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Abstract

This thesis examines problems faced in the distribution management of e-retailers, in di�er-

ent stages of the supply chain, while accounting for sources of uncertainty. The �rst prob-

lem studies distribution planning, under stochastic customer demand, in a transshipment

network. To decide on a transportation schedule that minimizes transportation, inventory

and outsourcing costs, the problem is formulated as a two-stage stochastic programming

model with recourse. Computational experiments demonstrate the cost-e�ectiveness of dis-

tribution plans generated while considering uncertainty, and provide insights on conditions

under which the proposed model achieves signi�cant cost savings.

We then focus our attention on a later phase in the supply chain: last-mile same-day

delivery. We speci�cally studycrowdsourced delivery, a new delivery system where freelance

drivers deliver packages to customers with their own cars. We provide a comprehensive

review of this system in terms of academic literature and industry practice. We present a

classi�cation of industry platforms based on their matching mechanisms, target markets,

and compensation schemes. We also identify new challenges that this delivery system

brings about, and highlight open research questions. We then investigate two important

research questions faced by crowdsourced delivery platforms.

The second problem in this thesis examines the question of balancing driver capacity

and demand in crowdsourced delivery systems when there is randomness in supply and

demand. We propose models and test the use of heatmaps as a balancing tool for directing

drivers to regions with shortage, with an increased likelihood, but not a guarantee, of a

revenue-producing order match. We develop an MDP model to sequentially select matching

and heatmap decisions that maximize demand ful�llment. The model is solved using a

stochastic look-ahead policy, based on approximate dynamic programming. Computational

experiments on a real-world dataset demonstrate the value of heatmaps, and factors that

impact the e�ectiveness of heatmaps in improving demand ful�llment.

The third problem studies the integration of driver welfare considerations within a

platform's dynamic matching decisions. This addresses the common criticism of the lack

of protection for workers in the sharing economy, by proposing compensation guarantees

to drivers, while maintaining the work hour exibility of the sharing economy. We propose

and model three types of compensation guarantees, either utilization-based or wage-based.

We formulate an MDP model, then utilize value function approximation to e�ciently solve

the problem. Computational experiments are presented to assess the proposed solution

approach and evaluate the impact of the di�erent types of guarantees on both the platform

and the drivers.
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Chapter 1

Introduction

E-retailing is a global market that has experienced enormous growth in the last decade.

Today, many retailers that were once only o�ering bricks-and-mortar stores are adopting

omnichannel models by expanding their services to online shopping. This growth comes

with higher expectations from customers; they are increasingly expecting shorter delivery

times without a hefty delivery charge. To create e�cient and responsive distribution plans,

e-retailers need to account for the di�erent sources of uncertainty that a�ect their distri-

bution activities throughout the various phases of the supply chain. This thesis examines

three distribution management problems, faced by e-retailers, that aim to optimize their

distribution planning activities under uncertainty.

Chapter 2 studies distribution planning between suppliers and distribution centers,

where we consider a transshipment network under stochastic customer demand, applicable

to many three-tier supply chain networks. We study this problem from the perspective of

a third-party logistics provider (3PL) that is outsourced to handle the logistics needs of

its clients; the 3PL uses a consolidation center to achieve transportation cost savings. We

formulate a two-stage stochastic programming model with recourse that aims to minimize

the sum of transportation cost, expected inventory holding cost and expected outsourcing

cost. The recourse variables ensure that the problem is feasible regardless of the realization

of demand, by allowing the option of using a spot market carrier if demand exceeds capacity.

We use Sample Average Approximation (SAA) to solve the problem and show that it

results in reasonable optimality gaps for problem instances of di�erent sizes. We conduct

extensive testing to evaluate the bene�ts of the proposed stochastic model compared to

its deterministic counterpart. Computational experiments provide managerial insight into

the robustness and cost-e�ectiveness of the distribution plans of the proposed stochastic

model, and the conditions under which the model achieves signi�cant distribution cost

savings.

1



Chapter 3 onward, we shift our attention to a later phase in the supply chain, namely,

last-mile same-day delivery from distribution centers or stores to end customers. We par-

ticularly study an emergent delivery system, crowdsourced delivery, which relies on indi-

viduals completing last-mile delivery tasks with their own cars. In Chapter 3, we analyze

the current industry status of this delivery system and provide a classi�cation of available

platforms based on their matching mechanisms, target markets and compensation schemes.

