3Non-maximally entangled states exist, but are beyond the scope of this thesis. [7] might be an inter-
esting read regarding the topic.

6



tion are the four Bell states:

|Φ+〉 =
1√
2

(|00〉+ |11〉) (1.20)

|Φ−〉 =
1√
2

(|00〉 − |11〉) (1.21)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) (1.22)

|Ψ−〉 =
1√
2

(|01〉 − |10〉). (1.23)

They are written in the computational basis as introduced in an example in Section 1.2.

1.4 Transforming quantum states

Up to this point, only isolated systems have been discussed. In reality, all systems interact
with others4. Measuring a system necessarily means that it is no longer isolated. However,
a natural way to describe the dynamics of an open system is to think about a principal
system and its interaction with another (say, the environment or a measurement probe) as
another closed system.

It is possible to describe an isolated system as it evolves in time by relating the changes
in the system’s state to the energy in the system. Consider the Schrödinger picture, where
it is the quantum state which changes in time as it interacts with its surroundings and
other systems, while it is the operators which remain constant in time. Transformations
on the state are represented by operators. These should be completely positive and trace-
preserving (CPTP) so that when applied to a density matrix, a valid density matrix is
output [1].

An important and ubiquitous subclass of CPTP operators are unitary operators. They
have the property

U †U = UU † = 1. (1.24)

Applying a unitary operator to a starting quantum state |ψ〉 or equivalently applying
a unitary matrix on a starting density matrix ρ̂ transforms it as such:

|ψ′〉 = Û |ψ〉 (1.25)

ρ̂′ = Û ρ̂Û †. (1.26)

4Except the universe as a whole.
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Projective measurement operators as described in Section 1.2 are unitaries. A set of
important unitaries are the Pauli-X, Pauli-Y and Pauli-Z operators:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (1.27)

1.5 Quantum fidelity

Quantum fidelity is a type of distance measure between two states which compares how
close they are. It expresses the probability that one state passes for the other and defined
as [8]

F(ρ̂, σ̂) ≡ Tr

[√√
ρ̂σ̂
√
ρ̂

]2

. (1.28)

For any quantum states ρ̂ and σ̂, 0 ≤ F(ρ̂, σ̂) ≤ 1 and F(ρ̂, σ̂) = F(σ̂, ρ̂). When
calculating the fidelity between a pure state ρ̂ = |ψ〉 〈ψ| and an arbitrary state, Eq. 1.28
explicitly becomes:

F(ρ̂, σ̂) = 〈ψ| σ̂ |ψ〉 = Tr
[
σ̂ |ψ〉 〈ψ|

]
(1.29)

where the second equality is gained by applying Eq. 1.13. Eq. 1.29 is used often in the lab
to see how close our created state σ̂ is to the theoretical state ρ̂. The problem then becomes
finding the entries of σ̂, which is often done by quantum state tomography (detailed further
in Section 4.2.5).
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Chapter 2

A crash course in experimental
quantum optics

Light is a propagation of electromagnetic waves. To get a quantum description of light,
the electromagnetic field must be quantized, and by doing so, we have a definition for the
photon. A photon is a discrete excitation of the electromagnetic field. Quantum optics
is the study of photons and their particle-like behaviour, including how photons interact
with other atoms and molecules. This thesis describes two single photon measurement
experiments, so this chapter presents some important concepts and tools in optics which
we use to carry out the quantum mechanical principles described in Chapter 1.

Section 2.1 explains the photon’s role in the field of quantum information. Section 2.3
introduces the idea of polarization, from what it means for light as a wave and what it
means in a photon. Section 2.4 talks about waveplates, which work on the principle of
birefringence and are widely-used tools in an optics lab. Section 2.5 is all about the use of
polarizing beamsplitters (PBSs) as projectors. Sections 2.6 and 2.7 bring up the topics of
polarization and energy-time entanglement in photons. Section 2.8 wraps up the chapter
by discussing the g(2)(0) measurement, which is a common experimental check to confirm
if the photon distribution has quantum character.

2.1 The photon’s place in quantum information

When we speak of quantum information, we necessarily speak of qubits. The qubit, or
quantum bit, is a two-level quantum system and is the basic fundamental unit of quantum
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information, much like how a classical bit is to classical information. While the classical
bit is restricted to being either 0 or 1, the qubit can be either |0〉 or |1〉 or some linear
combination of both at the same time, which you have already seen in the previous chapter.
As written in Section 1.2, the state of a qubit |ψ〉 is represented mathematically as:

|ψ〉 = α |0〉+ β |1〉 (2.1)

with |α|2 + |β|2 = 1 for normalization. Any physical system which can realise any of the
possible superpositions can be used to encode a qubit. There are many candidates such as
the atomic levels in atoms and ions [9], superconductors [10], and nuclear spin of particles
[11], but in this lab, we use single photons.

There are many ways of encoding a photonic qubit, and this is due to the four main
degrees of freedom (DoFs) of photons. These are polarization, energy/time, the radial
number, and angular momentum. In a beamlike geometry, the latter two are encompassed
by the transverse mode profile [12]. Some common DoFs used in experiments are frequency,
time bins, polarization, and spatial distribution arising from orbital angular momentum
(OAM). Each has its own advantages and disadvantages. This thesis features OAM and
polarization entangled qubits, and energy-time entangled qubits.

2.2 Orbital angular momentum

The azimuthal quantum number, also known as the orbital angular momentum quantum
number, determines the OAM of a particle. It is typically denoted as l, and as a consequence
of quantization, its value has to be an integer, either positive or negative1. In light, OAM
is caused by spatially-varying amplitude and phase distributions [13]. Light beams which
have OAM have a helical phase structure, where the phase winds azimuthally around the
optical axis. This is most easily visualized in cylindrical coordinates, where the optical
axis, which is the axis in which the light travels, is ẑ and the phase of the light is captured
by the azimuthal coordinate φ̂. The magnitude of l describes the number of times that the
azimuthal component has travelled a full 2π circumference. Fig. 2.1(a) shows the helical
structures produced by the first few positive l values. Positive and negative signs refer to
different travel directions which produces handedness in the helical phase structure, shown
in Fig. 2.1(b).

1It is often shown that l is restricted to positive values. However, this restriction only arises from
squaring the angular momentum operator, typically denoted as L̂.
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(a) Depiction of the helical phase fronts for
beams which have different positive l values.
The top-left image, (a), is a plane wave cor-
responding to l = 0. (b) is a single helix
corresponding to l = 1. (c) is a double-
fold helix corresponding to l = 2. (d) is a
triple-fold helix (pasta fusilli-shaped) corre-
sponding to l = 3. Image from Ref. [14].

(b) Depiction of optical beams which con-
tain positive and negative OAM. The first
column is the beam helical structure (simi-
lar to the figure on the left). The second and
third columns respectively show the phase
and intensity distributions in a cross-section
of the corresponding beam. Image from
Ref. [15].

Figure 2.1: Images of the beam wavefront shape for different OAM values of l. (a) shows
positive l values while (b) compares positive and negative values, as well as showing phase
and intensity distributions with beam cross-sections. It is helpful to use cylindrical coor-
dinates, where the beam travelling along ẑ and the phase fronts wind around φ̂.

2.3 Polarization

An electromagnetic wave travels in a way such that its electric and magnetic field compo-
nents always oscillate perpendicular to each other and the direction of travel. Polarization
refers to the direction in which the electric field oscillates with respect to some reference,
such as an optical table. The axis in which the light travels (parallel to the surface) is
often labelled ẑ, and we follow this convention. So for any beam of light travelling in the
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ẑ axis, the light can be polarized in the x̂ (horizontal) or ŷ (vertical). Photons are often
thought of in this manner as well.

By only working with photons which are effectively identical except for their polariza-
tion, we can describe a photon’s state solely by its polarization. Any other transformations
on the state are assumed to be blind to all the other properties of the photon. The com-
mon encoding convention associates the physical electric field oscillation direction with the
computational basis such that:

|H〉 = |0〉 =

(
1
0

)
, |V 〉 = |1〉 =

(
0
1

)
(2.2)

where |H〉 and |V 〉 respectively refer to horizontally- and vertically-polarized light. An
arbitrary pure state in the polarization basis is written as [1]:

|ψ〉 = cos(
θ

2
) |H〉+ eiφsin(

θ

2
) |V 〉 , (2.3)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. I now introduce the notion of the Bloch sphere,
which is a 3D sphere that geometrically represents the pure state space of a qubit. Using
the computational basis, each pair of antipodal points correspond to a pair of mutually
orthogonal state vectors. Unitary operations on the qubit correspond to rotations about
the Bloch sphere. Axes correspond respectively to Pauli matrices e.g. a full rotation about
the ẑ-axis is equivalent to applying the σ̂z operator on the qubit. Similarly, the Poincaré
sphere is a visualization tool for different polarized light. By now assigning each state
vector in the computational basis to a polarization, Eq. 2.3 can be visualized in Fig. 2.2.
The six listed states are also known as equatorial states due to their positions on the sphere.
The complete polarization convention used in this thesis is listed in Table 2.1. {|H〉 , |V 〉},
{|D〉 , |A〉} and {|R〉 , |L〉} are not only mutually orthonormal, they are mutually unbiased
bases. This means that if a state is prepared in one of these bases, all outcomes are equally
probable when a measurement is made in any of the other two bases [16].
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Figure 2.2: Bloch sphere labelled with polarizations as per Table 2.1. The axes correspond
to Pauli matrices. All pure states e.g. |ψ〉 begin at the centre of the sphere and end at the
surface of the sphere. Note that the {|H〉 , |V 〉}, {|D〉 , |A〉}, and {|R〉 , |L〉} states are the
respective eigenstates of the Pauli-Z, Pauli-X, and Pauli-Y operators.

One of the big advantages of using the polarization DoF is total control. It is straightfor-
ward to manipulate a photon’s polarization state using half-wave plates (HWPs), quarter-
wave plates (QWPs) and polarizing beamsplitters (PBSs).

The polarization of a photon is also related to its quantum spin number, typically
denoted as ms. By projecting the spin operator, typically denoted as Ŝ, in the propagation
direction, the resulting two eigenstates are |R〉 and |L〉. I note this for a comparison to
the description of OAM in Section 2.2, though it is sufficient to think about polarization
in terms of the electric field oscillation as described above.
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Polarization State Computational Basis
|H〉 |0〉
|V 〉 |1〉
|D〉 1√

2
(|0〉+ |1〉)

|A〉 1√
2
(|0〉 − |1〉)

|R〉 1√
2
(|0〉+ i |1〉)

|L〉 1√
2
(|0〉 − i |1〉)

Table 2.1: Polarization convention used in our lab. |H〉 , |V 〉 , |D〉 , |A〉 , |R〉, and |L〉 are
respectively referring to the horizontal, vertical, diagonal, anti-diagonal, right- and left-
circular polarization states.

2.4 Birefringence and waveplates

Waveplates work via uniaxial birefringence. Consider monochromatic light. As light passes
through a medium, it necessarily slows down. We normally refer to this change of speed
in an isotropic material (e.g. vacuum, water) using its refractive index n. There exists
materials which are composed of atoms in such a way that different polarizations of light
experience different refractive indices2. This effect is termed birefringence, and the simplest
case is uniaxial birefringence where there are two different refractive indices, the ordinary
no and extraordinary ne, which are perpendicular to each other. They are respectively
the ‘fast’ and ‘slow’ axes because light which is polarized along the ordinary axis passes
through faster than light which is polarized along the extraordinary axis. Light travelling
along the slow axis is delayed and thus obtains a relative phase to light along the fast axis.
Birefringence is described by the difference in refractive indices:

∆n = |no − ne|. (2.4)

A HWP and a QWP respectively cause a relative phase delay of φ = π and φ = π
2

where φ is as described in Eq. 2.3. These are common polarization manipulation tools
found in an optics lab made out of birefringent glass. They implement the unitaries [17]:

ÛHWP (θ) = −i
[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
(2.5)

ÛQWP (θ) =
1√
2

[
1− icos(2θ) −isin(2θ)
−isin(2θ) 1 + icos(2θ)

]
. (2.6)

2These are typically transparent optical crystals; all of the ones in this thesis are of this sort.
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Eqs. 2.5 and 2.6 are written in the {|H〉 , |V 〉} basis and θ is the angle between the fast and
slow axes. Note that the factor in front of Eq. 2.5 can be dropped since it acts as a global
phase. This means that it acts on all light polarizations passing through, so there isn’t any
relative phase. As an example of using these unitaries, consider a HWP which is aligned
so that θ = 0 and |H〉 and -|V 〉 are the eigenstates of the operation. Then, for example,
ÛHWP (0) |H〉 = |H〉 and ÛHWP (0) |V 〉 = − |V 〉. ÛHWP (0) |D〉 = |A〉 due to the π phase
difference. But say θ = 22.5◦, then ÛHWP (22.5◦) |H〉 = |D〉 and ÛHWP (22.5◦) |V 〉 = |A〉.
Note that for any angle, ÛHWP flips |R〉 to |L〉 and vice versa. Referring back to Fig 2.2,
a HWP is able to grant access to any part of the X-Z plane. A QWP at 45◦ turns |H〉 to
|R〉 and |V 〉 to |L〉 which allows us to move in the Y-Z plane. The combination of a HWP
and a QWP thus act like single qubit operations and can thus implement any rotation on
the Bloch sphere3.

Sometimes instead of having a fixed relative delay of π or π/2, we want a variable
retarder which can produce any relative delay 0 ≤ φ ≤ 2π. A common way to achieve this
is to take a birefringent glass and rotate it about an axis perpendicular to the incoming
beam. This changes the amount of glass that the light passes through and therefore the
relative delay. In one of the experiments, a tilted QWP is used for this purpose.

Fibre polarization controls (informally known as bat ears) act in a similar way to
waveplates by inducing birefringence by bending a fibre. Normally, a holder is used so that
three sets of coils can be formed with different bending diameters. Experimentally, they
are closer to variable retarders.

2.5 Projection by polarizing beamsplitter

PBSs are often used in conjunction with single photon detectors. All of ours are avalanche
photodiodes (APDs) and record photon counts only by converting light into measurable
charge. They are insensitive to polarization, frequency, etc. One way of circumventing
this insensitivity is coupling the polarization DoF into different spatial paths, at the end of
which we put detectors. The PBS is an optical tool which accomplishes this by transmitting
|H〉 and reflecting |V 〉. Looking at either end is equivalent to having performed a projective
measurement on the |H〉 or |V 〉 basis.

In our experiments, we typically transform the arbitrary polarization of the studied
quantum states to |H〉 or |V 〉 and then project onto either basis by use of a PBS. Polarizing

3A useful waveplate basis conversion guide (takes any of the 6 polarization states to another) can be
found in the QOQI Wiki.
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analyzing optics in this thesis normally refers to a setup consisting of a HWP followed by
a QWP then a PBS. The probability of measuring a state |ψ〉 at the transmitted port after
passing through these optics is

p(m = |H〉) = 〈ψ|
(
|H〉 〈H|

)
|ψ〉 Eq. 1.13

= | 〈H| ÛQWP (θ1)ÛHWP (θ2) |ψ〉 |2. (2.7)

θ1 and θ2 are the angles with which to set the QWP and HWP as per Eqs. 2.6 and 2.5.

