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Abstract

Cancer is a deadly disease causing a heavy health burden worldwide throughout the
recorded history. Chemotherapy is widely used to treat any type of cancer. With an
enormous effort to improve cancer chemotherapy treatment strategies, a vast number of
deterministic mathematical models, mostly control and compartmental models, have been
developed in the literature. However, these models are criticized by clinicians for ignoring
practical aspects of the disease such as stochastic staging and non-homogeneous cell growth.

This thesis focuses on extending the classical tumor-growth and chemotherapy models
by incorporating stochastic stages with varying tumor growth rates. Our numerical results
provide a proof of concept, showing tractability of such models and insights towards more
practical modeling of chemotherapy planning problems.

The contributions of the thesis are three-fold. First, we develop a novel deterministic
tumor kinetic model that can efficiently be solved to represent the deterministic case.
We utilize the Gompertz equation to represent the tumor growth and a Michaelis-Menten
equation to control this growth. We assume tumor growth is controlled by continuous drug
delivery rates. Using data for the chemotherapy treatment of bone cancer in the literature,
we find that the proposed deterministic tumor kinetic model can capture the changes in
the real data set with reasonable accuracy. More importantly, this kinetic model simplifies
the calculation of advanced mathematical models presented in this study.

Secondly, by adding drug toxicity and tumor reduction constraints to this tumor kinetic
model, we derive an optimal control model which is solved via nonlinear programming. The
introduced model finds an optimal chemotherapy treatment scheduling from low dose to
high dose therapy. Extensive sensitivity analyses have been conducted to highlight the
importance of the constraints limit, and the Brute-force algorithm is utilized to verify the
correctness of the results for the optimal control model.

The third contribution is to extend the proposed efficient-to-solve deterministic model
considering cancer staging. More advanced stages are associated with higher cancer growth
rates. The stage progression occurs at each phase of the treatment with a probability
based on the current tumor size (i.e., the larger tumor size is associated with a higher
growth rate). The inclusion of cancer stages requires a more complex control mechanism
specifying chemotherapy based on both the current tumor size and cancer stage to minimize
the expected final tumor size. We construct a non-linear programming formulation for
the proposed stochastic chemotherapy planning problem. This can also be solved using
a reasonable and practical number of stages and treatment phases. We show that the
resulting stochastic model provides more reasonable solutions compared to deterministic
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models and practical rules of thumb. Some of the latter may provide infeasible solutions
when the stochastic nature of the problem is ignored. The stochastic model effectively
balances the need to quickly reduce tumor size, while sparing a sufficient level of toxicity
for later in case of a future cancer staging. By proposing the stochastic model, we decrease
the probability of stage jumps from 35% to 26% while the deterministic solution is tested
in the stochastic environment. The effects of model parameters and transition probability
function on the model results are studied with sensitivity analyses.

Finally, we propose a modified Simulated Annealing model for the chemotherapy schedul-
ing problem to examine the structure of the proposed models. The results for both models
are presented and explained in detail.
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Chapter 1

Introduction

This thesis focuses on developing new chemotherapy treatment scheduling models for incor-
porating stochastic cancer staging and progression. In this introductory chapter, we present
our motivation behind this research with a brief discussion about cancer and chemotherapy
in Section 1.1. The principal contributions of the work presented in this thesis are then
stated in Section 1.2. Lastly, the outline of the content of the following chapters comes in
Section 1.3.

1.1 Motivation

Cancer is a complex disease defined by the uncontrolled growth of abnormal cells due
to genetic changes [Hassanpour and Dehghani, 2017]. Despite intensive investigations by
both clinicians and scientists in trying to determine its underlying causes and eliminate
them, cancer is still one of the most common and deadly chronic conditions affecting the
world’s population. According to the American Cancer Society, in 2021, nearly 1, 898, 160
new cancer cases are expected to be diagnosed, and approximately 608, 570 people are
expected to die due to cancer in the U.S. [Siegel et al., 2021]. That makes cancer the
second most common cause of death in the US. Similarly, the Canadian Cancer Society
reported 225, 800 cancer cases in 2020 [Brenner et al., 2020]. About 1 in 4 Canadians
are expected to die from cancer, and nearly 1 in 2 Canadians will develop cancer in their
lifetime [CCS, 2019]. Furthermore, an estimated 21.6 million new cancer cases are expected
worldwide by 2030 [Bray and Soerjomataram, 2015].

The selection of appropriate treatment (e.g., treatment type & schedule, drug & dose
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selection, etc.) may vary, depending on the cancer type and stage as well as the physi-
cal health and characteristics of a patient. Clinically, the main known treatments to cure
cancer or control its growth are surgery, radiation therapy, immunotherapy, and chemother-
apy. Among these, chemotherapy is broadly used as the main technique to both completely
eradicate the disease and facilitate effective delivery, along with other treatment methods
as described in Figure 1.1.

Figure 1.1: Adapted from [Page and Takimoto, 2004]

Chemotherapy is a systemic cancer-killing technique and applied to control the growth
of cancerous cells by injecting an agent designed to attack cancer cells [Palumbo et al.,
2013]. However, chemotherapy works as a double-edged sword since chemotherapeutic
agents entering the bloodstream not only annihilate cancerous cells but also destroy healthy
cells [Lundqvist et al., 2015]. Thus, it is quite important to balance the treatment efficacy
and the toxic side effects when administering chemotherapy.
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Drug toxicity is an important challenge to address for chemotherapy treatment since
nearly all effective chemotherapeutic agents have the potential to produce toxicity even
at the usual therapeutic doses [Plenderleith, 1990]. Drug toxicity adversely affects human
health when excessively used since the drug accumulates in the bloodstream and causes
fatal complications due to the drug’s side effects [O’Brien et al., 2006]. That limits the
usage of chemotherapy [Helleday, 2017]. Thus, the administration of chemotherapy requires
accommodation between tumor cell population reduction and toxicity.

The stage of cancer, or the extent of cancer, is another important factor for a suc-
cessful chemotherapy plan [Gress et al., 2017]. The cancer stage indicates how large a
cancer lesion is and how far it has spread. Higher-stage cancers are associated with faster
lesion growth [Liotta, 1984], decreased drug effectiveness [Maeda and Khatami, 2018] that
requires aggressive treatment [Chabner and Longo, 2019], and increased mortality [Guan,
2015, McPhail et al., 2015]. For instance, most cancer-related deaths (more than 90%)
are the result of the progressive growth of metastases that show resistance to conventional
therapies [Langley and Fidler, 2007]. Therefore, the monitoring of growth factors and in-
vestigating new therapeutic targets for metastasis cells may make controlling metastasis
possible [Arvelo et al., 2016].

To put it succinctly, developing an effective chemotherapy plan is essential to overcome
these challenges. The current strategy in clinical practice relies on the clinical experiments
carried out during or after the drug development process. Although clinical trials provide
insights and efficient chemotherapy schedules, they are expensive and require long-trial
time to experiment with humans and animals, as testing requires many combinations.
Furthermore, clinical oncologists have not had a comprehensive model to propose as a
framework for understanding, organizing, and applying their data, despite a large amount
of biological and clinical data and studies published about cancer every year [Gatenby and
Maini, 2003]. To tackle these obstacles, mathematical models can be an excellent tool for
confirming and evaluating different biological assumptions, with less expensive and safe
trials (with no immediate threat to humans).

1.2 Objectives and Contributions

The main objectives of this thesis are to:

� present a proof of concept research on the incorporation of the tumor kinetics and
stochastic cancer staging into the study of chemotherapy treatment optimization.

3



� open a new avenue in the literature by combining control and stochastic models while
tracking the tumor size and toxicity under stochastic stage jumps.

To attain these objectives, an effort has been made to extend existing chemotherapy
treatment scheduling models for dynamic drug delivery of a single & cell-cycle independent
drug in this dissertation. Unlike the existing literature, the effect of stochastic cancer
staging on cancer progression is incorporated into the treatment decisions in our model.
Our goal is to minimize tumor cell populations at the end of treatment, under a set of
constraints on drug toxicity and targeted treatment effectiveness. The proposed research
achieves this through the following contributions:

i. A novel “Deterministic Tumor Kinetic Model” is proposed by synthesizing two clas-
sical deterministic models. This new tumor kinetic model relies on simplifying the
constraints on tumor growth as a function of drug delivery rate, rather than of drug
accumulation on the body. We reveal the results of the validation exploiting real
bone cancer cases from the literature. This new model has a great contribution to
simplifying the solution of advanced chemotherapy treatment scheduling models that
are discussed in later chapters.

ii. The proposed tumor kinetic equation is utilized to reformulate the chemotherapy
treatment scheduling problem as a “Nonlinear Optimal Control Model (OCM )”,
based on the existing model in the literature [Martin, 1992]. The model is presented
for a single cancer stage under the constraints on drug concentration for treatment
cycles, cumulative toxicity for the whole treatment horizon, and targeted cancer cell
reduction in each treatment point. The main objective of the OCM is to minimize
the final tumor size (i.e. number of cancer cells) by optimizing the drug delivery
rate at fixed time intervals. Our results indicate the optimal drug delivery schedule
should start from a low dose to an increased dose towards the end. Additionally, we
conduct numerous sensitivity analyses to highlight the different optimal drug delivery
regimes when the constraint limits are changed.

iii. We extend the proposed OCM into a “Nonlinear Stochastic Optimization (NSO)
Model” by defining probabilistic transitions to higher cancer stages during the treat-
ment. This extension forces the model to make different inter-related treatment
decisions at distinct cancer stages, and to minimize the expected final tumor pop-
ulation. We also consider the situation in which the schedule found in OCM has
been applied to a patient having the probability of stage jump during the treatment,
and compare it to the case that the schedule has been obtained in the presence of
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probabilistic stage jump. The results of this contribution reveal that the optimal
solution found in the latter can save at least 8% of cancer patients that do not have
any stage jump throughout the treatment. This indicates that considering stage
jump is an undeniable factor in designing the drug delivery plan for patients with
cancer. Furthermore, as survival depends on the tumor size, which is our main target
in this thesis, considering both tumor size and stage is more realistic in terms of the
clinician’s perspective.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 is dedicated to background information on the kinetics of the tumor pro-
gression and a literature review on the cancer growth and cell-killing models. We also
review the relevant literature on the deterministic, stochastic and metaheuristic design of
chemotherapy-treatment scheduling.

Chapter 3 introduces a novel deterministic tumor kinetics model. We show the results
of the validation, exploiting real bone cancer cases from the literature.

In Chapter 4, we propose an optimal control model that characterizes the limitations
of drug usage and minimizes the number of tumor cells at the end of the treatment.

Chapter 5 defines the proposed stochastic chemotherapy treatment planning model that
optimizes dynamic drug delivery rate decisions, based on tumor size and stochastic cancer
stage. Two sequential optimization models and a non-linear stochastic programming for-
mulation are developed to solve the proposed model. Results from numerical experiments
are reported to illustrate patterns in the treatment plan that consider the stochastic cancer
staging.

Chapter 6 introduces a metaheuristic algorithm to examine the structure of the pro-
posed chemotherapy treatment scheduling models.

Finally, Chapter 7 provides a summary of the work, highlighting the contributions
which have been achieved, and gives directions for further research.
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Chapter 2

Background and Literature Review

This chapter first presents a tumor-staging concept in comprehension of the biological
motivation for the proposed chemotherapy treatment scheduling problem stated in Chap-
ter 1. A brief but indispensable overview on tumor progression and regression models is
also given. The overview begins with tumor growth models, and in particular Gompertzian
growth function is explained. This is then followed by the cancer chemotherapy treatment
models named “chemotherapeutic induced cell-kill”. Three main hypotheses are reviewed
to understand their impacts on tumor progression. Afterwards, the literature review is
divided into three main categories, which are the optimal control, stochastic, and meta-
heuristic models to assess the status of this research on chemotherapy treatment scheduling
problems.

2.1 Stages of Cancer

Staging is a way of describing to what extent a tumor progresses/spreads in the body, and
which sections of the body it affects [Patel and West, 2020]. This extension is categorized in
many different ways. In the American Joint Committee on Cancer (AJCC), the letters T,
N, and M describes the area of cancer and the letters in the TNM system stand for tumor,
nodes, metastasis [Amin et al., 2017]. Additionally, that cancer stage may be expressed
as local (tumor is in the primary location), regional (tumor spreads to the lymph nodes),
and metastasis (tumor disseminates to other part of the body) [Brierley et al., 2019]. This
representation specifies how large the cancer is, and how far cancer has spread [Koo et al.,
2020]. Furthermore, TNM’s number-based staging system divide cancers into stages usually
numbered from 1 to 4 in Roman numerals. Stage I implies that cancer is relatively small
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and is in its primary location. Stage II means that cancer has not spread into surrounding
tissue but the tumor is larger than in Stage I. In Stage II, cancer cells may have spread into
lymph nodes close to the tumor. This result is cancer-type dependent. In Stage III, the
cancer is usually larger. It may have started to spread into surrounding tissues, and there
are cancer cells in the lymph nodes in the area. Stage IV means that cancer has spread to
another body organ from where it started. This is called metastatic cancer [Compton and
Greene, 2004].

2.2 Tumor Growth and Control Models

2.2.1 Tumor Growth Models

Tumor growth involves a large number of complex biological processes. These have been
experimentally investigated in the biological literature in terms of providing their full
mechanism [Hanahan and Weinberg, 2000], [Hanahan and Weinberg, 2011]. Likewise, with
the set of all functional capabilities of tumor development, many mathematical models
have ultimately been designed, over more than five decades, to understand the response of
the cancer population to clinical intervention [Enderling and AJ Chaplain, 2014].

In one of the earlier studies, Vaidya and Alexandro [1982] evaluated the exponential,
Gompertz, von Bertalanffy, and the logistic models. The data on the untreated primary
human lung carcinoma and induced sarcoma in mice were simulated to compare the per-
formance of given tumor growth models. Even though the logistic equation gave the best
fit in the cases of seven patients, the von Bertalanffy equation was the best in seven in ten
mice. The models were compared based on the percentage error in predicting the volume
of a tumor.

Benzekry et al. [2014] explicitly listed well-known mathematical models in terms of the
functional form of their empirical tumor growth. The listed tumor growth functions were
included as exponential, exponential-linear, power-law, Gompertzian, logistic, generalized
logistic, and von Bertalanffy. A quantitative analysis of these models was proposed, to be
assessed against data retrieved from two in-vivo systems, which are Lewis lung carcinoma
and human breast carcinoma. On the one hand, the authors found that Gompertzian
and exponential-linear models provide the ideal fit for the dynamics of tumor growth in
breast cancer data. On the other hand, for the lung data, Gompertzian and power-law
models were among the ideal candidates. Nonetheless, since the authors did not investigate
the models in terms of fundamental growth characteristics, a great number of studies are
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needed to find the optimal representative tumor growth models which are required to be
validated with clinical results.

In another study, Sápi et al. [2015] discussed tumor growth models regarding their com-
plexity and modeling power in the dynamics of tumor development. Distinct from Benzekry
et al. [2014], they addressed the biological functions of tumor growth (e.g., avoiding cell
death, creating new vessels to reach the nutrients and oxygen) using exponential, logistic
and Gompertzian equations for analyzing tumor development. It was pointed out that ex-
isting studies may not capture the dynamics of tumor progression without looking at the
main characteristics of cancer growth. Hence, that research underlines the still strong need
to create a mathematical model that represents the cancer dynamics; for instance, under
angiogenic inhibition, which means the prevention of new vessels for tumor cells. However,
since those authors reviewed only a few growth models, their outcomes cannot be reliable.
There are other characteristics of tumor growth besides angiogenic inhibition to be investi-
gated for truly understanding cancer dynamics, and the preceding analyses only evaluated
a limited number of growth functions. Nevertheless, this is a valuable study showing the
gap in the literature.

Finally, a quite recent study by Murphy et al. [2016] summarized the differences in pre-
dictions of tumor growth models with a cautionary example. Unlike the above-mentioned
studies, here the models with and without applying chemotherapy were examined. The
authors derived equations for the maximum tumor size, doubling time, and the minimum
required amount of chemotherapy to suppress the tumor. Lastly, they compared their find-
ings based on the chosen models with a sample data set. In conclusion, they highlighted
that the mathematical models in cancer treatment planning need attentive consideration
of the model assumptions; hence, no clear conclusion on which growth models could be
employed to best represent the tumor progression was made.

Last but not least, Haustein and Schumacher [2012] developed a simple and fast com-
putational model to describe tumor progression and metastasis formation, which is the
distant stage in cancer development. They used the Gompertzian function to demonstrate
tumor growth. They adapted their model to clinical breast cancer data, so that the model
reveal its ability to perform systematic analyses relevant for clinical breast cancer research
and treatment. Thus, the Gompertzian equation was used in the model for a specific
cancer stage and led to an appropriate result. Simply, they argued that the Gompertzian
equation is effective in designing optimal chemotherapy treatment while considering tumor
progression. This is a novel study, combining tumor growth and the steps of an advanced
tumor stage at the same time, and the outcome is promising for further investigations.

A series of these recent review/summary studies listed above indicates that more effort
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and new models are required if the intricacies of tumor growth are to be understood
[Gerlee, 2013], since there is no certain or best mathematical model to represent tumor
growth. In other words, as Gompertz and logistic equation curves were compared and
commented on by Winsor [1932], none of the tumor growth equations has any substantial
advantage over the others in the range of phenomena which it will fit. All these models
are proposed to describe the kinetics of the cell cycle, cell-cell interactions, the cell age
distribution, and micro-environmental factors while considering the functionality of tumor
development [Bajzer et al., 1996]. Among those presented tumor growth models, the
Gompertzian equation is used to capture the behaviour of tumor growth in this thesis.
The Gompertzian equation is efficient, and many clinical results reveal that it fits well to
a given data set ([Bajzer et al., 1996],[Benzekry et al., 2014],[Ribeiro, 2017]).