We review the operations research (OR) literature addressing this topic and assess the ap-

plicability of assumptions to real-world applications. We also compare the management

decisions within crowdsourced delivery systems to well-studied OR problems in the liter-

ature, and pinpoint new challenges that arise in the context of crowdsourced delivery. In

the following two chapters, we investigate two important managerial questions faced by

crowdsourced delivery platforms.

Chapter 4 studies the problem of balancing driver capacity and demand in crowd-

sourced delivery systems, when there is randomness in both driver supply and demand.

Since crowdsourced drivers are independent contractors, their movement is not directly

managed. We investigate the use of heatmaps as a balancing tool for directing drivers

to regions with shortage, with an increased likelihood, but not a guarantee, of a revenue-

producing assignment. This creates a generalized framework for managing the movement of

crowdsourced drivers, without a direct assumption on their compensation scheme. We de-

velop a Markov decision process (MDP) model to sequentially select matching and heatmap

decisions that maximize demand ful�llment. The model is solved using a stochastic look-

ahead policy, based on approximate dynamic programming. We also propose a simple

policy and an upper-bound problem that assumes drivers are directly managed. We �nd

that optimized heatmaps induce driver repositioning to areas of shortage and improve de-

mand ful�llment up to the level where drivers are managed directly, when the number of

drivers is higher than demand. The e�ectiveness of heatmap is most notable when the net-

work is imbalanced, where the demand inow to some nodes is signi�cantly higher/lower

than the outow.

Chapter 5 examines the integration of driver welfare considerations in a platform's

dynamic matching decisions. Crowdsourced delivery and other sharing economy plat-

forms typically compensate workers per task and provide little guarantees for their earn-

ing amount while they are ready to work. We study the problem of designing dynamic

matching policies, in a crowdsourced delivery system, that guarantee a particular level of

utilization or earning for active workers, while maintaining the inherent work hour ex-

ibility promoted by the sharing economy. We propose, model, and test three types of

guarantees, that are either utilization-based or wage-based. To capture the dynamic and

stochastic nature of crowdsourced delivery operations, we propose an MDP model. We

2



utilize approximate dynamic programming techniques to e�ciently obtain good solutions,

given the high dimensionality of the solution space. In particular, we use value function

approximation to obtain good estimates of the value of post-decision states, using forward

simulation. We conduct extensive computational testing to assess the performance of the

proposed solution methodology. We also compare the di�erent types of guarantee policies,

and assess their impact on the platform and the drivers, relative to the base policy, which

models the no-guarantee case.

Chapter 6 concludes the thesis and discusses opportunities for future research.

3



Chapter 2

Distribution Planning with Random

Demand and Recourse in a

Transshipment Network 1

2.1 Introduction

In many supply chain networks, third party logistics providers (3PLs) are employed to

handle the distribution needs within the supply chain. The 3PL faces the challenging

task of coordinating these distribution activities between suppliers and customers, possibly

through the use of intermediate facilities, so as to create a lean cost-e�cient supply chain,

while ensuring timely customer deliveries. Third party logistics is a fast growing market; in

2016, it had an estimated worldwide market size of 802.2 billion US dollars, 38% of which is

in the Asia Paci�c region, 25% in North America, 21.5% in Europe (Langley, 2017). With

this growth comes increased competition which further necessitates that the 3PL create

leaner logistics solutions, in order to survive in a growingly contested market. In recent

years, there has been an increasing trend in businesses outsourcing their transportation

needs to 3PL's to focus on their core business competencies. The various players within

the supply chain expect the 3PL to accommodate shipping quantities that may uctuate

depending on customer demand. This creates a compelling need for a 3PL to operate more

e�ciently, with imperfect information, to secure pro�tability, while providing competitive

shipping rates for clients and building customer loyalty.

1This chapter is based substantially on a published article in the European Journal on Transportation
and Logistics. Alnaggar, A., Gzara, F., and Bookbinder, J.H., 2020. "Distribution planning with random
demand and recourse in a transshipment network." EURO Journal on Transportation and Logistics 9, no.
1 (2020): 100007.
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Many variations of freight distribution coordination with intermediate facilities have

been investigated by researchers. However, very limited work addresses such problems

with stochastic customer demand. In their literature surveys, both SteadieSei� et al.

(2014) and Guastaroba et al. (2016) acknowledge the need for more research that considers

stochasticity in freight transportation planning. In addition, from an industrially-practical

point of view, when customer demand arrives in real-time, accounting for demand variation

at the distribution planning phase will enable the creation of e�cient distribution plans

that more accurately anticipate actual distribution costs.

