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Abstract

Let f : X → X be a surjective endomorphism of a normal projective variety defined
over a number field. The dynamics of f may be studied through the dynamics of the
linear action f ∗ : Pic(X)R → Pic(X)R, which are governed by the spectral theory of f ∗.
Let λ1(f) be the spectral radius of f ∗. We study Q-divisors D with f ∗D = λ1(f)D and
κ(D) = 0 where κ(D) is the Iitaka dimension of the divisor D. We analyze the base
locus of such divisors and interpret the set of small eigenvalues in terms of the canonical
heights of Jordan blocks described by Kawaguchi and Silverman. We identify a linear
algebraic condition on surjective morphisms that may be useful in proving instances of the
Kawaguchi-Silverman conjecture.

We prove the Kawaguchi-Silverman conjecture and verify the aforementioned linear
algebraic condition holds for projective bundles PE over an elliptic curve C where E =⊕s

i=1 Fri and Fri is the semi-stable degree zero Atiyah bundle on C. This represents new
progress in the last remaining case of the Kawaguchi-Silverman conjecture for projective
bundles over curves.

By a result of Silverman and Kawaguchi, if P ∈ X(Q) then αf (P ) = |µ| where µ is
an eigenvalue of f ∗ acting on the Neron-Severi space of X. We give examples of abelian
varieties that possess an eigenvalue µ of modulus strictly larger than one such that αf (P ) 6=
|µ| for all P ∈ X(Q). On the other hand, we show using the minimal model program that if
X is a Q-factorial toric variety then for every such µ we can find a point P with αf (P ) = |µ|.

Finally, we give a program to study the arithmetic dynamics of higher dimensional
projective varieties using the minimal model program. In particular, we describe how one
might use the minimal model program to determine if certain surjective morphisms have
a dense set of pre-periodic points, and how to study the Medvedev-Scanlon conjecture for
certain surjective endomorphisms using the minimal model program.

iv



Acknowledgements

First and foremost, I would like to thank my supervisor Matthew Satriano for his kind and
gentle patience, support, advice, and insight during my graduate studies, for teaching me
about algebraic stacks (although I do not use them in this thesis) and introducing/teaching
me arithmetic dynamics.

I would also like to thank Jason Bell for introducing me to algebraic geometry, years
ago in a far away place on a (relatively small) mountain top wreathed in clouds overlooking
the Burrard inlet, and for many helpful conversations. I would like to thank Nils Bruin for
introducing and teaching me arithmetic geometry on that same misty mountain top.

Special thanks go out to Stanley Yao Xiao for giving me a place to live, and being a
good friend and collaborator.

I would like to thank Yohsuke Matsuzawa, De-Qi Zhang, Ben Webster, and Ruxandra
Moraru for helpful conversations.

To my fellow graduate students at Waterloo, Patrick, Nicholas, Shubham, Farida, Er-
tan, Raginini, Ehsaan, Hongdi, Jitendra, Satish, Anton, Parham, Samin, Zack, Seda,
Manny, Rose, Sina, Lukas, Ben, and many others I am likely forgetting, thanks for putting
up with my ranting and raving about algebraic geometry. In particular, Ben, who was
always there to go for a walk or have a beer.

I would be remiss in not acknowledging the Department of Pure mathematics at Water-
loo for their help and support over the years I have been here. In particular, I would like to
thank Jackie Hilts, Lis D’Alessio, and Nancy Maloney for their tireless work in supporting
the graduate students and faculty in the Pure Mathematics department.

I would like to thank the Albert household, Devashish, Pritam, and Sayan for tolerating
me during the final stages of this thesis.

To my friends from SFU, Ben, Kelvin, Alan, Stephen, Ian, Navid, Parinaz, and Avi
(some of which came with me to Waterloo) thanks for reminding of home, and for being
part of that home. Avi, Navid, and Stephen, I will always remember our time at SFU
together fondly. I was the last one left. I guess our watch has now truly ended.

To Nilima, thank you for teaching me to think like a mathematician.

To the engineers at SFU, Michael, Amir, Amir J, Shayan, Saman, and Kyle, thanks
for being great friends, and providing too many moments and memories that could be
recounted here. Indeed, it might take another 200 pages to get through them all. But
especially Michael. From late night study sessions at Turks (and then beers at Stormcrow)

v



to hiking to the crown of Vancouver and camping beneath the Needles, I always left
Vancouver refreshed and ready to go back to work on this thesis.

Last but not least, I would like to thank my family, Les, Liz, Manijeh, Dillon, and
Brooks for their unending, unconditional love and support, without which none of this
would be possible. Truly, words cannot express my gratitude.

vi



Dedication

I dedicate this thesis to my brother Brooks. Forward unto dawn.

vii



Table of Contents

1 Introduction 1

1.1 Statement of results and layout of the thesis. . . . . . . . . . . . . . . . . . 5

1.1.1 Results from chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Results from chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Results from chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Geometric Preliminaries 10

2.1 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Convex cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Toric Varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Positivity in algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Intersection theory and Positivity . . . . . . . . . . . . . . . . . . . 24

2.2.2 Ample divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Q-divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 R-divisors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.5 Nef divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.6 Iitaka Dimensions of line bundles. . . . . . . . . . . . . . . . . . . . 38

2.3 Minimal Model Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 The toric minimal model program . . . . . . . . . . . . . . . . . . . 55

viii



3 Arithmetic preliminaries. 57

3.1 Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Absolute Values and Heights . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Weil Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Picard Schemes and the Albanese variety . . . . . . . . . . . . . . . 71

3.2.2 The endomorphism ring of an abelian variety. . . . . . . . . . . . . 74

3.3 Projective bundles over elliptic curves . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Transition Functions of Fr. . . . . . . . . . . . . . . . . . . . . . . . 79

4 Dynamical Preliminaries 81

4.1 Surjective Endomorphisms of projective varieties . . . . . . . . . . . . . . . 82

4.1.1 Int-amplified endomorphisms . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 Dynamical degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Arithmetic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Canonical height functions and arithmetic degrees. . . . . . . . . . 91

4.2.2 The Kawaguchi-Silverman and sAND conjectures . . . . . . . . . . 94

5 Good Eigenspaces 98

5.1 Invariance of base locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Eigendivisors with κ(D) = 0 . . . . . . . . . . . . . . . . . . . . . . 100

5.1.2 Numerical vs Linear equivalence . . . . . . . . . . . . . . . . . . . . 101

5.1.3 Analysis of Jordan Blocks . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Some applications of eigendivisors with few sections . . . . . . . . . . . . . 105

5.2.1 The case of a finitely generated nef cone . . . . . . . . . . . . . . . 105

5.2.2 Varieties with a good eigenspace . . . . . . . . . . . . . . . . . . . . 106

5.2.3 The case of Picard number 2 . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Projective Bundles over elliptic curves . . . . . . . . . . . . . . . . . . . . 119

5.3.1 The Kawaguchi-Silverman conjecture for Atiyah bundles . . . . . . 129

ix



6 Arithmetic eigenvalues. 154

6.1 Realizability for abelian varieties. . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Realizability when Alb(X) = 0 and κ(X) = −∞. . . . . . . . . . . . . . . 163

6.2.1 Realizability for toric varieties. . . . . . . . . . . . . . . . . . . . . 167

6.3 Realizability in the Int-amplified setting . . . . . . . . . . . . . . . . . . . 179

7 Using the equivariant MMP to obtain results in arithmetic dynamics 184

7.1 Pre-periodic points for varieties admitting an int-amplified endomorphism . 187

7.2 Medvedev-Scanlon conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 Automorphisms of positive entropy and the Kawaguchi Silverman conjecture.203

References 213

x



Chapter 1

Introduction

Arithmetic dynamics is the study of the behavior of a rational map of algebraic varieties
f : X 99K X under composition. That is, the study of the behavior of the rational maps
fn : X 99K X as n grows large. While it may not be obvious given this description, the
tendrils of arithmetic dynamics reach deeply into both algebraic geometry and number
theory. The roots of arithmetic dynamics can be seen in Newton’s iterative method, and
its influence seen in the work of Northcott and Tate, and later by Silverman and Zhang.
The power and allure of arithmetic dynamics is partly explained by the fact that a con-
jecture or theorem in arithmetic geometry often has an analogous conjecture or theorem
in arithmetic dynamics that tends to be harder then the motivating problem, due to the
dynamical version being more general.

The basic method of formulating dynamical conjectures out of arithmetic conjectures
comes from an analogy of Silverman described in [7]. Let f : X 99K X be a rational map.
We call the pair (X, f) a dynamical system. Let P be a point of X such that fn(P ) is
defined for all n ≥ 1. We let Of (P ) = {P, f(P ), f 2(P ), . . .} be the forward orbit of P . If
this orbit is finite, we call P a pre-periodic point. In other words, P is pre-periodic if
there are integers n 6= m such that fn(P ) = fm(P ). If we have fn(P ) = P for some n ≥ 1
we say P is a periodic point. Silverman’s analogy is then as follows.
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Arithmetic Geometry Arithmetic Dynamics

A variety X oo // A dynamical system (X, f)

Rational and integral points on X oo // Rational and integral points on orbits of (X, f)

Torsion points on abelian varieties oo // Pre-periodic and periodic points of rational map

The study of a dynamical system (X, f) is often very difficult, even if X is very simple.
For example, let c ∈ Q and let fc(x) = x2 + c. It is unknown whether there are rational
periodic points with period greater than 3. In other words, we cannot determine if there
are α ∈ Q with f ◦n(α) = α, f ◦k(α) 6= α for k < n and n > 3. The reason for this difficulty
is that one may reinterpret this question in terms of finding rational points on certain plane
curves of large genus, which is known to be a challenging problem. See [7, Section 4] for
more details on this area.

In contrast with the above problem, this thesis is primarily concerned with tackling
dynamical problems in dimension larger than one. Even though there are challenging un-
resolved problems in dimension one, progress is still possible in higher dimensions provided
that one uses appropriate techniques from higher dimensional algebraic geometry. To illus-
trate the difference between the one-dimensional setting and the higher dimensional world
consider the following. Let (X, f) be a dynamical system with X a smooth projective
variety defined over Q. If dimX = 1 then any dominant rational mapping f : X 99K X
extends to a morphism f : X → X. In this case then we have that X is P1, an elliptic
curve, or a smooth curve of genus g ≥ 2. If X = P1 then f is given by two homogeneous
polynomials F,G ∈ Q[t, s] without a common vanishing locus. If X = E an elliptic curve,
then f = τc ◦g where g is an isogeny of the curve. Finally, if X = C a smooth curve of gen-
eral type, then f is a finite order automorphism. In other words, we have at least a rough
classification of the possible dynamical systems in dimension one, even if the finer details
may be difficult to study. By contrast, it is in general a difficult question to understand
the collection of surjective endomorphisms of a projective variety X when dimX ≥ 2. In
the above classification, we made use of the fact that we can classify smooth projective
curves by their genus. In higher dimensions such a complete classification is not available,
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yet there is an analog of this classification called the minimal model program which will be
used extensively.

In this dissertation we will study higher dimensional arithmetic dynamics from the point
of view of the Kawaguchi-Silverman conjecture (KSC), which we now explain. Let
(X, f) be a dynamical system with X a normal projective variety defined over a number
field K and f a dominant rational map. Associated to f are two numerical invariants.
The dynamical degree is defined as

λ1(f) := lim
n→∞

((fn)∗H ·HdimX−1)
1
n ,

where H is any ample divisor and (fn)∗H · HdimX−1 is the intersection product. This
limit always converges and is independent of H. We think of the dynamical degree as a
geometric measure of the complexity of f under iteration. There are also the upper and
lower arithmetic degrees of a point P ∈ X(K̄) such that fn(P ) is defined for all n ≥ 1.
These numbers are defined by

αf (P ) := lim sup
n→∞

h+
H(fn(P ))

1
n

αf (P ) := lim inf
n→∞

h+
H(fn(P ))

1
n

where hH is a height function associated to an ample divisor and h+
H(P ) = max{1, hH(P )}.

As expected, these numbers are independent of H. The Kawaguchi-Silverman conjecture
predicts a certain type of ergodic theorem relating these invariants.

Conjecture 1 ([29]). Let X be a normal projective variety defined over a number field
K and let f : X 99K X be a dominant rational map. Let P ∈ X(K̄) such that fn(P ) is
well defined for all n ≥ 1. Suppose that the orbit Of (P ) is Zariski dense in X. Then

αf (P ) = αf (P ) = λ1(f). In other words the limit limn→∞ h
+
H(fn(P ))

1
n exists and is equal

to λ1(f).

When f is a dominant rational map that is not a morphism this question appears very
difficult. Even for P2 it is still unresolved. By contrast when the map is a morphism then it
is known that the limit limn→∞ h

+
H(fn(P ))

1
n exists. We call the limit the arithmetic degree,

which is denoted limn→∞ h
+
H(fn(P ))

1
n := αf (P ). The requirement of a dense forward orbit

makes the conjecture interesting only when κ(X) ≤ 0. When κ(X) > 0 the existence of
the Iitaka fibration over a positive dimensional base makes the existence of a dense forward
orbit impossible. In light of this the following conjecture was proposed, which is interesting
for all Kodaira dimensions and implies Conjecture (1).

3



Conjecture 2 ([39, Conjecture 1.4]). Let X be a normal projective variety and f : X → X
a surjective endomorphism. Let

S(X, f,N) = {P ∈ X(K) : [K : Q] ≤ N,αf (P ) < λ1(f)}

Then S(X, f,N) is not Zariski dense in X.

In the morphism case a powerful tool is the following connection to linear algebra. The
morphism f : X → X induces by pull back linear isomorphisms f ∗ : Pic(X)R → Pic(X)R
and f ∗ : N1(X)R → N1(X)R. One may profitably study the dynamics of f through the
dynamics of these actions. The connection is follows,

λ1(f) = Spectral Radius(f ∗ : N1(X)R → N1(X)R) = {max | λ |: λ an eigenvalue of f ∗}}

If λ > 1 is an eigenvalue of f ∗ then one uses the divisor classes with f ∗D ∼Q λD to
construct height functions which intertwine the arithmetic and geometry of (X, f). To
contrast this with the case that f is merely a dominant rational map we note that one can
still define a pull back mapping f ∗ : N1(X)R → N1(X)R, but this mapping does not reflect
the dynamics of f as completely as in the morphism case. For those who know more, this is
reflected in the fact that it is difficult to construct canonical height functions associated to
f when f is not a morphism. In other words, Silverman’s maxim that geometry determines
arithmetic is much more tenuous and theoretical when f is not everywhere defined. As a
reality check to gauge the difference in difficulty between the morphism and rational map
case, note that when f is a dominant rational map the conjecture is open for P2. While
when f is a morphism the Kawaguchi-Silverman conjecture is known in the following cases.

1. Varieties with Picard number 1, in particular for all Pn. ([29])

2. Abelian varieties. ([28, 56])

3. Smooth projective surfaces. ([40])

4. Rationally connected varieties admitting an int-amplified endomorphism. ([42])

5. Hyper-Kahler Varieties.([34])

See ([40]) for further comments on what is known.

4



1.1 Statement of results and layout of the thesis.

In chapter 2 we review much of the needed geometry of the thesis including toric varieties.
In chapter 3 the required arithmetic results are given. Finally in chapter 4 we combine
these results and give the desired dynamical results. These chapters are expository and
should be read as needed. From a dynamical perspective chapter 4 may be the most
interesting and contain the newest material. The original work of the thesis is contained
in chapters 5,6, and 7.

1.1.1 Results from chapter 5

In chapter 5 we study surjective endomorphisms f : X → X of a normal projective variety
through the base locus of an eigendivisor D with f ∗D ≡lin λ1(f)D and λ1(f) ∈ Z. When
κ(D) > 0 it is known by 4.2.9 that conjecture 1 holds. We focus on the case κ(D) = 0.
Our main contributions here are as follows.

Chapter 5, Theorem 1 (5.1.7.1). The Kawaguchi-Silverman conjecture for an endomor-
phism f with λ = λ1(f) > 1 is equivalent to Gf,H contains no dense orbit of f .

Here Gf,H is an analog of the set S(X, f,N) in 2.

We also formulate a new property of surjective endomorphisms using the canonical
heights associated to Jordan blocks.

Chapter 5, Definition (5.2.6). Let f : X → X be a surjective endomorphism of a normal
projective variety over a number field K with λ = λ1(f) > 1. Let H be an integral
eigendivisor and let VH be as is (4.2.4.1). We say f ∗ |VH has a good eigenspace if f ∗ |VH
has the following properties,

1. λ is the unique eigenvalue of absolute value λ of f ∗ |VH .

2. The multiplicity of all λ Jordan blocks of f ∗ |VH are of multiplicity 1.

3. The Jordan blocks of f ∗ |VH associated to λ can be taken to be integral nef divisor
classes D1, ..., Dl.

4. There is some 1 ≤ i ≤ l such that κ(Di) 6= 0.

5



This definition is meant to generalize 5.2.4 which is a technical definition that arises
in the study of varieties admitting an int-amplified endomorphism. The benefit of this
definition is that it is not as specialized to the int-amplified situation as 5.2.4. Currently
there is no known example of a surjective endomorphism that does not possess a good
eigenspace. As a sample result, we prove the following.

Chapter 5, Theorem 2 (5.2.13). Let X be a smooth projective variety with Picard number
1 and let E be a nef vector bundle on X with H0(X,E) 6= 0 such that E is not ample and
κ(PE,−KPE) ≥ 0. Suppose that there is integral ample divisor H such that f ∗ |VH has a
good eigenspace. Then the Kawaguchi-Silverman conjecture holds for X.

We then turn to projective bundles over an elliptic curve. These are interesting because
they represent the only remaining open case where the Kawaguchi-Silverman conjecture for
projective bundles over curves is not known. If C is an elliptic curve, then Atiyah showed
in [4] there is a unique degree zero, rank r, indecomposable vector bundle on C with a
non-zero global section. Call this vector bundle Fr. We are able to prove the following
results.

Chapter 5, Theorem 3 (5.3.16.2). Let C be an elliptic curve defined over Q̄. Then the
Kawaguchi-Silverman conjecture holds for PFr when r > 2. In particular, PFr has a good
eigenspace.

Chapter 5, Theorem 4 (The reducible case, 5.3.11.1). Let C be an elliptic curve defined
over Q̄. Let E =

⊕s
i=1 Fri where s > 1. Then the Kawaguchi-Silverman conjecture holds

for PE. In particular, PE has a good eigenspace.

Let E =
⊕s

i=1 Fri . In both of the previous two theorems we obtain the result by
showing that dimH0(C, SymdE) ≥ O(d) where we use the big O notation. In other words,
the dimension of the sections grows at least linearly in d. Note that this is contrast to
dimH0(C, SymdF2) = 1 for all d ≥ 1.

Finally, through completely different methods we obtain the following.

Chapter 5, Theorem 5 (5.3.20.1). Let C be an elliptic curve defined over Q̄. Let Fr be
the rank r Atiyah bundle when 2 ≤ r ≤ 4.

1. Then PFr does not admit an int-amplified endomorphism.

2. The Kawaguchi-Silverman conjecture folds for PFr.

6



3. If f : PFr → PFr is a surjective endomorphism then f ∗OPFr(1) ≡lin OPFr(1). In
particular, f ∗ : N1(PFr)R → N1(PFr)R has 1 as an eigenvalue.

It is our hope that the methods developed in the proof of the previous result will
generalize to all r. While we have obtained the Kawaguchi-Silverman conjecture for PFr
when r ≥ 3 in theorem 3, a generalization of theorem 5 would lead to a more detailed
understanding of the possible surjective endomorphisms of projective bundles, extending
the results of [2] and [3].

1.1.2 Results from chapter 6

In chapter 6 we consider the possible values for αf (P ) when f : X → X is a surjective
endomorphism and P ∈ X(Q). Kawaguchi and Silverman showed that αf (P ) = |µ| for
some eigenvalue of f ∗ : N1(X)R → N1(X)R. Thus, to understand the set

S(X, f,N) = {P ∈ X(K) : [K,Q] ≤ N,αf (P ) < λ1(f)}

in conjecture 2 we must understand which of these arithmetic degrees actually occur. This
leads to the following key notions.

Chapter 6, Definition (6.0.1). Let X be a normal projective variety defined over Q and
let f : X → X be a surjective endomorphism. Consider the action of f ∗ on N1(X)R and
let µ be an eigenvalue of this action with |µ| > 1. We call such an eigenvalue potentially
arithmetic. If there is a point P ∈ X(Q) with αf (P ) = |µ| then we say that µ is
arithmetic. If every potentially arithmetic eigenvalue is arithmetic, then we say that f
has arithmetic eigenvalues.

Chapter 6, Question (question 2). Let X be a normal projective variety defined over Q
and let f : X → X be a surjective endomorphism. Is every eigenvalue µ of f ∗ with |µ| > 1
arithmetic?

We then proceed to answer the question in two distinct cases.

Chapter 6, Theorem 1 (6.1.3). For each g ∈ 2Z>0 there is an abelian variety A of
dimension g defined over a number field K with ρ(A) = 3 equipped with a surjective endo-
morphism f : A→ A that has the following properties.

1. f ∗ : N1(A)Q → N1(A)Q has eigenvalues a2 > ab > b2 > 0 for some a, b, c ∈ Z.

7



2. αf (P ) = a2 for all P /∈ A(K)tors. In particular, αf (P ) ∈ {1, a2}.

3. The eigendivisors of a2, b2 are nef while the eigendivisor of ab is not.

We also can show the following.

Chapter 6, Theorem 2 (6.1.4.1). For any integer d > 1 there is a smooth projective
variety X with dimX = d such that there is a surjective endomorphism f : X → X
with λ1(f) > 1 and f has does not have arithmetic eigenvalues. If d ≥ 3 and κ ∈
{−∞, 0, 1, . . . , d− 2} then X may be chosen with κ(X) = κ.

However, when Alb(X) = 0 we are able to prove positive results for toric varieties. We
first handle the case of equivariant morphisms of toric varieties. To do this we introduce
the following definition in analogy with Abelian varieties.

Chapter 6, Definition (6.2.11). Let XΣ be a Q-factorial projective toric variety defined
over Q. We say that XΣ is decomposable if

XΣ = X41 ×X42

with each X4i a Q-factorial projective toric variety of dimension at least 1. We say that
XΣ is simple if it is not decomposable.

We also have a notion of a dynamically simple toric variety.

Chapter 6, Definition (6.2.7). Let XΣ be a projective toric variety defined over Q. We
say that XΣ is linearly simple if Lin(SEndTΣ

(XΣ)) has finite index in Z≥0. In other
words, every surjective toric morphism is induced by a homomorphism of tori (x1, . . . , xn) 7→
(xd1, . . . , x

d
n) for some d > 0 after possibly iterating the morphism.

We then show that these two notions are the same.

Chapter 6, Theorem 3 (6.2.15). Let XΣ be a Q-factorial projective toric variety defined
over Q. Then XΣ is linearly simple if and only if XΣ is simple.

This result can then be leveraged to give new proofs of the following results.

Chapter 6, Theorem 4. Let XΣ be a Q-factorial toric variety defined over Q. Let
f : XΣ → XΣ be an equivariant surjective endomorphism.

8



1. Then conjecture 2 is true for f .

2. The morphism f has arithmetic eigenvalues.

Finally, we use the minimal model program to prove a similar result for all surjective
endomorphisms of Q-factorial toric varieties.

Chapter 6, Theorem 5 (6.2.21). Let X be Q-factorial toric variety defined over Q. Let
f : X → X be a surjective endomorphism. Then f has arithmetic eigenvalues.

1.1.3 Results from chapter 7

Motivated by the use of the minimal model program in chapter 6 theorem 5 in chapter
7 we explore how we might use the minimal model program to study other questions in
arithmetic dynamics.

In the discussion following 7.0.1 we outline a general program to tackle dynamical
problems using the minimal model program. In section 7.1 we apply these ideas to study
when a surjective morphism has a dense set of pre-periodic points. In section 7.2 we
consider the Medvedev-Scanlon conjecture 5 from the perspective of the minimal model
program. Finally in section 7.3 we consider automorphisms of projective varieties from
this perspective. This leads to the following result.

Chapter 7, Theorem 1 (7.3.6). Let X be a normal projective variety over Q with a
finitely generated nef cone. Let f ∈ π0Aut(X). Then λ1(f) > 1 ⇐⇒ f has infinite order
in π0Aut(X). In particular a normal projective variety X with finitely generated nef cone
has an automorphism of positive entropy if and only if π0Aut(X) has an element of infinite
order.

While many of the results in these sections are preliminary, we hope that they will bear
fruit in the future.
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Chapter 2

Geometric Preliminaries

2.1 Toric Varieties

We give a brief introduction to the theory of toric varieties and convex cones. Our main
references here are [19] and [12]. The basic object of study in the theory of toric varieties
is a variety of the following form.

Definition 2.1.1 (Toric Varieties). Let k be a field of characteristic 0. A toric variety
over k is a geometrically irreducible, normal variety X that contains a dense open algebraic
torus T ∼= Gn

m. Additionally, X has a T -action which extends the action of T on itself.

A toric morphism between toric varieties X,X ′ is a morphism f : X → X ′ which is
torus equivariant. In other word if T is the dense torus of X and T ′ is the dense torus of
X ′ then f(T ) ⊆ T ′ and f(t · x) = f(t) · f(x) for all t ∈ T and x ∈ X.

The theory of toric varieties is designed to describe all such varieties in terms of combi-
natorial data related to closed convex cones in a finite dimensional real vector space. Once
this is accomplished one can develop a dictionary between properties of these varieties and
the properties of the associated combinatorial data. Before we formally proceed, we sketch
the idea. Fix a finitely generated monoid P ⊆ Zn. That is, a subset P ⊆ Zn such that 0 ∈ P
and that P is closed under addition and P is finitely generated. In other words there are
p1, ..., ps ∈ P such that every element of P is of the form

∑s
i=1 niPi for some n1, ..., ns ∈ Z≥0.

Given u ∈ P with say u = (u1, ..., un) we write xu =
∏n

i=1 x
ui
i ∈ k[x±1

1 , ..., x±1
n ]. We then

define the semi-group algebra k[P ] = {
∑

u∈P cux
u : cu ∈ k, cu = 0 for almost all u ∈ P}.

Addition is done in the obvious way and we multiply elements according to the multi-
plication in k[x±1

1 , ..., x±1
n ]. We let X = Speck[P ]. Thus, associated to such a monoid
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we have constructed an affine scheme. Let NP = spanZP . Then NP is a lattice of rank
nP = dim spanQ(P ) and Speck[NP ] ∼= Speck[t±1

1 , ..., t±1
nP

] = GnP
m . If we identify k[P ] as a

sub-algebra of k[t±1
1 , ..., t±1

nP
] the induced morphism GnP

m → Speck[P ] is an open embedding
induced by localization at the product t1...tnP . Moreover, as we have a decomposition of
algebras

k[P ] =
⊕
u∈P

k · xu,

we have that k[P ] has a NP grading such that if a is in the degree u part of k[P ] and b
is in the degree v part of k[P ] then ab is in the degree u + v part of k[P ]. This data is
equivalent to an action of Speck[NP ] on Speck[P ]. In other words, Speck[P ] is acted on
by the torus GnP

m , and the action extends the usual action of GnP
m on itself. To sum up,

given a semi-group P ⊆ Zn that is finitely generated we constructed an affine variety X
that contains a dense open torus GnP

m whose action on itself extends to all of X. These will
be the affine building blocks of all toric varieties. We now turn to gluing. Now suppose
that P, P ′ ⊆ Zn are two finitely generated semi-groups with the property that there is
some u ∈ P and u′ ∈ P ′ such that

P + Z≥0(−u) = P ′ + Z≥0(−u′) (2.1)

Set P ′′ = P + Z≥0(−u). Then we have open embeddings

Speck[P ] Speck[P ′′] �
�

//? _oo Speck[P ′] (2.2)

In other words, Speck[P ] and Speck[P ′] both contain Speck[P ′′] as a principal open
subset. We will glue together all our affine toric varieties from the situation described in
2.1 and 2.2. To keep track of all of these relationships we will describe a convex geometric
object called a fan which will keep track of all of our semi-groups. A fan will be built
of convex cones. The passage to convex cones is as follows. Given P consider the cone
C(P ) = {

∑s
i=1 nipi : n1, ..., ns ∈ Q≥0, p1, ..., ps ∈ P}. Set

σP = {u ∈ Qn : (u, p) ≥ 0 ∀ p ∈ C(P )} (2.3)

where (·, ·) is the usual inner product on Qn. Then σP is a convex cone in Qn and we
can recover P from σP . The fan will now be constructed out of cones σP . In order to work
with convex cones, we now introduce them formally.

11



2.1.1 Convex cones

We are interested in cones from the point of view of toric varieties as described above. How-
ever, we will also be interested in cones that arise in algebraic dynamics. In particular, given
a projective varietyX we will construct a number of convex cones NefR(X),BigR(X),NE(X)
which contain geometric information about X. Moreover, in the presence of a morphism
f : X → X we will have an induced linear map that respects the cones in question. In
this way, questions about the dynamics of morphisms of X can be reduced to questions
about the dynamics of linear mappings, in other words to their eigenvalues. To do this
efficiently we need an efficient language of convex cones, which we now develop following
[19, 1.2]. In this section we let N be a lattice. That is, a finite rank free Z-module and we
set V = N⊗ZR. The dual space homZ(N,Z) of N will be denoted M . There is a canonical
pairing N ×M → Z given by (u, n) 7→ u(n). If we choose a basis for N then we may write
N ∼= Zn and M ∼= Zn and (u, n) = u · n where u · n is the usual inner product on Rn.

Definition 2.1.2 (Convex cone).

1. A convex cone in V is a subset C such that if v1, v2 ∈ C then t1v1 + t2v2 ∈ C for all
t1, t2 ∈ R>0.

2. A polyhedral convex cone in V is a subset of the form

C = {
s∑
i=1

tivi : t1, ..., ts ∈ R>0, v1, ..., vs ∈ V }.

We say that C is generated by v1, ..., vs.

3. A closed polyhedral convex cone in V is a subset of the form

C = {
s∑
i=1

tivi : t1, ..., ts ∈ R≥0, v1, ..., vs ∈ V }.

We say that C is generated by v1, ..., vs.

4. If v1, ..., vs ∈ N then we say that C is a rational polyhedral convex cone.

5. The dimension of a cone C is the dimension of its linear span in V .

Example 1.
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We give an example of how cones can arise in geometry. Let N be the free Z module
generated by the line bundle H = OPn(1). We let V = N ⊗Z R, so that V is a line. Let
AmpR(Pn) be the cone in V generated by H. In other words

AmpR(X) = R>0H.

This gives an open cone in V it is the interval (0,∞). We define the closure to be
NefR(Pn) = R≥0H = [0,∞). Notice that these cones already capture something of the
geometry of X, namely that AmpR(X) represents the divisors on Pn with positive degree,
and NefR(X) represents the divisors on Pn with non-negative degree. Now consider a sur-
jective morphism f : Pn → Pn given by f(x0 : ... : xn) = (xd0 : ... : xdn) for some d > 0. We
have a linear action by pulling back line bundles on Pn with the property that f ∗H = dH.
So we have that f ∗(AmpR(Pn)) = AmpR(Pn) and f ∗(NefR(Pn)) = NefR(Pn).

We now may define the notion introduced in 2.3 which will be crucial in our toric
dictionary.

Definition 2.1.3 (Dual cone). Let σ ⊆ V . The dual of σ is defined as

σ∨ = {u ∈ V ∗ : (u, v) ≥ 0 ∀ v ∈ σ}. (2.4)

We have the following key fact.

Proposition 2.1.4 (Cone duality facts 1.2 [19] ). Let σ be a closed convex cone in V .
Then σ∨ is a closed convex cone. Moreover, suppose that σ is a closed polyhedral convex
cone. Then we have the following.

1. If v0 /∈ σ then there is some u ∈ σ∨ with (u, v) < 0.

2. (σ∨)∨ = σ

Proof. We limit ourselves to the first point. We have that σ∨ is the collection of all u ∈ V ∗
such that (u, v) ≥ 0 for all v ∈ σ. Let Hv = {u ∈ V ∗ : (u, v) ≥ 0}. Then

σ∨ = ∩v∈σHv.

Since Hv is closed and convex we have that σ∨ is closed and convex being the intersection
of closed and convex sets.
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Example 2.

Let σ be the closed cone generated by (1, 2) and (1, 0) in R2. Then the half lines
`1 = R≥0(1, 2) and `2 = R≥0(1, 0) are intuitively faces of σ. The elements of σ∨ are given
by vectors (a, b) with (a, b) · (1, 0) = a ≥ 0 and (a, b) · (1, 2) = a+ 2b ≥ 0. In other words,
σ∨ is the closed cone generated by (1, 0), (2,−1). Notice the faces of σ can be given as
follows. Let u1 = (0, 1) and u2 = (2,−1). Notice we can describe the faces of σ in terms
of σ∨. Consider the rays u1, u2 ∈ σ∨ which describe the faces of σ∨. Then

`1 = u⊥1 ∩ σ (2.5)

`2 = u⊥2 ∩ σ (2.6)

where u⊥ = {v ∈ V : (u, v) = 0}.

Definition 2.1.5 (Faces of cone). Let σ be a closed cone in V . A face of σ is a set of the
form

τ = u⊥ ∩ σ

where u ∈ σ∨. We call a face of dimension dimV − 1 a facet of σ and any 1-dimensional
face a ray.

We now give the basic properties of faces of convex cones.

Proposition 2.1.6 (Properties of cones 1.2 [19]). Let σ be a closed polyhedral convex cone.

1. Any face of σ is also a closed polyhedral convex cone.

2. σ has finitely many faces.

3. The face of a face is a face.

4. The intersection of any faces is a face.

5. Any face is contained in a facet and any face contains a ray.

6. Any proper face is the intersection of all facets containing it.

7. The topological boundary of σ is the union of its facets.
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8. If dimσ = dimV and σ 6= V and τ is a facet then there is a unique (up to multipli-
cation by a positive scalar) uτ ∈ σ∨ with τ = u⊥τ ∩ σ.

9. If dimσ = dimV and σ 6= V then for each facet τ write Hτ = {v ∈ V : (uτ , v) ≥ 0}.
Then

σ = ∩τ a facet Hτ .

Returning to the above example of the closed cone σ generated by (1, 0), (1, 2) we now
compute the faces of σ. An element of σ∨ is an element of the form u = a(0, 1)+b(2,−1) =
(2b, a− b) with a, b ≥ 0. An element of σ is of the form v = (x+ y, 2y) for some x, y ≥ 0.
Then if u · v = 2(bx+ ay) = 0 we must have a = b = 0 or b = 0, y = 0 or (a = 0, x = 0).

u⊥ ∩ σ = `1 if a 6= 0, b = 0

u⊥ ∩ σ = `2 if a = 0, b 6= 0

u⊥ ∩ σ = {0} if a 6= 0, b 6= 0

u⊥ ∩ σ = σ if a = 0, b = 0.

The faces of σ correspond to 0, `1, `2, σ, namely the origin, the boundary rays of σ and the
whole cone σ.

The above example illustrates that there should be a relationship between the faces of
a closed polyhedral convex cone σ and the faces of σ∨.

Definition 2.1.7 (Relative interior). Let σ be a closed in V . The relative interior of σ
is the interior of σ inside spanR(σ). We write relint(σ) for the relative interior. If σ is a
closed convex polyhedral cone then

relint(σ) = {v ∈ σ : (u, v) > 0 ∀u ∈ σ∨ − σ⊥}.

Given a cone σ in V it may not be the case that dim σ = dimV . In particular when
working with the faces of σ this will always be the case when a face τ is not a facet. In such
a situation it is useful to be able to consider the face τ inside the subspace of V generated
by τ .

Proposition 2.1.8 (1.2 in [19]). Let σ be a closed convex polyhedral cone in V . Let τ be
a face of σ. Set τ ∗ = τ⊥ ∩ σ∨. Then we have the following.
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1. τ ∗ is a face of σ∨.

2. The correspondence τ 7→ τ ∗ gives an inclusion reversing bijection between faces of σ
and faces of σ∨.

3. We have dim τ + dim τ ∗ = dimV .

We will also be interested in the following situation. Given a face τ of σ with τ = u⊥∩σ∨
with u ∈ σ∨, how can we compute τ∨?

Proposition 2.1.9 (Dual of a face). Let σ be a closed convex polyhedral cone. Let u ∈ σ∨.
Set τ = u⊥ ∩ σ. Then τ∨ = σ∨ + R≥0(−u).

Proof. We show that τ = (σ∨ + R≥0(−u)). This gives the result after taking duals. Take
w ∈ τ and y ∈ σ∨ with t ∈ R≥0. Then (y − tu, w) = (y, w) ≥ 0 because (u,w) = 0 and
y ∈ σ∨. So τ ⊆ (σ∨ + R≥0(−u))∨. Conversely let x ∈ (σ∨ + R≥0(−u))∨. Then (w, x) ≥ 0
for all w = y − tu where y ∈ σ∨ and t ∈ R≥0. Taking t = 0 shows that x ∈ (σ∨)∨ = σ.
Furthermore as u ∈ σ∨ we have (u, x) ≥ 0. Since we have −u ∈ σ∨ + R≥0(−u) we have
that (−u, x) ≥ 0. This can only happen if (u, x) = 0 so x ∈ u⊥ ∩ σ = τ as needed. So
(σ∨ + R≥0(−u))∨ ⊆ τ and equality prevails.

In the construction of affine toric varieties, it is crucial to consider the following situ-
ation. We have closed convex polyhedral cones σ, σ′ with τ = σ ∩ σ′ being a face of both
σ and σ′. In such a situation we wish for a way to compute a hyperplane equation for τ
that uses the fact that τ is a face of two different cones.

Lemma 2.1.10 (1.2 in [19]). Suppose we have closed convex polyhedral cones σ, σ′ and
that τ = σ ∩ σ′ is a face of both σ and σ′. Then there is some u ∈ σ∨ ∩ (−σ′)∨ with

u⊥ ∩ (σ′)∨ = τ = σ ∩ u⊥.

Finally, we have the following useful proposition and definition.

Proposition 2.1.11. Let σ be a closed convex polyhedral cone. The following are equiva-
lent.

1. σ ∩ (−σ) = 0

2. The only linear subspace contained in σ is the zero subspace.
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3. There is a u ∈ σ∨ with u⊥ ∩ σ = 0.

4. σ∨ spans V ∗.

We call a cone which satisfies any of the equivalent conditions pointed.

We have the following miscellaneous results that will be used later.

Theorem 2.1.12 ([58, Theorem 4.8]). Let A be a real n × n matrix. Then the following
are equivalent.

1. A is non-zero, diagonalizable, and all eigenvalues of A have the same modulus, with
ρ(A) being an eigenvalue.

2. There is a proper cone K in Rn with A(K) ⊆ K and A has an eigen-vector in the
interior of K.

Lemma 2.1.13. Let C1 ⊆ C2 be two full dimensional pointed convex cones in Rn. Suppose
that ∂C1 ⊆ ∂C2. Then C1 = C2.

Proof. Towards a contradiction suppose that there is a point x ∈ C2 \ C1. Let y be an
interior point of C1 and let L be the line segment between x, y with x, y excluded. Then L
contains only interior points of C2 and also a boundary point of C1, but we assumed that
the boundary of C1 is contained in the boundary of C2. This is a contraction so no such
point x exists.

2.1.2 Toric Varieties.

In order to define affine toric varieties we will use semi-group algebras. All of our semi-
algebras will be of the following form. Fix N a lattice and V = N ⊗Z R = NR. Let σ be a
pointed closed convex rational polyhedral cone in V . Then set Sσ = σ∨ ∩M . Here M is
the dual space N∗ = homZ(N,Z) and M ⊆ V ∗. We will keep this notation throughout the
section.

We will consider k[Sσ] as the span of elements of the form xu where u ∈ Sσ and
xu · xw = xu+w. We need the following to guarantee that our algebras will be finitely
generated.

Lemma 2.1.14 ([19] Gordon’s Lemma). Let σ be a closed convex rational polyhedral cone
in NR. Then Sσ = M ∩ σ∨ is a finitely generated semi-group.
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We can now define affine toric varieties, which will be the building blocks for all of our
varieties.

Definition 2.1.15 (Affine toric variety). An affine toric variety over a field k of char-
acteristic zero is a variety Uσ = Speck[Sσ] where σ is a pointed closed rational polyhedral
cone.

We now list the basic properties of affine toric varieties.

Lemma 2.1.16 (Open embedding of faces Proposition 2 and Proposition 3 of [19]). Con-
sider a closed convex rational polyhedral cone σ. Suppose that τ = u⊥ ∩ σ with u ∈ σ∨ is a
face of τ . Then Sτ = Sσ + Z≥0(−u). Uτ ↪→ Uσ is an open embedding given by localization
at xu ∈ K[Sσ]. Furthermore if γ is another closed convex rational polyhedral cone and
γ ∩ σ = τ with τ also being a face of γ. Then

Sτ = Sσ + Sγ.

Proof. To prove this one uses 2.1.9 and 2.1.10.

We can now begin discussing the gluing of toric varieties.

Definition 2.1.17 (Gluing data for a toric variety). A fan Σ in NR is a collection of
pointed closed convex rational polyhedral cones that satisfy the following axioms.

1. If σ ∈ Σ then any face of σ is also in Σ.

2. If σ1, σ2 ∈ Σ then σ1 ∩ σ2 is a face of both σ1, σ2.

Given a fan Σ in NR we write | Σ |=
⋃
σ∈Σ σ. Let Σ be a fan in NR and Σ′ a fan in N ′R. A

morphism of fans Σ→ Σ′ is a homomorphism f : N → N ′ such that for each cone σ ∈ Σ
there is a cone σ′ ∈ Σ′ with fR(σ) ⊆ σ′.

Theorem 2.1.18 (Fan Construction Theorem: See 3.1.5 in [12]). Let Σ be a fan in NR.
From the data of the fan Σ one may construct a toric variety XΣ. XΣ has an open covering
by affine toric varieties Uσ where σ ∈ Σ.

Proof. We sketch the construction. Given σ, γ ∈ Σ as Σ is a fan τ = σ ∩ γ is a face of
both σ, τ . Then by 2.1.16 we have that Uτ has a canonical open embedding in Uσ, Uγ. This
gives gluing data for the open cover Uσ of XΣ.
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Theorem 2.1.19 (Equivalence of constructions: See 3.1.8 and 3.3.4 in [12]). The category
of fans in a lattice N and the category of toric varieties are equivalent. Every toric variety is
equivariantly isomorphic to a variety XΣ for some fan Σ. Moreover, every toric morphism
in the sense of 2.1.1 arises from a morphism of fans and vice versa.

For us an important part of the above construction is that maps of lattices will allow
us to construct self morphisms of toric varieties.

Proposition 2.1.20 (Properness criterion for toric varieties and toric morphisms: section
2.4 in [19]). Consider toric varieties XΣ and X ′Σ. Suppose that Σ ⊆ NR and Σ′ ⊆ N ′R. Let
f : N → N ′ be a morphism of fans Σ 7→ Σ′.

1. XΣ is proper over k if and only if | Σ |= NR.

2. The induced morphism f : XΣ → X ′Σ is proper if and only if f−1
R (| Σ′ |) =| Σ | where

fR is the induced linear map of vector spaces NR → N ′R.

A key proposition for us is the following, that toric varieties have many endomorphisms.

Proposition 2.1.21 (Toric Varieties have non-trivial dominant maps.). Consider a toric
variety XΣ. Suppose that Σ ⊆ NR. Then there are infinitely many dominant morphisms
f : XΣ → XΣ.

Proof. Let fn : N → N be the morphism of lattices given by multiplication by n. Given a
cone σ ∈ Σ if v ∈ σ then nv ∈ σ as σ is a cone. So fn(σ) ⊆ σ. Therefore by 2.1.19 we have
that fn induces a toric morphism XΣ → XΣ. On the torus T of XΣ fn is nothing more
then the homomorphism t 7→ tn of tori. This morphism f : T → T where T is the torus of
XΣ is a toric morphism itself. It thus suffices to show that this map is dominant. However
this is clear as image of the ring map k[t±1

1 , ..., t±1
m ]→ k[t1±1, ..., t±1

m ] given by ti 7→ tni has
image k[tn±1

1 , ..., tn±1
m ]. This is a torus of dimension m, as T is irreducible the closure of

this torus is all of T and the map is dominant.

In general producing dominant self morphisms is not easy, this is the main reason we
will be interested in toric varieties, they provide an interesting realm where there are many
morphisms.

We now turn to torus orbits. These will be needed to define the singular locus of a toric
variety. While all of this can be described explicitly we only give the minimum of what is
needed. Notice that if XΣ is a toric variety then we have the dense open torus TΣ acting
on XΣ. Then we have that XΣ can be stratified by torus orbits. In fact this stratification
can be written down in terms of the fan Σ, and each torus orbit is in fact a torus itself.
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Theorem 2.1.22 (Orbit Cone Correspondence 3.2.6 in [12]). Let XΣ be a toric variety
defined over a field k.

1. There is a bijective correspondence

Σ→ TΣ orbits

given by σ ∈ Σ 7→ O(σ) a torus orbit.

In other words the torus orbits correspond bijectively to the cones of σ.

2. For σ ∈ Σ we have dimO(σ) ∼= Gcodim σ
m .

3. For each cone σ ∈ Σ we have

Uσ =
⊔

τ a face of σ

O(τ).

4. We have that τ is a face of σ if and only if

O(σ) ⊆ O(τ).

Moreover we have that
O(τ) =

⊔
σ has τ as a face.

O(σ).

We will mostly be interested in the torus closures, V (τ) = O(τ) which can be described
in a combinatorial manner. To do this we introduce a combinatorial construction called
the star.

Definition 2.1.23 (Star construction). Let Σ be a fan in NR. Let τ ∈ Σ. Set Nτ =
spanZ(σ ∩ N). Define N(τ) = N/Nτ and set pτ : N → N(τ) to be the projection. We let
starΣ(τ) = {pτ (σ) ⊆ N(τ)R : τ is a face of σ}. Then starΣ(τ) is a fan in N(τ)R.

Theorem 2.1.24 (Torus closure Theorem 3.2.7 in [12]). For any τ ∈ Σ we have that

O(τ) ∼= XstarΣ(τ).

We finally turn to singularities of toric varieties. As we might expect at this point,
these can be described combinatorically.
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Definition 2.1.25 (Simplicial and Smooth cones. 1.2.16 in [12]). Let σ be a pointed
rational strongly closed convex polyhedral cone in NR.

1. We say σ is smooth if and only iff a generating set of σ can be extended to a Z-basis
of N .

2. We say that σ is simplicial if a generating set of σ may be extended to a R-basis of
NR.

The definitions deserve there name due to the following.

Proposition 2.1.26 (Local Criterion for Smoothness 1.3.12 in [12]). Let Uσ be an affine
toric variety. Then Uσ is smooth if and only if σ is a smooth cone.

We may think of this proposition as follows. Given a toric variety XΣ. If there is
some property P of varieties that is affine local, we can check if property P holds on the
canonical open covering of XΣ given by Uσ. In many situations the geometric property
P will have a combinatorial analogue Pσ and Uσ will have P if and only if σ has Pσ. As
example of this is then the following.

Theorem 2.1.27 (1.3.12 and 4.2.7 in [12]). Let XΣ be a toric variety.

1. XΣ is smooth if and only if every cone σ in Σ is a smooth cone.

2. XΣ is Q-factorial if and only if every cone σ ∈ Σ is simplicial.

The smooth locus and singular locus can be described in this setting. We will use that
we can describe the singular locus in terms of orbit closures.

Proposition 2.1.28 (Singular Locus of XΣ 11.1.12 [12]). Let XΣ be a toric variety with
Σ a fan in NR. Then

(XΣ)sing =
⋃

σ∈Σ with σ not smooth

V (σ)

and
Xsmooth

Σ =
⋃

σ∈Σ with σ smooth

Uσ.
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2.2 Positivity in algebraic geometry

We begin by discussing divisors. An important point of view is the following. We will be
using the minimal model program: in the minimal model program one can reduce to less
complicated varieties by using morphisms that are defined by the contraction of a divisor.
In other words to study X we try to construct a morphism φ : X → Y , where Y is simpler
than X in some precise sense. However, even when X is smooth, Y may not be. Thus
when taking this type of approach it is best to allow singular varieties from the start .
When working with potentially singular varieties, it is easier to work with Cartier divisors
or line bundles rather then Weil divisors. We now give a brief refresher on these notions.
Our main references here will be [31] and [24].

Definition 2.2.1. Let X be an irreducible projective variety defined over a number field
K. The set of Cartier divisors is defined to be

CaDiv(X) = H0(X,M∗
X/O∗X)

whereMX is the constant sheaf associated to the function field K(X). Concretely a Cartier
divisor is given by the following data. Let {(Ui)i} be an open cover of X. Then a Cartier
divisor is defined by the data {(Ui, fi)} where fi ∈ H0(Ui,M∗

X) and for indices i, j we have
that

fi |Uij= gijfj |Uij
for gij ∈ H0(Uij,O∗X), where Uij = Ui ∩ Uj. Two such sets of data say {(Ui, fi)} and
{(Vj, hj)} define the same Cartier divisor if there is a common refinement {Wk} of the
open covers {Ui}, {Vj} such that there are wk ∈ H0(Wk,O∗X) with

fk = wkf
′
k.

We write the group CaDiv(X) additively. Given x ∈ X, if x ∈ Ui we call fi a local equation
for D at x.

The support of a Cartier divisor D is the set of x ∈ X such that if f is a local equation
for D at x then f is not at unit in OX,x. In other words, f vanishes at x.

We say that D is effective if each local equation can be taken to be in H0(X,OX) and
thus write D ≥ 0.
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For each f ∈ K(X)∗ we have a Cartier divisor div(f) = {(X, f)}. We call this group
of divisors the principal divisors. We say that D1 is linearly equivalent to D2 if D1 −D2

is a principle divisor. We will write

D1 ≡lin D2

to denote that D1 is linearly equivalent to D2.

Let D be a divisor on X and let f : Y → X be a morphism of schemes with Y an
irreducible variety defined over K. We would like to pull back Cartier divisors, and not
just linear equivalence classes of Cartier divisors (this is always possible). To do so we give
a criterion found in [31].

Proposition 2.2.2 (1.1.A [31] Pulling back Cartier divisors). Let X, Y be irreducible
projective varieties defined over K and let f : Y → X be a morphism. Let D ∈ CaDiv(X).
If no component of Y is mapped into the support of D then {(f−1(Ui), fi ◦ f} is a Cartier
divisor on Y which is denoted f ∗D.

In this thesis we will mostly be concerned with a surjective morphism f : X → X.
As the support of a Cartier divisor is typically not all of X and all our varieties will be
irreducible we will be able to pull back Cartier divisors. We will be interested in the
interplay, and essential equivalence between Cartier divisors up to linear equivalence and
line bundles on X.

Proposition 2.2.3 (1.1.A [31] :The map from Cartier divisors to line bundles). Let X
be an irreducible projective variety defined over a number field K. Let D ∈ CaDiv(X).
Choose a representation {(Ui, fi)}. We define OX(D) to be the line bundle with transition
functions g−1

ij . In other words H0(Ui,OX(D)) = OUif−1
i .

We also have a natural morphism from CaDiv(X) → Zn−1(X) where Zn−1(X) is the
group of Weil divisors on X and X = dimn.

Definition 2.2.4 (Cycle mapping). Let X be an irreducible projective variety that is regular
in codimension 1. Let D ∈ CaDiv(X). Let V be an prime Weil divisor on X, in other
words, an irreducible codimension 1 closed subset of X. If D = {(Ui, fi)} let V ∩ Ui 6= 0.
Then we define ordV (D) = ordV (fi). We then define

cyc(D) =
∑

V a prime Weil divisor

ordV (D)[D].
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We will also need the notion of the base locus, for normal projective varieties.

Definition 2.2.5. Let X be a normal projective variety and D a divisor on X.

1. We let Bs(D) be the base locus of D. That is the set of points at which all sections
of H0(X,D) vanish. Here H0(X,D) = H0(X,OX(D)).

2. We define the stable base locus to be

B(D) =
⋂
m≥1

Bs(mD).

2.2.1 Intersection theory and Positivity

In this section we introduce the needed requirements from intersection theory. We need
this to be able to define various types of positivity requirements on divisors. Our main
references here are [31] and [20] and [24]

We first define rational equivalence of cycles in a variety. We will not need the full
power of [20], and will attempt to work with divisors and line bundles as much as possible.
However there are certain times where it will be advantageous to work with cycles that do
not have codimension 1. We mostly follow [31] but will be taking material from [20] as
well.

We begin by defining rational equivalence of cycles of arbitrary dimension on a variety
X.

Definition 2.2.6 (Order of Vanishing: See 1.2 [20]). Let X be an irreducible variety defined
over a field k. Fix a variety X and let V be a closed sub-variety of codimension 1. Let
f ∈ K(X) the function field. We define

ordV (f) = length(OX,V /(fOX,V ))

where OX,V is the local ring of X along V . The length of a module is defined to be the
size of a composition series for OX,V /(fOX,V ) as a OX,V module. See [15] chapter 2 for
more details.

We now define cycles.
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Definition 2.2.7 (Definition of a cycle). Let X be an irreducible variety defined over a
field K. A k-cycle is a finite formal sum∑

i

ni[Vi]

where ni ∈ Z and Vi are reduced irreducible closed sub-varieties of X of dimension k. We
let Zk(X) be the free abelian of all such cycles.

Now let f ∈ K(X). Using 2.2.6 we can associate a dimX − 1-cycle to f . We define

[div f ] =
∑
V

ordV (f)[V ]

where the sum is taken over all irreducible and reduced codimension 1 sub-varieties.
Furthermore, one can show that this sum is finite.

Putting these concepts together we have the following.

Definition 2.2.8 (Rational equivalence of cycles. See 1.2 [20]). Let α ∈ Zk(X) as defined
above. We say that α is rationally equivalent to zero if

α =
∑
i

[div fi]

where fi ∈ K(Vi)
∗ with Vi a k+ 1-dimensional sub-variety of X. Furthermore the k-cycles

rationally equivalent to zero form a subgroup Ratk(X) ⊆ Zk(X). The group of k-cycles
modulo rational equivalence is defined to be

Ak(X) = Zk(X)/Ratk(X).