Besides performing measurement, this setup can be used for other functions. For ex-
ample, we normally numerically maximize Eq. 2.7 to obtain θ1 and θ2 by individually
and respectively replacing the HWP and QWP in the setup with ones whose angles are
trusted. For another, Section 2.4 mentions that passing light into fibre causes polarization
rotations4. If there are polarized photons which pass through fibre before emerging at the
other end of the optical table, we are able to correct for phase undesirably gained in the
fibre by using this set of optics. This is called fibre compensation.

Related to the workings of a PBS is a polarizer, which is a filter that only lets in light
of a specific polarization. Since each port of a PBS performs in this manner, they can
be considered linear polarizers. A crossed polarizer scheme is made up of a pair of linear
polarizers sandwiching an optic, where the polarizers are oriented in a way such that they
eliminate all light if they are placed one after another. It is briefly mentioned in chapter 3
and is detailed in chapter 5.

2.6 Polarization entanglement

Common polarization-entangled states produced with light are the Bell states, which were
briefly introduced in Eqs. 1.20, 1.21, 1.22, and 1.23. Recall that |0〉 = |H〉 and |1〉 = |V 〉.
The Bell states are superpositions of two orthogonal polarization states. For example, take:

|Ψ+〉 =
1√
2

(|HV 〉+ |V H〉) =
1√
2

(|DD〉 − |AA〉) =
1√
2

(|LL〉 − |RR〉), (2.8)

where we see strong anti-correlations in {|H〉 , |V 〉} and strong correlations in {|A〉 , |D〉}
and {|R〉 , |L〉}5. If we measure the first photon to be |H〉 (or |V 〉) then we know that the
second photon is |V 〉 (or |H〉). Note that strong correlations in one basis isn’t enough to
verify the presence of entanglement, since the mixed state |HV 〉 〈HV | + |V H〉 〈V H| can

4Unless a polarization-maintaining fibre is used.
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also produce the same {|H〉 , |V 〉} correlations. A key feature of entanglement is being able
to produce strong correlations in different bases.

In this thesis, polarization-entangled states are created by spontaneous parametric
down-conversion (SPDC), which is one of the most accessible and controllable sources
of photon entanglement [18]. Although SPDC is a form of three-wave mixing (3WM) and
arises from nonlinear optics, it is a strictly quantum effect. I mention it here briefly for
continuity in the topics of polarization and energy-time entanglement, though the details
will be revisited later in Section 3.3 where 3WM is discussed.

When high-energy laser light interacts with a nonlinear crystal, a photon normally
termed the pump spontaneously down-converts into a pair of entangled photons, normally
called the signal and idler, which are lower in energy and travel spatial paths in accordance
with the energy and momentum conservation laws. The efficiency of this process is notori-
ously low, on the order of one photon down-converting out of a million [19]. There are three
different kinds of SPDC categorized by the incoming and outgoing photon polarizations:

• Type-0: pump, signal and idler have the same polarization,

• Type-I: pump polarization is orthogonal to both signal and idler,

• Type-II: signal and idler polarizations are orthogonal to each other.

By using the polarization manipulation tools mentioned in previous sections, we can obtain
entangled photon pairs that are polarized in a certain manner (effectively generating one
of the Bell states, for example).

2.7 Energy-time entanglement

Polarization entanglement is fairly intuitive and easy to measure with optics tools, but
cannot be scaled past qubits (to higher-dimensional qudits) easily. Entanglement in the
frequency and time domains of light can be potentially high-dimensional which allows
for higher carrying capacity of quantum information, so they are popular DoFs among
experimentalists [20, 21].

5In this context, correlations mean the measurements on both photons turn out the same, and anti-
correlations mean that the measurements on both photons are opposite. The word correlations can also
encompass both correlations and anti-correlations like in the last sentence of this paragraph. Also note
that I dropped the global phase of i from the {|R〉 , |L〉} correlations.

17



We do not study the correlations for energy-time entanglement in this thesis, but an
energy-time entangled state is used. It is created via SPDC which naturally produces
energy-time entanglement as the energy of the pump photon must equal the sum of signal
and idler energies, ωp = ωs+ωi. The process is also spontaneous meaning that the photons
are birthed during a small time window such that ts− ti ≈ 0. SPDC thus produces strong
correlations in the frequency and time domains in direct analogy to the Einstein-Podolsky-
Rosen correlations of position and momentum6. These are conjugate variables, meaning
that their state vectors are related to each other by a Fourier transform.

One way of representing a correlated two-mode state is [22]

|ψ〉 =

∫
dωsdωiF (ωs, ωi)a

†
s(ωs)a

†
i (ωi) |0〉 . (2.9)

Eq. 2.9 is a superposition of the [continuous frequency] creation operators, a†s(ωs)
and a†i (ωi), which act on the vacuum state and are weighted by the spectral distribu-
tion F (ωs, ωi). F (ωs, ωi) is the joint spectral amplitude and its properties inform if the
two photons, typically labelled ‘signal’ and ‘idler’ (even if they aren’t created by SPDC),
are entangled or not. If the photon pair have strong correlations in frequency and time
i.e. they are entangled, then the joint spectral amplitude cannot be a product of states:
F (ωs, ωi) 6= Fs(ωs)Fi(ωi).

The energy-time entanglement can be detected by violations of uncertainty relations.
For example, two separable or classical pulses satisfy the following inequality [23, 24]

∆(ωs + ωi)∆(ts − ti) ≥ 1, (2.10)

where ωs,i are the frequencies and ts,i are the times of arrival for the signal and idler
photon labelled accordingly. Another way of detecting energy-time entanglement is by
using interferometry [25, 26].

2.8 Single photon character: second-order coherence

Quantum and classical light have different statistical distributions which lead to different
correlation functions. To gain insight into the type of state created, it is convenient to
measure the degree of second-order temporal coherence, which is written as g(2)(τ). It is a

6Note that time is not an observable in quantum mechanics. When speaking about the timing of a
photon, we are referring to the intensity as a function of time (which is an observable).
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measure of the average correlation between the intensity of a field at two different times,
and τ is the time difference.

Consider the second-order coherence function at the zero time delay, g(2)(0). In a
quantum optics lab, it corresponds to a measurement which gives the probability of two
photons existing at the same instant in time, normalized by the probability of finding
a single photon at that time. This can be done by sending the quantum state into a
non-polarizing 50:50 beamsplitter (BS) with a detector in each path. A 50:50 BS simply
transmits and reflects light with equal probability. The setup is known as a Hanbury
Brown-Twiss interferometer [24, 27] and shown in Fig 2.3. Photons are discrete and must
end up in one port or the other, so in a perfect laboratory, the probability of two photons
existing at the same instant in time is 0 and there are no coincidences (both detectors
should not register at the same time; numerator is 0). Perfect single photon light is thus
described by g(2)(0) = 0, where a g(2)(0) closer to 0 indicates a closer statistical description
to that of true single photon light. However, any g(2)(0) < 1 is a signature of quantum
light7.

Figure 2.3: Two different g(2)(0) measurements. (a) is an unheralded measurement while
(b) is heralded.

In Fig. 2.3(a), g(2)(0) is the probability of measuring a coincidence between detectors
1 and 2, divided by the probability of measuring a photon count (getting a ‘click’) at each

7Starting from second-order temporal coherence function for a classical light field, one can apply
Cauchy’s inequality and see that for classical light, g(2)(0) ≥ 1. The same treatment can be done for
non-classical light using electric field operators to find that g(2)(0) < 1. Ref. [24] takes us through the
derivation.
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detector [28]. These probabilities are obtained from measured count rates. The probability
of a detection at detector 1 within some time frame is given by the average rate of detections
at detector 1 multiplied by this time frame. The average rate is simply the total number
of detections divided by the total counting time. If we let the detection time frame be ∆t,
the average rate be R, the total number of detectors be N and the total counting time
be ∆T , then the probabilities for detectors 1 and 2, and probability of coincidence counts
between them are [29]:

P1 = R1∆t =
N1

∆T
∆t, P2 = R2∆t =

N2

∆T
∆t (2.11)

P1,2 = R1,2∆t =
N1,2

∆T
∆t. (2.12)

The g(2)(0) in general is thus:

g(2)(0) =
P1,2

P1P2

(2.13)

g(2)(0) =
N1,2

N1N2

∆T

∆t
(2.14)

Typically, all rates are given in a second (∆T = 1) and the coincidence window is a
shorter time frame, usually ∆t = 3 ns. Eq. 2.14 is more commonly seen as:

g(2)(0) =
P1,2

P1P2

=
N1,2

N1N2

1

∆twindow
. (2.15)

Many experiments calculate the second-order coherence in a heralded manner as de-
picted in Fig 2.3(b). Both the RSP and the switching experiments do this, whereby counts
from one photon is only kept if its presence has been heralded by another. This is often
done with a process in which two photons are created at the same time (e.g. via SPDC;
the brown rectangle in Fig 2.3(b) is the nonlinear crystal). A coincidence count registered
by detectors 1 and 2 is only kept if detector 3 also clicks, which helps cut down on noise.
The g(2)(0) is now the probability of a three-fold coincidence between all detectors divided
by the two-fold coincidences between detectors 1 and 3, and detectors 2 and 3. In this
case, the probability of measuring a photon is the number of photons N divided by the
number of heralds. Similarly to above, the probabilities are [29]:

P1 =
N1,3

N3

, P2 =
N2,3

N3

P3 =
N1,2,3

N3

, (2.16)
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where we include the new terms N1,2,3, which is the number of threefold coincidences, and
N3, the number of counts at detector 3.

g(2)(0) =
P1,2,3

P1,3P2,3

=
N1,2,3

N1,3N2,3

N3 (2.17)

There is no need to include the coincidence window or total counting time, since the herald
is used as a common reference in this case. Eqs 2.15 and 2.17 work for continuous wave
lasers. A continuous wave laser is one which is emitted as a continuous beam of light, in
contrast to a pulsed laser which emits light in short bursts (‘pulses’). A pulsed laser with
a repetition rate R produces 1/R photons per second, which must be accounted for since
having a greater number of photons in a second contributes to a higher number of accidental
coincidences. With Eq. 2.15, simply include 1/R in the probability denominator, which
results in g(2)(0) = N1,2R

N1N2∆twindow
where the counting time is performed over a time period

of a second, as we specified the use of the repetition rate. Other accidental calculations
are described by [30]. Accidentals can come from other sources like double-pair emission
in SPDC where two photons instead of one are down-converted.

This discussion above pertains to the average intensity correlation of a single field with
itself so the g(2)(0) is often called the autocorrelation function8. We can also think about
the coherences of two spatially or temporally distinct beams, and this instead is referred
to as a cross-correlation. The setup would simply be two detectors in each beam path
which register coincidences with each other (no BS needed), and the probabilities can be
deduced similarly to get an equation identical to Eq. 2.15. The g(2)(0) is often used by
experimentalists to ensure that the photons they use still retain quantum character even
after passing through a myriad of optics.

A short note regarding the coincidence window: in many quantum optics labs (including
ours), the coincidence window is set to be 3 ns partially due to timing jitter. Timing jitter
determines the timing resolution of a detector. As photons cause corresponding electric
charge in APDs, these electrical pulses are sent to timing electronics which attach time
tags to them. However, there is timing uncertainty between the optical signal being input
and the output of the electrical signal and this delay is always fluctuating. The width of
this statistical distribution is the timing jitter. For most APDs, this is on the order of a
nanosecond [31]. 3 ns is an empirical number which maximizes the signal-to-noise ratio
of true coincidences. It’s a short enough timeframe to cut out noise, but longer than the
timing jitter and long enough so that the coincidence count isn’t reduced artificially.

8Auto is a Greek prefix meaning ‘self’.
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Chapter 3

Ultrafast and nonlinear optics

Ultrafast optics deal with ultrafast phenomena: events that have features which occur
within picosecond (ps; 10−12 s) timescales or less. This includes ultrashort pulses, which
are light pulses that have temporal widths that range from picoseconds to femtoseconds
(fs; 10−15 s). To put this in perspective, consider a 1-s-long light pulse. Distance is equal
to speed multiplied by time, so this hypothetical pulse stretches over 300,000 km. In
comparison, a 0.1-ps pulse has an approximate width of 30 µm. Ultrashort pulses have
several characteristics which make them useful [32], namely:

• High timing resolution; since the pulse durations have such a short span in time, they
can be used to capture processes of a slower duration. An analogy is using a camera
snapshot to document the exact moment that a bullet pierces a target. This is only
possible because the flash of light from a camera occurs on a shorter timeframe than
the event of the bullet hitting the target. Similarly, a fs-long pulse can be used to
probe fast dynamics in molecules that occur on the ps timescale, for example.

• High spatial resolution; since the pulses have such a small spatial extent, they can
serve to image things that are bigger in size, like a cranial nerve of a mouse [33].

• High bandwidth; a pulse duration is intrinsically connected to its optical band-
width1by the uncertainty principle regarding energy and time. For example, a 100 fs
pulse has about a 10 terahertz (THz; 1012 Hz) bandwidth, which makes ultrashort
pulses useful for communications [34]. For comparison, the continuous wave laser
used in the RSP experiment has a bandwidth of less than a MHz.

1Bandwidth in this thesis means the range of frequencies contained by the pulse. Differentiating ω = c
λ
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• Potential for extremely high intensity; for a given pulse energy, the peak power and
intensity are inversely proportional to the pulse duration. For example, amplified fs
pulses can produce 1015 W of peak power [32], which opens up new regimes for study
such as laboratory astrophysics [35].

An ultrashort pulse’s propensity for high intensity makes it perfect for use in nonlinear
optics. As we shall soon see, nonlinear optical effects occur when the polarization density
of a medium responds nonlinearly to the incoming electric field, which typically occurs
when the incoming light is very intense. Thus, ultrashort pulses are routinely employed to
generate nonlinear optical effects.

The experiments in this thesis use nonlinear optical techniques generated by both a con-
tinuous wave laser and an ultrafast laser2for the generation and characterization of single
photons. This chapter introduces relevant concepts, starting with the foundation of classi-
cal electromagnetism and optics: Maxwell’s equations. Interested readers are encouraged
to review Refs. [36] and [32] for more information.

Section 3.1 follows the general treatment of Maxwell’s equations to obtain equations
that describe nonlinear optics. Section 3.2 discusses the important phenomenon of disper-
sion in optics. Section 3.3 introduces the general second-order nonlinear effect of three-
wave mixing (3WM), and the importance of phase-matching. Section 3.4 introduces the
third-order nonlinear optical Kerr effect. Section 3.5 details the concept of characterizing
temporal widths of pulses by crosscorrelations and autocorrelations, which is one of the
big applications of ultrafast pulses (number one in the bullet-point list!).