We study the problem of a 3PL that is coordinating transportation needs between

suppliers and customers when customer demand is stochastic. That coordination considers

the release time of shipments from suppliers, the delivery due dates of customers, the

di�erent transportation options that could be used, as well as the holding cost at the

consolidation center. In our problem setting, the 3PL does not operate its own eet, but

rather chooses the best available multi-modal transportation services for its clients. The

3PL determines a suitable shipping schedule, arranging for the pickup at suppliers when

shipments are ready, i.e., after their release time.

For a given supplier, orders of multiple customers are consolidated in fewer high-volume

loads and sent to the consolidation center, operated by the 3PL, through one or more trans-

portation options. A transportation option between a supplier and the consolidation center

is referred to as aninbound transportation option. We de�ne an inbound transportation

option as a combination of a transportation mode (or multiple modes), a capacity, an

arrival time at the consolidation center, and a cost associated with the service. At the

consolidation center, the 3PL combines orders from multiple suppliers to the same cus-

tomer and delivers them through one or more transportation options, such that customer

delivery deadlines are satis�ed. A transportation option from the consolidation center to

a customer is referred to as anoutbound transportation option, and is de�ned as a combi-

nation of transportation mode, capacity, dispatch time from the consolidation center, and

cost.

Most transportation service prices are not simply based on the weight and volume of

the shipment. Prices also depend on when the service is taking place (e.g., peak seasons,

holidays), the mode of transportation used, as well as other factors such as the particular

route taken. Thus, inbound and outbound transportation cost may not be monotonically

increasing or decreasing with lead time. We adopt this general de�nition, where inbound

and outbound transportation options have nonlinear discrete cost functions.

The distribution service provided by the 3PL is for a prede�ned number of periods,

rather than a one-time service. However, the choice of transportation options, for inbound
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and outbound shipments, is contractual, and is kept for the full length of the planning

horizon. Once customer demand is known, if the actual demand cannot be ful�lled with the

particular choice of inbound and outbound options made at the beginning of the planning

horizon, a spot market carrier may be used to ship the additional demand at a higher

cost. The goal of the 3PL is to select transportation options that minimize the expected

transportation cost of the network plus the expected holding cost at the consolidation

center, while ensuring that customer demand is ful�lled by the due date.

One motivating example of the problem comes from a 3PL that manages the distribu-

tion planning of an e-retailer. The latter operates multiple distribution centers and orders

its products from a number of global suppliers. Each supplier provides di�erent types of

products that the e-retailer sells. To manage their inventory, each distribution center peri-

odically places a replenishment order, which varies depending on end-customer's demand.

In ful�lling those orders, the 3PL uses a consolidation center to save on transportation

cost between suppliers and the e-retailer's distribution centers. The 3PL needs to choose

a minimal-cost transportation plan with speci�c transportation modes, capacity and ar-

rival/dispatch times at the consolidation center, for inbound and outbound shipments,

respectively, to carry on the regular transportation needs between suppliers and distribu-

tion centers. For simplicity and to make our problem applicable to other application areas,

we will refer to the third-tier of the supply chain (which are the distribution centers in this

example) simply as customers.

The main contributions of this research are threefold. Firstly, we address the need

for considering randomness in freight distribution planning with intermediate facilities by

proposing a two-stage stochastic programming model that accounts for stochastic customer

demand at the planning phase. Our proposed model addresses tactical decisions, i.e., the

choice of transportation options, and minimizes the sum of transportation-choice costs

plus expected operational costs. Secondly, modeling this problem from the perspective of

a third party logistics provider, even without demand uncertainty, has received very little

attention. This work aims to �ll that gap. Thirdly, we conduct a thorough analysis on

the bene�ts and limitations of our proposed model and present managerial insights on the

conditions under which our model achieves signi�cant distribution cost savings.

The rest of this chapter is arranged as follows. In Section 2.2 we provide a review of

relevant literature. In Section 2.3, we detail the problem setting and assumptions, and

formulate the proposed stochastic model. We discuss the solution methodology used in

solving the problem in Section 2.4. We then discuss our numerical testing and analysis,

and compare the performance of our stochastic model to its deterministic counterpart in

Section 2.5. Finally, we outline some concluding remarks and future directions in Section

2.6.
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2.2 Literature Review

References on freight consolidation have considered distinct goals and the viewpoints of

di�erent decision makers. Relevant literature is in three main categories: freight/shipment

consolidation, freight transportation with intermediate facilities, and freight forwarder/3PL

operations. We also discuss important publications that explicitly incorporate stochasticity.