We now begin our journey into the intersection theory of divisors. The groups Ak(X)
will be used to define the intersection product.

Theorem 2.2.9 ([31] Intersection Theory I). Let X be an irreducible projective variety
defined over a number field. Let D1, ..., Dk ∈ CaDiv(X) and let V ⊆ X be a subvariety of
pure dimension d. Then there is a class

(D1 · ... ·Dk · V ) ∈ Ad−k(X).

In practice if d = k we will often equate (D1 · ... ·Dk · V ) with deg(D1 · ... ·Dk · V ) ∈ Z and
think of (D1 · ... ·Dk · V ) as an integer. If k = n then we will often write (D1 · ... ·Dn) for
(D1 · ... ·Dn ·X).
The d− k cycle (D1 · ... ·Dk · V ) has the following properties.
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1. (D1 · . . . ·Dk · V ) is symmetric and multi-linear in the Di.

2. (D1 · . . . ·Dk · V ) only depends on the linear equivalence classes of the Di.

In our study of morphisms, we will be constantly pulling back divisors and line bundles.
To this end we have the following results.

Theorem 2.2.10 ([20] Pull back formula). Let X, Y be projective varieties. Let f : Y → X
be a generically finite morphism. If D1, ..., Dn ∈ CaDiv(X) then

(f ∗D1 · . . . · f ∗Dn) = (deg f)(D1 · . . . ·Dn)

Theorem 2.2.11 ([20] Projection Formula I I). Let f : X → Y be a proper morphism
of varieties with D a Cartier divisor on Y and α a k-cycle on X. Let [D] be the linear
equivalence class of D. Then f∗(f

∗[D] · α) = (D · f∗(α)).

We now come to an important definition that will be key in our study of dynamics of
surjective endomorphisms. This is essential in the construction of the Neron-Severi group
of a variety, which will be used to construct dynamical invariants from linear algebra.

Definition 2.2.12 (Numerical Equivalence). Let X be a irreducible projective variety de-
fined over a number field K. Let D1, D2 ∈ CaDiv(X). We say that D1 is numerically
equivalent to D2 if for all irreducible closed subsets C of X of dimension 1 we have that
(D1 · C) = (D2 · C). We write

D1 ≡num D2

in this situation.

This definition respects intersection products.

Lemma 2.2.13 (Intersection products are independent of numerical classes ). Let X be
a irreducible projective variety defined over a number field K. Let D1, ..., Dk, D

′
1, ..., D

′
k ∈

CaDiv(X). If Di ≡num D′i then for all pure dimension k subvarieties V we have

(D1 · ... ·DK · [V ]) = (D′1 · ... ·D′k · [V ]).

Proof. We write

(D1 ·D2 · ... ·DK · [V ])− (D′1 ·D2 · ... ·Dk · [V ]) = (D1 −D′1 ·D2 · ... ·Dk · V ).
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I claim that if E is any numerically trivial divisor then

(E ·D2 · ... ·Dk · [V ]) = 0.

To see this note that (D2 ·...·Dk ·V ) is represented by a 1-cycle α on X. As E is numerically
trivial we have that (E,D2 · ... ·Dk · V ) = (E · α) = 0 by the functorial properties of 2.2.9
and the definition of numerically trivial. Since D1−D′1 is numerically trivial we have that

(D1 ·D2... ·Dk · [V ])− (D′1 ·D2... ·Dk · [V ]) = (D1 −D′1 ·D2... ·Dk · V ) = 0

and so
(D1 · ... ·Dk · [V ]) = (D′1 ·D2 · ... ·Dk · [V ]).

Playing the same game with D2, D
′
2 and so on gives the result.

The key fact in the above lemma is the following. We have that (D2 · ... · Dk · V ) is
represented by a 1-cycle on X. This is where we must use some of the more sophisticated
results of intersection theory, namely that the an intersection class is represented by cycles.

Definition 2.2.14 (The Neron-Severi Group). Let X be an irreducible projective variety
defined over a number field K. We define Num(X) to be those divisors which are numer-
ically equivalent to the zero divisor. Clearly this is a subgroup of CaDiv(X). We define
N1(X) = CaDiv(X)/Num(X).

The Neron-Severi group is appropriate for studying the intersection theory of divisors
as it eliminates the divisors which intersect every curve at zero.

Theorem 2.2.15 ([20]Theorem of the Base). Let X be an irreducible projective variety
defined over a number field K. Then N1(X) is a finitely generated abelian group.

The rank of N1(X) is an important invariant of the variety.

Definition 2.2.16 (The Picard Number). Let X be an irreducible projective variety defined
over a number field K. The Picard number of X is defined to be the rank of N1(X). We
will write ρ(X) for the Picard number.

2.2.2 Ample divisors

Definition 2.2.17 (Definition of very ample and ample). Let X be an irreducible projective
variety defined over a number field K. Let L be a line bundle on X.
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1. We say that L is very ample if there is a closed embedding φ : X → Pn for some n
with φ∗OPn(1) = L.

2. We say that L is ample if L⊗m is very ample for some m > 0.

3. If D ∈ CaDiv(X) we say D is very ample (respectively ample) if the line bundle
OX(D) is very ample (respectively ample).

Amplitude can be detected cohomologically. The following vanishing theorem is very
useful.

Theorem 2.2.18 ([31], Cartan-Serre-Grothendieck Vanishing Theorem). Let X be an
irreducible projective variety defined over a number field K. The following are equivalent.
Let L be a line bundle on X.

1. L is ample.

2. For all coherent sheaves F on X there is an integer m1(F) such that for all i > 0
and m ≥ m1(F) we have

H i(X,F ⊗ L⊗m) = 0.

3. For all coherent sheaves F on X there is an integer m1(F) such that for all m ≥
m2(F) we have that F ⊗ L⊗m is globally generated.

4. There is an integer m3(L) > 0 such that for all m ≥ m3(L) we have that L⊗m is very
ample.

Lemma 2.2.19. Let X be an irreducible projective variety defined over a number field K.
Let L be a very ample line bundle on X and E a globally generated line bundle. Then
L ⊗ E is very ample.

Proof. Let φL : X → PnL be a closed embedding with φ∗L(OPnL ) = L. Let φE : X → PnE be
a morphism with φ∗OPnE (1) which exists as E is globally generated. Let s : PnL×PnE → PN
be the Segre embedding. Then s∗OPN (1) = p∗1OPNL (1)⊗p∗2OPnE (1) where p1 : PnL×PnE →
PnL is the first projection and p2 : PnL × PnE → PnE the second projection. On the other
hand, since φL is a closed embedding we have that φL × φE is a closed embedding. Thus
s ◦ φL × φE with

(s ◦ φL × φE)∗OPN (1) = (φL × φE)∗p∗1(OPNL (1)⊗ p∗2OPnE (1)) = L ⊗ E

as needed.
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Our first application is the following crucial result.

Lemma 2.2.20. Let X be an irreducible projective variety defined over a number field K.
Let L be an ample line bundle on X. Let E be any other line bundle on X. Then there
is a constant m(E,L) > 0 such that for all m ≥ m(E,L) we have that L⊗m ⊗ E is very
ample.

Proof. Choose m3(L) > 0 as in 2.2.18 part 4. By 2.2.18 part 3 there is an integer m2(E) > 0
such that L⊗m ⊗ E is globally generated for all m ≥ m2(E). I claim that if m ≥ m3(L) +
m2(E)) then L⊗m ⊗ E is very ample. Write m = m3 +m2 + b. Then

L⊗m3+m2+b ⊗ E = L⊗m3+b ⊗ (L⊗m2 ⊗ E).

By construction (L⊗m2 ⊗E) is globally generated and L⊗m3+b is very ample. So by 2.2.19
we have that L⊗m ⊗ E is very ample.

Lemma 2.2.21 (All line bundles are a difference of very ample line bundles). Let X be
an irreducible projective variety defined over a number field K. Let E be any line bundle
on X. Then there are very ample line bundles L1,L2 on X with E = L1 ⊗ L−1

2 .

Proof. Choose any very ample line bundle L1. Then by 2.2.20 applied to E−1 we can find
m with L⊗m1 ⊗ E−1 = L2 with L2 very ample. Then L⊗m1 ⊗ L−1

2 = E as needed.

This will be useful in our construction of heights. We now give some basic results about
endomorphisms that we will need. The proofs are omitted.

Proposition 2.2.22 (Finite ample pullbacks I). Let f : X → Y be a finite morphism of
irreducible projective varieties defined over a number field K. Suppose that L is an ample
line bundle on Y . Then f ∗L is an ample line bundle on X.

The following crucial result allows us to see how the concept of ampleness intersects
with the intersection product. In the literature an ample divisor is often referred to as
positive. We now make this precise.

Theorem 2.2.23 (Nakai-Moishezon-Kleiman Criterion for ampleness). Let X be an irre-
ducible projective variety defined over a number field K. Then D is ample if and only if
(Dk · V ) > 0 for all k-dimensional closed sub-varieties of X.

The Nakai-Moishezon-Kleiman Criterion for ampleness and related theorems will often
be used to show that a property of divisors is a numerical property. In other words, the
property only depends on the numerical equivalence class of a divisor. Thanks to 2.2.23
we have that ampleness is a numerical property.
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Proposition 2.2.24. Let X be an irreducible variety defined over a number field K. Sup-
pose that D1, D2 ∈ CaDiv(X) with D1 ≡num D2. Then D1 is ample if and only if D2 is
ample.

Proof. It suffices to show that if D1 is ample then D2 is ample when D1 ≡num D2. To
this end let V be a closed sub-variety of dimension k of X. Since (Dk

2 · V ) = (Dk
1 · V ) as

D1 ≡num D2 and 2.2.13. As D1 is ample we have by 2.2.23 that (Dk
1 · V ) > 0. Putting this

together gives
(Dk

2 · V ) = (Dk
1 · V ) > 0.

So by 2.2.23 we have that D2 is ample as desired.

We also have the following which will be very useful for us. Notice that the collection
of ample divisors is a cone in the general sense of 2.1.2. However it is not closed. The
following result says that these cones will be preserved by pull backs in good situations.

Proposition 2.2.25 ([20]Finite ample pullbacks II). Let X, Y be irreducible projective
varieties defined over a number field K. Suppose that f : X → Y is a finite surjective
morphism. Suppose that L is a line bundle on Y . Suppose that f ∗L is an ample line
bundle on X. Then L is ample on Y .

2.2.3 Q-divisors

We will need to allow divisors with both rational and real coefficients. From a certain
perspective this is not surprising. Ultimately we wish to study a surjective morphism

f : X → X

through the induced linear pullback action

f ∗ : N1(X)→ N1(X).

As it is easier to study linear maps of vector spaces than Z-linear mappings of finitely
generated abelian groups we will tensor with Q or R.
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Definition 2.2.26 (Q-divisors). Let X be an irreducible projective variety defined over a
number field K. A Q-divisor on X is an expression

N∑
i=1

qiDi

where qi ∈ Q and Di ∈ CaDiv(X). We write CaDivQ(X) for the set of Q-Cartier
divisors. Clearly this is a Q-vector space. We say that a Q-Cartier divisor D is ef-
fective if D =

∑N
i=1 qiDi with qi ≥ 0 and Di effective. There is a natural inclusion

CaDiv(X) ⊆ CaDivQ(X). Given a Q-divisor D we say D is integral if D ∈ CaDiv(X).

There is a natural notion of intersection product on Q-divisors.

Proposition 2.2.27 ([20] Intersecting Q-divisors). Let X be an irreducible projective va-
riety defined over a number field K.

1. Given a closed subvariety V of X of pure dimension k we have a symmetric and
multilinear product

CaDivQ(X)× . . .× CaDivQ(X)→ A0(X)Q, (D1, ..., Dk) 7→ (D1 · . . . ·Dk · V )

This is defined via extension of scalars from the previous product.

2. Two Q-divisors D1, D2 are numerically equivalent if (D1 · C) = (D2 · C) for all
closed irreducible curves C on X. We let Num(X)Q be the subgroup of Q-divisors
numerically equivalent to the zero divisor and let N1(X)Q = CaDivQ(X)/NumQ(X).
Moreover N1(X)Q is naturally isomorphic to N1(X)⊗Z Q.

3. Two Q-divisors D1, D2 are linearly equivalent if there is an integer r such that
rD1, rD2 ∈ CaDiv(X) and rD1 − rD2 is a principal divisor on X. We write
D1 ≡lin D2 in this case.

4. Let Y be an irreducible projective variety defined over K and f : X → Y a morphism.
Suppose that D ∈ CaDivQ(Y ) and that the image of Y is not contained in a support
of D. Then f ∗D is defined. The linear equivalence class of f ∗D is independent of
the linear equivalence class of D and we may pull back Q-linear equivalence classes.

5. Let Y be an irreducible projective variety defined over K and f : X → Y a morphism.
Then there is a linear pullback morphism f ∗ : N1(Y )Q → N1(X)Q.
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We can now define what it means to have an ample Q-divisor. This is relatively easy
given what we have done so far. However, more serious difficulties will arise when we deal
with R-divisors.

Definition 2.2.28 (Amplitude of Q-divisors). Let X be an irreducible projective variety
defined over a number field K. Let D ∈ CaDivQ(X). We say D is ample if there is an
integer r with rD ∈ CaDiv(X) and rD is ample. This is equivalent to saying that D
satisfies the statement of 2.2.23.

Using the Q-divisor version of 2.2.23 we immediately obtain that ampleness only de-
pends on the numerical class of a Q-divisor D.

We thus obtain an open cone in N1(X)Q.

Definition 2.2.29. Let X be an irreducible projective variety defined over a number field
K. We let AmpQ(X) be the subset of N1(X)Q consisting of ample Q-divisors.

Proposition 2.2.30 (The ample cone is open and full dimensional). Let X be an irre-
ducible projective variety defined over a number field K. Then AmpQ(X) is an open cone
in N1(X)Q of full dimension. In other words, it is subset of N1(X)Q closed under addition
and multiplication by a positive scalar.

Proof. It is clear from 2.2.23 that AmpQ(X) is closed under addition and positive scalar
multiplication. It remains to show that it is open. It suffices to show that for any ample
Q-line bundle L and any line bundle E we have that L + qE is ample for some small
rational q > 0. We may assume that both L and E are integral. Choose m so that for all

m′ ≥ m we have that m′L + E is very ample by 2.2.20. Then L +
1

m′
E is very ample for

all m′ ≥ m and the openness of the ample cone follows. As for being of full dimension, it
suffices to show that Q-line bundle is a difference of ample Q-line bundles. But this follows
from 2.2.21.

2.2.4 R-divisors.

We now turn to R-divisors. We define an R divisor in a way completely analogous to a
Q-divisor. Furthermore, we may extend the intersection product in an analogous way. We
thus obtain R-vector spaces CaDivR(X) with a subgroup NumR(X) and a vector space
CaDivR(X)/NumR(X) = N1(X)R. However, subtleties arise in the definition of an ample
R-divisor. This is because given an arbitrary R-divisor

D =
∑

αiDi
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with the αi ∈ R and D ∈ CaDiv(X) we cannot always ”clear denominators” and write rD
as an integral divisor for some r ∈ R. While there is a straightforward way to proceed using
a general version of the Nakai-Moishezon-Kleiman Criterion for ampleness for R-divisors,
the proof of this statement is more difficult then other versions. One may proceed without
this statement and indeed this is what is done in [31]. However as we are not developing
the theory from scratch we will take this as given and indicate how one may proceed.

Definition 2.2.31 (Ample R-divisors). Let X be an irreducible projective variety defined
over a number field K. We say that D is ample if we may write

D =
n∑
i=1

αiDi

where the αi ∈ R>0 and Di is an integral ample divisor on X.

The following variant of 2.2.23 is very convenient for us.

Theorem 2.2.32 (Nakai for R-divisors, Campana and Peternell). Let X be an irreducible
projective variety defined over a number field K. Let δ be a numerical class of an R divisor
on X. Then δ is ample if and only if

(δdimV · V ) > 0

for all closed V ⊆ X of positive dimension.

To avoid the use of this theorem one may proceed without it and directly prove the
following.

Proposition 2.2.33 (Ampleness depends only on the numerical class 1.3.13 [31]). Let X
be an irreducible projective variety defined over a number field K. Let D ∈ CaDivR(X)
with D ample. Then if D′ ∈ CaDivR(X) and D ≡num D′ then D′ is an ample R-divisor.

This statement is used to kick off the theory of R-divisors, which can be developed to
the point that a proof of 2.2.32 becomes available. The key to proving this statement is
the following. If B is a numerically trivial R-divisor, then we may write

B =
∑

αiDi

with αi ∈ R and Di an integral divisor that is numerically trivial. To prove this one uses
the following, let B =

∑
γiBi with the γi ∈ R and Bi integral divisors. The condition
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that B is numerically trivial is then equivalent to the statement that the γi satisfy some
linear equations with integer coefficients. Then any R-solution is a real linear combination
of integral solutions. This latter statement can be obtained by a topological comparison
theorem with certain singular homology groups, or by introducing the cone of curves and
proving it is finitely generated.

Theorem 2.2.34 (1.3 [31]). Let X be an irreducible projective variety defined over a
number field K. Let AmpR(X) be the collection of ample R-divisors. Then AmpR(X) is a
full dimensional open cone in N1(X)R and N1(X)R ∼= N1(X)⊗Z R.

The significance of these results is that it will allow us to consider the closure AmpR(X)
in N1(X)R. This closure is a closed convex cone in a finite dimensional vector which can
be studied using techniques of linear algebra and convex analysis.

2.2.5 Nef divisors

We now begin developing the ideas discussed above by taking the closure of the ample
cone of divisor classes. However, we will see that one can capture this object by working
with intersections with curves, which simplifies the theory. In other words, if one is simply
willing to work with limits of ample classes then one may only consider interactions with
irreducible curves on your surface.

Definition 2.2.35 (Nef Divisors). Let X be an irreducible projective variety defined over
a number field K. Let D ∈ CaDiv(X).

1. We say that D is nef if
(D · C) ≥ 0

for all closed irreducible curves on X. If L = OX(D) then we say that L is nef if
and only if L is nef.

2. Let D ∈ CaDivQ(X) or D ∈ CaDivR(X). We say that D is nef if

(D · C) ≥ 0

for all closed irreducible curves on X.

3. It is clear from the definition that the property of being nef only depends on the
numerical class of a divisor. We define Nef(X) to be the collection of nef divisor
classes in N1(X). Similarly we define NefQ(X) and NefR(X) to be the collection of
nef Q-divisor classes in N1(XQ) and the collection of nef R-divisors on N1(X)R.
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Proposition 2.2.36 (First properties of nef divisor classes). Let X be an irreducible pro-
jective variety defined over a number field K. Then

1. The sum of two nef classes is nef.

2. AmpR(X) ⊆ NefR(X).

3. Let D be a real nef divisor class and H a real ample divisor class. Then D + H is
ample.

Proof. Let D1, D2 be nef divisor classes (the coefficients are irrelevant here) and H an
ample class. Let C be any irreducible closed curve on X.

1. For part 1) it suffices to compute ((D1 + D2) · C) = (D1 · C) + (D2 · C) ≥ 0 + 0 by
the linearly of the intersection product. Thus by definition D1 +D2 is nef.

2. This is immediate as (H · C) > 0 by the definition of ample.

3. For part 3 we may compute ((D + H) · C) = (D · C) + (H · C). Since (D · C) ≥ 0
and (H · C) > 0 we have that D +H is ample by Nakai’s criterion.

We now turn to the basic properties of nef divisors under morphisms.

Proposition 2.2.37. Let X, Y be an irreducible projective varieties defined over a number
field K. Let f : Y → X be a morphism. Let L be a line bundle on X

1. If f is proper and L is nef then f ∗L is nef.

2. If f is surjective and proper and f ∗L is nef then L is nef.

3. If L is globally generated then L is nef.

Proof. First suppose that L is nef and f is proper. Let C be a curve on Y . Then we
compute

(f ∗L · C) = (L · f∗(C))

using 2.2.11. Since f∗(C) is a curve class on X or is zero we have that

(L · f∗(C)) ≥ 0
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as needed. Now suppose that f is surjective and proper and f ∗L is nef. Let C ⊆ X
be a closed irreducible curve. Then one can find a closed irreducible curve C ′ ⊆ Y with
f(C ′) = C. Then (L · C) = (L · f∗(C)) = (f ∗L · C ′) ≥ 0 as f ∗L is nef. Thus L is nef.
Finally suppose that L is globally generated. Then pick φ : X → Pn with L = φ∗OPn(1).
Note that OPn(1) is ample and φ is proper so by part 1 we have that L = φ∗OPn(1) is nef.

We now have the following fundamental result which allows us to show that the nef
divisors are precisely the limits of ample divisors.

Theorem 2.2.38 (Kleiman’s Theorem [31]). Let X be an irreducible projective variety
over a number field K. Let D be a nef R divisor. Then

(Dk · V ) ≥ 0

for all V irreducible and closed in X of dimension k.

We now show that the nef divisors are limits of ample ones.

Lemma 2.2.39 (Nef Cone Boundary Lemma). Let X be an irreducible projective variety
over a number field K. Let D be a nef R divisor. Let H be an ample R-divisor. Then
D +H is ample. Conversely if H is ample and D is an R-divisor with D + εH ample for
small sufficiently small ε then D is nef.

Proof. Let V ⊆ X be a closed irreducible subvariety of dimension k. Then (D + H)k =∑k
i=0

(
k
i

)
(Di · Hk−i). Since H is ample Hk−i · V is represented by a positive R-linear

combination of cycles coming from irreducible sub-varieties. In other words

Hk−i · V =
∑
j

αijVij

where αij > 0 and Vij is a n−i-cycle. Applying Kleiman to this we obtain thatDi·Hk−i·V ≥
0 for all 1 ≤ i ≤ k. Taking i = 0 leaves Hk · V > 0 as H is ample. In other words we have

((D +H)k · V ) =
k∑
i=0

(
k

i

)
((Di ·Hk−i) · V ) =

k∑
i=0

∑
j

(
k

i

)
αij(D

i · Vij) > 0.
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By the Nakai criterion for R-divisors we have that D + H is ample. For the second part
let C be a curve. Then for small ε we have

((D + εH) · C) = (D · C) + ε(H · C) > 0

as we have assumed that D + εH is ample for small ε. Since H · C > 0 we may let ε→ 0
and obtain (D · C) ≥ 0 so that D is nef.

Theorem 2.2.40 (The Nef cone is the closure of the ample cone). Let X be an irreducible
projective variety over a number field K.

1. Then NefR(X) = AmpR(X) and NefR(X) is a closed full dimensional convex cone in
N1(X)R.

2. The interior of NefR(X) is AmpR(X).

Proof. By 2.2.36 it suffices to show that NefR(X) = AmpR(X). Let D ∈ NefR(X). Then
by 2.2.5 we have that D ∈ AmpR(X). Conversely suppose that D ∈ AmpR(X). Then as
D is on the boundary of the ample cone we may find H ample such that D+ εH is ample
for all ε small enough. By 2.2.5 we have that D is nef as needed. For the second part let
D ∈ NefR(X) which lies in the interior. Then for all small ε we may find an ample H such
that D − H is ample. Then (D − H) + H = D and D is a sum of ample classes, which
means D is ample as needed.

We end this section with an introduction to the cone of curves.

Definition 2.2.41 (The cone of curves). Let X be an irreducible projective variety over a
number field K. Let Z1(X)R be the vector of all finite R-linear combinations of irreducible
closed curves on X. We say that C1, C2 are numerically equivalent if (D ·C1) = (D ·C2) for
all D ∈ CaDivR(X). We let N1(X)R be the collection of numerical equivalence classes of
curves. We let NE(X) be the closure of the cone spanned by all classes of integral curves.
We call this the closed cone of curves.

Notice that N1(X)R and N1(X)R are dual by construction and that the intersection
pairing gives a perfect pairing

N1(X)R ×N1(X)R → R.

In fact, this duality takes into account the nef cone in the following way.
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Theorem 2.2.42 (Dual of the Nef cone). We have that

NE(X) = {γ ∈ N1(X)R : (D · γ) ≥ 0∀ D ∈ NefR(X).}.

We will need to say something about a relatively ample mapping in certain dynamical
situations. A particular example will be the case of projective bundles. We take as a
definition the version which is most useful for us, and do not use the definition of f -ample
which is found in other sources.

Definition 2.2.43 (Relative Ampleness 1.7 [31]). Let f : X → T be a proper morphism of
irreducible projective varieties over a number field K. Let L be a line bundle on X. We
say that L is f -ample or relatively ample (if f is clear from the context) if for all t ∈ T we
have that L | Xt is ample. Here Xt is the fiber above T .

Proposition 2.2.44. Let f : X → T be a proper morphism of irreducible projective va-
rieties over a number field K. Let L be a line bundle on X. Then the following are
equivalent.

1. L is f -ample.

2. For all V ⊆ X with f(V ) = t where t is a closed point of T we have that (LdimV ·V ) >
0.

3. Let A be ample on T . Then L ⊗ f ∗(A⊗m) is ample for all m sufficiently large.

Proof. Suppose that L is f -ample. Then by definition we have that (1)⇐⇒ (2) by 2.2.23.
For the equivalence of (1) and (3) see [31, 1.7.10].

2.2.6 Iitaka Dimensions of line bundles.

Definition 2.2.45 (Semigroup of a line bundle). Let X be a normal geometrically irre-
ducible projective variety defined over a number field K. Let L be a line bundle on X. We
define

N(L) = {m ∈ Zm≥0 : H0(X,L⊗m) 6= 0}.

If N(L) 6= 0 we set e(L) to be the gcd of all elements in N(L) and call this the exponent
of L. Given m ∈ N(L) we let φm be the rational mapping

φm = φ|mL| : X → PH0(X,mL).
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We now come to a crucial definition which gives an asymptpic criterion for the dimen-
sions of the images of X under the morphisms φ|mL| when m ∈ N(L). This will have a
profound effect when we deal with height functions.

Definition 2.2.46 (Iitaka dimension.). Let X be a normal geometrically irreducible pro-
jective variety defined over a number field K. Let L be a line bundle on X. We define

κ(L) = max
m∈N(L)

{dimφm(X)}.

If N(L) = 0 we set κ(L) = −∞. We call this number the Iitaka dimension of L. We have
immediately that

−∞ ≤ κ(L) ≤ dimX.

If X is smooth then we set
κ(X) = κ(ωX)

where ωX is the canonical line bundle on X and call this the Kodaira dimension of X.
If X is singular we define the Kodaira dimension of X to be the Kodaira dimension of a
smooth birational model. This will turn out to be a birational invariant, and is well defined
in light of the theorem about resolution of singularities.

To illustrate why we use normality we give an example of what can go wrong. The idea
is that pulling back from something non-normal can have unexpected behavior. Let X be
the plane curve zy2 = x3 in P2. The line bundles on X of degree zero correspond to points
P 6= O where O is the singularity of X. By Riemann-Roch for singular curves we have
that χ(L) = degD + pa(X) − 1 = 0 where pa(X) = dimH1(X,OX). Since degD = 0 we
have that χ(L) = pa(X)− 1. But pa(X) = 1 by the arithmetic genus formula for singular
curves, for example [23, 4.1.18]. Thus we have that degD − pa(X) − 1 = degD for any
line bundle D. Letting ωX be the canonical sheaf on X we have that

dimkH
0(X,L)− dimkH

0(X,ωX − L) = degL+ pa(X)− 1 = degL = 0.

However as X ⊆ P2 we may apply the adjunction formula to obtain

ωX = OX(−3 + degX) = OX(0) = OX

as X is a degree three plane cubic. Therefore from

dimkH
0(X,L)− dimkH

0(X,ωX − L) = 0

we have that
dimkH

0(X,L) = dimkH
0(X,−L).
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It follows immediately that dimkH
0(X,L) = 0 whenever L is non-trivial. On the other

hand, we have the normalization ν : P1 → X and deg ν∗L = degL = 0. Thus ν∗L = OP1

for any degree zero line bundle on X. Thus H0(Xν∗(nL)) = 1 > H0(X,nL) = 0 for all
n > 0 and L degree zero on X which is non-torsion. In other words, the theory is not
birationally invariant if we allow non-normal objects.

Definition 2.2.47. Let X,Y be an irreducible projective variety defined over Q̄ and let
f : X → Y be a surjective projective morphism. We say that f is an algebraic fiber space
if f∗OX = OY .

Lemma 2.2.48 (Properties of fiber spaces). Let X,Y be an irreducible projective variety
defined over Q̄ and let f : X → Y be a surjective projective morphism.

1. If f is an algebraic fiber space then f has connected fibers.

2. If Y is normal and f has connected fibers then f is an algebraic fiber space.

3. Suppose that f is an algebraic fiber space. Let L be a line bundle on Y . Then
H0(X, f ∗L) = H0(Y,L).

4. If f is an algebraic fiber space then the induced morphism f ∗ : Pic(Y ) → Pic(X) is
an injection.

Proof. We refer to the discussion following [31, 2.1.11] for the first two statements. Suppose
now that f Then we have that H0(X, f ∗L) = H0(Y, f∗f

∗L). By the projection formula we
have that f∗(f

∗L ⊗ OY ) = L ⊗ f∗OX = L as f is an algebraic fiber space. Now suppose
that f ∗L ∼= OX . So H0(Y,L) = H0(X,OX) 6= 0. On the other hand we have f ∗L−1 = OX
as we so the same argument gives H0(Y,L−1) = H0(X,OX) 6= 0. Thus L is trivial as L
and L−1 both have a non-zero section.

Definition 2.2.49. Let X be an irreducible projective variety defined over Q̄. Let L be a
line bundle on X. We say that L is semi-ample if for some m > 0 we have that L⊗m is
globally generated.

The key property of the stable base locus is the following.

Lemma 2.2.50 (Realizability of the stable base locus 2.1.21 [31]). There are integers
m0, n0 such that

B(D) = Bs(km0D)

for all k ≥ n0.
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We will use a theorem of Zariski and Fujita later. One can formulate a theory of am-
pleness on a possibly reduced projective variety with multiple components, see for example
[31, Section 1.2]. Such a notion is implicit in the following result.

Theorem 2.2.51 (Theorem 2 [14]). Let X be an irreducible projective variety defined over
Q̄. Let L be a line bundle on X. Suppose that V ⊆ H0(X,L) is a sub-vector space. Let
B be the base scheme of V . In other words, the scheme defined by the ideal sheaf of OX
spanned by the sections of V . If L |B is ample then L is semi-ample.

Corollary 2.2.51.1 ([14]). Let X be an irreducible projective variety defined over Q̄. Let
L be a line bundle on X. Suppose that V ⊆ H0(X,L) is a sub-vector space. Let Bs(V )
be the base locus of V with its canonical reduced subscheme structure. If L |Bs(V ) is ample
then L is semi-ample.

Proof. Let b(| V |) be the base scheme of V and Bs(V ) the base locus with its canonical
closed subscheme structure. We have that b(| V |)red = Bs(V ). By [31, 1.2.16] we have that
if L |b(|V |) is ample if and only if L |Bs(V ) is ample and then the result follows by 2.2.51.

We will now introduce a new class of divisors, namely big divisors. These will be
divisors with large Iitaka dimension. The significance of such divisors is that they will give
a closed cone in N1(X)R which contains Nef(X)R. It will be useful to have an alternative
characterization of the Iitaka dimension.

Proposition 2.2.52 (Asymptotic Iitaka definition). Let X be a normal irreducible projec-
tive variety defined over Q̄. Let L be a line bundle on X. Suppose that κ = κ(X,L). Then
there are constants a,A ∈ R>0 such that for all large m ∈ N(X,L) we have

amκ ≤ dimH0(X,mL) ≤ Amκ.

Definition 2.2.53 (Big Divisors). Let X be a normal irreducible projective variety defined
over Q̄. We say that a line bundle L is big if κ(X,L) = dimX.

Using the alternative version of the Iitaka dimension one has the following useful prop-
erty.

Lemma 2.2.54 (Asymptotic criterion for bigness ). Let X be a normal irreducible projec-
tive variety of dimension n defined over Q̄. A line bundle L is big if and only if there is
some constant C > 0 such that

dimK H
0(X,mL) ≥ Cmn

for all large m ∈ N(X,L).
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Notice that if L is an ample line bundle then κ(X,L) = dimX as mL is very ample for
some m > 0 and so φm is a closed embedding. On the other hand, a big divisor need not
be ample. Here we follow [31, 2.2.4]. Let S = {[0 : 0 : 1], [0 : 1 : 1]} ⊆ P2. Let π : X → P2

be the blow up of S. Let H = π∗OP2(1) and let E be the exceptional divisor of the blow
up. Let L be the line through [0 : 1 : 0], [0 : 0 : 1]. Set C to be the proper transform of L
and let D = dH − rE. Then H0(X,mD) = H0(P2,OP2(md)⊗ ImrS ) using that

π∗(mdH −mrE) = OP2(md)⊗ π∗(−mrE) = OP2(md)⊗ ImrS

where IS is the ideal sheaf of S. Thus a global section of mD corresponds to a homogeneous
polynomial of degree md that vanishes to order at least mr at S. Taking d = 3 and r = 2.
We can compute the global sections using toric geometry in this case as we have blow up
torus invariant points. The global sections of H0(X,D) correspond to the lattice points
of the triangle with vertices (0, 0), (3, 0), (0, 2) by a standard toric computation which we
omit. There are 6 lattice points so dimH0(X,mD) ≥ (2m) · (3m) = 6m2. Thus by the
alternative characterization of the Iitaka dimension we have that D is big. On the other
hand C ·H = 1 and CĖ = 2 so that

(C ·D) = 3(C ·H)− 2(C · E) = −1.

Thus D is not Nef, and is so an example of a big but not nef divisor. We have the following
alternative characterization of bigness.

Proposition 2.2.55. Let X be a normal irreducible projective variety defined over Q̄. Let
L be a line bundle on X. Then L is big if and only if φm : X 99K PH0(X,mL) is birational
unto its image for some m > 0.

We wish to prove that being big only depends on the numerical class of D. However
we do not have a Nakai type criterion to apply directly, and so must work harder.

Proposition 2.2.56 (Kodaira’s Lemma 2.2.6 in [31]). Let X be a normal irreducible pro-
jective variety defined over Q̄. Suppose that D is a big divisor and F an arbitrary effective
divisor. Then H0(X,mD − F ) 6= 0 for all large enough m ∈ N(X,D).

Proof. We sketch the idea of the proof: We have an exact sequence

0→ OX(mD − F )→ OX(mD)→ OF (mD)→ 0.

By our assumption that D is big we have that dimH0(X,OX(mD)) ≥ cmn for some
constant C where n = dimX. On the other hand, as F is a scheme of dimension n − 1
OF (mD) = O(mn−1) asm→∞. The previous statement can be made completely rigorous,
but we omit those details. Thus we must have that OX(mD−F ) must be non-zero by the
exactness of the above sequence.

42



Corollary 2.2.56.1 (Characterization of Big Divisors). Let X be a normal irreducible
projective variety defined over Q̄. Let D be a divisor on X. The following are equivalent.

1. D is big.

2. For any ample integral divisor A there is some m > 0 and an effective divisor N on
X such that mD ≡lin A+N .

3. There is an ample integral divisor A there is some m > 0 and an effective divisor N
on X such that mD ≡lin A+N .

4. There is an ample divisor A and a positive integer m > 0 and an effective divisor N
such that mD ≡num A+N .

Proof. Assume that D is big. Let A be any ample divisor. Choose a large r > 0 such that
rA ≡lin Hr and (r+ 1)A ≡lin Hr+1 with Hr, Hr+1 effective. Then apply 2.2.56 to obtain m
such that mD −Hr+1 = N ′ with N ′ effective. Then

mD ≡lin rA+ A+N ′.

Set N = N ′ +Hr so that N is effective and

mD ≡lin A+N.

Clearly (2)⇒ (3)⇒ (4). Now suppose that (4) holds. So we have that A+N ≡num mD.
So we have that mD−N is ample as ampleness is a numerical property. So we may assume
that mD ≡lin A + N with A ample and N effective. So choose m′ with m′A very ample.
Thus we have that

mm′D ≡lin m
′A+m′N.

Then we have κ(X,D) ≥ κ(X,m′A) = dimX which shows that D is big.

Corollary 2.2.56.2 (Numerical properties of bigness). Let X be a normal irreducible
projective variety defined over Q̄. Let D be a divisor on X.

1. Suppose that D ≡num D′ and D is big. Then D′ is big.

2. Let D1, D2 be big divisors. Then nD1 +mD2 is big for all integers n,m > 0.
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Definition 2.2.57 (Big R and Q -divisors.). Let X be a normal irreducible projective
variety defined over Q̄.

1. Let D be a Q-divisor. We say that D is big if mD is big where m ∈ Z≥0 and mD is
a big integral divisor.

2. Let D be a R-divisor on X. We say that D is big if we may write D =
∑

αi
Di where

αi ∈ R>0 and each Di is an integral big divisor.

We can now prove the analogue of the earlier results about big divisors. As is typical,
the result about R-divisors is slightly more difficult to prove.

Proposition 2.2.58 (Formal Properties of Big R-Divisors). Let X be a normal irreducible
projective variety defined over Q̄. Let D,D′ be R-divisors.

1. Suppose D ≡num D′. Then D is big if and only if D′ is big.

2. D is big if and only if D ≡num A + N where A is an ample R-divisor and N is an
effective R-divisor.

Proof. For (1) we must show that if D is big and B is numerically trivial then D + B is
also big. Write D =

∑
j cjDj with Dj integral big divisors and cj ∈ R>0. It suffices to

show that D1 + c−1
1 B is big. In other words that D + B is big where D is an integral

big divisor. We now assume the results discussed in the remark following 2.2.33. More
precisely, we are using freely that we may write B =

∑N
i=1 αiBi with Bi a numerically

trivial divisor and αi ∈ R. Now induct on N . Assume N = 1. Then we must show that
D + rB is big where D,B are integral, D is big and B is numerically trivial. Choose
r1 < r < r2 with r1, r2 rational. Then pick t in [0, 1] with tr1 + (1 − t)r2 = r. Then
t(D + r1B) + (1 − t)(D + r2B) = D + rB and (D + r1B), (D + r2B) are ample by the
numerical nature of ampleness for Q-divisors. Now let N > 1. Then we must show that
D +

∑N−1
i=1 αiBi + αNBN is big. By induction D +

∑N−1
i=1 αiBi is big and so we may write

D +
∑N−1

i=1 αiBi =
∑
βjD

′
j with Dj integral big divisors. By the base case β1D

′
1 + αNBN

is big as needed. We now turn to (2). Let D be a big divisor. Letting D =
∑

j cjDj with
Dj integral big divisors and cj ∈ R>0 we may write each Dj ≡num Aj + Nj where Nj is
effective and Aj is ample. Then put A =

∑
j cjDj and N =

∑
cjNj. So A is an ample

R-divisor and N is a effective R-divisor and D ≡ A + N as needed. Conversely suppose
that D ≡num A+N with A ample and N effective. Write A =

∑
cjAj with cj > 0 and Aj

an ample integral divisor and N =
∑
biNi with bi > 0 and Ni integral. If c1D1 +N is big
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then (c1D1 +N) +
∑

i≥2 ciDi is also big as the sum of a big divisor and an ample divisor is

big. Thus we may show that A+
∑N

i=1 biNi is big where bi > 0 and the Ni are integral and
effective with A is an integral and ample divisor. As before we induct on N . The base case
is to show that A+ rN is big where r > 0 is real. Choose r1 < r < r2 with r1, r2 rational.
Then pick t in [0, 1] with tr1 +(1− t)r2 = r. Then t(A+r1N)+(1− t)(A+r2N) = A+rN .
Since A + riN is a big Q divisor we have that A + rN is big. Now let N > 1. Then
by induction A +

∑N−1
i=1 is big and arguing as before we may directly reduce to the base

case.

Corollary 2.2.58.1 (Bigness is an open condition). Let X be a normal irreducible projec-
tive variety defined over Q̄. Let D be a big R-divisor. Let E1, ..., Er be arbitrary R-divisors.
Then D +

∑r
i=1 εiEi is big for all εi with | εi | small enough.

Proof. This follows from 2.2.58 and the open nature of amplitude.

Definition 2.2.59 (The big and pseudoeffective cones). Let X be a normal irreducible
projective variety defined over Q̄. Let R ∈ {Z,Q,R}. We let BigR(X) be the collection
of big R divisors in N1(X)R. We let EffR(X) be the closure of the cone generated by the
classes of effective R divisors. We call EffR(X) the pseudoeffective cone.

Theorem 2.2.60 (Properties of the big cone). Let X be a normal irreducible projective
variety defined over Q̄. Then

1. BigR(X) = int(EffR(X)).

2. EffR(X) = Big(X).

Proof. The big cone is open by 2.2.58.1. By (2) of 2.2.58 we have that BigR(X) ⊆ Eff(X).
Now let D ∈ Eff(X). Then we may find Dk effective R divisors converging to D. Choose
an ample divisor A and set Bk = DK + 1

k
A. Then Bk is big by 2.2.58 and converges to D.

So D ∈ BigR(X) and we have that EffR(X) ⊆ BigR(X) as needed. As bigness is open we
have that BigR(X) ⊆ int(EffR(X)). Conversely suppose that D ∈ int(EffR(X)). Then we
can find an ample H such that D−H ≡num N where N is effective. So D = N +H is big
by 2.2.58.
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2.3 Minimal Model Program

We now begin discussing the minimal model program or MMP. The overall goal of the
minimal model program is as follows. Given a variety X defined over an algebraically
closed field of characteristic zero. Find a minimal model or simplest possible birational
model of X. The idea being, that it may be intractable to study X itself, but if we
allow ourselves to work up to birational equivalence then we can transfer questions to the
minimal model which may be simpler to work with. This begs the question, what is a
minimal model? Our philosophy is that all general invariants of a general variety X can
be constructed from the cotangent bundle ΩX by standard geometric operations such as
determinants, duals ect. Before giving definitions we consider a motivating case, namely
that of curves. Our main source here is [36].

Example 3 (Classification of curves). Let X be an irreducible curve defined over Q. If X
is singular we have a normalization morphism

ν : X̃ → X

where X̃ is a smooth curve and ν is a birational morphism. In fact X̃ is the unique smooth
curve which is birational to X. Therefore we will take X to be our simplest possible
birational model of X. Having chosen our simplest possible birational model, it remains to
classify them in some way. Let X be a smooth projective curve defined over Q. Consider
the canonical divisor represented by KX = ΩX on X. The we have the following well
known trichotomy.

1. degKX < 0 ⇐⇒ H0(X,mKX) = {0} ∀ m > 0 ⇐⇒ −KX is ample.

2. degKX = 0 ⇐⇒ H0(X,mKX) = Q ∀ m > 0 ⇐⇒ KX = 0.

3. degKX > 0 ⇐⇒ H0(X,mKX) ≥ mC ∀ m > 0 and some constant C > 0 ⇐⇒
KX is ample.

In the latter two cases we see that KX is nef, while in the first case we have that −KX is
ample. We consider these two types of behavior as distinct and different from one another.
In fact the first type of behavior will be distinctive to varieties with κ(X) = −∞.

We now can define a minimal model.

Definition 2.3.1. Let X be a projective variety defined over Q such that KX ∈ CaDiv(X)Q.
We say that X is a minimal model if KX is nef.
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In the setting of 3 we see that cases of (2) + (3) are a minimal models. In particular,
if X is a curve and κ(X) ≥ 0 then X has a smooth minimal model. If κ(X) < 0 then X
does not have a minimal model.

Remark 2.3.2. We point out a crucial difference between the curve case and the higher
dimensional case for dynamics. For curves if we have a dominant morphism f : X → X
where X is a curve over Q, then by the universal property of normalization we have that
there is a dominant morphism f̃ : X̃ → X̃ of normalizations that is compatible with f . If
X is a surface and µ : X ′ → X is a resolution of singularities then a dominant morphism
f : X → X does not obviously lift to a dominant morphism f ′ : X ′ → X ′.

Example 4 (A morphism that does not ascend along a blow up). Let X = P2 and let
f : X → X be the morphism given by f([x0 : x1 : x2]) = [x2

0 : x2
1 : x2

2]. Now consider the
blow up of 9 ≥ d > 3 very general points µ : X ′ → X. Then X ′ is a smooth Del-Pezzo
surface which is non-toric. If f ′ : X ′ → X ′ is a surjective endomorphism with µ◦f ′ = f ◦µ
then f ′ has degree 2 and so is not an automorphism. Furthermore, κ(X ′) = −∞ and X ′

admits no non-constant morphism to an elliptic curve. By 4.0.1 X ′ must be toric, which
is a contradiction. So f does not lift to X ′ in a compatible manner.

Thus one must contend with the possibility of working with singular varieties when
studying dynamics, at least if we wish to remain in the world of morphisms and not
dominant rational mappings. We will see that in fact this will be forced upon us by the
minimal model program.

In higher dimensions we cannot expect a unique smooth model lying in a birational
equivalence class. Indeed by blowing up points on a variety we obtain many different
birationally equivalent smooth models. Intuitively, such an example is not as simple as
possible, since it was obtained by blowing up points, and could thus be simplified by
blowing down these curves. We will take this as motivation; we will attempt to simplify
our varieties by contracting curves. Given a variety X we let NE(X)R be the closed cone
of curves, dual to the nef cone Nef(X)R. To simplify X we may try and simplify NE(X)R
(equivalently Nef(X)R). In other words, we will attempt to remove line bundles from X.
We will obtain this by looking for morphisms

π : X → Y such that there is a curve C ⊆ X and π(C) = pt.

There are 3 types of morphisms that we will consider contractions. Before going further
let us give examples of two of the kind of contractions we will deal with. The third being
more difficult and less amenable to easy examples.
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1. Let µ : X ′ → X be the blow up of a point p on a smooth surface with exceptional
divisor E. Then µ(E) = p. So µ contracts the curve E and simplifies X ′. In this case
µ is an isomorphism in codimension 1. This is an example of a divisorial contraction
because the exceptional locus of the morphism is a divisor.

2. Let π : PE → P1 be the bundle projection of a rank 2 vector bundle on P1. Fix a
point p ∈ P1 and let C = π−1(p) ∼= P1. Then π(C) = p and π contracts (many)
curves. Note that each such curve is a fiber of π and all such fibers are numerically
equivalent. We call this a fibering type contraction.

While the above examples are suggestive, there will be divisorial contractions that are
not a blow up with a smooth center, and fibering contractions that are not projective
bundles.

The minimal model program will be an algorithm which will attempt to build a minimal
model out of our starting variety X. To carry out this program we will need the following
ingredients.

Ingredients of the minimal model program for KX. We will require the following.

1. A category C of irreducible Q-factorial projective varieties which contains all smooth
projective varieties. The following operations will be required to preserve C.

2. The cone theorem for C, [36, 7-2-1]: Given X ∈ C we have a decomposition

NE(X)R = NE(X)KX≥0 +
∑
i

Ri (2.7)

where the sum is indexed by some (potentially infinite or empty) subset of Z≥0,
Ri = R≥0[li] ⊆ NE(X)R and [li] is the numerical class of an irreducible curve in X
and NE(X)KX≥0 is the subspace of NE(X)R which have non-negative intersection
with KX . We have and (KX · li) < 0 for all li. The Ri are called extremal rays.

3. The contraction theorem for extremal rays, [36, 8-1-3] : For each extremal
ray R in (2) there is a well behaved contraction morphism

φR : X → Y (2.8)

which have the following three types.

48



(a) φR : X → Y is birational and the exceptional locus exc(φR) has codimension 1
and ρ(X) − 1 = ρ(Y ). In this case we demand that Y ∈ C and call φR or R
divisorial because the exceptional locus is a divisor. An example of a divisorial
contraction is the blow up of a point on a smooth projective variety.

(b) φR : X → Y is birational and ρ(X)−1 = ρ(Y ) and the exceptional locus exc(φR)
has codimension ≥ 2. In this case we demand the existence of a projective vari-
ety X+ ∈ C with a contraction φ+

R : X+ → Y such that exc(φ+
R) has codimension

at least 2; this is all constructed from φR in a unique way. Furthermore we re-
quire that the birational mapping

ψR = (φ+
R)−1 ◦ φR : X 99K X+

has exceptional locus exc(φR) and ρ(X) = ρ(X+).We call φR a small contraction
or flipping type contraction and X+ the associated flip.

(c) If φR : X → Y is not birational then we require it to be a Mori fiber space. In
other words we require

i. That Y is a normal projective variety with dimX > dimY and φR has
connected fibers and ρ(X)− 1 = ρ(Y ).

ii. Every curve C in a fiber of φR is numerically proportional. Moreover (KX ·
C) < 0.

We call φR a fibering or fiber type contraction and X a Mori-fiber space. An
example of a Mori-fiber space and a fibering type contraction is a projective
bundle PE → Y over a normal variety Y .

4. Termination of flips conjecture [36, 3-1-14]:

There is no infinite sequence of flips

X1
ψ1

//

φ1   

X2
ψ2

//

φ+
1~~ φ2   

X3
ψ3

//

φ+
2~~ φ3   

X4

φ+
3~~

//

!!

. . .

Y1 Y2 Y3 . . .

This is still conjectural in full generality dimension greater than 3.

We now have the following algorithm, called the minimal model program from KX .
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The minimal model program for KX (3-1-15 in [36]). Let X ∈ C.
Step 1: If KX is nef, stop and output X.
Step 2:Since KX is not nef we apply the cone theorem (2) from 2.3 to obtain a decompo-
sition

NE(X)R = NE(X)KX≥0 +
∑
i

Ri (2.9)

with at least one extremal ray. Choose an extremal ray R = Ri for some i. Note that by
definition (KX ·R) < 0.
Step 3: Apply the contraction theorem ((3) in 2.3) to R to obtain an extremal contraction
φR : X → Y .
Step 4: If φR is a divisorial contraction ((a) in 2.3) then Y ∈ C. Replace X with Y and
return to Step 1.
Step 5: If φR is flipping contraction ((b) in 2.3) replace X with the flip X+ ∈ C and
return to Step 1.
Step 6: If φR is a fibering type contraction ((c) in 2.3) return X. In other words if
dimY < dimX we return X.

If we assume that the assumptions of 2.3 (including the termination of flips) hold, then
the minimal model program as described above will always terminate in a minimal model
or a Mori fiber space. To see this note that every divisorial contraction decreases the
Picard number of X by one. By termination of flips a flipping step only occurs finitely
many times and the Picard number does not change in a flipping step. Therefore either a
minimal model is reached or a fibering contraction is reached or the Picard number is one
at some stage and no more flipping steps occur. If the Picard number is one then X (the
current variety of interest) is either a minimal model and we are done. Otherwise the final
contraction must be a Mori fiber space. Given a variety X ∈ C we will say that an MMP
for X is a series of dominant birational mappings

X = X1
f1

// X2
f2
// . . .

fr−1
// Xr (2.10)

where Xr is either a minimal model of a Mori fiber space and each fi is either a divisorial
contraction or a flipping morphism X 99K X+. We now describe the category C.

Terminal singularities and the category C.

When carrying out the minimal model program in dimension ≥ 3 we must allow singular
varieties to enter the picture. For surfaces this problem can be worked around. This is
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strictly necessary as there are examples of smooth 3-folds which do not have a smooth
minimal model. From the perspective of the algorithm outlined earlier, when one obtains
a divisorial contraction φ : X → Y the target variety may no longer be smooth, and in fact
it may be impossible to find any divisorial contraction with smooth target. More precisely
we have the following phenomenon.

Example 5 (Singularities are necessary: Obstacle 3-1-2 and example 3-1-3 of [36]). There
is a smooth projective three-fold X defined over Q such that if (KX · C) < 0 then any
contraction that contracts C results in a singular three-fold. In fact one may construct
X as follows. Let A be an abelian three-fold and let Y = A/ ± 1 be the quotient by the
involution on A. Then Y is a singular surface with precisely 26 singularities. Let X be the
blow up of Y at the singularities. Then X is a smooth threefold. Furthermore, the KX

negative curves are precisely those that lie in some exceptional divisor Ei for the blow up
X → Y and each of these blow down to a singular three-fold.

Thus to carry out the minimal model program we must allow certain mild singularities
to enter the picture.

Definition 2.3.3 (Terminal singularities, 4-1-1 in [36]). Let X be a normal projective
variety. We say that X has at worst terminal singularities if the following are true.

1. KX is Q-Cartier.

2. There a projective birational morphism

µ : V → X

with V smooth such that

KV = µ∗KX +
r∑
i=1

aiEi (2.11)

where the Ei are the irreducible components of the exceptional locus of µ and the
ai > 0.

The following result tells us why this definition is useful.

Theorem 2.3.4 (Terminal singularities are necessary to run the MMP, 4-1-3 in [36]).
Q-factorial and terminal singularities may be characterized as the singularities that appear
when running the minimal model program with a starting variety that is smooth. In other
words the category C of normal projective varieties with at worst Q-factorial and terminal
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singularities is the smallest category containing smooth projective varieties for which the
MMP works. Furthermore, every terminal singularity appears in a run of the MMP starting
with a smooth projective variety.

From now on unless otherwise mentioned we work in the category C of Q-factorial
projective varieties with at worst terminal singularities, as it is the natural place to work
with the MMP with respect to KX negative contractions. There are other more general
ways to run the MMP, such as in a log category. In such a setting one modifies the type
of singularities appropriately.

Flips and the contraction theorem

We start with a precise definition of an extremal contraction.

Definition 2.3.5 (KX-negative extremal contractions, 8-1-1 in [36]). Let X be a normal
Q-factorial variety with at worst terminal singularities. Then φ : X → Y is an extremal
contraction with respect to KX if:

1. φ is not an isomorphism.

2. For a curve C ⊆ X we have that

φ(C) = pt⇒ (KX · C) < 0. (2.12)

3. All curves contracted by φ are numerically proportional. That is

φ(D) = φ(C) = pt⇒ D ≡num qC for some q ∈ Q>0. (2.13)

4. φ has connected fibers, is surjective and Y is normal and projective.

We have the following characterization.

Theorem 2.3.6 (The contraction theorem, 8-1-3 in [36]). Let X be a normal Q-factorial
variety with at worst terminal singularities. Let Rl be an extremal ray of NE(X)KX<0 where
Rl = NE(X)R ∩ L⊥ where L ∈ Nef(X). Then there is a contraction morphism

contRl = φRl : X → Y (2.14)

with the following properties.
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1. contRl is not an isomorphism and a surjection.

