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Abstract

The structural integrity and system performance of large engineering systems are

adversely a�ected by various forms of degradation mechanisms. Modeling of such

mechanisms is accomplished by collecting degradation data from periodic in-service

inspections of structures and components. Subsequently, the degradation prediction is

transformed into system and component lifetimes that are necessary inputs into the

risk-based life-cycle management of critical structures. Stochastic degradation mod-

els are widely applicable for predicting degradation growths in structural components.

The statistical estimation of such models is often challenged by various uncertainties,

such as inherent randomness of a degradation process, parameter uncertainty due to

noise in measurements, coverage issues, probe signal loss, the limited resolution of the

inspection probe, and small sample size.

The Bayesian inference method can be used to quantify the uncertainties of the

model parameters. However, degradation data of engineering structures are often con-

taminated by a signi�cant amount of inspection errors added by various inspection

tools. As a result, the likelihood function becomes analytically intractable and compu-

tationally expensive to a degree that any traditional likelihood-based Bayesian inference

scheme (e.g., Gibbs Sampler, Metropolis-Hastings sampler) turns di�cult for practical

use.

This study proposes a practical likelihood-free approach for parameter estimation

based on the approximate Bayesian computation (ABC) method. ABC is a simulation-

based approach that does not require an explicit formulation of the likelihood function.

Three advanced computational algorithms, namely, ABC using Markov chain Monte

Carlo (ABC-MCMC), ABC using Hamiltonian Monte Carlo (ABC-HMC), and ABC

using subset simulation (ABC-SS), are developed and implemented for the parameter

estimation task. In the context of degradation modeling, various implementation issues
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of these algorithms are discussed in detail.

To improve the mixing properties of ABC-MCMC, a new ABC algorithm is de-

rived based on the HMC sampler that uses the Hamiltonian dynamics to simulate new

samples from its seed samples. Its non-random walk behavior helps to explore the tar-

get probability space more e�ectively and e�ciently than the standard random-walk

MCMC method. The convergence of the proposed ABC-HMC algorithm is proved by

satisfying the detailed balance equation, and its e�cacy is veri�ed using a numerical ex-

ample. Furthermore, A new sequential ABC algorithm is proposed to deal with highly

di�used priors in a Bayesian inference problem. The proposed ABC algorithm is based

on the subset simulation method and a modi�ed HMC algorithm. With faster conver-

gence, the new algorithm turns out to be a powerful method to sample from a complex

multi-modal target density as shown by a numerical example. The applicability of

the proposed algorithm is further extended by transforming it into a likelihood-free

Bayesian model selection tool.

The proposed likelihood-free approach for Bayesian inference is applied to analyze

practical data sets from the Canadian nuclear power plants. The practical data consist

of two types of degradation measurements: (1) wall thickness data of the feeder pipes

that are a�ected by the �ow-accelerated corrosion (FAC) and (2) data from the steam

generator tubes a�ected by the pitting corrosion. Four popular stochastic degradation

models are considered, namely, the random rate model, the gamma process model, the

mixed-e�ects regression model, and the Poisson process model, for characterizing the

degradation processes under study. In the modeling process, various inspection uncer-

tainties, such as the sizing error, the coverage error, and the probability of detection

(POD) error are taken into account. The numerical results demonstrate that, in com-

parison to the likelihood-based approach, the proposed likelihood-free approach notably

reduces computational time while accurately estimating the model parameters. This
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study �nds that these intuitive and easy-to-implement likelihood-free algorithms are

versatile tools for Bayesian inference of stochastic degradation models and a promising

alternative to the traditional Bayesian estimation methods.
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Chapter 1

Introduction

1.1 Background

To support risk-based life cycle management of engineering systems, there is a need for

periodic monitoring of the system and system components, data collection, data analy-

sis, component-lifetime prediction, repair/refurbishment works, replacement planning,

and �nally, decommissioning of existing systems after their end of service life. The

goal, however, is to avoid frequent failures of engineering components and maintain

reliable operation during the service life of the system. In the light of risk-based life

cycle management, this study seeks to �nd answers to the challenging problems that

arise in the degradation model selection, calibration, and prediction � a subset of the

bigger problem that involves the implementation and execution of such management

strategies for large engineering systems.

Structural components are often subjected to various types of degradation pro-

cesses such as corrosion, crack, fatigue, and creep, depending on the condition of the

surrounding environment. For example, the Canadian deuterium uranium (CANDU®)

reactors (see Figure 1.1) contain numerous small diameter pipes called feeder pipes that
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carry heavy water coolant to the reactor core. The �ow-accelerated corrosion (FAC)

is a major form of degradation seen in these pipes [60, 77]. These pipes are a part

of the primary heat transport system of the nuclear power plant, which also contains

steam generators made up of several thousand thin-walled tubes. These tubes help in

producing steam by transferring the heat carried by the heated coolant in feeder pipes.

Similar to the feeder pipes, the steam generator tubes mostly su�er from pitting cor-

rosion [148]. As another example, the reactor core has a large number of fuel channels,

also known as the pressure tubes, carrying the nuclear fuel, that su�er mostly from

the irradiation creep [105]. Although the basic mechanics of these degradation mecha-

nisms is well studied in the literature, high variability of these degradation mechanisms

is seen in practice due to a combination of factors such as the material and geometric

shape of a structural component and its surrounding environment.

Figure 1.1: Layout of a typical CANDU ® reactor and its primary heat transport system [47].
(Image reproduced with permission.)
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Periodic in-service inspections are carried out in nuclear power plants to measure

the extent of degradation in a component. Various non-destructive inspection tools

such as ultrasonic and eddy current probes are generally used for these inspections.

The inspection data are then used to identify the heavily degraded components, plan

component replacement, and set next inspection schedules. Due to variable operating

conditions, di�erent components experience di�erent rates of degradation. This vari-

ability related to the degradation in the component population can be modeled using

stochastic degradation models.

Given a degradation processX (t), an example of a cumulative model for degrada-

tion can be written as X (tn+1 ) = X (tn ) + � X , where � X is the degradation incre-

ment within the time interval (tn ; tn+1 ). The degradation process can be appropriately

modeled using a stochastic process (e.g., gamma process). Sample paths of a typical

degradation growth process are shown in Figure 1.2. Let us assume that each sample

path belongs to a speci�c component. It can be observed that a few sample paths have

Figure 1.2: Sample paths of a typical degradation growth process.
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crossed the thresholdxc which indicates that the speci�c components have turned sub-

standard. On the other hand, those sample paths which have not crossedxc within

the given time frame indicate that the speci�c components can be continued to be

used until they become substandard. This is one type of degradation process; other

types include degradation/�aw generation (e.g., pitting corrosion [148]) and two-phase

degradation growth, i.e., a degradation process that involves a change point [106]).

In stochastic degradation modeling, the main goal is to estimate the parameters of

degradation models from inspection data. However, the estimation task often becomes

challenging due to the e�ect of inspection and sampling uncertainties on the model

parameters. Inspection uncertainties are introduced by imperfect inspection data, such

as imperfect �aw size measurements or non-detection of small defects in components.