2.2.1.1 Gompertzian Equation

The Gompertzian function was first introduced in 1825 as a mathematical model to study
the human mortality rate [Gompertz, 1825]. Later on, it became popular to describe the
growth of certain tumor cell populations, not only animal [Laird, 1965] but also human
tumors [Akanuma, 1978]. Furthermore, the clinical application of the Gompertzian model
was used in IgG multiple myeloma in humans, not only for the dynamics of the tumor
growth but also regression using the cycle nonspecific drugs and validated against real
data [Sullivan and Salmon, 1972]. More recently, a group of researchers in pharmaceutical
biosciences reviewed the mixed models of tumor growth, and the way anticancer drugs
affect tumor size dynamics [Ribba et al., 2014]. Results indicated that the Gompertz
model is an interesting model for analyzing tumor dynamics, not only because of its simple
mathematical representation in tumor growth, since it has three parameters (initial point,
growth rate, and saturation threshold), but also its ability to incorporate different drug
effects. Moreover, the Gompertzian equation has been also employed to explore the popu-
lations of other diverse organisms; a shortlist of such literature can be found in [Tuckwell,
2016]. Recently, the Gompertz function has been used to present the behaviour of Covid-19
pandemic spread in 11 selected countries [Ohnishi et al., 2020].

2.2.2 Tumor Control Models

In the previous section, several tumor growth models were introduced in terms of their
ability in representing that growth. We illustrated that the Gompertzian equation provides
a good characterization of tumor growth, and highlighted the need for more research to
propose a universal tumor growth model. In this section, we review the literature on control
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mechanisms for tumor progression. Based on research conducted on tumor growth models
so far, several control mechanisms have been developed. We provide a few of these control
mechanisms, which concern the process of killing tumor cells and present the chemotherapy
treatment planning models. In other words, chemotherapeutic induced cell-kill models are
introduced in terms of their designed objective to prevent tumor progression.

As has been previously reported in the literature, the design of chemotherapy treat-
ments and dose planning is quite vital for patients, since these drugs not only kill tumor
cells but also destroy normal healthy cells. Thus, when drugs are applied to either shrink
or eliminate the number of cancerous cells corresponding to its diagnosed stage, it is im-
portant to consider their effectiveness in killing cancer cells, drug doses, drug types, and
treatment times. Although a large number of methods are reported in the literature to
address these issues, a few control functions have demonstrated that limit and eliminate
tumor progression.

2.2.2.1 Tumor Growth Control Functions

Several functional forms are proposed as cancer cell-killing terms in the literature. First of
all, Skipper et al. [1964] have assumed that cell kill is proportional to the tumor population,
which is called the log-kill hypothesis. According to this hypothesis, a fixed dose of the
chemotherapeutic drug eradicates the same fraction of tumor cells regardless of the size of
the tumor at the time of treatment [Traina and Norton, 2011]. Namely, a fixed fraction of
tumor cells is reduced by a given dose of chemotherapy [Usher, 1994]. However, Norton
et al. [1976] have shown that this hypothesis failed to be consistent with some clinical results
for Hodgkin’s disease and acute lymphoblast leukemia. Thus, Norton and Simon proposed
another hypothesis, called the Norton-Simon hypothesis, that the rate of killed cells in
response to treatment is directly proportional to the growth rate at the time of treatment
([Norton et al., 1976], [Simon and Norton, 2006], [Traina and Norton, 2017]). Finally,
Holford and Sheiner [1981] introduced another hypothesis named Emax. According to this
hypothesis, cell-kill is proportional to a saturable function of a tumor mass. This hypothesis
is stated, based on the fact that some chemotherapeutic drugs must be metabolized by an
enzyme before being activated, in the form of Michaelis-Menten kinetics. This reaction is
saturable because of the fixed amount of enzyme.

In summary, three different cell-killing models are introduced based on their proportions
of the tumor population, tumor growth rate, and tumor mass, respectively. These three
cell-kill models have all been used in the literature. We elaborate on some studies which
used all three of those models and compared their impact & performance. Panetta and
Fister [2003] used optimal control techniques to study these three models and found that
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the log-kill model requires fewer drugs, compared to the Norton-Simon model to reduce an
equivalent amount of cancer over the same treatment interval. The other study combined
several growth models with these three different cell-kill hypotheses to predict the optimal
sequencing of chemotherapeutic and surgical treatments in the context of ovarian cancer
[Kohandel et al., 2006]. In another study, Moradi et al. [2013] used these three mathemat-
ical cell-kill models within an optimal control theory context and aimed to minimize the
drug usage while reducing the tumor volume with three various control strategies. The
authors examined their control strategies by exploiting these three hypotheses. Several
combined results are extensively outlined in the paper, and all three hypotheses affected
the outcomes practically equally.

2.2.2.2 Michaelis-Menten Kinetics

In our problem, we are mostly interested in the pharmaceutical application of the above
hypotheses, which are composed of pharmacokinetic (PK - “what body does to the drug”)
and pharmacodynamic (PD - “what drug does to the body”) effects of the drug on the
system. Among them, the Emax model is widely used in its simplest version, known as
the Michaelis-Menten model, that we focus on in this research. Michaelis-Menten models
study an enzymatic reaction which is of great use in pharmacology, biology, and medical
research [Wong et al., 2004]. Optimal designs for the Michaelis-Menten model have been
studied by Swan and Vincent [1977], Boer et al. [2000], Dette and Biedermann [2003],
among many others.

The simplest form of Michaelis-Menten encountered most frequently in biology is the
familiar enzyme kinetic function:

y =
ax

b+ x
;∀x ∈ [0, x0] (2.1)

where y is the reaction velocity, a is the maximum velocity of this reaction, x is the
concentration of a substrate, and b is the half-saturation constant, the value of x, where y
is half-maximal [Wong et al., 2004].

This Michaelis-Menten equation accounts for original enzymatic dynamics and inter-
prets how reaction rates depend on the concentration of enzyme and substrate. Fig. 2.1
demonstrates the saturation curve for an enyzme-reaction.
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Figure 2.1: Michaelis-Menten Saturation Curve for an Enzyme Reaction.

2.3 Optimal Control Models in Cancer Chemother-

apy Treatment Design

Optimal control theory, which plays an important role in designing engineering systems,
is a branch of continuous-time and continuous-state mathematical optimization used in
deriving control policies for optimizing system performance. In addition to engineering,
optimal control theory has many applications in biology, economics, ecology, finance, man-
agement, and medicine [La Torre et al., 2015]. The formulation of an optimal control
problem demands

i. a mathematical model of the process to be controlled

ii. a statement of physical restrictions to control the process, and a performance criterion
(objective function) that specifies that model’s purpose [Kirk, 2004].

The optimal control models (OCMs) have been extensively used in the problem of
chemotherapy treatment planning. Many mathematical models have been developed to
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devise an optimal chemotherapy plan that determines the dosages of the drugs administered
to cancer patients. These OCMs are extensively reviewed in the literature by Swan [1990],
Shi et al. [2014], Sbeity [2015], Moore [2018], and Rojas and Belmonte-Beitia [2018].

Swan [1990] reviewed the interaction of optimal control theory with chemotherapy
in three broad areas: miscellaneous growth kinetic models, cell cycle models, and the
classification of other models which do not directly relate to tumor growth kinetics, but
they could be employed if wanted. This review is worth mentioning as it provides a
comprehensive view of the earlier attempts on chemotherapy drug scheduling models. The
most of the later studies have used the modeling blocks defined in these earlier works.

Shi et al. [2014] summarized the mathematical models focused on the optimal design
of chemotherapy treatment. They organized the paper in terms of modeling methods e.g.,
optimal control model & others, and then classified optimal control models concerning
their solution approach. Within each category, they reviewed the existing models in terms
of the key design factors in the model such as objective function, tumor cell types, number
of a drug in designing chemotherapy such as the number of cancerous cells, toxicity, and
resistance. By discussing the solution techniques, they questioned the models’ effective-
ness to reduce the costs/harms of chemotherapy and/or maximize the associated benefits.
Finally, they concluded limitations of existing researches due to lack of clinical relevance
of the models, and so provides several suggestions to overcome these obstacles. However,
the paper does not specifically provide key tumor growth or control expression for each
reviewed study.

Sbeity [2015] conducted a comprehensive summary of covering papers in the cancer
chemotherapy treatment planning literature. The focus of the paper was on the method-
ology, and the mathematical models were grouped such as nonlinear differential equations,
compartment models, and hybrid models. Different than Shi et al. [2014], this paper pro-
vided mathematical equations with their defined parameters and assumptions which helps
the readers to detect the differences in the approaches. Their objectives in the review were
to discuss the limitations of the existing theoretical research and provide several directions
to improve research in optimizing chemotherapy treatment planning using clinical data.

Moore [2018] focused on the OCM’s application to diseases and therapies, particularly
the optimization of combination treatments. The author initially provided an overview of
OCM that starts with the historical development of optimal control (OC) and is followed
by the basic theory of OC. Leukeima was as an illustration of the purpose of the model, and
the author provided references for more complex cases. It is a well-written paper by sharing
a personal anecdote to grasp the readers’ attention, especially biopharma community, on
the importance of OCM for optimizing drug regimens.
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Rojas and Belmonte-Beitia [2018] provided a survey paper for a series of problems
of OCM (only the systems of differential equations) applied to cancer treatments. Ini-
tially, cell-cycle-specific compartmental models for cancer chemotherapy have been ana-
lyzed. Then, optimal solutions for the low-grade glioma were studied. The dynamics of
cancer cell populations were considered with a 2-compartment model with sensitive and
resistant populations. Finally, they have studied antiangiogenetic treatments to highlight
the tumor microenvironment. They concluded by emphasizing the need for mathematical
models to implement their understanding and develop new optimal treatment strategies.

With these above review papers, it is observed that there exists a vast literature of
OCMs that are applied to cancer chemotherapy treatment dating back to the 1970s and
1980s with the fundamental work by Eisen [1979] and Swan [1988] (and their references)
and continued throughout the 1990s. Swan and Vincent [1977] is the pioneer for modeling
the chemotherapy process as an OCM based on the Gompertzian model. This study
constructs the foundation of our ultimate stochastic optimization model. More details are
provided in Chapter 3.

Then, this chemotherapy treatment design problem is enriched gradually over the years
by focusing to minimize the number of tumor cells along with many aspects considering
drug toxicity ([Murray, 1990], [Zhu et al., 2018], [Devia and Giordano, 2019]), drug resis-
tance ([Martin, 1992], [Martin and Teo, 1993], [Costa et al., 1995], [Swierniak et al., 2005],
[Mansoori et al., 2017]), the cell-cycle specific drug regimen ([Panetta and Fister, 2000],
[Swierniak et al., 2003], [Dua et al., 2008]), multi-drug ([Weiss and Nowak-Sliwinska, 2017]),
and building multi-objective OCM ([Alam et al., 2013a]) in the development of mathemat-
ical models. Cancer chemotherapy treatment scheduling problem regenerates a wide range
of classification based on research studied not only on how to design the model but also
the solution approach ([Schaettler and Ledzewicz, 2014], [Schättler and Ledzewicz, 2015]).

These mentioned papers consider cancer at one site. However, there are some recent
studies that consider, for example, the evolution of metastases population as an OCM for
designing a chemotherapy schedule [Benzekry, 2017]. The idea of that thesis is similar to
this present work; however, our model introduces a new stochastic mathematical model to
the literature in Chapter 5 by providing a dynamic programming mechanism.

Drug resistance is a substantial obstacle to achieving success in chemotherapy treat-
ment. Drug resistance occurs when cancer cells stop reacting to the injected or infused
drug(s). In other terms, drug resistance is the reduction of the medication’s effectiveness
to the disease, and depends on several factors [Housman et al., 2014]. Initially, tumor cells
were thought of as a group of homogeneous cells, and treatment was aimed to kill as many
cells as possible to eradicate the disease. However, over time, it has been understood that
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tumor cells have a heterogenic feature [Heppner, 1984]. Therefore, while the treatment
focused on the most dominant cell group, drugs used to target that group might not have
any impact on some sub-group known as “chemotherapeutic resistance cells” [Gottesman,
2002]. Thus, drug resistance may cause a decrease in the efficacy of the ongoing treatment
and lead to an invasion of cancer metastases [Mansoori et al., 2017]. Since drug resistance
can cause failure in chemotherapy treatment [Housman et al., 2014], Coldman and Goldie
[1983] developed a model to investigate the drug resistance of cancer cells. It has been
shown that an increasing population of cancer cells triggers drug-resistant cells. Thus,
Martin et al. [1990] and Martin [1992] added a constraint to the model. This prevents the
intermediate tumor size from becoming extremely large by eliminating the drug resistance
effect. In this thesis, we control the drug resistance in the same way as in Martin [1992],
by taking a continuous state constraint that allows the model to monitor the tumor cell
count throughout the treatment.

Methods for solving the OCMs represents another direction in the literature. The nu-
merical method proposed by Goh and Teo [1988] was used by Martin [1992] to find an
optimal schedule of chemotherapy drugs with the inclusion of drug toxicity constraints.
This methodology is implemented to solve the simplified OCM in Chapter 4. In the liter-
ature, there are other mathematical methods to solve the OCMs in chemotherapy treat-
ment scheduling. These include Newton’s method [Martin et al., 1992b], the Pontryagin
Maximum Principle [Panetta, 1998], iterative algorithms [Pereira et al., 1995], nonlin-
ear programming [d’Onofrio et al., 2009], and a deterministic oscillatory search algorithm
[Archana et al., 2018].

Nevertheless, different simulation techniques have been recently developed to optimize
the dose schedule of chemotherapy in cancer treatment [Simbawa, 2017], specifically in
colon cancer [Cockrell and Axelrod, 2019] and non-small lung cancer [Koz lowska et al.,
2020].

To sum up, for a comprehensive review on chemotherapy models and control of chemother-
apy, along with the control of other cancer modalities, the reader is kindly directed to a
recent study by Padmanabhan et al. [2021].

2.4 Stochastic Models in Cancer Chemotherapy Treat-

ment Design

Current control models (mostly stated in Section 2.3) for chemotherapy treatment planning
consider the decision process at the beginning of chemotherapy and then calculate the
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optimal design for the whole period [Shi et al., 2014]. On the one hand, this approach
still specifies the optimal dynamic controls, as the effect of the drug delivery decisions is
deterministic. On the other hand, a biological system has a complex nature that prevents a
completely deterministic description by a set of mathematical functions. Therefore, various
stochastic descriptions of the biological processes need to be utilized until the true nature
of their behavior can be thoroughly understood [Padgett and Tsokos, 1970].

From various aspects, stochastic chemotherapy models have been studied extensively
over the years to describe some random behavior of a biological system: tumor growth
([Albano and Giorno, 2006], [Rosenkranz, 1985], [Lisei and Julitz, 2008]), drug resistance
([Coldman and Goldie, 1986], [Komarova, 2006]), and cancer metastasis [Frei et al., 2018].

Since drug resistance is one of the main causes of failure in the treatment of cancer, a few
papers addressed this issue probabilistically as well. As pioneers of developing stochastic
models of drug resistance, Coldman and Goldie [1983] analysed tumor size as a stochastic
process to develop treatment plans maximizing the probability of having no resistant cells.
In a later study, they modeled the presence of drug-resistant mutants using a stochastic
model to design an effective chemotherapy plan [Coldman and Goldie, 1986]. Moreover,
Coldman and Murray [2000] designed a model to maximize the probability of successfully
treating cancer & the probability of no toxicity and solved it by sequential quadratic
programming. Komarova [2006] formulated a stochastic model for multi-drug resistance
and investigated the dependence of treatment outcomes on the initial tumor load, mutation
rates, and the turnover rate of cancerous cells. In these studies, the birth-death process
was taken into account while designing the model.

Some other studies captured the randomness in tumor growth in time by defining the
growth using stochastic differential equations (SDEs). For instance, Lisei and Julitz [2008]
modeled tumor growth using SDEs with multiplicative noise terms causing random varia-
tions on the growth functions. They showed the existence of the solution when the control
term is written as a differential inclusion problem. Rao and Rao [2006] studied cancer cell
growth as a two-stage stochastic model. It was assumed that the growth of a pre-malignant
cell (normal cells), mutation (start of cancer), loss of pre-malignant, and the birth of malig-
nant cells are random and follow Poisson processes with different parameters. Then, Rao
et al. [2014] extended this study on tumor growth by considering stochastic optimization
models for cancer chemotherapy treatment planning. Multi-objective stochastic optimiza-
tion problems were designed to minimize, first, the expected intensity of cancer-causing
cells, either in the mutant or malignant stage, and second, the stay time of cancer-causing
cells during the time of treatment by considering the cells at both mutant and malignant
stages, respectively. Simply put, this paper studied the trade-off between drug vacation
(which can be ineffective to control the growth of cancer) and the drug administration
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period (regular amount of the same drug with small quantities cause drug resistance) by
utilizing a two-stage stochastic model for cancer growth during chemotherapy treatment.

In another perception, Padi et al. [2010] studied stochastic models for optimal drug
administration in cancer chemotherapy. They considered the problem of determining the
optimal threshold limits on the drug administration period and the length of that period,
while monitoring chemotherapy treatments. They developed stochastic models for tumor
size during the presence & absence of drugs by utilizing difference-differential equations
(delay differential equation).

In contrast to the extensive work examining tumor growth and regression, relatively few
models have been proposed to describe metastasis. Pinho et al. [2002] modeled a system
of five differential equations and one functional differential equation for cancer treatment
by chemotherapy where there is a metastasis from a primary to a secondary site by the
cancer cells. Newton et al. [2012] designed a stochastic Markov chain model for metastatic
progression for primary lung cancer. Through an iterative numerical search, the model
simulates and quantifies disease progression pathways and timescales of progression from
the lung position to other sites. Frei et al. [2018] introduced and analyzed a branching
stochastic process with a settlement that has been applied to metastatic cancer growth.
However, these studies neglect the chemotherapeutic effect on tumor progression. More-
over, there are other studies with Markov models considering the early stage of cancer
and the effect of cancer therapy at each stage in terms of survival [Boher et al., 1999],
[Büyükdamgaci-Alogan et al., 2008]. Other studies on modeling metastatic growth include
Benzekry [2012], Hartung et al. [2014], and ?.