2. For any curve C ⊆ X then we have

contRl(C) = pt⇒ (KX · C) < 0.

3. For any curve C ⊆ X we have

C ∈ Rl ⇐⇒ contRl(C) = pt. (2.15)

4. Y is normal and projective and contRl is surjective with connected fibers.

5. contRlOX = OY .

6. L = cont∗RlH where H is an ample Cartier divisor on Y .

7. For any Cartier divisor D on X we have that

D = cont∗RlW ⇐⇒ (D · C) = 0∀ C ∈ Rl.

We have exact sequences

0→ N1(Y )→ N1(X)→ N1(X/Y )→ 0 (2.16)

0→ N1(X/Y )→ N1(X)→ N1(Y )→ 0 (2.17)

8. We have that ρ(X) = ρ(Y )− 1.

Properties (1),(2),(3) characterize the extremal contractions with respect to KX in the
sense that every extremal contraction with respect to KX arises in this way.

We have the following results which give us the specific properties of contractions.

Proposition 2.3.7 (Properties of divisorial contractions). Let X be a normal Q-factorial
variety with at worst terminal singularities. Let R be an extremal ray of NE(X)KX<0

where R = NE(X)R ∩ L⊥ where L ∈ Nef(X). Let φR : X → Y be the associated extremal
contraction of 2.3.6. Suppose that the exceptional locus of φ has codimension 1. Then we
call φ a divisorial contraction. Furthermore φ has the following properties:

1. The exceptional locus E of φ is a single irreducible divisor.
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2. Y is a normal projective variety with at worst Q-factorial terminal singularities.

3. ρ(Y ) = ρ(X)− 1.

We now turn to the flip.

Definition 2.3.8 (Defining flips, 9-1-1 in [36]). Let φ : X → Y be a small contraction
where X is normal Q-factorial with at worst terminal singularities. Then φ satisfies the
following properties.

1. Y is normal and projective.

2. −KX is φ ample.

3. All the curves in the fibers of φ are numerically proportional.

A morphism φ+ : X+ → Y is called a flip (if it exists) if X+ is normal with at worst
Q-factorial terminal singularities and has the following properties.

1. φ+ is a small contraction.

2. KX+ is φ+ ample.

3. All the curves in the fibers of φ+ are numerically proportional.

As stated the flip is not guaranteed to exist. However, they are known to exist in
dimension 3 and 4 due to Mori and Shokurov. The existence of flips in all dimensions was
decided by Birkar, Cascini, Hacon, and McKernan in 2010.

Proposition 2.3.9 (Properties of flips, 9-1-2 in [36]). Let φ : X → Y be a small contraction
where X is normal Q-factorial with at worst terminal singularities. Then a flip exists if
and only if the local canonical ring

⊕
d≥0

φ∗OX(dKX) (2.18)

is finitely generated as an OY algebra. In this case the flip X+ is unique and given by

X+ = Proj
⊕
d≥0

φ∗OX(dKX)→ Y. (2.19)
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The proposition tells us that a flip is uniquely determined by the small contraction φ.

We also have the following which describes the properties of the target of a small
contraction.

Proposition 2.3.10 (Target of a small contraction, 8-2-2 in [36]). Let φ : X → Y be
a small contraction where X is normal Q-factorial with at worst terminal singularities.
Then KY is not Q Cartier. In particular Y is not Q-Cartier and does not have terminal
singularities.

We finally have the following proposition involving the properties of a fibering type
contraction.

Proposition 2.3.11 (The target of a fibering type contraction is Q-factorial, 8-2-3 in
[36]). Let φ : X → Y be a fibering contraction where X is normal Q-factorial with at worst
terminal singularities. Then Y is normal and Q-factorial.

We finally end this section with some information about the geometry of the exceptional
locus of a contraction.

Theorem 2.3.12 (The exceptional locus is uniruled, 10-3-3 in [36]). Let φ : X → Y be an
extremal contraction where X is normal Q-factorial with at worst terminal singularities.
Then every component of exc(φ) is uniruled.

Remark 2.3.13 (Singularity assumptions). While there are contraction theorems for va-
rieties with other types of singularities, we will stick to the case of terminal singularities.
Whenever we are dealing with an extremal contraction will will assume that the source
variety in question is Q-factorial and has at worst terminal singularities unless the variety
is a projective toric variety. In the toric setting one has extra combinatorial tools that can
be used. See the following section for what we will use.

We close this with a result for toric varieties that we need.

2.3.1 The toric minimal model program

The minimal model program for toric varieties can be entirely completed. In other words
all statements in 2.3 can be completed via combinatorial arguments, and the termination
of flips may be established. See [36, Chapter 14] or [12, 15.5]. Because of the access to
combinatorial arguments, or perhaps due tot he rigid structure of toric varieties, we have
that much more powerful statements are available when dealing with toric varieties. As an
example we have the following powerful result.
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Theorem 2.3.14 (Toric contraction theorem, 15.4.1 in [12]). Let XΣ be a Q-factorial
projective toric variety. Let R ∈ NE(XΣ)R be an extremal ray. Then R is contractible
by a toric morphism. In other words there is a contraction morphism φR : XΣ → YΣ0.
Moreover, the construction has the following features.

1. φR is a surjective morphism with connected fibers and YΣ0 is a normal projective toric
variety. It is Q-factorial when φR is a divisorial contraction or a fibering contraction.

2. If φR(C) is a point then C ∈ R.

3. We may write R = D⊥∩NE(XΣ)R where D lies in the relative interior of some facet
F of Nef(X)R. Then (D′ · C) = 0 ⇐⇒ D′ ∈ F .

Proof. The first two features follow from detailed combinatorial arguments that would take
us to far afield. See [12, Chapter 15] for the details. For the last part notice Nef(X)R is
finitely generated and rational for any projective toric variety. In particular we have that
if D0 ∈ F then (D0 · C) = 0. This is because if F has rays D1, ..., Ds then D =

∑s
i=1 aiDi

(this is what it means for D to be in the relative interior of the facet!) where ai > 0.
Therefore (Di · C) = 0 for all i as each Di is nef and (D · C) = 0. Since the Di generate
F we have that all elements of F intersect C trivially. Finally note that by the duality
of cones that F = C⊥ ∩ Nef(X)R, where C is any non-zero element in R. So (D′ · C) =
0 ⇐⇒ D′ ∈ F .
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Chapter 3

Arithmetic preliminaries.

Here we will begin building up the arithmetic tools required to attack the Kawaguchi-
Silverman conjecture. Our main references here will be [24] and [8]. First and foremost,
we need a theory of heights. The theory of heights on projective algebraic variety is a
method of turning geometry into arithmetic in the following manner. Given a line bundle
L on an irreducible projective variety X defined over a number field K one constructs a
height function

hL : X(K)→ R.

This construction is called Weil’s height machine. It’s main feature is that the geometric
properties of the line bundle L are reflected in the arithmetic properties of the function
hL. Roughly speaking, hL measures the arithmetic complexity of a point P ∈ X(K) with
respect to the line bundle L. The prototypical example of this is as follows. Take X = P1

Q
and let L = OP1

Q
(1). A point P ∈ P1(Q) can be written P = [a : b] where a, b ∈ Z are

coprime. Then
hOP1 (1)([a : b]) = log max{| a |, | b |}.

In other words, the arithmetic complexity of the point P is measured by the size of the
integers required to represent P in integral homogeneous coordinates. The full theory of
heights generalizes this example in two ways: First by allowing P to lie in some number
field K, and second by allowing P to lie in some projective variety X rather then in P1. In
3.1 we introduce this theory by first introducing absolute values and heights in projective
spaces in 3.1.1 and then introducing Weil’s height machine in 3.1.2.

Ultimately, we are interested in the study of endomorphisms of projective varieties.
Abelian varieties provide a second large class of varieties that possess many surjective
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endomorphisms. An Abelian variety A has a commutative group structure, so given any
point P on A and an integer n one can consider n · P =

∑n
i=1 P . As the structure of

the surjective endomorphisms on an Abelian variety has been well studied, they provide
another testing ground for questions regarding the dynamics of surjective endomorphisms.
In 3.2 we introduce this theory.

3.1 Heights

Arithmetic dynamics lies in the intersection of algebraic geometry and number theory.
Therefore, to work efficiently, one must have methods that turns geometry into arithmetic
and vice versa. The appropriate theory is the theory of heights. Our plan of attack is as
follows:

1. Define a height function hPn on Pn(Q). The construction here is done in 3.1.1 and
requires the theory of places of a number field.

2. Let X be a projective variety and L a very ample line bundle on X. Then there is a
closed embedding φL : X → Pn such that φ∗LOPn(1) = L. We define

hL = hPn ◦ φL.

The construction here is more geometric, and uses basic facts about the theory of
line bundles on a projective variety X and the construction of hPn .

3. Finally we construct all other functions by taking appropriate integral linear combi-
nations of the above height functions. This is carried out in 3.1.2.

One may think of the above construction as follows. We define certain natural height
functions in (1) and (2) above, and then extend by all possible integral linear combinations.
It turns out, that all possible integral linear combinations of the natural height functions
arise in a geometric manner. There are other constructions of heights on projective varieties
different from the one outlined above, but this seems to be the most convenient for our
purposes. Our references here will be [24] and [8].
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3.1.1 Absolute Values and Heights

Here we let K be a number field, that is a finite field extension of Q.

Definition 3.1.1. An absolute value on K is a function | · | : K → R≥0 satisfying the
following axioms.

1. | x |= 0 ⇐⇒ x = 0.

2. | xy |=| x | · | y |.

3. | x+ y |≤| x | + | y |.

An absolute value on K introduces a metric space structure on K using the distance
function d(x, y) =| x− y |. A natural way to keep track of absolute values is thus through
their associated topology.

Definition 3.1.2. Two absolute values on K are said to be equivalent if they define the
same topology. An equivalence class of absolute values on K is called a place of K. Given
a place ν we will denote | · |ν for the associated absolute value and define ν(x) = log | x |ν.

Proposition 3.1.3 (1.2.3 [8]). Two absolute values | · |1 and | · |2 on K are equivalent if
and only if there is a positive real number s such that | · |s1=| · |2.

Definition 3.1.4. Fix an absolute value | · | on K We say | · | is non-Archimedean if

| x+ y |≤ max{| x |, | y |}.

If | · | is not non-Archimedean we call | · | Archimedean. We say that a place ν is
non-Archimedean if any of the absolute values in the associated equivalence class is non-
Archimedean and call it Archimedean otherwise.

To proceed we need to make certain normalization choices. This can be done using a
theorem of Ostrowski which allows us to determine a canonical choice of places for Q.

Definition 3.1.5. Fix a prime number p ∈ Z. Given an integer a we can uniquely write
a = pαb where b is coprime to p. We define ordp(a) = α and define ordp(

a
b
) = ordp(a) −

ordp(b). We define an absolute value | · |p on Q by the formula

| a
b
|p= p−ordp(a

b
).
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Equivalently, any a
b
∈ Q can be uniquely written in the form

a

b
= pα

c

d

where c, d are co-prime to p, We define

| a
b
|p=| pα

c

d
|p= p−α.

Definition 3.1.6. For each number field K we let MK be the set of absolute values of K
consisting all absolute values of K such that | · |ν restricts to either the Euclidean absolute
value on Q or a p-adic absolute value in the sense of 3.1.5. We call MK the set of standard
absolute values on K. When needed we will let M0

K be the sub-set of MK consisting of those
absolute values | · |ν that restricts to a p-adic absolute value. We call M0

K the finite absolute
values. We let M∞

K the set of absolute values which restrict to the Euclidean absolute value
on Q. We call these the infinite absolute values.

We now have enough to define heights on projective space.

Definition 3.1.7 (Relative Height on Projective Space). Fix a number field K. Let x =
(x0 : ... : xn) ∈ Pn(K). We define the multiplicative height

HK(x) =
∏
ν∈MK

max
0≤i≤n

{|xi|ν}[Kν :Qν ].

We also define the logarithmic height

hK(x) = logHK(x).

Proposition 3.1.8 (B.2.1). [24]

1. The height HK is well defined and HK(P ) ≥ 1 for all P ∈ Pn(K).

2. Let L | K be a finite field extension. Let P ∈ K. Then

HL(P ) = HK(P )[L:K]

Definition 3.1.9 (Absolute Heights). The absolute height on Pn(Q) is the function

H(P ) = HK(P )
1

[K:Q]

where K is any number field with P ∈ K. We define h(P ) = logH(P ) and call this the
absolute logarithmic height. By 3.1.8 this is a well defined function.
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We think of these height functions as measuring the arithmetic complexity of a point
P ∈ Pn(Q). We now illustrate this for Pn(Q).

Proposition 3.1.10. Let P ∈ Pn(Q) with P = [x0 : ... : xn] with the coordinates zero or
coprime integers. Then

H(P ) =
n

max
i=0
{| xi |}.

Proof. We have that | xi |p≤ 1 for any finite prime p. Furthermore, for each prime p there
is some xi such that p does not divide xi as the xi are pairwise coprime. It follows that
maxni=0 | xi |p = 1. Thus

H(P ) =
n

max
i=0
{| xi |} ·

∏
p prime

n
max
i=0
{| xi |p} =

n
max
i=0
{| xi |} ·

∏
p prime

1 =
n

max
i=0
{| xi |}.

Thus a point in Pn(Q) has large height when one of the coordinates has a large size. We
are measuring the arithmetic complexity of P by the size of the homogenous coordinates
required in a coprime integral representation. We see immediate as well that the set

{P ∈ Pn(Q) : H(P ) ≤ B}

is a finite set. This can be strengthened and is a key property of heights.

Theorem 3.1.11 ([24] B.2.3. The Northcott Property). Fix real numbers B,D ≥ 0. The
set

{P ∈ Pn(Q) : H(P ) ≤ B, [Q(P ) : Q] ≤ D}

is finite.

3.1.2 Weil Heights

In this section we describe how to construct height functions on projective varieties. Our
functions will only be unique up to a bounded function. Therefore, we will be using the
big O notation.

The goal here is to take a Cartier divisor D (equivalently a line bundle L) and define
a height function hD : X(Q) → R (respectively hL : X(Q) → R). Our strategy will be
as follows: First on Pn we will define hPn,OPn (1) = h where h is the absolute height on
projective space. Then given a closed embedding φ : X → Pn we obtain a very ample
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Cartier divisor D on X by the pull back D = φ∗OPn(1). The height function associated to
D is defined to be hX,D = hPn,OPn (1) ◦ φ = h ◦ φ. Finally, given any Cartier divisor D we
have that D = H1 −H2 where H1, H2 are very ample. Then we define

hX,D = hX,H1 − hX,H2 .

In the above construction we have made various choice. For example when D is very
ample there is not a unique morphism f ∗OPn(1) = D. Furthermore, the decomposition
D = H1 −H2 is not unique. However, different choices lead to functions which differ by a
bounded function, hence these constructions are well defined up to O(1). We now formalize
these ideas.

Theorem 3.1.12 ([24] B.3.2. Weil’s Height Machine). Let X be a projective variety defined
over a number field K and let CaDiv(X) be the set of Cartier divisors on X. There is a
function

h : CaDiv(X)→ {functions X(K)→ R}

with the following properties.

1. Let H ⊆ Pn be the Cartier divisor associated to a hyperplane. Then hPn,H(P ) =
h(P ) +O(1) where h(P ) is the absolute logarithmic height on projective space.

2. Let φ : X → Y be a morphism of varieties defined over K. Let D ∈ CaDiv(Y ). Then

hX,φ∗D(P ) = hY,D(φ(P )) +O(1).

3. Let D,E ∈ CaDiv(X). Then

hX,D+E = hX,D + hX,E +O(1).

4. Let D,E ∈ CaDiv(X) with E linearly equivalent to D. Then

hX,D = hD,E +O(1).

5. Let D ∈ CaDiv(X) be effective. Let B be the associated base locus of D. Then

hX,D(P ) ≥ O(1)

for all P ∈ (X −B)(K).
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6. Let D ∈ CaDiv(X) be ample. Then for every finite extension L | K and all positive
constants B we have that

{P ∈ X(L) : hX,D(P ) ≤ B}

is a finite set.

7. The height functions hX,D are determined up to O(1) by the properties (1),(2) (3)
and for embeddings X ↪→ Pn.

Proof. We only sketch the construction. Let D be a very ample divisor on X. Then by
definition there is a closed embedding φ : X → Pn with φ∗H = D where H is a hyperplane
in Pn. We define hX,D = h ◦ φ. Now let D be arbitrary. Then we can find very ample
divisors D1, D2 with D = 1

m
(D1 −D2) by 2.2.20. We define

hX,D =
1

m
(hX,D1 − hX,D2).

One then verifies that these functions satisfy the requirements of the theorem.

We think of the height machine in the following manner. Given a closed embedding
the φ : X → Pn with φ∗OPn(1) = D the height hX,D measures the arithmetic complexity
of a point P with respect to the embedding φ. We also note that we may extend the height
machine to R-cartier divisors in the obvious way.

3.2 Abelian Varieties

Here we follow [24] for the basics on abelian varieties defined over a field k is characteristic
zero.

Definition 3.2.1 (Definition of an Abelian Variety). Let k be a field. An abelian variety
over k is a projective algebraic group defined over k.

To get the theory started we have the following.

Lemma 3.2.2 (Rigidity Lemma: A.7.11 in [24]). Let X be an irreducible reduced projective
variety defined over k, and let Y, Z be arbitrary varieties. Suppose that

f : X × Y → Z
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is a morphism defined over k and that there is a k-point y0 such that f : X × y0 → Z is
constant. Then if y is any other point we have that f : X×y → Z is constant. In particular
if there is a point x ∈ X such that in addition we have that f(x×Y )→ Z is constant then
f is constant.

Proof. Let U be an affine open neighborhood of f(X × y0) = z0. We have that V =
f−1(Z − U) is closed in X × Y . Since X is projective it is proper and the base change
of X → Speck along Y → Speck is p2 : X × Y → Y . The properness of X × Y → Y
tells us that p2(V ) = W is closed in Y . Notice that y0 /∈ W as otherwise for some x ∈ X
we have (x, y0) ∈ V or that f(x, y0) ∈ X − U which is a contradiction by the definition
of V . Now let y /∈ W . Then f(X × y) ⊆ U . In other words, we have a morphism
f : X × y → U where U is affine. This means f(X × y) is constant. Since X is irreducible
we have that f(X × y) = w0 for some fixed w0. Then as W is dense in Y we have that
f : X × (Y −W ) → Z is constant. Thus f is constant as it is constant on a dense open
set. The final part is clear.

We have the following nice corollary.

Corollary 3.2.2.1. Let A be an abelian variety and let G be an algebraic group. Let
f : A→ G be a morphism such that f(eA) = eG where eA is the identity element on A and
eB is the identity element on G. Then f is a group homomorphism.

Proof. Let g : A× A→ G be defined as

g(x, y) = f(x ·A y) ·B f(y)−1 ·G f(x)−1.

Then g(eA×A) = eG and g(A× eA) = eG. Thus by 3.2.2 we have that g is constant. Since
g(eA, eA) = eG we have that g(x, y) = eG. In other words, we have that

f(x ·A y) ·G f(y)−1 ·G f(x)−1 = eG

or that
f(x ·A y) = f(x) ·G f(y).

We can use this result to characterize morphisms between abelian varieties.

Corollary 3.2.2.2. Let f : A→ B be a morphism of abelian varieties defined over a field
k. Then f = tc ◦ φ where tc : B → B is translation morphism by c = f(eA) ∈ B and φ is a
group homomorphism.
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Proof. Let c = f(eA). Let f ′ = tc−1 ◦ f . Then f ′(eA) = eB by construction. Thus f ′ = φ
where φ is a group homomorphism. Then we have that f = tc ◦ φ as needed.

From this we are able to justify the definition of an abelian variety.

Corollary 3.2.2.3 (Abelian varieties deserve their name ). Let A be an abelian variety.
Then the group law on A is commutative.

Proof. Consider the morphism i : A → A that sends x 7→ x−1. Since i(eA) = eA we have
by 3.2.2.1 that i is a group homomorphism. But this means that A is abelian.

This circle of ideas can be used to proof the following.

Proposition 3.2.3 (Rational Maps to an abelian variety: See 1.7.15 in [24] ). Let A be
an abelian variety and X a smooth variety. Then any rational map f : X → A extends to
a morphism.

Given an abelian variety A, we wish to analyze the dynamics of a morphism f : A→ A.
The prototypical example is given by multiplication by n [n] : A → A. To analyze such a
morphism one might pass to the C points of A and apply analytic results. We take a more
algebraic approach following [24].

Theorem 3.2.4 (Theorem of the cube: (Mumford)). Let X1, X2, X3 be projective varieties
and (x1, x2, x3) ∈ X1×X2×X3. Let D be a divisor on X1×X2×X3. Suppose that restriction
of D to each of

x1 ×X2 ×X3, X1 × x2 ×X3, X1 ×X2 × x3

is linearly equivalent to 0. Then so is D.

With this result in hand, we have the following version for abelian varieties.

Theorem 3.2.5 (Theorem of the cube for abelian varieties. A.7.2.1 [24]). Let A be an
abelian variety. Let I ⊆ {1, 2, 3}. We define sI(x1, x2, x3) =

∑
i∈I xi on A×A×A. Define

Cube(D) = s∗123D − (s∗12D + s∗13D + s∗23D) + s∗1D + s∗2D + s∗3D

Then cube(D) ≡lin 0.
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Proof. We apply 3.2.4. Let Xi = A and xi = 0 where 0 is the zero element of A. Let
i : A × A → A × A × A be the morphism i(x1, x2) = (x1, x2, 0). Therefore the restriction
Cube(D) | A× A× 0 is the same as

(s123 ◦ i)∗D− ((s12 ◦ i)∗D+ (s13 ◦ i)∗D+ (s23 ◦ i)∗D) + (s1 ◦ i)∗D+ (s2 ◦ i)∗D+ (s3 ◦ i)∗D.

However, we may compute all the terms in the above sequence. Namely we think of i as
”deleting the index 3” to obtain the following.

s123 ◦ i = s12 ◦ i, s23 ◦ i = s2 ◦ i
s13 ◦ i = s1 ◦ i, s3 ◦ i = 0

Putting this back into the original equation gives

(s12 ◦ i)∗D − (s12 ◦ i)∗D − (s1 ◦ i)∗D − (s2 ◦ i)∗D) + (s1 ◦ i)∗D + (s2 ◦ i)∗D = 0.

A completely symmetric argument shows that the restriction of D to A×0×A and A×A×0
is also trivial. So by 3.2.4 we have that D is trivial as desired.

The corollary we will use is the following.

Corollary 3.2.5.1. Let V be any variety and A an abelian variety. and f1, f2, f3 : V → A
morphisms. Let D ∈ Pic(A). For I ⊆ {1, 2, 3} set fI =

∑
i∈I fi.

Then

cube(f1, f2, f3)(D) = f ∗123D − (f ∗12D + f ∗13D + f ∗23D) + f ∗1D + f ∗2D + f ∗3D ≡lin 0.

Proof. To compute the above pull back we consider F : V → A×A×A given by (f1, f2, f3).
Then fI = sI ◦ F as in the proof of 3.2.5. So by3.2.5 we see that cube(f1, f2, f3)(D) ≡lin

F ∗cube(D) ≡lin F
∗0 = 0 as needed.

Our main application of this is the following.

Corollary 3.2.5.2 (Mumford’s Formula). Let A be an abelian variety and D ∈ Div(A).
Let n ∈ Z. Then

[n]∗D ≡lin
n2 + n

2
D +

n2 − n
2

[−1]∗D.

In particular if [−1]∗D = D we have [n]∗D = n2D and if [−1]∗D = −D we have [n]∗D =
nD.
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Proof. We only sketch the proof and leaves the details to [24, A.7.2.5]. Apply 3.2.5.1 with
f1 = [n], f2 = [−1], f3 = [1]. Then we obtain after rearranging that

[n+ 1]∗D + [n− 1]∗D − 2[n]∗D = D + [−1]∗D.

One may now proceed by induction using the fact we can verify by hand the formula for
n = 1, 0,−1. Alternatively one can show that any function f : Z → G where G is an
abelian group with the property that f(n+1)+f(n−1)−2f(n) is constant can be written
as

f(n) =
n2 + n

2
f(1) +

n2 − n
2

f(−1)− (n2 − 1)f(0).

See [24, A.7.2.5] for the details. In our case as f(n) = [n]∗D we have f(0) = 0 we obtain
the desired result.

We can now compute the torsion of an abelian variety and the degree of the morphism
[n]. To do this we introduce a crucial notion. That of an isogeny of algebraic groups.

Definition 3.2.6. Let A,B be algebraic groups. An isogeny f : A → B is a surjective
homomorphism with finite kernel.

Theorem 3.2.7. Let A be an abelian variety defined over Q̄. Then [n] is an isogeny of
degree n2g. Consequently ker[n] = A[n] ∼= (Z/nZ)2g where g = dimA.

Proof. Let m : A × A → A be the addition morphism. The is an induced morphism of
tangent spaces

m0 : T0(A)× T0(A)→ T0(A)

which given by addition of vectors. As the multiplication by n mapping is defined in terms
of m we have that the map on tangent spaces [n]0 : T0(A)→ T0(A) is multiplication by n.
Thus we have that [n]0 is an isomorphism on tangent spaces and so dim([n]A) = dimA. It
follows that [n] is surjective as the image has the same dimension as the target. By 4.1.3
we have that [n] is a finite surjective morphism. In particular the kernel is finite so [n] is
an isogeny. To compute the degree let D′ be an ample divisor on A. Set D = D′+[−1]∗D′.
Notice that [−1]∗D = D so by 3.2.5.2 we have that [n]∗D = n2D. We have that the top
intersection product

([n]∗D)g = (n2D)g = n2gDg.

However by 2.2.10 that
n2gDg = (([n]∗D)g) = (deg[n])Dg.
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As D is ample we have that Dg 6= 0 and so n2g = deg[n] as needed. Since we are working
over Q̄ and [n] induces an isomorphism of tangent spaces it is etale. In other words the
fiber over 0 has precisely degree [n] elements which is n2g. Therefore #A[n] = n2g. To
compute the group structure we note that A[n] is a finite abelian group of order n2g. Now
let m | n. Then (A[n])[m] = A[m] and so #(A[n])[m] = (Z/mZ)2g. An argument from
elementary group theory shows that such a group is cyclic, completing the argument.

Definition 3.2.8. Let c ∈ Pic(A). Consider the map Φc : A→ Pic(A) defined by φc(a) =
t∗a(c) − c. If D ∈ CaDiv(A) we let φD be the morphism Φc where c is the class of D in
Pic(A). We let K(c) or K(D) be the kernel of the associated morphism.

Theorem 3.2.9 (Theorem of the square). Let A be an abelian variety and let a, b ∈ A.
Let ta be the translation by a mapping. Then

t∗a+b(D) +D ≡lin t
∗
a(D) + t∗b(D).

So Φc : A→ Pic(A) is a homomorphism.

Proof. Apply 3.2.5.1 to f = Id, g = a, h = b where g, h are the constant maps.

Theorem 3.2.10 (Ampleness criterion: A.7.2.10 in [24]). Let D be an effective divisor
on an abelian variety A. Then | 2D | is base point free. Furthermore, the following are
equivalent.

1. D is ample.

2. The group K(D) is finite.

3. The stabilizer G(D) = {a ∈ A | t∗a(D) = D} is finite.

4. The morphism ψ2D : A→ PH0(A, 2D) is finite.

Proof. By the theorem of the square we have that 2D ≡lin t
∗
x(D) + t∗−x(D) for any x ∈ A.

Pick y ∈ A with t∗a(D) being free at y. Then 2D is free at y by the above computation. The
fact that (4)⇒ (1) is a standard fact about ample divisors and (2)⇒ (3) by definition. We
sketch the idea of (4) ⇒ (2). Let b ∈ K(D)0 the connected component of the identity in
K(D). Then if ψ2d : A→ PH0(A.2D) is the morphism induced by 2D we have that ψ2D ◦tb
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differs from ψ2D by a linear automorphism of PH0(A.2D). This is because t∗b(2D) ≡lin 2D
as b ∈ K(D). Thus we obtain a morphism

Θ: K(D)0 → PGL(PH0(A.2D)).

However, K(D)0 is a closed subgroup of a projective group and so is projective. On the
other hand PGL(PH0(A, 2D)) is affine. This forces the morphism to be constant. It follows
that ψ2D is constant on K(D)0. Because we have assumed that ψ2D is finite, so is K(D)0.
Since K(D) is composed of a finite number of translates of the identity component, K(D)
is finite as needed. We now turn to (1) ⇒ (3). Take D ample and a ∈ A with a /∈ D.
Consider a+G(D) = V . I claim that V ∩D = ∅. Towards a contradiction set x ∈ V ∩D.
Then x = a+g for some g ∈ G(D). a = x−g ∈ D−g. Since t∗−g ∗(D) = D as g ∈ G(D) we
have that D − g = D and so a ∈ D which is a contradiction. So V ∩D = ∅. However this
means that (D · V ) = 0. Since D is ample it must be the case that dimV = 0. So G(D) is
finite as needed. So we have shown (1) ⇐⇒ (4) and (1) ⇒ (3) and (4) ⇒ (2) ⇒ (3). It
remains to check (3)⇒ (2) which we omit.

These results are already interesting from a dynamical perspective.

Definition 3.2.11 (Pic0(A) for an abelian varieties.). We define Pic0(A) = {c ∈ Pic(A) :
t∗a(c) = c∀ a ∈ A}.

The key part of this result is (3).

We now give a small application of our intersection theory work on cones.

Proposition 3.2.12 (Classification of Pic0(A). See a.7.3.2 in [24].). Let c ∈ Pic(A) where
A is an abelian variety. Then c ∈ Pic0(A) ⇐⇒ [−1]∗c = −c.

Proof. By 3.2.28 we have that Pic0(A) is precisely the collection of numerically trivial
divisors. Suppose that [−1]∗c = −c. Then we have that

[2]∗c = 2c

by 3.2.5.2. On the other hand, choosing D to be a symmetric and ample divisor we have
that

[2]∗D = 4D

by 3.2.5.2. Consider the action of [2]∗ on N1(A)R. We have just shown that [2]∗ has an
ample eigenvector D. So by 2.1.12 applied to the ample cone in N1(A)R we have that [2]∗

has eigenvalues all of the same modulus. So c ≡num 0 as c is an eigenvalue with a smaller
modulus. We refer to [24] for the reverse inclusion.
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The following will be useful to relate numerical equivalence to other forms of equiva-
lence.

Theorem 3.2.13 (A.7.3.1 in [24]). Let A be an abelian variety and c ∈ Pic(A).

1. The homomorphism Φc : A→ Pic(A) has image in Pic0(A).

2. If nc ∈ Pic0(A) for some n > 0 then c ∈ Pic0(A).

3. If c is ample then Φc is surjective with finite kernel.

In particular, we will later define a relation on A as follows. We say that L ∈ Pic(A) is
algebraically equivalent to OX if L⊗m ∈ Pic0(A) for some m > 0. This forms a subgroup
of Pic(A). By the above this is precisely Pic0(A). On the other hand, this relation can be
shown to be equivalent to being numerically equivalent to 0. In other words, Pic0(A) will
turn out to be precisely the line bundles numerically equivalent to OX .

Definition 3.2.14 (The dual abelian variety). Let A, Â be abelian varieties. We say that
Â is the dual abelian variety if there is a line bundle P on A × Â with the following
properties. For any a ∈ A let ia : Â→ A× Â be the map ia(x) = (a, x). Similarly let define
iâ : A→ A× Â.

1. For any â ∈ Â the morphism

Â→ Pic0(A), â 7→ i∗â(P)

is an isomorphism.

2. For any a ∈ A the morphism

a→ Pic0(Â), a 7→ i∗a(P)

is an isomorphism.

We call P the Poincare class.

Theorem 3.2.15 (Existence of the dual abelian variety. See A.7.3.4 in [24]. ). The dual
abelian variety Â exists and together with P it is unique up to isomorphism. Furthermore
P is even.
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In other words, the Poincare class gives an isomorphism between A and Pic0(A). Thus
if c is an ample class. Then by 3.2.13 we have that Φc : A → Pic0(A) is surjective with
finite kernel, in other words Φc is an isogeny. These types of isogenies are special.

Definition 3.2.16 (Polarization). Let A be an abelian variety. An isogeny Φc : A → Â
induced by an ample divisor is called a polarization. If Φc is an isomorphism we say it is a
principle polarization. If A admits a principal polarization then we say that A is principally
polarized.

This definition will be useful for us once we begin our discussion of the endomorphism
group of an abelian variety.

3.2.1 Picard Schemes and the Albanese variety

Now that we have touched upon abelian varieties, we discuss the Albanese variety, the
Picard scheme, and the connection with numerical equivalence. Given a normal integral
projective variety X we would like to construct an abelian variety Alb(X) and a morphism
α : X → Alb(X) which is universal for maps from X to an abelian variety. In other words,
if g : X → A is a morphism to an abelian variety A from X then there is a unique morphism
g̃ : Alb(X)→ A filling in the following diagram.

X

α
��

g

##

Alb(X)
∃! g̃

// A

Moreover we should have that dim Alb(X) = h1(X,OX) = dimH1(X,OX) and Alb(X) is
dual to Pic0(X) where Pic0(X) is the identity component of Pic(X). In fact, we should
have that

(Pic(X)/Pic0(X))⊗Z Q ∼= N1(X)Q (3.1)

naturally. The connection between the left hand side of 3.1 and the Neron-Severi group
arises as follows. The identity component of Pic(X) can be characterized in terms of an
equivalence relation called algebraic equivalence. Namely Pic0(X) consists of those line
bundles algebraically equivalent to OX . Up to torsion algebraic and numerical equivalence
coincide and we obtain the desired equality. Here we very briefly explain the construction
of the Picard scheme. We eschew the proofs as it would take us to far afield. Our reference
will be [30].

71



Definition 3.2.17 (Absolute Picard Functor). Consider the category of locally Noetherian
schemes over a base scheme S. That is all schemes X → S along with morphisms over S.
Define

PicX(T ) = Pic(XT )

where XT = X ×S T whenever T → S is a locally notherian scheme.

While this definition is natural, it has the problem that this is not a sheaf in the Zariski
topology. Instead, we work with a relative Picard functor.

Definition 3.2.18 (Relative Picard functor). Define

PicX/S(T ) = Pic(XT )/Pic(T )

where Pic(T ) = p∗2(Pic(T )) and p2 : X ×S T → T is the canonical morphism.

To obtain the most general results, once must allow various different topologies to work
in when considering the relative Picard functor. The three main choices are the Zariski
topology, the etale topology and the fppf topology, though we will not explicitly engage
with these notions to any real extent. The main result we are interested in is the following.

Theorem 3.2.19 (Existence of the Picard scheme 4.8 in [30]). Suppose that X → S is
projective Zariski locally over S and is flat with integral geometric fibers. Then PicX/S is
representable in the etale topology.

In particular, take S = Speck and let X/Stob be a projective variety that is geometri-
cally integral. Then we have that PicX/Spec k(idSpeck → Speck) = Pic(X).

Definition 3.2.20 (The connected component of the identity. 5.4 in [30]). Let X/S be
in the situation of 3.2.19. We let Pic0

X/S be the connected component of the identity of
PicX/S.

Theorem 3.2.21 (The connected component of the identity is projective). Let X/S be as
in 3.2.19. Then Pic0

X/S exists and is quasi-projective. If X/S is geometrically normal then

Pic0
X/S is projective and an open and closed subgroup of PicX/S of finite type.

The connected component of the identity can be characterized by an equivalence rela-
tion known as algebraic equivalence.
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Definition 3.2.22 (Algebraic equivalence definition 5.9 [30]). Let X/S be as in 3.2.19.
Let L,N ∈ Pic(X). We say that L is algebraically equivalent to N and write

L ≡alg N

if there are schemes Ti/S for some 1 ≤ n and all 1 ≤ i ≤ n with geometric points si, ti ∈ Ti
with the same residue field along with line bundles Mi on XTi such that

LT1,s1
∼=M1,s1 ,M1,t1

∼=M2,s2 ,M2,t2
∼=M3,s3 ... (3.2)

Mn−1,tn−1
∼=Mn,sn ,Mn,tn

∼= NTn,tn . (3.3)

Proposition 3.2.23. Let X/S be as in 3.2.19. Then Pic0
X/S are those line bundles alge-

braically equivalent to OX .

Our main result is as follows.

Theorem 3.2.24 (The tangent space of the identity. 5.11 and 5.14 in [30] ). Let X/S be
as in 3.2.19. Let T0PicX/S be the tangent space at the identity of PicX/S. Then

T0PicX/S = H1(X,OX).

Furthermore if char(k) = 0 then PicX/S is smooth of dimension dimH1(X,OX).

Corollary 3.2.24.1 (Dimension of Pic0.). Let X/S be as in 3.2.19 and let k be a field of
characteristic 0. Then Pic0

X/S is an abelian variety and dim Pic0
X/S = dimH1(X,OX).

Proof. By 3.2.24 we have that PicX/S is smooth of dimension dimH1(X,OX). Furthermore,
as PicX/S is a group variety it is covered by translates of Pic0

X/S, which by 3.2.21 is open and

closed of finite type. We have that dim PicX/S = dim Pic0
X/S and that Pic0

X/S is smooth.
Since it is projective by 3.2.21 it is an abelian variety by since it is finite type, and so an
algebraic group.

We may now construct the Albanese variety.

Theorem 3.2.25 (The Albanese Variety. 5.25 in [30].). Let X/S be as in 3.2.19 with
k = k with X normal, integral and projective. Set PX = Pic0

X/S an abelian variety.

Set AX = Pic0
P/S the dual variety. Then there is a morphism αX : X → AX with the

property that if b : X → B where B is an abelian variety, then there is a unique morphism
b̂ : AX → B such that b̂ ◦ αX = b. We call AX the Albanese variety of X and write
AX = Alb(X).
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We now consider the torsion elements of PicX/S/Pic0
X/S and the connection to the

Neron-Severi group.

Theorem 3.2.26 (Pic0 torsion coincides with numerical equivalence. 6.3 in [30].). Let
S be the spectrum of an algebraically closed field in characteristic zero. Let L ∈ Pic(X).
Then mL is algebraically equivalent to OX for some m ≥ 1 if and only if L is numerically
equivalent to OX .

Theorem 3.2.27 (Finiteness of torsion. 6.17 in [30]). Let X/S be as in 3.2.26. Then
PicX/S/Pic0

X/S has a finite torsion subgroup.

Putting this all together we have the following.

Corollary 3.2.27.1 (Connection between the Albanese and Picard Groups). Let S be
the spectrum of an algebraically closed field in characteristic zero. Let X/S be a normal,
integral projective variety. Then

(PicX/S(S)/Pic0
X/S(S))⊗Z Q = (Pic(X)/Pic0(X))⊗Z Q ∼= N1(X)Q.

In particular, if Alb(X) = {0} then linear equivalence and numerical equivalence coincide
for Q divisors on X.

We will also need the following which says the dual abelian variety Â constructed earlier
agrees with Pic0

A/k when A is an abelian variety.

Lemma 3.2.28 (Consistency of constructions). Let A be an abelian variety defined over
an algebraically closed field k. Then Pic0

A/k = Â where Â is the dual abelian variety.

Proof. Let Pic0(A) be as in 3.2.11. Then Pic0(A) is a subgroup of Pic(A) and contains
OX . Furthermore, Pic0(A) is connected being an abelian variety itself. Thus Pic0(A) is
the connected component of the identity and so coincides with Pic0

A/k as needed.

3.2.2 The endomorphism ring of an abelian variety.

Definition 3.2.29. Fix two abelian varieties X, Y defined over Q. We let hom(X, Y ) be
the collection of group homomorphisms X → Y and set End(X) = hom(X,X). We let
hom0(X, Y ) = hom(X, Y ) ⊗Z Q and similarly End0(X) = End(X) ⊗Z Q. We note that
End(X)0 is a possibly non-commutative Q-algebra under the usual addition and composition
actions.
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We now define a simple abelian variety. These are abelian varieties with no non-trivial
abelian sub varieties.

Definition 3.2.30 (Simple abelian variety. See corollary 1 of [46].). A simple abelian
variety is an abelian variety whose only abelian sub varieties are {0} and A itself.

Let A,B be abelian varieties and f : A→ B a homomorphism. Then we have a action
by pull-back f ∗ : Pic0(B) → Pic0(A) which gives a canonical morphism f̂ : B̂ → Â. This
morphism is called the dual morphism.

Lemma 3.2.31 (Inverse isogenies. See page 169 in [46].). Let A,B be abelian varieties
and f : A→ B an isogeny. Then there is an isogeny g : B → A such that g ◦ f = [n]A and
f ◦ g = [n]B for some n > 0.

Proof. We sketch the proof. To make this completely rigorous one must develop the theory
of quotients of abelian varieties by finite subgroups which we omit. We have a surjective
endomorphism f : A → B with finite kernel ker(f) = K. Then B ∼= A/K. So we may
replace B with A/K and consider f with the quotient map f(a) = a + K. Since K is a
finite subgroup we can find n > 0 such that n ·K = {0} and K ⊆ ker([nX ]). Then we have
a morphism g : A/K → A given by g(a+K) = na. In fact g is an isogeny as it has a finite
kernel given by ker([n]X)/K and is clearly surjective. So g ◦ f = [nX ]. On the other hand,
we may compute

(f ◦ g)(a+K) = f(na) = na+K = n(a+K) = [n]A/K(a+K).

So that f ◦ g = [n]Y as needed.

Definition 3.2.32 (The category of abelian varieties up to isogeny.). Consider the cate-
gory with objects abelian varieties over a common field k and morphisms given by group
homomorphisms over k. Let X, Y be abelian varieties. We say X is isogenous to Y if there
is an isogeny X → Y . By 3.2.31 we see that this is an equivalence relation.

Theorem 3.2.33 (The decomposition theorem). Let A be an abelian variety defined over
an algebraically closed field k. Then A is isogenous to an abelian variety

s∏
i=1

Anii

where the Ai are simple pairwise non-isogenous abelian varieties. Furthermore, this de-
composition is unique up to isogeny.
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Corollary 3.2.33.1 (Structure of endomorphisms when X is simple. Corollary 2 of [46]).
Let A be an abelian variety defined over an algebraically closed field k which is simple.
Then End0(X) is a division ring.

Proof. Given f : X → X if f is non-zero then its kernel must be finite as X is simple.
Furthermore, the image must be X as otherwise the image would be a non-trivial abelian
subvariety. Thus f is an isogeny. By 3.2.31 we have that there is an isogeny g : X → X
with f ◦ g = [n]X = g ◦ f . Thus 1

n
g is an inverse for f in End(X)0.

We now define an involution on an abelian variety X which will be useful to interpret
the Neron-Severi group of abelian varieties.

Definition 3.2.34 (The Rosati Involution). Let A be an abelian variety defined over Q̄.
Let L ∈ Pic(A) be an ample line bundle. Then we have an isogeny

φL : A→ Â = Pic0(A)

given by
φL(a) = t∗aL− L.

The Rosati involution associated to L is a function

End(X)0 → End(X)0, ϕ 7→ ϕ′ = φ−1
L ◦ ϕ̂ ◦ φL

where ϕ̂ is the dual isogeny.

Proposition 3.2.35 (Properties of the Rosati involution. Page 189-190 [46].). Let A be
an abelian variety defined over Q̄. Let L ∈ Pic(A) be an ample line bundle. The Rosati
involution associated to L has the following properties. Let ϕ, θ ∈ End(X)0.

1. If ϕ ∈ End(X)0, a ∈ Q then (aϕ)′ = aϕ′.

2. (ϕ+ θ)′ = ϕ′ + θ′.

3. ϕθ)′ = θ′ϕ′.

4. (ϕ)′′ = ϕ.

5. We may identify N1(A)Q with the subspace of End0(X) fixed by the Rosati involution.
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It is this last property which will be crucial for us. The idea is as follows. We have a
morphism

(Pic(X))Q → End(X)0, D 7→ φD = φ−1
L ◦ ΦD

where φD : X → Pic0(X) is the morphism φD(x) = t∗xD −D. Notice that if D ∈ Pic0(X)
then t∗aD −D is the trivial line bundle by definition so that this morphism descends to

Φ: (Pic(X)/Pic0(X))Q → End(X)0, D 7→ φD = φ−1
L ◦ φD. (3.4)

If we have an isogeny f : A → A we will be interested in studying the dynamics of f and
so its action on the Neron-Severi group. This can be accomplished as follows.

Theorem 3.2.36. Let A be an abelian variety defined over Q̄. Fix an ample divisor H on
A. Then

1. The image of N1(A)Q is precisely the set of α ∈ End(A)Q with α′ = α. That is the
Neron-Severi space may be identified with the space of endomorphisms fixed by the
Rosati involution.

2. ([28, Lemma 24]) Let f : A→ A be an isogeny and D ∈ N1(A)R. Then

Φf∗D = f ′ ◦ ΦD ◦ f.

Finally, we will need to know something about the structure of endomorphism rings of
abelian varieties. This work is classical. The Rosati involution satisfies good properties,
to the point that a classification theorem exists.

Theorem 3.2.37 ([1], page 201 [46]). Let A be a g-dimensional abelian variety over an
algebraically closed field k with a chosen polarization. Let D = End(A)Q and ′ the associ-
ated Rosati involution. Then D is a simple Q-algebra, of finite dimension with center K a
number field. Set K0 = {x ∈ K : x′ = x}. Then the pair (D, ′) is one of the following four
types. Set

e = [K : Q], e0 = [K0 : Q],m2 = [D : K]

and let ρ be the Picard number of A.

1. K0 = K = D with ′ = idD with K a totally real number field. In this case ρ = e and
e | g.
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2. [D : K] = 4 with K = K0 with K a totally real number field. D is a quaternion algebra
over K. Moreover for each real embedding σ : K ↪→ R we have D⊗K,σR ∼= M2(R) and
D ⊗Q R ∼=

∏
σ : K↪→RM2(R). The isomorphism can be chosen so that the involution

can be taken to be (M1, ...,Me)
′ = (M t

1, ...,M
t
e).

We have ρ = 3e and 2e | g.

3. [D,K] = 4 with K = K0 with K a totally real number field. D is a quaternion algebra
over K. Moreover for each real embedding σ : K ↪→ R we have D ⊗K,σ R ∼= H and
D⊗Q R ∼=

∏
σ : K↪→RH. The isomorphism can be chosen so that the involution can be

taken to be (a1, ..., ae)
′ = (ā1, ..., āe).

We have ρ = e and 2e | g.

4. [D : K] = m2 with K0 is a totally real number field, and K is a totally imaginary
quadratic extension of K0.

D ⊗Q R ∼=
∏

σ : K0↪→R

Mm(C)

The isomorphism can be chosen so that the involution can be taken to be (M1, ...,Me0)′ =
(M̄ t

1, ..., M̄
t
e0

). We have ρ = e0m
2 and e0m

2 | g.

3.3 Projective bundles over elliptic curves

Before developing the theory, we explain our interest. When studying the Kawaguchi-
Silverman conjecture we will be interested in the following situation. Let f : X → X be a
surjective endomorphism of varieties. To study f we study the linear action f ∗ : N1(X)R →
N1(X)R. One situation of interest is the following. Suppose that D is a non-zero nef Q-
divisor and f ∗D = λD where λ is an eigenvalue of largest possible magnitude. It is known
how to study the dynamics of f if κ(D) > 0. So we are interested in the case κ(D) ≤ 0.
Here we leave the case that κ(D) = −∞ untouched and concentrate on the case where
κ(D) = 0. To construct varieties where the above dynamical phenomenon can arise, we
look at a vector bundles an elliptic curve C. Given such a vector bundle say F we have
the projective bundle PF along with a canonical line bundle OPF(1) on PF . We consider
vector bundles on elliptic curves because Atiyah gave a robust classification of these objects,
giving us many tools to work with. Furthermore, by [34] this is the last remaining case
for the Kawaguchi-Silverman conjecture for projective bundles over a 1-dimensional base.
The main results are summarized as below.
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Theorem 3.3.1 (Atiyah [5]). Let C be an elliptic curve defined over Q̄.

1. For each r ≥ 1 there is a unique indecomposable degree 0 rank r vector bundle on
C that has a non-zero global section. We call this vector bundle Fr. Furthermore,
dimH0(C,Fr) = 1 ([5, Theorem 5]).

2. Every indecomposable degree 0 vector bundle of rank r is of the from Fr⊗L for some
unique degree zero line bundle L ([5, Theorem 5]).

3. Fr ⊗ Fs =
⊕

i Fri for some ri ([5, Lemma 18]).

4. detFr = OX ([5, Theorem 5]).

5. Let L be a line bundle of degree 0. Then Fr ⊗Fs⊗L has a global section if and only
if L = OX ([5, Lemma 17]).

6. Fr is self dual ([5, Corollary 1]).

7. Fr = Symr−1F2 ([5, Theorem 9]).

We will be forced to work with these objects explicitly, and now develop how to write
down the transition functions of Fr. This follows the work of Sasha (Alexander) Zotine in
his master’s thesis [62].

3.3.1 Transition Functions of Fr.

Let C be an elliptic curve over Q̄ and Fr the rank r Atiyah Bundle. We describe our
notation for further use.

Notation 3.3.1.1. In this section We take C to be given by an equation x0x
2
2 = x1(x1 −

x0)(x1−λ0x0). Here we take O the origin to be (0 : 0 : 1) because we are using the Legendre
form of the curve. We can take U0 to be the locus where x0 6= 0 and U2 the locus where
x2 6= 0. Then U0, U2 are an open affine cover of C.

Zotines’s idea is to study vector bundles trivialized on U0 and U2. Since we have a good
classification of vector bundles on C due to Atiyah’s classification in [5] this is possible;
there is a unique indecomposable semi-stable degree zero vector bundle of rank r (namely
Fr in 3.3.1) on C with a non-zero global section. Zotine constructs such a vector bundle
which by the classification must be Fr. Then using further results of [5] he reconstructs all
other vector bundles explicitly. The construction of these vector bundles will be through
the study of the order of vanishing of functions at the origin O.
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Lemma 3.3.2 ([62]). Let ν be the valuation at O = (0 : 0 : 1). Set x = x1/x0 and
y = x2/x0.

1. OC(U0 ∩ U2) = k[x, y±1]/(y2 − x(x− 1)(x− λ)).

2. We have that OC(U0) ∼= K[x, y]/(y2− x(x− 1)(x− λ)). Furthermore, if f ∈ OC(U0)
then ν(f) ≤ 0 and ν(f) 6= 1.

3. We have that OC(U2) = K[xy−1, y−1]/(y−1 − xy−1(xy−1 − y−1)(xy−1 − λy−1). Fur-
thermore, OC(U2) is precisely the elements f ∈ OC(U0 ∩ U2) such that ν(f) ≥ 0.

4. OC(U2) ∩ OC(U0) = k.

We have the following element of OC(U0 ∩ U2) that will feature prominently in the
sequel.

Definition 3.3.3. Let ω = x2y−1 ∈ OC(U0 ∩ U2).

Theorem 3.3.4 (Main Result [62]). Let C be an elliptic curve over Q̄ and Fr the rank r
Atiyah bundle on C. Let Ar be the r× r matrix with 1 on the diagonal and ω on the upper
off diagonal. For example, we have

A2 =

[
1 ω
0 1

]
, A3 =

1 ω 0
0 1 ω
0 0 1

 , A4 =


1 ω 0 0
0 1 ω 0
0 0 1 ω
0 0 0 1

 . (3.5)

Then Ar defines transition functions for Fr on the open cover {U0, U2}. In other words
let E ′r be rank r the vector bundle which is trivialized on U0, U2 with transition function Ar.
In other words, Fr is obtained by gluing OrU0

and OrU2
via Ar : (O⊕rU0

) |U0∩U2→ (O⊕rU2
) |U0∩U2.
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Chapter 4

Dynamical Preliminaries

Given a projective varietyX defined over Q (more generally any algebraically closed field) it
is an old question to study the group of symmetries of X, in other words its automorphisms.
One might also generalize this notion and instead of studying Aut(X) one might study
Sur(X). That is, the monoid of all surjective self morphisms X → X. It turns out that
when Sur(X) is strictly larger then Aut(X) we should expect that X has a special geometry.
Evidence for this meta-principle is the following.

Theorem 4.0.1 (Nakayama Classification of surfaces: [47]). Let X be a smooth projective
surface defined over Q. Suppose that f : X → X is a surjective endomorphism that is not
an autmorphism.

1. If κ(X) ≥ 0 then X is an abelian surface, a hyper-elliptic surface, or a minimal
elliptic surface with κ(X) = 1 and χ(OX) = 0.

2. If X is a ruled surface that X is one of the following.

(a) A toric surface.

(b) A P1-bundle over an elliptic curve.

(c) A P1-bundle over a smooth genus g > 1 curve C that is trivialized after a finite
etale base change.

Unfortunately results this strong are not known in higher dimensions. However there is
some work in [18]. The main two examples of varieties that admit surjective endomorphisms
that are not automorphisms are Abelian varieties and toric varieties.
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4.1 Surjective Endomorphisms of projective varieties

Here we begin our development of the theory of surjective endomorphisms of projective
varieties. We begin with an interesting observation.

Proposition 4.1.1 (Dominant morphism of projective varieties is surjective). Let X be
irreducible projective varieties defined over Q. Let f : X → Y be a dominant morphism.
Then f is surjective.

Proof. The morphism f factors as X 7→ Γf 7→ Y where Γf ⊆ X × Y is the graph of f .
Since the morphism X → Γf is a closed immersion and X × Y → Y is closed as X, Y are
projective we have that the image of f is closed. Since f is dominant it must be the whole
of Y . Alternatively, one may use that f must be proper, and therefore is closed.

Lemma 4.1.2. Pushforward of curves is surjective for dominant maps. Let X, Y be an
irreducible projective varieties defined over Q. Let f : X → Y be a dominant morphism.
Then f∗ : N1(X)Q → N1(Y )Q is surjective.