In the past three decades, considerable research has been done on shipment consolida-

tion (SCL). This classical problem mainly aims to �nd the optimal dispatch policy, from

the perspective of a shipper, that determines for how long to consolidate shipments, and

when to dispatch the aggregate load. Early research laid the foundation of this topic (Mas-

ters, 1980). Later, Higginson and Bookbinder (1994), C�etinkaya and Bookbinder (2003),

Mutlu et al. (2010), and Bookbinder et al. (2011) used simulation and stochastic modeling

to compare di�erent dispatch policies and determine optimal ones under various settings

and considering additional costs, such as inventory cost.

The preceding references explicitly analyze SCL policies, but other researchers have in-

tegrated those decisions within wider-scope supply chain network decisions. Freight trans-

portation problems with intermediate facilities were reviewed by Guastaroba et al. (2016).

The authors suggested three classes of such problems, the second of which: intermediate

facilities in transshipment problems, is the closest to our problem setting, since the con-

solidation center acts as a transshipment node. Our problem extends the cited references

in Guastaroba et al. (2016) by considering a stochastic model rather than a deterministic

one. Another article by SteadieSei� et al. (2014) surveys the literature on multi-modal

freight transportation planning. Our proposed model �ts under their category of tactical

planning, i.e., choice of transport services, associated modes and capacities, and allocating

customer orders to the services selected.

Croxton et al. (2003), Berman and Wang (2006) and Song et al. (2008) each studied

distribution coordination with consolidation center(s) or merge-in-transit centers. Each

paper developed di�erent models to determine the best distribution plan that minimizes

transportation plus inventory costs. Croxton et al. (2003) assume that suppliers provide

components, which are shipped to a merge-in-transit center, assembled, and dispatched

to the customer as a �nished product. Song et al. (2008) suppose that suppliers also

furnish components, but the customer assembles the product after receiving all parts as

one consolidated load. Berman and Wang (2006) assume that each supplier provides a

number of products, which are sent to customers via a cross-dock.

Both Croxton et al. (2003) and Berman and Wang (2006) assume that freight is moved

via a pre-determined transportation arrangement, so the choice of carriers is not studied.

7



Song et al. (2008), however, assume that the decision maker (a 3PL) selects from a large

number of possible carriers, each with a given dispatch time and cost. We adopt this latter

assumption: a typical 3PL chooses the modes and capacities from a number of potential

transportation service providers.

The three aforementioned papers had nonlinear cost functions. Transportation costs

follow a nonlinear discrete cost function in Song et al. (2008). Similar to those authors, we

adopt a general cost function that can capture the various factors a�ecting transportation

cost.

In the context of freight forwarding, most publications assume the relevant company

operates its own eet, proposing di�erent models that extend the classical vehicle routing

problem, or the pickup and delivery problem with time windows (Krajewska and Kopfer,

2009, Wang et al., 2014, Bock, 2010). Models that study 3PL coordination issues are

closely related to freight forwarders problems; transportation in supply chains is typically

outsourced to both 3PLs and freight forwarders. However, 3PLs may coordinate addi-

tional distribution activities, like warehousing and managing inventory. Song et al. (2008)

study the scheduling problem faced by a 3PL who is arranging shipments between suppliers

and customers in an international distribution network through the use of a consolidation

center. Cai et al. (2013) analyze the outsourcing of fresh products to a 3PL, where the

products could deteriorate during the transportation process, and derive the optimal de-

cisions for supply chain members. Qin et al. (2014) consider the freight consolidation and

containerization problem from the perspective of a 3PL that wants to determine the opti-

mal allocation of shipments to international shipping containers and the routing of those

containers.

Of some relevance to our work is the extensive family of problems on service network

design (SND), as surveyed by Crainic (2000) and Wieberneit (2008). SND decisions relate

to the network structure, i.e., selection of routes where service is conducted, and also the

movement of freight on the network. Our problem, however, assumes an already-established

network, where only the modal choice and scheduling of the freight movements, on prede-

�ned routes, is of interest. Furthermore, SND problems often take the carrier's perspective,

whereas our view is that of a 3PL that also manages a consolidation center, hence inventory

holding cost need be included. Guastaroba et al. (2016) argue that most papers on SND

with intermediate facilities concern applications at a national or regional level with a single

transport mode. Contrarily, our problem is applicable to global distribution networks, with

multiple transportation modes.