MDPs are powerful analytical tools for finding optimal solutions to sequential and
stochastic decision problems. With an MDP, standard Markov models are generalized in
which a decision process is embedded, and multiple decisions are made over time [Alagoz
et al., 2010]. In recent studies presented in Table 2.1, MDPs receive great attention in the
problem of chemotherapy treatment planning. The need of utilizing MDPs are emphasized
by Shi et al. [2014], since Markov decision processes (MDPs) may help to overcome the
gaps between theoretical research and clinical application by allowing to include stochastic
features in a pure optimization problem. For comprehensive coverage of MDPs, Puterman
[1990] and Bertsekas [2000] can be referred. Furthermore, some other applications of MDPs
in medical decision making can be found in the studies of Schaefer et al. [2005], Ayvaci
et al. [2012], Erenay et al. [2014], Steimle and Denton [2017], Scheller-Wolf [2018].
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Table 2.1: Recent MDP Papers in Chemotherapy Treatment Design

Paper Model/Method Objectives Features
Stochastic Compo-
nents

Bazrafshan and Lotfi
[2020]

Markov decision pro-
cess model/value iter-
ation

max.patient survival,
min drug toxicity, and
chemo costs

multi-drug, sequential
treatment, details on
drug dosage, new drug
combinations

Uniform distribution
of the toxicity shifts in
treatment period

Maass and Kim [2020]
Markov decision pro-
cess/backward induc-
tion

optimize multi-
modality treatment

degree of tumor pro-
gression and normal
tissue side effect,
different categories
of treatment modal-
ities based on the
characteristics of
repeatability, tumor
reduction and risk to
normal tissue

states are condition-
ally independent

Imani et al. [2020]
Markov decision pro-
cess/value iteration

maximizing quality-
adjusted life years
(QALYs), expected
cost of the interven-
tion, treatment.

multi-objective, data-
driven decision mak-
ing

Historical data is
used to estimate
state-action transition
dynamics in breast
cancer

2.5 Metaheuristic Models in Cancer Chemotherapy

Treatment Design

Most optimization problems are highly nonlinear and are subject to various complex con-
straints [Yang, 2011]. Therefore, finding an optimal solution to such optimization problems
with an exact algorithm may be computationally challenging, and often impractical. Thus,
approximate algorithms and heuristics/metaheuristics are needed for solving large-scale
models due to a high-dimensional search space [Neapolitan and Naimipour, 1997].

“Meta” means “higher level” and “heuristic” means “to discover” in Greek [Lazar,
2002]. Heuristics are techniques that are mostly problem specific to find good (near-)
optimal solutions in a reasonable computational cost to guarantee neither feasibility nor
optimality [Russell and Norvig, 1995]. However, metaheuristic are problem-independent
that can be applied to a broad range of problems. Metaheuristic algorithms have an
advantage in both their effectiveness and general applicability over heuristics [Ólafsson,
2006]. Metaheuristics are designed to address many optimization problems where exact
methods have failed to produce efficient solutions within reasonable time limits [Ólafsson,
2006].
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The detailed classification of metaheuristic algorithms, along with their advantages
and disadvantages, has been extensively reviewed by Beheshti and Shamsuddin [2013]. In
another recent review, Hussain et al. [2019] performed a comprehensive picture of meta-
heuristic research to highlight potential open questions and critical issues raised in the
literature. The other comprehensive review has been conducted by Abdel-Basset et al.
[2018] and Gautam et al. [2019]

A metaheuristic algorithm has been utilized for over a decade to solve the problem of
optimal chemotherapy treatment planning. A summary of the studies before 2010 that
consider solving the optimal chemotherapy treatment planning problem by heuristic algo-
rithms can be found in Shi et al. [2014], while the more recent applications in this category
are listed in Table 2.2.

Among the recently developed heuristics, Alam et al. [2013a] proposed a model of
chemotherapy drug(s) scheduling for cell-cycle specific cancer treatment They managed
the cell-cycle-specific tumor growth by using a control model, where a close loop control
model with a multi-objective Genetic Algorithm (MOGA) has been utilized to search for
suitable drug concentrations at the tumor site. The model considered the trade-off between
the number of proliferating cells at the end of the treatment, and average drug toxicity
over the treatment. The results slightly outperformed the authors’ previously published
practical swarm algorithm (PSO) [Alam et al., 2010]. Later, the authors developed another
cancer chemotherapy treatment model to optimize drug doses and treatment intervals for
reducing the final number of cancer cells under the constraints of maximum allowable drug
concentration, toxicity, cumulative drug concentration, and tumor size constraints [Alam
et al., 2013b]. In that study, the authors aimed to improve the practicality of the resulting
treatment policies by considering treatment schemes with i) variable intervals and variable
doses (VIVD), ii) fixed intervals and variable doses (FIVD), and iii) periodic dose (PD).
They emphasized the importance of FIVD and PD schemes due to their characteristic of
”periodicity” and ease of implementation along with friendliness to patients.

Agur et al. [2006] has studied the problem of adapting heuristics to optimize chemother-
apy scheduling to present attainable treatment options by aiming to cure the patient as
quickly as possible. The possible schedules were tested by three local search-based heuris-
tics to observe a solution that can locally optimize the objective function. Simulated
annealing (SA) were outperformed over threshold acceptance (TA) and old bachelor ac-
ceptance (OBA) in terms of computational effort. Wang et al. [2018] addressed the problem
of combination chemotherapy with dose adjustment. A mono-chemotherapy model with
two cell-cycle phase-specific chemotherapeutic drugs has been constructed as an extension
to Agur et al. [2006] that has considered one drug administered at a fixed dose. A memetic
algorithm (ME) was designed by utilizing the advantages of evolutionary algorithms and
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local search heuristics to solve the problem. The results demonstrated that combination
chemotherapy was superior to a single-drug treatment plan. Later, Wang et al. [2019]
proposed optimization of cell cycle-specific combination chemotherapy in the presence of
drug resistance by combining the cell cycle mechanism of Agur et al. [2006] with the mul-
tiple drugs and drug resistance mechanisms of Tse et al. [2007]. Based on the numerical
results, they advocated more flexible drug regimens compared to the clinical chemotherapy
regimens in terms of the treatment cycle to minimize not only the number of tumor cells,
but also the post-treatment chemotherapy-induced toxicity.

Heydarpoor et al. [2020] designed a multi-objective optimization model to minimize
both the cancerous cell density and drug dose and solved it with Particle Swarm Op-
timization (PSO) and Genetic Algorithm (GA). Their tumor model was combining the
works of De Pillis and Radunskaya [2003] and Salamci and Banks [2010], i.e., phase-spaced
nonlinear tumor growth under an immune response & chemotherapy according to a state
dependent Riccati equation. Their results illustrated that the PSO method has outper-
formed GA and emphasized that both have been developed to gain a proper understanding
of medical supervision to a cancer patient.

Table 2.2: Summary of Recent Metaheuristic Models in Chemotherapy Treatment Design

Paper Model/Method Objectives Features

Alam et al. [2013a]
close-loop control model
solved by GA

minimize the proliferating
cells at the end of the treat-
ment and drug toxicity over
the whole period of treat-
ment

multi-objective, cell-cycle
specific

Alam et al. [2013b] GA minimize the tumor volume
single drug, single objective,
no cell-cycle specific

Wang et al. [2018]

Heuristic/combined
population-based evo-
lutionary search and
neighbourhood-based strate-
gies

maximum efficacy while min-
imizing the toxicity

multi-drug dose varying
chemotherapy, cell-cycle
specific

Wang et al. [2019]
Heuristic/Memetic Algo-
rithm with an advanced
local search

minimize the quantity of tu-
mor cells and post-treatment
drug toxicity

cell cycle specificity of drugs,
multi-drug, drug resistance

Heydarpoor et al. [2020] GA & PSO
minimize cancerous cells and
approved drug amount

immune response
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2.6 Conclusions

In this chapter, we reviewed tumor growth & control models and hypotheses on cancer
chemotherapy models to identify which models we are interested in to define the pro-
posed tumor kinetic model in Chapter 3. Also, the literature review on OCMs in cancer
chemotherapy design is fully presented by focusing especially on the review papers. Based
on the studies that review papers indicated in Section 2.3, the proposed OCMs in the
literature do not take into account tumor progression through its stage while designing
mathematical models. They instead assume that the tumor growth rate is constant for
each type of cancer cell. However, the modeling design was taken an advanced stage where
the first optimal control model was designed by Swan and Vincent [1977] considering the
multi-drug, multi-objective, drug resistance, cell-cycle specific features in the design of
chemotherapy treatment schedule.

Nonetheless, there exists a considerable body of literature on modeling the growth of
cancer with stochastic assumptions. However, to the best of our knowledge, no existing
work in the literature models the possibility of stochastic cancer staging while a patient
is under treatment. To fill this gap, this thesis provides a mathematical model capturing
stochastic jump while designing a chemotherapy plan and propose a metaheuristic approach
to solve the proposed model.

Most existing models on the chemotherapy treatment planning problem use determinis-
tic dynamic control and a compartmental model with system states defined as the number
of cancer cells in the body. However, these models are not regarded well and criticized by
clinicians as they tend to ignore some important aspects like cancer staging and hetero-
geneity in growth rate over time. To propose an alternative approach, we extend a well-
known deterministic control model of Martin [1992] for optimizing chemotherapy treatment
plans/schedules and incorporate stochastic cancer staging in that model. Therefore, this
work attempts to present a proof of concept research on the incorporation of tumor kinetics
and stochastic cancer staging into the study of chemotherapy optimization. We explore to
open a new avenue into the literature by combining control and stochastic models, to keep
track of tumor size and toxicity under stochastic stage jumps.

Although cancer chemotherapy has been studied stochastically over the years as seen
in Section 2.4, the research in designing chemotherapy considering the possibility of stage
jump, while the patient is under the treatment, has received no attention in the litera-
ture. Therefore, this study addresses the need for a new mathematical model for cancer
chemotherapy that incorporates stochastic cancer staging into the optimization model while
minimizing the number of tumor cells at the end of the treatment. To properly address
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this problem, sequential decision approaches and a metaheuristic algorithm are proposed
in this thesis.

The insights reported in this thesis are unique contributions, because studies in the lit-
erature do not consider the probability of tumor stage jump while minimizing the number
of tumor cells at the end of the treatment. We position our work combination of studies in
the literature, and yet differentiate our work from them because this thesis: 1) develops a
new simplified tumor kinetic model 2) presents an analytical model to determine the opti-
mal chemotherapy treatment schedule 3) proposes stochastic optimization 4) implements
Simulated Annealing (SA) algorithm for the solution of the proposed stochastic optimiza-
tion model. As indicated in the research of Agur et al. [2006] and Villasana and Ochoa
[2004], SA is a great candidate to solve a given optimal control problem with simplicity
and efficacy.

In this context, this thesis provides a new model on the problem of the chemotherapy
treatment schedule. Our modeling approach provides a new direction to the literature
for developing the optimal drug delivery plan by considering the dynamic factor of tumor
growth incorporating probabilistic tumor stage jump. Although our modeling framework
is basic, considering mainly drug toxicity & indirectly drug resistance in the failure of
chemotherapy treatment, it can be extended to a more realistic dynamic problem. However,
even as it is, it provides valuable insights about the optimal drug delivery schedule of
chemotherapy treatment.
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Chapter 3

Tumor Kinetic Model

This chapter starts with a summary of mathematical models for tumor growth and control.
Then, to reduce the computational difficulty for the numerical simulation, optimization and
stochastic models which will be discussed in other chapters, we propose a simplified tumor
kinetic model. We achieve this by the assumption of a controlled, constant drug delivery
rate and the validated approximation of drug concentration. Finally, using a real data set
given in the literature, we calibrate parameters for the simplified tumor kinetic model and
summarize the results which demonstrate the agreement of the model with the real data.
We conclude this chapter with a discussion that utilizes the proposed model as a building
block for nonlinear and stochastic optimization models in the later chapters.

3.1 General Tumor Kinetic Model

3.1.1 Tumor Growth Equation

In general, untreated tumor cells are assumed to follow a Gompertzian type of growth
pattern (see details in Subsubsection 2.2.1.1), and initially at time t = 0 the size of the
tumor is N(0) = N0. In the Gompertz function, the growth rate decays as the tumor
population increases. The general mathematical formulation of the Gompertzian function
for tumor growth can be modeled by the first-order differential equation

dN(t)

dt
= −λN(t)ln

[
N(t)

θ

]
, (3.1)
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where N(t) represents the total cancer cell population at time t, λ is the intrinsic growth
rate and θ is the asymptotic maximum tumor population (also known as carrying capacity)
that can be reached with the available resources when λ is positive [Sullivan and Salmon,
1972]. The solution of the growth function is

N(t) = θexp

{
ln

[
N0

θ

]
exp(−λt)

}
, (3.2)

where N0 is the initial tumor population at the starting observation time. Particularly,
N(t) = N0 as t = 0 and N(t) = θ as t → ∞ are the equilibrium solutions to the Gom-
pertzian equation ([Laird, 1964], [Laird, 1965]). Thus, the growth is at the slowest points
both at the start and at the end of the planning horizon as shown in Fig. 3.1. In general,
the Gompertzian function has a sigmoid shape, as the tumor initially grows because of the
availability of nutrients and oxygen, and gradually decelerates until the tumor reaches its
maximum value.
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Figure 3.1: Gompertz Curves under Different Growth Rates, λ.
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3.1.2 Tumor Growth Control under Treatment

The effect of a chemotherapeutic drug on tumor population size (i.e., the number of cancer
cells) is captured in several ways, including a special case of Emax type of cell-kill model in
the literature (see Subsubsection 2.2.2.1 for the other types of models). This specific type
of Emax cell-kill model is called a Michaelis-Menten type of saturation term, which was first
introduced by Himmelstein and Bischoff [1973]. This hypothesis assumes that the cell-kill
is proportional to a saturable function of a tumor mass with the following equation:

k1v(t)

k2 + v(t)
. (3.3)

Eq. (3.3) is called Michaelis-Menten equation (see details in Subsubsection 2.2.2.2).
Here, v(t) denotes the concentration of the anti-cancer drug, and k1 & k2 are positive
constants. Specifically, k1 represents the maximum reaction rate reached by the system;
whereas, k2 shows the substrate concentration when the reaction rate is half of the maxi-
mum reaction rate [Michaelis and Menten, 2007].

3.1.3 Tumor Kinetic Model

Many studies used this type of rate of loss term, i.e. Eq. (3.3), in their tumor kinetics
model to control tumor growth by a chemotherapy agent during the treatment. The
resulting tumor growth function under treatment is as follows:

dN(t)

dt
= −λN(t)ln

[
N(t)

θ

]
− k1v(t)

k2 + v(t)
N(t), N(0) = N0 (3.4)

which describes the net growth of a tumor cell population.

The tumor kinetic model under treatment depends on the drug concentration, which
can be modeled in several ways. One of the most common and classical mathematical
representations of anti-neoplastic drug concentration after the drug administration is the
one proposed by Bellman [1983] as illustrated in Fig. 3.2:

dv(t)

dt
= u(t)− γv(t), v(0) = v0 (3.5)

where γ is a constant rate of drug concentration decay. The concentration of the drug is
assumed to decay exponentially by a fraction γv(t) over the time d(t). Before administra-
tion, the drug concentration v(t) is assumed v0, which is often taken as 0. Furthermore,
u(t), the drug delivery rate, refers to the amount of the drug delivered to the cancer site
during the treatment time.
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drug delivery rate drug decay

Figure 3.2: A Visual Representation of Drug Concentration Change in Cancer
Site.

3.2 Proposed Tumor Kinetic Model

We assume continuous drug delivery with a constant rate during the treatment duration.
This leads to a simplified approximation of the drug concentration in Eq. (3.5) and the
resulting tumor kinetics model under cancer treatment. This approximation reduces the
computational difficulty when the number of decision variables is increased in both OCM
and NSO model, which will be discussed in the following chapters.

3.2.1 Constant and Continuous Drug Delivery Rate

Assumption 3.2.1 Tumor growth is controlled with a constant and continuous drug de-
livery between each treatment period.

Assumption 3.2.1 implies that drug concentration stabilizes and converges to a linear
function of the drug delivery rate. Therefore, considering constant drug delivery rate at
treatment points helps maintain the tractability of the mathematical model, and may be
a reasonable assumption for particular types of anti-cancer agents & cancer types such as
glioma in the brain and spinal cord. For instance, a continuous daily regimen of a specific
chemotherapeutic agent (temozolomide) against gliomas was well tolerated for periods
up to 6 or 7 weeks [Brock et al., 1998]. Thanks to the recent innovations in wearable
health technologies, the feasibility of continuous drug delivery improves [Iqbal et al., 2021].
Many recent papers advocate the use of continuous treatment to better combat the tumors
[Abdulrashid et al., 2019]. It is noted that this assumption, u(t) = u, will be later relaxed
to continuous and constant drug delivery at each treatment period in the decision horizon
(i.e., delivery rates vary from period to period). However, the replacement of v(t) by the
drug delivery rate, u(t), will remain the same for the rest of the thesis.
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3.2.2 Approximation of Drug Concentration

Assumption 3.2.2 We assume that u(t), drug delivery rate, to be constant at predefined
decision horizon as u(t) = u.

The solution of v(t) in Eq. (3.5) [details in Appendix B] when u(t) = u for the whole
treatment time is as follows:

v(t) = (1− e−γt)u
γ
. (3.6)

As t increases, v(t) converges to u
γ
. If γ is sufficiently large, v(t) may converge to u

γ
. Thus,

v(t) in the second component of the kinetics model in Eq. (3.6) can be approximated to u
γ

with minimal error.

To conclude, Eq. (3.3) is widely used and validated in earlier studies. In this thesis, we
demonstrate that when u is continuous and γ is large enough, we can rewrite Eq. (3.3) as

k1u

γk2 + u
. (3.7)

Therefore, Eq. (3.3) and Eq. (3.7) are equivalent under the given assumptions. Thus,
our approximated Michaelis-Menten kinetic is valid.

3.2.3 Other Assumptions

Combinations of drug agents rather than a single agent are proposed to create more efficient
treatment plans in terms of reducing drug resistance [Murray, 1997]. However, we assume
a single drug agent administered the cancer site (which could be a static combination of
multiple drugs), since integrating time-specific effects of different drugs makes the model
harder to solve. Using a single drug administration, we also eliminate several additional
assumptions and parameters related to the effects of other drugs in the model. To consider
the maximum cumulative effect on the tumor population, it is reasonable to combine the
effects of each drug for the cell evolution in a particular phase [Swierniak et al., 2005].