Proof. Let C be a closed curve on Y . Set Z = f−1C. Then we have induced surjective
morphism f : Z → C. It suffices to show that in this situation we have that some curve
C ′ on Z is mapped to C. To this end suppose for a contradiction that every curve C on
Z was contracted. Fix a point z in Z. Then given any other point z′ ∈ Z we can find an
irreducible curve C ′ that contains y, y′. But then f(C ′) = f(y) and so f(z′) = f(z). Since
z′ was arbitrary we have that Z is contracted to a point, which is a contradiction. So any
curve C in Y can be realized as df∗([C

′]) for some irreducible curve C ′ in X. It follows
that the pushforward is surjective.

Proposition 4.1.3. Let X be an irreducible projective varieties defined over Q. Let
f : X → X be a dominant morphism, then f is finite.

Proof. Consider N1(X)Q. By 4.1.2 we have that f∗ is surjective. Since f∗ : N1(X)Q →
N1(X)Q is surjective, it is also injective as N1(X)Q is a finite dimensional vector space. It
follows that f∗ does not contract any curve. In particular, that f has finite fibers. Since f
is a proper morphism with finite fibers it is finite as needed.

Lemma 4.1.4 (exercise 12.22 [21]). Let f : X → Y be a dominant integral endomorphism
between integral schemes. Assume Y is normal. Then f is universally open.
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Proof. We sketch the proof that f is open. Let SpecB be an open affine in X. Since f is
finite it is affine and f−1(SpecB) = SpecA. If f : SpecA → SpecB is open for all SpecB
then f is open. So we may assume that f is induced by f : Spec A → Spec B which is
dominant and finite and A,B are normal domains. So we must prove the statement for a
finite extension of rings B ⊆ A. Let a ∈ A be non-zero. Then we can find b0, ..., bn−1 ∈ B
such that

b0 + b1a+ ...+ bn−1a
n−1 + an = 0

with n minimal. Let p = T n +
∑n−1

i=0 biT
i. We will show that f(D(a)) =

⋃n−1
i=0 D(bi).

To this end let p ∈ D(a). Then f(p) = p ∩ B. Since p ∈ D(a) we have that a /∈ p. If
p ∩B /∈ D(bi) for all i then we have that bi ∈ p for all i. Then

an = −bian−1 − ...− b0 ∈ p.

So an ∈ p which means a ∈ p as p is a prime ideal. So f(p) ∈ D(bi) for some i. On
the other hand, let q ∈

⋃n−1
i=0 D(bi). First suppose that a ∈ B. Then we have that a

satisfies T − a and so by the minimality assumption that p(T ) = T − a. Then a /∈ p and
f−1(DB(a)) = D(a) here DB(a) = {q ∈ SpecB : a /∈ q}.So we have the result. Therefore
we may assume that n > 1 and a /∈ q. Pick j with bj /∈ q. Since f is surjective we can find
a prime ideal p ⊆ A with p∩B = q. If a ∈ p. I claim that a /∈ p. Towards a contradiction
suppose that a ∈ p. Then we have that

an + bn−1a
n−1 + ...+ b0 = 0

so that b0 ∈ p⇒ b0 ∈ q. Then we have that a(an−1 + bn−1a
n−2 + ...+ b1) ∈ q. Since a /∈ q

we have an−1 + bn−1a
n−2 + ...+ b1 ∈ q⇒ b1 ∈ q. Continuing on in this way we obtain that

that b0, ..., bn−1 ∈ q. This contradicts our choice that some bi /∈ q. So p is in D(a) and
so if q ∈

⋃n−1
i=0 D(bi) then we have that if p ∩ B = q then there is some p ∈ SpecA with

p∩B = q. Thus
⋃n−1
i=0 D(bi) ⊆ f(D(a)). As we already showed that

⋃n−1
i=0 D(bi) ⊇ f(D(a))

we have equality.

Given a projective variety X and a surjective endomorphism f : X → X unless X has
some very special geometry, (such as being an abelian variety or a toric variety) it can be
difficult to study both f and X itself. One way to study X is to apply the minimal model
program to X and thus obtain a simpler model of X. This strategy also may be employed
to study f in certain situations. Let us begin with the case of X being a Mori-fiber space.
In other words there is a fibering type contraction π : X → Y where dimY < dimX and
ρ(Y ) = ρ(X)− 1. In this situation, f descends to Y after iterating f .
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Lemma 4.1.5 ([34, Lemma 6.2]). Let π : X → Y be a Mori-fiber space. Suppose that
f : X → X is a surjective endomorphism. Then there is some iterate fn : X → X and
g : Y → Y such that

X
fn
//

π
��

X

π
��

Y g
// Y

commutes.

We see that if X is a Mori-fiber space then, then we can study f up to taking iterates
by studying the induced morphism g : Y → Y . As Y is ”simpler” than X we hope that g
is easier to study then X. The philosophy is that a good way to study f is to study g and
the behavior of f on the fibers of π. To study birational contractions we have the following
two crucial results.

Lemma 4.1.6 ([41, Lemma 3.6]). Let X be a normal Q-factorial log canonical projective
variety and f : X → X a surjective endomorphism. Let R be a KX negative extremal ray
and f∗R = R. Let φR : X → Y be the associated extremal contraction. Then there is a
morphism g : Y → Y such that g ◦ φR = φR ◦ f .

In the above lemma, log canonical is a generalization of a terminal singularity. See
[36] for more on these definitions. This gives us good control over a birational morphism.
However, we also need to know how to control flips. This is provided by the following
crucial result of Zhang with proof suggested by N. Nakayama

Lemma 4.1.7 (Morphism extension property: lemma 6.6 of [43]). Let X be a normal
projective variety with at worst lc singularities. Suppose that f : X → X is a surjective
endomorphism. Let R be a KX negative extremal ray and φR the associated contraction.
If φR : X → Y is of flipping type and ψ : X → X+ is the associated flip, then the induced
rational mapping f+ : X+ 99K X+ extends to a morphism f+ : X+ → X+. Furthermore,
both f and f+ descend to the same morphism on Y .

To use this lemma effectively we employ the following.

Theorem 4.1.8 (Duality between pullbacks and pushforwards). Let X be a normal projec-
tive variety defined over Q. Let f : X → X be a dominant morphism. Then f ∗ : N1(X)R →
N1(X)R is dual to f∗ : NE(X)R → NE(X)R.
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Proof. Recall that N1(X)R is dual to N1(X)R. Thus if γ ∈ N1(X)R then γ is determined
by the function

θγ : N1(X)R → R, θγ(D) = (D · γ).

The dual of f ∗ : N1(X)R → N1(X))R is the mapping

(f ∗)∨ : N1(X)R → N1(X)R, (f
∗)∨(θγ) = θγ ◦ f ∗.

In other words we have that

(f ∗)∨(γ)(D) = θγ(f
∗D) = (f ∗D · γ) = (D · f∗γ)

Thus (f ∗)∨(γ) = f∗γ as needed.

Proposition 4.1.9 (Push forward preserves the closed cone of curves). Let X be a normal
projective variety defined over Q. Let f : X → X be a dominant morphism. Then

γ ∈ NE(X)R ⇐⇒ f∗γ ∈ NE(X)R.

That is we have a linear isomorphism f∗ : NE(X)R → NE(X)R.

Proof. Let γ ∈ NE(X)R. Note that NE(X) = Nef(X)∨R. That is γ ∈ NE(X) ⇐⇒ (γ ·D) ≥
0 for all D ∈ Nef(X)R. Note that f ∗D ∈ Nef(X)R ⇐⇒ D ∈ Nef(X)R. So we have

γ ∈ NE(X)R ⇐⇒ (γ ·D) ≥ 0 ∀ D ∈ Nef(X)R

⇐⇒ (γ · f ∗D) ≥ 0 ∀ D ∈ Nef(X)R

⇐⇒ (f∗γ ·D) ≥ 0 ∀ D ∈ Nef(X)R ⇐⇒ f∗γ ∈ NE(X)R.

Thus if NE(X)R is a finitely generated cone and R is an extremal ray generating an
extremal contraction φR then we have that the linear mapping preserves NE(X). Therefore
for some n > 0 we have that f ◦n∗ (R) = R and so we may obtain a diagram

X
f◦n
//

φR
��

X

φR
��

Y g
// Y

So to study f we wish to study g and proceed by induction. This breaks the dynamical
study of f into three essential ingredients.
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1. Completing the minimal model program. In particular the termination of flips.

2. The study of f under birational extremal contractions.

3. The study of the dynamics of Mori-fiber spaces.

The above program is was is designed to study varieties with finitely generated Nef
cones. However it is possible to extend these ideas to a different setting where non-finitely
generated Nef cones are allowed. These are varieties with an int-amplified endomorphisms.
Note that varieties with an int-amplified endomorphism does not contain all varieties with
finitely generated rational Nef cones; we will exhibit examples of varieties with finitely
generated rational Nef cones that do not admit an int-amplified endomorphism.

4.1.1 Int-amplified endomorphisms

Definition 4.1.10 (Int amplified, amplified and polarized endomorphisms). Let X be a
projective variety defined over Q and f : X → X a surjective endomorphism. We say that
f is a polarized endomorphism if there is some ample Q-Cartier divisor L on X such that
f ∗L ≡lin qL for some q > 1. We say that f is amplified if there is a Q-Cartier divisor L
such that f ∗L− L is ample. We say f is an int-amplified endomorphism if there is some
ample Q-Cartier divisor L with f ∗L− L being ample.

Int amplified endomorphisms can be characterized in terms of their eigenvalues being
large.

Proposition 4.1.11 (Eigenvalues determine int-amplified endomorphisms: Theorem 3.3
[43]). Let X be a projective variety defined over Q. Let f : X → X be a surjective endomor-
phism. Then f is int amplified if and only if f ∗ : N1(X)R → N1(X)R has all eigenvalues
of modulus strictly larger then 1.

From 4.1.11 we see that the composition of int-amplified endomorphisms are int-
amplified. We naturally obtain a sub-monoid of all surjective endomorphisms.

Definition 4.1.12 (The monoid of surjective endomorphisms). Let X be a projective va-
riety defined over Q. We let SEnd(X) be the monoid of surjective endomorphisms of X.
We let IAmp(X) be the collection of int-amplified endomorphisms of X.

The idea behind int-amplified endomorphisms is that if IAmp(X) 6= ∅ then we have a
sub-monoid IAmp(X) ⊆ SEnd(X) that can be used to study SEnd(X). We will see that
the existence of f ∈ IAmp(X) has consequences for the birational geometry of X.
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Definition 4.1.13. Let X be a projective variety defined over Q. Let f : X → X be a
surjective endomorphism. We say that a subset S of X is f−1-periodic if there is some
r ≥ 1 such that f−r(S) = S.

The way we use int-amplified endomorphisms to study the geometry of X is through the
contractible rays of NE(X)R. In particular, the dynamics of an int-amplified endomorphism
of X are a potent tool to study the birational geometry of X. Our first glimpse of this is
the following. We now explain this approach.

Lemma 4.1.14 (Lemma 4.3 [45]). Let X be a projective variety defined over Q. Let
f : X → X be a surjective endomorphism that is int-amplified. Let C be an irreducible
curve on X such that C generates an extremal ray of NE(X)R that is contractible. Let
RC be the contractible extremal ray, and φRC the associated extremal contraction. Let
h ∈ SEnd(X). Then

1. Let E be the exceptional locus of φRC and let E ′ be a component of E. Then hi(E)
and hi(E ′) are f−1-periodic for any i ∈ Z.

2. E and E ′ are h−1-periodic.

So the exceptional locus of a extremal contraction are strongly periodic for an int-
amplified endomorphism. Moreover, the collection of such sub-varieties is finite when f is
a int-amplified.

Lemma 4.1.15 (Corollary 3.8 [45]). Let X be a projective variety defined over Q. Let
f : X → X be a surjective endomorphism that is int-amplified. Then there are finitely
many (not necessarily closed) sub-varieties Z of X such that Z is f−1-periodic. In other
words there are only finitely many sub-varieties Z of X such that f−r(Z) = Z for some
integer r > 0.

Therefore, the number of extremal contractions is finite. Thus the existence of an int-
amplified endomorphism forces X to have finitely many extremal contractions. One now
proves the following.

Theorem 4.1.16 (Meng-Zhang in [45]: Theorem 4.5). Let f : X → X be a surjective
endomorphism of a normal projective variety. Let Rcont be the collection of contractible
extremal rays of X. Then

1. Rcont is a finite set.
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2. The set
R̃cont = {hi(RC) : RC ∈ Rcont, h ∈ SEnd(X), i ∈ Z}

is finite. In fact

R̃cont = R̃cont

0
= {h∗(RC) : RC ∈ Rcont, h ∈ SEnd(X)}.

3. There is a monoid action of SEnd(X) on R̃cont where SEnd(X) acts by permutations.

In the above theorem the construction of R̃cont may seem unmotivated. This is intro-
duced to deal with the fact that if RC is an extremal ray corresponding to a contraction
then while h∗(RC) is still extremal, it may not be a contraction. Thus SEnd(X) cannot

possible act on the set of contractible extremal rays. Thus we introduce this set R̃cont

which by design contains all possible pullbacks and push forwards of contractible extremal
rays and SEnd(X) may act on it.

We sketch the idea of the proof. We have by 4.1.15 that the set of f−1-periodic sub-
varieties are finite. By 4.1.14 we have that the exceptional locus of an extremal contraction
is f−1-invariant. So the number of possible exceptional loci are finite which gives that there

are finitely many extremal contractions. One then shows R̃cont

0
is finite and has the desired

monoid action. Then using the finiteness of

R̃cont

0

one deduces that R̃cont = R̃cont

0
. The key tools in the argument are once again the

finiteness properties of f−1-periodic subsets of a given int-amplified endomorphism.

We now summarize the main properties of varieties with an int-amplified endomor-
phism.

Theorem 4.1.17 (Lemma 5.2 [38]). Let X, Y be a normal projective varieties. Let f : X →
X and g : Y → Y be surjective endomorphisms.

1. If π : X → Y is a surjective endomorphism and f is int-amplified with g ◦ π = π ◦ f
then g is int-amplified.

2. If dimX = dimY and π : X 99K Y is a dominant rational map with g ◦ π = π ◦ f
then g is int-amplified.
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3. If X is Q-factorial and f is int amplified then −KX ≡num E where E is an effective
Q- divisor. In particular if Alb(X) = 0 then κ(−KX) ≥ 0.

Definition 4.1.18 (The equivariant MMP:Meng-Zhang in [45]). Consider a sequence of
dominant rational maps

X1 99K X2 99K X3 · · · 99K Xr (4.1)

such that each Xi is a normal projective variety. Let f = f1 : X1 → X1 be a surjective
endomorphism. We say that 4.1 is f -equivariant if there are surjective endomorphisms
fi : Xi → Xi such that gi ◦ fi+1 = fi ◦ gi for all i, where gi : Xi 99K Xi+1 is the dominant
rational mapping of 4.1.

Theorem 4.1.19 (The equivariant MMP of Meng-Zhang: Theorem [38]). Let X be a
Q-factorial projective variety defined over Q with at worst terminal singularities admitting
an int-amplified endomorphism.

1. There are only finitely many KX negative extremal rays of X. Moreover if f : X → X
is a surjective endomorphism then there is some n ∈ Z>0 such that fn∗ : NE(X)R →
NE(X)R fixes every KX negative extremal ray.Let R be any extremal KX negative
extremal ray with contraction φR : X → YR. Then there is a surjective endomor-
phism gR : YR → YR such that gR ◦ φR = φR ◦ fn. Moreover if R is a flip and ψ+

R

is the associated birational mapping X → X+
R then the induced rational mapping

f+
R : X+

R L99 X
+
R extends to a morphism f+

R : X+
R → X+

R .

2. Then for any surjective morphism f : X → X there is some n and a fn equivariant
MMP for fn g given by

X1 99K X2 99K X3 · · · 99K Xr.

Let gi : Xi 99K Xi+1. Then we have that.

(a) Each gi is a contraction of a KX negative extremal ray.

(b) Xr is a Q-Abelian variety. Note that Xr might be a point. In fact there is
there is a surjective endomorphism h : A → Xr where h is a finite and A is
an abelian variety. Moreover there is a surjective endomorphism w : A → A
such that w ◦ h = fr ◦ w. The existence of h is the definition of Q-Abelian,
the theorem provides that the morphism gr commutes with a morphism of the
covering abelian variety. In fact this holds for any surjective endomorphism of
a Q-Abelian variety.
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3. Let f : X → X be a surjective endomorphism. Let

X1 99K X2 99K X3 · · · 99K Xr

be any MMP where the gi : Xi → Xi+1 are divisorial or fibering contractions. Then
there is some n such that there are surjective endomorphisms fi : Xi → Xi making
the MMP f -equivariant.

4.1.2 Dynamical degrees

To effectively study a surjective endomorphism of X we wish to assign a numerical notion
of complexity of f under iteration. Our such notion will be the following.

Definition 4.1.20 (The dynamical degree.). Let X be a projective variety defined over Q.
Let f : X → X be a dominant morphism. The first dynamical degree of f is defined to be

λ1(f) = lim sup
n→∞

ρ((f ◦n)∗ : N1(X)R → N1(X)R)).

Here ρ((f ◦n)∗) is the spectral radius of the pull back action on N1(X)R.

The dynamical degree can also be defined for arbitrary dominant rational maps provided
that X is normal, this is to make sure that the pull back maps behave as expected. This
definition is often not used in practice. We have the following.

Proposition 4.1.21 (Properties of the dynamical degree: section 1 of [27] and corollary
18 in [29]). Let X be a projective variety defined over Q. Let f : X → X be a dominant
morphism. Then we have the following.

1. Let H be an ample divisor. Then

λ1(f) = lim
n→∞

((fn)∗H ·HdimX−1)
1
n .

2. λ1(f) = ρ(f ∗). That is, the dynamical degree of f is the spectral radius of the action
of f ∗ on N1(X)R.

Often we will attempt to reduce a question about the dynamical degree to a related
variety by some sort of fibration.
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Definition 4.1.22 (The relative dynamical degree. [34, Definition 2.1]). Suppose that we
have a commuting diagram of normal projective varieties defined over Q̄

X
f
//

π
��

X

π
��

Y g
// Y

where f, g, π are all surjective morphisms. The first relative dynamical degree of f with
respect to π is defined to be

λ1(f |π) = lim
n→∞

((fn)∗HX · (π∗HY )dimY ·HdimX−dimY−1
X )

1
n

where HX , HY are ample divisors on X and Y respectively.

One may also look at [34] for further references involving this notion, for example [13].

4.2 Arithmetic dynamics

4.2.1 Canonical height functions and arithmetic degrees.

We have developed a numerical invariant associated to a surjective endomorphism, the first
dynamical degree. The construction of the first dynamical degree is purely geometric, and
could be defined over any algebraically closed field of characteristic zero. We now develop
an arithmetic notion of the complexity of f that depends on arithmetic.

Definition 4.2.1 (The arithmetic degree). Let X be a projective variety defined over Q.
Let f : X → X be a dominant morphism. Fix an ample divisor H on X. Given a point
P ∈ X(Q̄) such that we define the arithmetic degrees

αf (P ) := lim sup
n→∞

h+
H(fn(P ))

1
n

and the lower arithmetic degree

αf (P ) := lim inf
n→∞

h+
H(fn(P ))

1
n

where hH is a choice of height function for H, and h+
H(P ) = max{1, hH(P )}. We think of

the lower and upper arithmetic degrees as arithmetic measures of the complexity of f .
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These arithmetic degrees are much more interesting when f is a dominant rational
mapping rather then a morphism. We have the following.

Proposition 4.2.2 (Properties of the arithmetic degree: [29] and [28]). Let X be a normal
projective variety defined over Q. Let f : X → X be a dominant morphism.

1. The upper and lower arithmetic degrees are independent of the choice of H and the
height function hH .

2. The limit limn→∞ h
+
H(fn(P ))

1
n exists.

3. For all P ∈ X(Q) we have that
αf (P ) = |λ|

for some eigenvalue λ of f ∗ acting on N1(X)R. We can also take λ to be an eigenvalue
of f ∗ acting on Pic(X).

4. αf (P ) ≤ λ1(f).

To study the Kawaguchi-Silverman conjecture we require new tools to deal with how
a height function changes value on an orbit. Recall that height functions provide a way
to turn geometric relationships involving divisors into arithmetic relationships involving
height functions. Given a surjective endomorphism, f : X → X we will study the dynamics
of f through the dynamics of its pull-back action on N1(X)R. The dynamics of a linear
mapping is captured by its eigenvalues, so we are interested in those D such that f ∗D ≡lin

λD or F ∗D ≡num λD for some λ 6= 0. Associated to the divisor D is a height function hD.
However, we have some extra data, namely that D is preserved by f . This allows us to
find a specific height function (rather then just an equivalence class of height functions) to
study.

Theorem 4.2.3 ([29, Theorem 5],[10, Theorem 1.1]). Let X be a normal projective va-
riety and f : X → X a surjective endomorphism. Let D ∈ CDivR(X) and suppose that
f ∗D ≡Num λD for some λ >

√
λ1(f). Then

1. For all P ∈ X(Q̄) the limit ĥD(P ) = limn→∞
hD(fn(P ))

λn
exists for any choice of

height function hD associated to D.

2. We have that ĥD(fn(P )) = λnĥD(P ) and that ĥD = hD +O(
√
h+
X ) where hX is any

ample height on X and h+
X = max{1, hX}. If f ∗D ∼Q λD then ĥD = hD +O(1).
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3. If ĥD(P ) 6= 0 then αf (P ) ≥ λ.

4. If λ = λ1(f) and ĥD(P ) 6= 0 then αf (P ) = λ1(f).

5. If we are working over a number field and D is ample then ĥD(P ) = 0 ⇐⇒ P is
pre-periodic for f .

We will need the following generalization to Jordan blocks, however in certain cases
(4.2.3) is sufficient and is the prototypical result.

Theorem 4.2.4 ([28, Theorem 13]). Let X be a normal projective variety over Q̄ and let
f : X → X be a surjective endomorphism. Let λ ∈ C with | λ |> 1. Let D0, ..., Dp ∈
Div(X)C with f ∗D0 ∼ λD0 and for i ≥ 1 we have f ∗Di ∼ λDi + Di−1. We say that the
Di are in Jordan block form. For each Di choose a Weil height hDi. Then we have the
following.

1. For each i there are canonical height functions ĥDi : X(C) → C such that ĥDi =

hDi +O(1) and ĥDi ◦ f = λĥDi + ĥDi−1
where we set ĥD−1 = 0.

2. We have the following recursive formula.

ĥDk(x) = lim
n→∞

(λ−nhDk(f
n(x))−

k∑
i=1

(
n

i

)
λ−iĥk−i(x)).

To use the above result we follow the ideas of Kawaguchi and Silverman in ([28, Section
4]). We will often use the following notation.

Notation 4.2.4.1. Choose an ample divisor H ∈ Div(X).

1. We define VH to be the vector space spanned by (fn)∗H for all n ≥ 0. By ([28]) this
is a finite dimensional space.

2. Notice that by construction we have a linear mapping f ∗ : VH → VH . We will be
interested in the eigenvalues of this linear mapping.

3. Let λ1, ..., λσ, µσ+1, ..., µd be the eigenvalues of f ∗ |VH ordered such that

| λ1 |≥| λ2 |≥ ... ≥| λσ |> 1 ≥| µσ+1 |≥ ... ≥| µd | .
We define l = lH to be the number of eigenvectors λi such that | λi |= λ1(f). In
particular we have that

| λi |= λ1(f) ⇐⇒ 1 ≤ i ≤ l.
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4. By possibly extending scalars we can find a Jordan form for f ∗ on VH which means
we find divisors D1, ..., Dp with f ∗Di ∼ λiDi or f ∗Di ∼ λiDi + Di−1. We say the
choice of divisors Di is a Jordan form for f ∗.

With this notation we have the following key result.

Theorem 4.2.5 ([28, Section 4]). With the above notation in place let P ∈ X(Q̄).

1. Then αf (P ) = 1 or αf (P ) =| λi |. More precisely suppose that ĥDi(P ) 6= 0 for some

1 ≤ i ≤ σ. Let k be the smallest index with ĥDk(P ) 6= 0. Then αf (P ) =| λk |. On

the other hand if ĥDk(P ) = 0 for all 1 ≤ k ≤ σ then αf (P ) = 1.

2. In particular if | λi |= λ1(f) for i = 1, ..., l and | λl+1 |< λ1(f) then αf (P ) =

λ1(f) ⇐⇒ ĥDi(P ) 6= 0 for some 1 ≤ i ≤ l .

4.2.2 The Kawaguchi-Silverman and sAND conjectures

The Kawaguchi-Silverman conjecture is a type of Ergodic theorem in arithmetic dynamics
that predicts a relationship between two numerical invariants of a dominant rational map.
For simplicity we describe the conjecture for surjective endomorphisms, which is our main
focus. Let f : X → X be a surjective endomorphism of a normal projective variety defined
over Q̄. Associated to f are two basic numerical invariants: The dynamical degree is defined
as

λ1(f) = lim
n→∞

((fn)∗H ·HdimX−1)
1
n , (4.2)

where H is any ample divisor. We think of the dynamical degree as a geometric/spacial
measure of the complexity of f under composition. There is also the arithmetic degree of
a point P ∈ X(Q̄)

αf (P ) = lim
n→∞

h+
X(fn(P ))

1
n , (4.3)

where hX is any ample height function on X and h+
X = max{1, hX(P )}. We think of the

arithmetic degree as a measure of the arithmetic complexity of the f -orbit of P , or a discrete
time dependent measure of the complexity of f . The arithmetic degree measures the rate
of growth of the arithmetic complexity of the forward orbit P, f 1(P ), f 2(P ), ...fn(P ), ... as
n grows arbitrarily large.

We can now state the Kawaguchi-Silverman conjecture for a surjective endomorphism.
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Conjecture 3 ([29]). Let X be a normal projective variety defined over Q̄ and let f : X →
X be a surjective endomorphism. Let P ∈ X(Q̄) and suppose that the orbit Of (P ) :=
{P, f(P ), f 2(P ), ...} is Zariski dense in X. Then αf (P ) = λ1(f).

The conjecture states that when f mixes the point P around X very generally, then
the space notion of complexity equals the time notion of complexity. See [29, 28, 27, 40, 34]
for some recent work in this area.

The requirement of a dense forward orbit makes the conjecture interesting only when
κ(X) ≤ 0. When κ(X) > 0 the existence of the Iitaka fibration over a positive dimensional
base makes the existence of a dense forward orbit impossible. In light of this the follow-
ing conjecture was proposed, which is interesting for all Kodaira dimensions and implies
Conjecture (3).

Conjecture 4 (The sAND conjecture [39, Conjecture 1.4]). Let X be a normal projective
variety and f : X → X a surjective endomorphism. Let

S(X, f,N) = {P ∈ X(K) : [K : Q] ≤ N,αf (P ) < λ1(f)}

Then S(X, f,N) is not Zariski dense in X.

Here sAND means small arithmetic non-density. We immediately obtain the following.

Proposition 4.2.6. Let X be normal projective variety and f : X → X a surjective en-
domorphism. Suppose that conjecture 4 is true for surjective endomorphisms of X. If
P ∈ X(Q) and Of (P ) has a Zariski dense orbit then αf (P ) = λ1(f)

Proof. We have that αf (f
n(P )) = αf (P ) for any n ≥ 0. Towards a contradiction suppose

that αf (P ) < λ1(f). Choose N so that P ∈ K where K is a number field of degree at
most N . Then

Of (P ) ⊆ S(X, f,N) = {Q ∈ X(K) : [K,Q] ≤ N,αf (Q) < λ1(f)}

and consequently S(X, f,N) is Zariski dense in X contradicting our assumption. So
αf (P ) = λ1(f) as needed.

Thus the Kawaguchi-Silverman conjecture is implied by the sAND conjecture. The
sAND stands for small arithmetic degrees are non dense.

We collect various useful results. We will make use of the fact that the set of points in
X with αf (P ) = λ1(f) is Zariski dense.
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Theorem 4.2.7 ([54, Theorem 1.8]). Let X be a projective variety defined over Q̄ and
f : X → X be a surjective endomorphism with λ1(f) > 1. Then the set of points P ∈ X(Q̄)
with αf (P ) = λ1(f) is Zariski dense.

We often will use the following fundamental theorem.

Theorem 4.2.8 ([29, Corollary 27][37, Theorem 1.4]). Let X be a normal projective variety
defined over a number field K and f : X → X a surjective endomorphism. If P ∈ X(K̄)
then αf (P ) ≤ λ1(f).

We have the following key lemma.

Proposition 4.2.9 (Proposition 3.6, [38]). Let X be a normal projective variety and
f : X → X a surjective endomorphism with λ1(f) > 1. Suppose that there is an non-
trivial integral Q-cartier divisor D with f ∗D = λ1(f)D in Pic(X)Q with κ(D) > 0. Then
the Kawaguchi-Silverman conjecture holds for f .

The following result is crucial in the study of surjective morphisms of Mori-fiber spaces.

Theorem 4.2.10 (Product theorem for the relative dynamical degree. [34, Theorem 2.2]).
Suppose that we have a commuting diagram of normal projective varieties defined over Q̄

X
f
//

π
��

X

π
��

Y g
// Y

where f, g, π are all surjective morphisms. Then

λ1(f) = max{λ1(f |π), λ1(g)}

We obtain immediately

Corollary 4.2.10.1 ([34, Definition 2.7]). Suppose that we have a commuting diagram of
normal projective varieties defined over Q̄

X
f
//

π
��

X

π
��

Y g
// Y

where f, g, π are all surjective morphisms. Suppose that the Kawaguchi-Silverman conjec-
ture holds for g and λ1(f) = λ1(g). Then the Kawaguchi-Silverman conjecture holds for
f .
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Proof. Let P ∈ X(Q̄) be a point with dense f -orbit. Then π(P ) has a dense g orbit and
we have that αf (P ) ≥ αg(π(P )) = λ1(g) = λ1(f) by the Kawaguchi-Silverman conjecture
for g and our assumption on the dynamical degree. Since we know that αf (P ) ≤ λ1(f)
the result follows.
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Chapter 5

Good Eigenspaces

Let X be a sufficiently nice projective variety defined over Q. Suppose that f : X → X is a
surjective endomorphism. Let P ∈ X(Q) with Of (P ) being Zariski dense in X. We would
like to estimate the arithmetic degree αf (P ). One way to do this is as follows. Choose
an ample divisor H and form the subspace VH ⊆ Pic(X)C as in 4.2.4.1. After finding a
Jordan form for f ∗ acting on VH we have eigenvalues

λ1, ..., λσ, λσ+1, ..., λρ

with |λi| ≥ |λi+1| and |λi| > 1 for i ≤ σ and |λj| ≤ 1 for j ≥ σ + 1. Associated to each
1 ≤ i ≤ σ there is a canonical height function

ĥDi : X(C)→ C

with the property that
ĥDi(P ) 6= 0⇒ αf (P ) ≥ |λi|.

Thus to obtain lower bounds for the canonical height it suffices to show that certain Jordan
block canonical heights do not vanish when P has a Zariski dense orbit under f . To do this,
we will mostly work with λi such that |λi| = λ1(f) and that λ1(f) ∈ Z. More specifically
we will desire that there is a λ1(f)-Jordan block whose divisors Di are integral. When
the divisors Di are integral and κ(Di) > 0 then the base locus of the Di can be used to
show that ĥDi(P ) 6= 0 when P has a Zariski dense orbit. This approach to estimating
the Kawaguchi-Silverman conjecture is discussed and expounded upon in 5.1. In 5.2.3 we
specialize to the case of varieties with Picard number two and in 5.3 we further specialize
to the case of projective bundles over an elliptic curve.
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5.1 Invariance of base locus

One of our goals in this thesis is to study which divisors D can occur as an integral
eigendivisor D. That is divisors D for which f ∗D ≡lin λD where D is non-zero and
λ = λ1(f) ∈ Z. In this study we encounter the following trichotomy.

1. We could have κ(D) > 0. Then by taking a large multiple of D we have rational
mapping

φ|mD| : X 99K PH0(X,mD)

whose image has dimension 0 < κ(D) ≤ dimX. Let Y be the image of φ|mD|.
Matsuzawa exploited this situation as follows in [38]. Resolve the indeterminacy of
the rational map φ|mD| by blowing up the base locus B of mD. We obtain a diagram

Z

π
��

ϕ

  

X
φ|mD|

// Y

Matsuzawa constructs a finite set S = S(D) ⊆ Y such that

{P ∈ X(Q) : ĥD(P ) = 0} ⊆ π(E) ∪ π(ϕ−1(S))

where E is an exceptional divisor of the blow up. Since S is finite and dimY > 0 we
have that ϕ−1(S) is a proper closed subset of Z. Since π is birational we have that
π(ϕ−1(S)) is a proper closed subset of X. On the other hand as E is exceptional
we have that π(E) is a proper closed subset of X. Finally as X is irreducible we
have that π(E) ∪ π(ϕ−1(S)) is a proper closed subset of X and consequently {P ∈
X(Q) : ĥD(P ) = 0} is not Zariski dense. The Kawaguchi-Silverman conjecture now
follows easily.

2. If κ(D) = 0 then the above method breaks down: In this case dimY = 0 and in fact
is a point as otherwise X would not be irreducible. Thus the mapping φ|mD| extends
to a morphism X → pt and there is no rational map to resolve. One can still blow
up the base scheme of D but we do not have a morphism to a positive dimensional
variety to work with as we do above, so new ideas required.

3. If κ(D) = −∞ then the method completely breaks down as there is no base locus to
work with. As above new ideas are required.

We will concentrate on the second situation in this thesis. We begin by analyzing the base
locus of an eigendivisor and show that it is invariant under f .
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5.1.1 Eigendivisors with κ(D) = 0

Let X be a normal projective variety and suppose that f : X → X is a surjective endo-
morphism. Suppose that we have a divisor D with D not linearly equivalent to 0 with
f ∗D ≡lin λD in the Picard group of X. When κ(D) > 0 we have the following motivating
result described in passing above.

Proposition 5.1.1 ([38, Proposition 3.5]). Let X be a normal projective variety defined
over a number field K. Let f : X → X be a surjective morphism defined over K. Let D
be a Q-divisor on X with f ∗D ≡lin λ1(f)D with λ1(f) > 1 and κ(D) > 0. Fix positive
constants A,B. Then the set {P ∈ X(L) : [L : K] ≤ A, ĥD(P ) ≤ B} is not Zariski dense
in X.

A natural weakening of Proposition 5.1.1 is to allow κ(D) = 0.

Lemma 5.1.2. Let X be a normal projective variety defined over Q̄ and let f : X → X be
a finite surjective endomorphism. Take D be a non-principal integral divisor with f ∗D ≡lin

λD for some integral λ > 1. Suppose that

1. B(D) = Bs(mD) for all m ≥ 1

2. H0(X,mD) ∼= H0(X,D) for all m ≥ 1.

Then f−1(B(D)) = B(D).

Proof.
f ∗ : H0(X,D)→ H0(X,λD)

is an isomorphism. Thus for all s′ ∈ H0(X,λD) we have s′ = f ∗s for some s ∈ H0(X,D).
It follows that P ∈ Bs(λD) = B(D) as needed.

Proposition 5.1.3. Let X be a normal projective variety defined over Q̄ and let f : X → X
be a surjective endomorphism. Let D be a non-principal divisor with f ∗D ∼Q λD for some
integral λ > 1. Suppose that κ(D) = 0. Then f−1(B(D)) = B(D).

Proof. Since f ∗ induces an injection on the group of sections

dimH0(X,D) = dim f ∗H0(X,D) ≤ dimH0(X,λD).

100



As κ(D) = 0 there is some m2 such that

dimH0(X,mD) = dimH0(X,m2D)

for all m ≥ m2. We may choose a large integer m1 ≥ m2 such that

Bs(km1D) = B(D)

for all k ≥ 1 by ([31, 2.1.21]). In conclusion we have verified the needed hypothesis to
apply Lemma 5.1.2.

Corollary 5.1.3.1. Let X be a normal projective variety and let f : X → X be a surjective
endomorphism. Let D be a non-principal divisor with f ∗D ∼Q λD for some integral λ > 1.
Suppose that κ(D) = 0. Then there is a integral multiple D′ of D such that

f−1(Bs(D′)) = Bs(D′).

Suppose that f was not an automorphism. We have f : Bs(D) → Bs(D). Since f is
surjective the restriction is surjective. After possibility iterating f we may assume that f
fixes the components of Bs(D). This puts some restrictions on the possibilities of Bs(D).
For example, it must admit a surjective endomorphism which places structural constraints
on the base locus. For example if Bs(D) is one dimensional then its components must all be
curves of genus 0 or 1. As a general type curve does not admit a surjective endomorphism
that is not an automorphism.

5.1.2 Numerical vs Linear equivalence

A basic problem to be overcome is the following. Let f : X → X be a surjective en-
domorphism of a normal projective variety X. Let λ1(f) = λ > 1. Then f ∗ acting on
N1(X)R has λ as an eigenvalue of maximal absolute value. However, we would like to have
λ as an eigenvalue of largest absolute value when acting on Pic(X)R. This is almost true
in the following sense.

Proposition 5.1.4. Let f : X → X be a surjective endomorphism of a normal projective
variety X. Let λ1(f) = λ > 1. Then there is an eigenvalue λ′ for f ∗ acting on Pic(X)R
such that | λ′ |= λ.

Proof. Choose an ample divisor H for X. Following (4.2.4.1) we have a finite dimensional
vector space VH . Let E1, ..., Ep be a Jordan form for f ∗ after possibly extending scalars.
By Theorem 4.2.7 we can find a point P such that αf (P ) = λ. However by Theorem 4.2.5
we have that λ = αf (P ) =| λi | .
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Corollary 5.1.4.1. Let f : X → X be a surjective endomorphism of a normal projective
variety X. Let λ1(f) = λ > 1. Suppose that λ is the unique eigenvalue of f ∗ acting on
N1(X)R of largest absolute value. Then λ appears as an eigenvalue of f ∗ acting on Pic(X)R

Proof. By Proposition 5.1.4 we have that there is an eigenvalue λ′ of f ∗ acting on Pic(X)R
of absolute value λ. Thus λ′ is an eigenvalue of absolute value λ for the action of f ∗ on
N1(X)R. However by assumption this means have λ′ = λ.

The above situation happens in practice.

Theorem 5.1.5 ([59, Theorem 6.1]). Let f : X → X be a surjective endomorphism of
smooth projective varieties. Assume that λ1(f)2 > λ2(f). Then λ1(f) is a simple eigenvalue
of f ∗ and is the only eigenvalue of modulus greater than

√
λ2(f).

Here λ2(f) is a numerical invariant of f related to how f interacts with codimension 2
sub-varieties. So we should expect that it is often the case that there is a unique eigenvalue
of largest absolute value and thus can find an eigendivisor D for λ1(f) for linear equivalence.

5.1.3 Analysis of Jordan Blocks

Here we begin exploring our earlier results about eigendivisors with κ(D) = 0 in the
context of Kawaguchi-Silverman and the sAND conjectures. Our main tools will be ([28,
Section 4]) and ([54, Theorem 1.8]) Let f : X → X be a surjective endomorphism of a
normal projective variety over a number field K. Suppose that λ1(f) = λ > 1. Choose an
ample divisor H of X and follow (4.2.4.1). Let dH = d = dimVH . After possibly extending
scalars let E1, ..., Ed be divisors such that the Ei are a basis for d and the associated matrix
of f ∗ acting on VH is in Jordan form. Since λ > 1 recall that we have l = lH such that for
i ≤ l we have | λi |= λ and | λl+1 |< λ.

Definition 5.1.6. Using (4.2.4.1) define

Gf,H = G = {P ∈ X(K) : ĥλi(P ) = 0 for 1 ≤ i ≤ l}.

This is the set of points of small height, relevant for the sAND conjecture, see conjecture
4.

Proposition 5.1.7. Let Gf,H be as in Definition 5.1.6. Suppose that Gf,H is not dense.
Then the Kawaguchi-Silverman conjecture holds for f .
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Proof. Let P be a point with a dense f orbit. I claim that P /∈ G. Towards a contradiction
suppose that P ∈ G. We show by induction that fn(P ) ∈ G for all n contradicting that G
is not dense in X. We have that ĥλ1(P ) = 0. This gives

ĥλ1(fn(P )) = λn1 ĥλ1(P ) = 0.

Thus for i ≤ l we may assume that for all j < i and all n we have that ĥλj(f
n(P )) = 0.

By assumption we have
ĥλi(P ) = 0

and so for n > 1 we have

ĥλi(f
n(P )) = λiĥλi(f

n−1(P )) + ĥλi−1
(fn−1(P )) = λiĥλi(f

n−1(P ))

by induction. Since we can repeat this process we have that

ĥλi(f
n(P )) = 0.

Thus if P ∈ G then Of (P ) ⊆ G contradicting that G is not Zariski dense. Thus we have

that if Of (P ) is dense then P /∈ G. Then for some i ≤ l we have that ĥλi(P ) 6= 0. Then
([28, Section 4]) shows that αf (P ) = |λi| = λ as needed completing the proof.

The above lemma shows that the Kawaguchi-Silverman conjecture for morphisms is
true provided one shows that the canonical Jordan block heights cannot cut out a Zariski
dense set. We will use this principle to prove Kawaguchi-Silverman in some cases. We
obtain the following rephrasing of the Kawaguchi-Silverman conjecture.

Corollary 5.1.7.1. The Kawaguchi-Silverman conjecture for an endomorphism f with
λ = λ1(f) > 1 is equivalent to Gf,H contains no dense orbit of f .

Proof. Suppose the Kawaguchi-Silverman conjecture holds for f . If f has no dense forward
orbit then trivially Gf,H contains no forward orbit. Otherwise let Of (P ) be dense. Then
by Kawaguchi-Silverman αf (P ) = λ. By ([28, Section 4]) we have that αf (P ) = λ ⇐⇒
ĥλi(P ) 6= 0 for some 1 ≤ i ≤ l. So in particular, P /∈ Gf,H and so Of (P ) is not contained
in Gf,H . On the other hand suppose that Gf,H contains no dense orbits. Let Of (P ) be
a dense orbit, by assumption Of (P ) is not contained in Gf,H . Arguing as in Proposition

5.1.7 we have that P /∈ Gf,H which means ĥλi(P ) 6= 0 for some 1 ≤ i ≤ l which means
αf (P ) = λ.
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So we may think of the Kawaguchi-Silverman conjecture as a statement about the
structure of the set Gf,H . In fact, this set Gf,H does not depend on H and has been
studied recently in ([39]). Notice that Gf,H = {P ∈ X(K) : αf (P ) < λ}, which is the set
of points of small arithmetic degree. The following is a slight refinement of Theorem 4.2.7.

Proposition 5.1.8. Let f : X → X be an endomorphism of a normal projective variety
over a number field K with λ1(f) > 1. Let H ∈ Div(X) be ample and take VH as in
(4.2.4.1). Let E1, ..., Eρ be a basis of f ∗ |VH in Jordan block form. Define

B = {P ∈ X(K̄) : ĥEi(P ) 6= 0 for some 1 ≤ i ≤ l}.

Then B is dense in X.

Proof. Suppose that B ⊆ Y where Y is closed. Then choose P /∈ Y with αf (P ) = λ1(f)
using Theorem 4.2.7. Since P /∈ B we have that

ĥEi(P ) = 0

for all 1 ≤ i ≤ l. If for some l+ 1 ≤ i ≤ σ we have ĥEi(P ) 6= 0 then by choosing i minimal
and applying ([28, Section 4]) we have

αf (P ) = |λi| < λ

a contradiction. So we have that for all i ≤ σ we have ĥEi(P ) = 0 which by ([28, Section
4]) gives αf (P ) = 1 which is again impossible.

Proposition 5.1.9. Let f : X → X be an endomorphism of a normal projective variety
over a number field K and use the notation of Proposition 5.1.8. Suppose that for some
1 ≤ i ≤ l we have that Ei is a Q-divisor class with κ(Ei) > 0. Then Kawaguchi-Silverman
and the sAND conjecture hold for f .

Proof. The sAND conjecture is the same as Gf,H as defined in Definition 5.1.6 not being
dense. Notice that

Gf,H ⊆ {P ∈ X(K) : ĥEi(P ) = 0}

by the definition of Gf,H . By ([38, Proposition 3.5]) we have that {P ∈ X(K) : ĥEi(P ) = 0}
is not Zariski dense and the result follows.
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5.2 Some applications of eigendivisors with few sec-

tions

5.2.1 The case of a finitely generated nef cone

Let X be a normal projective variety defined over a number field K with a finitely generated
(not necessarily rational) nef cone, and Picard number ρ(X) = ρ. Suppose that f : X → X
is a surjective endomorphism. Suppose that the nef cone of X has rays v1, ..., vs. Since
the action of f ∗ is a linear isomorphism at the level of vector spaces that preserves the nef
cone it preserves the boundary and so acts as a permutation on the rays. After iterating
f ∗ we may assume that f ∗ fixes all of the rays. Since the nef cone is a full dimensional
pointed cone, we have that s ≥ ρ, and our assumption means that

f ∗vi = λivi.

In particular, by taking a linearly independent set of rays say v1, ..., vρ we have that the
action of f ∗ on N1(X)R is diagonalizable over R. Furthermore if µ is any eigenvalue of f ∗

then µ = λi for some i and the µ eigenspace has a basis

{vj : λj = µ}.

To see why let w be any µ eigenvector. Then we can write

w =

ρ∑
i=1

tivi and

ρ∑
i=0

µtivi = µw = f ∗w =

ρ∑
i=1

λitivi

So
µti = λiti

Since some ti 6= 0 we see that λi = µ for some i and that tj 6= 0⇒ λj = µ.

Definition 5.2.1. Let T : V → V be an invertible linear transformation of a finite dimen-
sional real vector space that is diagonalizable. Let C be a full dimensional pointed closed
cone in V with T (C) = C and the rays of V contain a basis of eigenvectors for T . Then
given an eigenvalue λ we say C separates the λ-eigenspace if there exists λ-eigenvectors
v, w with v and w not lying on a common face.

Proposition 5.2.2. Let X be a normal projective variety defined over a number field K
with a finitely generated (not necessarily rational) nef cone. Suppose that we are given a
surjective endomorphism f : X → X. Suppose that f ∗ preserves the rays of the nef cone
Nef(X)R and has positive eigenvalues. (This can always be achieved after iterating f) Then
Nef(X)R separates a λ-eigenspace for some eigenvalue λ of f ∗ if and only if f ∗ is a dilation
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Proof. If f ∗ is a dilation by λ then it certainly separates a λ-eigenspace. Now suppose that
f ∗ separates a λ-eigenspace for some eigenvalue λ. There are λ-eigenvectors v, w that do
not lie on the same face of Nef(X)R. Thus we have that v + w is a λ-eigenvector on the
interior of the nef cone. By Theorem 2.1.12 we have that all eigenvalues of f ∗ have the
same modulus. Since f ∗ has real eigenvalues that are positive, all the eigenvalues coincide
and f is a dilation by λ as needed.

We see that the obstruction to Kawaguchi-Silverman when the nef cone is finitely
generated is that the eigenvectors of f ∗ accumulate on a single facet of the nef cone. The
philosophy is that as the nef cone of a variety gets more complicated, it becomes more
and difficult for an endomorphism to preserve the nef cone unless the endomorphism is
something like a dilation. We make this notion precise in the context of Kawaguchi-
Silverman.

Theorem 5.2.3. Let X be a normal projective variety defined over Q̄. Suppose that X
has a finitely generated nef cone and ρ = ρ(X) is the Picard number of X. Let s be the
number of rays of Nef(X). Let f : X → X be a surjective endomorphism and let t be the
number of distinct eigenvalues of f ∗ and let q be the maximal number of rays in a facet of
Nef(X). If s ≥ tq+ 1 then some iterate fn has (fn)∗ acting by a dilation and in particular
Kawaguchi-Silverman and the sAND conjectures hold for X. In particular if ρ = 3 then if
s ≥ 3(3− 1) + 1 = 7 the conclusion holds.

Proof. After iterating f we may assume that f ∗ fixes the rays of the nef cone and has pos-
itive eigenvalues. Let λ be an eigenvalue of f ∗ acting on N1(X)R. Towards a contradiction
suppose that f ∗ is not acting by a dilation. Suppose that an eigenvalue λ has eigenvector
vλ on a facet F of Nef(X). If λ appears as an eigenvalue of a ray on a different facet F ′ of
Nef(X) we have that λ appears as the eigenvalue of a ray in F ∩F ′, otherwise Proposition
5.2.2 implies that f ∗ acts by a λ dilation contradicting our assumptions. Thus there are at
most q rays that are an eigenvector for λ. Since there are t eigenvalues we have that there
are at most tq rays, a contradiction. If ρ = 3 then a facet is 2 dimensional cone, and thus
has 2 rays. So q = 2 and t ≤ 3.

5.2.2 Varieties with a good eigenspace

We recall the following situation which is the crux of the Kawaguchi-Silverman and sAND
conjecture for varieties admitting an int-amplified endomorphism.
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Definition 5.2.4 ([44]). Let X be an n-dimensional normal Q-factorial projective variety
with at worst klt singularities that admits an int-amplified endomorphism. Let f : X → X
be a surjective endomorphism. The following situation is called case TIRn. We assume
the following conditions.

1. The anti canonical class −KX is nef and not big with κ(X,−KX) = 0.

2. f ∗D = λ1(f)D for some effective irreducible Q-divisor D with D linearly equivalent
to −KX and κ(D) = 0.

3. The support of the ramification divisor of f is D.

4. There is an f -invariant Mori fiber space

X
f
//

φ
��

X

φ
��

Y g
// Y

with λ1(f) > λ1(g).

5. dimX ≥ dimY + 2 ≥ 3.

Question ([44, Question 1.8]). Does case TIRn ever occur?

The interest in this technical case is that it is the remaining obstacle to performing an
f invariant minimal model program to prove the Kawaguchi-Silverman and sAND conjec-
tures. Notice that in this case, it follows that the eigenspace of λ1(f) is 1-dimensional by
the condition λ1(g) < λ1(f).

Theorem 5.2.5 (Theorem 1.7,[44]). Let X be a normal Q-factorial projective variety with
at worst klt singularities that admits an int-amplified endomorphism. If the Kawaguchi-
Silverman conjecture holds for the varieties appearing in case TIRn (perhaps vacuously)
then the Kawaguchi-Silverman conjecture holds for X.

We now give a variant of TIRn that takes into account the possibility of a λ1(f)
eigenspace of dimension greater then 1.

Definition 5.2.6. Let f : X → X be a surjective endomorphism of a normal projective
variety over a number field K with λ = λ1(f) > 1. Let H be an integral eigendivisor and
let VH be as is (4.2.4.1). We say f ∗ |VH has a good eigenspace if f ∗ |VH has the following
properties,
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1. λ is the unique eigenvalue of absolute value λ of f ∗ |VH .

2. All λ Jordan blocks of f ∗ |VH are of multiplicity 1.

3. The Jordan blocks of f ∗ |VH associated to λ can be taken to be integral nef divisor
classes D1, ..., Dl.

4. There is some 1 ≤ i ≤ l such that κ(Di) 6= 0.

The benefit of this definition is that it is relatively simple, but has interesting conse-
quences. It is our hope that the definition will motivate additional research into which
varieties have surjective endomorphisms with a good eigenspace.

Proposition 5.2.7. Assume that every surjective endomorphism f : X → X that satisfies
(1)-(3) of 5.2.6 also satisfies (4) of 5.2.6. Then TIRn does not occur for varieties with
surjective endomorphism.

Proof. Towards a contradiction suppose that case TIRn does occur. In other words suppose
that we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

satisfying the assumptions of 5.2.4. Let H be an ample integral eigendivisor. Let λ′ 6= λ
be an eigenvalue of f ∗ : VH → VH with |λ′| = λ1(f) = λ. Then by 5.2.9 we have that λ′ has
an eigendivisor D ∈ VH that is not numerically trivial. Then we have that f ∗D ≡num λ′D
and so λ′ is also an eigenvalue of f ∗ : N1(X)R → N1(X)R. Since φ is a Mori-Fiber space
we have that

dimN1(Y )R = dimN1(X)R − 1. (5.1)

As λ′ 6= λ and λ is an eigenvalue of f ∗ : N1(X)R → N1(X)R we have that λ′ is an eigenvalue
of g∗ : N1(Y )R → N1(Y )R. Then λ1(g) ≥ |λ′| = λ1(f) contradicting (4) of definition 5.2.4.
Thus λ is the unique eigenvalue of VH of magnitude λ and (1) of 5.2.6 is satisfied. Since
φ is a Mori-fiber space we have that (2) and (3) of 5.2.6 are satisfied because of equation
5.1. Thus by assumption we have that f ∗ |VH has a good eigenspace. Let D be as in 5.2.4
(2). By 5.2.10 we have that D ∈ VH . Thus D itself is a basis for the λ-Jordan block of f ∗

acting on VH . Then by 5.2.6 (4) we have that κ(D) > 0. However this contradicts (2) of
5.2.4. So case TIRn does not occur.
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We see that the existence of a good eigenspace can be seen as an extension of case
TIRn. However, it is potentially more general as the true strength of case TIRn relies on
running a minimal model program for varieties with int-amplified endomorphisms. Yet the
existence of a good eigenspace is potentially useful even when no int-amplified morphisms
are present, and thus the full power of the minimal model program may not be available.

Proposition 5.2.8. Let X be a normal projective variety with finitely generated rational
nef cone. Suppose that for every nef divisor class D in Pic(X)Q there is an integer m ≥ 1
such mD is effective. If f : X → X is a surjective endomorphism, and H is an inte-
gral ample divisor such that f ∗ |VH has a good eigenspace, then the Kawaguchi-Silverman
conjecture holds for f .

Proof. If λ1(f) = 1 the result follows, so assume λ > 1. After iterating f ∗ we may assume
that f ∗ fixes the rays of the nef cone. Furthermore we have that the eigenvalues of f ∗

must be rational and thus integers since they are also algebraic integers. Let D1, ..., Dl be
a basis of eigendivisors associated to λ1(f) for the action of f ∗ |VH . As f ∗ |VH has a good
eigenspace we may take the Di nef and κ(Di) ≥ 0 by our assumption on X. Since f ∗ |VH
has a good eigenspace for some j we have κ(Dj) 6= 0. As κ(Dj) ≥ 0 we have κ(Dj) > 0
and the result follows from Proposition 4.2.9.