On the other hand, limited inspection data is the main reason for sampling uncertainty,

which is caused due to inaccessibility of nuclear systems for high levels of radiation and

large costs associated with remote data collection methods.

1.2 Motivation

The inspection data could be in�uenced by two main inspection uncertainties. Firstly,

the electronic inspection tools, by their very nature, do not measure the actual or true

size of any defect in a component, but instead, give only imperfect or noisy measure-

ments. Moreover, these electronic tools fail to detect small defects in a component

under a certain detection-threshold. Sometimes, these imperfect or noisy measure-

ments become so signi�cant that they make the whole process of degradation assess-

ment, modeling, and prediction very challenging and uncertain. Thus, the inspection

related uncertainties due to imperfect measurements or non-detection of small defects

can not be ignored. Secondly, nuclear facilities are generally inaccessible due to the
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presence of high levels of radiation. Thus, remote data collection methods are di�cult

to employ and quite expensive. For these two reasons, often only a few components

are inspected and only a few component-wise measurements are generally taken. The

limited inspection data eventually introduces sampling uncertainty to the parameters

of the degradation model, which adds up to inspection uncertainty and makes the

degradation assessment more complicated and ambiguous.

There is certainly a need for a proper approach to assess the limited noisy degrada-

tion data and estimate the parameter uncertainties in stochastic degradation modeling.

The two most popular methods for parameter estimation are the maximum likelihood

estimation (MLE) method and the Bayesian inference method. MLE is based on the

frequentist approach to inference, which treats the unknown parameters of a model

as �xed quantities or constants. Frequentist inference is related to the frequentist

interpretation of probability, according to which probabilities are presumed as lim-

iting frequencies of outcomes after in�nite hypothetical repetitions of an experiment

generating statistically independent results [140]. In this approach, the speci�c esti-

mators are assessed under repeated sampling of the available data, and the parameter

uncertainties are represented in terms of con�dence intervals obtained from the nu-

merical estimates of the unknown model parameters. The Bayesian approach, on the

other hand, interprets probabilities as subjective, i.e., based on an individual's per-

sonal judgment/experience, and dependent on the available data/information. Thus,

the Bayesian probabilities of a speci�c event can vary among individuals [140]. In this

inference approach, all unknown model parameters are assumed as random variables,

and the associated (posterior) probability distributions represent the uncertainties of

these parameters.

Although MLE is well suited for large amounts of available data, the Bayesian

approach can handle uncertainties more e�ciently with only a small amount of available
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data [20]. The main reason behind this anomaly is that the likelihood function formed

using limited data is often unable to generate distinct peaks on its surface, leading to

problems related to the convergence of the maximum likelihood estimates. As a result,

the maximum likelihood estimates of the parameters show larger uncertainty in terms of

large con�dence intervals. Besides, in Bayesian inference, prior beliefs (represented by

a prior distribution) about the model parameters are formally updated using the Bayes'

theorem. The updated posterior belief or posterior distribution accurately represents

the parameter uncertainty. The posterior distribution, in words, can be written as

Posterior =
Likelihood � Prior

Normalizing constant
(1.1)

where the likelihood function represents the probability density of the observed data

that depends on the underlying model and the normalizing constant represents an

integration over the entire range of the parameter space. Thus, the Bayesian inference

method emerges as a powerful tool for handling large uncertainties in the inspection

data.

A disadvantage of the Bayesian inference method is that it is di�cult to use in en-

gineering practice due to its computational complexities. Although the computational

di�culty of computing the normalizing constant can be avoided by implementing the

Markov chain Monte Carlo (MCMC) methods, the evaluation of the likelihood func-

tion numerous times still remains as a computational burden for the Bayesian inference

approach. For a detailed description on the MCMC methods, the reader is referred

to Chapter 3. The primary reason behind this computational issue is that the sample

likelihoods of stochastic degradation models often involve large numbers of convolution

integrals or high-dimensional in�nite sums or, sometimes, a combination of both. For

instance, see Chapter 2, where the likelihood functions of standard degradation mod-
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els are derived for noisy data. These types of complex likelihood functions impose a

severe computational burden on the traditional Bayesian computation schemes. The

computational complexity of the Bayesian inference method often compels one to dis-

card imperfect data and only perform the analysis based on healthy or less noisy data.

An analyst may choose to use simple models so that they can plug-in conjugate priors

and obtain posterior distributions analytically without any further e�ort. But these

simple models may not represent the degradation mechanism well.

After analyzing the computational issues related to the standard Bayesian inference

method, it can be stated that we need a likelihood-free treatment for the parameter es-

timation problem in degradation modeling. To overcome the drawbacks of computing

a likelihood function, and expand our domain of model selection, the novel approx-

imate Bayesian computation (ABC) technique [82, 124] can be implemented. ABC

is a likelihood-free Bayesian computation algorithm that completely avoids likelihood

computation by using the idea of forward simulation. The basic concepts of the ABC

method are presented in Chapter 4. If data simulation from a forward model is com-

putationally cheap, then ABC turns out to be an e�cient alternative to the traditional

Bayesian inference method. Among the many advantages of ABC, this method is

intuitive, simple-to-understand, and easy-to-implement � making it a perfect choice

for the Bayesian inference of stochastic degradation models, particularly for practical

applications.

1.3 Research Gaps

Literature on stochastic degradation modeling is vast. However, if one concentrates on

a subset of this literature that includes degradation modeling using Bayesian methods,

the following research gaps can be noticed:
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1. Compared to the MLE approach, the literature on the Bayesian approach is

limited due to the numerical complexities involved in the implementation of this

method. Thus, a simple and easy-to-implement Bayesian computational method

is needed, which can handle the parameter inference problem e�ciently in the

stochastic degradation modeling process.

2. An important problem in the degradation modeling procedure is the model selec-

tion process. Nguyen et al. [96] proposed a sound methodology for degradation

model selection using the MLE method. However, they did not consider mea-

surement noise in their analysis. The MLE approach can be a better option if

the data is noise-free and of large volume. But, for a small amount of data, the

Bayesian model selection approach is the most suitable approach. The Bayesian

model selection method has a greater advantage over other approaches because

this approach considers the parameter uncertainties more naturally through pos-

terior distributions and automatically accounts for the number of parameters in

a model (i.e., penalize a model if it has more parameters). There is again a need

for an e�cient and easy-to-implement method that can avoid the complexity of

the traditional Bayesian model selection procedure.

3. There is a gap in the literature on how to integrate the uncertainties in degra-

dation model parameters for population lifetime prediction and estimation of

survival probability or reliability of a system of components.

The ABC method is a simulation approach for estimating parameters of a model.