3.1 Nonlinear optics

Nonlinear optical effects occur due to the interaction between sufficiently strong laser
light3and matter, which results in the alteration of the material’s nonlinear properties. We
start with Maxwell’s equations which describe the interactions between the electric field E

with respect to the wavelength λ gives ∆ω = c
λ2 ∆λ, an approximate relationship between a small range

of frequencies ω and a small wavelength interval in terms of the speed of light in vacuum c.
2A pulsed laser whose pulses are ultrashort.
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and magnetic field H inside a medium [37]:

∇ ·D = ρf (3.1)

∇× E = −∂B

∂t
(3.2)

∇ ·B = 0 (3.3)

∇×H = Jf +
∂D

∂t
. (3.4)

Note that bolded quantities are vector fields. ρf is the free electric charge density, Jf is
the free current density, and B is the magnetic flux density (also known as the magnetic
induction). H = 1

µ0
B−M, where µ0 is the permeability of free space and M is the magnetic

dipole moment per unit volume. D ≡ ε0E + P is the electric displacement, which contains
the permittivity of free space, ε0, and the polarization, P, i.e. the dipole moment per unit
volume.

Following the usual assumptions in nonlinear optics, we are interested in solutions to
these equations in a dielectric material where the material is nonmagnetic (M = 0), and
there are no free charges or currents (ρf = 0, Jf = 0). The magnetic field and magnetic
flux density are now proportional: B = µ0H, and we turn our attention to D. In linear
optics, the induced polarization P depends linearly on the electric field strength E [36]:

P(t) = ε0χ
(1)E(t), (3.5)

where χ(1) is the linear susceptibility. For simplicity, we assume that the polarization at
time t depends only on the instantaneous value of the electric field strength, implying
that the medium must also be lossless and dispersionless. This is a reasonable assumption
because in transparent material (such as the ones used in the lab), the material response
times are estimated to be on the order of ≈ 4 fs [32]. As the electric field intensity changes,
the material response is modified in a perturbative manner so we expand the polarization
as a power series in the electric field strength4:

P(t) = ε0[χ(1)(t)E(t) + χ(2)(t)E2(t) + χ(3)(t)E3(t) + ...] (3.6)

P(t) ≡ P(1)(t) + P(2)(t) + P(3)(t) + ... (3.7)

P(t) = P(1)(t) + P(t)NL

= P(t)L + P(t)NL, (3.8)

3Typically only laser light is intense enough to cause these modifications in matter.
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where χ(2) and χ(3) are the second- and third-order susceptibilities. The susceptibilities
χ(n) are tensors of rank n+1 whose indices determines the strength of the coupling for each
frequency and spatial direction. These can be simplified by considering the symmetries of
the susceptibility in the material. The indices of the susceptibilities are suppressed for
simplicity in writing.

In Eq. 3.8, the linear and nonlinear contributions are separated into P(t)L and P(t)NL
respectively. In general, second- and third-order nonlinear optical effects respectively refer
to only P(2)(t) and P(3)(t) in P(t)NL. This is because in general, the higher-order sus-
ceptibility terms are small. In a typical second-order effect, χ(3) is relatively small and
negligible. Third-order effects do have a χ(2) dependence, but they are normally studied
in materials with centrosymmetry5, which causes χ(2) to vanish [36].

I proceed to speed-walk through the derivation of the general optical wave equation in
nonlinear optics. First, take the curl of Eq. 3.2 and swap the space and time derivatives
on the right-hand side of the resulting equation. Then replace ∇ × B on the right-hand
side with µ0

∂D
∂t

(our assumptions from earlier, M = 0,Jf = 0, were applied to Eq. 3.4) to
get

∇×∇× E + µ0
∂2D

∂t2
= 0. (3.9)

Eliminate D from Eq. 3.9 by applying its definition D ≡ ε0E + P, and use µ0 = 1
ε0c2

,
and we arrive at the conclusion, the most general wave equation for nonlinear optics:

∇×∇× E +
1

c2

∂2

∂t2
E = − 1

ε0c2

∂2P

∂t2
, (3.10)

where P has been previously given in Eq. 3.7.

Following the usual treatment in nonlinear optics, we apply a vector calculus identity
to the first term on left-hand side of Eq. 3.10 to get:

∇(∇ · E−∇2E) +
1

c2

∂2

∂t2
E = − 1

ε0c2

∂2P

∂t2
. (3.11)

In linear optics, the very first term in Eq. 3.11 disappears because ∇ · D = 0 implies
∇·E = 0. In nonlinear optics, this term normally remains even for isotropic materials due

4If the intensity is past 1012 W
cm2 , we enter the regime of high-intensity physics and this Taylor expansion

breaks down.
5Centrosymmetric materials have an inversion centre. Simply, this means that for every point at

some coordinates (x, y, z) relative to the centre of symmetry, there is another indistinguishable point
(−x,−y,−z).
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to D ≡ ε0E + P. The usual treatment is to regard this term as negligible; for certain cases
the term vanishes altogether and for others, the contribution is small. The wave equation
now can be expressed simply as

∇2E− 1

c2

∂2

∂t2
E =

1

ε0c2

∂2

∂t2
P. (3.12)

Now we decompose P into its linear and nonlinear components as per Eq. 3.8, and do
the same for D = ε0E+P = ε0E+PL+PNL = DL+PNL. We obtain the typical nonlinear
optics wave equation:

∇2E− 1

ε0c2

∂2DL

∂t2
=

1

ε0c2

∂2PNL

∂t2
. (3.13)

It is from this equation that we can obtain coupled-wave equations for incoming and
outgoing optical fields. E,D and P must be written as sums of their frequency components
ωi, e.g.:

E(t) =
∑
i

Ei(ωi)e
i(ki·r−ωit) + c.c. (3.14)

where ki is known as the wave vector or momentum vector, and r contains the spatial
coordinates. By using the sums of relevant frequencies in E and P and inserting them into
Eq. 3.13, one obtains coupled-wave equations with which to study various nonlinear effects
at single frequencies.

3.2 Dispersion

Consider a pulse of light propagating in a nonlinear medium. A pulse is a group of fre-
quencies travelling together in a wavepacket (unlike a good continuous wave laser, where
one can just assume a single frequency mode). All materials have an index of refraction
n which is implicitly a function of frequency ω and direction k, although we will neglect
the directionality for simplicity. This means that different frequencies encounter different
refractive indices in the same medium, so they travel different speeds. This is referred
to as dispersion, or specifically, chromatic dispersion. It is an important consequence in
femtosecond lasers because the material lengths are relatively large and the pulses are
ultrashort.

The total refractive index n(ω) is related to the effective susceptibility by the relation:
[36]

n2(ω) = 1 + χeff . (3.15)
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The linear refractive index6is nL(ω) =
√

1 + χ(1)(ω), where the effective susceptibility is
simply the linear susceptibility. The phase velocity vp of any one frequency component ω
is

vp =
ω

k
, (3.16)

where k = 2π
λ

is the wavenumber (the scalar of k in a given direction) and λ is the
wavelength corresponding to the frequency ω, related by c = ωλ. By using the more
familiar relation nL = c

vp
where c and v are, respectively, the speeds of light in vacuum

and in the medium, we can write k as a function of ω:

k =
ωnL
c
. (3.17)

Mathematically, dispersion can be treated by considering the ω dependence in k. Ap-
plying a Taylor expansion around the centre frequency ω0, k(ω) becomes [32]:

k(ω) = k(ω) +
∂k

∂ω
(ω − ω0) +

∂2k

∂ω2

(ω − ω0)2

2!
+ ... (3.18)

= k(ω) + k1(ω − ω0) +
k2

2!
(ω − ω0)2 + ...

(3.19)

The zeroth order term in Eq. 3.19 describes a phase shift. The first order term contains
the inverse group velocity, v−1

g , and describes an overall time delay which doesn’t change
the pulse shape. The group velocity is:

vg =
dω

dk
(3.20)

and it governs the speed at which the wavepacket moves as a whole. The higher-order
terms in Eq. 3.19 represent the group delay dispersion or group velocity dispersion (GVD),
although in this thesis we limit it to the quadratic term. It contributes a quadratic spectral
phase change and leads to a linear variation in frequency delay. Physically we can think
about the pulse being ‘backlogged’ and being stretched out in time resulting in temporal
broadening. The bluer wavelengths travel slower (faster) than the redder components
resulting in positive (negative) chirp which is what we term normal (anomalous) dispersion.
In this thesis, a grating compressor is used to apply negative chirp to pulses that gain
positive chirp from travelling in fibre, resulting in an approximately net zero dispersion.

6This is typically denoted n in literature, but in this thesis a distinction is made because we will see
later in Section 3.4 that the nonlinear refractive index comes into play.
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Eq. 3.20 is helpful for computing the temporal dispersion between two pulses of different
central frequencies which is termed temporal walk-off (the spatial equivalent is called spatial
walk-off: we will see this below in Section 3.3). Temporal walk-off is the difference in time
between the two pulses travelling in the medium:

∆t = (
L

vg1
− L

vg2
) (3.21)

= L(
ng1
c
− ng2

c
)

=
L

c
(ng1 − ng2), (3.22)

where length of the medium is given by L, and the group indices are given by ng = c
vg

. c

is the speed of light in vacuum.

3.3 Phase matching in three-wave mixing

I turn the discussion to 3WM and note that the physics mentioned below is the same for
the notions of pulsed and continuous wave light. As the name implies, it is a second-order
nonlinear effect which involves three optical fields. It can only occur in χ(2) materials such
as BBO and BiBO crystals, both of which are used in this thesis. Common phenomena
are:

• Second harmonic generation (SHG), where two input equal fields of low-frequency
drive a higher output frequency: ω1 + ω1 = ω2,

• Sum-frequency generation (SFG), where two different input fields of low frequency
drive a higher output frequency: ω1 + ω2 = ω3,

• Difference-frequency generation (DFG), where two input fields drive an output dif-
ference frequency: ω1 − ω2 = ω3,

• Spontaneous parametric down-conversion (SPDC), where an input field spontaneously
generates two output fields. Previously in Sections 2.6 and 2.7 we saw that the
two output fields were degenerate, but non-degenerate fields are possible as well:
ω1 = ω2 + ω3.

It is tempting to think of 3WM as a single event in which only 3 photons of single
frequencies are involved. For example, SPDC can be (and is often) depicted in Fig. 3.1 for

28



a single pump photon of higher energy ωp converting into two photons with frequencies ωp
and ωi. Fig 3.1(b) is the corresponding energy diagram.

Figure 3.1: SPDC where one pump photon with frequency ωp down-converts into the signal
and idler, with respective frequencies ωp and ωi. (a) is a side-view of a diagrammatic
representation of the process while (b) is the energy diagram of the process showing ωp =
ωp + ωi. Since ωp = ωi, this is degenerate SPDC.

These images are not inaccurate but they do not tell the whole story. In the lab, it is
a beam of light which interacts with the χ(2) crystal of some length L. In a single moment
in time during SPDC, many photons are being down-converted and creating two outgoing
photons each at all parts of the crystal. This results in the outgoing waves having relative
phases and, more often than not, they destructively interfere causing less outgoing light.
This brings us to the idea of phase-matching.

The phase-matching function is related to a crystal’s nonlinearity profile via the Fourier
transform and is defined [38, 39, 40]:

ΦPMF =
1

L

∫ +∞

−∞
χ(z)ei∆kzdz (3.23)

where L is the crystal length, χ(z) encapsulates the nonlinear optical coupling, and ∆k
is termed the phase mismatch. For simplicity, we can assume that the nonlinear suscepti-
bility is independent of z, though this assumption cannot be applied to periodically-poled
materials and will be addressed later in this section. To find the output spectral waveform,
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we can integrate along the crystal length:

ΦPMF (∆k) =
1

L

∫ L

0

χ(z)ei∆kzdz,

∝ exp(
i∆kL

2
)sinc(

∆kL

2
). (3.24)

To maximize Eq. 3.24, ∆k = 0. This equation is known as the phase-matching condi-
tion. Now considering the conservation of momentum:

kp = ks + ki (3.25)

∆k = 0 = kp − ks − ki. (3.26)

From Eq. 3.26, we see that meeting the phase-matching condition means that the signal and
idler photons are always created in phase with the pump. This allows for the maximum
efficiency with which to build up the outgoing light intensity. Similar phase-matching
equations to Eq. 3.25 can be built for other nonlinear processes, including different kinds
of 3WM.

Meeting the phase-matching condition is not trivial, since the wavelengths involved are
normally quite disparate (in the RSP experiment, for example, 404 nm photons down-
convert into two 808 nm photons each) and spatial walk-off comes into play. There are
three main techniques used to meet the phase-matching condition. The first is by quasi-
phase-matching, also known as periodic poling, which modulates the nonlinear coefficient
so that some of the phase mismatch is reversed periodically. This fabrication technique is
performed by inverting birefringent layers, termed domains, in the crystal over a specific
length, termed the poling period. Each flip causes a phase shift of π and its nonlinearity
profile is now a discontinuous function which only takes on values of ±χ0 and can be
modelled as a square wave in the ẑ direction. The phase-matching function for the entire
crystal is now a linear superposition of phase-matching functions for all the individual
domains [38]:

ΦQPMF (∆k) ∝ χ0

L

N∑
n=1

sn

∫ L

0

rect(
z − zn
lc

)ei∆kzdz,

∝ χ0lc
L

sinc(
∆klc

2
)

N∑
n=1

snexp(i∆kzn). (3.27)

sn is a term which accounts for the phase shift caused by a domain, zn = (n − 1
2
)lc is

the ẑ-coordinate of the beginning of the nth domain, and lc is the length of each domain.
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Since a periodically-poled crystal consists of domains which cause a phase change of π,
sn = einπ = (−1)n. By inserting sn into Eq. 3.27, and noting that constructive interference
occurs near ∆k = 2π

Λ
, where Λ = 2lc is the poling period, we retrieve a new phase-matching

function:

ΦQPMF (∆k) ∝ sinc
((∆k− 2π

Λ
)L

2

)
. (3.28)

Eq. 3.28 is maximized when ∆k = 2π
Λ

. Now by considering the conservation of momentum
again, the quasi-phase-matching condition for SHG in a periodically-poled material is:

∆k =
2π

Λ
= kp − ks − ki. (3.29)

A manufacturer would tune the poling period Λ to meet the phase-matching condition.
Similarly to Eqs. 3.25 and 3.26, other quasi-phase-matching conditions can be built for
other nonlinear processes. This technique is outlined more fully in Refs. [38, 41].

The second method used to help meet the phase-matching condition is by temperature
tuning. The refractive index (and by extension, k) is temperature-dependent, but note that
temperature changes do not make large changes to the phase-matching. The third method
is by angle tuning in birefringent media, where the effective index of the extraordinary
axis is tuned by changing the relative angle between the crystal face to the propagation
of the light, denoted as θ below. For some crystals, it allows for two different wavelengths
to follow two different refractive indices, allowing them to travel a similar path for a short
while.