All previously reviewed papers assume deterministic customer demand. Limited work

addresses similar stochastic demand problems. Guastaroba et al. (2016) recognize that
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intermediate facilities in stochastic transshipment problems have received no attention, and

highlight this for future research. To the best of our knowledge, the only related papers

that consider randomness, but without transshipment, are K�l��c and Tuzkaya (2015) and

some stochastic service network design papers, surveyed below.

K�l��c and Tuzkaya (2015) investigate a two-echelon distribution network design problem

between distribution centers and wholesalers when demand is uncertain. The authors use

two-stage stochastic mixed integer programming, where the �rst stage selects location of

distribution centers; the second stage addresses transportation and inventory decisions, as

well as unmet demand. In contrast to that article, our work addresses transportation needs

in an already-established network.

Several papers have examined the bene�t of considering demand randomness in design-

ing service networks. Lium et al. (2009) study demand stochasticity in SND by formulating

a two-stage stochastic programming model that chooses the routes and frequency of service

in the �rst stage, and decides on the allocation of commodities to established routes or

outsourcing a portion of demand in the second stage. Bai et al. (2014) later extend this

model to allow possible rerouting of vehicles, to reduce the amount of outsourcing needed

when demand is high. Both our research and Bai et al. (2014) consider outsourcing de-

mand when it exceeds available �rst-stage capacity. However, since the 3PL in our case

does not operate its own vehicle eet, rerouting is not an option. Moreover, we examine

the trade-o� between choice of �rst-stage transportation options and inventory holding

cost, a dimension not studied in stochastic network design problems.

Other publications (Ho� et al., 2010 and Crainic et al., 2014) focused on creating

e�cient solution methodologies for solving realistic instances of stochastic SND problems.

Furthermore, more recent work by Wang et al. (2016) examined the value of deterministic

solutions, in terms of their quality and upgradeability, in a stochastic environment. Another

publication by Wang and Wallace (2016) studied the e�ect of considering spot markets at

the design stage of creating a transportation plan under uncertain demand. The article

showed that in most situations, accounting for spot markets when designing a service

network reduces total cost.

In the following section, we describe our problem setting, assumptions and formulation.

2.3 Problem Description and Formulation

We propose a two-stage stochastic programming model with recourse, to formulate the

Stochastic Distribution Planning with Consolidation (SDPC) problem faced by a 3PL that
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is coordinating shipments between suppliers,i 2 I , and customers,j 2 J , whose demands,

D ij , are uncertain. Given customers' demand distributions, delivery due dates and supplier

release times, the 3PL needs to select the transportation options for shipments inbound

to and outbound from the consolidation center, at the beginning of the planning horizon.

Similar to Song et al. (2008), we adopt general, possibly nonlinear, cost functions for

inbound and outbound transportation options,f (x iq ) and g(yjl ), respectively. Note that

these cost functions may di�er for distinct inbound and outbound transportation options,

q 2 Qi and l 2 L j , respectively. Exploiting a general cost function enables consideration of

di�erent transportation modes or multi-modal transportation options with varying capacity

levels, with those di�erences reected in the cost structure.

In our problem setting, the chosen transportation options and their associated capacities

are �xed for the whole planning horizon. Once demand is realized, if total demand from

a supplier (to a customer) exceeds the capacity of inbound (outbound) transportation

option(s) reserved for that supplier (customer), a spot market carrier is used. A spot

market may also be used if inventory cost savings outweigh the increased spot market

cost. We note that the preceding additional cost of utilizing a spot market carrier is

incurred by the 3PL. This cost is composed of two parts, (a) the estimated spot market

per unit price premium between the origin and destination, and (b) a disutility factor that

represents the 3PL's disutility to transport shipments through a spot market carrier. Such

a disutility factor can be set to zero, if shipping price is the only consideration for the

3PL to make shipments through a spot market carrier. However, the 3PL may not favor

shipping through a spot market carrier, e.g., due to unpredictable price uctuations in that

market, or limited availability of spot market carriers in peak seasons. Thus, the disutility

factor is meant to adjust the level of favorability in using a spot market carrier by the

speci�c 3PL.

The �rst stage of the two-stage stochastic program tackles the selection of inbound and

outbound transportation options to be reserved for the duration of the planning period.

The second stage allocates orders to chosen �rst-stage options, or to spot market carriers.