The proof of Theorem 5.2.8 illustrates the basic idea behind the assumption of a good
eigenspace. We attempt to put ourselves in a situation where we know κ(Di) ≥ 0 and then
use the good eigenspace assumption to conclude that κ(D) > 0.

Question 1. Let X be a normal projective variety defined over a number field and f : X →
X a surjective endomorphism.

• What conditions on X guarantee that there is an integral ample divisor H such that
f ∗ |VH has a good eigenspace.

• Can one find interesting examples where f has no good eigenspace for any ample
integral H.

• If X has a finitely generated rational nef cone, is it the case that f has a good
eigenspace for some ample integral H.

We now show that one can get information about TIRn from the assumption of having
a good eigenspace. This material may be well known and follows from ([53, Remark 5.9
and 5.10]) in the smooth case, but we provide arguments for completeness as we need to
move beyond the smooth setting.
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Proposition 5.2.9. Let f : X → X be a surjective endomorphism with X a normal pro-
jective variety defined over Q̄ with surjective Albanese map. Suppose that f ∗A ∼R λA for
some non-zero A ∈ Pic0(X)R. Then

λ ≤
√
λ1(f)

Proof. Let π : X → Alb(X) be the projection. Recall that π∗ induces an isomorphism

π∗ : Pic0(Alb(X))→ Pic0(X)

on the level of Z-modules and so also as R-vector spaces. Thus we have that A = π∗B for
some B ∈ Pic0(Alb(X)). We also have a commuting diagram

X
f

//

π
��

X

π
��

Alb(X) g
// Alb(X)

by the universal property of the Albanese variety. Note that the Albanese morphism is
surjective. Thus we have that f ∗π∗B = λπ∗B = π∗g∗B. Since π∗ is an isomorphism on
Pic0 we have that g∗B = λB. We have thus reduced to the case that X is smooth (and in
fact an abelian variety). By ([53, Remarks 5.8 and 5.9]) we have that√

λ1(f) ≥
√
λ1(g) ≥ λ

as needed.

Corollary 5.2.9.1. Let f : X → X be a surjective endomorphism with X a normal projec-
tive variety defined over Q̄ with surjective Albanese map. Suppose that µ is an eigenvalue
of f ∗ acting on Pic(X)R with |µ| >

√
λ1(f). Suppose that D1, D2 ∈ Pic(X)R are non-zero

with f ∗Di ∼R µDi. If D1 ≡Num D2 then we have that D1 ∼R D2

Proof. By assumption we have that D1 = D2 + A0 for some A0 ∈ Pic0(X)R. Then A0 =
D1 − D2. So f ∗A0 = µA0. Since | µ |>

√
λ1(f) we have that A0 = 0 by Proposition

5.2.9.

We now obtain the following technical result that will be needed later.
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Lemma 5.2.10. Let f : X → X be a surjective endomorphism with X a normal projective
variety defined over Q̄ with surjective Albanese map. Suppose that λ1(f) = λ > 1. Assume
the λ-eigenspace of f ∗ acting on N1(X)R is 1 dimensional and that λ appears with multi-
plicity 1 for the action of f ∗ on N1(X)R. Suppose further that there is a unique eigenvalue
of largest possible magnitude for the action on N1(X)R. Suppose that D is a non-zero
element of Pic(X)R with f ∗D ∼R λD. Let H be any integral ample divisor on X and let
VH be as in (4.2.4.1). Then D ∈ VH .

Proof. Let D1, .., Dp be a Jordan form for f ∗ acting on VH after extending scalars. Then
arguing as in Corollary 5.1.4.1 there is some eigenvalue λ′ of f ∗ on VH of magnitude λ.
Since λ′ is also an eigenvalue of f ∗ acting on N1(X)R we have that λ′ = λ by assumption.
Let D′ be a λ-eigenvalue in VH which exists by the above argument. Since λ is real we
may take D′ real and thus have that the numerical class of D′ is a λ-eigenvector for f ∗ on
N1(X)R. Thus aD′ ≡Num D since both are eigenvectors for the action of f ∗ on N1(X)R
and the eigenspace is 1 dimensional. Now Corollary 5.2.9.1 says that aD′ = D and so
D ∈ VH as needed.

The above result tells us that the sub-spaces VH in certain situations have base points,
which tells us that there are strong restrictions on the subspaces VH .

Proposition 5.2.11. Let f : X → X be a surjective endomorphism with X a normal
projective variety defined over Q̄ with surjective Albanese map. Let H be an integral ample
divisor on X and assume the notation of (4.2.4.1). Let λ = λ1(f) > 1. Suppose that
f ∗ acting on N1(X)R has a 1 dimensional eigenspace and a size 1 Jordan block with a
unique eigenvalue of largest size. Then f ∗ acting on VH has a size 1 Jordan block and a 1
dimensional eigenspace for the unique largest eigenvalue.

Proof. After extending scalars to say D1, ..., Dp assume that the action of f ∗ on VH is in
Jordan form. As in Lemma 5.2.10 λ appears as an eigenvalue, and no other eigenvalues
have magnitude λ. Since we are dealing with a real eigenvalue, the Jordan blocks associated
to λ are real. Suppose that D1, ..., Dl is such a Jordan block. I claim that l = 1 and that
all Jordan blocks have multiplicity 1. If not we have f ∗D2 = λD2 + D1 in Pic(X)R and
that D2 = aD1 + A0 for some A0 ∈ Pic0(X)R because there is a unique Jordan block of
size 1 for the action of f ∗ on N1(X)R. Thus Di ≡Num aD1 for some non-zero scalar a. It
follows that f ∗A0 = λD2 + D1 − aλD1 = λA0 + D1. So f ∗A0 − λA0 = D1 which means
D1 ∈ Pic0(X)R and this is a contradiction. So all Jordan blocks have size 1. Now let
D1, ..., Ds be an eigen basis for f ∗ acting on VH . The same argument given earlier implies
that if Di, Dj are λ-eigenvalues then they are numerically scalar multiples of one another,
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and so must be scalar multiples in VH , a contradiction. It follows that f ∗ acting on VH has
1-dimensional λ eigenspace with Jordan blocks of size 1.

Lemma 5.2.12. Let X, Y be normal projective varieties defined over Q̄. Let f : X → X
a surjective endomorphism and suppose that the Albanese morphism is surjective. Suppose
that π : X → Y is a surjective endomorphism, and that we have a commuting diagram

X
f
//

π
��

X

π
��

Y g
// Y

We assume that ρ(X) = ρ(Y ) + 1 and that λ1(f) > λ1(g). Suppose that there is an ample
integral divisor H with f ∗ |VH having a good eigenspace. Then if f ∗D = λ1(f)D in Pic(X)R
for some nef Q-Cartier divisor. Then λ1(f) is an integer and κ(D) 6= 0.

Proof. Since we have assumed that λ1(g) < λ1(f) = λ we have that λ is not a eigenvalue of
g∗ acting on N1(Y )R. Furthermore, there is no eigenvalue of magnitude λ for g∗. Then by
the assumption on the Picard number we have that det f ∗ = λ det g∗. Since det f ∗, det g∗

are integers we have that λ is a rational number and thus an integer. Then we have
that D ∈ VH by Lemma 5.2.10. Since λ has multiplicity 1 for the action of f ∗ on N1(X)R
Proposition 5.2.11 tells us the same holds for f ∗ acting on VH and that this eigenspace is one
dimensional. The assumption that f has a good eigenspace now tells us that κ(D) 6= 0.

Ideally one would then apply Lemma 5.2.12 to case TIRn, where in that case we have
that κ(D) ≥ 0 and the conclusion is then that κ(D) > 0. The following result gives another
illustration of how one might reduce to the good eigenspace case.

Theorem 5.2.13. Let X be a smooth projective variety with Picard number 1 and let E be a
nef vector bundle on X with H0(X,E) 6= 0 such that E is not ample and κ(PE,−KPE) ≥ 0.
Suppose that there is integral ample divisor H such that f ∗ |VH has a good eigenspace. Then
the Kawaguchi-Silverman conjecture holds for X.

Proof. We may assume that the pseudo-effective and nef cones coincide, otherwise we
may iterate f and apply Theorem 2.1.12 to obtain that f ∗ will act by a dilation. Put
L = OPE(1). By assumption L is nef, but not ample. Therefore L generates a ray of
Nef(PE) as N1(PE)R is a 2-dimensional vector space and the nef cone is full dimensional.
Let f : PE → PE be a surjective endomorphism and put π : PE → X for the bundle
projection. After iterating f we may also assume that there is some surjective g : X → X
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with π ◦ f = g ◦ π. We may assume that λ = λ1(f) > λ1(g) ≥ 1 by Corollary 4.2.10.1.
We have that f ∗L ≡Num λL. If we do not have that KX ≡num 0 then either KX is ample
or −KX is ample because X has Picard number 1. If KX is ample, then X is of general
type. It is well known that in this case g is a finite order automorphism. Since a dense
orbit for f implies a dense orbit for g we see that no point of PE has a dense orbit and
the Kawaguchi-Silverman conjecture for X is trivially true. Otherwise we may assume
that −KX is ample and so X is Fano. In this case Alb(X) = 0. Then Alb(PE) = 0
and so f ∗L ∼Q λL. Note that we may assume that VH = N1(X)R. Otherwise VH is one
dimensional and so f ∗ has an ample eigenvector. In which case the Kawaguchi-Silverman
conjecture is true. Since κ(L) ≥ 0 and L spans the λ-eigenspace of f ∗ by assumption we
have that L ∈ VH as VH contains a λ-eigendivisor. By assumption we have that f ∗ |VH
has a good Jordan block and so κ(L) 6= 0. As κ(L) ≥ 0 we have that κ(L) > 0 and
we obtain the Kawaguchi-Silverman conjecture by Proposition 4.2.9. So we may assume
that KX ≡num 0. As κ(−KPE) ≥ 0 we see that −KPE is pseudo-effective. If −KPE is big
then it is also ample as we have assumed the nef cone and pseudo-effective cone coincide.
Therefore we may argue as above to obtain the desired result. Thus we may assume that
−KPE generates a boundary ray of the pseudo-effective cone which we have assumed is the
nef cone. Therefore f ∗(−KPE) ≡Num λ(−KPE). Suppose first that κ(−KPE) > 0. Then
by [44, Proposition 1.6] the Kawaguchi-Silverman conjecture holds for f . Assume that
κ(−KPE) = 0. The adjunction formula tells us that

f ∗(−KPE) = −KPE +R

where R is some effective divisor on X. We now use the argument found in [44, Proposition
9.2 (2)]. By [44, Proposition 6.1] applied to −KPE we have that f−1(supp(−KPE)) =
supp(−KPE). Write −KPE =

∑
i aiDi where the Di are prime divisors and the ai > 0.

Then after iterating f we have that f−1(supp(Di)) = supp(Di). Since Di is a prime divisor
this tells us that f ∗Di = µiDi for some number µi. On the other hand. Since −KPE is not
the pull back of some line bundle on X we have that −KPE ≡Num rL where r is the rank of
E. Thus we have that Di ≡Num biL as L is extremal. Since we have that f ∗Di ≡Num λiDi

we have that each µi = λ. In conclusion we may write −KPE = D where D is some effective
Q-Cartier divisor with f ∗D = λD and κ(D) ≥ 0. As we have assumed the existence of
a good eigenspace we may apply Lemma 5.2.12 to obtain κ(D) 6= 0 and so κ(D) > 0.
Therefore by Proposition 4.2.9 the Kawaguchi-Silverman conjecture follows.

The case of projective bundles over a Fano variety with Picard number one was treated
by different methods in [35].
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5.2.3 The case of Picard number 2

We restrict to the case of a variety with Picard number 2 and prove some basic results.
In addition we will see how the requirement of a good eigenspace arises naturally. For
completeness we prove some easy results in this case which may be well known. An
important fact that we will use repeatedly is that Nef(X)R is finitely generated when
ρ(X) = 2. We remind the reader of our assumptions regarding the singularities of the
sources of contraction morphisms given in Remark 2.3.13; for simplicity, we will always
assume that the source of a contraction morphism has at worst terminal singularities in
this section. When no contraction morphism is present, we will relax these assumptions.

Proposition 5.2.14. Let X be a normal projective variety of Picard number 2. Let
f : X → X be a surjective endomorphism. Suppose that the eigenspace of λ1(f) is 2-
dimensional. Then the Kawaguchi-Silverman Conjecture holds for f .

Proof. Note that f ∗ permutes the boundary of the nef cone of X. So in particular, the
boundary must be eigendivisors. It follows that f ∗ acts diagonally on N1(X)R. In partic-
ular f ∗ has an ample eigendivisor and the result follows.

In fact in the setting of Picard number 2 we may assume that the nef cone and Pseudo-
effective cone coincide.

Proposition 5.2.15. Let X be a normal projective variety of Picard number 2. Suppose
that Nef(X) 6= PEff(X). Let f : X → X be a surjective endomorphism. Then f 2 acts by
a dilation on N1(X)R. In particular Kawaguchi-Silverman and the sAND conjectures hold
for X.

Proof. Since ρ(X) = 2 we may replace f with f 2 and assume that f ∗ fixes the rays of
the nef cone and has positive eigenvalues. As we have assumed that the pseudo-effective
cone PEff(X) is strictly larger then X, there is a boundary ray D of Nef(X) that lies
in the interior of PEff(X). Thus f ∗ has an eigendivisor in the interior of PEff(X) a
full-dimensional pointed cone. By Theorem 2.1.12 we see that f ∗ acts by a dilation as
needed.

From the perspective of the minimal model program Proposition 5.2.15 suggests that it
suffices to consider the varieties which arise at the final stage of the minimal model program.
Keeping in mind Remark 2.3.13 we let X be a projective normal Q-factorial variety with
terminal singularities defined over Q̄ with ρ(X) = 2. Suppose that Nef(X) = PEff(X).
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1. If KX is nef then there are no KX negative extremal contractions and the minimal
model program tells us that X is a minimal model.

2. If KX is not nef then there is at least one KX negative extremal contraction. The
assumption that Nef(X) = PEff(X) tells us that this extremal contraction is of
fibering type. Thus X is a Mori-fiber space.

As we want to deal with integral eigendivisors we need to work with varieties whose
nef cone contains a rational ray on the boundary. The following elementary computation
shows that in the presence of a surjective endomorphism with distinct eigenvalues, the
boundary is rational, or completely irrational. That is, we cannot have an irrational ray
and a rational ray.

Proposition 5.2.16. Let X be a normal projective variety of Picard number 2 defined
over a number field K. Let the eigenvalues of f ∗ acting on N1(X)Q be λ, µ with λ 6= µ.
Suppose that µ is an integer and that µ has an integral eigendivisor in N1(X)Q. Then λ
is an integer and λ has an integral divisor class in N1(X)Q.

Proof. First note that
λµ = deg f ∗ = d ∈ Z

So in particular as µ is an integer, we have that λ is rational. On the other hand, λ is an
algebraic integer, so it is an integer. Now choose an integral ample divisor L on X. Let

1. f ∗L = aL+ bH

2. Set D = uL+ vH and f ∗D = λD.

Then we have that

f ∗(uL+ vH) = uaL+ ub+ µvH = uaL+ (ub+ µv)H = λuL+ λvH

Putting this together gives and using that u 6= 0 by our assumptions gives

ua = λu, ub+ µv = λv

As f ∗ is defined over Z and L,H are integral we have that b is an integer. We have that
the λ eigenspace is given by

uL+
ub

λ− µ
H
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Taking u = λ− µ we obtain an integral λ eigendivisor

(λ− µ)L+ bH

As an aside, this tells us that we can gain some information about X from the existence
of a surjective endomorphism f .

Corollary 5.2.16.1. Let X be a normal projective variety defined over Q̄ with Picard
number 2. Suppose that X admits surjective endomorphism that is not an automorphism.
Then both rays of the nef cone are irrational or both rays are rational.

We have the following simple result.

Proposition 5.2.17. Let X be a normal projective variety defined over a number field K.
Let f : X → X be a surjective endomorphism with λ1(f) = λ > 1. Suppose f ∗Dλ = λDλ

with Dλ a non-trivial divisor class. Suppose f ∗Dµ = µDµ where 0 < µ < 1 and Dλ + Dµ

is ample. Then Kawaguchi-Silverman holds for f .

Proof. By assumption H = Dλ +Dµ is ample. Now let P be a point with a dense forward
orbit. Then since µ < 1 we have that −C < hDµ(fn(P )) < C for some positive constant
C and all n. This follows from

µhDµ(P )− C ′ < hDµ(f(P )) < µhDµ(P ) + C ′

for some C ′ applied iteratively. Now assume for a contradiction that the canonical height
function ĥDλ(P ) = 0. Then we have that the ample height hH is bounded on Of (P ) as

hH(fn(P )) = ĥDλ(fn(P )) + hDµ(fn(P )) = λnĥDλ(P ) + hDµ(fn(P )) < C

Since H is an ample height we have that Of (P ) is a finite set contradicting that the orbit
is dense. The result follows.

Proposition 5.2.18. Let X be a normal projective variety defined over a number field K.
Suppose that X is of Picard number 2. Let f : X → X be a non-int amplified morphism
with λ1(f) not an integer. Then Kawaguchi-Silverman holds for f .
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Proof. After iterating f we may assume that the eigenvalues of f ∗ are positive. Suppose
λ = λ1(f) > 1. If f ∗ is assumed to be non-int amplified with eigenvalues λ, µ then µ ≤ 1.
If µ = 1 then λ is also an integer and the characteristic polynomial for f splits over Z. It
follows that f ∗ is diagonalizable over Q and so f ∗ would have integral eigendivisors. Thus
we have that µ < 1. Let f ∗Dλ = λDλ and f ∗Dµ = µDµ with Dλ, Dµ nef divisor classes
with Dλ + Dµ ample. Then H = Dλ + Dµ is ample. By Proposition 5.2.17 the result
follows.

Suppose now that κ(X) < 0 and λ1(f) = λ > 1. Our strategy here is as follows. Given
a surjective endomorphism we may write

f ∗KX +R = KX

where R is some effective Q-divisor that is supported on on the ramification locus. For
this to make sense we need to assume that X is Q-Cartier at least so the canonical divisor
is a Q-divisor. First suppose that f is etale, then f is unramified and R is trivial. Then
by adjunction f ∗KX = KX . If KX ≡num 0 then KX is nef. On the other hand κ(X) < 0
so we obtain a contradiction to the abundence conjecture. As this is expected to be false
we ignore this case. In other words we are assuming that κ(X) < 0 and KX is not nef.
On the other hand, as KX is not numerically trivial and f ∗KX = KX we have that −KX

is an eigendivisor for f ∗. Since we have have assumed λ1(f) > 1 we have that f ∗ has two
distinct eigenvalues 1 and λ > 1. Furthermore, as f ∗ preserves the nef cone the one 1 and λ
eigenspaces can be generated by nef and not ample eigendivisors. Since f ∗(−KX) = −KX

and KX is assumed to be not nef we may take −KX nef.

Proposition 5.2.19. Let X be a normal projective variety defined over Q̄ that is Q-
factorial with at worst terminal singularities and of Picard number 2. Let κ(X) < 0. Let
f : X → X be an unramified surjection. Assume that KX is not nef. (For example assume
the abundance conjecture) then Kawaguchi Silverman holds for f .

Proof. We may assume that Nef(X) = PEff(X) by Proposition 5.2.15. Since f is unram-
ified we have that the action of f ∗ has two eigenvalues 1 and λ and we may assume that
λ > 1. Since KX is not nef we have that −KX is nef, and since f ∗(−KX) = −KX we may
assume that −KX is not ample, as otherwise f ∗ preserves an element in the interior of the
big cone which by our assumptions is the ample cone which would imply that λ1(f) = 1
in this case. Thus we may assume that −KX is nef but not big. Let Dλ be a numerical
class corresponding to the λ-eigenvalue. Since −KX is nef and X has at wors terminal
singularities we can contract one of the rays of the cone of curves via say φ : X → Y . Since
we cannot contract the ray generated by −KX we have contracted the ray associated to
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Dλ. Since we have assumed that Dλ is not big, the contraction is of fibering type. After
iterating f we obtain a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

where φ : X → Y is a Mori fiber space. In this case Y has Picard number 1 and φ∗H =
Dλ for some ample H ∈ N1(Y )R. It follows that λ1(f) = λ1(g). Furthermore, as the
Kawaguchi-Silverman conjecture is known for varieties of Picard number one we may apply
Corollary 4.2.10.1 to obtain the Kawaguchi-Silverman conjecture for f .

We may now assume that f is not etale. So f ∗KX + R = KX where R is a non-zero
effective R divisor. We deal with the case Alb(X) = 0. In this example we see through
a basic computation how the good eigenspace condition (and thus case TIRn) may arises
naturally.

Proposition 5.2.20. Let X be a normal Q-factorial projective variety defined over a
number field K and ρ(X) = 2, κ(X) < 0,Alb(X) = 0. Let f : X → X be a surjective
ramified endomorphism that is not int-amplified. In other words the eigenvalues of f ∗ are
λ, µ with |µ| ≤ 1. Suppose that f has a good eigenspace. Then the Kawaguchi-Silverman
conjecture is true for f .

Proof. We may iterate f and assume that λ, µ are positive and that the pseudoeffective
and nef cones coincide. Suppose first that KX and R are linearly independent. Write
f ∗R = aKX + bR for some a, b. The matrix of f ∗ with respect to the basis KX , R is then[

1 a
−1 b

]
.

By assumption we have that µ ≤ 1. If µ < 1 then Proposition 5.2.17 tells us that the
Kawaguchi-Silverman conjecture is true for f . So we take µ = 1. Now let H be an ample
divisor and form the subspace VH as in 4.2.4.1. We may assume that VH = Pic(X)Q =
N1(X)Q as otherwise f has an ample eigendivisor. Then b + 1 = λ + 1 and b + a = λ by
taking the trace and determinant of the above matrix. So b = λ and a = 0. So in particular,
the λ-eigenspace contains R. Since R is also nef and the λ eigenspace is 1-dimensional we
have that κ(R) > 0 by the assumption that f has a good eigenspace. By Proposition 4.2.9
the Kawaguchi-Silverman conjecture is true for f . Now suppose that R = aKX for some
a. Since R is effective and KX is not we have that a < 0 or that b(−KX) = R for some
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b > 0. Then −KX is effective and f ∗KX = KX − R = KX + bKX = (b + 1)KX . Thus we
have that f ∗(−KX) = (b + 1)(−KX). Since b + 1 > 1 we have that λ = b + 1. Therefore
as above R generates the λ-eigenspace and we have the same conclusion.

5.3 Projective Bundles over elliptic curves

Projective bundles are one way to construct examples of varieties with Picard number 2.
Therefore, they provide a examples of the varieties studied in 5.2.3. Let X be a smooth
projective variety of Picard number one and let E be a vector bundle on X. The bundle
surjection π : PE → X gives PE the structure of a Mori-fiber space over X. Suppose that
f : PE → PE is a surjective endomorphism. By 4.1.5 after replacing f with fn we may
assume that we have a diagram

PE f
//

π
��

PE
π
��

X g
// X

Then we may attempt to study f through g. First we note that by the product formula
for dynamical degrees 4.2.10 we have that

λ1(f) = max{λ1(f |π), λ1(g)}.

Furthermore, if λ1(f |π) ≤ λ1(g) then λ1(f) = λ1(g) and the Kawaguchi-Silverman conjec-
ture is true by 4.2.10.1. So we are primarily interested in the case that λ1(f |π) > λ1(g). In
this case we have that f ∗ : N1(PE)R → N1(PE)R has a unique λ1(f)-eigendivisor. Let VH
be as in 4.2.4.1. By 5.2.11 we have that VH has a 1-dimensional λ1(f) eigendivisor. On the
other hand as X has Picard number 1 we have that g∗ has an ample integral eigendivisor.
Therefore f ∗ : N1(PE)R → N1(PE)R has integral eigenvalues by 5.2.16. In particular λ1(f)
is an integer. So we are well equipped to study the Kawaguchi-Silverman conjecture from
the point of view of 5.2.6. We will focus on the simplest situation where X is a smooth
projective curve C. In this case C is either P1, an elliptic curve, or a genus g > 1 curve.

Theorem 5.3.1 (Kawaguchi-Silverman for projective bundles over non-elliptic curves:
[34]). If C is a smooth projective curve of genus g 6= 1 then the Kawaguchi-Silverman
conjecture holds for all projective bundles PE → C.

Proof. If g = g(C) = 0 then C = P1. The Kawaguchi-Silverman conjecture for PE → P1

is then proven in [34]. If g > 1 let f : PE → PE be a surjective endomorphism. Then by
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4.1.5 for some n > 0 we have a diagram

PE fn
//

π
��

PE
π
��

C
h
// C

Since C is a genus g > 1 curve it is well known only surjective automorphisms of C are
finite order automorphisms. Therefore, h is a finite order automorphism. Thus f has no
point P with Zariski dense orbit, otherwise fn would have a Zariski dense orbit; if fn has
a point with Zariski dense orbit then h does as well, which is impossible as h is a finite
order automorphism. Thus f has no point with Zariski dense orbit and consequently the
Kawaguchi-Silverman conjecture is trivially true.

We may now specialize to the case of elliptic curves. We first reduce to semi-stable
degree zero vector bundles on elliptic curves using [34]. This allows us to use Atiyah’s
pioneering work on vector bundles on elliptic curves [5]. Using the results of [5] (of which
we remind the reader in 3.3.1) we prove some needed results about these bundles. The
key result is that if f : PE → PE is a surjective endomorphism over an elliptic curve then
f ∗OPE(1) = OPE(d) for some d. This is 5.3.10. Then in 5.3.1 we turn to the Kawaguchi-
Silverman for certain degree zero semi-stable bundles.

The following result is what allows us to reduce to the case semi-stable degree 0 vector
bundles on elliptic curves. For a refresher on semi-stability on vector bundles see [22] and
[32, 6.4.A]. We have the following key result. Recall that on an elliptic curve C defined over
Q there is a unique indecomposable rank r vector bundle of degree zero with a non-zero
global section. We denote this vector bundle by Fr.

Lemma 5.3.2 (Page 3 of [60]). Let E be an indecomposable vector bundle over an elliptic
curve C. Then E is semi-stable. In particular, Fr is semi-stable of degree zero.

Theorem 5.3.3. [34, Corollary 6.8] Let C be a smooth curve. Then the following are
equivalent.

1. The Kawaguchi-Silverman conjecture holds for surjective endomorphisms of projec-
tive bundles PE where E is a vector bundle on C.

2. The Kawaguchi-Silverman conjecture holds for surjective endomorphisms of projec-
tive bundles PE where E is a semi-stable degree 0 vector bundle on C.
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Thus it suffices to consider semi-stable and degree zero vector bundles on C.

Proposition 5.3.4. Let E be a semi-stable degree zero vector bundle on an elliptic curve
C.

1. We may write E =
⊕N

k=0 (Frk ⊗ Lk) where Frk are the rank rk Atiyah bundles and
Lk is a degree zero vector bundle.

2. If E =
⊕N

k=0 (Frk ⊗ Lk) with Li degree zero line bundles with L0 = OC then κ(−KPE) ≥
0.

3. The line bundle OPE(1) is nef but not ample on PE. In other worlds E is a nef but
not ample vector bundle on C.

Proof. As E is semi-stable of degree 0 every sub-sheaf has degree at most 0. Let W0, ...,WN

be the components of E. If degWi < 0 then because degE =
∑N

k=0 degWi = 0 there
must be some Wi with degWi > 0 which would destabilize E. Thus every indecomposable
component is degree zero. It follows from the definition of semi-stable that each irreducible
component is also semi-stable. By Theorem 3.3.1 we have that Wi = Fri ⊗ Li for some
degree 0 line bundle as needed. We now turn to part 2. We have from the Euler exact
sequence that

−KPE = OPE(r)− detπ∗E

where r is the rank of E. Then

H0(PE,−KPE) = H0(PE,OPE(r)⊗ det(E−1))

= H0(C, π∗(OPE(r))⊗ det(H−1)) = H0(C, Symr(E)⊗ det(E−1)).

We have

Symr(E) =
⊕

i0+...+iN=r

N⊗
k=0

Symik(Frk)⊗ L
⊗ik
k

from our assumed decomposition of E =
⊕N

k=0 Frk ⊗ Lk. Therefore

Symr(E)⊗ detE−1 =
⊕

i0+...+iN=r

N⊗
k=0

Symik(Frk)⊗ L
⊗ik
k ⊗ detE−1.

Let j0 = r −N and jk = 1 for k = 1, ..., N . Then
∑N

k=0 jk = r −N +N = r. Therefore

N⊗
k=0

Symjk(Frk)⊗ L
⊗jk
k ⊗ detE−1
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is a direct summand of Symr(E)⊗ detE−1. Since detE =
∑N

k=0 Lk and L0 = OC we have
that

N⊗
k=0

Symjk(Frk)⊗ L
⊗jk
k ⊗ detE−1 =

N⊗
k=0

Symjk(Frk)

since
∑N

k=0 jkLk =
∑N

k=1 jkLk =
∑N

k=1 Lk using L0 = OC and the construction of the jk.

We have shown that
⊗N

k=0 Symjk(Frk) (which has a global section by Proposition 5.3.5) is
a direct summand of Symr(E) ⊗ detE−1. Therefore −KPE has a non-zero global section
and κ(−KPE) ≥ 0 as required. For part (3) note that by [32, 6.2.12] that extensions of nef
vector bundles are nef. We have that there is a canonical short exact sequence

0→ OC → Fr → Fr−1 → 0.

Since F1 = OC we have that F2 is nef being the extension of nef line bundles. By induction
we have that Fr is nef for all r ≥ 2. On the other hand any degree 0 line bundle on a curve
is nef, therefore by [32, 6.2.12] that Fr⊗L is nef for any degree 0 line bundle on C. By [32,
6.2.12] we have that E =

⊕N
k=0 (Frk ⊗ Lk) is nef being a direct sum of nef bundles. We

now argue that E is not ample. By [22, 1.3] we have that E =
⊕N

k=0 (Frk ⊗ Lk) is ample
if and only if deg (Fri ⊗ Li) > 0 for all i. Since deg (Fri ⊗ Li) = 0 we conclude that E is
nef but not ample.

In conclusion we have shown that κ(−KPE) ≥ 0 when E is a semi-stable degree zero
vector bundle on C. Recall that by [44, Theorem 6.2] this is a necessary condition for
PE to have an int-amplified endomorphism. It seems interesting to find cases when this
is sufficient as well. We will see that it is not sufficient. To proceed we will need to work
with the linear action of f ∗ on Pic(PE) without passing to the quotient by Pic0(PE). More
precisely, suppose that we have a diagram

PE f
//

π
��

PE
π
��

C g
// C

We have that Nef(PE) is generated by OPE(1) and π∗H where H is some ample integral
divisor on C by 5.3.4 and the fact that PE has Picard number two. Therefore we have
that

f ∗OPE(1) ≡num λOPE(1) (5.2)
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for some λ ∈ Z. We would like to change numerical equivalence in Equation 5.2 to linear
equivalence. This is because we desire to study f through the Iitaka dimension of its
eigendivisors (and ultimately apply 4.2.9) while the Iitaka dimension is not preserved by
numerical equivalence. Note that 5.2.11 implies that we can always find some nef divisor D
with f ∗D ≡lin λD, we will want to compute κ(D). If D = OPE(1)⊗A for some non-trivial
degree zero divisor A then this computation seems more complicated. However, we will
show that A = OC and thus we will be in the simpler situation of computing κ(OPE(1)).
We now begin proving a series of results that will culminate in 5.3.10.

Proposition 5.3.5. Let C be an elliptic curve defined over Q̄ and let Fr be the rank r
Atiyah bundle on C. Then

Symd(Fr) =
⊕
ri

Fri

for some integers ri.

Proof. Recall that we have a canonical surjection giving rise to an exact sequence

ψ : F⊗dr → Symd(Fr)→ 0.

By Theorem 3.3.1 we have that F⊗dr =
⊕

i Fli for some integers li. The semi-stability of Fri
gives that deg Symd(Fr) ≥ 0. By taking the dual endomorphism we have an exact sequence

0→ (SymdFr)
∗ → (F⊗dr ).

Since we are in characteristic 0 and F ∗r = Fr we have that (SymdFr)
∗ = SymdF ∗r = SymdFr

and (F⊗dr )∗ = F⊗dr . Thus SymdFr is a sub-bundle of F⊗dr . Since F⊗dr is semi-stable of degree
zero (being the tensor product of semi-stable vector bundles) we have that deg SymdFr ≤ 0.
So deg SymdFr = 0, and consequently SymdFr is semi-stable of degree 0. It follows that
each of its summands is also semi-stable of degree zero. From Theorem 3.3.1 we have that

SymdFr =
⊕
j

Frj ⊗ Lj

where Lj is some degree 0 line bundle. Now we have that the sheaf Hom(F,G) ∼= F∨ ⊗G
whenever F,G are vector bundles. On the other hand H0(C,Hom(F,G)) = hom(F,G).
Applying this in our situation gives

hom(F⊗dr , SymdFr) = hom(⊕iFli ,⊕jFrj ⊗ Lj) = ⊕i,j hom(Fli , Frj ⊗ Lj)

Now we have that hom(Fli , Frj ⊗Lj) = H0(C,F ∗li⊗Frj ⊗Lj) = H0(C,Fli⊗Frj ⊗Lj) as the
Atiyah bundle is self dual. Suppose that Lj 6= OC for some j. Then as Lj is of degree 0 we
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have thatH0(Fli⊗Frj⊗Lj) = 0 by Theorem 3.3.1. As ψ : F⊗dr → Symd(Fr)→ 0 arises as an

element of hom(F⊗dr , Symd(Fr)) = H0(C,Hom(F⊗dr , Symd(Fr)) we have a decomposition

ψ =
⊕

ψij

where ψij : Fli → Frj ⊗ Lj. The above computation shows that if Lj0 6= OC for some fixed
j0 then ψij0 = 0 for all i. This contradicts the assumption that ψ is surjective. This is
because locally the image of ψ =

⊕
ψij must generate Frj0 ⊗ Lj0 . If each ψij0 = 0 then

this image is always zero locally, while Frj0 ⊗Lj0 is non-zero locally. So we have that each
Lj = OC and the claim follows.

As a corollary we may extend the above result to direct sums of Atiyah bundles.

Corollary 5.3.5.1. Let C be an elliptic curve defined over Q̄ and let Fr be the rank r
Atiyah bundle on C. Let E =

⊕s
i=1 Fri. Then

Symd(E) =
N⊕
j=1

Fwj

for some integers wj.

Proof. We have that

Symd(
s⊕
i=1

Fri)
∼=

⊕
t1+...+ts=d

s⊗
j=1

Symtj(Frj)

where the ti ≥ 0. Consider t1, . . . , ts ∈ Z≥0 such that t1 + . . . + ts = d By 5.3.5 we have
that Symtj(Frj) =

⊕
gjk
Fgjk . Then we have

s⊗
j=1

Symtj(Frj) =
s⊗
j=1

⊕
gjk

Fgjk


By 3.3.1 we have that the tensor product of two Atiyah bundles is a direct sum of Atiyah
bundles, and so by expanding we have that

s⊗
j=1

Symtj(Frj) =
s⊗
j=1

⊕
gjk

Fgjk

 =
⊕
l

Fvl .

The result now follows by taking the direct sum of all of the above terms.
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Corollary 5.3.5.2. Let C be an elliptic curve defined over a number field. Let E be a
vector bundle on C. Then the Kawaguchi-Silverman conjecture holds for surjective endo-
morphisms of PE that admit a good eigenspace.

Proof. By Theorem 5.3.3 we may assume that E is semi-stable of degree zero. Using
Proposition 5.3.4 we may write E =

⊕N
k=0 Frk ⊗ LK where the Lk are degree zero line

bundles. After twisting by L⊗−1
0 we may assume that L0 = OC . Therefore κ(−PE) ≥ 0 by

Proposition 5.3.4. By Theorem 5.2.13 the Kawaguchi-Silverman conjecture is true for f as
we have assumed the existence of a good eigenspace.

Lemma 5.3.6 (Isogenies preserve the Atiyah bundle. Corollary 2.1 [49]). Let C be an
elliptic curve defined over Q̄. Let g : C → C be an isogeny. Then g∗Fr ∼= Fr where Fr is
the rank r Atiyah bundle.

Lemma 5.3.7 (Pull back by automorphisms preserve exact sequences.). Let C be an
elliptic curve defined over Q̄ and let α be an automorphism of C. Suppose that

0→ E → F → V → 0

is an exact sequence of sheaves on C. Then

0→ α∗E → α∗F → α∗V → 0

is exact.

Proof. Automorphisms are flat and so preserve exact sequences.

Lemma 5.3.8 (Automorphisms preserve degree.). Let C be an elliptic curve defined over
Q̄ and let α be an automorphism of C. If E is semi-stable of degree zero, then so is α∗E.

Proof. α∗ preserves subsheaves by 5.3.7 and preserves degree. So if α∗E has a destabilizing
subsheaf then so does E.

Proposition 5.3.9 (Surjective endomorphisms preserve the Atiyah bundle.). Let C be
an elliptic curve defined over Q̄ and let f : C → C be a surjective endomorphism. Then
f ∗Fr ∼= Fr.

Proof. Any surjective endomorphism of C can be written f = τc ◦ g where g is a homo-
morphism and τc is translation by some element of C by 3.2.2.2. In fact g must be an
isogeny. To see this note that since f is surjective we have that g is surjective. On the
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other hand, since g is surjective and finite its kernel must be finite as well. We have that
τ ∗c Fr is irreducible and semi-stable of degree zero by 5.3.7 and 5.3.8 It also has a non-zero
section because Fr does, and the pull back is an isomorphism on sections. Since τ ∗c Fr is
irreducible, semi-stable of degree zero, with a non-zero section we have by Atiyah’s classifi-
cation Theorem 3.3.1 that τ ∗c Fr

∼= Fr. Then by 5.3.6 we have g∗Fr ∼= Fr as g is an isogeny.
Since f ∗Fr = (τc ◦ g)∗ ∼= g∗τ ∗c Fr we have the result.

Write E =
⊕

i Fri . Recall that the existence of a commutative square

PE f
//

π
��

PE
π
��

C g
// C

(5.3)

is equivalent to the data of a surjective morphism

θ : π∗g∗E → L → 0 (5.4)

where L is a line bundle on PE. This is the content of [23, 7.12]. Given this data we
have that L = f ∗OPE(1). Note that π∗g∗E ∼= π∗E by 5.3.9. On the other hand, given a
surjective endomorphism f : PE → PE there is some n ≥ 1 and a diagram

PE fn
//

π
��

PE
π
��

C g
// C

Therefore, to construct a surjective endomorphism of a projective bundle we may instead
construct a surjection of sheaves

π∗g∗E → L → 0 (5.5)

for some surjective endomorphism g : C → C. By 5.3.4 we have that E is a nef but not
ample vector bundle and the nef cone of PE is generated by OPE(1) and π∗H where H is
any ample line bundle on C. This is because PE has Picard number 2 and OPE(1), π∗H
are two nef but not ample line bundles on PE. It follows that they generate the nef cone.
We then have that f ∗OPE(1) ≡num OPE(λ) for some λ > 0 and f ∗π∗H ≡num dπ∗H for some
integer d > 0. In particular L = OPE(λ) ⊗ π∗A where A is some degree zero line bundle
on C and λ > 0. It turns out that the situation is simplified by assuming that each Li is
trivial.
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Lemma 5.3.10. Let C be an elliptic curve over Q̄. Let E =
⊕s

i=1 Fri. Suppose that we
have a diagram

PE f
//

π
��

PE
π
��

C g
// C

where g is a surjective endomorphism and f ∗OPE(1) = OPE(d)⊗ π∗A where A ∈ Pic0(C).
Then A = OC.

Proof. The surjection
θ : π∗E → OPE(λ)⊗ π∗A→ 0

arises as an element of H0(PF, hom(π∗E,OPE(λ)⊗ π∗A)). Note that

hom(π∗E,OPE(λ)⊗ π∗A) ∼= H0(PE, (π∗E)∨ ⊗OPE(λ)⊗ π∗A).

Since each Fri is self dual we have E∨ ∼= E. Thus we are interested in the global sections
of

π∗

(
s⊕
i=1

Fri ⊗ A

)
⊗OPE(λ).

By the push-pull formula these are the same as

s⊕
i=1

Fri ⊗ A⊗ symλ(E) = A⊗

(
s⊕
i=1

Fri ⊗ symλ(E)

)
. (5.6)

For this to have a non-zero section we must have A = OC by Atiyah’s classification. This
is because by 5.3.5.1 we have

symλ(E) =
t⊕
i=1

Fwi

for some wi. So

Frj ⊗ symλ(E) =
t⊕
i=1

Frj ⊗ Fwi .

By 3.3.1 we have
t⊕
i=1

Frj ⊗ Fwi =
⊕
tp

Ftp
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for some integers tp. So we have that

A⊗

(
s⊕
i=1

Fri ⊗ symλ(E)

)
=
⊕
tp

Ftp ⊗ A

where A is a line bundle of degree 0. For this to have a global section we need Ftp ⊗ A
to have a non-zero global section for some tp. Since A is a degree zero line bundle on
C Atiyah’s classification shows that Etp ⊗ A has a non-zero global section if and only if
A = OC as needed.

Example 6. The argument given here will fail for reducible semi-stable bundles of degree
zero. In the above proof we show that

hom(π∗E,OPE(λ)⊗ π∗A)

does not have a non-zero global section when A 6= OC . For example, let B be a non-trivial
degree zero line bundle on C. Set E = B ⊕ Fr. Then this is a semi stable degree zero
vector bundle. The case of r = 2 is interesting for the following reason. Later we will prove
the Kawaguchi-Silverman conjecture for PFr. Therefore, the only remaining case for rank
3 vector bundles on an elliptic curve is E = B ⊕ F2 where B is some degree 0 line bundle
on C. For simplicity take λ = r = 2. Consider

hom(π∗EOPE(2)⊗ π∗A) = H0(PE, (π∗E)∨ ⊗OPE(2)⊗ π∗A) (5.7)

= H0(C, Sym2(E)⊗ E∨ ⊗ A). (5.8)

We compute

Sym2(B ⊕ F2) = Sym2B ⊕
(
Sym1(B)⊗ Sym1(F2)

)
⊕ Sym2(F2) = B⊗2 ⊕ (B ⊗ F2)⊕ F3.

(B ⊕ F2)∨ = B−1 ⊕ F2.

as Symr−1F2 = Fr by 3.3.1 and Fr is self dual. Then

Sym2(B ⊕ F2)⊗ (B ⊕ F2)

=
(
B⊗2 ⊕ (B ⊗ F2)⊕ F3

)
⊗
(
B−1 ⊕ F2

)
= B ⊕ F2 ⊕

(
B−1 ⊗ F3

)
⊕
(
B⊗2 ⊗ F2

)
⊕
(
B ⊗ F⊗2

2

)
⊕ (F3 ⊗ F2)

Write F⊗2
2 =

⊕
i Fri and F3 ⊗ F2 =

⊕
j Ftj we have

A⊗ Sym2(B ⊕ F2)⊗ (B ⊕ F2)

= (A⊗B)⊕ (A⊗ F2)⊕
(
A⊗B−1 ⊗ F3

)
⊕
(
A⊗B⊗2 ⊗ F2

)
⊕

(
A⊗B ⊗

⊕
i

Fri

)
⊕

(
A⊗

⊕
j

Ftj

)
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Applying Atiyah’s classification we obtain that this has a non-zero global section if and
only if

A ∈ {OC , B,B−1, B−2}. (5.9)

In conclusion we have that if there is a surjective endomorphism f : P (B ⊕ Fr)→ P (B ⊕ Fr)
with f ∗OP(B⊕Fr)(1) ≡num OP(B⊕Fr)(2) then

f ∗OP(B⊕Fr)(1) ≡lin OP(B⊕Fr)(2)⊗ A

where A must satisfy equation 5.9. We will see in the sequel that it would be interesting
to show that A = OC as in 5.3.10.

5.3.1 The Kawaguchi-Silverman conjecture for Atiyah bundles

In this section we will prove the Kawaguchi-Silverman conjecture for the projective bundles
PE where E =

⊕s
i=1 Fri . When E has rank 2 this was proven in [40]. We will then prove

the same result for E = PFr when 2 ≤ r ≤ 4 by different methods. We call these
two different approaches method one and method two. In 5.3.1 we carry out method
one. We begin with the observation that if we can show that κ(OPE(1)) > 0 then the
Kawaguchi-Silverman conjecture will follow. See the discussion below the diagram 5.10
for the details. In 5.3.11 we show that κ(OPE(1)) > 0 when s > 1. This leaves the
case where s = 1 which is more difficult. Interestingly, method one 5.3.1 illustrates that
the vector bundles Fr with r > 2 have different behavior compared to F2. In particular
κ(OPF2(1)) = 0 while κ(OPFr(1)) > 0 when r > 2. Our proof will be inductive in the
following sense. If r ≥ 3 and κ(OPFr(1)) > 0 then this will imply that κ(OPFr+1(1)) > 0.
Because κ(OPF2(1)) = 0 the base case will be of great import. We will use the theory of
Schur functors to decompose the bundles SymdF3. It will be essential that we may use a
result of Atiyah to write F3 = Sym2F2. One reason for this is the following: In general it is
difficult to understand the decomposition of SymmSymnE in a uniform way even when E is
a finite dimensional vector space. According to [61, Page 63] this is because understanding
the iterated symmetric product SymmSymnE is equivalent to understanding the ring of
invariants of SL(E) acting on SymnE which is known to be exceedingly difficult. However,
when n = 2 this problem is tractable which allows us to obtain positive results.

In method two 5.3.1 will study the possible surjective endomorphisms of PFr and prove
the Kawaguchi-Silverman conjecture for r = 2, 3, 4 by explicit methods. In [2] it was proven
that if E is a rank two vector bundle on a smooth projective variety X, then the existence
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of a diagram

PE f
//

π
��

PE
π
��

C g
// C

with f, g surjective and λ1(f |π) > 1 implies that E ∼= L1⊕L2 for some line bundles L1, L2

on X. We will give a new proof of this result for F2, F3, F4 by direct computation. In other
words we will show that if we have a diagram

PFr
f
//

π
��

PFr
π
��

C g
// C

with f, g surjective and r ≤ 4 then λ1(f |π) = 1. This extends [2] in the sense that we
expect that the existence of a surjective endomorphism fn with λ1(fn |π) > 1 to imply that
Fr splits as a direct sum of line bundles. Since Fr does not split as a sum of line bundles we
expect no such surjective mapping to exist. However, previous methods of verifying this
expectation only exist in certain cases and did not apply to PFr when r > 2. As a corollary
we have a different proof of the Kawaguchi-Silverman conjecture for PF2,PF3,PF4. It is
our hope that the techniques developed in method two will allow a full proof for all r ≥ 2
in the future.

To compare and contrast the two approaches we note that each method provides a
genuinely different proof of the Kawaguchi-Silverman conjecture, and provides new in-
formation about vector bundles on an elliptic curve. Suppose that we have a surjective
endomorphism f : PFr → PFr. After iterating f we have a diagram

PFr
fn
//

π
��

PFr
π
��

C g
// C

(5.10)

By 5.3.10 we have that (fn)∗OPFr(1) ≡lin OPFr(λ1(fn |π). If λ1(fn |π) ≤ λ1(g) then by the
product formula for dynamical degrees we have that

λ1(fn) = max{λ1(g), λ1(fn |π)} = λ1(g). (5.11)
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Thus if P has a dense orbit under f then it has a dense orbit under fn and π(P ) has a
dense g orbit. We then have

αfn(P ) ≥ αg(π(P )) = λ1(g) = λ1(fn) = λ1(f)n.

The fundamental inequality for dynamical and arithmetic degrees shows that

αfn(P ) ≤ λ1(fn).

Therefore we obtain that

αf (P )n = αfn(P ) = λ1(fn) = λ1(f)n

and taking nth roots gives αf (P ) = λ1(f) as needed. Therefore we may assume that

λ1(f |π) > λ1(g)

and consequently that (fn)∗OPFr(1) ≡lin λ1(fn)OPFr(1).

The first method relies on showing that dimH0(C, SymdFr) ≥ O(d) when r ≥ 3 where
we use the big O notation. In this case κ(OPFr(1)) > 0. We now appeal to 4.2.9 to
obtain the Kawaguchi-Silverman conjecture. This approach does not apply to F2 since
κ(OPF2(1)) = 0. By contrast method two hopefully applies for all r ≥ 2, though currently
we only have a proof for r = 2, 3, 4. In method two we show that λ1(fn |π) = 1 and so we
always have that λ1(fn) = λ1(g) and the analysis described after equation 5.11 applies. In
conclusion method one gives us information about the rate of growth of the sections of the
vector bundles SymdFr in terms of d while method two shows that λ1(fn) = λ1(g), and so
we may prove the Kawaguchi-Silverman conjecture independent of any knowledge about
κ(OPFr(1)).

Theorem 5.3.11 (The reducible case). Let C be an elliptic curve defined over Q̄. Let
E =

⊕s
i=1 Fri where s > 1. Then κ(OPE(1)) ≥ s− 1.

Proof. Let r = rank(E) =
∑s

j=1 rj. Given a vector~i ∈ Zs we let i1, ..., is be the coordinates

of ~i. Let Id = {~i ∈ Zs≥0 :
∑s

j=1 ij = d} We have that H0(PE,OPE(d)) = H0(C, Symd(E)).
On the other hand we have

Symd(
s⊕
i=1

Fri) =
⊕
~i∈Id

s⊗
j=1

Symij(Fri) =
⊕
~i∈Id

(⊕
t

Fr~i,t

)
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for some integers r~i,t. Note that for ~i ∈ Id

dimH0(C,
s⊗
j=1

Symij(Frj)) = dimH0(C,
⊕
t

Fr~i,t) ≥ 1.

We conclude that
dimH0(C, Symd(E)) ≥ #Id.

On the other hand, #Id is the number of distinct integral solutions to x1 + ... + xs = d
with xi ≥ 0. There are precisely(

s+ d− 1

s− 1

)
=

(s+ d− 1)(s+ d− 2)...(d+ 1)

(s− 1)!

solutions to x1 + ...+ xs = d with xi ≥ 0. We have(
s+ d− 1

s− 1

)
=

(s+ d− 1)(s+ d− 2)...(d+ 1)

(s− 1)!
=

s−1∏
i=1

d+ s− i
s− i

≥ ds−1

(s− 1)!
.

So

dimH0(PE,OPE(d)) = dimH0(C, SymdE) ≥ ds−1

(s− 1)!

which means κ(OPE(1)) ≥ s− 1 as needed.

Corollary 5.3.11.1. Let C be an elliptic curve defined over Q̄. Let E =
⊕s

i=1 Fri where
s > 1. Then the Kawaguchi-Silverman conjecture holds for PE. In particular, PE has a
good eigenspace.

Proof. Let f : PE → PE be a surjective endomorphism. After replacing f with some fn

we may assume that we have a diagram

PE f
//

π
��

PE
π
��

C g
// C

where g is a surjective endomorphism. By 5.3.10 we have that f ∗OPE(1) ≡lin OPE(λ). So
the eigendivisors of f ∗ correspond to O(1), π∗H where H is some ample divisor on C. If
λ1(f) = λ1(g) then the Kawaguchi-Silverman conjecture is true for f by 4.2.10.1. we may
assume that λ1(f) = λ and that OPE(1) is a λ1(f)-eigendivisor for f ∗. By 5.3.11 we have
that κ(OPE(1)) > 0 and so by 4.2.9 the Kawaguchi-Silverman conjecture holds for f . We
have that f has a good eigenspace because either OPE(1) generates a λ1(f)-eigenspace or
π∗H does and in both of these cases we have positive Iitaka dimension.
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Method one: Using Schur functors

In this section we set E = Fr when r ≥ 2. First take r = 2. Then given a surjective
endomorphism f : PF2 → PF2 we have that f ∗(OPF2(1)) = OPF2(λ) by 5.3.10. Then we
have that

H0(PF2,OPE(d)) = H0(C, SymdF2) = H0(C,Fd+1)

by 3.3.1. Since we know that dimH0(C,Fd+1) = 1 we obtain that κ(OPF2(1)) = 0. This
suggests that PFr for r > 1 may give interesting dynamics because at a first glance it
may seem plausible that κ(OPFr(1)) = 0 for all r ≥ 1. However further thought suggests
that this is not the case. To compute H0(PFr,OPFr(d)) we must compute SymdFr =
Symd(Symr−1F2). The desire to understand an expression of the form

Symn(SymmV )

for some linear algebraic object V is an old one related to classical invariant theory, and
remains a difficult problem in full generality. However, we expect a plethysm to govern
how such an expression can be simplified. Precisely, representation theory suggest that we
should have a decomposition

Symd(Symr−1F2) =
⊕
µ

Sµ(F2)⊗Md,r−1,µ

where Sµ is a Schur functor. For example, the functors Symd(•) and ∧d(•) are Schur
functors. In general, for any vector bundle F we have a canonical and functorial injection
of vector bundles

0→ Sµ(F )→ F⊗n

for some n. Since Fr is self dual will mean that Sµ(Fr) is also self dual. The existence of
the above injection combined with the fact that Sµ(Fr) is self dual will then imply that we
have a decomposition

Sµ(Fr) =
t⊕
i=1

Fwi

for some Atiyah bundles. Thus for each index µ we expect that dimH0(C, Sµ(Fr)) > 0
and so the dimension of the global sections of Symd(Symr−1F2) will be governed by the
decomposition

⊕
µ Sµ(F2)⊗Md,r−1,µ . In particular, in order for κ(OPFr(1)) = 0, we require

that the decomposition

Symd(Symr−1F2) =
⊕
µ

Sµ(F2)⊗Md,r−1,µ
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must have a bounded number of non-zero factors µ that is independent of d. We show that
this is not the case.