For example, in the case of uniaxial birefringence (e.g. BBO), the ordinary wave (whose
polarization is along the ordinary axis) follows Eq. 3.17, k = ωno

c
. The extraordinary wave

also follows the same equation except k = ωne
c

and ne is a function of the angle θ where
[32]

1

n2
e(θ)

=
cos2(θ)

n2
o

+
sin2(θ)

n2
e

. (3.30)

The effective refractive index for the extraordinary wave varies smoothly between no (θ = 0)
and ne (θ = 90◦). A major disadvantage of angle tuning is that the incoming field and the
extraordinary field quickly diverge from each other and spatial walk-off is caused, resulting
in reduced efficiency. Most angle-tuned crystals have a short length to help mitigate this.

In this thesis, we exploit all three phase-matching techniques. In the RSP experiment,
we use a periodically-poled potassium titanyl phosphate crystal which is kept in an oven.
In the switching experiment, we angle-tune BiBO crystals for SHG and SPDC in the
entangled single photon source.
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3.4 Optical Kerr effect

The optical Kerr effect is a third-order nonlinear effect. Put simply, it is the change
of the refractive index of a medium due to a strong electric field, causing an intensity-
dependent refractive index. It is also known as the AC Kerr effect, in contrast to the DC
Kerr effect, whose refractive index change is due to a slowly varying electric field (e.g.
an applied voltage by electrodes across the χ(3) medium). As previously mentioned in
Section 3.1, many third-order effects are studied in centrosymmetry, rendering the second-
order susceptibility χ(2) zero [36]. We keep this assumption and reduce Eq. 3.6. The
nonlinear polarization is thus P(t)NL = ε0χ

(3)(t)E3(t), where we let the incoming optical
field be represented by E(t) = E(ω)eiωt + c.c. The total polarization is

P(t) = ε0χ
(1)(t)E(t) + χ(3)(t)E3(t). (3.31)

By substituting Eq. 3.14 into the nonlinear polarization term and taking its Fourier
transform, we obtain

PNL(ω) = ε0χ
(3)(ω;ωi, ωj, ωk)E(ωi)E(ωj)E(ωk). (3.32)

Eq. 3.32 is the most general description of a third-order nonlinear process (in a centrosym-
metric medium): ω = ωi + ωj + ωk, where the frequencies may be negatives of each other,
equal to each other, or even zero in some effects.

There are two ways of measuring the change in refractive index caused by the optical
Kerr effect. When the strong field is used to modulate a weaker electric field, this is
known as cross-phase modulation (XPM). When the strong electric field changes its own
modulation, this is known as self-phase modulation (SPM). In both XPM and SPM, the
modulation comes from the strong field exerting a change in the medium’s refractive index.
However, in this thesis, we are interested only in XPM.

XPM is described by ωw = ωw + ωp − ωp and Eq. 3.32 becomes

PNL(ωw) = 6ε0χ
(3)(ωw;ωw, ωp,−ωp)|E(ωp)|2E(ωw), (3.33)

where ωp is the strong pump field and ωw is the weak wave.

Eq. 3.33 is substituted into the Fourier transform of Eq. 3.32:

P(ωw) = ε0χ
(1)(t)E(ωw) + 6ε0χ

(3)|E(ωp)|2E(ωw).

P(ωw) = ε0χeffE(ωw), (3.34)
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where by grouping up the terms we have an effective susceptibility χeff = χ(1)+6χ(3)|E(ωp)|2.

We would like an equation for the intensity-dependent refractive index. Recall Eq. 3.15
which relates the total refractive index n to χeff , which in this case becomes:

n =
√

1 + χ(1) + 6χ(3)|E(ωp)|2. (3.35)

The total refractive index n can also be written as [36, 32]:

n = nL + n̄NL〈E2(t)〉 (3.36)

where it is composed of the linear refractive index, and n̄NL is another optical constant,
sometimes called the second-order refractive index, multiplied by the time-averaged inten-
sity of the incoming optical field. Since we let E(t) = E(ω)eiωt+c.c, then 〈E2〉 = 2|E(ω)|2.
Eq. 3.36 becomes

n = nL + 2n̄NL|E(ωp)|2 (3.37)

We can compare Eqs. 3.35 and 3.37 to get a relation between the linear and the second-
order refractive indices:

n2 = 1 + χeff (3.38)(
nL + 2n̄NL|E(ωp)|2

)2

= 1 + χ(1) + 6χ(3)|E(ωp)|2 (3.39)

n2
L + 4nLn̄NL|E(ωp)|2 + 4n̄2

NL|E(ωp)|4 = n2
L + 6χ(3)|E(ωp)|2 (3.40)

4nLn̄NL|E(ωp)|2 = n2
L + 6χ(3)|E(ωp)|2 − n2

L. (3.41)

n̄NL =
3χ(3)

2nL
. (3.42)

Note that from Eq. 3.40 to Eq 3.41, the |E(ωp)|4 term was dropped. This is a valid
approximation for many materials since n̄2

NL is negligibly small. Replacing Eq. 3.42 in
Eq. 3.37 gives the explicit intensity-dependent refractive index as

n = nL +
3χ(3)

nL
|E(ωp)|2. (3.43)

The more common way of expressing the intensity-dependent refractive index is

n = nL + nNLI, (3.44)
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where I = 2nLε0c|E(ωp)|2 is the time-averaged intensity of the strong optical wave. Eqs. 3.44
and 3.37 have to be equal, so by substituting one into the other, the relation between the
two nonlinear coefficients is

nNL =
n̄NL
nLε0c

. (3.45)

Inserting Eq. 3.42 into Eq. 3.45 gets us the relation between nNL and χ(3):

nNL =
3χ(3)

2n2
Lε0c

. (3.46)

Replacing the equation for nnL (Eq. 3.46) into the more common intensity-dependent
refractive index equation (Eq. 3.44) retrieves Eq. 3.43, so the preference of using either
n̄NL or nNL is up to the scientist. As a quick reminder, n is a function of the momentum
vector k, so the change of refractive index is only along the direction of the strong electric
field and this is what Eq. 3.43 describes. Using Eq. 2.4, the birefringence is given by:

∆n = |no − ne|
= |nL − n|

=
3χ(3)

nL
|E(ω)|2. (3.47)

The optical Kerr effect underlies the optical Kerr switch in the switching experiment.

3.5 Characterizing temporal widths

In the beginning of this chapter, high timing resolution was mentioned as one of the big
applications of ultrashort pulses. This section is all about measuring the temporal width
of a pulse. First, how do you characterize a pulse? Let’s simplify Eq. 3.14 for an electric
field in time which is linearly polarized:

E(t) =
1

2

√
I(t)ei(φ(t)−ωt) + c.c., (3.48)

where I(t) and φ(t) are the time-dependent intensity and phase of the pulse and ω is the
frequency. We can take the Fourier transform of the time-domain to receive its spectral-
domain equivalent, where the electric field is similarly described by an intensity and phase,
though we shall now refer to these specifically as the spectrum I(ω) and spectral phase
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φ(ω). To know everything about a pulse means knowing both its intensity and phase in
either the temporal or spectral domain, since the other can be obtained via the Fourier
transform.

I restrict our discussion to only measurements of intensity, which is the easier of the
two to obtain but nonetheless independently reveals essential information. One such in-
formation is the pulse’s temporal width. As long as a detector’s temporal resolution is
shorter than the pulse, a temporal waveform can be reconstructed (time on the x̂-axis and
intensity is on the ŷ-axis). A common way of describing a pulse width is by the full-width
half-maximum (FWHM), calculated by taking the difference between the two time values
at the halved intensity value, and then multiplied by a compensation value depending on
its shape (e.g. Gaussian, sech2). I note that instead of the FWHM, some researchers
prefer to use the standard deviation of the distribution. In any case, the spectral width is
obtained similarly to the temporal width and is straightforward if using a spectrometer.

The problem with ultrashort pulses is that the temporal resolution of many detectors
is on the order of nanoseconds and is inherently limited by the electronic speed in the
working mechanism. In general, measuring ultrashort pulses involves interferometric and
nonlinear effects, which rely on the timescales of the optical processes involved and the
pulses themselves. I will now detail nonlinear auto-correlation and cross-correlation which
indeed are intensity measurements only and thus suffices to determine (or at least, make
a good estimate of) an ultrashort pulse’s temporal width. Nonlinear cross-correlation is a
type of ultrafast optical gating. A pulse of interest is mapped by a nonlinear interaction
with a known reference pulse in a nonlinear medium with some time delay τ , normally
implemented with a delay line (e.g. retroreflector on a motor). I use the example of SFG,
shown in Fig. 3.2. The reference or gate pulse and the measured or signal pulse have
temporal fields Eg(t) and Es(t) (following the form of Eq. 3.48).
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Figure 3.2: SFG where two input fields of low frequencies, where Is(t) is centred at ωg
and Ig(t) is centred at ωp, create a higher output frequency field centred at ωcc. In the
case that the two input fields are identical, it is termed SHG. (a) is a side-view of a
diagrammatic representation of the process while (b) is the energy diagram of the process
showing ωg + ωp = ωcc.

Overlapping the two pulses generates different sum-frequency intensities in time, each
which can be measured with a slow detector (e.g. power meter). The time-integrated
power of the upconverted signal at each time delay is proportional to the intensity cross-
correlation, Icc(t) [42]:

Icc(τ) ∝
∫ ∞
∞

Is(t)Ig(t− τ)dt. (3.49)

All second-order effects follow this general form. Ideally, Ig(t) should be a delta function
δg(t) and then Eq. 3.49 would yield Is(t) exactly, but realistically the gate pulse is of a finite
width which makes the measured cross-correlation broader. For example, if the pulses are
well-described Gaussians with temporal widths of ∆g and ∆s, then

Eg(t) = exp
[−t2

4∆2
g

]
, Es(t) = exp

[−t2
4∆2

s

]
Is(τ) = exp

[−t2
2∆2

s

]
(3.50)

Icc(τ) ∝ exp
[ −τ 2

2(∆2
g + ∆2

s)

]
. (3.51)
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The broadened temporal width measured by the cross-correlation in Eq. 3.51 is: ∆τ =√
∆t2s + ∆t2g, in the standard deviation definition. Note that the FWHM is related to the

standard deviation by the relation:

FWHM(τ) = 2
√

2ln(2)∆τ. (3.52)

If a reference pulse is unavailable, experimentalists will use the same pulse for the sig-
nal and gate. In this case, Ig(t) = Is(t), and Eq. 3.49 is now an intensity autocorrelation.
The broadening in this scenario is well-known for different functional forms. The decon-
volution factor for the FWHM is respectively

√
2 and 1.54 for Gaussian- and sech2-shaped

pulses [42]. Note that the resulting measurement is necessarily symmetric and it is not
unique. An autocorrelation measurement could correspond to two pulses of different in-
tensities. A higher-order autocorrelation removes symmetry, but is also not unique [42].
This is because third-order effects generate a signal intensity which is proportional to three
factors of intensities due to having three involved fields, which breaks the ambiguity.

Let’s take the example of the Kerr effect. Say our ultrafast pump pulse, Eg(t), has
enough intensity to cause a birefringence (obeying Eq. 3.47) in the Kerr medium, which
causes it to act like a waveplate. We can set up the Kerr medium in between crossed
polarizers so that if the signal pulse, Es(t), is |H〉, then it rotates to |V 〉 whenever the
gate pulse is present and causing local birefringence. As above, we add a delay τ between
the gate and the signal and let our detector collect only |V 〉 light. The third-order cross-
correlation is

I(t) ∝
∫ ∞
−∞

Ig(t)Ig(t− τ)Is(t− τ)dt. (3.53)

Similar to the second-order case, a third-order autocorrelation will use the same pulse for
both signal and gate and produce I(t) ∝ Ig(t)I

2
g (t− τ).

For interest: popular, fully-characterizing techniques in ultrashort pulse reconstruction
are spectral phase interferometry for direct electric-field reconstruction (SPIDER) [43, 44]
and frequency-resolved optical gating (FROG) [45, 42]. The nonlinear cross-correlation
and autocorrelation techniques explained above are used in FROG. In both, algorithms
are required to reconstruct the intensity and phase.

The switching experiment performs an autocorrelation with SFG to obtain the temporal
width of the gate pulse, and it also involves using the Kerr effect to perform a cross-
correlation with the gate pulse and signal pulse. This will be discussed in greater detail in
Chapter 5.
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Chapter 4

Remote state preparation of
spin-orbit lattices
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4.1 Motivation and chapter overview

In the RSP experiment, an optical lattice of spin-orbit states is remotely prepared with
polarization-entangled photon pairs. We verify the successful remote preparation by mea-
suring the spatially-dependent correlation rates using an electron-multiplying intensified
CCD (emICCD) camera, and performing pixel-wise quantum state tomography.

The story first starts with structured matter-waves. Structured or hyperentangled
states are words describing hybrid entanglement, whereby two or more DoFs are entangled.
Structured electrons [47, 48] and neutrons [49, 50] are of particular interest in the field of
quantum optics and quantum information due to the combination of high dimensionality
provided by the orbital angular momentum (OAM) DoF, and high robustness provided by
the polarization DoF. Further work has led to a lattice of spin-orbit1neutron states [51].
By virtue of the system agnosticism of the quantum information formalism, we can move
from neutrons to photons and produce an optical lattice of spin-orbit states. Previously,
these lattices have been used in experiments involving the optical Talbot effect [52, 53],
optical lattice shaping [54, 55], and the direct detection of optical spin-orbit states by the
human eye [56, 57].

This RSP experiment extends the study of optical lattices of spin-orbit states further
into photonics, allowing quantum correlations and other capabilities to be explored, such as
multi-particle entanglement. The periodicity of optical structured lattices could be useful
for quantum sensing [58, 59, 60] and control [61, 62]. The aforementioned advantages
of high dimensionality and robustness also make optical structured lattices attractive to
quantum communications research [63, 64, 65, 66, 67].

High dimensionality, which can be provided easily by the OAM DoF, is coveted by
quantum information researchers due to its enhanced information carrying capacity. OAM
modes (beams with different l values) are orthogonal to each other. This orthogonal-
ity allows simultaneous multiplexing, demultiplexing, and spatial co-propagation, and all
with limited crosstalk. More information regarding OAM communications can be found
in Refs. [68, 69]. On the other hand, polarization is the most widely applied DoF in
quantum information processing [12]. There are many established and readily accessible
methods for manipulating polarization, some of which has been introduced in chapter 2.
Combining both DoFs allows us to use the advantages of both. Ref. [70] has specific uses
of hyperentanglement in research.

Section 4.2 goes through the concepts needed to understand the RSP experiment. The

1This term is used for a specific structured state whose entanglement is between the spin and OAM
DoFs.
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subsections include: the entangled-photon source (4.2.1); how the RSP works (4.2.2); the
LOV prisms by which we use to couple polarization and OAM (4.2.3); the emICCD which
is the detector we use to collect our data (4.2.4); and an overview of quantum state to-
mography, which is how we reconstruct our states (4.2.5). Section 4.3 and Section 4.4 goes
through the experimental setup and results, and Section 4.5 concludes the experiment.