The two stages are optimized simultaneously so as to minimize the sum of transportation

cost, expected inventory holding cost and expected spot market carrier shipping cost.

Let x iq be a binary variable indicating whether inbound transportation optionq 2 Qi

is reserved for supplieri 2 I . Similarly, the binary variable yjl shows whether outbound

transportation option l 2 L j is reserved for customerj 2 J . Let S be the set of possible

scenarios or demand realizations.us
ijq and ws

ijl are binary variables that express whether

shipment (i; j ) is shipped through reserved inbound and outbound transportation options

q and l, respectively, in scenarios 2 S. Similarly, � s
ij and � s

ij are binary variables that

indicate whether shipment (i; j ) is moved via an inbound and outbound spot market carrier,
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respectively, in scenarios 2 S. Table 2.1 outlines the complete list of notation. We

formulate the problem as shown below and refer to the model as thestochastic distribution

planning with consolidation - ow based formulation(SDPC-FF).

Note that we assume that if shipment (i; j ) is transported by a spot market carrier, no

holding cost is incurred at the consolidation center, since the shipping time will be chosen

such that the interval the load is held at the consolidation center is negligible. Therefore,

the holding cost is incurred only if a shipment (i; j ) is shipped through reserved inbound

and outbound transportation options, i.e., for a speci�c shipment (i; j ), if both variables

us
ijq and ws

ijl have a value of 1. This requirement results in the nonlinearity of the holding

cost component of objective function (2.4).

[SDPC-FF ] min
X

i 2 I

X

q2 Q

f (x iq ) +
X

j 2 J

X

l2 L

g(yjl ) + � (x iq ; y jl ) (2.1)

subject to x iq ; yjl 2 f 0; 1g; i 2 I; q 2 Q; j 2 J; l 2 L (2.2)

where
� (x iq ; y jl ) = E� � s(x iq ; y jl ; � ) (2.3)

� s(x iq ; y jl ; ds) = min
� X

i 2 I

X

j 2 J (i )

ds
ij hi (

X

l2 L

� jl ws
ijl (1 � � s

ij )

�
X

q2 Q

� iqus
ijq (1 � � s

ij )) +
X

i 2 I

X

j 2 J (i )

ds
ij (� i � s

ij + � j � s
ij )

�
(2.4)

subject to
X

q2 Q

us
ijq + � s

ij = 1; i 2 I; j 2 J (i ) (2.5)

X

l2 L

ws
ijl + � s

ij = 1; j 2 J; i 2 I (j ) (2.6)

X

q2 Q

� iqus
ijq �

X

l2 L

� jl ws
ijl + �� iq � s

ij ; j 2 J; i 2 I (j ) (2.7)

X

j 2 J (i )

ds
ij us

ijq � Ciqx iq ; i 2 I; q 2 Q (2.8)

X

i 2 I (j )

ds
ij ws

ijl � Cjl yjl ; j 2 J; l 2 L (2.9)

us
ijq ; � s

ij 2 f 0; 1g; i 2 I; q 2 Q; j 2 J (i )

ws
ijl ; � s

ij 2 f 0; 1g; j 2 J; i 2 I (j ); l 2 L (2.10)

The objective function (2.1) minimizes the total inbound and outbound transportation
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cost, f (x iq ) and g(yjl ), respectively, plus the recourse function: the expected value of

the second-stage problem. For a particular demand realizationds of the random vector� ,

objective (2.4) minimizes the sum of the holding cost and the cost of shipping through a spot

market carrier. Constraints (2.5) and (2.6) guarantee that the model allocates each order to

exactly one inbound shipment, and exactly one outbound shipment, respectively, whether

the shipment is through a reserved �rst-stage transportation option or a spot market

carrier. Constraints (2.7) make sure that the outbound dispatch time of an order is greater

than its inbound arrival time. Constraints (2.8) and (2.9) ensure that the total demand

allocated to a transportation option, for a given supplier and customer, respectively, does

not exceed the capacity of that option. Finally, Constraints (2.10) impose the binary

requirement on all variables.

In order to avoid the nonlinearity in objective function (2.4), we propose an equivalent

linear path-based formulation that replaces the ow variables with path variables. We refer

to this formulation as the stochastic distribution planning with consolidation - path based

formulation (SDPC - PF), and we detail it next.