Definition 5.3.12 (Schur Functors). Let V be a k-dimensional vector space and λ a
partition of n for some integer n ≥ 1. That is λ is an ordered list of positive integers
λ1 ≥ λ2 ≥ ... ≥ λk ≥ 1 with |λ| :=

∑k
i=1 λi = n. The Young-Tableaux associated to λ is an

array of n squares where the first row has λ1 squares, the second has λ2 squares and so on.
We label the squares 1, ..., n writing left to right row by row. Now let R be any commutative
ring with unity and E a finite rank free bundle on R. By [61, 2.1] there is a free R-module
Sλ(E) which is naturally in a functorial way a GL(E)-module. Now let X be a smooth
projective variety defined over Q and E a rank r vector bundle on X. Let {Uα} be an open
affine cover trivializing E. Set Uαβ = Uα ∩ Uβ. We have transition functions

ϕαβ : O⊕rUαβ → O
⊕r
Uαβ

with ϕαβ ∈ GL(O⊕rUαβ). As the construction of Schur functors is functorial we have transi-
tion functions

Sλ(ϕαβ) : Sλ(O⊕rUαβ)→ Sλ(O⊕rUαβ)

with Sλ(ϕαβ) ∈ GL(O⊕Nr,λUαβ
). We thus obtain a vector bundle Sλ(E) on X which is Sλ(OUα)

on the affine open Uα.

Remark. Because the Schur functor Sλ is functorial, the above definition is independent
of the choice of affine open cover in 5.3.12 in the sense that a different cover will give an
isomorphic vector bundle.

It is a well known folklore result that any functorial relationship among Schur functors
is preserved in the setting of vector bundles. We verify the relation that will be needed for
us. Recall the following definition of the conjugate or dual partition.

Definition 5.3.13 (Conjugate partition). To do this we use the notion of a dual partition.
We define a partition λ∗ by the rule

λ∗i = #{1 ≤ j ≤ k : λj ≥ i}.

This is the partition obtained by reflecting the Young diagram of λ along the line y = −x.

Lemma 5.3.14. Let C be a smooth elliptic curve. Then

SymdSym2(F2) =
⊕

|λ|=2d,λi≤2 and λ∗i is even for all i

Sλ(F2).
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Proof. By the proof of [61, 2.3.8] we have an equality

SymdSym2(E) =
⊕

|λ|=2d, and λ∗i is even for all i

Sλ(E).

over any commutative ring R. Taking R to be the function field of C allows us to identify
SymdSym2(O⊕2

Uαβ
) with

⊕
|λ|=2d, and λ∗i is even for all i Sλ(O

⊕2
Uαβ

) inside the function field of C.
In other words the isomorphisms

θαβ : SymdSym2(O⊕2
Uαβ

)→
⊕

|λ|=2d, and λ∗i is even for all i

Sλ(O⊕2
Uαβ

)

are all compatible because they can be taken to be an equality. Therefore these isomor-
phisms glue together to give an isomorphism

SymdSym2(F2) ∼=
⊕

|λ|=2d, and λ∗i is even for all i

Sλ(F2)

as needed. Now notice that the rank of Sλ(F ) is the dimension of Sλ(F (p)) where F (p)
is any geometric fiber of F . This is because locally on an affine open U we have that
Sλ(F ) = Sλ(O⊕rank F

U ). It suffices to now show that if V is a two dimensional vector space
and λ is a partition of 2d with λ∗i even for all i that if some λi > 2 then Sλ(V ) = 0. Recall
that by [61, 2.1.4] that a basis of Sλ(V ) is given by all standard Young tableau of shape
λ on [1, 2]. Recall that a standard Young tableau of shape λ on [1, 2] is a labeling of the
squares of the Young tableau of λ with integers 1, 2 such that across rows (left to right)
the numbers are increasing and down columns the numbers are non-decreasing. If some
λi > 2 then there is no way to label the ith row of the Young tableau associated to λ left to
right with 1, 2 that gives an increasing sequence. In particular Sλ(V ) has basis the empty
set and so Sλ(V ) = 0 as claimed. Thus we obtain that

SymdSym2(F2) =
⊕

|λ|=2d,λi≤2 and λ∗i is even for all i

Sλ(F2)

as needed.

We will also need the following.

Lemma 5.3.15. Let C be an elliptic curve defined over Q. Fix an integer d ≥ 1. Let λ be
a partition with |λ| = 2d, λi ≤ 2 and λ∗i is even for all i. Then the following are true.
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1. rank Sλ(F2) ≥ 1.

2. Sλ(F2) =
⊕

j Frj for some integers rj. In other words, Sλ(F2) is a direct sum of
Atiyah bundles.

Proof. To show that Sλ(F2) has rank at least one it suffices to show that there is at least
one standard Young tableau of shape λ on [1, 2] for any partition λ with |λ| = 2d, λi ≤
2 and λ∗i is even for all i. This is because these tableau index a basis for Sλ(V ) by [61,
2.1.4]. Since each λi ≤ 2 we may label every row with two boxes as (1, 2) and every single
box 1. This gives a standard Young tableau and so Sλ(V ) has rank at least one. For part
(2) note that by 5.3.14 we have a decomposition

SymdSym2(F2) =
⊕

|λ|=2d,λi≤2 and λ∗i is even for all i

Sλ(F2).

Therefore for any Sλ(F2) appearing in this decomposition we have that each indecompos-
able summand of Sλ(F2) is an indecomposable summand of SymdSym2(F2). By two ap-
plications of 5.3.5.1 we see that SymdSym2(F2) =

⊕
j Flj for some Atiyah bundles Flj . As

each Flj is indecomposable we have that every indecomposable summand of SymdSym2(F2)
is an Atiyah bundle Frj for some rj. We conclude that Sλ(F2) =

⊕
j Frj for some rj by the

uniqueness of the decomposition into indecomposable summands.

We now combine these results to obtain the following key result.

Corollary 5.3.15.1. Let C be an elliptic curve defined over Q. Fix an integer d ≥ 2.
Then

dimH0(C, Symd(F3)) ≥ d− 1

2
.

In particular, κ(OPF3(1)) > 0.

Proof. By 5.3.14 we may write

SymdSym2(F2) =
⊕

|λ|=2d,λi≤2 and λ∗i is even for all i

Sλ(F2).

By 5.3.15 we have that for all such λ appearing in the above decomposition that we have

Sλ(F2) =
s⊕
j=1

Frj
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where s ≥ 1. Therefore dimH0(C, Sλ(F2)) ≥ 1. In other words, we have a lower bound

dimH0(C, SymdSym2(F2)) ≥ #{λ a partition of 2d : λi ≤ 2 and λ∗i is even for all i}.

Put S = {λ a partition of 2d : λi ≤ 2 and λ∗i is even for all i}. If λ ∈ S the condition that
λ∗i is even means that every column of the Young diagram associated to λ has an even
number of boxes. This is because the Young diagram of λ∗ is the reflection of the Young
diagram of λ reflected through the line y = −x. So columns of λ become rows of the dual
partition λ∗. As each λi ≤ 2 we have that λ is a sequence of say w rows of the form ��
and p rows of the form �. In other words, λ is a collection of w rows which consist of two
boxes and p rows that consist of one box such that 2w + p = 2d. Since λ has at most two
columns that must have an even number of boxes this data must satisfy that w is even and

p + w is also even. We now check directly that there are at least
d− 1

2
such partitions.

First let d be even. Then for each even integer w such that 0 ≤ w ≤ d let λw = (2w, 12d−2w)
be the partition with first w parts 2 and all remaining parts 1. This gives λw ∈ S. So

there are at least
d

2
+ 1 elements in S when d is even. When d is odd for each even integer

0 ≤ w ≤ d− 1 we have a partition (2w, 12d−2w) and λw ∈ S So there are at least
d− 1

2
+ 1

such partitions. We now have

dimH0(C, SymdSym2(F2)) ≥ #{λ a partition of 2d : λi ≤ 2 and λ∗i is even for all i}
(5.12)

≥ d− 1

2
. (5.13)

Finally we have that

dimH0(PF3,OPF3(d)) = dimH0(C, SymdF3).

As SymdF3 = SymdSym2F2 by 3.3.1 we have that

dimH0(PF3,OPF3(d)) = dimH0(C, SymdSym2(F2)) ≥ d− 1

2

This implies that κ(OPF3(1)) > 0 as needed.

Theorem 5.3.16 (dimH0(C, SymdFr) grows at least linearly in d.). Let C be an elliptic
curve defined over Q̄. Let r ≥ 3. Then

dimH0(C, Symd(Fr)) ≥
d− 1

2
.
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Proof. We induct on r ≥ 3. The base case is 5.3.15.1.

dimH0(C, Symd(F3)) = dimH0(C, Sym2(Symd(F2)) ≥ d− 1

2
.

Now suppose that the claim is true for some r > 3. We have a canonical exact sequence

0→ OC → Fr → Fr−1 → 0

constructed by Atiyah. Applying [57, 01CF] there is an exact sequence

Symd−1(Fr)→ Symd(Fr)→ Symd(Fr−1)→ 0.

Let Gr,d = ker(Symd(Fr)→ Symd(Fr−1)). Then we have a short exact sequence

0→ Gr,d → Symd(Fr)→ Symd(Fr−1)→ 0.

Taking the dual sequence gives

0→ (SymdFr−1)∨ → (SymdFr)
∨)→ G∨r,d → 0.

Since we are in characteristic zero we have (SymdFr)
∨ = Symd(F∨r ) and since the Atiyah

bundle is self dual we have Symd(F∨r ) = Symd(Fr) for any r. Thus, we have a short exact
sequence

0→ SymdFr−1 → SymdFr → G∨r,d → 0.

As taking global sections is left exact, we have that

0→ H0(C, SymdFr−1)→ H0(C, SymdFr)

is exact. Thus, we have that

dimH0(C, SymdFr) ≥ H0(C, SymdFr−1) ≥ d− 1

2

where the last inequality is by induction.

Corollary 5.3.16.1 (OPFr(1) is positive). Let C be an elliptic curve defined over Q̄. Let
r ≥ 3. Then κ(OPFr(1)) ≥ 1.

Proof. We have that H0(PFr,OPFr(d)) = H0(C, SymdFr). Thus

dimH0(PFr,OPFr(d)) = dimH0(C, SymdFr) ≥
d− 1

2

by 5.3.16. This gives that κ(OPFr(1)) > 0.
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Recall that SymdF2 = Fd+1 so that κ(OPF2(1)) = 0. Therefore dimH0(C, SymdF2) = 1
for all d ≥ 2. On the other hand we just saw in 5.3.16.1 that dimH0(C, SymdFr) ≥
d− 1

2
when r > 2. This result is somewhat surprising but admits the following partial

explanation. The global sections of SymdF2 are computed by a single symmetric power. We
do not have a universal functorial way to decompose SymdV when V is a two dimensional
vector space. In particular, the single symmetric product SymdF2 is indecomposable as a
vector bundle. On the other hand, in 5.3.16 we saw that once we have a lower bound on
H0(C, SymdFr) we obtain a lower bound on H0(C, SymdFr′) for all r′ ≥ r. So it suffices to
work with r = 3. In this case the global sections are computed by the double symmetric
power Symd(Sym2F2). This is one of the few examples where we can compute a plethsym

Symd(Symr−1F2) =
⊕
µ

Sµ(F2)nµ

explicitly. In 5.3.14 we saw that

SymdSym2(F2) =
⊕

|λ|=2d,λi≤2 and λ∗i is even for all i

Sλ(F2)

so SymdSym2F2 is always decomposable as a vector bundle. Furthermore we can bound
the number of global sections below by the number of partitions satisfying

|λ| = 2d, λi ≤ 2 and λ∗i is even for all i.

As the number of these partitions grows linearly in d we have the desired result.

We obtain as a corollary:

Corollary 5.3.16.2. Let C be an elliptic curve defined over Q̄. Then the Kawaguchi-
Silverman conjecture holds for PFr when r > 2. In particular, PFr has a good eigenspace.

Proof. Let f : PFr → PFr be a surjective endomorphism. After replacing f with fn we
may assume the existence of

PFr
f
//

π
��

PFr
π
��

C g
// C

where g is a surjective endomorphism. By 5.3.10 we have that f ∗OPFr(1) ≡lin OPE(λ). So
the eigendivisors of f ∗ correspond to OPFr(1), π∗H where H is some ample divisor on C.
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If λ1(f) = λ1(g) then the Kawaguchi-Silverman conjecture is true for f by 4.2.10.1. We
may assume that λ1(f) = λ and that OPFr(1) is a λ1(f)-eigendivisor for f ∗. By 5.3.16 we
have that κ(OPFr(1)) > 0 and so by 4.2.9 the Kawaguchi-Silverman conjecture holds for f .
We have that f has a good eigenspace because either OPFr(1) generates an eigenspace or
π∗H does and in both of these cases we have positive Iitaka dimension.

Method two: Restricting the relative dynamical degree

We now turn to different more elementary methods. We will attempt to prove results about
the structure of the monoid of surjective endomorphisms f : PFr → PFr. Recall that by
[44, Theorem 6.2] that if PFr admits an int-amplified endomorphism, that κ(−KPE) ≥ 0.
On the other hand by 5.3.4 we already know κ(−KPE) ≥ 0. Thus the projective bundles
PFr are a potentially good source of examples to probe to what extent κ(−KPE) ≥ 0 is a
sufficient condition to have an int-amplified endomorphism.

For additional motivation consider the following results.

Theorem 5.3.17 ([2] and [3]). Let X be a smooth projective variety defined over Q. Let
E be a vector bundle on X. Suppose that we have a diagram

PE f
//

π
��

PE
π
��

X g
// X

with f, g surjective endomorphisms. Suppose that for a general fiber π−1(p) we have that

fp : π−1(p)→ π−1(g(p))

has degree strictly greater than one.

1. If rank(E) = 2 then E splits as a direct sum of line bundles after a finite surjective
base change. Moreover if E is semi-stable then the covering can be chosen to be
smooth and unramified over X.

2. Suppose that H1(X,L) = 0 for all line bundles L on X and that X is simply con-
nected. Then E splits as a direct sum of line bundles.
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Notice that if we take X = C an elliptic curve and E = Fr with r > 2 then PFr does
not satisfy (1) or (2) of 5.3.17. For (2) note that an elliptic curve does not have trivial
fundamental group, and the cohomology of all line bundles does not vanish on an elliptic
curve. In particular dimH1(C,OC) = 1. Therefore, the varieties PFr provide a good
testing ground to see how 5.3.17 generalizes. For example the naive generalization of (1)
in 5.3.17 states that PFr does not admit a surjective endomorphism that is degree greater
than one on the fibers.

We will analyze the surjective endomorphisms of PFr. We use the notation of 3.3.1.1.
To recall the relevant details we have an elliptic curve C in Legendre form with an affine
open cover U0, U2. Furthermore, we have the valuation νO = ν which gives the order of
vanishing at the origin. Let us recall the following facts described in 3.3.1 that will be used
repeatedly.

1. There is an element ω ∈ OC(U0 ∩ U2) with ν(ω) = −1.

2. If f ∈ OC(U0) then ν(f) ≤ 0 and ν(f) 6= −1.

3. If g ∈ OC(U2) then ν(g) ≥ 0.

4. We have that OC(U0) ∩ OC(U2) = Q̄.

Recall that by 3.3.4 we have that Fr is trivialized on U0, U2. Let V = U0∩U2. Since the
Ui trivialize PFr we have that π−1(Ui) = Pr−1

Ui
. Now suppose that we have a commutative

square

PFr
f
//

π
��

PFr
π
��

C g
// C

where g is a surjective endomorphism of C. By 5.3.10 we have that f ∗OPFr = OPFr(d) for
some d ≥ 1. Due to the discussion following 5.4 we have a surjection

θ : π∗Fr → OPFr(d)→ 0. (5.14)

Now restrict to the open cover given by U0, U2 to obtain

θi : O⊕rPr−1
Ui

→ OPr−1
Ui

(d)→ 0 (5.15)
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for i = 0, 2. Let Ar be the transition matrix for Fr with respect to this cover as constructed
by 3.3.4. Then this data satisfies the following compatibility condition. Over the overlap
V = U0 ∩ U2, OPr−1

U0

(d) is glued to OPr−1
U2

(d) via the mapping

s(t0, ..., tr−1) 7→ s(Ar · ~t).

where ~t = [t0, ..., tr−1]. In other words

s(t0, ..., tr−1) 7→ s(t0 + ωt1, ..., tr−2 + ωtr−1, tr−1). (5.16)

We call this function ψr,d(s) := s(Ar ·~t). On the other hand, over the overlap V we have that
O⊕rPr−1

U0

is glued to O⊕rPr−1
U2

via the transition matrix Ar. Therefore, the compatibility condition

for gluing a surjective endomorphism is then that the following diagram commutes and has
exact rows

O⊕rPr−1
V

θ0 //

Ar

��

OPr−1
V

(d) //

ψr,d

��

0

O⊕rPr−1
V

θ2 // OPr−1
V

(d) // 0

(5.17)

In other words, we have
ψr,d ◦ θ0 = θ2 ◦ A. (5.18)

where ψr,d(s) = s(Ar ·~t) where s is a degree d polynomial with coefficients in OC(U0 ∩U2).
Let e1, ..., er be the standard basis of O⊕rPr−1

U0

and w1, .., wr the standard basis for O⊕rPr−1
U2

. We

have that
Are1 = w1 and Arei = ωwi−1 + wi. (5.19)

Set si = θ0(ei) and gi = θ2(wi). Note that we may identify H0(Pr−1
Ui

,OPr−1
Ui

(d)) with the

homogeneous polynomials of degree d with coefficients in OC(Ui). We have that

si ∈ OU0 [t0, ..., tr−1]d and gi ∈ OU2 [t0, ..., tr−1]d (5.20)

where OUi [t0, ..., tr−1]d is the collection of degree d polynomials in OUi [t0, ..., tr−1].

Remark 5.3.18. The crucial idea is that the si have coefficients in OC(U0) and not in
OC(V ), and similarly for the gi. In particular the si and gi are constrained by the algebraic
facts described in 5.3.1.
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The morphism θ0 being surjective is equivalent to s1, ..., sr having no common zero and
similarly θ2 is surjective precisely when g1, ..., gr have no common zero. In conclusion the
existence of the surjective endomorphism 5.14 is equivalent to the data of degree d homo-
geneous polynomials s1, ..., sr ∈ OC(U0)[t0, ..., tr−1] and degree d homogeneous polynomials
g1, ..., gr ∈ OC(U2)[t0, ..., tr−1] such that the collection {si} have no common zero, and
that the collection {gi} have no common zero and that the si, gi satisfy the compatibility
condition described by 5.17 or 5.18.

In conclusion we have proven the following.

Lemma 5.3.19. Let C be an elliptic curve defined over Q. Let Fr be the rank r Atiyah
bundle on C. Let g : C → C be a surjective endomorphism. Then there is a commutative
square

PFr
f
//

π
��

PFr
π
��

C g
// C

with f ∗OPFr(1) ≡lin OPFr(d) for some d > 1 if and only if the following data exist.

1. Polynomials s1, . . . , sr ∈ OC(U0)[t0, . . . , tr−1] homogeneous of degree d and g1, . . . , gr ∈
OC(U2)[t0, . . . , tr−1] homogeneous of degree d.

2. s1(Ar · ~t) = s1(t0 + ωt1, t1 + ωt2, . . . , ωtr−2 + tr−1, tr−1) = g1(t0, . . . , tr−1).

3. For each 2 ≤ i ≤ r we have

si(Ar·~t) = si(t0+ωt1, t1+ωt2, . . . , ωtr−2+tr−1, tr−1) = ωgi−1(t0, . . . , tr−1)+gi(t0, . . . , tr−1)

4. s1, . . . , sr do not have common zero in U0 and g1, . . . , gr do not have a common zero
in U2.

Our goal is now to prove the following.

Lemma 5.3.20 (Non-existence of surjections.). Let C be an elliptic curve defined over Q̄.
Suppose that d > 1. Let Fr be the rank r Atiyah bundle when 2 ≤ r ≤ 4. Then there is no
surjection of sheaves

θ : π∗Fr → OPFr(d)→ 0.

In particular, there is not surjective endomorphism f : PFr → PFr with f ∗OPFr(1) ≡lin

OPFr(d) with d > 1.
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Corollary 5.3.20.1. Let C be an elliptic curve defined over Q̄. Let Fr be the rank r Atiyah
bundle when 2 ≤ r ≤ 4. Then PFr does not admit an int-amplified endomorphism.

Proof. Let f : PFr → PFr be a surjective endomorphism. After iterating f we have a
diagram

PFr
fn
//

π
��

PFr
π
��

C g
// C

with g surjective. By 5.3.10 we have that (fn)∗(OPFr(1)) ≡lin OPFr(d) for some d ≥ 1. By
5.3.20 we have that d = 1. Thus (fn)∗ has an eigenvalue of absolute value one. Since the
eigenvalues of (fn)∗ are nth powers of eigenvalues of f ∗ we have that f ∗ has an eigenvalue
of modulus 1 and so by 4.1.11 we have that f is not int-amplified as needed.

Our strategy is to show that no collection of polynomials si, gi that satisfy the require-
ments of 5.3.19. It is our hope that this method will give a full proof for general r in the
future. Given a polynomial s ∈ OUi [t0, ..., tr−1]d and a monomial ta0

0 ...t
ar−1

r−1 we will let

s[ta0
0 ...t

ar−1

r−1 ] = coefficient of ta0
0 ...t

ar−1

r−1 in s. (5.21)

As a warm up, we first do the case of r = 2. This can also be achieved by results of [2].

The argument when r = 2

Towards a contradiction suppose that there is a surjection

θ : π∗F2 → OPF2(d)→ 0

with d > 1. Let s =
∑d

i=0 ait
i
0t
d−i
1 ∈ OU0 [t0, t1]. Then

ψ2,s(s) =
d∑
i=0

ai(t0 + ωt1)itd−i1 .

Expanding with the binomial theorem gives

d∑
i=0

i∑
j=0

(
i

j

)
aiω

i−jtj0t
d−j
1
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The coefficient of tp0 with 0 ≤ p ≤ d in the above is obtained by summing

aq

(
q

p

)
ωq−p

over all q with p ≤ q. Thus we have that

d∑
i=0

ai(t0 + ωt1)itd−i1 =
d∑
p=0

tp0t
d−p
1

( ∑
p≤q≤d

(
q

p

)
aqω

q−p

)
=

d∑
p=0

tp0t
d−p
1 A2,p.

Let e1, e2 be the standard basis for OP1
U0

and w1, w2 the standard basis for OP1
U2

. Let θ0 be

the surjection θ0 : OP1
U0
→ OP1

U0
(d)→ 0 and θ2 be the surjection θ2 : OP1

U2
→ OP1

U2
(d)→ 0

Set θ0(ek) = sk =
∑d

i=0 akit
i
0t
d−i
1 for k = 1, 2.

A2(e1) =

[
1 ω
0 1

] [
1
0

]
= w1

The compatibility condition tells us that

θ2(w1) = g1 = ψ2,d(s1) =
d∑
p=0

tp0t
d−p
1

( ∑
p≤q≤d

(
q

p

)
a1qω

q−p

)
.

Since g1 ∈ OU2 [t0, t1]d we must have that the coefficients of ψ2,d must in in OC(U2). In
other words, we have that ∑

p≤q≤d

(
q

p

)
a1qω

q−p ∈ OC(U2)

for each p. Write

ψ2,d(s1)[tp0t
d−p
1 ] =

∑
p≤q≤d

(
q

p

)
a1,qω

q−p.

Then ψ2,d(s1)[td0] = a1,d ∈ OC(U2). But a1,d ∈ OC(U0) as well so by 5.3.1 part (3) we have
a1,d ∈ Q̄. So ν(a1,d) ∈ {0,∞}. Towards a contradiction suppose that ν(a1,d) = 0, that is
a1,d 6= 0. Then

ψ2,d(s1)[td−1
0 t1] =

(
d− 1

d− 1

)
a1,d−1ω

d−1−(d−1) +

(
d

d− 1

)
a1,dω

d−(d−1) = a1,d−1 + a1,dω.

By 3.3.2 we have ν(a1,d−1) ≤ 0 as a1,d−1 ∈ OC(U0). Also ν(a1,dω) = ν(ω) = −1 by 5.3.1
part (1). Thus ν(a1,d−1) 6= ν(a1,d−1ω) and so

ν(a1,d−1 + ωa1,d) = min{ν(a1,d−1),−1} ≤ −1.
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But ψ2,d(s1)[td−1
0 t1] ∈ OC(U2) which means by 3.3.2 that ν(ψ2,d(s1)[td−1

0 t1]) ≥ 0 which gives
a contradiction. So we have that a,1d = 0 and ψ2,d(s1)[td−1

0 t1] = a1,d−1 Since a1,d−1 ∈ OC(U0)
and ψ2,d(s1)[td−1

0 t1] ∈ OC(U2) by 5.3.1 part (3) we have a1,d−1 ∈ Q̄. Now suppose that for
some k ≤ d that we have a1,d = . . . = a1,d−k = 0 with d − k ≥ 2 and a1,d−k−1 ∈ Q̄. Then
using the fact that a1,d−j = 0 for j = 0, ..., k we have

ψ2,d(s1)[td−k−2
0 tk+2

1 ] =
∑

d−k−2≤q≤d

(
q

d− k − 2

)
a1,qω

q−d+k+2 (5.22)

=

(
d− k − 2

d− k − 2

)
a1,d−k−2ω

d−k−2−d+2+k +

(
d− k − 1

d− k − 2

)
a1,d−k−1ω

d−k−1−d+k+2 (5.23)

= a1,d−k−2 + a1,d−k−1ω. (5.24)

As a1,d−k−1 ∈ Q̄ the argument that shows a1,d = 0 and a1,d−1 ∈ Q̄ shows that a1,d−k−1 = 0
and a1,d−k−2 ∈ Q̄. We may continue in this way until we reach a1,d = a1,d−1 = ... = a1,1 = 0.
Then

ψ2,d(s1)[td1] =
d∑

k=0

a1,k

(
d

0

)
ωk = a1,0

Thus a1,0 ∈ OC(U0) ∩OC(U2) = Q̄ and is non-zero. We have shown that s1 = a1,0t
d
1 = αtd1

with α ∈ Q̄∗. Now we have that

A2(e2) =

[
1 ω
0 1

] [
0
1

]
=

[
ω
1

]
= ωw1 + w2

In other words, the compatibility condition says that

d∑
p=0

tp0t
d−p
1

( ∑
p≤q≤d

(
q

p

)
a2,qω

q−p

)
= ωθ2(w1) + θ2(w2).

Our first computation shows that θ2(w1) = αtd1 so we have that

d∑
p=0

tp0t
d−p
1

( ∑
p≤q≤d

(
q

p

)
a2,qω

q−p

)
= ωαtd1 + θ2(v2).

This tells us that that for p > 0 we have that

θ2(w2)[tp0t
d−p
1 ] = ψ2,s(s2)[tp0t

d−p
1 ].
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Since d > 0 we may make the same argument as earlier with a2,d, a2,d−1 as with a1,d, a1,d−1

and conclude that a2,d = a2,d−1 = ... = a2,2 = 0. Thus s2 = a2,0t
d
1 + a2,1t0t

d−1
1 . However,

this is a contradiction as then s2 and s1 both vanish at the point [1 : 0] contradicting the
surjectivity of the morphism θ0. We now conclude that no surjective endomorphism

θ : π∗F2 → OPF2(d)→ 0

exists when d > 1. In particular, this shows that if

f : PF2 → PF2

is a surjective endomorphism, then f ∗OPF2(1) ≡lin OPF2(1). Therefore PF2 does not ad-
mit an int-amplified endomorphism, any surjective endomorphism of PF2 admits a good
eigenspace, and the Kawaguchi-Silverman conjecture holds for projective bundles over
PF2.

The case of rank 3 and 4 bundles.

Here we assume that 2 < r. Now suppose that there is a surjection

θ : π∗Fr → OPFr(d)→ 0

with d > 1. By 5.3.19 we have degree d polynomials s1, ..., sr ∈ OC(U0)[t0, ..., tr−1] and
degree d polynomials g1, ..., gr ∈ OC(U2)[t0, ..., tr−1]. We let ψ = ψr,d be the mapping

ψ(f(t0, ..., tr−1)) = f(t0 + ωt1, t1 + ωt2, ..., tr−2 + ωtr−1, tr−1). (5.25)

For ease of notation given ~i ∈ Zr≥0 we write t
~i = ti10 ...t

ir−1

r−1 and let e0, ..., er−1 be a basis for
Zr. We now formula the following lemma which we will use repeatedly.

Lemma 5.3.21 (The reduction tool). Suppose that a, b ∈ OC(U0) and b ∈ Q̄. If a+ bω ∈
OC(U2) then b = 0 and a ∈ Q̄.

Proof. Towards a contradiction suppose that b 6= 0. Since b 6= 0 we have that ν(b) = 0.
This gives ν(bω) = ν(b) + ν(ω) = −1. On the other hand we have that ν(a) ≤ 0 and
ν(a) 6= −1 by 3.3.2. We have

ν(a+ bω) = min{ν(a),−1} ≤ −1 < 0

as ν is a valuation. However as a + ωb ∈ OC(U2) by assumption. By 3.3.2 we have
ν(a+ ωb) ≥ 0, a contradiction. Now suppose that b = 0. Then a ∈ OC(U2) ∩OC(U0) = Q̄
where the last equality is by 3.3.2.
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We now begin with our first easy reduction.

Lemma 5.3.22 (Easy vanishing step). If

s =
∑
~i∈Zr≥0

a~it
~i ∈ OC(U0)[t0, ..., tr−1]

is homogeneous of degree d and ψ(s) ∈ OC(U2)[t0, ..., tr−1] then

s[td0] = s[td−1
0 ti] = 0

for 1 ≤ i ≤ r − 2. Furthermore a(d−1)e0+er−1 ∈ Q̄.

Proof. First notice that ψ(s)[td0] = ade0 = s[td0] so ade0 ∈ OC(U0) ∩ OC(U2) = Q̄. Now
let 1 ≤ i ≤ r − 1. The coefficients of ψ(s)[td−1

0 ti] must come from a term of the form
ade0(t0 + ωt1)d or a(d−1)e0+ei(t0 + t1ω)d−1(ti + ti+1ω) or a(d−1)e0+ei−1

(t0 + t1ω)d−1(ti−1 + tiω)
or a(d−1)e0+er−1(t0 + t1ω)d−1tr−1. In particular we have that

ψ(s)[td−1
0 t1] = ade0

(
d

d− 1

)
ω + a(d−1)e0+e1 (5.26)

ψ(s)[td−1
0 ti] = a(d−1)e0+ei−1

ω + a(d−1)e0+ei for 2 ≤ i ≤ r − 1. (5.27)

Note that ψ(s)[td−1
0 t1] ∈ OC(U2) by assumption. Since ade0 ∈ Q̄ we have by 5.3.21 that

ade0 = 0 and a(d−1)e0+e1 ∈ Q̄. We now induct on 1 ≤ i ≤ r − 2. When i = 1, we have that

ψ(s)[td−1
0 t2] = a(d−1)e0+e1ω + a(d−1)e0+e2 ∈ OC(U2)

and a(d−1)e0+e1 ∈ Q̄. So by 5.3.21 we have that a(d−1)e0+e1 = 0 and a(d−1)e0+e2 ∈ Q. Now

assume that for some 1 ≤ i ≤ r− 2 that a(d−1)+ei−1
= 0 and e(d−1)e0+ei ∈ Q. Then we have

that
ψ(s)[td−1

0 ti+1] = a(d−1)e0+eiω + a(d−1)e0+ei+1
∈ OC(U2)

which means by 5.3.21 that a(d−1)e0+ei = 0 and a(d−1)e0+ei+1
∈ Q̄. So by induction we have

the desired result.

The significance of this result is the following.

Lemma 5.3.23 (Cascade step). Let s ∈ OC(U0)[t0, ..., tr−1] and g1, g2 ∈ OC(U2)[t0, ..., tr−1]
be homogeneous polynomials of degree d that satisfy

ωg1 + g2 = ψ(s). (5.28)
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Suppose that for some 1 ≤ k ≤ r − 1 we have that

g1[td0] = g1[td−1
0 ti] = 0 for 0 ≤ i ≤ k. (5.29)

Then
s[td0] = s[td−1

0 ti] = 0 for 0 ≤ i ≤ k − 1. (5.30)

Proof. By 5.28 we have that

ψ(s)[t
~i] = ωg1[t

~i] + g2[t
~i]. (5.31)

By assumption we have that g1[td0] = g1[td−1
0 ti] = 0 for 1 ≤ i ≤ k. So we obtain that

ψ(s)[td0] = g2[td0] and ψ(s)[td−1
0 ti] = g2[td−1

0 ti] for 1 ≤ i ≤ k. (5.32)

Since s ∈ OC(U0)[t0, ..., tr−1] and g2 ∈ OC(U2)[t0, ..., tr−1] the exact argument given in
5.3.22 shows that

s[td0] = s[td−1
0 ti] = 0 for 0 ≤ i ≤ k − 1. (5.33)

Corollary 5.3.23.1 (Consequences of the cascade step). Use the notation just following
5.3.1. Suppose that

s1[td0] = s1[td−1
0 ti] = 0 (5.34)

for 1 ≤ i ≤ r − 1. Then s1, ..., sr have a common zero contradicting the assumptions of
5.3.1. Consequently no surjective homomorphism f : PFr → PFr exists with f ∗OPFr(1) ≡lin

OPFr(d) for d > 1.

Proof. Notice that 5.19 gives us that

g1 = ψ(s1) and ωgi−1 + gi = ψ(si) for 2 ≤ i. (5.35)

Using 5.34 and 5.35 we may apply 5.3.23 to s1 and obtain that

s2[td0] = s2[td−1
0 t1] = ... = s2[td−1

0 tr−2] = 0. (5.36)

Using this and 5.34 once more we may apply 5.3.23 a total of r times to obtain that

si[t
d
0] = 0

for 1 ≤ i ≤ r. In other words that si([1 : 0... : 0]) = 0 for each s1, ..., sr as claimed.
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By 5.3.22 and 5.3.23.1 we have to reduced to showing that s1[td−1
0 tr−1] = 0. This is the

crux of the argument. All the results stated up until this point hold for r ≥ 3. We now
make the assumption that 3 ≤ r ≤ 4.

Lemma 5.3.24 (The crux). Let 3 ≤ r ≤ 4. Suppose that s ∈ OC(U0)[t0, ..., tr] be homoge-
neous of degree d. Suppose that ψ(s) ∈ OC(U2)[t0, ..., tr−1]. Then

s[td0] = s[td−1
0 ti] = 0

for 1 ≤ i ≤ r − 1.

Proof. We write s =
∑

~i∈Zr≥0
a~it

~i. By 5.3.22 we have that

s[td0] = s[td−1
0 ti] = 0

for 1 ≤ i ≤ r − 2 and a(d−1)e0+er−1 ∈ Q. We now begin an analysis of higher order terms.
We study ψ(s)[td−2

0 t1ti] for 1 ≤ i ≤ r− 1. First we consider i = 2. The contributing terms
to ψ(s)[td−2

0 t1t2] are

1. a(d−2)e0+e1+e2(t0 + ωt1)d−2(t1 + ωt2)(t2 + ωt3)

2. a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

3. a(d−1)e0+e1(t0 + ωt1)d−1(t1 + ωt2)

4. a(d−1)e0+e2(t0 + ωt1)d−1(t2 + ωt3) when r > 3.

By 5.3.22 we have that the term from (c) are zero, and when r > 3 the term from (d) is
also zero. We then have

ψ(s)[td−2
0 t1t2] = a(d−2)e0+e1+e2 + 2ωa(d−2)e0+2e1 . (5.37)

1. Let r = 3. After iterating the morphism f we may assume that d > 3. We examine
ψ(s)[td−2

0 t1tr−1]. The contributing terms are

(a) a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

(b) a(d−2)e0+e1+e2(t0 + ωt1)d−2(t1 + ωt2)t2

(c) a(d−1)e0+e1(t0 + ωt1)d−1(t1 + ωt2)

(d) a(d−1)e0+e2(t0 + ωt1)d−1t2
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By 5.3.22 we have that (c) above is zero. So

ψ(s)[t0t1tr−1] = 2ωa(d−2)e0+2e1 + ω

(
d− 1

d− 2

)
a(d−1)e0+e2 + a(d−2)e0+e1+e2 . (5.38)

If we can show that a(d−2)e0+2e1 = 0 then we may apply 5.3.21 and obtain a(d−1)e0+e2 =
0 as needed.

We now consider ψ(s)[td−2
0 t21]. The contributing terms of ψ(s) are

(a) a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

(b) a(d−1)e0+e1(t0 + ωt1)d−1(t1 + ωt2)

(c) ade0(t0 + ωt1)d.

By 5.3.22 we have that (c) and (b) are zero which gives that

ψ(s)[td−2
0 t21] = a(d−2)e0+2e1 . (5.39)

Since ψ(s) ∈ OC(U2) and a(d−2)e0+2e1 ∈ OC(U0) we have a(d−2)e0+2e1 ∈ Q by 3.3.2.
We now compute ψ(s)[td−3

0 t31]. The relevant terms in ψ(s) are

(a) a(d−3)e0+3e1(t0 + ωt1)d−3(t1 + ωt2)3

(b) a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

(c) a(d−1)e0+e1(t0 + ωt1)d−1(t1 + ωt2)

(d) ade0(t0 + ωt1)d.

The terms (c) = (d) = 0 by 5.3.22 so we obtain

ψ(s)[td−3
0 t31] = a(d−3)e0+3e1 + 2ωa(d−2)e0+2e1 . (5.40)

Since a(d−2)e0+2e1 ∈ Q by the sentence after equation 5.39 we may apply 5.3.21 to
obtain a(d−2)e0+2e1 = 0. Returning to equation 5.38 we have

ψ(s)[t0t1tr−1] =2ωa(d−2)e0+2e1 + ω

(
d− 1

d− 2

)
a(d−1)e0+e2 + a(d−2)e0+e1+e2 (5.41)

=ω

(
d− 1

d− 2

)
a(d−1)e0+e2 + a(d−2)e0+e1+e2 . (5.42)

Since a(d−1)e0+e2 ∈ Q we may apply 5.3.21 to obtain a(d−1)e0+e2 = 0 as needed.
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2. Now suppose that r = 4. We as above examine ψ(s)[td−2
0 t1tr−1]. The contributing

terms are

(a) a(d−2)e0+e1+er−1(t0 + ωt1)d−2(t1 + ωt2)tr−1

(b) a(d−2)e0+e1+er−2(t0 + ωt1)d−2(t1 + ωt2)(tr−2 + ωtr−1)

(c) a(d−1)e0+er−1(t0 + ωt1)d−1(tr−1)

(d) a(d−1)e0+er−2(t0 + ωt1)d−1(tr−2 + ωtr−1).

By 5.3.22 we have that (d) above is zero. So

ψ(s)[td−2
0 t1tr−1] = a(d−2)e0+e1+er−1 +ωa(d−2)e0+e1+er−2 +

(
d− 1

d− 2

)
ωa(d−1)e0+er−1 . (5.43)

Notice that if we can show a(d−2)e0+e1+er−2 = 0 then we may apply 5.3.21 to obtain
that a(d−1)e0+er−1 = 0 and we win. Now consider ψ(s)[td−2

0 t21]. The contributing terms
of ψ(s) are

(a) a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

(b) a(d−1)e0+e1(t0 + ωt1)d−1(t1 + ωt2)

(c) ade0(t0 + ωt1)d

By 5.3.22 we have that (c) and (b) are zero which gives that

ψ(s)[td−2
0 t21] = a(d−2)e0+2e1 . (5.44)

Since ψ(s) ∈ OC(U2) and a(d−2)e0+2e1 ∈ OC(U0) we have a(d−2)e0+2e1 ∈ Q by 3.3.2.
Now we have by 5.37 that

ψ(s)[td−2
0 t1t2] = a(d−2)e0+e1+e2 + 2ωa(d−2)e0+2e1 .

As a(d−2)e0+2e1 ∈ Q we have by equation 5.3.21 that a(d−2)e0+2e1 = 0 and a(d−2)e0+e1+e2 ∈
Q. We now compute ψ(s)[td−2

0 t22]. The relevant terms are

(a) a(d−2)e0+2e2(t0 + ωt1)d−2(t2 + ωt3)2

(b) a(d−2)e0+2e1(t0 + ωt1)d−2(t1 + ωt2)2

(c) a(d−2)e0+e1+e2(t0 + ωt1)d−2(t1 + ωt2)(t2 + ωt3)
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We just showed that a(d−2)e0+2e1 = 0. So we have that

ψ(s)[td−2
0 t22] = a(d−2)e0+e1+e2ω + a(d−2)e0+2e2 .

Since we just showed that a(d−2)e0+e1+e2 ∈ Q we may apply 5.3.21 we have a(d−2)e0+e1+e2 =
0. Returning to 5.43 we obtain

ψ(s)[td−2
0 t1t3] = a(d−2)e0+e1+e3 + ωa(d−2)e0+e1+e2 +

(
d− 1

d− 2

)
ωa(d−1)e0+e3 (5.45)

= a(d−2)e0+e1+e3 +

(
d− 1

d− 2

)
ωa(d−1)e0+e3 . (5.46)

We may thus apply 5.3.21 a final time and obtain the result.

This completes the proof of the result for the case r = 3, 4.

This completes the proof of 5.3.20. It seems possible that these methods could be
extended to arbitrary r giving a generalization of 5.3.17 to all PFr. These methods may
also be useful in extending the Kawaguchi-Silverman conjecture to bundles of the form
E =

⊕s
i=1 Fri ⊗ Li where the Li are degree zero line bundles on C where the Li may not

be all trivial.
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Chapter 6

Arithmetic eigenvalues.

Let X be a projective variety defined over Q, always assumed to be irreducible unless
otherwise stated. Given a surjective endomorphism f : X → X and P ∈ X(Q) we have
the arithmetic degree defined in 4.2.1,

αf (P ) = lim
n→∞

h+
H(fn(P ))

1
n . (6.1)

Recall that by 4.2.2 we have that αf (P ) = |µ| for some eigenvalue of f ∗ : Nef(X)R →
Nef(X)R. It is natural to wonder which eigenvalues of f ∗ : Nef(X)R → Nef(X)R arise as a
limit of heights in an orbit of f . In the Kawaguchi-Silverman conjecture one wishes to show
that if P has a dense orbit under f , then αf (P ) = λ1(f). Therefore, any potential counter-
example to the Kawaguchi-Silverman conjecture gives an eigenvalue µ of f ∗ : Nef(X)R →
Nef(X)R such that αf (P ) = |µ| < λ1(f). From this perspective it is clear that the potential
values of αf (P ) deserve to be studied.

In this chapter we prove that when Alb(X) 6= 0 there can be eigenvalues of arbitrarily
large size which are not the limit of heights. See 6.1.3 and example 8 for the main construc-
tions. We then turn to when Alb(X) = 0. Our primary example will be of toric varieties.
In 6.2.1 we study morphisms of toric varieties which are equivariant with respect to the
torus action. We give a classification result for such morphisms in 6.2.15 and use this result
to give new proofs of the Kawaguchi-Silverman conjecture and the sAND conjecture for
equivariant morphisms in 6.2.16. We further use the classification described by 6.2.15 to
show that the absolute value of every eigenvalue of an equivariant surjective endomorphism
of a toric variety is an arithmetic degree in 6.2.17. We then turn to non-equivariant mor-
phisms and prove an analogous result in 6.2.21 using the minimal model program for toric
varieties. Finally, in 6.3 we discuss how the minimal model program can be used to study

154



questions of this type in the context of varieties admitting an int-amplified endomorphism.
We have the following key definition.

Definition 6.0.1. Let X be a normal projective variety defined over Q and let f : X → X
be a surjective endomorphism. Consider the action of f ∗ on N1(X)R and let µ be an
eigenvalue of this action with |µ| > 1. We call such an eigenvalue a potential arithmetic
degree or potentially arithmetic. If there is a point P ∈ X(Q) with αf (P ) = |µ| then
we call µ an arithmetic degree or say µ is realizable as an arithmetic degree or
that µ is arithmetic. If every potentially arithmetic eigenvalue is arithmetic then we say
that f has arithmetic eigenvalues.

We choose to exclude the points with αf (P ) = 1 because this typically occurs even
when 1 is not an eigenvalue for the action of f ∗ on Nef(X)R. We note that the set of points
with αf (P ) = 1 is extremely interesting from the point of view of the Kawaguchi-Silverman
conjecture and deserves further study. We will be concerned with the following question.

Question 2. Let X be a normal projective variety defined over Q and let f : X → X
be a surjective endomorphism. Is every potential arithmetic degree of f realizable as an
arithmetic degree? In other words, is every eigenvalue µ of f ∗ with |µ| > 1 arithmetic?

Not every eigenvalue will be an arithmetic degree. If f is an automorphism with
eigenvalue λ > 1 then f ∗ may have an eigenvalue 1

λ
< 1. Since αf (P ) ≥ 1 for all P we see

that such eigenvalues are not arithmetic in this sense. On the other hand, recall that in
[40] it was proven that λ1(f) is arithmetic. Our question is therefore most meaningful for
eigenvalues µ with |µ| < λ1(f). Recall that the sAND conjecture (conjecture 4) predicts
that the set of points with αf (P ) < λ1(f) is not Zariski dense. We saw in 4.2.6 that
conjecture 4 implies the Kawaguchi-Silverman conjecture. Therefore, from the perspective
of the Kawaguchi-Silverman conjecture it is important to understand the set of points with
αf (P ) < λ1(f). From this perspective question 2 asks which values can actually appear as
αf (P ). We now collect some results that will be used later.

Proposition 6.0.2. Let X be a normal projective variety defined over Q. Suppose that
X admits a surjective endomorphism f : X → X. If f ∗ : N1(X)R → N1(X)R acts by
multiplication by a scalar, then f has arithmetic eigenvalues.

Proof. Suppose that the action of f ∗ on N1(X)R is given by multiplication by λ. Since f ∗

is defined over Z we have that λ ∈ Z. If |λ| = 1 then f has no potential arithmetic degrees
as αf (P ) = 1 for all P ∈ X(Q) by 4.2.8. Now assume that |λ| > 1. By 4.2.7 there is a
point P with αf (P ) = |λ|. Therefore, all potential arithmetic degrees are realized.
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Dynamics studies the behavior of maps under iteration; it is valuable to know if a
property of maps is preserved by iteration.

Proposition 6.0.3. Let X be a normal projective variety defined over Q and let f : X → X
be a surjective endomorphism.

1. If γ is a potential arithmetic degree of fm then γ = µm where µ a potential arithmetic
degree of f .

2. γ is realizable as an arithmetic degree ⇐⇒ µ is realizable as an arithmetic degree.

If fm has arithmetic eigenvalues then f has arithmetic eigenvalues.

Proof. The eigenvalues of (fm)∗ aremth powers of the eigenvalues of f ∗. So γ = µm for some
eigenvalue of f ∗. Now let αfm(P ) = |γ| = |µ|m. Then we have αf (P )m = αfm(P ) = |µ|m
and taking mth roots gives the desired result. Now suppose that every potential arithmetic
degree of fm is an arithmetic degree. Let µ be a potential arithmetic degree of f . Then µm

is a potential arithmetic degree of fm and the result follows from the above calculation.

The result 6.0.3 is pleasing because it shows that question 2 is equivalent for all itera-
tions of f .

6.1 Realizability for abelian varieties.

In this section we consider question 2 when f : A → A is an isogeny of an abelian variety
defined over Q. We give a negative answer to question 2 and give an algebraic interpretation
of dynamical questions in terms of the endomorphism algebra ofA. To understand f ∗ acting
on N1(A)R it suffices to understand the eigenvalues of the twisted conjugation action of f
on the fixed points of the Rosati involution. Here we review the relevant facts from 3.2.2,
in particular 3.2.36.

N1(A)R = End(A)Sym
R = {α ∈ End(A)R : α′ = α}. (6.2)

θf : End(A)Sym
R → End(A)Sym

R , α 7→ f ′ ◦ α ◦ f describes the action of f ∗ : N1(A)R → N1(A)R.
(6.3)

The eigenvalues of f ∗ acting on N1(X)R are thus interpreted as those α ∈ End(A)Sym
R such

that θfα = λα. The benefit of interpreting the dynamics of f ∗ in this light is that we have a
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good understanding of the possible endomorphism groups of abelian varieties, at least after
tensoring with Q. This will allow us to get a refined notion of the possible dynamics and to
prove that the existence of endomorphisms of abelian varieties with prescribed properties.
Here we will use 3.2.37. We will need the following results of Kawaguchi and Silverman.

Theorem 6.1.1 ([28, Theorem 29]). Let A/Q be an abelian variety. Let D ∈ DivR(A) be
a real nef divisor class with q̂A,D the quadratic part of the canonical height associated to D.

1. There is a unique proper abelian subvariety BD ⊆ A such that

{x ∈ A(Q) : q̂A,D(x) = 0} = BD(Q) + A(Q)tors.

2. Suppose further that f : A→ A is an isogeny defined over Q with f ∗D = λ1(f)D in
N1(A)R. Then q̂A,D(P ) ≥ 0 for all P ∈ A(Q) and q̂A,D(P ) > 0⇒ αf (P ) = λ1(f).

We now have the following easy consequence of our set up. Recall that the Picard
number of an abelian variety is related to its type. See theorem 3.2.37 for the details.

Proposition 6.1.2. Let A be a geometrically simple abelian variety of type I or III. Then
any isogeny f acts on N1(A)R by scalar multiplication. Furthermore, if λ1(f) > 1 then
any such action is polarized and f has arithmetic eigenvalues.

Proof. In type I we have that the endomorphism ring of A is commutative and so the
action of f ∗ on N1(A)R is given by

α 7→ f ′ ◦ α ◦ f = (f ′ ◦ f)α

by Theorem 3.2.36. As f ′ ◦ f is a real number, f ∗ acts by dilation on N1(X)R. In type III
we have that D is a quaternion algebra and the Rosati involution is the standard involution.
Thus the points α with α′ = α is precisely the center K. The same argument then tells
us that f ∗ acts by a scalar multiplication on the Neron-Severi space. Now suppose that
λ1(f) > 1. Then if f ∗ acts by multiplication by a scalar µ we have that |µ| = λ1(f) > 1.
Thus f ∗ is polarized. By Proposition 6.0.2 all potential arithmetic degrees are realized.

In conclusion, the dynamics of a surjective endomorphism of a simple abelian variety
of type I or III is easy to understand because there is an ample canonical height function.
The other remaining cases are more complicated. The additional cases give rise to isogenies
with eigenvalues which are not realizable as arithmetic degrees.
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Theorem 6.1.3. For each g ∈ 2Z>0 there is a simple abelian variety A of dimension g
defined over a number field K with ρ(A) = 3 equipped with a surjective endomorphism
f : A→ A that has the following properties.

1. f ∗ : N1(A)Q → N1(A)Q has eigenvalues a2 > ab > b2 > 0 for some a, b ∈ Z.

2. αf (P ) = a2 for all P /∈ A(K)tors. In particular, αf (P ) ∈ {1, a2}.

3. The eigendivisors of a2, b2 are nef while the eigendivisor of ab is not.

Proof. Let A be a simple abelian variety with End(A)Q = M2(Q) with involution given by
the transpose. Such abelian varieties exists by general results of (Oort/Shimura). See for

example [52] and [51]. Consider an endomorphism of the form f =

[
a 0
0 b

]
with a, b ∈ Z

and a > b. In this case the Neron-Severi group is of rank 3. One checks directly that the
eigenvectors of the twisted conjugation action are given by[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
with eigenvalues a2, b2, ab respectively. As A is simple, the set of points where αf (P ) <
λ1(f) = a2 is given by the torsion points by Theorem 6.1.1, which all have arithmetic
degree 1. Thus αf (P ) = a2 or 1 and never can b2 or ab when b 6= 1. It is known (see
the proof of [28, Proposition 26] ) that a symmetric matrix representing a divisor is ample
if and only if it has positive eigenvalues, and it is nef if and only if it has non-negative
eigenvalues. We see that a2, b2 have nef eigendivisors but ab does not as −1 is an eigenvalue

of

[
0 1
1 0

]
.

We can give some geometric insight into this situation by considering Abelian surfaces.

Example 7. Let A be a simple abelian surface, Let f : A → A be a surjective endomor-
phism. Suppose that µ is an eigenvalue of f ∗ acting on N1(A)R space with 1 < |µ| < λ1(f).
If there is a point P with αf (P ) = |µ| we must have that Of (P ) = V is a curve on A.
This is because if V = A then by the Kawaguchi-Silverman conjecture for abelian varieties
we have αf (P ) = λ1(f). On the other hand if V is zero dimensional then αf (P ) = 1. So
V must be a curve on A. After iterating f we may assume that V is irreducible and we
obtain by restriction f : V → V . Thus V is an irreducible curve on A which means that
the genus of its normalization is at least 2. Since we have f : V → V we obtain a surjective
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morphism f̃ on the normalization of V . Since f |V has a dense orbit by construction, f̃ has
a dense orbit. However, this is impossible, since a genus g > 2 smooth curve has no surjec-
tive endomorphism that is not an automorphism, and the automorphism group of such a
curve is finite. We see that V is either zero dimensional, or all of A. In other words, every
point is either pre-periodic or has a dense orbit. Thus to construct an endomorphism with
non-realizable eigenvalues, it suffices to find an endomorphism of a simple abelian surface
that admits a surjective endomorphism with two integral eigenvalues of different size.

We now turn to non-simple abelian varieties.

Theorem 6.1.4. Let A = A1×A2×· · ·×An where the Ai are simple pairwise non-isogenous
abelian varieties such that if gi : Ai → Ai is an isogeny then all potential arithmetic degrees
of gi are realizable as an arithmetic degree. If f : A→ A is an isogeny then every potential
arithmetic degree of f is realizable as an arithmetic degree.