4.2 Theory and concepts

4.2.1 Sagnac source

Figure 4.1: The Sagnac source which generates the polarization-entangled photon pairs
used in the RSP experiment.

The entangled single photon source in the RSP experiment, as depicted in Fig. 4.1,
utilizes an interferometer in a Sagnac configuration where two counter-propagating paths
travel in a closed loop. Interference occurs upon the recombination of the two optical paths.
In the Sagnac source, the closed loop encompasses the two mirrors and the nonlinear
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crystal. The Toptica iWave laser used in the Sagnac source is a continuous wave laser
diode centred at 404 nm. An initial HWP sets the polarization of the incoming light. The
404 nm blue light passes through a dichroic mirror which transmits blue light and reflects
red, which is split on a PBS. By configuring the second HWP so that ÛHWP (45◦) |V 〉 =
|H〉, two indistinguishable paths are created. Both pump a 10-mm-long periodically-poled
potassium titanyl phosphate crystal (ppKTP). It is kept at 75◦c to accomplish phase-
matching conditions. Type-II SPDC occurs in the ppKTP and one blue photon down-
converts into twin photons at 808 nm with the orthogonal polarizations of |H〉 and |V 〉.

In the source, incoming |H〉 light traverses clockwise around the ppKTP as shown in
Fig. 4.1. SPDC creates a horizontally polarized signal photon, |Hs〉, and one vertically
polarized idler photon, |Vi〉. Both of them pass through the HWP and their polarizations
are rotated, resulting in |Vs〉 and |Hi〉. |Vs〉 is reflected by both the PBS and the dichroic
mirror to pass through the bottom coupler. |Hi〉 transmits through to the top coupler.

Similarly, incoming |V 〉 light traverses counterclockwise around the ppKTP, and is
rotated to |H〉 by the HWP. SPDC creates |Hs〉 and |Vi〉. |Hs〉 transmits through the PBS
and is reflected by the dichroic mirror into the bottom coupler, while |Vi〉 is reflected into
the top coupler.

By choosing to set the polarization of the initial HWP to be |D〉, then both |H〉 and
|V 〉 paths are taken. The state produced by the Sagnac source is:

|ψ〉 = |Hi〉|Vs〉+ eiφ|Vi〉|Hs〉, (4.1)

where the relative phase between both arms of the coupler, φ, is set by changing the phase
in one arm. We could do this in many ways like adjusting the polarization via bat ears, but
we do so by using a tilted quarter (not shown in Fig 4.1) just before the bottom coupler2.
By changing φ, two of the four Bell states, |Ψ+〉 and |Ψ−〉, can be attained. The other two
Bell states, |Φ+〉 and |Φ−〉, can be achieved by adjusting the bat ears to give the desired
quantum correlations. In the RSP experiment, we let Eq. 4.1 take the form of the |Φ+〉
state.

Lydia Vermeyden’s thesis [71] is the unofficial QOQI authority on the Sagnac source.
The authority refers to Deny Hamel’s thesis [72] for detailed instructions on setting the
Bell state using correlations, since he was the original designer of the source.

2Simply for experimental convenience. Splitting this work up into two optics makes the correlations
easier to obtain.
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4.2.2 Remote state preparation

In a RSP protocol, a known state is transmitted from a sender (“Alice”) to a receiver
(“Bob”) using LOCC and prior entanglement of the state. In our experiment, only the
high-entanglement limit is relevant since our state is maximally entangled, so the content
in this subsection only pertains to this regime. The RSP protocol is fully outlined in all
cases in Ref. [73].

The simplest case of RSP is when Alice transmits an equatorial state to Bob. Assume
that Alice and Bob share a pair of qubits (a pair of entangled photons in our case) which
represent the Bell state

|Ψ−〉 =
1√
2

(|HV 〉 − |V H〉) . (4.2)

To remotely prepare some equatorial state |ψ〉 = |H〉 + eiφ|V 〉, Alice takes her qubit
and performs a local operation by measuring in some basis {ψ, ψ⊥}, where ψ⊥ is the
orthogonal state to ψ, such as {|H〉 , |V 〉}, {|A〉 , |D〉} or {|R〉 , |L〉}. If Alice measures and
sees the outcome ψ⊥, she knows that Bob has the desired state ψ. Alternatively, if Alice’s
outcome is ψ, then Bob has the orthogonal state ψ⊥. In this instance, Alice classically
communicates with Bob, who applies σ̂z to his measurement, which rotates ψ⊥ by 180◦

on the Bloch sphere to the desired state ψ. This corrective transformation only works for
equatorial states.

In our experiment, the Bell state used is

|Φ+〉 =
1√
2

(|LR〉+ |RL〉) (4.3)

=
1√
2

(|HH〉+ |V V 〉)

=
1√
2

(|DD〉+ |AA〉) .

Due to the nature of this state, corrective transformation is not required. To project
the |H〉, |V 〉, |A〉, |D〉, |R〉 and |L〉 states on the signal photon, we respectively measure
|H〉, |V 〉, |A〉, |D〉, |L〉 and |R〉 on the idler photon.

4.2.3 Lattice of Optical Vortices prisms

Recent works, such as Ref. [74], exploited the close operational relationship between sys-
tems involving neutrons, and photonic systems. The following derivation is described in
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more detail in Refs. [74, 75]. Similarly to how a neutron’s spin can be manipulated by mag-
netic field gradients, a photon’s polarization can be controlled by birefringence gradients.
We start with the coupling operator that describes the effect of a quadrupole magnetic
field gradient on a neutron’s spin, and allow a birefringent gradient to follow exactly the
same form:

Û = ei
πr
d

[cos(φ)σ̂x+sin(φ)σ̂z ]. (4.4)

Cylindrical coordinates are used in Eq. 4.4 where the neutron is travelling parallel to the
ẑ−axis, r, φ are the polar coordinates, and d is the distance the light has to travel to
perform a full rotation on the Bloch sphere. After applying the Suzuki-Trotter expansion
to Eq. 4.4 and swapping to Cartesian coordinates so that x = rcos(φ) and y = rsin(φ), the
coupling operator becomes:

ei(
π
d

)(xσ̂x+yσ̂z) = lim
N→∞

(ei(
π
d

)xσ̂x
N ei(

π
d

) yσ̂z
N )N . (4.5)

By considering the truncation of the right-hand side of Eq 4.5, the equation may be
interpreted in an optics scenario as a sequence of N perpendicular linear birefringent gra-
dients. By setting the origin of the axes to be (x0, y0), and letting the gradients be inde-
pendent from N , we obtain the operators of the two optical axes:

Ûx = ei
π
a

(x−x0)σ̂x

Ûy = ei
π
a

(y−y0)σ̂z ,
(4.6)

where a = Nd. The operators in Eq. 4.6 can be applied straightforwardly to an incom-
ing photon travelling parallel to the ẑ-axis. Physically, the Ûy and Ûx operators can be
modelled, respectively, by a prism which has an optical axis along the prism incline, and
a second prism which has its optical axis offset by 45◦ from the first. These N number
of perpendicular prism pairs, made out of quartz, are called “Lattice of Optical Vortices”
(LOV) prism pairs.

The lattice of spin-orbit states is created by sending in circularly-polarized light into
the LOV prism pairs. In the RSP experiment, N = 2, as shown in Fig. 4.2. The initial two-
photon state generated by the Sagnac source is the Bell state, |Φ+〉 = 1√

2
(|LR〉+ |RL〉).

By sending the signal photon through N = 2 sets of LOV prism pairs, the prepared OAM
lattice state is

|ΨN=2
LOV〉(x, y) =

α(x, y)√
2

[
(ÛxÛy)

2 ⊗ 12

]
|Φ+〉, (4.7)

where α(x, y) describes the incoming Gaussian beam envelope, and 12 is the 2× 2 identity
matrix.
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Figure 4.2: Diagram depicting an N = 2 lattice of spin-orbit states produced by passing
|Φ+〉 through perpendicular pairs of quartz prisms whose optical axes are offset by 45◦.
A sample lattice pattern is detected (polarization projective measurement and spatial-
resolving detector not shown).

To take a closer look at what happens when |Φ+〉 passes through the prism pairs, we
apply the operators in Eq. 4.6 on the polarization states |L〉 and |R〉 to get

(ÛxÛy)
2|L〉 = A(x, y)|L〉+B(x, y)|R〉 (4.8)

and
(ÛxÛy)

2|R〉 = A(x, y)|R〉+B(x, y)|L〉, (4.9)

where for a given spatial location (x, y), A(x, y) and B(x, y) are complex-valued amplitudes
such that |A(x, y)|2 + |B(x, y)|2 = 1 when normalized. Examining Eqs. 4.8 and 4.9 shows
that the LOV prism pairs are represented by unitary matrices which couple a photon’s
polarization to its spatial mode. Where photons pass through more of the quartz (in the
ẑ-axis), a greater phase shift (i.e. greater polarization rotation) occurs due to the bire-
fringence. Thus, different polarization projections applied to Eq. 4.7 will lead to different
intensity patterns. Each pattern is a tessellation, because the prisms have been designed
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so that when light has travelled a distance of a through the prisms, the phase shift is a
multiple of Nd = 2π, resulting in a repeated pattern. a is called the lattice spacing, and
can be written as a = λ(∆n tan(θ))−1, where photon wavelength is λ, prism birefringence
is ∆n and the prism incline angle is θ. All of the LOV prisms in the RSP experiment have
the same birefringence and are cut at the same incline angle.

This configuration of N = 2 LOV prism pairs corresponds to l = ±1. Note that
the change in OAM number is not straightforward and requires additional prisms and
polarization projective measurements. See Ref. [74] on how to change l.

In our experiment using the RSP protocol, only the signal photons are sent through
the LOV prisms. The signal photon spatial patterns are conditioned on idler photon
polarization measurements.

4.2.4 Electron-multiplying intensified CCD camera

The single photon camera used in the experiment is an electron-multiplying intensified
CCD (emICCD) camera (PI-Max4: 1024 EMB by Princeton Instruments) and it uses the
LightField software program. It is made up of a combination of an electron-multiplying
CCD (EMCCD), and an intensified CCD (ICCD).

Here, we describe the picture-taking process and begin with the function of a stan-
dard ICCD. The process of picture-taking starts with incoming photons passing through
the intensifier input window and hitting a photocathode causing the photoelectric effect,
whereby one photon releases one electron from a metal with low work energy. The electrons
are accelerated to a micro-channel plate made up of glass channels, and upon collision with
the channel walls, they cause more electrons to be released. As these electron avalanches
exit the channels, they are further accelerated by a high voltage and hit a phosphor screen.
The inverse photoelectric effect happens, where the phosphorus absorbs the electrons and
releases the same, discrete number of photons. The photons are then directed to an extra-
sensitive CCD by fibre-optic coupling, and produce charge at the pixels they strike. These
electrons first travel through a normal serial register. Here, the electron multiplication
technique of an EMCCD comes in: the electrons then pass through a second extended reg-
ister and are accelerated using a higher (relative to a normal serial register like the first)
voltage. Secondary electrons are released within the register’s silicon by impact ionization.
These charges all reach an amplifier and create an electrical signal which is interpreted by
the computer.

The electrons move from the intensifier into the micro-channel plate because the voltage
at the plate is more positive. Increasing or decreasing the voltage at the plate respectively
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changes the amount of electron gain caused by channel wall collision. This is the intensifier
gain. Increasing or decreasing the voltage in the second register similarly changes the
electron multiplier gain.

The emICCD has an electronically-controlled fast shutter. It can be programmed to
open and collect data for less than 0.5 ns, but in the RSP experiment, we choose a 3 ns
window. For timing purposes, the emICCD can also incorporate an electronic gate delay
after it has received an electronic signal from a separate detector, but it must be more than
27 ns, else the camera cannot react fast enough. In our experiment, the emICCD only
collects signal photons after it is triggered by the detection of their projection-measured
idler partners. In order to compensate for the minimum electronic delay of 27 ns, the signal
photons pass through a 30-m-long fibre spool. Refer to Appendix A on finding the optimal
gate delay, which is the time after receiving the idler photon that the camera waits before
opening the 3 ns window, and which has to be input into LightField.

The emICCD differentiates between exposures and frames. An exposure (a CCD-
Accumulation on LightField) is a single instance of data collection when the shutter opens
and closes. A frame is produced when analog data from the emICCD is digitized. If
there are 100 exposures and 20 frames, then the shutter opens and closes 20× 100 = 2000
times. The 20 frames are added together to produce a single image. For each polarization
measurement, we accumulate signal photons for 2000 exposures in a single frame, and
trigger the camera at a rate of 15 kHz (if there is less than 15,000 idler photons registered
in a second, then the shutter remains closed). Every exposure takes about 2.35 sec to
record. We focus on a 140 × 140 pixel area on the camera, and each pixel is 13 µm
×13 µm.

There are several sources of error. The emICCD’s CCD array is cooled to −20◦c before
collecting data and this helps reduce dark counts, but heat can still cause pixels to light
up. Cosmic rays which pass through the shutter can be mistaken for photons and cause
electrons to be released and pixels to light up in this way. Dust, or anything physical,
can cause misfires by interfering with the intensifier. We also note that the quantum
efficiency3of the camera at our photon wavelength is about 25%.

The camera’s manual ([76]) and Matthew Brown’s thesis ([77]) have additional helpful
information beyond the contents of this section.

3This is the probability of photo-electrons being released by a photon which enters the camera.
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4.2.5 Quantum state tomography

One way of ensuring that a quantum state has been prepared correctly is to reconstruct
its density matrix from experimental measurements. This process is called quantum state
tomography, which is accomplished by performing a tomographically complete set of mea-
surements on identical copies of the prepared state. A set of measurements is tomograph-
ically complete if the measurement operators form an operator basis on the Hilbert space
of the system. The set that we use in the RSP experiment is {|H〉 , |V 〉 , |D〉 , |R〉}. A
two-photon density matrix is 4×4, so there are 16 elements to be solved for, thus 16 count
statistics must be provided by 16 different measurements.

One common density matrix reconstruction method is linear tomography, which uses
Born’s rule to infer probabilities by comparing the relative counts of different measure-
ments. However, linear tomography can produce unphysical density matrices when the
count statistics are noisy. This scenario applies to the RSP experiment as our counts are
subject to noise from the emICCD, so instead, we employ a maximum likelihood quantum
state tomography algorithm based on Ref. [78].

In the maximum likelihood tomography approach, a density matrix which is constrained
to be physical is randomly generated as an initial guess for an optimization routine. The
physicality constraints are hermiticity, positivity, and normalization. The likelihood error
function, L, is minimized numerically over the set of all density matrices:

L(ρ̂) =
16∑
i=1

[
NTr(ρ̂|ψi〉〈ψi|)− ni

]2
2NTr(ρ̂|ψi〉〈ψi|)

. (4.10)

ρ̂ is the two-photon density operator to be reconstructed, i is the variable which indexes
the 16 different measurements, |ψi〉〈ψi| are the measurement operators, ni are the raw
counts measured in the experiment, and N is the total number of counts before the projec-
tive measurement. N is retrieved from a subset of the measurements using the following
relationship:

N = Tr(ρ̂|HH〉〈HH|) + Tr(ρ̂|VV〉〈VV|)
+ Tr(ρ̂|HV〉〈HV|) + Tr(ρ̂|VH〉〈VH|).