Every cell has cycles that result in the replication of cells. The cell cycle is usually
divided into 5 phases which are G0, a phase where cells remain resting; G1, the first growth
phase; S, a phase when DNA is replicated; G2, the second growth phase; M , mitosis phase.
The injected drug can interfere with any of these division stages. Thus, considering the
modeling of cell-cycle specific drug administration is important since the fraction of killed
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cells depends on the growth fraction of tumor cells [Panetta and Fister, 2003]. However,
since our primary goal here is creating a simple deterministic model incorporating tumor
growths and the effects of the drug for killing the cancer cell, we assume the model is
composed of a non-cycle-specific drug.

3.2.4 Numerical Validation

Fig. 3.3 displays the change of the drug concentration during a single treatment time cycle.
According to the graph, the drug concentration reaches its maximum value in a compa-
rably short time relative to the treatment time intervals, say, ∆t = 28 days and remains
stable even for different drug decay constants. In pharmacokinetics, this phenomenon is
called steady-state concentration. Steady-state concentration describes dynamic equilib-
rium when the amount of a drug being absorbed is the same amount eliminated from the
cancer site when the drug is given continuously ([Gupta, 2016], [Wadhwa and Cascella,
2020], [Parkway, 2020]). Since the change of drug concentration is constant, dv(t)/dt = 0.
That leads to u = γv(t).

Figure 3.3: Drug Concentration Change under Different Drug Decay Parame-
ters, γ.
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3.2.5 Simplified Tumor Kinetic Model

Here, we give the complete tumor growth and control model which includes the simplified
and approximated control term under the assumption of controlled constant & continuous
drug delivery rate.

As seen in Fig. 3.3, the drug concentration function, v(t), can be approximated as a
step-function if γ is sufficiently large, i.e., we can validate the approximation v(t) = u/γ.
Therefore, the tumor growth change in Eq. (3.4) can be rewritten as

dN(t)

dt
= −λN(t)ln

[
N(t)

θ

]
− k1u

γk2 + u
N(t). (3.8)

Ultimately, Eq. (3.8) is considered as “The Proposed Tumor Kinetic Model” and in-
cludes our assumption that tumor growth is controlled by the drug delivery rate.

Its solution is given as

N(t) = θexp

{
λ(γk2 + u) ln

[
N0

θ

]
− (eλt − 1)uk1

λeλt(γk2 + u)

}
. (3.9)

3.2.6 Nondimensionalizing of the Proposed Tumor Kinetic Model

The mathematical model generally keeps track of system states representing physical quan-
tities measured by units. Dealing with these units while solving the model may be cum-
bersome. Hence, non-dimensionalization helps partially or fully remove units from their
physical quantities by substituting them with new variables. Moreover, Eq. (3.8) is a
nonlinear first order differential equation. Therefore, defining a nondimensional cancer
population term allows us to convert Eq. (3.8) into a separable differential equation.

We define the nondimensional cancer population as

y(t) = ln

[
N(t)

θ

]
. (3.10)

Thus, N(t) in terms of y(t) can be written as

N(t) = θey(t). (3.11)
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Then, by taking the derivative of both sides with respect to t, we reach

Ṅ(t) = θey(t)ẏ(t). (3.12)

Substituting Eq. (3.11) and Eq. (3.12) into Eq. (3.8), we obtain the following differential
equation:

ẏ(t) = −λy(t)−
[

k1u

γk2 + u

]
, (3.13)

which defines the “Nondimensional Tumor Kinetic Model”. Furthermore, using Eq. (3.9)
in Eq. (3.10), the solution of Eq. (3.13) is calculated as

y(t) = −1

λ

(
k1u

γk2 + u

)
+

[
y(t0) +

1

λ

(
k1u

γk2 + u

)]
e−λt. (3.14)

In an alternative way, Eq. (3.13) can be solved using an integrating factor, whose details
are provided in Appendix A, with its solution.

3.3 Computational Results

In this section, we numerically solve Eq. (3.14) by using the initial tumor size. Parameters
and their notations used in the implementation of the proposed model and its validation
are listed in Table 3.1.

3.3.1 MCP Program with Real Data Set

Medical data for a cohort of bone cancer patients who are under treatment with three cy-
totoxic agents, which are melphalan, cyclophosphamide, and prednisone program (MCP),
are reported in Swan and Vincent [1977]. This data set consists of the number of tumor
cells depending on the time of chemotherapy treatment and is presented in Table 3.2 with
four typical cases of a chemotherapy treatment program. According to the MCP program,
the chemotherapy treatment schedule is designed as follows:

(i.) On day 1:

a. Orally, a certain dosage of melphalan is given. Afterwards, it is repeated for the
next three days,
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Table 3.1: The Descriptions, Values and Sources of the Parameters Used in the Tumor
Kinetic Model

Parameter Description Value Unit Source

N0 Initial tumor population presented in Table 3.2 cells Swan and Vincent [1977]

θ Asymptotic maximum tumor population 3.9313 ∗ 1012 cells Swan and Vincent [1977]

λ A positive tumor growth rate constant 0.015 1/t Swan and Vincent [1977]

γ A positive constant decay of drug concentration 1.5 1/t Swan and Vincent [1977]

u(t) Drug delivery rate at the cancer site calibrated by assumption [D]/t calibrated

v(t) Drug concentration at the cancer site time dependent [D] -

k1 Reaction rate constant presented in Table 3.2 1/t calibrated

k2 Substrate concentration at k1
2

a relative constant [D] -

∆t A single treatment time cycle 28 t Swan and Vincent [1977]

[D] is the unit of drug concentration/ mass of drug delivered to a cancer site.

b. Intravenously, a certain dosage of cyclophosphamide is given,

c. Orally, a certain dosage of prednisone is given. Then, it is repeated for the next
three days.

(ii.) About a month later, the above schedule is repeated with a reduced dose, and it will
continue in the same way until the treatment schedule is completed.

3.3.2 Evaluation of Parameters

Based on the standard MCP program given in Table 3.2, Swan and Vincent [1977] assumed
that the administered drug(s) is given to a desirable concentration k2 in every time interval
∆t. Different than our assumption, they assumed that the drug has an instantaneous effect
on the cancer site when it is first applied. Then, depending on the drug decay constant, drug
concentration will decrease after some time. Since we control tumor growth with a constant
drug delivery rate, the drug delivery rate u = k2

∆t
is constant for the treatment horizons so

that drug concentration levels can be kept at a certain value throughout the treatment.
Thus, the total drug dose is equal to that of Swan and Vincent [1977]. Therefore, the
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Table 3.2: Data Set Taken from Bone Cancer Patients Based on MCP Chemotherapy
Treatment Schedule

Patient A

Time (day) ∆t Tumor cells, N y k1
(x 1012)

0 0 1.297 -1.109
25 25 0.383 -2.329 3.232
71 46 0.108 -3.595 3.141
155 84 0.0985 -3.687 2.402
159 4 0.0956 -3.717 2.710
182 23 0.0945 -3.728 2.422
189 7 0.0940 -3.733 2.437

Patient B

Time (day) ∆t Tumor cells, N y k1
(x 1012)

0 0 2.70 -0.375
19 19 1.92 -0.717 1.129
29 10 1.77 -0.798 0.839
47 18 1.49 -0.970 0.984
68 21 1.68 -0.850 0.339
103 35 1.63 -0.880 0.596
138 35 1.58 -0.912 0.617
178 40 1.33 -1.08 0.835

Patient C

Time (day) ∆t Tumor cells, N y k1
(x 1012)

0 0 1.53 -0.944
39 39 0.597 -1.885 1.979
66 27 0.556 -1.956 1.353
94 28 0.336 -2.460 2.210
122 28 0.355 -2.405 1.483
150 28 0.271 -2.675 2.059

Patient D

Time (day) ∆t Tumor cells, N y k1
(x 1012)

0 0 1.06 -1.311
29 29 1.08 -1.292 0.811
61 32 0.955 -1.415 1.041
89 28 0.973 -1.396 0.877
110 21 1.01 -1.359 0.812
138 28 0.937 -1.434 1.018
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solution of the tumor kinetic model in Eq. (3.14) from ti−1 to ti, for i = 1, 2, · · · , n, where
n is the number of treatment cycles, can be rewritten as

y(ti) = −1

λ

(
k1

γ∆t+ 1

)
+

[
y(ti−1) +

1

λ

(
k1

γ∆t+ 1

)]
e−λ∆t. (3.15)

Moreover, if we consider the time interval [ti−1, ti], we can find constant quantity k1 in
this specified time interval with respect to y(ti−1) and y(ti) as:

k1(ti) = λ(γ∆t+ 1)

[
y(ti)e

λ∆t − y(ti−1)

1− eλ∆t

]
. (3.16)

The values of quantities in the right-hand side of Eq. (3.16) are known from Table 3.2.
Therefore, the value of k1 is obtained using these values and presented in the same table.
It has been observed that the drug reaction rate parameter k1 varies for each time interval
and it changes for each patient.

The average value of k1, denoted as k1, in each patient is necessary for the evaluation of
the model that calculates the number of nondimensional tumor populations in Eq. (3.15).
Thus, we calculate the average drug effectiveness parameter, k1, in Eq. (3.16) and display
it in Table 3.3 for each patient. It is important to note that the higher value of k1 is
preferable.

Table 3.3: Comparison of the Average of Drug Effectiveness Parameter

Average of Drug Effectiveness Quantity

(k1)

Patient A 2.724
Patient B 0.763
Patient C 1.817
Patient D 0.912

3.3.3 Calibration Results

We present our model results in Fig. 3.4 that compare the tumor growth trajectories of the
four patients given real data sets in Table 3.2 and Swan and Vincent [1977]. Plots illustrate
that our model’s tumor growth trajectories have an adequate agreement with the actual
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data compared to Swan and Vincent [1977]. This is an indicator that the assumptions
which we have made and parameters that we have used for the development of the model
are reasonable. The reason we care about the alignment of model results to the real data
set is both models and the real data represent the same tumor growth under the same
treatment. Therefore, the outcomes of these two models are comparable to each other,
and their compliance with the real data indicates the accuracy of their representation
of tumor growth. As the proposed model produces similar trajectories to both the real
data and the existing model, we concur that the proposed model provides a reasonable
representation of tumor growth and will be used as a foundation for the rest of the model
& its extensions proposed in later chapters.

3.3.4 Accuracy Check

Another way to check the validity of a model is to compare the root mean square error
(RMSE) of each model to the particular patient trajectories in the given data set. Table 3.4
shows the comparison for the RMSE of our model and Swan and Vincent [1977] model. The
results present that the RMSE of our proposed model is comparable to that of their model,
even though our model develops a simpler tumor dynamic model. The easier evaluation of
our model becomes notably useful when we match our tumor growth model with the more
realistic drug concentration constraints to find the optimal chemotherapy plan in the next
chapter.

Table 3.4: Error Calculation

Performance Measure

RMSE(Proposed Model) RMSE(Swan and Vincent [1977])

Patient A 0.3233 1.1460
Patient B 0.12539 0.07984
Patient C 0.14927 0.19056
Patient D 0.03538 0.03575

3.4 Conclusions

In this chapter, we study the Gompertzian equation to present tumor growth and employ
an approximation of the Michaelis-Menten kinetics equation, with available bone cancer
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Figure 3.4: Comparison of the Real Data with the Results of the Proposed
Model and Swan and Vincent [1977] Model.
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patients’ data, to control tumor growth by injecting cancer agent(s). We propose a simpli-
fied and effective tumor kinetic function, assuming the constant drug delivery rate controls
tumor growth. We demonstrate that the current model is successful in mimicking the real
data set published in the literature, and numerical results are presented to highlight the
alignment of the proposed kinetic model with the real data set. Also, the performance
measures are compared between the proposed and the published study, and show a good
fit for the well-accepted tumor kinetic model.

Furthermore, our findings align with Remesh [2013] that daily scheduling (when the
pharmacokinetic parameters are considered) can be applied alternatively in a more effective
manner. Moreover, continuous drug therapy [University of Washington, 2021] can prevent
the tumor resistance to the chemotherapy, since cyclic chemotherapy has the disadvantage
that the residual tumor cells which are resistant to the chemotherapy can remain [Remesh,
2013].

To conclude, the proposed tumor kinetic model can be useful within a complex mathe-
matical model. We observed that it well captures the changes of a given real data set with
reasonable accuracy. However, since the data is not sufficient enough for a realistic analysis
though provides a numerical experimental setting to test the idea, we consider our results
as a hypothetical analysis. Most importantly, by taking the drug delivery rate continu-
ously constant during the treatment time plan, the drug concentration is approximated as
a step-function of the drug delivery rate. This new deterministic model is necessary to lay
the foundation for the stochastic cancer staging control model we present in this thesis.
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Chapter 4

Optimal Control Model (OCM) for
Chemotherapy Treatment Planning

This chapter presents an Optimal Control Model (OCM) for cancer chemotherapy treat-
ment plan. In Chapter 3, we designed a new simplified tumor kinetic model [Eq. (3.8)] for
a given time-independent (i.e., stationary) drug delivery rate. We calibrated the proposed
model using a data set from the literature, and numerically validated the model by com-
paring it with real data from the literature. Now, we extend this tumor kinetic model by
employing optimal control theory to find an optimal non-stationary drug schedule under
drug toxicity and tumor reduction constraints.

4.1 Problem Description and Formulation

Chemotherapy is one of the main treatment modalities for cancer patients to kill can-
cer cells using drugs that are administered through veins or taken orally. However, the
chemotherapeutic agent not only kills tumor cells but also destroys normal cells. To tackle
this problem, many mathematical models have been developed and an extensive literature
review on cancer chemotherapy treatment plans was presented in Chapter 2. In this chap-
ter, the problem of chemotherapy treatment planning is modeled as an OCM. Specifically,
the model is developed by considering the non-cycle specific and single drug features.

The model presented below constitutes a nonlinear problem for finding the optimal
drug delivery rates.
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Objective

minimize
u(t)

J [u(t)] = N(T ) (4.1)

Constraints

dN(t)

dt
= −λN(t)ln

[
N(t)

θ

]
− k1u(t)

γk2 + u(t)
N(t), N(0) = N0 (4.2)

N(ξj+1) ≤ ηN(ξj), j = 0, 1, 2, · · · ,M (4.3)

0 ≤ v(t) ≤ vmax, ∀t ∈ [0, T ] (4.4)∫ T

0

v(t)dt ≤ vcum. (4.5)

Decision variable
u(t) ∈ Rn drug delivery rate function

State variable
N(t) ∈ Rn the population of tumor cells at time t

Parameters
T terminal time
[0, T ] time horizon for the system
λ tumor growth rate
θ maximum tumor size at the cancer site
k1 drug effectiveness parameter
k2 drug concentration at the half of k1

2

N0 initial tumor size
N(ξj) the number of tumor cells at the check point j = 0, 1, ...,M
M treatment check points for the reduction constraint
η the minimum fractional reduction constant in the tumor size
vmax maximum allowable toxicity at any time t
vcum maximum cumulative toxicity throughout the treatment
v0 initial drug concentration at the cancer site

In the model, the treatment planning horizon is [0, T ], which is divided into n equally-
distanced-periods referring the treatment cycles. The function of these treatment cycles
will be clarified in Section 4.2.
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Eq. (4.1), objective of the model, minimizes the number of tumor cells at the end of
the chemotherapy treatment horizon under the drug delivery rates, u(t). This objective
function is controlled by several constraints which are further explained below. Several
studies, such as Martin [1992], proposed models to minimize N(T ) under similar constraints
but for different control mechanisms.

Eq. (4.2) represents the tumor growth dynamic that has a direct impact on the size of
tumor cells at any time during the treatment, as extensively explained in Chapter 3.

Studies reveal that drug resistant cells may appear when the tumor population increases
[Goldie and Coldman, 1979]. Therefore, one of the main goals in chemotherapy treatment
is to keep the tumor size decreasing throughout the treatment duration, while achieving
the maximal reduction in tumor burden at the end of planning horizon. In this context,
Eq. (4.3) aims to prevent drug resistance by forcing the model to decrease the tumor
size at, or faster than, a given rate within predefined time intervals, i.e., [ξj, ξj+1]. More
specifically, Eq. (4.3) requires the model to reduce the tumor size at least by (1− η)100%
(i.e. η ∈ [0, 1]) between ξj and ξj+1 for j = 0, 1, · · · ,M ; where ξj = j, and M = T/∆t
refers to the total number of tumor growth checkpoints set in every ∆t unit time.

Another goal for a successful chemotherapy regimen is to minimize the toxic side effects,
since chemotherapeutic drugs are toxic not only to cancer cells, but also to normal healthy
cells. Since these toxic agents may cause some serious side effects, constraints Eq. (4.4) and
Eq. (4.5) ensure that the drug toxicity is kept under control. Constraint Eq. (4.4) enforces
that the toxicity at any time t ∈ [0, T ] does not pass the limit a patient can tolerate,
i.e., vmax. Constraint Eq. (4.5) limits the cumulative drug concentration over the whole
treatment horizon to a positive threshold vcum.

4.2 Solution Approach

Section 4.1 presents a nonlinear optimal control problem, which is usually very complex
to solve using analytical techniques when u(t) is a continuous variable in t. Although
allowing u(t) to vary in t (e.g., continuous control) would achieve better performance, it
is not very practical as treatment decisions are usually assessed periodically. For example,
drug administration or dosing decisions are periodically made and reviewed (e.g., every
month). Moreover, periodically adjusted decisions would provide a more tractable model.
Therefore, we convert this optimal control problem into an optimal parameter selection
problem using a numerical method called the “control parametrization technique” ([Li
et al., 2006], [Lin et al., 2013]). The control parametrization approach is introduced by Goh
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and Teo [1988] to solve general optimal control problems. With this technique, piecewise
constant functions are administered to define the set of a possible sequence of control
variables at the predefined switching points. The height of piecewise constant functions is
considered as the decision variables named as control variables. This technique is commonly
used in the chemotherapy treatment planning literature [Dua et al., 2008] and is considered
a fine approximation to the continuous control case.