ABC compares simulated data sets with the observed data set using a distance func-

tion, and obtains the posterior parameter samples by accepting or rejecting the corre-

sponding parameters based on a tolerance threshold on the distance values. To tailor

the ABC algorithm according to the needs of stochastic degradation modeling, the
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following investigations are necessary:

1. One major issue in the ABC method is that there is a lack of practical guideline

for the selection of the distance function. Moreover, di�erent kinds of degra-

dation mechanism comes with di�erent kinds of inspection data. For example,

�aw growth data contain multiple measurements of �aw growths from di�erent

components, whereas �aw generation data will contain the number of �aws and

their measured depths. Thus, it is necessary to identify the special features of the

degradation data at hand, and develop distance functions accordingly to produce

the best results from ABC in stochastic degradation modeling.

2. Degradation data are often imperfect and limited in amount. In such a situation,

one needs a method that properly takes the measurement errors and detection

issues in data into account. Except for the ABC method proposed by Wilkin-

son [145], none of the existing ABC algorithms properly address the issue of

measurement errors and detection issues. However, Wilkinson's ABC needs a

well-de�ned error distribution that may not be available when dealing with a

practical data set. Thus, the existing ABC algorithms need to be modi�ed to

account for imperfect data which can be done at the model simulation stage.

3. One needs to select a tolerance threshold for the ABC to work. The tolerance

threshold determines whether the simulated data is close enough to the observed

data or not. A smaller tolerance threshold gives better accuracy, but the question

remains how small is small enough? Hence, there is a need to investigate on the

selection of the tolerance threshold for modeling degradation data using ABC.

4. The ABC method has a high rejection rate when a smaller tolerance threshold

is chosen. Thus, various sampling algorithms, such as MCMC and sequential
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Monte Carlo, can be used within the ABC framework to reduce the rejection rate.

However, these sampling schemes either have high repetitions of samples (e.g.,

ABC-MCMC) or high number of simulation levels (e.g., sequential ABC) when

many parameters are involved in the process. In fact, the sequential ABC method

may get stuck in a particular level for a very long period � making the parameter

estimation process sluggish. These issues need to be investigated particularly for

stochastic degradation modeling since it involves a varying number of parameters

depending on the underlying model.

1.4 Research Objectives

The principle objective of this thesis is two-fold:

1. To develop a uni�ed framework for likelihood-free inference of parameters of

stochastic degradation models.

2. To integrate parameter uncertainties into model prediction, lifetime estimation,

and survival probability calculation of components.

To achieve this goal, the research objectives of this study are divided into many sub-

steps as follows:

ˆ Algorithmic improvements:

1. To identify potential candidates for the ABC distance function and investi-

gate their e�cacy with various kinds of degradation data.

2. To develop an ABC framework that e�ectively deals with measurement noise

and detection errors in degradation data.
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3. To develop an advanced ABC scheme for degradation modeling that reduces

the rejection rate in the basic ABC scheme, uses less model simulations, and

provides a proper guideline for the selection of the tolerance threshold.

ˆ Application:

1. To explore and compare the computational di�culties posed by the imple-

mentation of both likelihood-based and likelihood-free Bayesian estimation

schemes for standard stochastic degradation models (e.g., random rate, re-

gression, gamma process, and Poisson process).

2. To develop and implement a Bayesian model selection framework for degra-

dation data using the likelihood-free approach.

3. To devise strategies for integrating parameter uncertainties into model pre-

diction, lifetime estimation, and estimation of survival probabilities for the

system and individual components.

1.5 Organization of the Thesis

The thesis is organized as follows:

ˆ Chapter 1 presents the research goals of this study along with the background,

the motivation, and the research gaps present in the literature of degradation

modeling.

ˆ Chapter 2 presents the basic properties of the standard degradation models under

consideration and the corresponding model likelihoods derived for degradation

data that are impacted by various types of inspection uncertainties.

11



ˆ Chapter 3 presents the popular MCMC methods and shows various MCMC al-

gorithms for Bayesian computation.

ˆ Chapter 4 presents the basic idea of likelihood-free inference along with various

standard ABC algorithms. A number of algorithms are developed and the details

of their implementation are also presented in this chapter.

ˆ Chapter 5 presents various case studies on corrosion growth modeling as prac-

tical applications of the proposed ABC framework using degradation data from

CANDU® nuclear power plants.

ˆ Chapter 6 presents a case study on �aw generation modeling using pitting cor-

rosion data from the CANDU® steam generator tubes.

ˆ Chapter 7, �nally, presents the conclusions of the study and discusses the direc-

tions for future research.
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Chapter 2

Degradation Models

2.1 Introduction

Stochastic process models are useful for modeling degradation processes due to their

ability to imitate �aw generation and growth directly by using a collection of random

variables, where the corresponding distributions are functions of time. An example of

early application of stochastic process models in degradation can be found in reference

[17], where the authors have used the renewal process model to study the fatigue

damage of structures under dynamic loads. The popular Paris-Erdogan law of fatigue

crack growth is in fact a non-linear general path model [102]. Modeling bridge deck

deterioration [80, 81], rock rubble replacement [139], and water pipe degradation [93]

are a few examples of current applications of the stochastic process models. Moreover,

for modeling the degradation of nuclear power plant components, such as FAC in feeder

pipes [28, 59�61, 100, 147], fretting wear and pitting �aws in steam generator tubes

[26, 148], stochastic process models are widely accepted.

This study considers four popular probabilistic/stochastic degradation models: the

random variable model, the gamma process model, the linear mixed-e�ects regression
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(LMER) model, and the non-homogeneous Poisson process (NHPP) model. The �rst

three models, random variable, gamma process, and LMER, are used to model the

�aw growth phenomena (e.g., FAC-induced wall thickness loss of piping components),

whereas the NHPP model is used to characterize the �aw generation process in com-

ponents over time (e.g., pitting corrosion in steam generator tubes).

2.2 Flaw Growth Models

2.2.1 Random Variable Model

The basic idea of the random variable model is to capture the variability related to

the degradation growth rates of di�erent components in a component population. This

model is generally applied to problems such as modeling corrosion and wear phenomena

[45, 65, 78, 98], where the temporal uncertainty related to the degradation process is

not signi�cant [99].

Basic Properties

The random variable model, also known as the general path model, is de�ned by a

deterministic function that has random parameters. SupposeX (t) is the degradation

state of a structural component at time t. According to this model, X (t) can be

represented as

X (t) = g(t; � ) (2.1)

whereg(t; � ) is a function of time t and � is a vector of random variables. The �aw

growths of individual components are represented byg(t; � k), where� k is a realization

of � . The most basic version of the random variable model is the linear random rate

model. AssumingX (0) = 0 , the random rate model can be described by the equation
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X (t) = Rt, where the random variableR > 0 is used to model the degradation growth

rate in a system of components. Several �aw growth paths simulated from the random

rate model are shown in Figure 2.1. Once the distribution of the degradation rateR is

Figure 2.1: Simulated �aw growth paths of the random rate model.

known, one can determine the distribution of the degradation process at timet. The

mean and variance ofX (t) can be computed as

E[X (t)] = tE[R]; Var[X (t)] = t2Var[R] (2.2)

whereE[ � ] and Var[ � ] are the expectation and variance operators, respectively. Some-

times, due to manufacturing (e.g., bending) or welding operations, initial conditions of

structural components (e.g., initial wall thicknesses of pipes) are not known precisely.