(4.11)

In the RSP experiment, maximum likelihood tomography is used twice. Firstly, it is
used to obtain the Bell state fidelity directly after the Sagnac interferometer. Secondly,
the fidelity of the each pixel position with all four Bell states was calculated with both the
experimental and simulated intensity distributions. In both cases, Eq. 1.28 is used.
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4.3 Experimental setup

The experiment consists of four main parts, as depicted in Fig. 4.3. Heralded entangled
photon pairs are generated via type-II SPDC by the Sagnac source, shown in the top
left yellow area. A 10-mm-long periodically-poled potassium titanyl phosphate crystal
(ppKTP) is pumped using a 404 nm continuous wave diode laser to produce degenerate
photon pairs centered at λ = 808 nm with a spectral bandwidth (FWHM) of 0.4 nm. The
outputs of the Sagnac source are coupled into single mode fibres (SMFs), and immediately
after leaving the source, the |Φ+〉 Bell state was measured to have a fidelity of 96%.

Figure 4.3: A schematic of the RSP experiment.

The signal photons then passes through a 30-m-long fibre spool and polarization control
in the form of bat ears before being magnified by an optical telescope, made out of lenses
f1 and f2. The telescope magnifies the signal photons by a factor of 8.3, before they pass
through two sets of LOV prism pairs. The magnification controls the number of lattice
periods in the emerging intensity pattern by illuminating a larger portion of the prisms,
and was chosen such that a 3 × 3 pattern is observed in the intensity distributions. The
prisms are cut at an incline angle of θ = 2◦. Eq. 2.4 is used to calculate the birefringence
∆n = |ne − no| = 0.0089 for the photon wavelength of 808 nm in quartz.

The modified signal photons are sent through polarization analyzing optics which con-
sist of a HWP, a QWP, and a PBS. Finally, the beam is demagnified by a factor of 4 by
means of a second optical telescope, made out of lenses f3 and f4, and the signal photons
are sent to the emICCD camera.

The idler photons are directly sent to polarization analyzing optics and detected by an
avalanche photodiode which triggers the emICCD, opening an electronic gate for 3 ns in
order to collect data. The simulated intensity distributions were produced in Python.
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4.4 Results

Figure 4.4: Theoretical predictions (a) and experimental results (b) for the 16 intensity
distributions corresponding to the tomographically complete set of {|H〉 , |V 〉 , |D〉 , |R〉}.

In Fig. 4.4, we compare the theoretically calculated (Fig. 4.4(a)) and experimentally
measured (Fig. 4.4(b)) two-dimensional intensity patterns for all 16 measurement configu-
rations in the tomographically complete set {|H〉 , |V 〉 , |D〉 , |R〉}. Rows and columns are
organized by signal and idler projective measurements, respectively, and labelled by the
corresponding polarization.

The theoretical predictions and the experimental data are in qualitative agreement.
LOV prism pair alignment challenges associated with setting and maintaining the phase
is the most probable cause of slight pattern distortion as compared with theory. In both
cases, we used a grid of 140×140 points. In the image plane of the emICCD, the simulated
lattice spacing in Fig. 4.4(a) is 0.519 ± 0.015 mm, while the measured lattice spacing in
Fig. 4.4(b) is 0.522± 0.013 mm.

For the purpose of viewing the intensity distributions for qualitative assessment, the raw
intensity profiles from the emICCD are normalized, and post-processed using background
subtraction and an adaptive two-dimensional Gaussian image filter. An artificial colour
scheme was used for visual clarity, since the emICCD records photon counts only.
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Figure 4.5: Plots of pixel-wise maximum likelihood tomography by means of the fidelity of
all four Bell states. (a) Tomography seeded with simulated intensity distributions shown
in Fig 4.4(a). (b) Tomography seeded with experimental intensity distributions shown in
Fig. 4.4(b).

In Fig. 4.5, we take the theoretical and experimental density matrices, ρ̂(x, y), calculated
at each pixel position, and present the fidelity with each of the four Bell states using
Eq. 1.29. For example, the top left image in Fig. 4.5(a) shows how similar the theoretical
density matrices, ρ̂(x, y), are to the |Φ+〉 Bell state by plotting the fidelity F(x, y) =

Tr
[
ρ̂(x, y) |Φ+〉 〈Φ+|

]
. In both the theoretical and experimental case, |Φ+〉, |Φ−〉, |Ψ+〉,

and |Ψ−〉 Bell state fidelities are shown. There is good qualitative agreement between
experiment and theory, with a reduced experimental fidelity overall.

The pixel-wise quantum tomography code which produced Fig. 4.5 was seeded with the
intensity distributions shown in Fig. 4.4. This is to say, each pixel (x, y) in each image in
Fig. 4.5 used the 16 density matrices (represented in each measurement configuration in
Fig. 4.4) computed at that position (x, y), for quantum tomography. For the purpose of
computing the experimental density matrices, the raw counts from the sum of exposures
are used.

When comparing the |Φ+〉 of Fig. 4.5(a) and Fig. 4.5(b), you can see that the areas
around the ring-shaped regions, along with the centre of these regions, have had a phase
rotation of a multiple of 2π from the starting Bell state |Φ+〉. Looking at the other images
in Fig. 4.5, it is apparent that at different pixel positions, the input state has been rotated
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to other Bell states. Pixel-wise quantum state tomography thus enables a visualization
technique to show how the spin-orbit lattice state evolves across the transverse beam
profile.

Figure 4.6: Histogram of the highest Bell state fidelity over all pixel positions. A red line
is overlaid at 0.5 fidelity. All pixels with a fidelity greater than 0.5 with one of the four
Bell states are definitely entangled.

A histogram presenting the highest Bell state fidelity at each pixel position is presented
in Fig. 4.6. Recall that every experimental density matrix belonging to a pixel had its
fidelity calculated with each of the four Bell states as shown in Fig. 4.5(b). The highest
fidelity, regardless of which Bell state it was with, was plotted in Fig. 4.6. In the exper-
imental case, 42.5% of all pixel locations have a fidelity of more than 0.5 with one of the
four Bell states. This confirms entanglement between the signal photons measured at the
pixel locations and the idler photons that trigger the camera because qubit separable states
cannot achieve a Bell state fidelity of more than 0.5 [3]. In the theoretical case, 85.7% of
pixel locations are entangled in this way, so even with perfect image contrast and quantum
state preparation, not all positions of this pattern significantly overlap with one of the four
Bell states. 14.3% of pixel locations instead must have been rotated by the prisms such
that they overlap with other maximally entangled states.

The slight pattern distortion is the most likely cause of the decrease in number of
entangled pixels. Having a higher initial Bell state fidelity (we started with 96%) would
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help increase the experimental number of pixels which have a Bell state fidelity of more than
0.5. Some error may be due to random fluctuations arising from the emICCD mechanisms.
Also, the entanglement might have degraded because the prisms might not be manufactured
perfectly. If the prisms were fabricated with some flaws, their physical birefringent linear
gradients would not be modelled well by the unitaries (given in Eq. 4.6), and passing
through the LOV prisms would cause the entanglement to drop.

I note that plotting Bell state fidelities helps to illustrate the spatially-dependent ro-
tation of the two-photon spin-orbit lattice state. Fig. 4.6 supports the verification of the
successful remote preparation of spin-orbit states.

4.5 Conclusion

In the RSP experiment, we implement a remotely prepared optical lattice of spin-orbit
states by passing polarization-entangled photon pairs into two pairs of LOV prisms. The
success of the remote preparation of the spin-orbit entangled state is verified using an
emICCD camera using a pixel-wise quantum tomography algorithm. We observe that the
entanglement present in the starting two-photon Bell state transforms such that there are
overlaps with different Bell states depending on which portion of the LOV prism pairs
the signal photon passes through. We also show that pixel-wise quantum tomography
on images acquired by an emICCD camera is a useful method for observing spatially-
dependent two-photon states.

In general, this work advances the study of quantum correlations of structured beams
with lattice frameworks. It promotes a less common method for producing spin-orbit states,
which is normally done by q-plates [79, 80] and spatial light modulators [81]. The period-
icity of these novel lattice structures can be employed in applications in quantum sensing
and control, such as in the creation of all-optical memory devices using the interference
of OAM lattices [62] and the continuous and non-destructive measurement of the average
deviation of atoms relative to their lattice sites [60]. This work demonstrates but a few of
these structures; changing the polarization angles gives access to a larger variety.

Spin-orbit states have also proven useful to combat turbulence, as correlations between
polarization and OAM have shown to preserve encoded states after propagation in diffuse
media [67, 82], thus a lattice of such states as produced in the RSP experiment may be
additionally helpful for robustness. Future work might include using a higher number of
LOV prism pairs in order to have lattices that access higher radial quantum numbers, as
quantum communication protocols benefit from having a larger alphabet to encode spin-
orbit states. The RSP experiment demonstrates methods of manipulating and measuring
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spin-orbit entangled photon pairs, which work towards the objective of being able to fully
utilize single photons for quantum information processing purposes.
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Chapter 5

Kerr switching of entangled photons

Notes and acknowledgments

The work in this chapter has not been fully completed.

Contributions

This study is an on-going collaboration between labs of Kevin Resch and Benjamin Suss-
man. The idea was conceived by Kevin Resch from a paper written by the Sussman
group [83].
Philip Bustard, Duncan England, Sacha Schwarz, and Kate Fenwick are helping
with ongoing support and strategy in experimental considerations.
Andrew Cameron and Sandra Cheng have aligned the current experimental setup and
are taking data.

5.1 Motivation and chapter overview

In the switching experiment, the goal is to use the optical Kerr effect in a bare fibre to
switch an entangled photon. Given our parameters of the fibre length, the temporal width
of the gate, and wavelengths of the gate and signal, the intrinsic switching speed is on
the order of 0.3 ps. Furthermore, Ref. [83] has also demonstrated that it is possible to
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switch single photons with an efficiency close to 1 without the decoherence of the quantum
properties of the photons.

Switching light is probably what you think it is: being able to flip between two states of
light. In this project, the difference is between polarization states. All-optical switching’s
claim to fame is not being limited by electronic speed and has a myriad of applications:
in both classical [84, 85], quantum communications [86, 87], biomedical imaging [88], and
microscopy [89]. The work in this chapter was primarily motivated by Ref. [83] in that our
current interest lies in increasing the switching speed of single photons by using a shorter
optical fibre Kerr medium. They have presented a Kerr switching speed of 1.7 ps and
we are interested in sub-picosecond optical gating, which requires sub-picosecond speeds
for sub-picosecond time resolution. Ultimately, this project aims to reconstruct the two-
photon entangled state by using the Kerr effect in a third-order cross-correlation as partially
described by Eq. 3.53. Separation by polarization is straightforward and effective, and the
switching efficiency can be made to be rather high. This gives Kerr switching an advantage
over other kinds of optical gating based on parametric nonlinear effects such as SFG [90],
which relies on the low efficiency of up-conversion to provide signal. As long as the switching
speed is on similar timescales to that of the signal (and eventually, idler) temporal widths,
it is viable to use for the reconstruction of a joint two-photon entangled state [91].

Section 5.2, supplemented with Section 3.4, covers the theory and concepts belying the
Kerr switch including the switching model used. Section 5.3 goes through a preliminary ex-
perimental setup with results for the switching of continuous wave light. Section 5.4 details
the current experimental setup for the switching of single entangled photons. In particular,
section 5.4.2 introduces future experimental considerations, including the characterization
of the noise arising from the pump. Section 5.5 comprises of concluding remarks.

5.2 Theory and concepts

5.2.1 Optical Kerr switching

Much of the theory regarding the χ(3) optical Kerr effect has already been fleshed out in
Section 3.4, and the contents of this section continue from there. Previously, we have seen
that a propagation of an intense optical field, termed the pump field or the gate, through
a centrosymmetric χ(3) medium is the cause of the intensity-dependent refractive index.
Since the pump field induces this change in refractive index along its polarization axis, it
effectively causes a localized birefringence in the Kerr medium and essentially causes the
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medium to mimic a waveplate wherever the pump pulse is located. With this behaviour,
the polarization of a much weaker pulse can be rotated. This secondary pulse, normally
called the signal, must have an intensity which is significantly lower than the pump so that
we may assume it does not affect the refractive index. This specific use of the optical Kerr
effect where one wavelength of light affects the phase of another is XPM. In our setup, the
Kerr medium is the core of a bare fibre (Thorlabs S630-HP), which is made of pure silica.
It is surrounded by cladding made of fluorine-doped silica.

In many instances, the Kerr medium is sandwiched between two crossed polarizers in a
configuration known as an optical Kerr shutter (OKS) [92]. Fig 5.1 is a simplified diagram
of the OKS in our setup. A dichroic mirror is first used to reflect the gate and transmit
the signal into the bare fibre. After the medium, a spectral filter is used to remove the
gate so that only the signal is collected.

Figure 5.1: A diagram of an optical Kerr shutter with a dichroic mirror before the Kerr
medium, a bare fibre, and a spectral filter after the medium. The polarizations of the
optical fields involved are indicated on the diagram.

The switching efficiency η of the OKS setup is [93]

η = sin2(2θ)sin2(
∆φ

2
) (5.1)
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where θ is the angle between the pump and signal polarizations, and ∆φ is the phase shift
induced by the pump beam. 0 ≤ η ≤ 1, where 0 means no polarization rotation and 1 is
polarization rotation to an orthogonal state. Signal photons which have been successfully
rotated by the pump pulse are ‘switched’. Note that the factor sin2(2θ) arises purely from
the addition of the crossed polarizers. To maximize Eq. 5.1, θ = ±45◦. ∆φ is given by the
B-integral, which is a measure of the nonlinear phase shift of light along the optical axis
of a nonlinear optical system. It is expressed as [94]:

∆φ =
2πnNL
λsignal

∫ z=L

z=0

I(z, t)dz, (5.2)

where nNL is nonlinear refractive index, λsignal is the signal wavelength, I(z, t) = |E(z)|2
is the pump intensity as it travels through the fibre and z is a length parameter describing
the distance along the medium.

For practicality, the pump and signal are often located in different spectral regions, so
temporal walk-off must be considered for a better model of Eq. 5.2. If the pulses do not
travel together in the medium, then the rotation of the signal photon cannot occur and
the overall efficiency is decreased. The temporal walk-off between the gate pulse and the
signal pulse is given by Eqs. 3.21 or 3.22, where L is the length of the Kerr medium and
ngp = c

vgp
and ngs = c

vgs
are the group indices of the pump and the signal in the medium.

We can now express the intensity profile of the pump I(z, t) in the reference frame where
we are moving with the signal photon. Let T = t − z

vgs
, and the temporal walk-off be

defined as dw = 1
vgp
− 1

vgs
.