The control variable, u(t), is defined with n different σ values for n different time
intervals. We assume that the drug delivery rate, u(t), is constant for each treatment
cycle. Then, the control variable u(t) is described with the constant value ~σ

u(t) = ~σ =
k2

∆t
(σ1, σ2, ..., σn) ∈ Rn (4.6)

where each σi, i = 1, 2, ..., n, represents the height of the piecewise continuous functions.
Thus, u(t) is defined as follows:

u(t) = ~σ =



k2

∆t
σ1, 0 = t0 ≤ t < t1

k2

∆t
σ2, t1 ≤ t < t2

...

k2

∆t
σn, tn−1 ≤ t ≤ tn = T

(4.7)

where t0 = 0 and tn = T are the initial and final time points, respectively. These ti’s are
defined as the switching times in the formulation as tj = j T

n
for j = 0, 1, 2, ..., n where

n = T
∆t

is the number of treatment cycles.

4.2.1 Nondimensionalization of the OCM

As mentioned in the previous chapter, the tumor dynamic equation Eq. (4.2) is a non-
linear differential equation and consequently, constraint Eq. (4.3) is a nonlinear function.
Thus, defining a nondimensional cancer population term allows us to convert this nonlinear
function into a separable differential equation that can be solved easily. Subsequently, the
nonlinear function will be unitless after the transformation. Recall that:

y(t) = ln

[
N(t)

θ

]
(4.8)
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Therefore, the OCM can be rewritten in terms of the nondimensional scale as:

minimize
σi,i=1,...,n

J(~σ) = y(T ), (4.9)

subject to y(ti) = −1

λ

[
k1σi

γ∆t+ σi

]
+

[
y(ti−1) +

1

λ

(
k1σi

γ∆t+ σi

)]
e−λ∆t (4.10)

y(ξj+1)− y(ξj) ≤ ln(η), j = 0, 1, 2, · · · ,M (4.11)

0 ≤ k2

γ∆t
σi ≤ vmax, i = 1, 2, ..., n (4.12)

0 ≤ k2

γ

n∑
i=1

σi ≤ vcum, i = 1, 2, ..., n (4.13)

where ~σ, defined in Eq. (4.7), is the decision variable vector and y(t);∀t ∈ [0, T ], is the
nondimensional state variable. We refer to this optimization model as “Nondimensional
Optimal Control Model (NOCM)”.

Eq. (4.9) is the objective function of NOCM that minimizes the nondimensional tumor
cells where T is the final treatment time under piecewise vector ~σ ∈ Rn. After nondimen-
sionalizing, constraint Eq. (4.10) is the solution of the differential equation in Eq. (4.2) from
ti−1 to ti for i = 1, 2, · · · , n, where tn = T is the final treatment time. This is the structural
equation that has also defines the objective function. Constraints Eq. (4.11), Eq. (4.12)
and Eq. (4.13) present the nondimensional tumor reduction, the maximum drug toxicity
in each cycle and the cumulative drug toxicity for the whole treatment, respectively.

To conclude, if we use Eq. (3.3) in Eq. (4.1), Eq. (4.4) and Eq. (4.5), we may not be
able to derive the exact integration of these functions, and get the simplified equations
from the integrations as in Eq. (4.9), Eq. (4.12) and Eq. (4.13). Therefore, the system of

[Eq. (4.1) – Eq. (4.5)] and [Eq. (4.9) – Eq. (4.13)] are equivalent when v(t) = u(t)
γ

. Due
to the simplification we made in Chapter 3, which is controlling the tumor growth by the
drug delivery rate, u(t), instead of the drug concentration, v(t), the representation of the
former model is simplified and becomes easy to solve after verifying this replacement.

4.3 Results and Discussions

The NOCM is implemented on Maple 2018 optimization software to derive the optimal
drug delivery rate for chemotherapy treatment with n = 7 periods and computational
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experiments were carried out on a workstation with the following specifications: AMD
Ryzen 7 4700U with Radeon Graphics, 2.00 GHz, and 16GB of RAM. Maple solves the
model with an NLPSolve command which follows the sequential quadratic programming
(SQP) approach. SQP method is available for a constrained nonlinear program and uses
derivatives automatically computed by Maple. The computational difficulty of the OCM
is reduced since the functions in the model are simplified thanks to the proposed tumor
kinetic model and easily taken derivatives. Therefore, the solution time is ignorable to
report in standard problem sizes. However, we state the computational time of the OCM
for larger problem instances. In addition, global optimality of the solutions founded by
Maple is verified by the software.

In NOCM, u(t) is defined with control variables σi, i = 1, 2, ..., n, for certain time inter-
vals in which u(t) is constant in every specified time interval. The duration of treatment
is assumed to last for T = 196 days and the drug is given every 4 weeks (∆t = 28).

In Chapter 3, we presented parameters λ, γ, θ,N0 in Table 3.1 that have been used to
develop the tumor kinetic equation. In addition to these parameters, Table 4.1 displays the
parameters used in the NOCM. The NOCM is initially solved by the introduced data values
in Table 3.1 & Table 4.1 and then we present the results for N(t) using the transformation
in Eq. (3.10).

Table 4.1: Additional Parameters for the NOCM

Parameter Description Value Unit Source

T Final treatment time 196 days [Swan and Vincent, 1977]

η The minimum fractional reduction in tumor size 0.5 - [Martin et al., 1990]

k2 Desirable drug concentration 50 [D] calibrated

vmax Maximum drug concentration k2 [D] [Martin et al., 1990]

vcum Cumulative drug toxicity k2T
3.5

[D].days calibrated

The way of calculation k1 was discussed in Chapter 3 and its average value for each
patient was also presented in the same chapter in Table 3.3. For initial numerical testing,
we take k1 = 0.912 which has been calculated as the drug effectiveness quantity of Patient
D.

The minimum fractional reduction in tumor size is set to 50% every four weeks [Martin,
1992]. Thus, η is 0.5. With the number (M = T

∆t
) of main checkpoints, this constraint
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is checked at ξj = j T
M
, j = 0, 1, 2, · · · ,M , characteristic times. Hence, in each treatment

point, the tumor population reduction has been checked whether at least 50% tumor size
reduction constraint has been met from the previous treatment point.

k2 is a relative parameter and does not affect the optimal solution. To match the values
used in the literature for vmax and vcum, we choose k2 as 50. Therefore, the toxicity limits
are set as vmax = 50[D] and vcum = 2.8 ∗ 103[D].days, respectively. [D] is the unit of
drug concentration. It is important to note that this numerical settings is inspired by the
problem instances clinically and empirically derived by the works of Swan and Vincent
[1977] and Martin et al. [1992b]. Moreover, similar numerical settings are commomly
employed in various modeling exercise in the literature [Tse et al., 2007].

4.3.1 Drug Delivery Rate Schedule and Tumor Size Change

Fig. 4.1a presents the optimal drug delivery rates based on the limits of the given con-
straints, and Fig. 4.1b illustrates the corresponding number of tumor cells change by time.

Since we force the tumor size to decrease by 50% in the next period, tumor cells
decrease constantly even when the optimal drug delivery rate is low at the beginning of
the treatment. Then, the drug rate increases in the middle of the treatment. At the end
of treatment, the optimal drug delivery rate reaches its maximum level.

In the first four treatment cycles, the drug delivery rate is determined by the tumor
reduction constraint which forces a 50% decrease in the tumor population. Then, for
the remaining treatment intervals, the maximum available drug is applied to minimize
the number of tumor cells. Intuitively, we expect that the majority of drug delivery rate
should have been given at the last treatment point, i.e. t7. However, for minimizing the
final tumor size, increasing the dose at t5 by a unit that causes more than 50% tumor
reduction produces a better outcome than holding the amount of the dose at the end.

Fig. 4.2 illustrates the change in drug concentration functions that correspond to the
controls of the optimal control variables. Since the drug delivery rate is relatively low in the
first four months of the treatment compared to that of the remaining treatment intervals
as shown in Fig. 4.1a, the drug toxicity at the cancer site is also low and increases toward
the end of the treatment.

4.3.2 Verification of the Result with Brute-Force Search for OCM

In this section, we utilize the Brute-Force search or Exhaustive search to the problem of
OCM by enumerating all possible solutions and controls when each candidate meets the
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(a)

(b)

Figure 4.1: a) Optimal Drug Delivery Rate and b) Tumor Size Change when
vmax = 50[D], vcum = 2.8 ∗ 103[D]days, Reduction = 50%.
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Figure 4.2: Drug Concentration-Time Curve Following Administration of the
Controls of Fig. 4.1a.
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constraints of the problem. With this search, we test systematically all possible candidates
for the control variable in the model to find the minimum number of tumor size. This
technique consists of checking if an assigned value of the decision variable is feasible and
guarantees to find the minimal value of the state variable, N(t). The result of this method
has been used to make a comparison with results from OCM.

Algorithm 1 iterates over the whole decision variables, σi, i = 1, ..., n, from ε to vmax
by ε, step size. vmax = 42 and vcum = 84 are taken so that the results can be comparable
with the proposed OCM. Those below steps verbally explains the flow of the Algorithm 1.

Step 1 Initialize σi and assign the current state as N0 = finaltumor

Step 2 If totalvcum is less than or equal to vcum, we calculate Ni otherwise go back to
Step 1.

Step 3 If Eq. (4.3) holds, then checks if Nn < finaltumor, σ∗
i becomes the best value

and updates the current state from N0 to Nn otherwise store the current state
as an incumbent.

Step 4 If Eq. (4.3) does not hold, go to Step 1.

Step 5 Repeat the above steps until σi = vmax.

While Step 2 meets the total cumulative drug constraint in the OCM, Step 3 checks
the 50% reduction in the tumor size in the next iteration. In general, Algorithm 1 is
computationally complex, since it counts for all σi, i = 1, ..., n values up to vmax starting
from ε and requires days to execute it in some instances when ε has even slightly decreased.
Table 4.2 demonstrates the number of trials and corresponding run-time for the algorithm
at different step sizes. It is observed that for ε = 14, the algorithm has infeasible solutions.
When ε = 1, execution time is estimated as 9 days. Therefore, the algorithm has been
interrupted and no solution has been produced.

4.3.2.1 Improvised Step 2 in Brute-Force Search

Algorithm 1 is easy to implement and typically provides a solution to the problem if the
feasible region is nonempty. However, when the number of candidate solutions increases,
the computational time significantly increases. To mitigate the computational cost, total
drug cumulative can be taken as equal to the drug cumulative limit as totalvcum = vcum
which is different than Step 2 in Algorithm 1, since the cumulative drug is less than
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ALGORITHM 1: Brute-Force Search
Input : σi , decision variables

vmax , upper bound to the decision variables
vcum , limit to summation of decision variables
ε , step size

Output : σ∗
i , best control variables
N(T ) , finaltumor size // i=1,...,n

1 finaltumor ← N0

2 feasible ← 0
3 infeasible ← 0

/* starts the iteration */

4 for σi ← ε to vmax by ε do
5 while σi ≤ vmax do

6 totalvcum ←
k2
γ

n∑
i=1

σi // defines the cumulative drug delivery rate

7 if totalvcum ≤ vcum then
// checks the cumulative drug delivery rate limit

8 while i ≤ n do
9 repeat

10 calculate Ni in Eq. (4.2) // calculates all Ni until i = n
11 until Nn ← Ni

12 if Ni+1 ≤ ηNi then
// checks tumor reduction limit

13 if Nn < finaltumor then
14 finaltumor ← Nn
15 σ∗

i // gives the best solution

16 feasible ← feasible + 1

17 else
18 finaltumor ← finaltumor
19 σi // gives the feasible solution

20 feasible ← feasible + 1

21 else
22 infeasible ← infeasible + 1

23 else
24 infeasible ← infeasible+1

// completes the iteration when σi = vmax

25 the number of trials = (vmax−ε
ε + 1)n // n=7

26 estimated run-time = the number of trials/base time from the previous solution

48



Table 4.2: Results for Brute-Force Search

Step Size N(T ) The Number of Run Time The Number of
(ε) Trials (min) Calculations

14 - 2187 0.035 -
7 4.04E + 05 279936 0.05 792
6 3.88E + 05 823543 0.077 3425
3 1.54E + 05 105413504 6.11 1160016
2 1.41E + 05 1801088541 112 26164368
1 stopped 230539333248 13000 -

the operation (estimated)

vcum does not satisfy the optimality condition, and more than vcum violates the feasibility
(totally allowed drug dose during the whole treatment). With this modification, run time
and the number of calculations for different step size in the algorithm decreases notably
though the solution of N(T ) and the number of trials will remain the same as in Table 4.2
and they are omitted to present in Table 4.3 except the final tumor size at ε = 1. As shown
in Table 4.3, the result approaches the optimal solution found in Maple while step size,
ε, is decreasing. However, to avoid computational inefficiency, we terminate the algorithm
when ε = 1, since the search direction is clearly shown to its direction to the optimal
solution. With this technique, we indicate that Maple has found, or has come very close
to, the global minimum in the present model.

Table 4.3: Improved Performance Measure in Algorithm 1

Step Size N(T ) Run Time The Number of
(ε) (sec) Calculations

14 1.980 0
7 2.716 462
6 3.907 1709
3 266.551 283998
2 4500.450 4225068
1 1.13E + 05 484980 345972432
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4.3.2.2 Narrowing Grid Brute-Force Search for OCM

To mitigate time inefficiency of Algorithm 1, we develop another solution approach that
narrows the search space while finding the minimum tumor size at the end of the treatment
in the feasible region. The algorithm has been implemented in the following manner:

Different than Algorithm 1, this approach requires a defined range for decision variables,
σi, i = 1, ..., n, based on the previous solution sets so that we can conduct the faster
iterations. We test the results for various step size and present the outcomes in Table 4.4.
When ε = 1, the run time in Table 4.3 has decreased notably with this heuristic design.

Table 4.4: Accelerated Performance Measure in Algorithm 1

Step Size N(T ) Run Time The Number of
(ε) (sec) Calculations

1 1.13E + 05 1.952 13056
0.5 9.42E + 04 6.465 20047
0.25 9.07E + 04 102.16 205345
0.1 8.84E + 04 4.8 859
0.05 8.66E + 04 3.053 6843

Fig. 4.3 presents the convergence of the algorithm to the optimal solution that has been
obtained by Maple.

4.3.3 Increased Number of Control Variables

We now provide an increased number of control variables to the problem of OCM so that
we can test the effect of continuous drug delivery dose on the final tumor size. Depending
on the type of administration strategy, we propose two different options on the tumor
reduction constraint. In the original problem, we could find an optimal solution the meets
the half-size tumor reduction criteria in every four week treatment. When we increase the
number of decision variables, either we keep the half-size reduction in every month, or we
offer the continuous reduction by adjusting the tumor reduction constraint to the control
variables. For instance, when n = 14, the tumor reduction constraint checks if the tumor
size reduces by

√
2 instead of 0.5 in every two weeks. It is important to note that with

this continuous tumor reduction adjustment while increasing the control variables, we add
a new constraint to the model.
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Figure 4.3: The Convergence of Modified Brute-Force Search to the Solution of
OCM.

Table 4.5 and Table 4.6 provide the number of final tumor cells in the population, for
different sizes of control variables. As the size of the control variables increases, the final
tumor cells decrease but eventually converge to 7.1740E+04 and 7.7460E+04, respectively.
Compared to the solution of n = 7, the result is not quite significant and not practical
due to time-inefficiency that increases exponentially. Thus, an increased number of control
variables will not have much effect on the final tumor population for the presented model.
Moreover, increasing the decision variables further than weekly or daily is not clinically
reasonable.

Final tumor size in Table 4.6 is slightly higher than Table 4.5 and requires more time
to produce the result; even though, Table 4.6 provides the continuous tumor size reduction
throughout the treatment.

4.3.4 Sensitivity Analysis on Tumor Reduction and Cumulative
Toxicity Limits

The proposed NOCM is parameter-dependent. Therefore, we can obtain different results
by changing the limits of the constraints. For example, we can relax the tumor reduction
constraint to 90% by keeping the other two constraint limits constant. this means that
tumor size is forced to decrease at a minimum of 10% for the next period. Since the total
cumulative drug constraint will restrain to use of more drugs, drug delivery is initially given
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Table 4.5: Tumor Cell Population After 7 Months of Therapy Using the Optimal Solutions
to the Problem of NOCM while Maintaining the Monthly Tumor Reduction Criteria. n
represents the Number of Control Variables.

n N(T ) Run-Time

(seconds)

7 8.6160E + 04 1.454

14 7.4740E + 04 1.475

28 7.2470E + 04 1.513

56 7.1920E + 04 1.542

112 7.1780E + 04 1.678

224 7.1750E + 04 2.206

448 7.1740E + 04 4.714

896 7.1740E + 04 18.686

Table 4.6: Tumor Cell Population After 7 Months of Therapy Using the Optimal Solutions
to the Problem of NOCM while Maintaining the Continuous Tumor Reduction Criteria. n
represents the Number of Control Variables.

n N(T ) Run-Time

(seconds)

7 8.6160E + 04 1.454

14 7.9380E + 04 1.471

28 7.7940E + 04 1.450

56 7.7580E + 04 1.872

112 7.7490E + 04 3.367

224 7.7470E + 04 13.304

448 7.7460E + 04 91.962

896 7.7460E + 04 1486.441

(∼ 25min)
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in smaller doses than the previous scenario in Fig. 4.1a, and steeply increase towards the
end, as seen in Fig. 4.4a. This happens because we relax the tumor size reduction limit for
the subsequent periods, so the model keeps the bulk of drugs at the end of the treatment.
When we look at the tumor change equation in Fig. 4.4b, we can interpret that patients
can be exposed to more tumor cells for most of the treatment period which might not be
ideal.

(a)

(b)

Figure 4.4: a) Optimal Drug Delivery Rate and b) Tumor Size Change when
Reduction = 90%.

To see the effect of tumor reduction constraint on the treatment schedule, the tumor
reduction constraint has been extracted from the model. Therefore, the first three months
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are scheduled with no drug and the drug delivery rate gradually increases towards the end
of the treatment as seen in Fig. 4.5a. Consequently, Fig. 4.5b represents the corresponding
tumor size to the scheduled drug delivery rate based on the maximum and cumulative drug
dose constraints. This result is not realistic for a given treatment period since tumor will
increase for the first three months of the treatment. The result would make more sense
if we consider for 4-months treatment schedule. On the other hand, for a given problem
setting, if the drug was given in the first 4 month of the treatment, tumor will increase
again, and this increase will end up a higher point than the final tumor size has been found
by the model.