This leads to the inclusion of an additional random variableA to the model that rep-

resents the initial condition of a structural component. Thus, assumingX (0) = A, the
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random rate model can be written as

X (t) = A + Rt (2.3)

whereA is assumed to follow a distribution whose parameters are unknown and needs

to be estimated.

Likelihood Function

Suppose inspection data fromN number of components are available. Thei th compo-

nent is inspected at times,t i 1; t i 2; � � � ; t im i , wheremi is the total number of inspections

conducted on the samei th component. Let us assume that the true degradation mea-

surements are represented asx i 1; x i 2; � � � ; x im i and the observed degradation measure-

ments asyi 1; yi 2; � � � ; yim i . The observed degradation measurements are often masked

with measurement noise added by the inspection tools. For instance, ultrasonic probes

that are used for pipe inspections add random sizing error to the inspection data.

Consequently, using the basic model for degradation growth

Y(t) = X (t) + Z = A + Rt + Z (2.4)

the measurement model for thei th component at the j th measurement time can be

written as

yij = ai + r i t ij + zij ; ai � f A ( � j � 1); r i � f R( � j � 2); zij
iid� f Z ( � ) (2.5)

whereai is a realization of the random variableA with distribution f A ( � j � 1), r i > 0 is

a realization of the degradation growth rateR with distribution f R( � j � 2), and �nally,

the measurement errorszij are independent and identically distributed (iid) random
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variables with the distribution f Z ( � ). Both parametersA and R are independent to

each other and their PDFs are conditioned on the vector of distribution parameters� 1

and � 2, respectively.

All measurements of ani th �aw can be represented by a vectory i = f yi 1; yi 2; � � � ; yim i g
> ,

where > denotes transposition. The initial degradationai and the corrosion rater i

are constant for thei th component. For givenai and r i , the true degradation growth

x ij = ai + r i t ij is a constant. Thus, the distribution of the measurementsyij , condi-

tioned on ai and r i , is solely dependent on the distribution of the measurement noise

f Z ( � ), and can be written as,

f Yij (yij j ai ; r i ) = f Z (yij � ai � r i ) (2.6)

Assuming independency between the degradation measurements, the joint density of

the measurements ofi th component, conditioned onai and r i , can written as

f Y i (y i j ai ; r i ) =
m iY

j =1

f Yij (yij j ai ; r i ) =
m iY

j =1

f Z (yij � ai � r i ) (2.7)

Thus, the sample likelihood for thei th component's data can be written as

` i (� j y i ) =
Z

ai

Z

r i

f Y i (y i j ai ; r i )f A (ai j � 1)f R(r i j � 2)dai dr i

=
Z

ai

Z

r i

� m iY

j =1

f Z (yij � ai � r i )
�

f A (ai j � 1)f R(r i j � 2)dai dr i

(2.8)

where � = f � >
1 ; � >

2 g> . Assuming the component-wise measurements to be indepen-

dent, the sample likelihood using data from all components can be written as
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L (� j y1; y2; � � � ; yN ) =
NY

i =1

` i (� j y i )

=
NY

i =1

Z

ai

Z

r i

� m iY

j =1

f Z (yij � ai � r i )
�

f A (ai j � 1)f R(r i j � 2)dai dr i

(2.9)

As it can be observed, the likelihood function of the random rate model is a product of

N two-dimensional integrals. For parameter estimation, this likelihood function needs

to be evaluated several times. The numerical integration can be performed using Monte

Carlo simulation methods [76].

2.2.2 Gamma Process Model

The stochastic gamma process is used to model a degradation process that shows tem-

poral uncertainties to a level which is signi�cant for model prediction. During the last

four decades, the stochastic gamma process has been extensively used to model various

degradation processes in engineering structures and components. In a very interesting

paper by Abdel Hameed [1], gamma process was �rst proposed as a proper model for

modeling stochastic degradation. Examples of using gamma process in various degra-

dation processes such as corrosion, concrete creep, crack growth, fatigue, and chloride

attack in concrete structures can be found in references [8, 35, 46, 71, 74].

Basic Properties

The stochastic gamma process model can be used to characterize a monotonically non-

decreasing degradation process. The key assumption of the gamma process model

is that a degradation processX (t) is the result of accumulation of several small and

independent random degradation growths. To be more speci�c, the degradation process

X (t) will have the following properties [138]:
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1. At time t = 0, X (t) = 0 .

2. For 0 � t1 � t2 � � � � � tn , all increments ofX (t), i.e., X (t1) � X (0); X (t2) �

X (t1); � � � ; X (tn ) � X (tn� 1) are independent random variables.

3. An increment � X = X (t + � t) � X (t), for � t � 0, follows gamma distribution

with the following probability density function (PDF):

f � X (� x) =
(� x=� )a(t+� t )� a(t )� 1

� �( a(t + � t) � a(t))
exp(� � x=� ); � x � 0

= G(a(t + � t) � a(t); � )

(2.10)

where G( � ; � ) is the gamma PDF,a(t) > 0 is the shape parameter,� > 0 is the

scale parameter, and�( s) =
R+ 1

0 ts� 1e� tdt is the complete gamma function.

The shape parametera(t), for t � 0, is a non-decreasing, right-continuous, real valued

function, and at t = 0; a(t) = 0 . a(t) is assumed to be proportional to a power law,

a(t) / t � ) a(t) = �t � , where � > 0 and � > 0 are constants [138]. A gamma

process model with the parameter� = 1 is called stationary, whereas a gamma process

having � 6= 1 is called a non-stationary process. Figure 2.2 shows several simulated

�aw growth paths from stationary and non-stationary gamma process models with

� = 1:5 and � = 0:2. The gamma distribution has a special feature that makes

the sum of two gamma random variables also a gamma random variable. Following

the same argument, the cumulative degradationX (t) at time t can be considered a

gamma distributed random variable with PDF G(�t � ; � ) [79]. To calculate the mean

and variance of the processX (t), the following expressions can be directly used:

E[X (t)] = �t � �; Var[X (t)] = �t � � 2 (2.11)
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(a) (b)

Figure 2.2: Simulated �aw growth paths of the gamma process model for (a)� = 1 and (b)
� = 1 :5.