By letting θ = +45◦ in the experiment, the switching efficiency can now be written as:

η(T ) = sin2

(
πnNL
λsignal

∫ z=L

z=0

I(z, T − zdw)dz

)
. (5.3)

The form of I(z, T − zdw) is dependent on the shape of a pump shape. In this experi-
ment, we assume a Gaussian profile with an intensity given by:

Ipump(T ) = I0exp
[−4ln(2)(T − zdw)2

∆τ 2
pump

]
, (5.4)

where I0 is the peak intensity of the pump, ∆τpump is the temporal width of the pump
(FWHM) and as above, T = t− z

vgs
.
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Additionally, note that the peak intensity is related to the peak power Ppeak and area
by:

I0 =
Ppeak
πr2

, (5.5)

where r is the radius of the pump pulse. Since it travels in an optical fibre, we can estimate
r as the field mode diameter of the fibre divided by two. The peak power is related to
the average power Pavg, the pulsed laser repetition rate R, and the pump pulse duration,
∆τpump, by:

Pavg
R

= Ppeak∆τpump. (5.6)

Putting Eq. 5.6 into Eq. 5.5, the peak pump power I0 in terms of average power Pavg as
measured by a power meter in the lab, is:

I0 =
Pavg

R∆τpumpπr2
. (5.7)

Eq. 5.3 is only a description of the switch if the signal input is a delta function, so
Eq. 5.3 is referred to as the intrinsic response function. For an experimental model of the
switch, the temporal width of the signal must be considered. In this case, the intrinsic
response must be integrated over the duration of the signal weighted by its temporal profile
Isignal(t):

ηR(T ) =

∫ ∞
−∞

η(T )Isignal(t)dt, (5.8)

where, similar to Eq. 5.4, the signal pulse is assumed to be Gaussian:

Isignal(t) = Isexp
[ −T 2

∆τ 2
signal

]
, (5.9)

where the peak intensity of the signal, Is, is assumed to be negligibly small and does not
affect the refractive index. Eq. 5.8 has dependencies on four factors: the temporal width
of the pump and signal, the temporal walk-off between the two pulses, and the length of
the medium. The FWHM of this function gives the experimental switching speed. In this
work, the switching medium is a bare fibre of fused silica which bears centrosymmetry. The
nNL for fused silica has been empirically measured to be about 3 × 10−16 cm2

W
[94]. Recall

that to see a noticeable change in the refractive index as per Eq. 3.44, the term nNLI must
be significantly high. We achieve this by using an ultrashort pulse for the pump which is
focussed down to a few-micron spot size, so the induced birefringence occurs at ultrafast
timescales. The bare fibre was chosen despite the relatively low nNL of silica because of its
waveguiding properties, which allow for better overlap of the pulses, and its commercial
availability.
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5.3 Proof-of-principle continuous wave switching

Before attemping to switch single photons, a proof-of-concept of Kerr switching in a bare
fibre was demonstrated. A helium-neon (He:Ne) laser (Thorlabs HRS015B), centred at
633 nm, was switched by means of a pulsed gate centred at 775 nm in a 10-cm-long
bare fibre (Thorlabs S630-HP), as depicted in Fig. 5.2. The ultrashort gate comes from
a 80 MHz repetition rate Titanium:Sapphire laser (Chameleon Ultra II from Coherent)
and is coloured red. The He:Ne is coloured pink. Both wavelengths were measured by a
handheld spectrometer (OceanOptics HR2000+).

Figure 5.2: Schematic of the switching experiment with a continuous wave laser.

The gate was set to |D〉 (by a PBS and HWP) and the input He:Ne light was set to
|H〉 (by a PBS) for maximum switching efficiency (θ = ±45◦, as per Eq. 5.1). Both passed
through a lens to be focused into the bare fibre. Another lens was set up after the fibre to
collimate the outgoing light, since it disperses quickly after exiting a waveguide. After the
Kerr switch, a set of filters and an efficient PBS (a Glan-Taylor) were used to remove the
gate, and He:Ne light which had not been switched. The rotated light, now at |V 〉, was
coupled into a SMF and was passed into a spectrometer (Princeton Instruments: Acton
SP-2750). The average powers of the He:Ne and the gate were respectively 50 µW and
50 mW (measured just after the Kerr medium) with bare fibre coupling efficiencies of 35%
and 21%. General experimental and alignnment procedures for coupling light into a bare
fibre can be found in Appendix D.

The spectrometer was used to collect spectra of four different combinations of the gate
and the He:Ne being ON and OFF for proper characterization of the switching response.
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ON means light was allowed to pass through the bare fibre, and OFF means light was
blocked from entering the fibre. The four configurations correspond to:

• He:Ne ON, gate ON: switching,

• He:Ne ON, gate OFF: He:Ne light leakthrough (unswitched light),

• He:Ne OFF, gate ON: other nonlinear effects (e.g. self-phase modulation),

• He:Ne OFF, gate OFF: background noise.

In each configuration, 5000 spectra were collected with a 10 ms integration time each.

5.3.1 Experimental continuous wave switching response

In the continuous wave case, the signal beam is on at all times, so the intrinsic response,
Eq. 5.3, defines the switching efficiency of the input light; there is no need to use Eq. 5.8. We
use the experimental parameters of: 775 nm pump wavelength, 633 nm He:Ne wavelength,
fibre length of 10 cm, nNL = 3 × 10−16 cm2

W
for silica, r = 2.1 × 10−6 m for the field

mode diameter, and a pump duration of 220 fs (measured by autocorrelation with SFG).
The group velocities were calculated from experimentally determined values of ngp and
ngHe:Ne [95]. By taking a fast Fourier transform of Eq. 5.3, the theoretical spectral response
can be obtained. This is the orange curve shown in Fig. 5.3.

The four different experimental datasets were collected and averaged to generate the
final switching response curve of the He:Ne [96]:

Iswitched = (IHe:NeON,gateON − IHe:NeON,gateOFF )− (IHe:NeOFF,gateON − IHe:NeOFF,gateOFF ).
(5.10)

The curve is denoted by blue dots in Fig. 5.3. There is a single negative intensity value
which can be disregarded. It arises from noise, causing the combination of all spectra in
Eq. 5.10 to add up to a negative intensity.
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Figure 5.3: Switching response (blue dots) of the 633 nm He:Ne in a 10-cm-long bare fibre
using a pump pulse of 775 nm, plotted with the intrinsic Kerr switching efficiency (orange
line), and the input continuous wave He:Ne spectrum (light blue area). Figure created by
Sacha Schwarz and data collected by Kate Fenwick and Sandra Cheng.

Using the appropriate average power input, the experimental switching response agrees
well with the intrinsic switching efficiency. Slight deviation may be due to not accounting
for pump pulse chirp. We note that the He:Ne spectrum is too strong near the peak of its
output so that the switching response cannot be extracted. This noise will, however, not
be an issue when switching with single photons as the intensities are too weak.

5.4 Single photon switching setup

To obtain an intrinsic switching speed near the order of 0.3 ps, a new bare fibre length
of 3 cm was chosen. At this short of a length, we have to consider how to evaluate the
average power in the core. In a typical SMF, light passes through both cladding and
core (for reference in a Thorlabs S630-HP, the cladding is 125 ± 1 µm and the core is
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3.5 µm), but the cladding modes are extinguished as they travel through the fibre since a
SMF is designed to output only one spatial mode: the TEM00 mode, which is Gaussian.
This is to say that in the switching experiment, we only want Gaussian light because
the birefringence due to the Kerr effect only occurs in the core. A 3-cm-long fibre allows
some cladding modes to pass through, so average powers and counts cannot be measured
by putting a power meter or detector after the Kerr medium. In this case, we note the
average power and detector counts by examining the light which has passed through the
Kerr medium and through another SMF.

A diagram of the single photon experimental setup is shown in Fig. 5.4. The ultrashort
gate pulse remains 775 nm and is coloured red in Fig 5.4. Again, it originates from a 80 MHz
repetition rate Titanium:Sapphire laser (Chameleon Ultra II from Coherent). It undergoes
SHG in a BiBO crystal and produces blue light at 387.5 nm. Both the wavelengths were
measured with the handheld spectrometer (OceanOptics HR2000+). The gate reflects
off a dichroic mirror and follows a different path. The blue light transmits through to
another BiBO crystal to undergo SPDC and produce non-degenerate entangled photon
pairs. The signal and idler photons were measured to be, respectively, 823 nm and 732 nm
by single photon spectrometers built in-house (detailed in Ref. [97]). These wavelengths
can be adjusted by phase-matching and their bandwidths are tuned by filters. Additional
information on this entangled photon source can be found in Appendix C.

Figure 5.4: Schematic of the switching experiment for single photons.

The photon pairs are split up by another dichroic and coupled separately. The idler is
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coupled to an APD and acts as a herald for the signal photon. The signal is shuttled into
another part of the table by a 21-m-long SMF, and passes through a grating compressor
(made of a pair of diffraction gratings) to compensate for chirp accumulated by travel in
the SMF. A correct combination of the two allows for dispersion control. It then passes
through polarization settings (a PBS) before meeting the gate pulse just before the Kerr
medium. The gate pulse at this point has already passed through a variable delay (by
means of a retroreflector on a translation stage) and also has its polarization set (a PBS
and HWP). The variable delay is needed here to be able to sweep the gate pulse through the
signal pulse (unlike with He:Ne which was always present in the Kerr medium). Recalling
Eq. 5.1 and similar to the continuous wave case, the gate is set to |D〉 and the signal at
|H〉 for maximum switching efficiency.

Both pass through a lens in order to be focused into the Kerr medium, a 3-cm-long
bare fibre (Thorlabs S630-HP). The same collimating lens is set up after the fibre. After
the Kerr switch, a set of four filters and an efficient PBS (a Glan-Taylor) is used to remove
the pump, and signal photons which have not been switched. The rotated signal photons
are coupled to an APD by another SMF. Coincidence logic is applied between the rotated
signal APD and the idler APD.

5.4.1 Intrinsic switching response

Many of the same experimental parameters in the continuous wave case were used to obtain
the intrinsic switching response in the single photon case, with the exception of using a
823 nm signal wavelength and the corresponding value for the group velocity, and a pump
temporal width of 300 fs (measured by autocorrelation with SFG).
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Figure 5.5: The intrinsic switching response of the 3-cm-long bare fibre Kerr switch in the
single photon scenario, using a 775 nm pump wavelength, a 823 nm signal wavelength,
and a pump temporal width of 300 fs. The temporal width of the signal photon is not
incorporated.

The width of Fig. 5.5 implies an approximate switching speed of 0.348 ps, which is of
an appropriate ps timescale. The experimental switching speed should be slightly slower,
as the inclusion of the signal’s temporal profile should broaden the response function. This
numerical integration does not include the effects of chirp as the pump and signal propagate
through the bare fibre. We assume it is negligible because the fibre is short. Temporal
walk-off (using Eq. 3.22) between the two pulses is calculated to be 5.83 ps

m
corresponding

to 0.1749 ps walk-off in the fibre, so we believe that the pulses are sufficiently temporally
overlapped in the fibre and will not affect efficiency. For a better guess of the switching
response, the temporal width of the signal should be measured so that Eq. 5.8 can be used.
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5.4.2 Future experimental considerations

The switching efficiency given by Eq. 5.3 changes for different pump power intensities in
the core since the change in refractive index is induced by the intensity of the strong light
(recall Eq. 3.44; it is implicit in Eq. 5.8). To get an efficiency near 1 using our experimental
parameters, we need about 90 mW of average power in the core as shown in Fig. 5.6. Note
that the gate pulse has a coupling efficiency of 15% so the maximum efficiency corresponds
to 0.6 W of pump power entering the Kerr switch.

Figure 5.6: Switching efficiency given by the intrinsic response versus the amount of pump
power passing through the core. Figure created by Kate Fenwick.

The higher the pump power entering the Kerr switch, the more difficult it will be to
separate the signal from the pump pulse. Additionally, high pump intensities cause other
nonlinear χ(3) processes which add to the noise. These include SPM and stimulated Raman
scattering. In the case of the former, SPM causes a broadening of the gate pulse. In the
case of the latter, it is sufficient to understand that at high intensity in a material, pump
photons can be converted into photons at the Stokes frequency at efficiencies of 10% or
more [36]. To investigate the noise profile of the pump, we recorded two types of photon
counts at the rotated signal photon APD as the intensity was increased. These were the
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number of pump photons (termed singles) and accidental coincidences between the pump
and the idler. This was plotted in Fig. 5.7, where the pump power is the average power in
the bare fibre core.

Figure 5.7: Pump noise characterization, looking at number of singles (left ordinate, red)
and number of accidental coincidences (right ordinate, blue) vs. pump intensity. The
counts are in kHz and the power is the average pump power coupled into the bare fibre.

A spectrum of the detected light at 87.8 mW (corresponding to about 8000 kHz singles
and 178 kHz accidentals) was taken by a single photon spectrometer and is shown in
Fig. 5.8.

Figure 5.8: The spectrum of the detected light past the switch and the set of four filters,
taken with one of the home-built single photon spectrometers.

The number of accidental coincidences increases exorbitantly after 50 mW. This is an
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issue as the heralded coincidences are what will be used to indicate switching (a switched
signal photon will only be accepted if its presence has been heralded by its idler partner). A
majority of these coincidences are due to photons (generated by some nonlinear effect) with
wavelengths of 812 nm and 817 nm. Average pump powers of this magnitude are required
for good switching efficiency, so a possible workaround is adding another spatial filter to
separate these photons from the signal at 823 nm. There is leeway in adjusting the pump
and idler frequencies by playing with the phase-matching, so that the produced nonlinear
frequencies are shifted away from 823 nm, though more walk-off between the pump and
signal will occur in the fibre. There is also an option of switching out the bare fibre for a
photonic crystal fibre (Thorlabs NL-2.4-800), which has been specially purchased so that
the zero-dispersion point of 800 nm is near the pump and idler wavelengths of 775 nm and
823 nm. The noise characteristics of the photonic crystal fibre are unlikely to be similar
to the bare fibre, and a separate analysis has to be done. However, an advantage may
be gained because a smaller temporal walk-off between the gate and the signal increases
temporal resolution. By choosing an appropriate signal wavelength and fibre length, the
switching speed can be increased, possibly by another order of magnitude.

5.5 Concluding remarks and next steps

Discrimination of accidental coincidences from the heralded signal is crucial for observing
switching. The signal’s temporal width must be estimated so that the theoretical switching
response, ηR(T ) given by Eq. 5.8, can be modelled. After this has been accomplished, we
will be able to collect the number of heralded signal photons while a delay is introduced
between the pump and the signal in order to generate the experimental response curve.
The experimental switching speed is expected to be roughly 0.35 ps. The heralded g(2)(0)
will also be calculated to examine how the Kerr switch affects the nonclassical properties
of the photons.