(a)

(b)

Figure 4.5: a) Optimal Drug Delivery Rate and b) Tumor Size Change when
Reduction Constraint is omitted.
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To observe the effect of cumulative drug toxicity limit on drug delivery plan and tu-
mor size change, we double the cumulative drug toxicity compared to the first scenario.
Increased toxicity level will allow using more drugs even in the initial periods of the treat-
ment as seen in Fig. 4.6a. Eventually, it results in decreasing the number of tumor cell
populations at the end of the treatment drastically shown in Fig. 4.6b. Although it ap-
pears rational considering our objective to minimize tumor cell population at the end of the
treatment, we do not know the clinical effects of this increased toxicity level in a patient’s
general health.

(a)

(b)

Figure 4.6: a) Optimal Drug Delivery Rate and b) Tumor Size Change when
vcum = 5.6 ∗ 103[D]days.
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The above figures should be taken as an example of the real chemotherapy treatment
schedule rather than the universal result, since the shape of the curve depends on method-
specific parameter values and the type and size of the scheduling problem. That means we
might obtain different results with the different configurations on the system.

4.4 Conclusions

In this chapter, we present a nonlinear optimization problem to study the effects of the
proposed tumor kinetic model in Chapter 3. The major focus of this chapter was to
provide an extension to the tumor kinetic function for identifying the optimal chemotherapy
schedule in the presence of drug toxicity and tumor size reduction constraints. We construct
a drug delivery rate schedule by utilizing an OCM for cancer chemotherapy with a single
agent to minimize the final tumor size.

The proposed system balances out delivering the drug dose and minimizing tumor
population over the entire treatment time. Although a large amount of drug can be given
to minimize the number of tumor cells initially, the drug is delivered slowly to ensure
50% reduction in each treatment point. In our study, even though our main target is
to reduce the final tumor size at the end of the treatment (which is quite important),
focusing solely on this target may not be realistic. Therefore, this study can be extended
as a multi-objective optimization problem. For example, maximizing immune/normal cells
or minimizing drug usage can be added to the proposed model.

By employing OCM, we show the defined tumor kinetic model minimizes the number of
tumor cells along with other constraints in the design of an efficient drug schedule. Hence,
we show that the most effective way to reduce the number of tumor cells is to keep the
initial drug administration minimal, and then follow it by high-intensity therapy towards
the end of the treatment cycles. This is because of Michaelis-Menten’s kinetics. We know
that when the number of tumor cells is high, it is easy to kill them initially. However, if
we give the bulk of the drug from the beginning of the treatment, then it is going to be
hard to destroy the tumor cells at the end of the treatment, since the number of tumor
cells is low, and that means they will grow faster. Therefore, in our problem, the drug
delivery rate is increasing gradually by satisfying the toxicity and reduction constraints.
Similar results were proposed in the literature. Martin et al. [1992a] proposed the same
scheduling plan as starting low dose and increased the dose towards to end. Moreover, Dua
et al. [2008] presented the same result for the frequency of the drug by holding the dose the
same. Thus, knowing the theoretically optimal solutions also becomes of practical interest.
Although our findings are not used as a common practice to cure the cancer, there are
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studies to challenge the conventional therapies (maximum tolerated dose [Benzekry and
Hahnfeldt, 2013], metronomic therapy [Simsek et al., 2019], and adaptive therapy [Gatenby
et al., 2009]) such as varying dose [Foo et al., 2012], and upfront low [He et al., 2020] or
increasing dose [Gray et al., 2019] chemotherapy with the combination of immunotherapy.

Another limitation to discuss here is that if we rerun the model with a cancer size
equal to the final tumor size of the optimal solution, and apply no cancer drug, the tumor
may grow to a larger size given enough time. This may sound problematic about the
appropriateness of the optimal solution as an endpoint of the treatment. However, the
final tumor size we found in the optimal solution indicates similar final tumor sizes with
the existing OCMs in the literature [Martin, 1992]. Also, the optimized model solution is a
million times smaller than the initial size. Therefore, it is reasonable to assume that a tumor
reduced to the size in the optimal solution would not grow back in reality. Nevertheless,
we can add a constraint that N(T ) < k, where k is a very small number. However, given
enough toxicity tolerance limits, this constraint could be unnecessary or redundant.

To conclude, we demonstrate that with the proposed kinetic model, the deterministic
optimization model can be solved more resource-efficiently and mitigate the computational
time in larger instances. To verify the correctness of the proposed model, the algorithm of
Brute-Force and its modified versions have been developed, and the results have demon-
strated the correctness of the proposed model. Sensitivity analyses have also been con-
ducted on drug toxicity and tumor reduction constraint limits to analyze their impacts on
the solution. Since the classical systems are presented with hard constraints, we continue
with the tradition and do not consider room for the violation of these constraints.
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Chapter 5

Nonlinear Stochastic Optimization
(NSO) Model for Chemotherapy
Treatment Planning

In this chapter, we develop a stochastic optimization model for optimal drug delivery rate
in cancer chemotherapy treatment. We provide an extension to the deterministic growth
case in which stochastic cancer staging has been integrated into the controlled tumor
growth mechanism discussed in Chapter 4. We address the problem of cancer staging
at any given treatment time under a chemotherapy treatment schedule. To examine the
problem, we study a sequential stochastic scheduling problem that allocates drug rates
with deterministic values to sequentially upcoming treatment time points so that it can
minimize the expected total number of tumor populations. Then, we develop the Nonlinear
Stochastic Optimization Model (NSO) by considering the probability of stage jump as a
function of decision variables. Moreover, we develop a Brute-Force search algorithm to
verify the solution of the model. The main purpose of this chapter is to provide insight
into the effect of stochastic cancer staging on chemotherapy design.

5.1 Problem Description and Formulation

The growth of metastatic tumor cells in internal organs is usually too tiny to be detected
while the primary tumor is being treated [Liotta, 1984]. Since the growth of tumor cells
is random, deterministic models may not capture all the necessary dynamics to identify
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the decision under the presence of uncertainty while designing the optimal chemotherapy
treatment plan. In our defined model, we consider randomness for the growth of tumor
cells in an upper stage during each treatment time. Once cancer probabilistically moves to
an upper stage, tumor growth increases at a faster rate since tumors far away from their
origin frequently multiply and increase in number with time [Baba and Câtoi, 2007].

Fig. 5.1 demonstrates the mortality percentage for bladder cancer stages. As can be
seen in the table, a patient in the metastasis stage has a higher risk to die. To reduce this
risk rate, we propose an alternative mechanism by considering the probability of cancer
stage jump during the chemotherapy treatment. If this probability is taken into account
earlier, cancer stage jump to the higher staging can be prevented, so that the mortality
rate can be mitigated with this proposed mechanism. However, considering this stage
jump while designing a chemotherapy treatment turns the problem into a more complex
dynamic structure and increases the complexity of the solution domain. To tackle the
problem, we initially implement the effect of probabilistic staging in the model for a given
policy, to prove the necessity of this implementation for drug delivery design while treating
cancer patients. Afterwards, a new stochastic optimization model is presented later in the
chapter.

Figure 5.1: The Mortality Percentage for Bladder Cancer Stages [Fleming et al.,
2020].
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5.2 Methodology

We introduce a new mathematical model for a chemotherapy treatment plan that considers
stage jump probability. When a patient arrives to get treated, the proposed stochastic
optimization model considers replanning the drug delivery rate schedule for the rest of the
treatment, as if a stage jump might occur any time after the first admission. With this
approach, we present a trajectory for each treatment time. Table 5.1 provides notations
that are used throughout this chapter.

Table 5.1: List of Notations

Notation Description
i ∈ I ≡ {1, .., n} The index of treatment time point

j ∈ J ≡ {1, .., n} The index of stage jump probabilities at the corresponding time
intervals during the treatment

n The number of treatment times
SR, SM The possible stage for a tumor: regional or metastases stages, respectively
ti The treatment time
N j(ti) The number of tumor sizes in each time point i, under j different scenarios
E[N(ti)] Expected tumor size at time point i
pi probability of stage jump at each time point i
psj Probability of j different scenarios
µs The weight of the probability pi
T Final treatment point

The main assumptions of the proposed model are listed in the following:

Assumption 5.2.1 The drug effectiveness parameter k1 is constant for different stages of
cancer.

Assumption 5.2.2 Only a one-time stage jump is taken into account throughout the treat-
ment horizon, i.e. the tumor either jumps from a regional stage SR to a metastases stage
SM or stays in the regional stage, SR.

Assumption 5.2.3 p0 = 0, which means we neglect the probability of the stage jump at
t0.
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Assumption 5.2.4 Regardless of which cancer stage a patient is in, the tumor follows the
Gompertzian type of growth function.

Assumption 5.2.5 We omit the probability of stage jumps at tn.

Cancer Staging and Probabilistic Model for A Stage Jump

We divide the total treatment duration into n treatment cycles, as in Section 4.2, and we
take the decision variable u(t) as a piecewise function in Eq. (4.7). In each time epoch
ti, i ∈ 0, 1, ..., n, the treatment plan is specified as σ1, ..., σn. At the end of each epoch, we
assume the cancer stage changes based on the size of a tumor. The probability that the
tumor stage changes in epoch i, under the chemotherapy treatment plan, is equal to pi
given as follows:

pi = µs

(
N(ti−1)+N(ti)

2

θ

)
, i = 1, 2, ..., n (5.1)

where N(ti) represents tumor population at given epoch ti, θ is maximum tumor size in
any tumor stage. µs is the linear weight of each cancer cell to the stage transition. With
pi, n scenarios are defined as the tumor might jump to SM from SR at ti. That means the
sample space of this problem when n = 7 is p1, ..., p7.

At this point, we can also define the probability of these scenarios occurring as psj, j =
1, ..., n that we explicitly require in the later sections. For instance, ps3 means the tumor
has not jumped to an upper stage at t1 or t2 but at t3. In the following, we present the
likelihood of stage transition throughout the treatment horizon:

psj =


pj

j−1∏
k=0

(1− pk), j < n

j−1∏
k=0

(1− pk), j = n

(5.2)

i.e. when n = 7
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ps1 = p1

ps2 = p2(1− p1)

ps3 = p3(1− p2)(1− p1)

ps4 = p4(1− p3)(1− p2)(1− p1)

ps5 = p5(1− p4)(1− p3)(1− p2)(1− p1)

ps6 = p6(1− p5)(1− p4)(1− p3)(1− p2)(1− p1)

ps7 = (1− p6)(1− p5)(1− p4)(1− p3)(1− p2)(1− p1)

The cumulative probability of different scenarios is:

psj =
n∑
j=1

= 1

Calculating Expected Tumor Size

Using the probability of stage jump at each point and the corresponding tumor size, we
calculate the expected tumor size at each treatment point.

E[N(ti)] =
i−1∑
j=0

[
pj

j−1∏
k=1

(1− pk)

]
N j(ti) +

[
i−1∏
k=0

(1− pk)

]
N i(ti), i = 1, ..., n (5.3)

where N j(ti) is tumor size at time i when stage jump occurs at time j. This equation
indicates that the stage jump either occurs at any time until that treatment point ti−1, i =
1, 2, ..., n, or there will be no jump until ti. Appendix D provides an explicit form of
Eq. (5.3). Finally, Eq. (5.4) is defined to provide the value of the growth rate for regional
(λR) and metastases (λM) stages of cancer, respectively.

λ =

{
λR j ≤ i

λM otherwise
(5.4)
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5.2.1 Myopic Policy Based on Observed Cancer Stage

In this section, the outline of the stochastic solution approaches is presented. To calculate
the expected cancer cell population at the end of the treatment under the probabilistic
staging, we first employ a myopic policy. The myopic policy is the most elementary policy,
i.e. that considers it a single criterion. The idea behind this approach optimizes the
average immediate reward/cost, now; however, it does not consider any stochastic feature
of decisions in the future [Powell, 2007]. For the design of a treatment scheduling, clinicians
produce treatment plans based on the current stage of a cancer. In this study, we only
consider the probability of stage jump at each treatment time, and do not include any
other probabilistic feature for the rest of the treatment times. This policy reflects the
observation based policy.

Policy I - Sequential Optimization through Observation

In this approach, we sequentially consider the probability of stage jump at each time ti.
Until the jump point, the optimal drug delivery rate(s) calculated in Chapter 4 is taken.
We assume that the tumor might jump to an upper stage at ti and grow faster. Then,
the sets of new optimal drug delivery rates are calculated based on the newly updated λ.
For instance, a cancer patient at the regional stage, SR, with a tumor growth rate λR has
taken the chemotherapy at t0. Therefore, we take σ1 from the OCM and calculate the
rest of the decision variables considering that stochastic jump might happen at t1. If the
tumor goes to an upper stage, SM (i.e. cancer being metastasis), at t1, the rest of the
control variables [σ2, ..., σn] are solved using [Eq. (4.9) – Eq. (4.13)] with a given σ1 and
λM . Then, until the end of the final treatment point, we solve the problem iteratively
considering the possibility of stage jump in each treatment period. An algorithm for this
approach is presented in Algorithm 2.

Fig. 5.2 shows a visual representation of the algorithm. This diagram illustrates how
sequential optimization works under the given optimal policy. ti represents treatment
time points. λR and λM present the tumor growth rates for regional and metastases
stages, respectively. The values of σi, i = 1, 2, ..., n, come from [Eq. (4.9) – Eq. (4.13)]
and superscripts (1, 2, ..., n − 1) of σi indicate at which time point the tumor stage jump
happens.
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Figure 5.2: A Visual Representation of Policy I.
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ALGORITHM 2: Stage Jump through Observation
Data: σi, i = 1, ..., n, decision variables

λ ∈ {λR, λM}
S ∈ {SR, SM}

Result: new drug delivery schedule

1 if S = SM at any time t then
2 change λM ← λR
3 take [σ1, ..., σi−1] from the solution of [Eq. (4.9) – Eq. (4.13)]
4 compute the rest of decision variable: [σi, σi+1, ..., σn]

5 else
6 do nothing

Policy II - Sequential Optimization by Accepting Stage Progres-
sion at the Beginning of the Treatment

This approach is the generalization of the previous approach. Similar to Section 5.2.1, the
probability of a stage jump is sequentially taken into account. However, we conduct the
optimization while considering the stage jump ahead of time. That is before initializing
the treatment, the stage jump is taken into account. For example, if a tumor jumps at t1,
we solve the problem [Eq. (4.9) – Eq. (4.13)] by taking the growth rate as λR up to t1, and
as λM after t1, to find optimal drug delivery rates considering the probability of a stage
jump at t1. Then, we follow the same steps for each treatment point. This approach is
summarized in Algorithm 3.

ALGORITHM 3: Stage Jump Ahead of Time
Data: σi, i = 1, ..., n, decision variables

λ ∈ {λR, λM}
S ∈ {SR, SM}

Result: new drug delivery schedule

1 if S = SR at t = ti, i = 1, ..., n // consider no jump yet

2 then
3 calculate [σ1,...,σk], k = 1, ..., i←− (λ = λR) // solving [Eq. (4.9)-Eq. (4.13)] for

λR

4 else
// consider the jump at the time i

5 calculate [σk+1, ..., σn], k = i, ..., n←− (λ = λM ) // solving [Eq. (4.9)-Eq. (4.13)]

for λM
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Fig. 5.3 shows a visual representation of the algorithm. In constrast to Policy I, we
solve the model of [Eq. (4.9) – Eq. (4.13)] for λR up to the jump point and for λM after the
jump point. Therefore, the superscripts (1, 2, ..., n− 1) of σi indicate at which time point
the tumor stage jump happens. The optimal drug delivery rate can thus be calculated
with λR up to the jump point and λM after the jump point. In plain language, the optimal
drug delivery rates are calculated with the probability of tumor jump considered ahead of
time.

Figure 5.3: A Visual Representation of Policy II.

With these two myopic approaches, we aim to show the effect of considering tumor
stage jump in the design of chemotherapy-treatment scheduling.
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5.2.2 Nonlinear Stochastic Optimization Model

In this section, we present a Nonlinear Stochastic Optimization (NSO) model for different
scenarios of the stage jump during the cancer chemotherapy treatment. Unlike the two
aforementioned myopic approaches, we now formulate the optimization problem as a func-
tion of drug delivery rate variables that are stage-dependent by incorporating the tumor
jump probabilities.

The proposed NSO is as follows:

minimize
σi,i=1,...,n

J [~σ] = E[N(T )] (5.5)

subject to
dN j(t)

dt
= −λN j(t)ln

[
N j(t)

θ

]
− k1σi
γ∆t+ σi

N j(t), (5.6)

N(0) = N j
0 , j = 0, 1, ..., n (5.7)

E[N(ξl+1)] ≤ ηE[N(ξl)], l = 0, 1, 2, · · · ,M (5.8)

0 ≤ v(t) ≤ vmax, ∀t ∈ [0, T ] (5.9)∫ T

0

v(t)dt ≤ vcum, (5.10)

~σ, defined as in Eq. (4.7), is the decision variable and N(t),∀t ∈ [0, T ], is a state
variable. Due to stochastic staging, N(ti) is now a stochastic process, which makes solution
of the above problem quite challenging. We present the NSO problem with the objective of
minimizing the expected tumor population Eq. (5.5) at the end of chemotherapy treatment,
subject to the tumor kinetic equation Eq. (5.6) which incorporates the stochastic staging,
and the other constraints: the maximum toxicity Eq. (5.9) and the cumulative toxicity
Eq. (5.10) constraints. The tumor burden constraint, Eq. (5.8), is given as an expected
value since the probability of stage jump is considered during the treatment checkpoints.
We observe that, whether for static or dynamic drug delivery control, the optimal policy
for the above problem can be derived (optimally and/or approximately) for special cases of
the problem, where the number of possible stage change histories are tractable, e.g. when
there are only two stages.
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5.3 Results and Discussions

This section summarizes the findings and contributions made by evaluating the effect
of probabilistic stage jumps on the drug delivery schedule for chemotherapy treatment.
We then compare the solution of policies and the stochastic optimization model to their
deterministic counterparts, in terms of expected final tumor sizes and probability of having
no jump at the end of the treatment.