Likelihood Function

Under the assumption of an additive noise model, the measured degradationY(t) is

represented as a sum of random initial degradationA, true degradation X (t), and

measurement noiseZ as [78]:

Y(t) = A + X (t) + Z (2.12)

Thus, a noisy degradation measurement of componenti at time j can be represented

as yij = ai + x ij + zij , where ai (yi 0 = ai ) is the initial degradation, x ij is the true

degradation growth at time t ij , and zij (zi 0 = 0) is the random sizing error. The

unknown initial degradation ai (constant for each component but variable over the

entire population) is a realization ofA with distribution f A ( � ), the true degradation

x ij is a realization of the gamma degradation processX (t), and the sizing errorzij is

a realization of the iid random variableZ with distribution f Z ( � ).
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Suppose degradation monitoring data are collected from repeated inspections of a

group ofN components at various time intervals. For ani th component, true values of

degradation at di�erent inspection timest i 0; t i 1; � � � ; t im i are denoted asx i 0; x i 1; � � � ; x im i ,

where x i 0 = 0 at time t i 0 = 0 and mi is the total number of inspections. The degra-

dation growth over a time interval � t ij = t ij � t i;j � 1 is denoted as� x ij = x ij � x i;j � 1,

where j = 1; 2; � � � ; mi . The increment � x ij = x ij � x i;j � 1 is a realization of the ran-

dom variable � X ij which follows the gamma distributionG(� � t (� )
ij ; � ), where� t (� )

ij =

t �
ij � t �

i;j � 1. All degradation increments for ani th component are denoted as a vector

� x i = f � x i 1; � x i 2; � � � ; � x im i g
> with the probability distribution:

f � X i (� x i j � ) =
m iY

j =1

G(� � t (� )
ij ; � )

=
m iY

j =1

(� x ij =� )� (t �
ij � t �

i;j � 1 )� 1

� �( � (t �
ij � t �

i;j � 1))
exp(� � x ij =� )

(2.13)

where� = f �; �; � g> is the vector of unknown model parameters.

Assumingyij to be a realization of the random variableYij , the sample likelihood

for degradation measurement data collected from ani th component can be written

in terms of the joint distribution of Yi 1; Yi 2; � � � ; Yim i , which are dependent variables.

Thus, it is more convenient to write the sample likelihood in terms of the joint dis-

tribution of degradation increments [77, 146]. Let us denote a measured degradation

increment for an i th component over a time interval � t ij as � yij = yij � yi;j � 1 and

the corresponding increment in the noise as� zij = zij � zi;j � 1. Measured values of

incremental degradation and corresponding increment in noise are denoted in vector

forms as� y i = f � yi 1; � yi 2; � � � ; � yim i g
> and � zi = f � zi 1; � zi 2; � � � ; � zim i g

> . Note

that � yi 1 = yi 1 � yi 0 is unknown becauseyi 0 = ai is a latent variable. The quantities

� y i and � zi are assumed to be realizations of the random vectors� Y i and � Z i ,
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respectively. The joint PDF of � Y i can be written through a convolution integral as

f � Y i (� y i ) =
Z

ai

Z

� zi

f � X i (� y i � � zi j ai )f A (ai )f � Z i (� zi )dai d(� zi ) (2.14)

This convolution integral consists of the joint PDFsf � X i (� x i ) and f � Z i (� zi ), where

f � Z i (� zi ) is the joint PDF of the random vector � Z i . Generally, the sizing error is

assumed to follow a normal distribution with zero mean and� Z standard deviation,

i.e., f Z ( � ) = N (0; � 2
Z ), where N ( � ; � ) represents a normal density function. Thus, the

joint PDF of the random vector � Z i follows a multivariate normal distribution given

as (see Section A.1 for the derivation)

f � Z i (� zi ) =
1

(2� )m i =2j� � Z i j
exp

8
<

:
�

1
2

� zi � � 1
� Z i

� zT
i

9
=

;
(2.15)

where j � j represents the determinant operator and� � Z i represents the variance-

covariance matrix. Assuming that the degradation process is independent across the

component population, the sample likelihood function for measured degradation data

collected from allN components can be written as

L (� j � y1; � y2; � � � ; � yN ) =
NY

i =1

f � Y i (� y i )

=
NY

i =1

Z

ai

Z

� zi

f � X i (� y i � � zi j ai )f A (ai )f � Z i (� zi )dai d(� zi )

(2.16)

It can be observed that the sample likelihood of the gamma process model is a product

of N multi-dimensional integrals, which implies that it may be quite di�cult to evaluate

the likelihood function numerically.
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2.2.3 Linear Mixed-E�ects Regression Model

The random variable model, being a basic model, is only useful to estimate the charac-

teristics of a system of components. To obtain degradation characteristics of individual

components, one needs to analyze data from individual components which induces high

uncertainty due to small volume of component-speci�c repeated measurements. Alter-

natively, the LMER model resolves this by systematically processing the inspection

data by considering both the system-level �xed e�ects as well as component-level ran-

dom e�ects. The model is well suited for pooling unbalanced data (i.e. di�erent number

of repeated measurements from components) from component-speci�c measurements

across the component population to obtain robust estimates of the model parameters

[94]. However, the LMER model has too many unknown parameters which make its

calibration process challenging in case the data in hand is noisy.

Basic Properties

According to the LMER model [140], any degradation measurementyij can be repre-

sented as

yij = � 0 + � 1t ij + b0i + b1i t ij + zij (2.17)

where the true degradation growthx ij is given by(� 0+ � 1t ij + b0i + b1i t ij ). In the context

of degradation modeling, the �xed e�ects parameters� 0 and � 1 represent initial degra-

dation and degradation growth rate of the system of components, respectively; and the

random e�ects parametersb0i and b1i represent the variation (from the �xed e�ects

parameters) of initial degradation and degradation growth rate of thei th component,

respectively. While the simple linear regression model allows only the �xed e�ects pa-

rameters, an extension of it, the LMER model, allows both �xed and random e�ects

parameters to represent hierarchical data, meaning that the data contain information
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at multiple levels (e.g., system-level, component-level). The �xed e�ects parameters

represent the properties of a system as a whole, thus called system-level parameters.

Whereas, the random e�ects parameters, when combined with the �xed e�ects param-

eters, represent the properties of individual components, thus called component-level

parameters. Figure 2.3 shows simulated sample paths from the LMER model.

Figure 2.3: Simulated �aw growth paths of the LMER model.

The key assumptions of the LMER degradation model are as follows. The regression

coe�cients � 0 and � 1 are unknown constants. Through these two coe�cients, the

LMER model given by Equation 2.17 assumes that the degradation of a particular

component is dependent not only on the component-speci�c parameters but also on

the system-level parameters. This implies that, unlike a simple linear regression model,

the resultant component-speci�c parameters are in�uenced by other component-speci�c

repeated measurements as well as by the number of components inspected over time.

On the other hand, (b0i ; b1i ) are assumed to be iid bivariate normal random vari-

ables, i.e.,(b0i ; b1i )
iid� N (0; � b), where0 is the zero mean vector and� b is the unknown
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covariance matrix. Assuming the standard deviations ofb0i and b1i to be � 0 and � 1, re-

spectively, and the correlation coe�cient to be� , the covariance matrix can be written

as

� b =

2

6
6
4

� 2
0 �� 0� 1

�� 0� 1 � 2
1

3

7
7
5 (2.18)

The random e�ects parameters(b0i ; b1i ) and the noise termzij are independently dis-

tributed, which implies that the measurement error is independent of the true degra-

dation.