Linear path formulation

We de�ne a set of feasible paths for shipment (i; j ) from supplier i to customerj through the

consolidation center asPij , where a feasible pathpijql 2 Pij represents a pair of inbound and

outbound transportation options (q; l) that is feasible with regard to arrival/dispatch times

for shipment (i; j ). In other words, shipment (i; j ) has a feasible pathpijql if inbound option

q arrives at the consolidation center before outbound optionl is dispatched. Shipment (i; j )

also has feasible paths through each of its inbound optionsq and through an outbound

spot market, and similarly, there are feasible paths along each outbound optionl and an

inbound spot market. For a shipment (i; j ), inbound and outbound shipping via a spot

market carrier is also a feasible path. For brevity, we refer to a feasible path asp 2 Pij .

We de�ne the following additional notation. aiqp and bjlp are binary parameters indicating

if options q and l are on pathp 2 Pij . cs
ijp is the cost of sending shipment (i; j ) on path p

in scenarios, where

cs
ijp =

8
>>>>>>>><

>>>>>>>>:

ds
ij hi (� jl � � iq ); if no spot market carrier is used on pathp 2 Pij

� i ds
ij ; if a spot market carrier is used only for inbound shipping on pathp 2 Pij

� j ds
ij ; if a spot market carrier is used only for outbound shipping on pathp 2 Pij

(� i + � j )ds
ij ; if a spot market carrier is used for both inbound and outbound shipping on

path p 2 Pij
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We also de�ne decision variables� s
ijp as binary variables that indicate whether or not

shipment (i; j ) traverses pathp 2 Pij in scenarios. Figure 2.1 shows a visual representation

of the network with both the ow and path variables. The path based formulation, SDPC-

PF, can then be expressed as follows:

[SDPC-PF ] min
X

i 2 I

X

q2 Q

f (x iq ) +
X

j 2 J

X

l 2 L

g(yjl ) + � (x iq ; y jl ) (2.11)

subject to x iq ; yjl 2 f 0; 1g; i 2 I; q 2 Q; j 2 J; l 2 L (2.12)

where

� (x iq ; y jl ) = E� � s(x iq ; y jl ; � ) (2.13)

� s(x iq ; y jl ; ds) = min
X

i 2 I

X

j 2 J (i )

X

p2 Pij

cs
ijp � s

ijp (2.14)

subject to
X

p2 Pij

� s
ijp = 1 8i 2 I; j 2 J (i ) (2.15)

X

p2 Pij

aiqp� s
ijp � x iq 8i 2 I; j 2 J (i ); q 2 Q (2.16)

X

p2 Pij

bjlp � s
ijp � yjl 8j 2 J; i 2 I (j ); l 2 L (2.17)

X

p2 Pij

X

j 2 J (i )

aiqpds
ij � s

ijp � Ciq 8i 2 I; q 2 Q (2.18)

X

p2 Pij

X

i 2 I (j )

bjlp ds
ij � s

ijp � Cjl 8j 2 J; l 2 L (2.19)

� s
ijp 2 f 0; 1g; i 2 I; j 2 J (i ); p 2 Pij (2.20)

The objective function (2.11) minimizes the total transportation cost plus the expected

value of the second-stage problem. For a speci�c realizationds of the random vector� , ob-

jective (2.14) minimizes the total allocation cost of shipments to feasible paths. Constraints

(2.15) ensure that exactly one path is chosen for each shipment (i; j ) in the network. Con-

straints (2.16) and (2.17) guarantee that shipment (i; j ) traverses a path only if both the

inbound transportation option of supplier i (x iq ) and the outbound transportation option

of customerj (yjl ) have a value of 1. Constraints (2.18) and (2.19) require that the total

demand that traverses a given path does not exceed the capacity of the inbound or out-

bound transportation options of that path. Finally, Constraints (2.20) impose the binary

requirement on the variables.

Note that constraints (2.18) and (2.19) may be modi�ed by multiplying their left-hand-
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Figure 2.1. Visual representation of the network with the main decision variables and param-
eters.

side byx iq and yjl , respectively. However, empirical testing showed that such modi�cation

caused a slight increase in computational time for some instances. Therefore, we refrain

from using this adjustment in our computational testing.