Proof. Let f : A→ A be an isogeny. Write f = f1 + f2 + · · · + fn where fi : A→ Ai. Fix
an integer j 6= i. Let pj : Aj ↪→ A be the morphism that sends a 7→ (ai) where ai = OAi for
i 6= j and aj = a. So for example p1 : A1 → A is the canonical map a 7→ (a,OA2 , . . . , 0An).
Then hji = fi ◦ pj : Aj → Ai is a homomorphism of simple abelian varieties. Since Aj is
simple the kernel is either finite or all of Aj. Towards a contradiction suppose that the
kernel was finite. Then the image is either all of Ai or is OAi . If the image was all of Ai
then hji is a surjective homomorphism with finite kernel, meaning it is an isogeny. This
is a contradiction as Ai and Aj are not isogenous. So the image is OAi . This contradicts
that the kernel is finite. So hji is the constant mapping to OAi . Since we can write
fi(a1, ..., an) = h1i(a1) + · · · + hni(an) we have that fi(a1, ..., an) = hii(ai). Consequently
we have that fi : A → Ai is induced by some isogeny hi : Ai → Ai. Thus we have that
f = h1 + · · · + hn. In this case we have that since the Ai are pairwise all non-isogenous
and simple that

ρ(A) =
n∑
i=1

ρ(Ai)

by [26, 2.3]. Therefore, we have that N1(A) =
∏n

i=1 π
∗
iN

1(Ai) where πi : A → Ai is the
projection. Since f = h1 + · · · + hn we have that the eigenvalues of f ∗ are all of the form
h∗iπ

∗
iH = µH where H is some class on Ai. Thus the potential arithmetic degrees of f are

the potential arithmetic degrees of the hi. Suppose that µi is a potential arithmetic degree
of hi. Then there is a point Qi in Ai such that αhi(Qi) = |µi| by assumption. Then set
P = (P1, . . . Pn) with Pj = OAi if j 6= i and Pi = Qi. We have that

αf (P ) =
n

max
w=1
{αhw(Pw)} = αhi(Qi) = |µi|.
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As every potential arithmetic degree of f arises in this manner we have the desired result.

On the other hand, if we allow powers of a simple abelian variety then potential arith-
metic degrees may be not be realizable.

Example 8. Let A = E×E where E does not have complex multiplication. Then ρ(A) = 3
by [26, 2.6] and End(A)Q = M2(Q). Consider the isogeny f(P,Q) = (aP, bQ) where a, b > 0

are integers. Note that f corresponds to the matrix

[
a 0
0 b

]
as in Theorem 6.1.3. It is clear

that f ∗ has eigenvectors a2, b2 as [n] : E → E acts on N1(E)R by multiplication by n2. It
remains to find the third eigenvalue. We have that N1(E × E)R can be identified with
symmetric matrices and f ∗ acts by

A 7→
[
a 0
0 b

]t
A

[
a 0
0 b

]
.

The final eigenvalue of f ∗ is then represented by[
0 1
1 0

]
as [

a 0
0 b

]t [
0 1
1 0

] [
a 0
0 b

]
= ab

[
0 1
1 0

]
.

We see that that f ∗ : N1(A)R → N1(A)R has 3 eigenvalues, a2, ab, b2. Note that ab does

not have a nef eigendivisor, as

[
0 1
1 0

]
has a negative eigenvalue. Let ĥE be the canonical

height on E. Then we have that

ĥA(P,Q) = ĥE(P ) + ĥE(Q)

is an ample height on A. Then

ĥA(fn(P,Q)) = ĥA(anP, bnQ) = a2nĥE(P ) + b2nĥE(Q).

Thus we see that
lim
n→∞

ĥ+
A(fn(P,Q))1/n ∈ {a2, b2, 1}.

In fact all of the above values are realizable, by taking (P,O), (O,P ) and (O,O) where O
is the identity element of E and P is a point with ĥE(P ) 6= 0. First take a > b > 1. In this
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case we see that a2 has eigenvector

[
1 0
0 0

]
and b2 has eigenvector

[
0 0
0 1

]
which are both

nef as these matrices have non-negative eigenvalues. On the other hand the non-realizable

eigenvalue ab has a non-nef eigenvector

[
0 1
1 0

]
. On the other hand if we take a > 1, b = 1

then we obtain examples of a surjective endomorphism with eigenvalues a2, a, 1 but a is
not realizable.

The above example is illustrative in the following sense. Let X, Y be normal projective
Q-factorial varieties. Suppose that f : X → X and g : Y → Y are surjective endomor-
phisms. If ρ(X × Y ) > ρ(X) × ρ(Y ) then (f × g)∗ will have mixed eigendivisors that do
not arise as the pull back of some divisor on X or Y . On the other hand,

αf×g(P,Q) = max{αf (P ), αg(Q)}.

If these mixed eigendivisors have mixed eigenvalues that do not appear as eigenvalues on
X and Y then they will not be realizable. In terms of abelian varieties, the Picard number
of Ak is always strictly larger then the Picard number of A when k > 1 and A is simple by
[26, 2.4]. Thus we might always expect that Ak always has an isogeny with unrealizable
potential arithmetic degree. Indeed, this is the case for squares of elliptic curves without
CM by 8.

Corollary 6.1.4.1. For any integer d > 1 there is a smooth projective variety X with
dimX = d such that there is a surjective endomorphism f : X → X with λ1(f) > 1 and f
has does not have arithmetic eigenvalues. If d ≥ 3 and κ ∈ {−∞, 0, 1, . . . , d − 2} then X
may be chosen with κ(X) = κ. If κ ∈ {−∞, 0} then the surjective endomorphism may be
taken to be int-amplified.

Proof. Let E be a fixed elliptic curve without CM. If d = 2 then take X = E × E. By
example 8 there is an isogeny with positive dynamical degree but with non-arithmetic
eigenvalues. Now let d ≥ 3 and κ ∈ {−∞, 0, 1, . . . , d − 2}. If κ = −∞ then take X =
(P1)d−2 × E2. Let f be as in 8 with eigenvalues a2 > ab > b2 > 1 and ab not arithmetic.
Let h : (P1)d−2 → (P1)d−2 be any surjective endomorphism of the form h1 × · · · × hd−2

with λ1(hi) 6= ab for all 1 ≤ i ≤ d − 2. Then given any point P = (Q,R) ∈ X where
Q = (Q1, . . . , Qd−2) we have that

αh×f (P ) = max{αh(Q), αf (R)}.

Since
αh(Q) =

d−2
max
i=1
{αhi(Qi)} ∈ {1, λ1(h1), . . . , λ1(hd−2)}
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and
αf (R) ∈ {1, a2, b2}

we have that
αh×f (P ) ∈ {1, λ1(h1), . . . , λ1(hd−2), b2, a2}.

By construction ab /∈ {1, λ1(h1), . . . , λ1(hd−2), b2, a2} and so ab is not an arithmetic degree
of h× f . On the other hand ab is an eigenvalue of (h× f)∗ as it is an eigenvalue of f ∗. If
we choose λ1(hi) > 1 for all i then the endomorphism is int-amplified as all the eigenvalues
are strictly larger then 1. Now let κ ≥ 0. If κ = 0 take X = Ed. Let f be as above and
define g =: Ed → Ed as g = (g1, ..., gd−2, f) : Ed−2 × E2 → Ed−2 × E2 where the gi are
surjective endomorphisms with λ1(gi) 6= ab. The argument given above gives that ab is an
eigenvalue of g∗ but not arithmetic. If we take λ1(gi) > 1 for all i we once more obtain
that g is int-amplified. Finally take κ > 0. Set X = Cκ × Ed−κ where C is any smooth
curve of genus at least 2. Since κ ≤ d− 2 we may write X = Cκ × Ed−κ−2 × E2. Now let
g : X → X be the morphism which is the identity on the first d − 2 factors and f on E2.
That is

g = identity× f : (Cκ × Ed−κ−2)× E2 → (Cκ × Ed−κ−2)× E2.

Let π : (Cκ × Ed−κ−2)× E2 → E2 be the projection. Then given any point P ∈ X(Q) we
have

αg(P ) = αf (π(P )) ∈ {a2, b2, 1}.
As above we obtain that ab is a non-arithmetic eigenvalue of g∗ as needed.

Remark 6.1.5. In 6.1.4.1 the examples of potential arithmetic degrees which are not
realizable occur when the potential arithmetic degree does not have a nef eigendivisor.
This observation leads to the following question.

Question 3. Let X be a normal projective variety defined over Q and let f : X → X
be a surjective endomorphism. Let µ be a potential arithmetic eigenvalue of f with a nef
eigendivisor in N1(X)R. Then is µ arithmetic?

In light of the above discussion, one might wonder if eigenvalues of f ∗ that are con-
structed in some geometrically meaningful sense are realizable. Indeed, λ1(f) has a geo-
metric realization and is arithmetic. From the point of view of question 3 it also has a nef
eigendivisor.

Question 4. Let X, Y be smooth projective varieties over Q. Consider a diagram

X
f
//

π
��

X

π
��

Y g
// Y
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with f, g, π being surjective. Then is λ1(f |π) realizable as an arithmetic degree?

6.2 Realizability when Alb(X) = 0 and κ(X) = −∞.

In light of 6.1.4.1 and its proof, to construct varieties with endomorphisms that possess
arithmetic eigenvalues we must eliminate the possibility of morphisms to an abelian variety
that has non-arithmetic eigenvalues. To ensure this we will demand that Alb(X) = 0. We
first consider the case of smooth surfaces, and then of small Picard numbers. We then
piece together some small results to be used in the future.

Proposition 6.2.1. Let X be a smooth toric surface and let f : X → X be a surjective
endomorphism that is not an automorphism with λ1(f) > 1. Then f s is polarized for some
s or X = P1 × P1

Proof. There is a classification of smooth toric surfaces; X is either P2,Hr for r ≥ 2 (The
Hirzebruch surface) or P1 × P1 or a series of blow ups of torus invariant points of one of
these varieties. See [12, 10.4] for the details. Since the nef cone of any toric variety is
finitely generated, after iterating f we may assume that f ∗ fixes the rays of the nef cone.
First suppose that X is a series of blow ups at torus invariant points starting at P2. Then
we have a diagram

X = X0
g0

// X1
g1
// . . .

gr−1
// Xr = P2

where each gi is a divisorial extremal contraction. By 4.1.19 there is some n ≥ 1 such
that there are surjective endomorphisms fi : Xi → Xi making the above sequence fn-
equivariant. Then fr : P2 → P2 has an ample eigendivisorHr = OP2(1). Since gr−1 : Xr−1 →
P2 is a blow up we have Hr−1 = g∗r−1Hr is a nef and big divisor that is not ample. Further-
more since gr−1 ◦ fr−1 = fr ◦ gr−1 we have that f ∗r−1g

∗
r−1Hr = g∗r−1f

∗
rHr and so fr−1 has a

nef and big eigendivisor. By induction we have that f0 has a nef and big eigendivisor. So
by 2.1.12 applied to the big cone and its closure we have that f is polarized as λ1(f) > 1.
One can check that P1×P1 blown up at a point is isomorphic to P2 blown up at two points.
Therefore the previous argument applies. If X = Hr then one may directly check that Hr

has a nef and big divisor that is not ample. In other words Hr has effective divisors that
are not nef. Since Hr has Picard number two it must be an eigendivisor. The argument
just given gives for P2 now applies to show that series of blow ups starting at Hr has a nef
and big eigendivisor and so is polarized.
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The above result is sharp in the sense that if f is a degree d > 1 morphism f : P1 → P1

and g : P1 → P1 is a degree d′ > 1 morphism with d 6= d′ then f × g : P1 × P1 → P1 × P1 is
a surjective morphism with λ1(f × g) > 1 but f × g is not polarized.

Proposition 6.2.2. Let X be a smooth projective surface defined over number field with
Alb(X) = 0 and κ(X) ≤ 0. Let f : X → X be a surjective endomorphism. Then f has
arithmetic eigenvalues.

Proof. If λ1(f) = 1 then there is nothing to prove, so we may assume that λ1(f) > 1.
First suppose that f : X → X is an automorphism. Then by [11, 2.4.3] we have that
λ1(f) is the only potential arithmetic degree and by Theorem 4.2.7 it is realizable. So
we may assume that f is not an automorphism. Then by [17, Page 1] we have that X
is a smooth toric surface. If X is not P1 × P1 then f is polarized by Proposition 6.2.1
and every arithmetic degree is realizable. We may thus assume that X = P1 × P1. After
iterating f we may by 4.1.19 applied to the two fibering contractions of P1 × P1 assume
that f = g1 × g2 : P1 × P1 → P1 × P1 with gi : P1 → P1 a degree di morphism. Without
loss of generality assume that d1 > 1. Choose a point P ∈ P1 such that αg1(P ) = d1 and
P2 ∈ P1 a pre-periodic point for g2. Then αg1×g2((P1, P2)) = d1 as needed.

The last remaining case when Alb(X) = 0 according to [17] is when κ(X) = 1 which we
do not treat as to not go too far afield into the world of elliptic surfaces. After developing
some theory we will return to the case of certain singular surfaces.

Proposition 6.2.3. Let X be a projective normal Q-factorial variety with at worst terminal
singularities. Suppose that we have the Picard number ρ(X) is 2. If X admits an extremal
contraction that is not of fibering type then (f 2)∗ acts by scalar multiplication. In particular,
if X is not a Mori fiber space and not minimal then given any surjective endomorphism f
of X we have that (f 2)∗ X acts on N1(X)R by scalar multiplication.

Proof. By hypothesis there is an extremal ray R of X an a contraction φ : X → Y of
birational type. Let H be an ample divisor on Y . Then φ∗Y is a big and nef divisor on X
that is not ample. In particular, it must lie on the boundary of Nef(X). So Nef(X) has a
ray which is big. Then (f ∗)2 has a nef and big eigenvector. By 2.1.12 we have that (f ∗)2

acts by scalar multiplication.

We now describe a method of producing arithmetic degrees.
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Proposition 6.2.4. Let X be a projective normal Q-factorial variety with at worst terminal
singularities and Alb(X) = 0. Suppose we have

X
f
//

φ
��

X

φ
��

Y g
// Y

where φ is a fibering extremal contraction and f, g surjective endomorphisms. Let µ1, ..., µρ−1

be the eigenvalues of g∗ acting on N1(Y )R. Suppose that λ is an eigenvalue of f ∗ that is
not an eigenvalue of g∗ and that D is a non-zero nef divisor class with f ∗D ≡lin λD. In
addition suppose that |λ| > 1 and D does not lie in the image of φ∗(N1(Y )R). If there is a
point Q ∈ Y (Q) with g(Q) = Q then there is a point P ∈ π−1(Q) with αf (P ) = λ.

Proof. Since φ is fibering we have ρ(X)−1 = ρ(Y ) where ρ(X) is the Picard number of X.
We may choose an ample divisor H on Y with A = D+φ∗H being ample on X. Otherwise,
there would be a full dimensional subset of the boundary of Nef(X) which is impossible.
Set F = π−1(Q). Let ĥD be the canonical height function of D (see 4.2.3) defined as

ĥD(x) = lim
n→∞

1

λn
hD(fn(x)).

Notice that
D + π∗H |F= D |F

since the restriction of π∗H to a fiber is zero. Since D+ π∗H is ample the restriction is as
well. Choose a height function hH for H. We have that

ĥD + hH ◦ φ

is a height function for D + π∗H and the restriction to F is a height function for (D +
π∗H) |F . Since the fiber is contracted there is a point P ∈ F with ĥD(P ) 6= 0. As otherwise
the ample height function ĥD +hH ◦φ is constant, which is absurd as the fiber is not finite.
So we have found P ∈ F with ĥD(P ) 6= 0. Then we compute

hA(fn(P )) = λnĥD(P ) + hH(Q)

which tells us that αf (P ) = λ as desired as A is an ample height function, and the
arithmetic degree is independent of the chosen height function.
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Proposition 6.2.5. Let X be a projective normal Q-factorial variety with at worst terminal
singularities and Alb(X) = 0. Suppose that we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

where φ is a birational and extremal contraction. Let λ be a potential arithmetic degree
of f that is not a potential arithmetic degree of g. Suppose that there is a non-trivial nef
divisor D with f ∗D = λD for linear equivalence. Let E be the exceptional locus of φ and
let Z = φ(E). Suppose that there is a point Q ∈ Z with g(Q) = Q. Then λ is an arithmetic
degree.

Proof. We may choose an ample divisor H on Y with A = D + φ∗H being ample on X.
Set F = φ−1(Q). Let ĥD be the canonical height function of D

D + π∗H |F= D |F

since the restriction of π∗H to a fiber is zero. Since D + π∗H is ample the restriction to
the fiber is as well. As we argued above there is a point P ∈ F with ĥD(P ) 6= 0. So we
have found P ∈ F with ĥD(P ) 6= 0. As before we compute

hA(fn(P )) = λnĥD(P ) + hH(Q)

which tells us that αf (P ) = λ as desired.

The above result tells us that the new eigenvalue introduced by a fibering type contrac-
tion is always achieved provided the base morphism has a fixed point and that we have a
nef eigendivisor.

Remark 6.2.6. One runs into the following problem when trying to run a minimal model
type program to obtain realizability results. Suppose that µ is a potential arithmetic
degree, and 1 < |µ| < λ1(f). To find a point P with αf (P ) = |µ| we must have that

Of (P ) = VP is a proper sub variety, and αf |VP (P ) = |µ|. By construction VP has a
dense orbit given by Of (P ). Thus the Kawaguchi-Silverman conjecture suggests that
λ1(f |VP ) = |µ|. So to realize potential arithmetic degrees one must find invariant sub
varieties where λ1(f |V ) < λ1(f). However in very general situations it seems difficult
to find invariant sub varieties. Even in the case of a fibering type contraction there are
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potential difficulties. Suppose that φ : X → Y is a fibering type contraction, and that we
have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

Suppose that every potential arithmetic degree of g is realized and that λ1(f) ≥ λ1(g). If
say αg(Q) = |µ| then choose a nef eigendivisor Dλ for λ and an ample divisor H for Y then

consider the ample height hA = ĥDλ + hH ◦ φ To construct a point P with αf (P ) = |µ| we

must find a point P such that ĥDλ(P ) = 0 and αg(φ(P )) = |µ|. A result of this type seem

to require some knowledge of the set of points where the canonical height ĥDλ vanishes.
This set is extremely interesting but currently still mysterious.

6.2.1 Realizability for toric varieties.

In this section we prove that every potential arithmetic degree of a surjective morphisms of
Q-factorial toric varieties is realizable as an arithmetic degree. We first consider equivariant
morphisms in 6.2.1 and give a classification result for such morphisms in 6.2.15. We
apply 6.2.15 to prove the sAND conjecture for equivariant morphisms of Q-factorial toric
varieties in 6.2.16 and show that any equivariant morphism of Q-factorial toric varieties
has arithmetic eigenvalues in 6.2.17. We then turn to the case of general morphisms in
6.2.1 and prove that every surjective morphism of Q-factorial toric varieties has arithmetic
eigenvalues. Our strategy will be to realize all the potential arithmetic degrees as the degree
on the fiber of an extremal contraction as in 6.2.4 and 6.2.5. Notice that to apply 6.2.4
and 6.2.5 one must be able to find fixed points of morphisms on the target of an extremal
contraction. Since we may freely iterate our morphism by 6.0.3 we must be able to find
pre-periodic points. In this section, the relevant varieties will be Q-factorial toric varieties,
so we seek to guarantee the existence of fixed points for endomorphisms of Q-factorial toric
varieties. In what follows we will use ([36]) for the minimal model program applied to toric
varieties.

Toric morphisms

Projective toric varieties provide an interesting class of varieties all of which admit sur-
jective endomorphisms that are not automorphisms. It seems natural to study the en-
domorphism schemes SEnd(XΣ) for a projective toric variety XΣ and the collection of
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equivariant surjective endomorphisms SEndTΣ
(XΣ) where TΣ is the dense torus of Σ. Let

XΣ be a projective toric variety Σ ⊆ N ∼= Zr. Then the toric surjective endomorphism
of XΣ correspond to matrices in GL(r,Q) with integer entries that preserve Σ is the sense
that if σ ∈ Σ and f is such a matrix then f(σ) ⊆ σ′ ∈ Σ. Since fn = n · Idr preserves all
cones when n > 0 we have that

Z≥0 ⊆ SEndTΣ
(XΣ). (6.4)

Associated to any f ∈ SEnd(XΣ) we have a natural linearization anti-homomorphism of
monoids which sends f 7→ f ∗ : N1(XΣ)Q → N1(XΣ)Q. Anti-homomorphism here refers to
the fact that (f ◦ g)∗ = g∗f ∗. In other words, we have an anti-homomorphism which we
call Lin which linearizes a morphism,

Lin: SEnd(XΣ)→ GL(N1(X)Q), f 7→ f ∗. (6.5)

One may check that n ∈ Z≥0 ⊆ SEnd(XΣ) is mapped to

n · IdN1(X)Q . (6.6)

In other words, Z≥0 ⊆ SEnd(XΣ) is mapped to Z≥0 ⊆ N1(XΣ)Q. This leads to the following
natural question.

Question 5. Let XΣ be a projective toric variety.

1. For which toric varieties is Lin(SEnd(XΣ)) strictly larger then Z≥0? In other words,
which toric varieties possess a surjective endomorphism which is not polarized?

2. For which toric varieties is Lin(SEndTΣ
(XΣ)) strictly larger then Z≥0? In other

words, which toric varieties possess a equivariant surjective endomorphism which is
not polarized?

3. Can it be the case that Lin(SEndTΣ
(XΣ)) is strictly smaller then Lin(SEnd(XΣ)).

In other words, is the linear action of surjective endomorphisms of a toric variety
completely determined by the linear action of equivariant surjective endomorphisms?

Definition 6.2.7. Let XΣ be a projective toric variety defined over Q. We say that XΣ

is linearly simple if Lin(SEndTΣ
(XΣ) has finite index in Z≥0. In other words, every

surjective toric morphism is induced by a homomorphism of tori (x1, . . . , xn) 7→ (xd1, . . . , x
d
n)

for some d > 0 after possibly iterating the morphism.
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We think about this in the following way. A toric variety is linearly simple when the
sub-group of obvious surjective endomorphisms is large in the sense that it is finite index.
In terms of the action on N1(X)R we have the following interpretation.

Proposition 6.2.8. Let XΣ be a projective toric variety defined over Q. Then XΣ is lin-
early simple if and only if for all f ∈ Lin(SEndTΣ

(XΣ) then eigenvalues of f ∗ : N1(X)R →
N1(X)R have the same magnitude.

Proof. Suppose that f is linearly simple. Then there is some n ≥ 1 such that (fn)∗ acts
on N1(X)R by scalar multiplication by λ > 0. Thus (fn)∗D ≡lin λD for divisors D.

If µ is an eigenvalue of f ∗ then µn = λ. Thus |µ| = |λ| 1n . Conversely suppose that if
f ∈ Lin(SEndTΣ

(XΣ)) then every eigenvalue of f has the same magnitude. Since the nef
cone of a projective toric variety is finitely generated ([12, 6.3.20]). By the discussion in
5.2.1 we have that (fm)∗ is diagonalizable with real eigenvalues λ1, . . . , λρ. So (f 2m)∗ has
positive real eigenvalues which are all of the same magnitude. Thus all eigenvalues are the
same, and since (f 2m)∗ is diagonalizable we have that (f 2m)∗ acts by scalar multiplication
on N1(X)R as needed.

For toric surfaces we already have results that can be leveraged to answer question 5.

Theorem 6.2.9. Let XΣ be a smooth projective toric surface.

1. Then Lin(SEnd(XΣ)) is linearly simple if XΣ is not isomorphic to P1×P1. Further-
more P1 × P1 is not linearly simple.

2. For all cases we have that
Lin(SEnd(XΣ))

is also finite index in Z≥0. In other words, the linear part of dynamics on a smooth
toric surface is determined by equivariant morphisms.

Proof. This follows directly from 6.2.1.

Notice that Pn is linearly simple for any n. We have the following basic necessary
condition for XΣ to be linearly simple.

Proposition 6.2.10. Let XΣ be a projective toric variety defined over Q. If the fan Σ has
a non-trivial decomposition as Σ1 × Σ2 then XΣ is not linearly simple.
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Proof. If XΣ and X4 are any two toric varieties then XΣ × X4 ∼= XΣ×4 is not linearly
simple. To see this note that we may take fn : XΣ → XΣ to be the surjective endomorphism
induced by multiplication by n on the lattice NΣ containing the fan Σ and gm : X4 → X4
the equivariant morphism induced by multiplication by n 6= m on the lattice N4 containing
the fan 4. Then fn × gm : XΣ ×X4 → XΣ ×X4 is a surjective endomorphism that does
not act by scalar multiplication on XΣ. So XΣ is not linearly simple.

This leads to the following definition.

Definition 6.2.11 (Simple toric varieties.). Let XΣ be a Q-factorial projective toric variety
defined over Q. We say that XΣ is decomposable if

XΣ = X41 ×X42

with each X4i a Q-factorial projective toric variety of dimension at least 1. We say that
XΣ is simple if it is not decomposable.

We think of the above definition a toric analogy of the definition of a simple abelian
variety, and SEndTΣ

(XΣ) an analogy for the endomorphism ring of an abelian variety. The
following is an immediate corollary of 6.2.9

Corollary 6.2.11.1. Let XΣ be a smooth projective toric surface defined over Q. Then
XΣ is simple if and only if it is linearly simple.

It is natural to wonder if the analogous result holds for higher dimensional varieties.
We now prove that this is indeed the case in 6.2.15.

Lemma 6.2.12. Let XΣ be a Q-factorial projective toric variety defined over Q. Let
f : XΣ → XΣ a surjective endomorphism induced by a mapping of lattices φ : N → N .
Then φ is injective and if σ is a ray of Σ then φ(σ) is a ray of Σ.

Proof. Because φ induces a surjective endomorphism of toric varieties, φ : N ⊗Z Q →
N ⊗Z Q is an isomorphism of rational vector spaces. This is because the induced mapping
φ∨ : M →M induces a map of semi group rings

φ∨ : Q[M ]→ Q[M ]

that induces the homomorphism of tori

SpecQ[M ] = TΣ → TΣ = SpecQ[M ]
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associated to f : XΣ → XΣ. Since this map is surjective it is dominant and so is TΣ → TΣ.
As this is a morphism of affine schemes it is dominant if and only if the morphism of
algebras

φ∨ : Q[M ]→ Q[M ]

is injective, this occurs precisely when φ∨ : M → M is injective. Thus on the level of
vector spaces we have that φ∨ and thus φ is injective and so bijective being a linear
mapping between vector spaces of the same dimension. Now let σ be a ray of Σ. Then as
φ is compatible with the fan Σ we have that φ(σ) ⊆ τ where τ ∈ Σ. Suppose that τ is the
minimal such cone. Associated to σ, τ are torus orbits, O(σ),O(τ) and by [12, 3.3.21] we
have that

f(O(σ)) ⊆ O(τ). (6.7)

Suppose that N is n-dimensional so that dimXΣ = n. Then if γ ∈ Σ is of dimension
k we have that dimO(γ) = n − k. As σ is a ray we have that dimO(σ) = n − 1.
Since f is a finite morphism we have that f(O(σ)) has dimension n − 1 as well. So
dimO(τ) ≥ dim f(O(σ)) = n − 1. So O(τ) has dimension n − 1 or dimension n. If O(τ)
has dimension n then τ must be zero dimensional which is impossible since φ is injective
and so φ(σ) is at least one dimensional. It follows that τ is of dimension n− 1 and so τ is
a ray as needed.

Lemma 6.2.13. Let XΣ be a Q-factorial projective toric variety defined over Q. Let
XΣ → XΣ be an equivariant surjective endomorphism induced by a morphism of lattices
f : N → N . Then fn is diagonalizable for some n. Let fn have eigenvalues λ1, ...., λs of
multiplicities m1, ...,ms. Let Ei be the λi eigenspace of f . Put

Σi = Σ ∩ Ei = {σ ∩ Ei : σ ∈ Σ}.

Then Σi is a complete fan in Ei and we have a decomposition

XΣ = XΣ1 × · · · ×XΣs .

Proof. We first show that fn is diagonalizable for some n. By 4.1.5 f maps rays to rays.
Since f is also injective we have that f permutes the rays of Σ. So for some m we have that
fm fixes the rays of Σ. So we may replace f with fm and assume that f fixes all the rays
of Σ. Since there are at least dimX = n rays we have that f has at least n-eigenvectors
and so a basis of eigenvectors because there is a maximal dimensional cone with a basis of
Q eigenvectors. We conclude that f is diagonalizable. We now show that Σi is a fan for
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any i. Let σi = σ∩Ei for any σ ∈ Σ. We may assume that v1, ..., vw are the ray generators
of σ and v1, ..., vt ∈ Ei. Then I claim that

σi = {
t∑
i=1

aivi : ai ≥ 0}. (6.8)

It is clear that {
∑t

j=1 ajvj : aj ≥ 0} ⊆ σi. Now let v ∈ σi. Then v =
∑w

j=1 bjvj. As each vj
is a ray it is an eigenvector and so we may write f(vj) = γjvj where γj = λi for 1 ≤ i ≤ t
and γj 6= λi for j > t. We then compute

f(v) = λiv =
w∑
j=1

λibjvj (6.9)

=
w∑
j=1

bjf(vj) =
t∑

j=1

λibjvj +
∑
j>t

γjbjvj. (6.10)

We then have that

0 =
w∑
j=1

λibjvj − (
t∑

j=1

λibjvj +
∑
j>t

γjbjvj) (6.11)

=
∑
t<j≤w

(λi − γj)bjvj. (6.12)

Since we assumed that Σ was simplicial we have that v1, ..., vw are independent. So for all
t < j ≤ w we have that

(λi − γj)bj = 0.

Since λ− γj 6= 0 by assumption we have bj = 0 for w ≥ j > t. Thus

v =
t∑

j=1

bjvj

and σi is spanned by the rays of σ in Ei. So σi is a finitely generated polyhedral cone
that is strongly convex as if σ ∩ Ei contains a non-trivial linear subspace then so does σ,
contradicting that σ ∈ Σ is strongly convex. Now if τ is a face of σ then τi is a face of
σi since if τi = u⊥ ∩ σ with u ∈ σ∨. Then u restricted to Ei gives an element of the dual
space E∗i say ui. We also have ui ∈ σ∨i and

u⊥i ∩ σi = {v ∈ σi : (ui, v) = 0} = {v ∈ σ ∩ Ei : (u, v) = 0} = τ ∩ Ei.
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So τi is a face of σi. Now we have that since Σ is a fan that given any two cones,σ, σ′ that
σ ∩ σ′ is a face of both σ and σ′. So

σi ∩ σ′i = (σ ∩ σ′)i

is a face of σi and σ′i and so Σi is a fan. Since Σ is complete |Σ| = NR and so |Σ| ∩Ei = Ei
and Σi is a complete fan. Furthermore, given any cone σ we have that

σ =
⊕

σi

since we showed that σi is generated precisely by the ray generators of σ in Ei. It follows
that we have a decomposition

XΣ
∼= XΣ1 × · · · ×XΣs .

As each XΣi is a closed sub-variety of XΣ the XΣi are projective toric varieties. Since given
σ the ray generators of σi are a subset of the ray generators of σ we have that since XΣ is
Q-factorial that σi has a linearly independent ray generating set as well. So each XΣi is a
Q-factorial projective toric variety of dimension mi and XΣ decomposes as claimed.

We see that the eigenspaces of a surjective toric morphism decompose the toric variety.

Lemma 6.2.14. Let XΣ be a Q-factorial projective toric variety defined over Q. Suppose
that surjective toric morphism f : XΣ → XΣ is induced by a lattice mapping φ : N → N . If
φ is scalar multiplication by n ≥ 1 then f ∗ : N1(XΣ)R → N1(XΣ)R is scalar multiplication
by n.

Proof. By [12, 4.2.8] a Cartier divisor D on a toric variety XΣ is equivalent to a collection
(mσ)σ∈Σ where mσ ∈ M and D on Uσ has local equation χ−mσ . To pullback D we pull
back the local equations and obtain that f ∗D is has local equation f ∗χ−mσ = χ−φ

∨(mσ).
Since φ is multiplication by a scalar n we have that φ is represented by a matrix of the form
n·IdimXΣ

. Then φ∨ is given by the transpose (n·IdimXΣ
)t = n·IdimXΣ

. Thus φ∨(mσ) = nmσ.
Consequently we have that f ∗D ≡lin nD as required.

Theorem 6.2.15. Let XΣ be a Q-factorial projective toric variety defined over Q. Then
XΣ is linearly simple if and only if XΣ is simple.
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Proof. Suppose that XΣ is linearly simple. Then XΣ is simple by 6.2.10. Now suppose
that XΣ is simple. Towards a contradiction let f : XΣ → XΣ be an equivariant surjective
endomorphism with f not linearly simple. Let f be induced by a lattice map φ. After
iterating φ we may assume that φ fixes the rays of Σ and diagonalizable by 6.2.13. Since f
is not linearly simple we have by 6.2.14 we have that φ is not multiplication n ≥ 1. Then
φ must have at least two distinct eigenvalues. By 6.2.13 we have that XΣ decomposes
non-trivially contradicting our assumption.

It is natural at this point to ask, to what extent is a decomposition

XΣ
∼= XΣ1 × · · · ×XΣr

into simple toric varieties unique. We intend to return to this issue in the future. The
ultimate goal being some sort of analogy between dynamics in the toric situation and
dynamics in the abelian variety situation. These results can now be applied to the dynamics
of toric morphisms. We first give a new proof of the sAND conjecture for equivariant
surjective toric morphisms.

Theorem 6.2.16. Let XΣ be a Q-factorial toric variety defined over Q and f : XΣ → XΣ

an equivariant surjective toric morphism. Then the sAND conjecture holds for f .

Proof. Suppose that f is induced by a lattice mapping φ. By 6.2.12 we may assume that
φm fixes the rays of XΣ. Now write

XΣ1 × · · · ×XΣr (6.13)

where each XΣi is simple. Since φm fixes the rays of Σ we have that fm = h1 × · · · × hr
where hi : XΣi → XΣi is a surjective equivariant endomorphism. Note that

λ1(fm) =
r

max
i=1
{λ1(hi)}.

We may assume that λ1(f) > 1 as the sAND conjecture is trivial when λ1(f) = 1. For
some i we have λ1(fm) = λ1(hi) > 1. Let πi : XΣ → XΣi be the canonical projection. Since
XΣi is simple it is linearly simple by 6.2.15. As λ1(hi) > 1 we have that h∗i : N1(XΣi)R →
N1(XΣi)R is multiplication by λ1(hi). Now fix a number field K over which our data is
defined and choose d ≥ 1. The sAND conjecture is equivalent to the assertion that

SK,d = {P ∈ X(Q) : [K(P ) : K] ≤ d, αf (P ) < λ1(f)} (6.14)
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is not Zariski dense. Note that hi : XΣi → XΣi is a surjective toric morphism and XΣi is
simple. Therefore by 6.2.15 hi is linearly simple. As 1 < λ1(fm) = λ1(hi) we may assume
that hi is polarized, in particular there is an ample divisor Hi on XΣi with h∗iHi ≡lin

λ1(hi)Hi Thus αhi(P
′) = λ1(hi) unless the canonical height ĥHi(P

′) = 0. By the Northcott

property for ĥHi there are finitely many points P ′ ∈ XΣi(Q) with ĥHi(P
′) = 0 and [K :

K(P )] ≤ d. Let Qi1, ..., Qis ∈ XΣi(Q) be the points with vanishing canonical height just
described and residue degree at most d that was just described. Note that we have

αfm(P ) =
r

max
i=1
{αhi(πi(P ))}.

Therefore, we have that αfm(P ) = λ1(hi) = λ1(fm) except possibly on the proper Zariski
closed set

s⋃
j=1

π−1
i (Qij).

So we have that
αf (P )m = αfm(P ) = λ1(fm) = λ1(f)m

except at
s⋃
j=1

π−1
i (Qij).

Taking mth roots now gives the desired result.

We now turn to realizability.

Theorem 6.2.17. Let XΣ be a Q-factorial toric variety defined over Q and f : XΣ → XΣ

an equivariant surjective toric morphism. Then f has arithmetic eigenvalues.

Proof. Suppose that f is induced by a lattice mapping φ. By 6.2.12 we may assume that
φm fixes the rays of XΣ. Now write

XΣ1 × · · · ×XΣr (6.15)

where each XΣi is simple. Since φm fixes the rays of Σ we have that fm = h1 × · · · × hr
where hi : XΣi → XΣi is a surjective equivariant endomorphism. By 6.0.3 we may replace
f with fm and prove the result. We may assume that f = h1× · · · × hr. If λ1(f) = 1 then
there is nothing to prove. Otherwise assume that λ1(f) > 1. Note that the Picard number
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of XΣ is d− n where d is the number of rays in Σ. Let di be the number of rays in Σi and
ni the dimension of XΣi . Now note that π∗i : N1(XΣi)R → N1(XΣ)R is an injection and so
the image has dimension di − ni. We have that

⊕r
i=1 π

∗
iN

1(XΣi)R ⊆ N1(XΣ)R has rank

r∑
i=1

(di − ni) = d− n

as
∑r

i=1 di = d and
∑r

i=1 ni = n = dimXΣ. Thus

N1(XΣ)R =
r⊕
i=1

π∗iN
1(XΣi)R

and the action of f on N1(XΣ)R is given by

f ∗
r∑
i=1

Di =
r∑
i=1

h∗iDi

where Di ∈ π∗iN1(XΣi)R. It follows that the only eigenvalues for f ∗ are the eigenvalues of
the various h∗i . This means that the eigenvalues of f ∗ are precisely the integers ni = λ1(hi).
This is because hi : XΣi → XΣi is a surjective endomorphism with XΣi simple, by 6.2.15 we
have that h∗i : N1(XΣi)R → N1(XΣi)R acts by multiplication by ni = λ1(hi). Now consider
any ni > 1. Choose P ∈ XΣi(Q) with αhi(P ) = ni. Let ej be the identity of the torus for
XΣj Let Q be the point of XΣ whose ith coordinate is P and for j 6= i the jth coordinate
is ej. In other words, Q is a point with πi(Q) = P and πj(Q) = ej for j 6= i. Note that
hj : XΣj → XΣj is induced by a lattice homomorphism that is multiplication by a scalar.
So hj(t1, ..., ts) = (t

nj
1 , ..., t

nj
s ) on the torus of XΣj . Thus hj(ej) = ej. Then we have that

αhj(πj(Q)) = 1 for j 6= i and αhi(πi(Q)) = ni. Thus, we have that

αf (P ) =
r

max
j=1
{αhj(πj(P ))} = ni

as needed.

In conclusion, equivariant toric surjective morphisms are built out of polarized mor-
phisms of simple Q-factorial toric varieties. This is reminiscent of the program to under-
stand surjective endomorphisms of projective varieties admitting int-amplified endomor-
phisms. Notice that a polarized endomorphism is in fact int-amplified, so we have realized
this part of the program for this special well behaved class of endomorphisms.

176



Non-equivariant morphisms

We now turn to the general case of non-equivariant surjective endomorphisms of Q-factorial
toric varieties.

Proposition 6.2.18. Let XΣ be a Q-factorial projective toric variety with fan Σ ⊆ N and
τ ∈ Σ. Then V (τ) is Q-factorial and ρ(V (τ)) = ρ(XΣ).

Proof. V (τ) is the toric variety with fan Star(τ). Let v1, ..., vd be the rays of Σ. After re-
ordering we have that v1, ..., vt are the rays of τ . Given a cone σ = Cone(v1, ..., vt, vt+1, ..., vs)
with face τ the associated cone in Star(τ) is given by Cone(v̄t+1, ..., v̄s). Now suppose that
v̄t+1, ..., v̄s was not independent. Then we could find scalars not all zero with

at+1v̄t+1 + ...+ asv̄s = 0

which means we can find scalars a1, . . . , at with

at+1vt+1 + ...+ asvs = a1v1 + . . .+ atvt

which contradicts σ being a simplicial cone. Thus V (τ) is simplicial. The rays of V (τ) are
then v̄t+1, ..., v̄d. Since V (τ) has dimension n − t and d = n + ρ we have that there are
d− t = n+ ρ− t = n− t+ ρ rays. So ρ(V (σ)) = ρ(XΣ) as desired.

Lemma 6.2.19. Let X be a Q-factorial projective toric variety of Picard number 1. Let
f : X → X be a surjective endomorphism. Then f has a pre-periodic point.

Proof. Suppose that λ1(f) > 1. Then by a result of Fakkruddin [16, Theorem 5.1] we have
that the set of pre-periodic points is dense in X. So we may assume that λ1(f) = 1 and
that f is an automorphism. We now induct on dimX = d. When d = 1 we have that
X = P1 and an automorphisms of Pn always has a fixed point given by an eigenvector
for an associated matrix. Now let d > 1. First suppose that X is singular. Let S be the
singular locus of X. Recall that we may write

S =
⋃
σ∈I

V (σ)

where I is the set of singular cones of the fan of Σ. The minimal singular cones thus are
the components of the singular locus S and f permutes them being an automorphism.
After iterating f we may assume that f fixes the components V (σ) and thus we obtain
fk : V (σ) → V (σ). Now V (σ) is a torus closure of a Q-factorial toric variety and so is
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Q-factorial and of Picard number 1 by Proposition 6.2.18. So by induction fk has a pre-
periodic point and therefore so does f . Now assume that X is smooth. Since ρ(X) = 1 we
have that X = Pn (all smooth toric varieties of Picard number 1 are projective spaces) for
some n and as noted above every automorphism of Pn has a fixed point.

Lemma 6.2.20. Let X be a Q-factorial projective toric variety. Let f : X → X be a
surjective endomorphism. Then f has a pre-periodic point.

Proof. We induct on the dimension. If dimX = 1 the result follows from the result on P1.
Otherwise first suppose that X is not a Mori-fiber space. Then X admits KX negative
birational extremal contraction. Let E be the exceptional locus, then dimE < dimX and
we have f : E → E after possibly iterating f . Since E is an orbit closure, by Proposition
6.2.18 that E is a Q-factorial toric variety. By induction we have that f : E → E has
a fixed point and we are done. Otherwise we may assume that X is a Mori-fiber space
φ : X → Y . After iterating f we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

By induction g : Y → Y has a pre-periodic point. After iterating f and g we may assume
that there is a point Q such that g(Q) = Q. Then we obtain a mapping f : F → F where
F = φ−1(Q). Here F is a Q-factorial toric variety by [12, 15.4.5]. If dimF < dimX
then by induction there is a pre-periodic point as needed. This is because F is a normal
projective variety, and the fibers of a Mori-fiber space are connected thus F is irreducible.
Now f : F → F is finite mapping as f is a finite mapping. So the image of f is a dimF -
dimensional closed sub-variety, it follows that f is surjective so we may apply the inductive
hypothesis. Otherwise dimF = dimX and Y is a point. Then X has Picard number 1
and Lemma 6.2.19) gives the result.

Theorem 6.2.21. Let X be Q-factorial toric variety defined over Q. Let f : X → X be a
surjective endomorphism. Then f has arithmetic eigenvalues.

Proof. Let λ be a potential arithmetic degree of f . After replacing f with an iterate we
may assume that f ∗ fixes all rays of the nef cone of X. Let Dλ be a nef eigendivisor
for λ. Choose a facet F of Nef(X) that does not contain Dλ and let φ : X → Y be the
associated extremal contraction. First suppose that φ is birational. Since a toric variety
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admits an int-amplified endomorphism, then after iterating f by ([38, Theorem 5.3]) we
have a conjugating diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

Then we have that F is identified with the Nef cone of Y . Let H be an ample divisor on
Y such that A = Dλ + φ∗H is ample. This occurs as Dλ does not appear in φ∗N1(Y )R by
construction. Let E be the exceptional locus of φ. Let Z = φ(E). Notice that we obtain
maps f : E → E and g : Z → Z. Using 6.2.20 we may take P to be a fixed point of f in
E after potentially iterating f . Thus we have that P = φ(Q) is a fixed point of g in Z.
By the argument in Proposition 6.2.5 we have that λ is realized. Now suppose that φ is
fibering. By 6.2.20 we have that g : Y → Y has a fixed point (after potentially iterating all
morphisms) and so using the same argument as the previous paragraph and Proposition
6.2.4 we have that λ is realizable.

The key result here is two fold:

1. We could find pre-period points to construct good fibers.

2. we could contract all faces of the nef cone, and that every such contraction corre-
sponds to an extremal contraction of a pair (X,D) which allowed us to conclude the
result.

The basic reason why the theorem is true, is that potential arithmetic degrees on the fibers
can be realized, and in the toric case every potential arithmetic degree appears on the fibers
of some extremal contraction. Notice that this shares many details with the argument for
surjective equivariant morphisms.

6.3 Realizability in the Int-amplified setting

In this section we study the realizability question in the setting of varieties admitting int-
amplified endomorphisms. We first give some basic results that illustrate the points of
friction in this approach.
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Proposition 6.3.1. Let X be a Q-factorial variety with terminal singularities and finitely
generated nef cone and Alb(X) = 0. Suppose that f : X → X is a surjective endomorphism.
Let φ : X → Y be a birational extremal contraction. Suppose that we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

Let E be the exceptional locus of φ and let Z = φ(E). We have a second diagram given by

E
f
//

φ
��

E

φ
��

Z g
// Z

Suppose that every potential arithmetic degree of f |E : E → E is realized as an arithmetic
degree. If every potential arithmetic degree of g is realizable as an arithmetic degree and
g : Z → Z admits a pre-periodic point. then every potential arithmetic degree of f is
realizable as an arithmetic degree.

Proof. After iterating f we may assume that f ∗ fixes the rays of the nef cone and so every
eigenvalue has a nef eigendivisor. Let µ be realizable as a potential arithmetic degree of
g. Choose a point P so that αg(P ) = |µ|. If gn(P ) /∈ Z for all n then by the birational
invariance of arithmetic degrees ([34, Lemma 2.4]) we have that |µ| = αg(P ) = αf (φ

−1(P ))
as needed. So we may assume that P ∈ Z. Therefore µ is a potential arithmetic degree of
g |Z and so a potential arithmetic degree of f |E which by assumption is realizable. Now
let λ be a potential arithmetic degree of f that is not a potential arithmetic degree of g.
Then by Proposition 6.2.5 we have that λ is an arithmetic degree.

Corollary 6.3.1.1. In the situation of the above proposition Proposition 6.3.1 if f : E → E
is such that f ∗ acts by a dilation on N1(E)R and every potential arithmetic degree of
g : Y → Y is an arithmetic degree then every potential arithmetic degree of f is realized.

Proof. This is immediate as if f : E → E is polarized, then every potential arithmetic
degree realizable, as there is a potential arithmetic degree.

Because of the importance we give these eigenvalues a name.
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Definition 6.3.2. Let f : X → X be a surjective endomorphism and let φ : X → Y be a
birational morphism. Let g : Y → Y be a surjective endomorphism with

X
f
//

φ
��

X

φ
��

Y g
// Y

Let E be the exceptional locus of φ and let Z = φ(E). Suppose we have a second diagram

E
f
//

φ
��

E

φ
��

Z g
// Z

We call the eigenvalues of f : E → E the exceptional eigenvalues of f with respect to φ.

The above results say that if we know what happens with the exceptional eigenvalues,
then the problem of realizability is translated along a birational extremal contraction. If
we imagine attempting to run the minimal model program to simplify the situation, this
would correspond to a divisorial contraction. To do the minimal model program one must
also consider the situation of flips. This is where we use [42, Theorem 5.3] to transfer
dynamical information between the flips.

Lemma 6.3.3. Let X be Q-factorial projective variety with at worst terminal singularties
and finitely generated nef cone. Suppose that X that admits an int-amplified endomorphism
and Alb(X) = 0. Take f : X → X a surjective morphism and let φ : X → Y be a flipping
extremal contraction with φ+ : X+ → Y the associated flip. Let g : Y → Y be a surjective
endomorphism with φ ◦ f = g ◦ φ. We let E be the exceptional locus of φ. In addition
assume the following.

1. Every potential arithmetic degree of f : E → E is an arithmetic degree.

2. Put Z = φ(E). We assume that g : Z → Z and that this morphism has a pre-periodic
point.

3. We assume that every potential arithmetic degree on X+ is an arithmetic degree.

Then every potential arithmetic degree of X is realized as an arithmetic degree.
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Proof. Let ψ : X 99K X+ be the associated birational map. By ([42, Theorem 5.3]) we
have a diagram

X
ψ
//

f
��

X+

f+

��

X
ψ
// X+

where f+ is a everywhere defined morphism. Since E has codimension two we note that f ∗

and (f+)∗ have eigenvalues of the same magnitude, so the potential arithmetic degrees of
both f and f+ coincide. Let λ be a potential arithmetic degree of f and suppose that there
is a point P+ ∈ X+ with αf+(P+) = |λ|. If (f+)n(P+) /∈ E+ for all n then by the birational
invariance of the arithmetic degree ([34, Lemma 2.4]) we have that αf (ψ

−1(P+)) = |λ| as
needed. We may assume that for all P ∈ X+ \ E+ that αf (P ) 6= |λ|. So we may assume
that P+ ∈ E+ and so λ is a potential arithmetic degree of f+ : E+ → E+. If λ is a
potential arithmetic degree of g : Z → Z then we are done by assumption because then λ
is a potential arithmetic degree of E. Therefore λ is not a potential arithmetic degree of
g. By Proposition 6.2.5 we have that λ is realizable as an arithmetic degree.

The above result shows that while flipping the exceptional eigenvalues remain the same,
and that they are the issue that prohibits a reduction to mori fiber spaces. We now give
an example of how these ideas can be used in practice to prove realizability results. We
first treat the case of rationally connected surfaces with Alb(X) = 0 that admit an int
amplified endomorphism.

Theorem 6.3.4. Let X be a normal Q-factorial surface with at worst terminal singularities
and finitely generated nef cone that is rationally connected over Q and Alb(X) = 0 that
admits an int-amplified endomorphism. Let f : X → X be a surjective endomorphism and
λ a potential arithmetic degree of f . Then λ is realizable as an arithmetic degree.

Proof. We proceed by induction on the Picard number ρ = ρ(X). When ρ = 1 the result
is true. When ρ > 1 suppose that X admits a KX-negative extremal contraction that is
divisorial. After iterating f ([42, Theorem 5.3]) we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

The exceptional locus is now an irreducible curve E that is contracted by φ and Z =
φ(E) is a point say Q that is fixed by g. Thus by Proposition 6.2.5 we have that any
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potential arithmetic degree of f that is not a potential arithmetic degree of g is realized. By
induction every potential arithmetic degree of g is realized and the birational invariance of
the arithmetic degree gives the required result. So we may suppose that every KX-negative
extremal contraction of X is of fibering type as flips do not occur for surfaces because of
codimension reasons. We may now assume the existence of a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

where φ is fibering and Y is a curve. By assumption we have no non-trivial morphism
to an elliptic curve or an abelian variety. So we must have that Y is a Q-factorial and
normal curve that is not of general type or an elliptic curve. It follows that Y = P1 as
a curve of general type admits a morphism to its Jacobian. The Picard number of X is
now 2. If λ1(f) = λ1(g) then λ1(f) can be realized as an arithmetic degree by Theorem
4.2.7. On the other hand, if µ is a second potential arithmetic degree in this situation with
|µ| < λ1(f) then as g has a fixed point, being an endomorphism of P1 and µ is realizable
by 6.2.4. Thus we may assume that λ1(f) > λ1(g). In this case [44, Theorem 5.2] gives the
existence of a morphism ψ : X → P1 and a conjugating morphism h : P1 → P1 such that

X
f
//

ψ
��

X

ψ
��

P1
h
// P1

commutes and λ1(h) = λ1(f). The argument just given shows that any other potential
arithmetic degree is realizable.
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Chapter 7

Using the equivariant MMP to
obtain results in arithmetic dynamics

Our goal in this chapter is to describe a method of obtaining at least partial results in
arithmetic dynamics for varieties that will admit an equivariant MMP. We first describe the
general approach and then describe three applications of these ideas. In 7.1 we study when
a morphism has a dense set of a pre-periodic points. In 7.2 we consider the Medvedev-
Scanlon conjecture from the perspective of the minimal model program. Finally, in 7.3
consider the Kawaguchi-Silverman conjecture for automorphisms and prove a criterion for
when a variety with a finitely generated nef cone to have an automorphism of positive
entropy.

Definition 7.0.1 (Tractable minimal model programs). Let X be a Q-factorial variety with
at worst terminal singularities. Suppose that f : X → X is a surjective endomorphism.

1. A f -equivariant minimal model program or f -equivariant MMP is a sequence

X = X0
φ1
// X1

φ2
// ...

φr
// Xr (7.1)

where each φi is a flipping, divisorial, or fibering contraction along with morphisms
fi : Xi → Xi with f0 = f such that fi ◦ φi+1 = φi+1 ◦ fi.

2. If Xr is a Q-abelian variety then we call the MMP tractable. The reason for this
terminology is that if X admits an int-amplified endomorphism then we can always
find an MMP ending in a Q-abelian variety.
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3. We call the MMP standard if Xr−1 → Xr is a fibering contraction and for i > r−1
we have that Xi → Xi+1 is birational or if Xi → Xi+1 is always birational, and Xr

is a minimal model.

4. We will often denote an f -equivariant MMP byM to denote the data of the sequence
of contractions along with the conjugating morphisms.

5. We write λ1(f |M) for the sequence whose ith coordinate is (dimXi, λ1(fi |φi+1
)). The

purpose of this notation is to differentiate between the various types of minimal model
operations that may occur.

6. If Xr is not zero dimensional then we say that fr : Xr → Xr is a primordial model
of f and call λ1(fr) the primordial dynamical degree of M. If Xr is zero di-
mensional we call fr−1 : Xr−1 → Xr−1 a primordial model of f and λ1(fr−1) the
primordial dynamical degree of M. We denote the primordial degree of M to
be λpr

1 (M).

7. We define the primordial dynamical degrees of the morphism f as

λpr
1 (f) = min{λpr

1 (M) :M a tractable f equivariant MMP} (7.2)

λ
pr

1 (f) = max{λpr
1 (M) :M a tractable f equivariant MMP} (7.3)

if a tractable f -equivariant MMP exists for f and ∞ otherwise. We think of the
collection of primordial models of f as its collection of ancestors. The number λpr

1 (f)
measures the simplest ancestor, while λ

pr

1 (f) measures the most complex ancestor.

Our goal is to capture the complexity of those morphisms which are built from Q-
abelian varieties. If M is an f -equivariant MMP as in 7.1 and Xr is zero dimensional.
Then a primordial model for f is Xr−1 which must have Picard number 1. If Xr is positive
dimensional then f is built out of a surjective endomorphism of a Q-abelian variety, for
example an abelian variety if there is a tractable MMP.