Degradation data generally contain multiple repeated measurements from each com-

ponent. Thus, any two observations from the same component are correlated, whereas

the correlation is assumed to be zero for di�erent components. These assumptions are

automatically satis�ed by the LMER model which gives the following covariance (Cov)

structure for any two observations:

Cov(yij ; yhk ) =

8
>>><

>>>:

� 2
0 + �� 0� 1(t ij + thk ) + � 2

1t ij thk if i = h and j 6= k

0 if i 6= h
(2.19)

Note that, in some situations, any two observations from two di�erent components

of the same system may exhibit some degree of correlation. However, the current

literature (e.g., [60, 61, 94, 98, 148]) plainly assumes that the degradation of di�erent

components in nuclear power plants is independent. This assumption produces fairly

accurate results with the advantage of modeling and computational convenience.

Likelihood Function

Oftentimes, it is assumed that the measurement noise is generated only from inspection

tools (e.g., ultrasonic probes in nuclear power plants). In this scenario, a simple and
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plausible assumption can be made about the noise term, i.e., it follows the normal

distribution. This assumption also brings analytical convenience to the parameter

estimation process by making noisy likelihoods analytically tractable. For instance,

given zij
iid� N (0; � 2

z), the noisy likelihood can be easily derived to be a product of

multi-dimensional normal distributions [140], i.e.,

L (� ; � b; � 2
z j y1; � � � ; yN ) =

NY

i =1

(2� )� m i =2j� i j � 1=2 exp

"

�
1
2

(y i � T i � )> � � 1
i (y i � T i � )

#

(2.20)

where� = f � 0; � 1g> , y i = f yi 1; yi 2; � � � ; yim i g
> , � i = T i � bT >

i + � 2
z I m i , and

T >
i =

2

6
6
4

1 1 � � � 1

t i 1 t i 2 � � � t im i

3

7
7
5 (2.21)

Here I m i is an mi -dimensional unit diagonal matrix. Using the noisy likelihood in

Equation 2.20, Bayesian inference of the regression parameters is quite easy since we

have the advantage of using the standard MCMC method � the Gibbs sampler [140].

In real-life problems, the noise may come from di�erent sources, such as human

error (spatially unreferenced grids), coverage issues, and the probe signal loss [69]. In

this situation, the normal distribution may not represent the noise accurately. One

may wish to model the noise term using a non-normal mixture of distributions. This,

however, leads to a major problem: the regression model produces an intractable like-

lihood that is di�cult to compute during the process of parameter estimation. For

instance, suppose the error termsf zij g are modeled as iid random variables with the

distribution f (z) =
P n

i =1 wi f i (z), wherewi > 0, i = 1; � � � ; n, are weights, andf f i (z)g,

i = 1; � � � ; n, is a set of �nite number of distributions. The model likelihood, in this
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case, can be written as

L =
NY

i =1

Z

zi

f (y i � T i � � zi j � 0
i )f (zi )dzi (2.22)

where � 0
i = T i � bT >

i , zi = f zi 1; zi 2; � � � ; zim i g
> , and f ( � j � 0

i ) is normally distributed

with zero mean and covariance matrix� 0
i . The likelihood function in Equation 2.22

is a high-dimensional integration that is not only analytically intractable but also

computationally expensive to evaluate.

2.3 Flaw Generation Model

2.3.1 Non-Homogeneous Poisson Process Model

The previously mentioned random variable, gamma process, and LMER models are

de�ned on continuous sample spaces; thus, suitable to characterize the �aw growth

phenomena. However, characterizing �aw generation needs stochastic processes that

can model and predict the number of occurrences of �aws in a component. Thus, the

counting process models are suitable for modeling �aw generation. The Poisson process

is the most popular counting process model and its application in localized corrosion

modeling, such as pitting corrosion, can be found in several studies in the literature

[38, 63, 109, 137, 148]. For example, Hong [63] used the Poisson process to model pit

generation and a Markov process to model the pit depth. The authors derived the

distribution of corrosion pit depth and the probability of time-to-failure using their

proposed model. Similarly, Valor et al. [137] proposed a new model for simulating

pit generation and growth that is based on the NHPP and non-homogeneous Markov

process. The authors claimed that their proposed model can satisfactorily reproduce

experimental observations and works better than the models available in the literature.
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Datla et al. [38] proposed an NHPP model for modeling pit generation in steam

generator tubes, whereas for modeling the distribution of the peaks over threshold for

pit depths, the authors proposed a generalized Pareto distribution.

Basic properties

A continuous-time stochastic processN (t) is called a non-homogeneous Poisson process

with a power law intensity function � (t) = ��t � � 1, if it has the following properties

[34]:

1. At time t = 0, N (t) = 0 .

2. For 0 � t1 � t2 � � � � � tn , all the increments ofN (t), i.e., N (t1) � N (0); N (t2) �

N (t1); � � � ; N (tn ) � N (tn� 1) are independent random variables.

3. All increments N i = N (t i ) � N (t i � 1), i = 1; 2; � � � ; k, follow the Poisson distribu-

tion as

P[N i = n] =
[�( t i ; t i � 1)]n

n!
exp[� �( t i ; t i � 1)]; n = 0; 1; 2; � � � (2.23)

where �( t i ; t i � 1) =
Rt i

t i � 1
� (t)dt = � (t �

i � t �
i � 1) and P[ � ] represents the probability

of an event.

The intensity function becomes constant with time when� is set to 1. The process is

then called a homogeneous Poisson process which has the following mean and variance

E[N (t)] = �t; Var[N (t)] = �t (2.24)

The parameter� represents the average number of occurrences of �aws per unit time.

Computer simulation of the Poisson process is quite easy since one can simulate the
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inter-arrival times between each occurrences from an exponential distribution with rate

� . Figure 2.4 shows several simulated sample paths of the Poisson process.

Figure 2.4: Simulated sample paths of the Poisson process model.

NHPP-Weibull Flaw Generation Model

Flaw numbers and �aw sizes, both are included in modeling the �aw generation process,

which considers that the �aw generation process is an NHPP and the �aw sizes are iid

Weibull random variables with the PDF

f H (h) =
�


 
h


! � � 1

exp

"

�

 
h


! � #

; h > 0 (2.25)

where  > 0 is the scale parameter and� > 0 is the shape parameter. This model

assumes that at each inspection campaign all the previously detected �aws are repaired

and only the newly generated �aws are detected; also at time zero, there are no �aws.

Another assumption of the model is that �aws grow rapidly to a certain extent and
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then they stop or grow at a very slow rate [148].

To characterize the uncertainty in detecting small defects or �aws, the probability

of detection (POD) function p(h) is generally used, whereh denotes the �aw size. To

indicate �aw detection, a binary random variableD is used; whereD = 1, if the �aw is

detected, andD = 0, otherwise. Hence, POD can be de�ned as a probability of having

D = 1 given the detected �aw size, i.e.,p(h) = P[D = 1 j H = h] � a conditional

probability function. The POD function, considered by Yuan et al. [148], is adopted

in this study:

p(h) =

8
>>><

>>>:

1 �
1 + e� qw

1 + eq(h� w� th )
; if h > t h

0; otherwise

(2.26)

where,w; q and th are POD model parameters. Here,th is the detection threshold, i.e,

a �aw having size less thanth will not be detected. To control the overall detection

quality of the POD function, the other two parameters are used [148].