Previous research showed that the tumor growth rate (λ) can be increased by the range
of [1, 8] fold [Frazier et al., 2000] after the jump of the tumor has been assumed. Therefore,
the tumor growth rate at the metastases stages has been arbitrarily set to 2.25 fold of
the tumor growth rate at the regional stage. That means the tumor growth rate for the
metastases stage is set to λM = 0.03375 when λR = 0.015 for the regional stage for all
the proposed models in this chapter. The rest of the parameters’ values are the same as
presented in the earlier chapters.

5.3.1 Drug Delivery Rate Schedules and Tumor Size Changes

5.3.1.1 Policy I and Policy II

Fig. 5.4a and Fig. 5.5a show the optimal schedule of seven different scenarios (n = 7)
depending on where the probabilistic stage jump occurs based on Policy I and Policy II,
respectively. These figures present seven different treatment plans due to the seven different
scenarios that are focused on minimizing the final tumor size. On the graphs, the “no jump”
column shows the deterministic-problem solution and the rest of the columns represent the
situation where stage jump is involved in design of the treatment. The column “jump at
t6” is the same as in the deterministic design (that has not considered the stage jump) in
Fig. 5.4a since the delivery schedule was taken from the deterministic model up to point
t6, as indicated in describing the policy. Recall that drug delivery rates at the treatment
times have been assigned based on the limitations of drug toxicity and tumor reduction
before the jump happens. Overall, the optimal schedules based on these two policies are
the same, except for the scenarios that the probability of stage jump at t5 and t6 after
the first 4 months of the treatment. Relevantly, Fig. 5.4b and Fig. 5.5b demonstrate the
corresponding number of tumor populations based on the obtained optimal drug delivery
rates in Fig. 5.4a and Fig. 5.5a, respectively.

To compare the results of the policies, the expected final tumor size is calculated based
on Eq. (5.3) by utilizing Eq. (5.1). Table 5.2 clearly shows that the same results are
achieved with both policies for the current parameter settings.
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(a)

(b)

Figure 5.4: a) Drug Delivery Rate Schedules and b) Tumor Size Change for
Policy I.
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(a)

(b)

Figure 5.5: a) Drug Delivery Rate Schedules and b) Tumor Size Change for
Policy II.
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Table 5.2: Comparison of Solution Approaches

Expected Final Tumor Size

Policy I 4.9171E + 07
Policy II 4.9152E + 07

Stochastic Optimization 2.6174E + 07

5.3.1.2 Stochastic Optimization Model

Fig. 5.6a and Fig. 5.6b show the optimal drug delivery schedule and the change in the
expected tumor size at each time point, respectively. The expected tumor size has been
decreased by 53% compared to the proposed sequential optimization models as seen in Ta-
ble 5.2. Moreover, in contrast to the optimal solution of the deterministic model discussed
in the previous chapter, the optimal solution of the stochastic optimization model has a
different structure. That is because the optimal drug delivery rate for [t0, t1] decreases the
tumor size at t1 a more than 50%, which is the limit of the problem. This happens since
the probability of a stage jump after the first treatment is higher than at the subsequent
treatment times, up to the final treatment point.

5.3.2 Comparison of Stage Transition Probabilities

We compared the final expected tumor size for the sequential optimization models and
the stochastic optimization model. We reported in Table 5.2 that the stochastic optimiza-
tion model yields a better result. Additionally, the stage transition probability is another
important characteristic of the models for comparison purpose. In sequential optimiza-
tion models, the probability of a stage jump at particular time points is calculated by
utilizing the number of tumor cells obtained from the deterministic model [Eq. (4.1) -
Eq. (4.5)]; while the probability of stage jump at other time points is calculated by solving
the stochastic optimization model [Eq. (5.5) - Eq. (5.10)].

Table 5.3 presents the likelihood that a tumor jump occurs at the specific time point
for both sequential and stochastic optimization models. For instance, the probability of a
tumor jump at t1 is 20% and 18% in both methods, respectively; while the probability of
having no tumor jump during treatment is 65% and 74% when n = 7.
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(a)

(b)

Figure 5.6: a) Optimal Drug Delivery Rate and b) Tumor Size Change for NSO.
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Table 5.3: Calculation of Transition Probabilities from SR to SM

Jump Point Policy I & Policy II Stochastic Optimization

ps1 0.2022 0.1815
ps2 0.0806 0.0528
ps3 0.0362 0.0180
ps4 0.0172 0.0056
ps5 0.0059 0.0016
ps6 0.0004 0.0003
ps7 0.6574 0.7402

5.3.3 Expected Drug Delivery Rate

We now consider another way to improve the results for Policy I and Policy II. Since
we generate seven different schedules for seven different scenarios for both policies, the
expected drug delivery rates for all the scenarios (e.g. probability of stage jump at ti, i =
1, ...n,) will be sufficient and logical to compare with the other proposed models. First of
all, to find the average/expected drug delivery rate for each time interval, the probability
of stage jump at each treatment point should be calculated by using Eq. (5.1). Here, Ni is
taken from the deterministic model results. Then, psj, j = 1, ..., n, the likelihood of stage
jump scenarios at each time, is found by utilizing pi, i = 1, ..., n. Finally, the expected drug
delivery rates are calculated by the multiplication of the drug delivery rate at each time
with the likelihood of each stage jump as in the following:

σi =
n∑
j=1

psjσ
j
i , ∀i ∈ 1, ..., n, n ∈ R (5.11)

where the superscripts show the tumor stage jump point.

Table 5.4 presents the expected drug delivery doses, while Table 5.5 shows the proba-
bility of stage jump scenarios at each time point for all proposed models. Moreover, the
number of iterations presents the expected drug delivery rate based on the different proba-
bilities of stage jump. For example, 1.0 under Policy I indicates that the average drug dose
was calculated by psj, j = 1, ..., n in Table 5.3 by using Eq. (5.11) and σji from the seven
optimal drug dose sets presented in the previous chapter. By using this new expected drug
delivery rate set, we calculated the set of new-stage jump probabilities (psj, j = 1, ..., n)
presented in Table 5.5. Then, the drug delivery rate in 1.1 is obtained based on these stage
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probabilities. The same logic was applied while finding the expected drug delivery rate
sets based on the different stage jump scenarios for Policy II as well.

Table 5.4: Expected Drug Delivery Rates for Policy I & Policy II and Optimal Drug
Delivery Doses for Deterministic & Stochastic Models.

Deterministic Model Policy I Policy II Stochastic Model

The Number of Iterations 1.0 1.1 1.2 2.0 2.1 2.2

Drug Delivery Rates
at the Treatment Points

σ1 2.4353 2.4352 2.4353 2.4353 2.4352 2.4353 2.4353 3.2759
σ2 2.9777 3.4913 3.4913 3.4913 3.4913 3.4913 3.4913 3.9191
σ3 3.5337 4.4964 4.4784 4.4784 4.4965 4.4785 4.4785 5.1306
σ4 4.1035 5.4890 5.4241 5.4243 5.4890 5.4242 5.4244 6.4349
σ5 10.4411 10.3096 10.3186 10.3185 10.2746 10.3035 10.3030 7.8550
σ6 22.6954 19.2176 19.3988 19.3977 19.2505 19.4125 19.4117 15.3845
σ7 37.8133 38.5600 38.4528 38.4539 38.5625 38.4548 38.4558 42.0000

It is important to highlight that the results for Policy I and Policy II in Table 5.4 have
been obtained without solving the optimization problems, i.e. the solution sets have no
constraint limits. Namely, these results are obtained by utilizing Eq. (5.11).

The results of these two myopic policies are then compared with the deterministic model
under the stochastic environment in Table 5.5. That means the expected final tumor size is
calculated based on the optimal drug schedule obtained by the deterministic model. There-
fore, the probability of having no stage jumps based on the drug delivery rate schedules
for Policy I & Policy II (68%), and Stochastic optimization (74%) are substantially better
than the deterministic model’s solution (65%). These results underline the importance of
considering the probability of stage jump while designing the treatment. Moreover, the
final expected tumor size of the stochastic model is much better than for the deterministic
model, and indicates the necessity of involving the probability of stage jump.

Table 5.5: Probability of Stage Jumps for All Models

Deterministic Model Policy I Policy II Stochastic Model

The Number of Iterations p1.0 p1.1 p1.2 p2.0 p2.1 p2.2

Probability of Scenarios

ps1 0.2022 0.2022 0.2022 0.2022 0.2022 0.2022 0.2022 0.1815
ps2 0.0806 0.0753 0.0753 0.0753 0.0753 0.0753 0.0753 0.0528
ps3 0.0362 0.0266 0.0267 0.0267 0.0266 0.0267 0.0267 0.0180
ps4 0.0172 0.0092 0.0093 0.0093 0.0092 0.0093 0.0093 0.0056
ps5 0.0059 0.0025 0.0026 0.0026 0.0025 0.0026 0.0026 0.0016
ps6 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003
ps7 0.6574 0.6840 0.6837 0.6837 0.6840 0.6837 0.6837 0.7402

Expected Tumor Size 2.9668E+07 3.1238E+07 3.1240E+07 3.1239E+07 3.1197E+07 3.1221E+07 3.1220E+07 2.6174E+07
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5.3.4 Verification of the Result with Brute-Force Search for NSO

Algorithm 4 is proposed for enumerating all control variables by a given set of values as
in Algorithm 1. Therefore, we omit the input and output parameters of the algorithm
and start to demonstrate how the iteration work differently than the previous Brute-Force
search in OCM by highlighting with the red lines in the algorithm below.

5.3.4.1 Narrowing Grid Brute-Force Search for NSO

As was explained in the previous chapter, this modified Brute-Force approach requires a
defined range for decision variables, σi, i = 1, ..., n, based on the previous solution sets
so that we can conduct the faster iterations. We test the results for various step size
and present the outcomes in Table 5.7. When the step size decreases, the optimality gap
compared to the original Brute-Force search lowers to 0.00015% (which is ignorable), and
run time decreases notably with this approach. It is observed that run time depends on
the chosen decision-variable range obtained by the previous iteration.

Fig. 5.7 presents the convergence of the algorithm to the optimal solution that has been
obtained by Maple.

Figure 5.7: The Convergence of Modified Brute-Force Search to the NSO model.
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ALGORITHM 4: Improvised Brute-Force Search.
finaltumor ← E[N0]

/* starts the iteration */

1 for σi ← lower value to upper value by ε do
2 while σi ≤ vmax do

3 totalvcum ←
n∑
i=1

σi // defines the total vcum

4 if totalvcum = vcum // checks the vcum limit

5 then
6 for i← 1 to n do
7 for j ← 1 to n do
8 if j ≤ i // decides the tumor growth rate

9 then

10 λR ← λ

11 else

12 λM ← λ

13 calculate yji in Eq. (4.10)

14 find N j
i in Eq. (4.8) // nondimensional transformation

15 calculate pi in Eq. (5.1) // jump probability

16 for i← 1 to n do
17 calculate E[N(ti)] in Eq. (5.3)

18 if E[Ni+1] ≤ ηE[Ni] // checks tumor reduction limit

19 then
20 if E[Nn] < finaltumor // checks the optimality

21 then
22 finaltumor ← E[Nn]
23 σ∗

i // gives the best solution

24 feasible ← feasible + 1

25 else
26 finaltumor ← finaltumor
27 σi // gives the feasible solution

28 feasible ← feasible + 1

29 else
30 infeasible ← infeasible + 1

31 else
32 infeasible ← infeasible+1 // completes the iteration when σi = vmax
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Table 5.6: Results for Brute-Force Search.

Step Size E[N(T )] Run Time The Number of
(ε) (min) Calculations

14 - 0.048 0
7 - 0.067 462
6 - 0.1 1709
3 2.16E + 08 8.09 283998
2 7.41E + 07 131 4225068
1 3.11E + 07 11535 345972432

(8 days)

Table 5.7: Accelerated Performance Measure in Algorithm 4.

Step Size E[N(T )] Run Time The Number of
(ε) (min) Calculations

1 3.09E + 07 0.24 13097
0.05 2.64E + 07 1.16 66744
0.025 2.62E + 07 6.49 305409
0.01 2.62E + 07 24.25 1208976

0.0001 2.6174E + 07 32.11 358839
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5.3.5 Increased Number of Control Variables

In contrast to the OCM, we do not analyze the continuous tumor size reduction while
increasing the decision variables in NSO. The reason is that considering the probability
of stage jump in small increments, rather than its monthly effect on the design of the
treatment, causes worse results than in the original optimal solution. Moreover, we assume
the probability of stage jump at the interval of 28 days, even for increased control variables.
By doing that, we can compare the result between different control variables by keeping
the constraint the same.

Table 5.8 presents the result of the expected final tumor size for n control variables.
The optimal drug schedule for all n is presented in Fig. 5.8. Since we only control the
tumor size reduction every four weeks, the optimal solution in each interval is from low to
high to achieve the 50% decrease at the treatment point.

Table 5.8: Tumor Cell Population After 7 Months of Therapy Using the Optimal Solutions
to the Problem of NSO. n represents the Number of Control Variables.

n E[N(T )] Run-Time Probability of No Jump

(seconds)

7 2.6174E + 07 3.237 0.7402

14 2.1413E + 07 4.627 0.7537

28 2.0294E + 07 68.983 .7599

56 2.0061E + 07 292.784 0.7606

5.3.6 Sensitivity Analysis of NSO Model on the Drug Delivery
Rate Schedule and Tumor Size

5.3.6.1 Sensitivity on the Weighted Transition Probability Function

The first sensitivity analysis that we conduct to understand the behaviour of the drug
delivery rates and the tumor population is on the weighted transition probability. We
assume the weight of transition probability in Eq. (5.1) as µs = 1 for the base-case and
consider ±50 % more weight (i.e., µs = 0.5 or 2) for the sensitivity analysis. As seen
in Fig. 5.9a and Fig. 5.9b, the optimal drug schedules stabilize the same as in Fig. 5.9c.
These modest changes occur to balance the trade-off between cumulative toxicity and tumor
reduction constraints. However, their slight changes in the first month of the treatment
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(a) n = 7 (b) n = 14

(c) n = 28 (d) n = 56

Figure 5.8: Optimal Drug Delivery Rates for Increased Number of Decision
Variables.
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(a) µs = 0.5 (b) µs = 2

(c) µs = 1 (base-case)

Figure 5.9: Optimal Drug Delivery Rates under Linearly Defined Transition
Probability Function with Varying Weights.

schedule affect the final tumor population, e.g. a decrease in Fig. 5.10a or an increase in
Fig. 5.10b compared to the base-case in Fig. 5.10c, respectively. This is mainly because
the value in the first month of the transition probability is high compared to the rest of
the probabilities in the treatment schedule. Once more weight is given to that probability,
the tumor growth rate will be high for the rest of the treatment if the tumor stage jump
happens that month. This slight increase in value will result in a larger tumor size, while
decreasing its value will reduce the final tumor size at the end of the treatment period.

5.3.6.2 Sensitivity on the Cumulative Drug Toxicity Limits

We also conduct sensitivity analysis to see how the tumor population change with toxicity
limits as the scheduling decisions are prompt to change.

Fig. 5.11a illustrates that an increased tolerated drug delivery rate limit allows a higher
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(a) µs = 0.5 (b) µs = 2

(c) µs = 1

Figure 5.10: Tumor Size Change for Figure 5.9.
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dose in the first month compared to Fig. 5.11b since there is enough drug to reduce the
tumor size more than 50% throughout the treatment. However, since the probability of
stage jump is high after the first month, the drug delivery rate in the second month is
provided carefully considering the need in a future treatment.

Fig. 5.11b demonstrates how drug delivery rate is given gradually to achieve the exact
reduction limit of the tumor size for the next treatment point, since the allowable limit of
toxicity is lower than Fig. 5.11a. The changes of tumor size based on these given two drug
toxicity limits are shown in Fig. 5.11c and Fig. 5.11d.

(a) Drug Delivery Rate with vcum = 5600 (b) Drug Delivery Rate with vcum = 1470

(c) Change of Tumor Size under (5.11a). (d) Change of Tumor Size under (5.11b).

Figure 5.11: Comparison of Optimal Drug Delivery Rate Based on Different
Cumulative Toxicity Limits.

5.3.6.3 Sensitivity on The Tumor Reduction Constraint

Our analysis on tumor reduction constraint shows how the performances alter when the
limit of the reduction constraint changes.

Fig. 5.12a represents the drug delivery rate schedule when the tumor reduction limit
has increased from 50% to 90%. That means the tumor size reduction for the next treat-
ment time is relaxed. Therefore,after the first month of treatment (since the stage jump
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probability is high), the drug delivery dose is low for the subsequent four months, and then
increases towards the end, as seen in Fig. 5.12c.

Fig. 5.12b demonstrates the drug delivery rate when the tumor reduction has decreased
to 28% from 50%. This means the tumor size reduction is forced to decrease at least 72%
for the next treatment time. That lower bound percentage is found while searching for a
feasible region of the problem. The expected tumor size change, based on this drug delivery
schedule, shown in Fig. 5.12d, is higher than in the optimal solution. That is because the
available drug delivery rate is constrained by the cumulative drug limit.

(a) Drug Delivery Rate for an Increased
Tumor Size Reduction Limit.

(b) Drug Delivery Rate for an De-
creased Tumor Size Reduction Limit.

(c) Change of Tumor Size under
Fig. 5.12a.

(d) Change of Tumor Size under
Fig. 5.12b.

Figure 5.12: Comparison of Optimal Drug Delivery Rate Based on Different
Tumor Size Reduction Limits.