The ultrafast all-optical setup has demonstrated Kerr switching of continuous wave
light. The completion of the current project will be a proof-of-principle showing that entan-
gled single photons may be switched with high efficiency and on sub-picosecond timescales.
Additional adjustments can be made by changing the fibre length and type, and tuning
the pump, signal and idler wavelengths to gain a faster switching speed. Based on the
switch that motivated this work [83], the current setup mimics their advantages of being
relatively simple for implementation: all components are readily commercially available,
efficient switching is theoretically achievable with relatively small average pump power,
and no active stabilization is required. If successful, it implies further speed improve-
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ment in several quantum optics applications such as the conversion of photonic qubits [98],
optical computing in a single spatial mode [99], and the processing of high-dimensional
and hyperentangled quantum states [100, 101]. The increased switching speed in the Kerr
switch may also be employed to improve the timing selectivity in microscopic [102] and
spectroscopic [103] techniques.

The Kerr switch is also a promising high-efficiency alternative to current optical gating
methods in ultrafast optics which use nonlinear effects like SFG [90, 22]. Future work is
aimed toward a full characterization of energy-time entangled photon pairs by building
another Kerr switch in the idler path. A FROG-type procedure may be followed by per-
forming cross-correlations in both signal and idler using the gate pulse and implementing
a phase-retrieval algorithm, allowing for a high efficiency method of recovering ultrafast
two-photon entangled pulses. Ultimately, the switching experiment has potential to add to
the plethora of techniques needed to manipulate and measure energy-time entangled single
photon pairs, which are necessary to fully exploit single photons in quantum information
processes.
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Appendix A

Acquiring optimal gate delay with
the emICCD

The PI-Max4: 1024 EMB camera is very sensitive so alignment cannot be done with
classical light (in fact, it’s so sensitive that opening the lab door when the camera is
working poses a significant risk of damage). Choose a single photon signal pattern to
observe, and ensure the idler is triggering the camera.

The gate delay is roughly about 100 ns, since it takes the photons about that time to
transverse the 30-m-long fibre spool, but the exact delay is unknown. There is a rather
straight-forward optimizing algorithm that can be used to find it. The two parameters
involved are the gate width, which is the window in which the camera takes data, and the
gate delay, which controls when the window starts. Eventually, we want the gate width
to be 3 ns, but at the beginning, the window is bigger so that we can easily search for
the correct delay. A change in the gate width is a different picture-taking regime, so the
emICCD’s parameters must be adjusted accordingly.

The idea of the optimization is start with a large gate width, narrow down the gate
delays into two halves, choose the half which gives a signal, and repeat. The gate width
can be set at a maximum of 500 ns. Just for visualization of the optimization, think about
setting the window to be 1-250 ns and 250-500 ns, and then selecting the window in which
you can see an image. If the latter is chosen, then check between 250-375 ns and 375-
500 ns; so on and so forth. If the other parameters are not adjusted, two outcomes are
likely. Either there is no signal even though there should be, so the resulting image is all
black, or there is too much noise which results in an all white intensity distribution. These
are empirically determined but we recommend starting with:
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• Gate width: 200 ns

• Gate delay: 100 ns

• Exposures per frame: 50

• Intensifier gain: 1

• Electron-multiplying (EM) gain: 1

• External trigger: 1.5 V (keep this constant)

• Speed: 10 MHz.
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Appendix B

LOV prism alignment

B.1 Classical setup

A classical diode set at the photon wavelength and the BeamView program is used. Dif-
ferent wavelengths travel through the LOV prisms differently due to the refractive index,
so if classical alignment is done using a different wavelength, then different intensity dis-
tributions will be seen when using single photons on the emICCD. To look at the patterns
classically, projective measurements must be performed, else you will only see a Gaussian
beam on the BeamView camera. In Fig. 4.3, keep the HWP, QWP, and PBS after the LOV
prism pairs. Moving the HWP and QWP will emulate the signal’s projective measurement,
so I will refer to these as the measurement waveplates. Put the camera after one of the
PBS ports; we chose the transmitted port, effectively choosing to always measure |H〉.
Insert a PBS, a HWP and QWP before the LOV prism pairs. Moving these waveplates in
the classical setup will emulate the idler, so I will refer to these as the preparation wave-
plates. By using the camera, the HWPs and QWPs in this way, you can check that the
LOV prisms are properly aligned by ensuring all polarisation measurement choices match
the theoretical intensity distributions.

B.2 Classical alignment

Refer to Fig. 4.2. First, ensure the wedges are straight such that the prisms are 90◦ to both
the x̂- and ŷ−axes. Recall that the prisms have befringent axes which cause a multiple
of 2π phase as light passes through more of the quartz, so when only the Ûy prisms are
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inserted, they cause horizontal fringes (parallel to the ŷ−axis). Similarly, when only the
Ûx prisms are inserted, they cause vertical fringes (parallel to the x̂−axis). Make sure that
these fringes are straight by adjusting the tilt of the prisms. The beam should be aligned
for when all four prisms are in place, so when looking at an individual prism, the beam
will be deflected slightly and the fringes will be difficult to see. Aligning in pairs makes
them easier to see, but check that the prisms are straight not just relative to each other.
After locking in the phase via an Allen key, look at the other prism pair.

Now, we emulate what the emICCD will see with the |Φ+〉 Bell state by using classical
light by setting the measurement and preparation waveplates. We liberally used the wave-
plate basis conversion guide in the QOQI Wiki. First, align the prisms nicely by observing
the classical |R〉p, |R〉m measurement, since its donut pattern is the easiest to evaluate

qualitatively. Adjust the translation knobs (the right/left knobs should only affect the Ûy
prisms, and the up/down knobs should only affect the Ûx prisms) so that the donut pattern
looks even and centred in the beam. Then check the classical |H〉p, |V 〉m and the |A〉p,
|D〉m measurements, whose intensity distributions are horizontal and vertical bars respec-
tively. Re-iterate with the knobs so that all of the patterns are correct, and qualitatively
look even and centred. After this is done, begin comparing the set of {H,V,D,R}, shown
in Fig. B.1, to the theoretical distributions (Fig. 4.4(a)). Adjust the translation knobs as
needed.

Brief projective measurement examples:

• e.g. to look at the classical intensity distribution of |V 〉p, |D〉m, set the preparation
waveplates to send |H〉 to |V 〉, assuming the newly-inserted PBS allows transmitted
light to pass through these waveplates. Set the measurement waveplates to send |D〉
to |H〉, since we are reading out the transmitted port of the second PBS.

• Recall Eq. 4.3 which shows that the only anti-correlations are with {|R〉 , |L〉}. If the
idler in the RSP experiment is projected to |L〉, the signal gets the equatorial state
|R〉. So any classical intensity distribution that wants to look at an |R〉 projection
with the measurement waveplates must actually have |L〉 instead. e.g. to look at
what the |R〉i,|R〉s will be, set the classical intensity distribution to |R〉p, |L〉m. The
preparation waveplates should send |H〉 to |R〉 and the measurement waveplates
should send |L〉 to |H〉.
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Figure B.1: Intensity distributions using a classical diode and the BeamView camera.
Compare to Fig. 4.4(a) to check LOV prism alignment. Note that the patterns are a good
representation of the experimental intensity distributions in Fig. 4.4(b), including pattern
distortion.

Other notes:

• If the images do not match the theoretical intensity distributions, it may be that one
of the crystals is inserted wrongly (e.g. flipped across an axis). There’s no easy way
to see this because the prisms are hidden in their Thorlabs holders.

• Make sure the QWPs are not backwards. We double-checked but only caught this
on the third go.
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Fig. 4.4 reproduced here for convenience. Theoretical predictions (a) and experimental
results (b) are shown for the tomographically complete set of {|H〉 , |V 〉 , |D〉 , |R〉}.
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Appendix C

Finding coincidences with the
Chameleon source

C.1 Historical context

The Chameleon Ultra II source of single photons normally only needs a quick tune-up
using the signal and idler couplers and the angle phase-matching, even after months of
being untouched. However, after Andrew and I were finally allowed back into the lab for
the first time during the pandemic, the Chameleon was broken and had to be shipped off
for repair. When it returned, we had to align this source from point zero to its usual state
of generating non-degenerate single photon pair coincidences. The full alignment guide is
in the QOQI Wiki, but the most difficult part was obtaining coincidences, which is detailed
below.

C.2 Finding coincidences

At this point, the laser should be aligned such that there are single photon counts in both
the signal and the idler couplers, but there aren’t any coincidences. Frequency, polarisation,
and timing are not the issues at hand. You will have checked this by looking at the signal
and idler spectra, by ensuring the correct polarisation produced by the SPDC is allowed
through each coupler, and by observing the timing histogram VI to note the correct delay
between the two detectors.
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If the above 3 DoFs are not causing the issue, then the most likely reason why coin-
cidences are not seen is because of spatial correlations. The probabilities of the spatial
positions of the down-converted daughter photons can be thought of as two emerging light
cones. Each photon has a partner which exists in a particular geometric part of the other
cone. The problem is that the signal and idler couplers are attached to detectors via SMFs
which only capture a minuscule amount of the light cones, plus it is difficult to know which
spatial parts of the cones are being seen. Our alignment method relies on the idea that
in type-I SPDC, the two light cones emerge collinearly and are very overlapped, so the
partner photons are in roughly the same position in each cone. Each light cone is mapped
out, and then each coupler is moved to its centre.

1. Designate directions (up, down, left, right) with the translation stage knobs. Choose
one coupler.

2. Look at the number of the singles. Choose a direction to explore and keep track
of your movements with the micrometer notches. Every time a movement is made
with the translation, recover the singles by using both tilts. Continue in the same
direction until the singles count has dropped by ≈ 15%. You’ve now found one edge
of the map!

3. Now, move in the opposite direction with the translations. Similarly, record your
movements, and recover at each step with both tilts. Continue until the singles once
again drop ≈ 15%. This is the other edge!

4. Now knowing both edges of one axis, move to the centre coordinate using the trans-
lation knob, and maximize singles with the tilts.

5. In the other axis, choose one direction to move. Use the same technique with the
translations and recovering singles with the tilts. Move to the centre coordinate after
finding it!

6. Follow the above procedure for the second coupler; as you get closer to its centre,
coincidences should get larger!

For reference, Andrew and I mapped each cone to be roughly 10×10 mm in about an
hour. It is possible that even with this method, coincidences are absent. In this case,
try spiralling from the centre. This method involves drawing out a spiral pattern using
one of the couplers e.g. moving left by one unit, up one unit, right two units, down two
units, etc. We also believe that our method could be tweaked for type-II SPDC, where
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the outgoing polarisations of the daughter photons are different, so the entangled photon
pairs are no longer in the same position of the cones but are still at intersections where
the cones overlapped.
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Appendix D

Bare fibre handling

D.1 General lab notes

• Andrew cut all of the bare fibre at the RAC 2 building after being trained to do so.
It is BYOF (bring-your-own-fibre). The smallest length of bare fibre he has been
able to produce is 1.5 cm.

• We store the bare fibre in old Thorlabs circular fibre containers, sandwiched by two
pieces of foam.

• Sacha and Andrew had previously observed that having a high-powered pump input
misaligned the fibre and reduced coupling. Andrew and I believe that this is due to
heat being absorbed by the clamp near the tip of the bare fibre, since the old holder
(Thorlabs: HFF003) is black, and the new holder (Thorlabs: HFF001) is silver and
has no noticeable power issue.

• We set the fibre into the holder by using a pair of optic tweezers (Thorlabs: TZ1).
When setting the fibre into the grooves of the holder, we carefully nudged the middle
of the fibre to get it in place, and left the fibre ends untouched. The tip of the fibre
should be barely poking out of the holder, so that (a) it does not bend or succumb
to weird air pressure changes and (b) it is easier for the laser to enter the fibre tip
rather than lighting up the clamp.

• The bare fibre is fragile, so accidents were bound to happen (sorry, Andrew). Broken
or ruined fibre went into a sharps container. I built a roofed cage over the fibre to
prevent overhead mishaps.
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D.2 Core alignment procedure

A bare fibre’s core is very small (3.5 µm for S630-HP Thorlabs fibre), so coupling light
into it from free space is not easy. When first coupling into bare fibre, most of the light
will probably pass through the cladding instead. On the BeamView program, the output
resembles speckled donuts. When the light is truly passing through the core, the output
is Gaussian since the core is designed to output the TEM00 spatial mode. Moving away
from this position in any of the four directions (up/down or in/out of the table; not the
optical axis) results in the speckled donut output and eventually followed by blackness.
Note that as the fibre gets shorter, less of the cladding modes are killed, which results in
messier Gaussian profiles as shown in Figs. D.1 and D.2. It is important to ensure that
the camera isn’t saturated, else light through the cladding can appear Gaussian. With at
least a 10-cm-long fibre, these messy cladding modes are removed entirely.

(a) 3 cm bare fibre length. (b) 1.5 cm bare fibre length.

Figure D.1: Classical beam profiles after passing through bare fibre core. Both images
were taken with BeamView with the Chameleon at 823 nm, the idler wavelength.
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(a) 3 cm bare fibre length. (b) 1.5 cm bare fibre length.

Figure D.2: Classical beam profiles after passing through bare fibre core. Both images
were taken with BeamView with the Chameleon at 775 nm, the pump wavelength.

D.2.1 Initial setup

First, align the pump and idler paths using the camera, with at least two irises and a poker.

Now, secure the bare fibre into its holder, and place the front lens on its separate holder
outfitted with controls. The adjustment of the lens is fiddly, but place it such that the tip
of the bare fibre is very near its focal length. Make sure the lens is straight relative to the
fibre. Put the camera directly after the fibre’s end. Note that after exiting fibre core, light
shoots out and diverges very quickly, so put the camera close to catch its output.

The goal now is to move the lens controls such that both light paths focus into the
fibre. Aim to see the cladding modes. The holder heights should’ve been set with the same
poker, so hopefully you won’t be too far off. I recommend using the wavelength which
is most visible by eye (for us, this was the pump), so that you can see when the light is
hitting the holder and adjust. At your own risk, you could also very carefully put an IR
card between the lens and the fibre tip to check if the light is being focused onto the tip.

D.2.2 Finding the core

At this point, light should be passing through the cladding but not the core. The focus is
likely in a sub-optimal position. Here, we apply the fact that these fibres are manufactured
to be nearly perfectly coaxial.

1. Choose a position using the fine zoom control on the front lens. Keep track using
the micrometer notches.
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2. Scan through the one of the other two directions (up/down or in/out of the table)
with the lens control. You should notice on the BeamView program that the speckled
donuts should fade to nearly nothing at each end of the chosen direction. Adjust
the control so that it is in between those two end positions. Keeping track of the
micrometer notches is helpful e.g. if the light fades to dark at 10 µm and 100 µm,
move to the centre which is at 55 µm.

3. Similarly, scan through the other direction to find the centre coordinate.

4. Reiterate these steps until the emerging light is Gaussian.

Once you have found the core, put the collimating lens behind the fibre end. You can
have it in before finding the core, but the output may be misleadingly Gaussian. You can
test this by adjusting the zoom of the collimating lens.

This is the end of the hardest part! Now, whenever you take out the fibre or replace it,
you should be really close to the core. Just play the game with finding the middle in both
directions without touching the zoom. It should take less than 20 minutes.
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