Likelihood Function

Suppose, a total ofk inspections are performed at timest1; t2; � � � ; tk to detect the

number of �aws generated in a component. Because of the imperfect detectability,

the number of �aws detected at thei th inspection is denoted asndi , i = 1; 2; � � � ; k,

and the number of undetected �aws are represented usingnui . Thus, the true number

of �aws generated between(i � 1)th and i th inspections areni = ndi + nui . The

true �aw sizes of the detected �aws at i th inspection can be represented ash i =

f hi 1; hi 2; � � � ; hi;n di g
> , whereas the measured �aw sizes are denoted ash (m)

i = h i + zi ;

wherezi = f zi 1; zi 2; � � � ; zi;n di g
> is a vector of iid measurement errors.

The model parameters� = f �; �; ; � g> are to be estimated. The sample likelihood

of the parameter vector� given the degradation measurements ofi th inspection can
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be written as

` i (� j ndi ; h (m)
i ) = f H ( m )

i
(h (m)

i )P[Ndi = ndi ] (2.27)

whereh (m)
i is a realization of the random variableH (m)

i , f H ( m )
i

(h (m)
i ) is the joint density

of H (m)
i , ndi is a realization of the random variableNdi , and P[Ndi = ndi ] is the prob-

ability of Ndi being equal to the number of detected �aws ini th inspection campaign.

Since the actual �aw sizes and measurement errors are independent, one can write (see

Section A.2 for the derivation)

f H ( m )
i

(h (m)
i ) = f H ( m )

i
(h(m)

i 1 ; h(m)
i 2 ; � � � ; h(m)

i;n di
)

=
ndiY

j =1

f H ( m )
ij

(h(m)
ij )

=
ndiY

j =1

(
1

E[p(h)]

Z 1

0
p(s)f H (s)f Z (h(m)

ij � s)ds

)
(2.28)

wheref Z ( � ) is the PDF of the iid measurement errors and

E[p(h)] =
Z 1

0
p(h)f H (h)dh (2.29)

On the other hand, the probability of the number of detected �aws can be calculated

as (see Section A.3 for the derivation)

P[Ndi = ndi ] =
1X

n i =0

f �( t i ; t i � 1)gn i

(ni � ndi )!ndi !
expf� �( t i ; t i � 1)gf E[p(h)]gndi f 1 � E[p(h)]gn i � ndi

(2.30)

Substituting Equation 2.28 and Equation 2.30 into Equation 2.27, one can obtain

the sample likelihood of� from only the i th inspection data. Now, the sample likeli-

hood considering data from alli = 1 to k inspection campaigns can be calculated by

taking products of the sample likelihoods generated using degradation measurements
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from each inspection campaign, i.e.,

L (� j nd1; h (m)
1 ; nd2; h (m)

2 ; � � � ; ndk ; h (m)
k )

=
kY

i =1

` i (� j ndi ; h (m)
i )

=
kY

i =1

" ndiY

j =1

(
1

E[p(h)]

Z 1

0
p(s)f H (s)f Z (h(m)

ij � s)ds

)

1X

n i =0

f �( t i ; t i � 1)gn i

(ni � ndi )!ndi !
expf� �( t i ; t i � 1)gf E[p(h)]gndi f 1 � E[p(h)]gn i � ndi

#

(2.31)

The likelihood function presented in Equation 2.31 is a very complicated function

as it not only contains high-dimensional integrals but also high-dimensional in�nite

summations.

2.4 Concluding Remarks

This chapter introduced four most-commonly used stochastic models for characterizing

di�erent kinds of degradation processes. The basic properties of these models are dis-

cussed and the sample likelihoods are derived for degradation data that are subjected

to various kinds of inspection errors. It can be observed that the sample likelihoods

of the �aw growth models are very high-dimensional integrals, whereas the sample

likelihood of the �aw generation model is the product of several one-dimensional inte-

grals and summation of in�nite series. Thus, statistical estimation of such models is

quite challenging since numerical evaluations of such sample likelihoods are extremely

di�cult and time-consuming.
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Chapter 3

Markov Chain Monte Carlo

Methods

3.1 Introduction

This chapter presents a brief introduction to the MCMC methods commonly used for

Bayesian inference of model parameters. Bayesian inference is a direct application of

the Bayes' theorem. To understand the Bayes' theorem, supposeA and B are two

propositions or events. In Bayesian statistics, the probabilitiesP(A) and P(B) are

our prior degree of beliefs that the eventsA and B are true respectively. Then, the

updated degree of belief aboutA being true given B is true can be represented by

the conditional probability P(A j B). According to Bayes' theorem, this conditional

distribution can be written as,

P(A j B) =
P(B j A)P(A)

P(B)
(3.1)

where, P(A) is called the prior probability of A, and P(A j B) is called the posterior

probability of A given B. The Bayesian inference method works in a similar fash-
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ion. Suppose the PDF of the observationD obs from a probabilistic model is given as

f (D obsj� ), where� is the unknown parameter vector. First a prior distribution of� ,

denoted asf (� ), is assigned based on the background information, and then, accord-

ing to the Bayes' theorem, the posterior distribution of� , denoted asf (� j D obs), is

derived using the following expression:

f (� j D obs) =
f (D obs j � )f (� )

R
� f (D obs j � )f (� )d�

= CL(� j D obs)f (� ) (3.2)

whereC = [
R

� f (D obs j � )f (� )d� ]� 1 is the normalizing constant andL (� j D obs) =

f (D obs j � ) is the likelihood function.

The likelihood function L (� j D obs) represents the chosen probabilistic model and

the information from observed data. The prior distributionf (� ) represents all other

information that is known or assumed about the model parameter� other than the

observed data. The prior information can be any relevant information regarding the

model parameters, such as engineering design data, expert judgment, data from other

similar systems, or even lack of information. For more information about the prior

distribution, the reader is referred to references [16, 20, 57, 67, 73]. Compared to the

classical parameter inference, Bayesian inference is able to incorporate information from

sources other than the observed data in a formal way through the prior distribution.

Bayesian inference also provides a more natural way for expressing the parameter

uncertainty using the posterior distribution of the parameter.

Analytical solutions of the posterior exist only for some simple probabilistic models

and specially selected priors (conjugate priors). For most other models, the Bayesian

posterior has to be evaluated numerically. Direct numerical evaluation of the Bayesian

posterior using Equation 3.2, however, can be quite di�cult. First, for some models,

such as the degradation models with inspection uncertainties (see Chapter 2), numerical
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evaluation of the likelihood function is extremely di�cult, making direct calculation of

the posterior distribution impractical. In other cases, even if the likelihood function

itself is relatively easy to evaluate, calculation of the normalization constantC, which

is an integral over the entire admissible region of the model parameters, can still be

time-consuming, especially when the parameter vector� is of high dimension.

The computational di�culty of the Bayesian inference method can be overcome

using various advanced Monte Carlo methods. Instead of calculating the posterior

density numerically, Monte Carlo simulation aims to draw random samples from the

posterior distribution. These samples can then be used in subsequent posterior in-

ference or model prediction. In Chapter 3 and Chapter 4, two particular simulation

techniques, Markov chain Monte Carlo and approximate Bayesian computation, are

introduced. The proposed methods can be used for Bayesian inference of complicated

stochastic degradation models subject to inspection uncertainties.