5.3.6.4 The Effect of Transition Probability Functions on the Drug Delivery
Rate Schedule

To analyze the effect of the transition probability function, two other functions are now
defined, besides the linear jump probability function that was used in the stochastic opti-
mization model. These functions are synthetic, and used only to compare the behaviour
of the problem under different transition probability functions.
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1. Linear function:

pi = µ1

(
Ni−1+Ni

2

θ

)
, i = 1, 2, ..., n (5.12)

2. Convex function:
pi = µ2

(
e
Ni−1+Ni

2θ
−1
)
, i = 1, 2, ..., n (5.13)

3. Concave function:

pi = µ3

(√
Ni−1 +Ni

2θ

)
, i = 1, 2, ..., n (5.14)

Initially, the weights of the transition probability functions were calculated by using
the same jump probability obtained when the expected final tumor size is computed under
the deterministic drug delivery rate schedule. To observe the distribution probabilities, the
probabilities at the first and at the last month are taken as equal. Therefore, by taking
the value of the jump probability at the first month of treatment which is 0.20216, the
weights are found as µ1 = 1, µ2 = 0.44896, µ3 = 0.44962, respectively. Nevertheless, the
weights are calculated as µ1 = 1, µ2 = 0.43, µ3 = 0.32 when the stage jump probability
at the last month of the treatment is taken as 0.65743. After establishing the weights,
the jump probability in each treatment point is plotted in two different graphs, Fig. 5.13
and Fig. 5.14, for these three functions. As seen in these figures, the result for the convex
and linear transition probability functions are quite identical. For the concave function,
the result is slightly different. However, the stage jump probability is lower, 54%, at the
final treatment point when the probabilities are taken equal, 20%, in the first month of
the treatment. On the other hand, the stage jump probability at the first month of the
treatment is lower, 14%, if the stage jump probability at the final treatment point is equal,
65%.

5.4 Conclusions

In this chapter, we have designed initially two myopic approaches and then a nonlinear
stochastic optimization model to incorporate the probability of stage jump during the treat-
ment plan, since staging is an important indicator to determine the treatment schedule.
Our results show that by incorporating the stochastic feature in the optimization model
while designing to find an optimal drug schedule, at least 3% and 8% of patients avoided
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Figure 5.13: Comparison of Transition Probability Functions while the Jump
Probability of the Functions is held the Same in the First Month.

Figure 5.14: Comparison of Probability Function while the Jump Probability of
the Functions are held the Same in the Last Month.
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having a stage jump during the seven months treatment time in the sequential optimization
and stochastic optimization models, respectively, compared the deterministic model design
in the stochastic environment. The utility of such models is to aid the clinician in the
optimization of drug delivery rate schedules for the treatment of cancers in vitro systems.

To verify our solution approach, the Brute-Force search and its modified algorithm
were implemented. The results demonstrated their convergence to the optimal solution
of the problem. We conducted extensive sensitivity analyses on the constraints limits
and weight of the transition probability. Moreover, to analyze the effect of transition
probability functions on the optimal drug delivery rate schedule, we proposed two other
different probability functions, and showed their effect on the final outcome.
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Chapter 6

Simulated Annealing (SA) for
Chemotherapy Treatment Planning

In this chapter, we present a metaheuristic approach to design a cancer chemotherapy
treatment scheduling defined as a stochastic optimization problem in Chapter 5. The effect
of probabilistic staging into the model for a given policy has already been implemented
and checked by a total enumeration based approach to solving the stochastic problem for
small problem instances. However, as the number of decision variables is increased, the
total enumeration approach becomes intractable and inefficient. Moreover, the system of
designing an effective chemotherapy treatment schedule might become highly nonlinear,
high dimensional and cannot be solved with a computer program when additional factors
are implemented to the system. Hence, Simulated Annealing (SA) algorithm, randomized
search heuristics, is utilized to overcome these obstacles and the results are presented in
this chapter.

6.1 Simulated Annealing

Simulated Annealing (SA) is a stochastic optimization method that has been inspired by
the process of annealing metals. Physically, annealing involves heating a metal and then
slowly cool it down a uniform structure according to a specific schedule. Initially, atoms
have the energy to move around and ensure a ”random state” when the heating temperature
is high enough. Gradually, atoms settle in good spots and establish ”thermal equilibrium”
when the cooling process is slow enough. Therefore, the objective of physical annealing
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is to achieve a low energy state of a metal. SA mimics that process by probabilistically
combining random walk and hill climbing algorithms since it picks a ”random move” instead
of picking the ”best move” and allows to find the global extreme for the function that might
have local minimums [Spall, 2003].

The first SA algorithm was developed in 1953 [Metropolis et al., 1953]. Then, SA was
initially applied to optimization problems as the basis of an optimization technique by
Kirkpatrick et al. [1983]. SA method is used in many combinatorial optimization prob-
lems including quadratic assignment problem [Misevičius, 2003], graph searching [de Sales
Guerra Tsuzuki et al., 2006], healthcare [Knust and Xie, 2019, Rosocha et al., 2015]. This
chapter demonstrates the application of the SA method in the chemotherapy treatment
scheduling problem.

6.1.1 Outline of Simulated Annealing Process

SA is a probabilistic method that conditionally accepts the worse solution of the problem
in the process of finding an approximate global optimum. In Fig. 6.1, the algorithm starts
at a random initial point and continues checking if the neighbour solution is better than
the current solution. If there is an improvement in the objective function, this new solution
is commonly accepted. If the neighbour solution is worse, it is accepted with probability
based on how much worse it is and how high the current temperature of the system, since
the goal of this process is to escape from possible local minimum points.

The general process of SA is ([Sibalija, 2018], [Bertsimas and Tsitsiklis, 1993]):

Step 1 Regulate the algorithm-specific parameters such as the initial point, stopping
criteria (e.g., the final temperature, the total number of algorithm iterations,
the difference in objective function), the annealing schedule

Step 2 Starting point: Calculate the objective function based on the given initial point

Step 3 Find a new neighbourhood solution determined by the annealing function and
calculate the objective function of this new point

Step 4 Calculate the score, ∆E: the change in the objective function due to the move
from the initial point to the new point

Step 5 Decision:
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Figure 6.1: Trajectory of SA Algorithm [Rosocha et al., 2015].
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� If ∆E < 0, accept the new point and use it as the initial point in the next
step.

� If ∆E > 0, create a random number, r, in the range (0,1) and then calculate
the probability of accepting a new state as:

P (accepting the move) = exp

(
− ∆E

k ∗ T

)
(6.1)

This is called the Metropolis procedure where k-Boltzmann’s constant and
T stands for temperature [Metropolis et al., 1953]. If r ≤ P (accepting the move),
then continue. If not, go to Step 3.

Step 6 Repeat the process until the number of iterations at a particular temperature
has been performed.

Step 7 Update the temperature by lowering the temperature value according to the
specified temperature update function [Akella, 2014].

Step 8 The process is terminated if the current temperature is lower than or equal to the
specified final temperature and/or the number of algorithm iterations is reached.

A flow chart is presented in Fig. 6.2 to visualize the general approach of the Simulated
Annealing algorithm.

6.2 Application of Simulated Annealing in Chemother-

apy Treatment Planning

In the implementation of the algorithm for both proposed models, deterministic and
stochastic, we start the process first for finding the best initial solution set rather than
the randomly generated initial point at the initial temperature which is the common ap-
proach in SA.

The initial solution is obtained considering the satisfaction of the tumor reduction
constraint. In other words, drug delivery rates have been set to reduce the tumor size by
at least 50% for the next treatment point.

Neighbour is structured based on the consideration of the total allowance drug through-
out the treatment. In this specific problem, the resources are limited and needed to use
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Figure 6.2: A Flow Chart of the SA Algorithm.
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strategically to find the best solution. For the drug delivery rate schedule, if there is an
increase at any of the doses, then another dose at the other treatment time should be de-
creased or vice versa in terms of protecting the allowable resources. Fig. 6.3 visualizes the
notion of drug delivery rate conservation throughout the treatment if a unit has increased,
say for σ1, then one unit has to be decreased for σ2, σ3, ..., or σ7.

Figure 6.3: Sample Neighbourhood of Decision Variables Structured as a Net-
work

6.3 Results and Discussions

We implement SA in both proposed models and discuss our findings in the following sec-
tions.

6.3.1 Result for the OCM

SA requires some parameters. Fine-tuning values of these parameters are important to
approximate the global solution. The most important factor in this procedure is to define
the initial temperature and its cooldown factor called the annealing function [Weyland,
2008]. We define the annealing schedule as:

cooling scheduler =
T0

102r−2
, r = 1, ..., 6 (6.2)

where T0, the initial value of the temperature is 10000.

Also, we decrease the step size of each run as follows:
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εr =
ε0

10r−1
, r = 1, ..., 6 (6.3)

where ε0, the initial step size is 2.

In the implementation of SA for the deterministic model, we have 6 runs that each
run consists of ten iterations. In the first run (r), we initialize the process from the
initial solution that has been constructed to meet the 50% reduction constraint. Then,
in each iteration, we look at the nearest neighbour of the initial solution by increasing
and decreasing the control parameter, σi, i = 1, ...n by ε. The solution for the final tumor
size in each iteration is accepted even if the nearest neighbour is worse than the previous
iteration. We accept the best solution among neighbours in the last run and iteration.
After every ten iterations in each run, the temperature is reduced by Eq. (6.2) and ε is
decreased by Eq. (6.3).

Figure 6.4: Final Tumor Size Change in Each Iteration.

Fig. 6.4 demonstrates the final tumor size for the iterations. Although we had six runs,
we present only the first 20 iterations, since the solution is getting stuck after 11 iterations
and does not provide a significant improvement.

6.3.2 Result for the NSO

Similar to the previous section, we first calculate the initial solution to start the SA ap-
proach for the proposed stochastic model. We find that the initial solution is already so
close to the optimal solution that has been found in Nonlinear Stochastic Optimization.
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With the current configurations, regardless of how many iterations we generate, the neigh-
bour search of the initial solution cannot provide a better result and get stuck at the same
point. That happens because the problem constraints limit the search and prevent con-
verging any improved results. With this initial solution we have, it is not possible to find
a better neighbour solution.

We calculate the final tumor size based on the specific percentage reduction for the first
month and then followed by a 50% reduction in the consecutive months and the rest of
the drug is allocated the last month and the month before that. In Fig. 6.5, we examine
different percentage reductions from 50% to 90% in the first month for the initial solution
because the solution of the first month affects the rest of the solution. We find 65%
reduction in the first month is optimal that we have found in the stochastic optimization.

Figure 6.5: Final Tumor Size Change Based on the Reduction of Tumor Size in
the First Month throughout the Whole Iteration.

To conclude, the solution of SA in the deterministic model improves with the iteration
by changing the value of the last three control variables. However, since the initial solution
in the stochastic model for SA is close to the optimal solution, the neighbour search is
getting stuck in the iterations. We declare that there is more research needed SA for the
stochastic model. For example, for the different sets of constraints, we can use the same
approach to initialize the SA model from different percentage levels for the first month.
Then, we run SA. If there is room for improvement, we can present the result.

94



Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, we have proposed and studied a novel methodology for drug administration
decisions under stochastic cancer staging. Results obtained from the comprehensive test-
ing on computer programming satisfy the research hypothesis stipulating that embedding
stochastic feature in the deterministic model is crucial for an effective drug delivery rate
schedule to treat cancer.

Initially, we have designed a deterministic tumor kinetic model to represent the be-
haviour of tumor dynamics. We demonstrate that this method is computationally feasible
and its power of representation can be validated using a real data from the literature.

Later, an optimal control model has been designed by employing certain restrictions.
Since this optimal control model is a nonlinear optimization problem, we have numerically
solved it using the control parametrization technique. The result of optimization problem
have suggested to keep the initial drug delivery rate low, and then gradually increase with
small increments towards the end of treatment. By doing that the optimal drug schedule
achieves minimal tumor cells at the end and maintains the allowable drug toxicity level for
all treatment time.

Afterwards, we have proposed a stochastic staging mechanism to be incorporated into
the proposed optimal control model. The results indicate that considering the probability
in stage of cancer significantly changes the structure of the optimal solution and provide a
better outcome. By proposing a modified version of Brute-Force search, we emphasize the
efficiency of search techniques for large-scale optimization problems and the reduction of
time and effort for such activities.
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Lastly, we have presented an altered SA algorithm for solving chemotherapy treat-
ment scheduling problem that was formulated as deterministically and stochastically in
the previous chapters.

To conclude, our purpose and notable contributions in this study provide a proof-
of-concept illustrating that it is possible to extend the classical chemotherapy treatment
planning models to be a more realistic model. That extension can be solved efficiently, and
provide useful insights for the practitioners.

Our numerical results can be improved by including more realistic terms in the proposed
models. Even though the results cannot strongly suggest that standard treatment protocols
may not be optimal, every attempt has the potential to improve the quality of treatment
for cancer survivors.

7.2 Directions for Further Research

Despite the impact of this research and the steps taken, there are several areas for im-
provement in our study. More specifically, the following items will be addressed in future
research:

A potential future extension of the present research work lies in the direction of con-
sidering multi-drug and cell-cycle specific drug administration for the proposed models.

Another potential future research direction as a continuation of this thesis is to conduct
a study in the presence of drug resistance.

One of the limitations of this study is to present a SA model that doesn’t improve
the solution point for the stochastic optimization model due to the restricted constraint
limits. Therefore, more research is needed to implement the SA approach for stochastic
optimization.

This presented study may provide clinicians substantial insights on chemotherapy schedul-
ing through the identification of biological factors. Therefore, the proposed models can be
enriched by a clinical study with a larger number of patients. In the future, we plan to
refine the parameters of our model with experimental and clinical data and expect to confer
more benefits to real treatments in clinical practice through application or implementation
study. Moreover, for the improvement of the OCM, another potential model could be
maximizing the survival rate of cancer patients while considering constraints on the final
tumor size. However, such an extension would require a significant change in the modeling
approach, therefore it is left as future work.
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Appendix A

Transformation from N(t) to y(t)

Proposed tumor kinetic model is presented in the following:

dN(t)

dt
= −λN(t)ln

[
N(t)

θ

]
− k1u

λk2 + u
N(t), N(0) = N0 (A.1)

We define the nondimensional cancer population as

y(t) = ln

[
N(t)

θ

]
(A.2)

We can obtain N(t) in terms of y(t) as follows:

N(t) = θey(t), (A.3)

Then, by taking the differentiation of both sides with respect to t, we can get

Ṅ(t) = θey(t)ẏ(t), (A.4)

Substituting Eq. (A.3) and Eq. (A.4) into Eq. (A.1), we obtain the following linear
differential equation:

ẏ(t) = −λy(t)−
(

k1u

γk2 + u

)
, (A.5)

The differential equation in Eq. (A.5) can be solved using integrating factor.
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For simplicity, the second term in the right hand side of Eq. (A.5) can be renamed as

Q. That makes Q =
(

k1u
γk2+u

)
. Then, the last differential equation can be simply written

as:

ẏ(t) = −λy(t)−Q, (A.6)

By taking λy(t) on the left hand side of the Eq. (A.6), we get

ẏ(t) + λy(t) = −Q, (A.7)

This simple ODE can be solved by integrating factor which is found by solving this
e
∫
λdt integration. Its solution is eλt. Now, we multiply the each term in Eq. (A.7) by this

integrating factor.

eλt
dy(t)

dt
+ eλtλy(t) = −eλtQ

d

dt

[
eλty(t)

]
= −eλtQ

eλty(t) = −
∫
eλtQdt

eλty(t) = −1

λ
eλtQ+ c

y(t) = −1

λ
Q+ ce−λt (A.8)

c = y(t0) +
1

λ
Q, when t= 0

Then write back c into Eq. (A.8)

y(t) = −1

λ
Q+

(
y(t0) +

1

λ
Q

)
e−λt (A.9)

As a result, the solution of Eq. (A.5) is when we write back the value of Q in Eq. (A.9)

y(t) = −1

λ

(
k1u

γk2 + u

)
+

[
y(t0) +

1

λ

(
k1u

γk2 + u

)]
e−λt, (A.10)
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In general, by integrating Eq. (A.5) from ti−1 to ti for i = 1, 2, · · · , T , where T is final
treatment time, we can obtain the general solution of this linear differential equation as:

y(ti) = −1

λ

(
k1u

γk2 + u

)
+

[
y(ti−1) +

1

λ

(
k1u

γk2 + u

)]
e−λ∆t, (A.11)
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Appendix B

Solution of v(t)

dv(t)

dt
= u(t)− γv(t)

when u(t) = u,
dv(t)

dt
= u− γv(t)

dv(t)

dt
+ γv(t) = u

eγt
dv(t)

dt
+ eγtγv(t) = ueγt

d

dt

[
eγtv(t)

]
= ueγt

eγtv(t) =

∫
ueγtdt

eγtv(t) =
1

γ
ueγt + c

v(t) =
1

γ
u+ ce−γt when t = 0 (B.1)

c = −u
γ

at v(0)= 0,Then substitute c in Eq. (B.1),

v(t) =
1

γ
u− u

γ
e−γt

v(t) =
(
1− e−γt

) u
γ

(B.2)
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Appendix C

Tumor Reduction Constraint
Calculation

Nt+1 ≤ ηNt

θeyt+1 ≤ ηθeyt

ea ≤ eb, when a ≤ b

yt+1 ≤ ln(η) + yt

yt+1 − yt ≤ ln(η)
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Appendix D

The Expected Number of Tumor Size
Calculation at the End of Each
Treatment Period

The expected tumor sizes for the probability of stage jump at each time point are given in
the following equations:

E(N1) = N7
1

E(N2) = (1− p1)N7
2 + p1N

1
2

E(N3) = (1− p1)(1− p2)N7
3 + (1− p1)p2N

2
3 + p1N

1
3

E(N4) = (1− p1)(1− p2)(1− p3)N7
4 + (1− p1)(1− p2)p3N

3
4 + (1− p1)(p2)N2

4 + p1N
1
4

E(N5) = (1− p1)(1− p2)(1− p3)(1− p4)N7
5 + (1− p1)(1− p2)(1− p3)p4N

4
5

+ (1− p1)(1− p2)p3N
3
5 + (1− p1)p2N

2
5 + p1N

1
5

E(N6) = (1− p1)(1− p2)(1− p3)(1− p4)(1− p5)N7
6 + (1− p1)(1− p2)(1− p3)(1− p4)p5N

5
6

+ (1− p1)(1− p2)(1− p3)p4N
4
6 + (1− p1)(1− p2)p3N

3
6 + (1− p1)p2N

2
6 + p1N

1
6

E(N7) = (1− p1)(1− p2)(1− p3)(1− p4)(1− p5)(1− p6)N7
7

+ (1− p1)(1− p2)(1− p3)(1− p4)(1− p5)p6N
6
7

+ (1− p1)(1− p2)(1− p3)(1− p4)p5N
5
7 + (1− p1)(1− p2)(1− p3)p4N

4
7

+ (1− p1)(1− p2)p3N
3
7 + (1− p1)p2N

2
7 + p1N

1
7
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