Example 9. Let f1×f2 : Pn1×Pn2 → Pn1×Pn2 be a surjective morphism. Since Pn1×Pn2

admits two extremal contractions, πi : Pn1 × Pn2 → Pni there are two f1 × f2 equivariant
minimal model programs

Pn1 × Pn2

πi
��

f1×f2
// Pn1 × Pn2

πi
��

Pni
fi

// Pni

In this case we have λ
pr

1 (f1×f2) = max{deg f1, deg f2} and λpr
1 (f1×f2) = min{deg f1, deg f2}.
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Example 10. Let X be a smooth variety admitting an MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

with Xr a Q-abelian variety. Let fi = idXi . Then this is a equivariant MMP for idX and
λ1(idX) = λ1(idX) = 1

Example 11. Let X be a simple abelian variety of Picard number 1 and τc : X → X a
translation by a non-torsion point. Then id: X → X is the only equivariant MMP for τc.
Thus λ1(τc) = λ1(τc) = 1.

The tractable minimal model program for a dynamical property D. Let X be a
variety defined over Q with mild singularities so that some version of the minimal model
program is possible. Suppose f : X → X is a surjective endomorphism . Consider some
dynamical property of surjective endomorphisms property D. Our goal is to check if f
has D. For example, D could be if f satisfies the Kawaguchi-Silverman conjecture, f has
arithmetic eigenvalues, or if f has a dense set of pre-periodic points. Then we have the
following program.

1. Verify that if we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

with g surjective and φ a divisorial contraction then D holds for f if and only if it
holds for g.

2. Let φ : X → Y is a flipping contraction with flip φ+ : X+ → Y . If f+ : X+ 99K X+

extends to a morphism, verify that f has D if and only if f+ has D.

3. Determine a condition F (D) such that if

X
f
//

φ
��

X

φ
��

Y g
// Y

is a diagram with φ fibering and that φ has F (D) then f has D if and only if g has
D. We think of F (D) of some formal notion that says that φ has well behaved fibers.
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4. Verify that all primordial models have D. In other words, show that surjective en-
domorphisms of Q-abelian varieties and surjective endomorphisms of Picard number
1 varieties have D.

5. Define that a tractable MMP M has F (D) if every fibering contraction in M has
F (D).

6. Conclude that all surjective endomorphisms that possess a tractable MMP with F (D)
has D.

We now illustrate this idea with some examples of the program and some variants.

7.1 Pre-periodic points for varieties admitting an int-

amplified endomorphism

In this section we begin to enact the tractable minimal model program outlined in 7 with D
being the property that a surjective endomorphism has a dense set of pre-periodic points.
We proved earlier that the collection of pre-periodic points of a surjective endomorphism
of Q-factorial toric varieties is non-empty 6.2.20. However it is natural to ask when is this
set Zariski dense. We first handle (1) and (2) in 7.

Proposition 7.1.1. Let X be a variety defined over Q and let f : X → X be a surjective
endomorphism. Fix n ≥ 1. Then f has a dense set of pre-periodic points if fn does.

Proof. Let fn have a dense set of pre-periodic points. Let U be an open set of X. Then
there is a point u ∈ U with fan(u) = fnb(u). Then u is a pre-periodic point for f as
well.

Proposition 7.1.2. Let X, Y be a irreducible varieties defined over Q. Let φ : X → Y
be a birational morphism. Let f : X → X and g : Y → Y be a surjective endomorphisms.
Suppose that φ ◦ f = g ◦ φ. Then f has a dense set of pre-periodic points if and only if g
has a dense set of pre-periodic points

Proof. Let U ⊆ X be an open set of X and V ⊆ Y be an open set of Y with φ : U → V an
isomorphism. Let Pf be the set of pre-periodic points of f and Pg the set of pre-periodic
points of g. Suppose that Pf is dense in X. Let W be an open set in Y . Then W ∩ V is
non-empty and open and φ−1(W ∩ V ) is open in X. So there is a point p ∈ φ−1(W ∩ V )
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such that fn(p) = fk(p). Then φ(fn(p)) = gn(φ(p)) and φ(fk(p)) = gk(φ(p)) which tells
us that q = φ(p) is a pre-periodic in W ∩ V . So Pg is dense in Y . Now suppose that Pg is
dense in Y . Let W be an open set in X. Then φ(W ∩U) is an open set of V and so there
is a point q ∈ φ(W ∩ U) with gn(q) = gk(q). Since q = φ(p) for some p ∈ U ∩W we have
φ(fn(p)) = φ(fk(p)). Since φ is an isomorphism on U we have that fn(p) = fk(p) and so
Pf is dense in X as needed.

We immediately obtain the following results.

Corollary 7.1.2.1. Let X be a Q-factorial variety with at worst terminal singularities.
Let f : X → X be a surjective endomorphism. Let φ : X → Y be a divisorial contraction.
Let g : Y → Y be a surjective endomorphism. Suppose that φ ◦ f = g ◦ φ. Then f has a
dense set of pre-periodic points if and only if g has a dense set of pre-periodic points.

Corollary 7.1.2.2. Let X be a Q-factorial variety with at worst terminal singularities.
Let f : X → X be a surjective endomorphism. Let φ : X → Y be a flipping contraction.
Let ψ : X 99K X+ be the associated flipping birational mapping. Let f+ : X+ → X+ be
a surjective endomorphism. Suppose that ψ ◦ f = f+ ◦ ψ. Then f has a dense set of
pre-periodic points if and only if f+ has a dense set of pre-periodic points.

Proof. After iterating f we may assume by [42, Theorem 3.3] that we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

X+

φ+

OO

f+
// X+

φ+

OO

If f has a dense set of pre-periodic points then so does g by Proposition 7.1.2 and therefore
so does f+ by Proposition 7.1.2 applied once more. The same argument applies if f+ has
a dense set of pre-periodic points.

We now define F (D). Recall that here D is the property that a morphism has a dense
set of pre-periodic points.
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Definition 7.1.3. Suppose we are given a commuting diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

where X, Y are normal projective varieties and f, g, φ are surjective endomorphisms. Sup-
pose further that φ has connected fibers and that the general fiber is normal. We say that f
has enough pre-periodic points (with respect to φ) if there is a non-empty open set W ⊆ Y
such that for all p ∈ W with gn(p) = gn+k(p) for some n, k ∈ Z≥0 we have:

1. The induced morphism

fk : φ−1(gn(p))→ φ−1(gn+k(p)) = φ−1(gn(p))

has a dense set of pre-periodic points and φ−1(gn(p)) is normal.

2. fn : φ−1(p)→ φ−1(gn(p)) is dominant.

Example 12. Let f : X → X be a surjective endomorphism defined over a field K.
Suppose that X is a normal projective variety. Then we have

X
f

//

##

X

{{

Speck

Then f has enough pre-periodic points for the structure morphism if and only if f has a
dense set of pre-periodic points.

Example 13. Let π : PE → X be the structure morphism of a projective bundle. Suppose
we have a diagram

PE f
//

π
��

PE
π
��

X g
// X

Suppose that λ1(f |π) > 1. Then f has enough pre-periodic points with respect to π. This
is because for p ∈ X we have an induced morphism

f : π−1(p)→ π−1(g(p)).
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The degree of f on the fibers is λ1(f |π) > 1. So f restricted to a fiber is a polarized
endomorphism of projective space; any polarized morphism of projective space has a dense
set of pre-periodic points by [16, 5.3].

We now formalize how these ideas relate to the minimal model program.

An f -equivariant MMPM has enough pre-periodic points if for all φi : Xi−1 → Xi

of fibering type inM we have that fi−1 has enough pre-periodic points with respect to φi.

Definition 7.1.4. Let X be a Q-factorial variety with at worst terminal singularities.
Suppose that f : X → X is a surjective endomorphism. Consider a tractable f -equivariant
MMP M given by

X = X0
φ1

// X1
φ2
// ...

φr
// Xr .

We say that M has enough pre-periodic points if for all φi : Xi−1 → Xi of fibering type in
M we have that fi−1 has enough pre-periodic points with respect to φi.

Our strategy is to run an equivariant MMP on f to determine if f has a dense set of
pre-periodic points. However, a basic issue with the above approach is morphisms with
λ

pr

1 (f) = 1. These are morphisms whose primordial ancestors all have dynamical degree
1. In other words their simplest ancestors may be akin to a translation τc : A → A or
a non-trivial isomorphism f : Pn → Pn. Such a morphism is induced by a morphism of
dynamical degree 1, which may not have a dense set of pre-periodic points. More generally
using the notation of Definition 7.0.1 if φi+1 : Xi → Xi+1 is a fibering type contraction
and the general fiber of φi+1 is a Fano variety of Picard number 1, then if λ1(fi |φi+1

) = 1
we have that fi may fail to have enough pre-periodic points with respect to φi+1. The
definitions given above are meant to isolate precisely where these issues may arise when
applying an MMP. Given an MMP M as in Definition 7.0.1 we see that the coordinates i
of λ1(f |M) are of the form (dimXi, 1) with dimXi+1 < dimXi are where problems occur.
Thus we see that the crucial factor to understand when to the denseness of pre-periodic
points of endomorphisms is the behavior with respect to fibering type contractions.

Proposition 7.1.5. Let φ : X → Y be a fibering type extremal contraction of a Q-factorial
variety with at worst terminal singularities. Suppose that we have a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y
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with f, g surjective morphisms. Suppose that g has a dense set of pre-periodic points and
that f has enough pre-periodic points with respect to φ. Then f has a dense set of pre-
periodic points.

Proof. Let U be an open set in X. Set W0 = φ(U). Since φ is a surjective morphism
between normal varieties 4.1.4 says that φ is open. Consequently we have that W0 is open.
Let W be as in 7.1.3. Set W ′

0 = W ∩ W0. We may find p ∈ W ′
0 with gn(p) = gm(p)

since g has a dense set of pre-periodic points. We may further take p general so that
φ−1(p) is normal and connected; the general fiber of a Mori-fiber space is normal and
connected. Suppose that n ≤ m and that n + k = m. By the definition of enough pre-
periodic points φ−1(gn(p)) is normal and by our choice of p we have that φ−1(p) is normal.
Both being connected and normal they are irreducible and fn : φ−1(p)→ φ−1(gn(p)) is the
composition f ◦ ι : φ−1(p) → φ−1(gn(p)) where ι : φ−1(p) → X is the closed immersion.
Since fn is finite and closed immersions are finite we have that fn is finite unto its image.
Thus fn : φ−1(p) → φ−1(gn(p)) is a dominant finite morphism with normal target. It
follows that

fn : φ−1(p)→ φ−1(gn(p))

is an open mapping by 4.1.4. Taking U ′ = U ∩ φ−1(p) we have that fn(U ′) is open in
φ−1(gn(p)). Since f has enough pre-periodic points with respect to φ, the pre-periodic
points of

fk : φ−1(gn(p))→ φ−1(gn+k(p)) = φ−1(gn(p))

are dense by definition. So there is a point q ∈ fn(U ′) with f lk(q) = f lk+t for some t > 0.
Since q ∈ fn(U ′) we have that q = fn(a) for some a ∈ U ′. Thus

fkl+n(a) = fkl(fn(a)) = fkl+t(fn(a)) = fkl+n+t(a)

so that a is a pre-periodic point of U ′. Since U ′ ⊆ U we have that the pre-periodic points
of f are dense as claimed.

Theorem 7.1.6. Let X be a Q-factorial variety with at worst terminal singularities. Sup-
pose further that X is rationally connected with Alb(X) = 0. Let f : X → X be a surjective
endomorphism. Suppose that f has a tractable MMP with enough pre-periodic points. Then
f has a dense set of pre-periodic points.

Proof. We induct on the Picard number ρ = ρ(X). If ρ(X) = 1 then fn : X → X are the
only possible candidates for a MMP. By assumption for some n we have that fn : X → X
has a dense set of pre-periodic points. Thus f does as well. Now let ρ(X) > 1. After
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iterating f we have by assumption the existence of a tractable MMP with enough pre-
periodic points. If a flipping operation appears in the MMP then we have a diagram

Xi
fi //

φi+1

��

Xi

φi+1

��

Xi+1 fi+1

// Xi+1

Then by Corollary 7.1.2.2 fi has a dense set of pre-periodic points if and only if fi+1

does. Since by assumption we have a finite MMP, we eventually hit a divisorial or fibering
contraction. Suppose that

X
f
//

φ
��

X

φ
��

Y g
// Y

is the first non-flipping contraction in the MMP. Suppose first that φ is divisorial. Then
g : Y → Y has a MMP with enough pre-periodic points by construction and by induction
we have that g has a dense set of pre-periodic points. By Corollary 7.1.2.1 f does as
well. On the other hand if φ is fibering then as above by induction we have that g has
a dense set of pre-periodic points. Since by assumption f has enough pre-periodic points
for φ we apply Corollary 7.1.5) and obtain that f has a dense set of pre-periodic points as
needed.

As an application of the above ideas we analyze the behavior of the pre-periodic points
of toric morphisms between Q-factorial toric varieties from this perspective. Of course we
could argue that f has a dense set of pre-periodic points using our characterization of toric
morphisms.

Proposition 7.1.7. Let X be a n-dimensional Q-factorial projective toric variety with
Picard number 1. Let f : X → X be a surjective toric morphism. Then some iterate of f
is polarized or f is the identity.

Proof. Since XΣ is of Picard number one, XΣ is a simple toric variety. By 6.2.13 every
equivariant surjective endomorphism is induced by a dilation. If f is induced by φ : N → N
and φ(v) = nv and n > 1 then f is polarized by 6.2.14 and we are done. Otherwise n = 1
and we are done.
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Proposition 7.1.8. Let X be a Q-factorial toric variety and f : X → X a surjective toric
morphism. Let φ : X → Y be a fibering type extremal contraction and let g : Y → Y be
a toric morphism with φ ◦ f = g ◦ φ. Let TY be the dense torus of Y and TX the dense
torus of X. Then for t ∈ TY we have that φ−1(t) ∼= X ′ for some Q-factorial projective
toric variety of Picard number 1. Moreover if g(t) = t′ for t ∈ TY then the induced map
f : φ−1(t)→ φ−1(t′) is a surjective toric morphism.

Proof. Here we follow [48, 3.2]. Let X = XΣ for a fan Σ ⊆ NR. The fibering type
contraction can be given by a mapping of lattices

0 // N0
i //// N

φ
// N ′ // 0

where φ is the natural quotient mapping and Y = YΣ′ where Σ′ is the quotient fan.
Let Σ0 = {σ ∈ Σ : σ ⊆ (N0)R}. Then one can check (see for example [48, 3.2]) that
φ−1(TN ′) ∼= TN ′×XN0,Σ0 . Thus the fibers above the torus are naturally toric varieties with
the torus N0 inherited from the torus action on XΣ. Now let t ∈ TN ′ and consider the
morphism f : φ−1(t) → φ−1(g(t)). Since f is equivariant and by construction induces a
map on YΣ we have that f preserves N0 and thus for s ∈ TN0 we have that f(s) ∈ TN0 .
Since f is equivariant we obtain that f : φ−1(t)→ φ−1(g(t)) is as well with respect to the
action of TN0 and thus the action on the fibers is equivariant.

Corollary 7.1.8.1. Let X be a Q-factorial toric variety and f : X → X a surjective
toric morphism. Let φ : X → Y be a fibering type extremal contraction. Then we have a
commuting diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

where g is toric. Furthermore f has enough pre-periodic points for φ.

Proof. Take W to be TY . Then by Proposition 7.1.8 we have that f is toric on the fibers
which have Picard number 1 and f has a dense set of pre-periodic points by Proposition
7.1.7.

Theorem 7.1.9. Let X be a Q-factorial projective toric variety defined over Q. Let
f : X → X be a surjective toric morphism. Then the set of pre-periodic points of f is
Zariski dense.
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Proof. Using the toric minimal model program we may choose equivariant MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr = pt

and we may take all morphisms here to be toric. Furthermore, by Corollary 7.1.8.1 every
fibering type contraction has enough pre-periodic points. So by Theorem 7.1.6 we have
that f has a dense set of pre-periodic points as needed.

7.2 Medvedev-Scanlon conjecture

In this section we illustrate how to apply the tractable minimal model program outlined
in definition 7 to the Medvedev-Scanlon conjecture. In other words we take D to be the
property that f : X → X has a point with a dense orbit.

Definition 7.2.1. Let X be a projective variety and suppose that f : X → X is a surjective
endomorphism. We say that f is fiber preserving if there is a positive dimensional variety
Z and a dominant rational map ψ : X 99K Z such that ψ ◦ f = ψ.

The conjecture is usually stated as follows.

Conjecture 5 (The Medvedev-Scanlon conjecture). Let X be an irreducible variety defined
over an algebraically closed field F of characteristic 0. Let φ : X 99K X be a dominant
rational map. If φ is not fiber preserving then there is a point x ∈ X(F ) with a forward
dense orbit under φ.

The Medvedev-Scanlon conjecture behaves well with respect to iteration.

Lemma 7.2.2 (Lemma 2.1 [6]). Let X be an irreducible variety defined over an alge-
braically closed field F of characteristic 0. Let φ : X 99K X be a dominant rational map.
If φn is not fiber preserving for some n ≥ 1 then φ is not fiber preserving.

Definition 7.2.3. Let X be a normal projective variety defined over Q. Let f : X → X be a
dominant morphism. We say that a closed sub-variety V ⊆ X is dynamically constructible
or D-constructible by f if there is a closed irreducible sub-variety W ⊆ X such that

Of (W ) = V. (7.4)
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We say that W a generator for V . If V is a dynamically constructible sub-variety of X we
say the dynamical difficulty or D-difficulty of V is the number

Difficulty(V, f) = min
W⊆X,W a generator for V

dim(W ). (7.5)

We think of the difficulty as a measure of how hard it is to dynamically construct V .
If V is not D-constructible then we set the difficulty to ∞. If the D-difficulty of V is
finite then we say that an irreducible sub-variety W is a progenitor of V if Of (W ) = V
and dimW = Difficulty(V, f). In other words, the progenitors of V are the generators of
minimal dimension.

Example 14. Let X be any projective variety and f a finite order automorphism of X.
Then the D-difficulty of X with respect to f is n = dimX.

Example 15. Let X = C ×C where C is an elliptic curve. Let f(x, y) = (2x, y). Then f
has no point with dense forward orbit but if P is a non-torsion point of C then P × C is
a curve with a dense orbit under f . So the D-difficulty of C × C is 1.

With this notation we have the following rephrasing of the Kawaguchi-Silverman con-
jecture. Let X be a normal projective variety and f : X → X a surjective endomor-
phism. Suppose that Difficulty(X, f) = 0. Then if P is an progenitor for X we have that
αf (P ) = λ1(f). Our idea here is to point out that the Kawaguchi-Silverman conjecture is
only interesting when X can be built as an orbit closure of the forward orbit of a point of
f . Now let X be a normal projective variety defined over Q equipped with a surjective en-
domorphism f : X → X. The Medvedev-Scanlon conjecture is equivalent to the statement
that the D-difficulty of X with respect to f is zero unless f preserves a rational fibration.

Definition 7.2.4 (Relative difficulty). Let X, Y be normal irreducible projective varieties.
Let f : X → X be a surjective endomorphism and π : X → Y a surjective endomorphism
with g ◦ π = π ◦ f . We say that f has relative D-difficulty at most k with respect to π if
there is a non-empty open set W ⊆ Y such that for all y ∈ W (Q) we have that

Vy = Of (π−1(y))

has D-difficulty at most k. In other words for all y ∈ W we have

Difficulty(Of (π−1(y)), f) ≤ k. (7.6)

We say that the relative difficulty is k if the relatively difficulty is at most k and not at
most k − 1.
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Definition 7.2.5 (Dynamical set up for the Medvedev-Scanlon conjecture.). Let X be a
Q-factorial normal variety with at worst terminal singularities. Suppose that f : X → X
is a surjective endomorphism. Consider an f -equivariant MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

where each φi is a flipping, divisorial, or fibering contraction along with morphisms fi : Xi →
Xi with f0 = f such that fi ◦ φi+1 = φi+1 ◦ fi. An f -equivariant MMP M has relative
difficulty at most k if for all φi : Xi−1 → Xi of fibering type in M we have that fi−1 has
relative difficulty at most k with respect to φi.

Lemma 7.2.6. Let f : X → X be a surjective endomorphism of a normal Q-factorial nor-
mal variety with at worst terminal singularities. Let φ : X → Y be a contraction morphism
and g : Y → Y a surjective endomorphism with g surjective and g ◦ φ = φ ◦ f . Suppose
that φ is birational. Then Difficulty(X, f) = r ⇐⇒ Difficulty(Y, g) = r. In particular, f
has a point with dense orbit if and only if g does.

Proof. Let E be the exceptional locus of φ and let Z = φ(E). Suppose that W ⊆ X is
closed and irreducible and Of (W ) is dense in X. I claim that φ(W ) is dense in Y with
respect to g. Let V be open in Y . Then φ−1(V ) = U is open in X. So there is some
n ≥ 1 with fn(W ) ∩ U 6= ∅ as Of (W ) is dense in X. So there is some P ∈ W with
fn(P ) ∈ U . Then gn(φ(P )) ∈ V . Since φ(P ) ∈ φ(W ) we have that Og(φ(W )) is dense in
in Y . Conversely, suppose that W ⊆ Y is closed and irreducible and Og(W ) is dense in Y .
I claim that Of (φ−1(W )) is dense in X. Let U be open in X. Then φ(U \E) = V is open in
Y \Z. Since W is dense in Y we have that gn(W )∩V 6= ∅. Therefore there is a point Q ∈ W
with gn(Q) ∈ V . Let P ∈ φ−1(Q). Then fn(P ) ∈ φ−1(gn(P )). Since gn(P ) /∈ Z and φ is
birational φ−1(gn(P )) is a singleton (because Z is the image of the exceptional locus of φ).
Thus fn(P ) is the unique point of X with φ(fn(P )) = gn(Q). Since gn(Q) ∈ V we have
that the point in the fiber φ−1(gn(Q)) must be in U . Therefore fn(P ) ∈ U and so φ−1(W )
is dense in X as needed. Now let W be a progenitor of X as in 7.2.3. Then Og(φ(W )) is
dense in Y by the above argument. Since Of (W ) is dense we have that W is not contained
in the exceptional locus of f . Thus dimφ(W ) = dimW as φ is birational and W is not
contained in the exceptional locus. Thus Difficulty(X, f) ≥ Difficulty(Y, g) as Y has a
generator of dimension Difficulty(X, f). Conversely, let W be a progenitor of Y . Then W
is not contained in Z = φ(E) the image of the exceptional locus. As φ is birational and W
is not contained in the image of exceptional locus we have dimW = dimφ−1(W ). By the
above argument we have that φ−1(W ) has dense orbit. Thus some irreducible component
of φ−1(W ) has a dense orbit and we obtain that Difficulty(X, f) ≤ Difficulty(Y, g) as
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X has a generator of dimension Difficulty(Y, g). We thus obtain the desired result that
Difficulty(X, f) = Difficulty(Y, g).

We see that the difficulty is preserved by a conjugating birational morphism.

Corollary 7.2.6.1. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Let φ : X → Y be a flipping contraction and
g : Y → Y a surjective endomorphism with g surjective and g ◦ φ = φ ◦ f . Suppose that
ψ : X 99K X+ is the canonical birational morphism to the flip of φ and that the birational
mapping f+ = φ ◦ f ◦ φ−1 : X+ → X+ extends to a surjective morphism f+X+ → X+.
Then Difficulty(X, f) = r ⇐⇒ Difficulty(X+, f+) = r. In particular f has a point with
Zariski dense orbit if and only if f+ does.

Lemma 7.2.7. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Let φ : X → Y be a contraction morphism
and g : Y → Y a surjective endomorphism with g surjective and g ◦ φ = φ ◦ f . Suppose
that φ is of fibering type. Let W ⊆ Y be closed. Then Og(W ) is dense in Y if and only if
Of (φ−1(W )) is dense in X.

Proof. Suppose that W has a dense orbit under g. Let U be a non-empty open set of X
and set V = φ(U). Then V is open in Y by 4.1.4. So gn(W ) ∩ V is non-empty as W
has a dense orbit. This intersection contains general points, so we may find P ∈ W with
gn(P ) ∈ V and φ−1(gn(p)) a normal Q-factorial Fano variety of dimension dimX −dimY .
We can then find Q′ ∈ U with φ(Q′) = gn(P ). Now consider the mapping on fibers

h = fn : φ−1(P )→ φ−1(gn(P )). (7.7)

The mapping h is open since fn is open by 4.1.4. Therefore h is dominant since φ−1(gn(P ))
is an irreducible variety. Since the map fn is also closed we have that h is a closed and
dominant mapping with an irreducible target. It follows that h is surjective. So there
is a point Q ∈ φ−1(P ) with h(Q) = fn(Q) = Q′. Since φ(Q) = P ∈ W we have that
Q ∈ φ−1(W ) and so fn(φ−1(W ))∩U 6= ∅. Thus Of (φ−1(W )) is dense in X as needed. On
the other hand suppose that Of (φ−1(W )) is dense in X. Let V be open and non-empty
in Y . Then φ−1(V ) ∩ fn(φ−1(W )) 6= ∅ as φ−1(W ) is dense in X. So there is a point
Q ∈ φ−1(W ) with fn(Q) ∈ φ−1(V ). Thus gn(φ(Q)) ∈ V . Since φ(Q) ∈ W we have that
gn(W ) ∩ V 6= ∅ and Og(W ) is dense in Y as needed.

Corollary 7.2.7.1. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Let φ : X → Y be a contraction morphism and
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g : Y → Y a surjective endomorphism with g surjective and g ◦ φ = φ ◦ f . Suppose that φ
is of fibering type. Then

Difficulty(X, f) ≤ dimX − dimY + Difficulty(Y, g)

Proof. Let W be a progenitor for Y as in 7.2.3. As Og(W ) is dense we have that the orbit
of the generic point of W is dense in Y . Thus we may assume that

dimφ−1(W ) = dimX − dimY + dimW

as this is generically the case. By 7.2.7 we have that Of (φ−1(W )) is dense in X. Therefore
one of the irreducible components of φ−1(W ) has a dense orbit in X. In other words

Difficulty(X, f) ≤ dimφ−1(W ) = dimX − dimY + dimW.

Since W is a progenitor for Y with respect to g we have that Difficulty(Y, g) = dimW and
consequently

Difficulty(X, f) ≤ dimX − dimY + Difficulty(Y, g).

We obtain the following pleasing consequence of the definition of difficulty.

Corollary 7.2.7.2. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Suppose that there is an f -equivariant MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

with respect to morphisms fi : Xi → Xi.

1. Assume that each φi is divisorial or a flipping contraction and Xr is a minimal model.
Then

Difficulty(X, f) = Difficulty(Xr, fr).

In other words, the difficulty can be computed on a minimal model.

2. Suppose that φr : Xr−1 → Xr is a Mori-fiber space and each φi for i < r is a divisorial
contraction or a flipping contraction. Then

Difficulty(X, f) ≤ dimX − dimXr + Difficulty(Xr, fr).
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Proof. Assume that each φi is divisorial or a flipping contraction andXr is a minimal model.
Then by 7.2.6 and 7.2.6.1 the difficulty is preserved by divisorial and flipping contractions.
Thus Difficulty(X, f) = Difficulty(Xr, fr) as needed. Now suppose that φr : Xr−1 → Xr is
a Mori-fiber space and each φi for i < r is a divisorial contraction or a flipping contraction.
By the above argument we have that Difficulty(X, f) = Difficulty(Xr−1, fr−1). By 7.2.7.1
we have that

Difficulty(Xr−1, fr−1) ≤ dimXr−1 − dimXr + Difficulty(Xr, fr).

Since the φi are birational for i < r we have that dimX = dimXr−1 and so

Difficulty(X, f) = Difficulty(Xr−1, fr−1)

≤ dimXr−1 − dimXr + Difficulty(Xr, fr)

= dimX − dimXr + Difficulty(Xr, fr)

as claimed.

The above corollary shows that the notion of difficulty is reasonably well behaved in
the presence of an equivariant MMP. We now return to the Medvedev-Scanlon conjecture.

Lemma 7.2.8. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Suppose that f does not preserve a rational
fibration. If f admits an equivariant MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

then fi : Xi → Xi does not preserve a rational fibration

Proof. This follows from the fact that all the morphisms commutes. In particular if fi
preserves a rational fibration then we have a diagram

X
f

//

��

X

��

Xi fi
//

  

Xi

~~

Z

This contradicts the fact that f does not preserve a rational fibration.
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Theorem 7.2.9. Let f : X → X be a surjective endomorphism of a normal Q-factorial
variety with at worst terminal singularities. Suppose that f admits an equivariant MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

where φi is a divisorial or flipping contraction for i < r− 1 and φr : Xr−1 → Xr is a Mori-
fiber space. Suppose that φr−1 has relative difficulty 0. If the Medvedev-Scanlon conjecture
holds for Xr then it holds for X.

Proof. If f preserves a rational fibration then there is nothing to show. Suppose that f
does not preserve a rational fibration. Then fr : Xr → Xr does not preserve a rational
fibration by 7.2.8 and the assumption that Xr satisfies the Medvedev-Scanlon conjecture
we have that fr has a point with dense forward orbit. By 7.2.7 we have that fr−1 has a
fiber φ−1

r (y) with a dense orbit. By assumption φr has relative difficulty 0 and so

Difficulty(Ofr−1(φ−1
r (y)), fr−1) ≤ 0.

Since the orbit is dense we have that Difficulty(Xr−1, fr−1) = 0 and there is a dense orbit
of a point under fr−1. Applying 7.2.6 and 7.2.6.1 we obtain that f has a dense forward
orbit as needed.

This leads to the following question:

Question 6. Consider a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

(7.8)

where f is surjective and φ : X → Y a Mori-fiber space. Under what conditions do we have
that the relative difficulty of f with respect to φ is at most zero. In other words when is
it the case that orbits of fibers of φ under f can always be generated by a point. To study
this situation fix a point p ∈ Y and consider Zp = Og(p) and Vp = Of (φ−1(p)). Then we
have a diagram

Vp
f
//

φ

��

Vp

φ

��

Zp g
// Zp
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In this situation Zp now has a canonical dense orbit and Vp is built out of the fibers of
a fibering contraction and we look for a dense orbit of a point under f . Since g cannot
preserve a rational fibration, neither can f : Vp → Vp so the Medvedev-Scanlon conjecture
predicts that we can always find a point with dense orbit for f in this situation.

We now turn to the case that X admits an int-amplified endomorphism. We give a
reduction to two special cases which represent the current bottleneck for the Medvedev-
Scanlon conjecture for varieties admitting an int-amplified endomorphism.

Theorem 7.2.10. Assume the following.

1. The Medvedev-Scanlon conjecture holds for surjective endomorphisms of all Q-abelian
varieties.

2. Consider a diagram

X
f
//

φ
��

X

φ
��

Y g
// Y

(7.9)

where we assume the following:

(a) X is a normal projective Q-factorial variety with at worst terminal singularities.

(b) X admits an int-amplified endomorphism.

(c) φ : X → Y is a Mori-fiber space and f is surjective.

Then f has relative difficulty 0 with respect to φ.

Then the Medvedev-Scanlon conjecture holds for surjective endomorphisms of Q-factorial
normal projective varieties with at worst terminal singularities that admit an int-amplified
endomorphism.

Proof. Let f : X → X be a surjective endomorphism. Suppose that f does not preserve
a rational fibration. Since X admits an int-amplified endomorphism by 4.1.19 we have an
fn equivariant

X = X1 99K X2 99K X3 99K · · · 99K Xr

where Xr is a Q-abelian variety. Since f does not preserve a rational fibration, κ(X) ≤ 0
as otherwise f preserves the Iitaka fibration. Suppose first that κ(X) = 0. Since κ(X) = 0
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we have that no fibering contractions occur and that dimXr > 0. Since f preserves
no rational fibration neither does fr and so as we have assumed the Medvedev-Scanlon
conjecture for Q-abelian varieties we have that fr has a point with dense orbit. As all the
other contractions are birational we may apply 7.2.6 and 7.2.6.1 repeatedly to obtain that
fn and so f has a dense orbit as required. Now suppose that κ(X) < 0. We now induct
on the Picard number of X. If X has Picard number 1 then the equivariant MMP exhibits
X as a Mori-fiber space over a point after a finite sequence of flips. By 7.2.6.1 we may
assume that f is a Mori-fiber space over a point. In other words we have a diagram

X
fn
//

φ
��

X

φ
��

Y g
// Y

where Y is a point and g is the identity. By assumption (2) we have that f has relative
difficulty 0 with respect to φ. As any point has difficulty 0 we have that f has a dense
orbit as required. Now suppose that the Picard number of X is larger then one. We have
a diagram

X1
fn
//

φ1

��

X2

φ1

��

X2 f2

// X2

.

If φ1 is not a fibering type contraction then by induction we have that the Medvedev-
Scanlon conjecture holds for f2. Since φ is birational we have by 7.2.6 and 7.2.6.1 that fn

has a point with dense orbit and therefore so does f . We may now assume that φ1 is a
Mori-fiber space. Now consider the diagram

X1
fn
//

φ1

��

X2

φ1

��

X2 f2

// X2

.

Then X2 is normal and Q-factorial with at worst terminal singularities. Furthermore, X2

admits an int-amplified endomorphism. To see this note that by assumption X admits an
int-amplified endomorphism, say h. Then there is some m such that φ1◦hm = h2◦φ1 where
h2 : X2 → X2 is a surjective endomorphism. Then if λ is an eigenvalue of h∗2 : N1(X2)R →
N1(X2)R we have that λ is an eigenvalue of hm. Recall that a surjective endomorphism is
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int-amplified if and only if every eigenvalue has absolute value strictly greater then one. So
|λ| = |µ|m where µ is an eigenvalue of h∗. Since |µ| > 1 we have |µ|n = |λ| > 1 and h2 is int-
amplified. Therefore X2 is a normal Q-factorial variety with at worst terminal singularities
that admits an int-amplified endomorphism. Furthermore, f2 does not preserve a rational
fibration as otherwise f would as well by 7.2.8. If κ(X2) = 0 then by our earlier argument
the Medvedev-Scanlon conjecture holds for X2. On the other hand if κ(X2) < 0 then X2

satisfies the inductive hypothesis and so the Medvedev-Scanlon holds for X2 in all cases. In
particular, f2 has a point with dense orbit. By assumption (2) we know that the difficulty
of f relative to φ1 is zero. Since f2 has a point with dense orbit we have that fn has a
fiber with a dense orbit. As the relative difficulty is zero this means that fn has a dense
orbit by a point and so does f . Thus f satisfies the Medvedev-Scanlon conjecture.

Theorem 7.2.10 shows that a possible attack on the Medvedev-Scanlon conjecture for
varieties is to first prove the conjecture for Q-abelian varieties. Then verify that Mori-
fiber spaces have relative difficulty zero. While this may seem daunting, showing that
Q-abelian varieties satisfy the Medvedev-Scanlon conjecture would give partial results on
the difficulty of f . The proof gives the following.

Corollary 7.2.10.1. Assume that the Medvedev-Scanlon conjecture holds for surjective
endomorphisms of all Q-abelian varieties. Then the Medvedev-Scanlon conjecture holds for
all Q-factorial normal projective varieties with at worst terminal singularities that satisfy
the following two conditions:

1. X admits an int-amplified endomorphism.

2. κ(X) = 0.

7.3 Automorphisms of positive entropy and the Kawaguchi

Silverman conjecture.

In this final section we illustrate how the MMP can be used to obtain results in the
Kawaguchi-Silverman conjecture. We will focus on automorphisms of varieties with finitely
generated Nef cones. We first discuss some easy reductions to the Kawaguchi-Silverman
conjecture for automorphisms that surprisingly seem to have not appeared in the literature,
but are relatively easy. Recall that for any projective variety we have an exact sequence

0→ Aut0(X)→ Aut(X)→ π0Aut(X)→ 0.
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Here Aut0(X) is the connected component of the identity element of Aut(X) and is a
smooth connected algebraic group. See section one of [9] for an introduction to these no-
tions. Thus π0Aut(X) in part measures how far Aut(X) is from being a smooth connected
algebraic group.

Lemma 7.3.1 (2.8 in [9]). Let X be a projective variety. Then Aut0(X) acts trivially on
N1(X)R by pull back.

Proof. Fix a line bundle L. Then we have a morphism

tL : Aut(X)→ Pic0(X)

given by
g 7→ g∗L⊗ L−1

This defines a morphism of schemes Aut(X) → Pic(X). Since tL(idenX)) = OX it takes
the connected component of the identity of Aut(X) to the connected component of the
identity of Pic0(X). In other words we have that g∗L⊗L−1 ∈ Pic0(X) when g ∈ Aut0(X).
Since L was arbitrary we have that

g∗L ≡num L

for any line bundle L. Thus Aut0(X) acts trivially on N1(X). as needed.

Corollary 7.3.1.1. Let X be a projective variety and g : X → X an automorphism. Then
λ1(g) only depends on the equivalence class of g in π0Aut(X)

Proof. If g and g′ have the same class in π0Aut(X) then there is some h ∈ Aut0(X) with
gh = g′. Thus

(g′)∗ = (gh)∗ = h∗g∗ = g∗

since h∗ is the identity on N1(X)R. As λ1(f) is the spectral radius of the action of f ∗ on
N1(X) we have that λ1(g) = λ1(g′).

This raises the following question of realizability.

Question 7. Let g ∈ Aut(X) and h ∈ Aut0(X). Now set g′ = gh. Then the above argu-
ment shows that g∗ and (g′)∗ have the same eigenvalues when acting on N1(X). Therefore
the set of potential arithmetic degrees of g and g′ are the same. In general, is the set of
arithmetic degrees the same? In other words if αg(P ) = |µ| then is there some point Q
with αgh(Q) = |µ|?
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In the setting of Question 7 we have that λ1(g) = λ1(g′). This means we will have
points P,Q such that

αg(P ) = λ1(g) = λ1(g′) = αg′(Q).

Consequently we obtain that the maximum arithmetic degree of an automorphism only
depends on the class of the automorphism in the component group π0Aut(X). The question
can then be reduced to the following. Suppose that g is an automorphism and 1 < αg(P ) <
λ1(g) for some point P ∈ X(Q). Then for all h ∈ Aut0(X) is there a point Q ∈ X(Q) with
αgh(Q) = αg(P ). This question should have a positive answer when X is a smooth surface,
for in that case the eigenvalues of automorphisms are of the form λ1(g), λ1(g)−1, µ1, . . . µs
where |µi| = 1 by [11, 2.4.3]. Thus the question for smooth projective surfaces is reduced to
the case of the maximum arithmetic degree being an invariant of the class in the component
group, which we know has a positive answer.

We obtain the following easy result that says that the Kawaguchi-Silverman conjecture
for automorphisms is only meaningful for varieties with a complicated automorphism group.
Recall that it is common to say that an automorphism f : X → X has positive entropy
if λ1(f) > 1.

Theorem 7.3.2. Let X be a normal projective variety defined over Q. If Aut(X) is an
algebraic group then X has no automorphism with positive entropy. In particular, the
Kawaguchi-Silverman conjecture is trivially true for automorphisms of X.

Proof. If Aut(X) is a algebraic group then Aut(X) has finitely many components. Since
the components of Aut(X) are precisely the cosets of Aut0(X) we have that π0Aut(X)
must be finite. In other words given f ∈ Aut(X) we have that fN ∈ Aut0(X) for some
N . Then we have that fN acts trivially on N1(X) as Aut0(X) acts trivially on N1(X).
Since the eigenvalues of fN are all one we have that for all eigenvalues λ of f ∗ acting on
N1(X) we have that λN = 1. In other words the eigenvalues of f ∗ are all roots of unity
and consequently we have that λ1(f) = 1.

We also have the following useful result.

Lemma 7.3.3 (2.10 in [9]). Let X be a projective variety defined over Q. Let L be an ample
line bundle on X. Let Aut(X, [L]Num) be the subgroup of all elements [f ] ∈ π0Aut(X) with
f ∗L ≡num L. Then Aut(X, [L]Num) is finite.

One easily obtains the following.

Corollary 7.3.3.1 (2.11 and 2.12 in [9]). Let X be a projective variety defined over Q.
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1. The kernel of the action of π0Aut(X) on N1(X) is finite.

2. If the nef cone of X is finitely generated and rational then Aut(X) is an algebraic
group.

Proof. We first prove (1). Fix an ample line bundle L. If [f ] ∈ π0Aut(X) and [f ] is in
the kernel of the action of π0Aut(X) on N1(X) then [f ] ∈ Aut(X, [L]Num) which by 7.3.3
is finite as needed. Now suppose that the nef cone of X is finitely generated and rational
It suffices to prove that π0Aut(X) is finite. Fix [f ] ∈ π0Aut(X). Let v1, . . . vr be the ray
generators of Nef(X). We have that each vi is a primitive element of N1(X) in the sense
that it is the first lattice point on the half line R≥0vi. Note that f ∗ is an automorphism
of the lattice N1(X). This is because f ∗ is represented by an integral matrix, and so is
its inverse (f−1)∗. Thus det f ∗ ◦ (f−1)∗ = 1 = det f ∗ det(f−1)∗. It follows that det f ± 1.
Therefore we must have that f ∗vi = vj. Thus f ∗(

∑r
i=1 vi) =

∑r
i=1 vi and consequently [f ]

preserves the ample class
∑r

i=1 vi. By 7.3.3 we have that π0Aut(X) is finite as needed.

We obtain the Kawaguchi-Silverman conjecture for automorphisms of any normal pro-
jective variety with finitely generated and rational nef cone.

Corollary 7.3.3.2. Let X be a normal projective variety over Q. If X has a finitely
generated and rational nef cone then X has no automorphism of positive entropy. In
particular, the Kawaguchi-Silverman conjecture trivially holds for all automorphisms of X.

Proof. By 7.3.3.1 we have that Aut(X) is an algebraic group. By 7.3.2 we have the result.

We see that the Kawaguchi-Silverman conjecture for automorphisms of varieties with a
finitely generated and rational nef cone is trivial. However, this leads to the question about
varieties with finitely generated but non-rational nef cone. For example in [50] there are
examples of a Hyper-Kahler with Picard number 2 and an infinite automorphism group.
In this case an automorphism of positive entropy may arise.

We would like to now define a subgroup of Aut(X) as those automorphisms which
have dynamical degree 1. However, we run into the following problem. It is possible to
have invertible integer matrices A,B with detA = detB = 1 and ρ(A) = ρ(B) = 1 but
ρ(AB) > 1 where ρ is the spectral radius function. Therefore it is a priori possible that
there are automorphisms f, g ∈ Aut(X) with λ1(f) = λ1(g) = 1 but λ1(fg) > 1. There is
a way to avoid this issue when X has finitely generated nef cone.
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Definition 7.3.4. Let X be a projective variety over Q with finitely generated nef cone.
That is Nef(X)R is generated as a cone by finitely many real classes. Suppose that Nef(X)R
has rays v1, . . . vr. Then any surjective endomorphism of X permutes the rays of Nef(X).
In particular we have a homomorphism

r : π0Aut(X)→ Sr

where Sr is the symmetric group on r letters. Let d1 be the size of the image of r. So d1 is
the smallest integer such that for all f we have that (fd1)∗vi = λivi for all i and some real
numbers λi. On the other hand the kernel of the action of π0Aut(X) on N1(X) is finite
by 7.3.3.1. Let d2 be the size of this kernel and let d = lcm(d1, d2). Now define D(X) to
be the subgroup of π0Aut(X) generated by all 2dth powers. That is

D(X) = 〈[f 2d] : [f ] ∈ π0Aut(X)〉 ⊆ π0Aut(X).

We think of D(X) as the subgroup of all classes of automorphisms π0Aut(X) which
are simultaneously diagonalizable with positive eigenvalues. The basic properties of this
group are outlined below.

Proposition 7.3.5. Let X be a projective variety over Q with finitely generated nef cone.

1. If f1, f2 ∈ D(X) then f ∗1 , f
∗
2 are simultaneously diagonalizable.

2. There is an homomorphism Lin: D(X) → diagρ(X)(R>0) ∼= (R∗>0)ρ(X) with finite
kernel. Here ρ(X) is the Picard number of X, diagρ(X)(R>0) are diagonal ρ(X)×ρ(X)
matrices with positive entries and Lin([f ]) = f ∗ : N1(X)R → N1(X)R.

3. The kernel of Lin: D(X) → diagρ(X)(R>0) is precisely the set of f ∈ D(X) with
λ1(f) = 1.

Proof. We write f1 =
∏s1

i=1 g
2d
i and f2 =

∏s2
i=1 h

2d
i where we use that f1, f2 represent

classes in D(X). Then f ∗1 = (g2d
s1

)∗ . . . (g2d
1 )∗. Since each (g2d

i )∗vj = λijvj we have that
f ∗1 vj =

∏s1
i=1 λijvj. Similarly we have (h2d

i )∗vj = µijvj so that f ∗2 vj =
∏s2

i=1 µijvj. Since
some sub-set of the rays is a basis of N1(X)R we have that f ∗1 and f ∗2 share a mutual basis
of eigenvectors.

Now suppose that f ∈ D(X) and Lin(f) = identity. Then f ∗ lies in the kernel of the
action of π0Aut(X) which is finite by 7.3.3.1. On the other hand, the above calculation
shows that for any f1, f2 we have that

f ∗1 f
∗
2 vi =

(
s1∏
i=1

λij

)
·

(
s2∏
i=1

µij

)
vi = f ∗2 f

∗
1 vi.
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Since some subset of the vi is a basis we have f ∗1 f
∗
2 = f ∗2 f

∗
1 and so

Lin(f1f2) = (f1f2)∗ = f ∗2 f
∗
1 = f ∗1 f

∗
2 = Lin(f1)Lin(f2)

so Lin is a homomorphism as desired. Finally note that by the definition of d we have
that for any f ∈ π0Aut(X) that (fd)∗vi = µivi. So (f 2d)∗vi = µ2

i vi. Thus the eigenvalues
of any f ∈ D(X) are positive. Thus Lin(f) is a diagonal matrix with positive entries in
the basis given by the rays with positive entries. Finally if Lin(f) is the identity then
λ1(f) = 1. Conversely let λ1(f) = 1 with f ∈ D(X). Let f ∗vi = λivi with λi > 0. Then
we have shown that f ∗ is diagonal with eigenvalues λi. Then det f ∗ =

∏
i λi = 1. As

0 < λ1(f) ≤ 1 if some λi < 1 then for the product to equal one we must have some λj > 1.
It follows that λi = 1 for all i. Since f ∗ is diagonal we have that f ∗ is the identity. So
ker Lin = {f ∈ D(X) : λ1(f) = 1} and consequently this set is finite.

We can now give a group theoretic criterion for when a variety has an automorphism
with positive entropy in terms of the component group. Let [f ] ∈ π0Aut(X). It is certainly
a necessary condition for λ1(f) > 1 that [f ] have infinite order in π0Aut(X). We show that
this is in fact sufficient. In other words, the obvious necessary condition is also sufficient.

Theorem 7.3.6 (Criterion for when a variety with finitely generated nef cone has an
automorphism of positive entropy). Let X be a normal projective variety over Q with a
finitely generated nef cone. Let f ∈ π0Aut(X). Then λ1(f) > 1 ⇐⇒ f has infinite order
in π0Aut(X). In particular a normal projective variety X with finitely generated nef cone
has an automorphism of positive entropy if and only if π0Aut(X) has an element of infinite
order.

Proof. If f : X → X is an automorphism and λ1(f) > 1 then as λ1(fn) = λ1(f)n we see
that f has infinite order. On the other hand suppose that f has infinite order. Let d be
as in 7.3.4. Then f 2d ∈ D(X). Towards a contradiction suppose that λ1(f) = 1. Then
λ1(f 2d) = 1 and so f 2d lies in the kernel of the action of π0Aut(X) by 7.3.5. By 7.3.3.1
this group has finite order and (f 2d)N = f 2dN = identity contradicting that f had infinite
order.

Thus to produce examples of varieties with automorphisms of positive entropy it suffices
to produce varieties with finitely generated nef cone with component group having an
element of positive entropy. On the other hand, the component group is still currently a
mysterious object. It was only recently shown by Lesieutre in [33] that π0Aut(X) can be
non-finitely generated. On the other hand, it is a folklore question that asks if there exists
infinite finitely presented groups with every element of finite order. See [55, Section 1] or

208



[25]. One might ask if such a group can arise as the automorphism group of a projective
variety with a finitely generated nef cone.

Question 8. Let X be a normal projective variety defined over Q with finitely generated
nef cone. Is it possible that π0Aut(X) is finitely presented but X has no automorphism of
positive entropy? By 7.3.6 this is equivalent to asking if π0Aut(X) can be finitely presented
with no element of infinite order.

We finally note that it may be useful to apply this same analysis to some of the other
cones sitting inside N1(X)R such as the closure of the big cone. Even if the nef cone is not
finitely generated, perhaps one of these other cones could be and similar results could be
applied.

We now turn to the Kawaguchi-Silverman conjecture for automorphisms.

Definition 7.3.7. Let X be a Q-factorial normal projective variety with at worst terminal
singularities and finitely generated not necessarily rational nef cone.

1. Let φ : X → Y be a small contraction and φ+ : X+ → Y an associated flip. We say
that φ is polyhedral if X+ also has finitely generated nef cone.

2. Suppose that X admits an MMP

X = X0 99K X1 99K · · · 99K Xr

with each Xi 99K Xi+1 either a divisorial, flipping, or fibering contraction associated
to a KXi-negative extremal ray, and either Xr is minimal or Xr−1 → Xr is a fibering
contraction. We call the MMP polyhedral if each flipping contraction is polyhedral.

3. Let P be the category of all Q-factorial normal projective varieties with at worst
terminal singularities and finitely generated not necessarily rational nef cone that
admit a polyhedral MMP. We let P−∞ be the sub-category of P that admit a
tractable polyhedral MMP ending at a point. That is all varieties X which admit
an MMP

X = X0
φ1

// X1
φ2
// ...

φr
// Xr

with each φi a divisorial, fibering, or polyhedral flipping contraction and Xr a Q-
abelian variety.

We have the following easy result.
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Theorem 7.3.8. Suppose that the Kawaguchi-Silverman conjecture holds for automor-
phisms of minimal varieties with finitely generated nef cones. Then the Kawaguchi-Silverman
conjecture for automorphisms holds for all varieties in P.

Proof. Let X ∈ P. We induct on the Picard number ρ(X). If ρ(X) = 1 then the
Kawaguchi-Silverman conjecture is true for all automorphisms of X. So we may assume
ρ(X) > 1. If X is minimal we are done by assumption. So assume that X is not minimal.
Then as X ∈P we have a polyhedral MMP

X = X0 99K X1 99K · · · 99K Xr

Since X is not minimal and the contractions are contractions of KXi-negative extremal
rays we have that r > 0. Note that

Xi 99K Xi+1 99K · · · 99K Xr

is a polyhedral MMP for all i > 0. So each Xi is in P. This is because if X → Y
is a divisorial or fibering contraction then if X has a finitely generated nef cone then so
does Y because the nef cone of Y is the face of the nef cone of X. As X has a finitely
generated nef cone, all its faces are also finitely generated. On the other hand since we
have assumed that each flipping contraction is polyhedral, we are guaranteed that all flips
X+ that arise in the MMP also have finitely generated nef cone. Now let f : X → X be
an automorphism. As Nef(X)R has dual cone NE(X)R we have that the closed cone of
curves is finitely generated. Then as f∗ preserves the closed cone of curves we have that
f∗ permutes the rays of NE(X)R. Thus for some N > 0 we have that fN∗ fixes the rays
of NE(X)R. Let φ : X → X1 be the first contraction. Suppose that φ1 is induced by the
contraction of an extremal ray R. Suppose first that R gives a divisorial contraction. Since
fN∗ R = R by 4.1.6 we have a diagram

X

φ1

��

fN
// X

φ1

��

X1 f1

// X1

By induction the Kawaguchi-Silverman conjecture holds for f1 and since φ1 is birational it
also holds for fN and so f . Now suppose that R. By [34, 6.2] we have a diagram

X

φ1

��

fN
// X

φ1

��

X1 f1

// X1
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with f1 an automorphism. By induction the Kawaguchi-Silverman conjecture holds for f1

and so by [34, 6.3] the Kawaguchi-Silverman conjecture holds for fN and so for f as well.
Thus we may assume that R is a flipping contraction. Since fN∗ R = R we have that fN

extends to a morphism f+ : X+ → X+ that is birationally conjugate to f by 4.1.7. So the
Kawaguchi-Silverman conjecture for f is equivalent to the Kawaguchi-Silverman conjecture
for f+. Now repeat the procedure for f+. Either we eventually arrive at a divisorial or
fibering contraction and apply the earlier arguments, or the MMP is a series of polyhedral
flips terminating at a minimal model. By assumption the Kawaguchi-Silverman conjecture
holds for minimal models and so for fN and consequently f .

The ideas in the proof give an argument for the triviality of the Kawaguchi-Silverman
conjecture for varieties in P−∞.

Corollary 7.3.8.1. Let X ∈P−∞. Then X has no automorphism with positive entropy.
In particular the Kawaguchi-Silverman conjecture holds and every element of π0Aut(X)
has finite order.

Proof. Let X ∈ P−∞. We induct on the Picard number ρ(X). If ρ(X) = 1 then the
Nef cone of X is finitely generated and rational. So by 7.3.3.2 we have that X has no
automorphism of positive entropy. Now let ρ(X) > 1. A variety in P−∞ has a tractable
polyhedral MMP

X = X0 99K X1 99K · · · 99K Xr

ending in a point. Arguing as in the proof of 7.3.8 we eventually have a diagram

Xi
fi //

φi
��

Xi

φi
��

Xi+1 fi+1

// Xi+1

where fi and fi+1 are automorphisms, and φi is a fibering or divisorial contraction. More-
over f ∗i and f ∗ have the same eigenvalues and ρ(X) = ρ(Xi). Note that ρ(Xi+1) =
ρ(Xi)− 1 = ρ(X)− 1. By induction we see that fi+1 does not have positive entropy. Let
µ1, ..., µρ(X)−1 be the eigenvalues of f ∗i+1. As λ1(fi+1) = 1 we have |µk| ≤ 1 for all k. Since
the diagram above commutes and ρ(Xi)− 1 = ρ(Xi+1) we have that the eigenvalues of f ∗i
are the eigenvalues of fi+1 along with a single potentially new eigenvalue γ. It suffices to
show that |γ| ≤ 1. We have that

1 = | det f ∗i | = |γ · µ1 . . . µk| = |λ|
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as needed. So X has no automorphism of positive entropy. By 7.3.6 we have that π0Aut(X)
does not contain an element of infinite order.
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