To date, MCMC is the most powerful yet a simple method for generating samples

from a distribution using the theory of Markov chains [112]. When direct sampling

from a target distribution f ( � ) is not possible (e.g.,f ( � ) is known only up to a constant

of proportionality), MCMC provides an alternate solution by generating Markov chains

with f ( � ) as a stationary distribution. The �rst MCMC algorithm was proposed by

Metropolis et al. [91] in a statistical physics context. Later, Hastings [58] generalized

the method as a tool for statistical sampling and proposed the Metropolis-Hastings

(MH) algorithm. Among the early applications of MCMC, works by Geman and Geman

[52] and Tanner and Wang [125] are notable. Finally, the method was popularized

in the Bayesian community by Gelfand and Smith [48]. Detailed discussions on the

theoretical and practical backgrounds of the MCMC method can be found in references

[6, 22, 41, 53, 55, 111, 113, 122, 127].
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Examples of the application of MCMC methods for Bayesian modeling of degrada-

tion processes can be found in several literature. For instance, Bousquet et al. [19] used

the Bayesian approach for inferring parameters of a gamma process. The authors used

the gamma process to model partially observed crack growths and successfully derived

estimators for the best maintenance time for industrial components. They performed

parameter inference using the MCMC method. Similarly, Zhang and Zhou [149] pro-

posed a new Bayesian dynamic linear model to characterize the growth of corrosion

defects on energy pipelines. They used the MCMC simulation method for parameter

inference using data from multiple high-resolution in-line inspections. Yuan et al. [148]

proposed a Bayesian approach for modeling and predicting the pitting �aws in steam

generator tubes to account for the inherent variability involved in the corrosion process

as well as in the detecting and sizing uncertainties associated with the inspection tool.

In their study, they con�rmed that without considering the probability-of-detection

issues and measurement errors, the leakage risk resulting from pitting corrosion would

be under-estimated, despite the fact that the actual pit depth would usually be over-

estimated. The authors used a modi�ed MCMC method for parameter inference that

runs data augmentation at each iteration of the algorithm. Similarly, using MCMC

with data augmentation, Qin et al. [109] proposed a Bayesian framework for param-

eter inference of the stochastic corrosion model used in their study to characterize

generation and growth of corrosion defects in energy pipelines.

3.2 Monte Carlo Methods in General

The basic idea of Monte Carlo simulation is to draw samples from a target probability

density f (x) de�ned on a multi-dimensional space. These samples are mainly used to

36



numerically evaluate expectations of the form

E[g(X )] =
Z

X
g(x)f (x)dx (3.3)

An unbiased estimate of the above-mentioned integral can be computed as

E(n) [g(X )] =
1
n

nX

i =1

g(x (i )) (3.4)

wheref x (i )gn
i =1 are the Monte Carlo samples drawn fromf (x). According to the strong

law of large numbers,E(n) [g(X )] will almost surely (a.s.) converge toE[g(X )] as the

number of samples goes to in�nity [54], i.e.,

E(n) [g(X )] a:s:���! E[g(X )]; n �! 1 (3.5)

Likewise, if Var[g(X )] = � 2
g is �nite, i.e., � 2

g < 1 , then according to the central limit

theorem, the estimation error converges to a Gaussian distribution, i.e.,

p
n

n
E(n) [g(X )] � E[g(X )]

o
�! N (0; � 2

g); n �! 1 (3.6)

In the context of probability and statistics, numerical integration using Monte Carlo

methods is a superior choice over deterministic schemes because Monte Carlo schemes

generate samples from high-probability regions, unlike the latter, which generates sam-

ples over the entire integration region, producing most of the function values equal to

zero. With the goal to draw samples fromf (x), various Monte Carlo samplers can be

employed depending on the form of the density function. Supposef (x) has a standard

univariate form of a PDF, say Gaussian or gamma. To generate samples from this

PDF, we can simply employ the inverse transform method [115] for a univariate case
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based on the computation of the inverse cumulative distribution function (CDF). How-

ever, if di�culty in drawing samples increases due to high dimension and non-standard

forms of density functions, then more advanced and sophisticated methods, such as

rejection sampling, importance sampling, and MCMC are implemented. While rejec-

tion sampling and importance sampling methods guarantee to simulate iid samples,

MCMC generates a Markov chain of correlated samples.

3.2.1 Rejection Sampling

Rejection sampling can be employed when the target densityf (x) is only known up

to a constant of proportionality, making direct sampling from it impossible. The basic

idea of this algorithm is to draw samples from an alternative easy-to-sample proposal

distribution q(x) that satis�es the condition

f (x) � Mq(x); M < 1 (3.7)

and accept the proposed samples based on an accept-reject rule [6]. Here,Mq(x) works

as an envelope distribution to the target distribution. The implementation steps for

the Monte Carlo rejection sampler are presented in Algorithm 1.

Algorithm 1 Rejection sampler
1: for i = 1 to n do
2: repeat
3: Generatex � from the proposal densityq(x).
4: Generateu from a uniform distribution U[0; 1].
5: Accept x � if u < f (x � )

Mq (x � )
6: until acceptance
7: set x (i ) = x �

8: end for
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Example

Let us take an example to understand how rejection sampling works. This example

is adopted from [6]. Suppose, one wants to draw samples from a univariate target

distribution f (x) which is known only up to a constant of proportionality:

f (x) / 0:3 exp(� 0:2x2) + 0 :7 exp(� 0:2(x � 10)2); �1 < x < 1 (3.8)

One can assume thatf (x) = cf 0(x), wherec is the normalizing constant, andf 0(x) is

the unnormalized target distribution. In this particular case, one can analytically cal-

culate c = 1=
p

5� and compare the result of the rejection sampling with the analytical

solution. Let us select a normal proposal densityq(x) = N (5; 102). Sincec is assumed

to be unknown, it is impossible to directly calculate the value ofM . However, using the

inequality M=c � f 0(x)=q(x) from Equation 3.7 and a trial and error method, one can

�nd that M=c = 24 gives a reasonable solution with a rejection rate of around 80.25%

(c = 1=
p

5� givesM = 6:06). Figure 3.1 shows the envelope distributionMq(x), the

target distribution f (x), and the unnormalized target distribution f 0(x). It can be

noticed that the support of the proposal distribution covers the support of the target

distribution well. Note that, in problems with high dimensions, one may need to select

a very high value ofM . which may result in a very high number of rejections. The

results from the Monte Carlo rejection algorithm are presented in Figure 3.2. The

�gure shows that as the number of simulationsn is increased, the histogram of the

accepted samples reaches closer and closer to the target distributionf (x). To get a

closer �t of the target distribution at n = 105, the algorithm used around 19.75% of

the total of 5:06� 105 samples.

The two major limitations of the rejection sampling method [6] are: (i) bounding

f (x)=q(x) with a reasonable constantM is not always possible; and (ii) a largeM
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