We use Sample Average Approximation (SAA) to solve SDPC-PF. The main advantage

of this technique is that it provides a statistical estimate of the optimality gap of thetrue

stochastic optimization problem, which is discretized by a very large scenario tree. In

contrast, solving the problem directly with a commercial solver with 50 or more scenarios

is computationally intensive for reasonable size problems, as it results in a large number

of path variables. Solving the problem directly also gives little information on the quality

of the solutions obtained, relative to thetrue stochastic problem. We therefore use SAA

to measure the quality of the resulting distribution plans by utilizing the optimality gap

estimate as a quality metric, and also to keep the problem size manageable and obtain

good solutions in a reasonable amount of time.
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2.4 Solution Methodology: Sample Average Approx-

imation

Sample Average Approximation is a Monte Carlo simulation-based solution technique for

solving two-stage or multi-stage stochastic optimization problems (Mak and Wood, 1999,

Kleywegt et al., 2002). In this technique, the objective function of the stochastic model is

approximated by a sample average estimate obtained from a random �nite set of samples.

The problem is then solved, with the approximate objective function and a set of scenarios

SN , as a deterministic optimization problem either directly or using other solution tech-

niques. The process is repeatedM times with di�erent samples, and each time results in

a candidate solution. To assess the quality of the candidate solutions, statistical estimates

of their optimality gaps can be obtained.

SAA solves thetrue problem with a reasonable level of accuracy provided some condi-

tions are met (Kleywegt et al., 2002, Shapiro and Philpott, 2007). Those conditions, and

justi�cations on how SDPC-PF meets them, are as follows:

1. It is possible to generate a sample realization of the random vector� . For our

proposed problem, this can be done by sampling from each (i; j ) demand distribution.

2. The SAA problem can be solved e�ciently with a moderate sample size. We will

show in Section 2.5 that we can solve SDPC-PF in a reasonable amount of time, for

most test instances, with a sample size ofN = 10.

3. The function � s(x iq ; y jl ; ds) can be easily computed for givenx iq ; y jl and ds . That

is, for a given �rst stage solution and a given realization of demand, the optimal

objective function (2.14) can be easily evaluated by solving the model in Equations

(2.14) to (2.20).

4. The true problem has relatively complete recourse, i.e., any solution to the �rst stage

problem is feasible to the second stage because it can becorrected. In SDPC-PF, this

is done through the assumption that a spot market carrier is always available when

demand cannot be ful�lled with reserved �rst stage variables. Thus, any choice of

transportation plan would result in a feasible second stage problem, because shipping

via the spot market is a feasible path for all shipments (i; j ).

We now detail how SAA is used to solve SDPC-PF. Applying SAA, the objective

function of the second stage problem of SDPC-PF is approximated as:

� (x iq ; y jl ) =
1
N

X

s2 SN

X

i 2 I

X

j 2 J (i )

X

p2 Pij

cs
ijp � s

ijp (2.21)
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whereSN is the set of scenarios of sizeN sampled in a given SAA problem. The full SAA

model is expressed as follows:

[SAA Model ] min
X

i 2 I

X

q2 Q

f (x iq ) +
X

j 2 J

X

l 2 L

g(yjl ) + � (x iq ; y jl ) (2.22)

subject to

constraints (2:15) � (2:20); (2:21) 8s 2 SN

To assess the quality of the SAA solution, statistical estimates of lower and upper

bounds on the objective function value of the original stochastic problem may be obtained,

as well as estimates of the variances of these bounds. This is achieved by solving the SAA

model M times, where each time a set of independent samples of sizeN is generated.

This results in M candidate solutions,x 1; : : : ; x M , wherex m is the vector notation of the

solution of the �rst stage variables, �x iq ; �y jl for candidate solutionm 2 f 1; : : : ; M g, with

objective function values� 1; : : : ; � M .

To estimate the lower bound of the true objective function value, we �rst compute the

mean (�� ) and the variance (^� 2
N;M ) of the objective function values� 1; : : : ; � M as:

�� =
1

M

MX

m=1

� m (2.23)

�̂ 2
N;M =

1
M (M � 1)

MX

m=1

(� m � �� )2 (2.24)

The lower bound is expressed as:

LB = �� � t �;v �̂ N;M (2.25)

wheret �;v is the � -critical value of the t-distribution with v degrees of freedom,v = M � 1.

Kleywegt et al. (2002) note there is a trade-o� between SAA solution quality and

computational requirements as the sizeN changes. With a largerN , the objective function

value of the SAA problem gets closer to the true objective value, but the computational

requirement increases signi�cantly. Similarly, as the number of replicationsM increases, a

better lower bound can be obtained with a smaller standard deviation ^� 2
N;M . However, the

algorithm may become computationally ine�cient. The exact values ofN and M used in

our computational testing are explained in Section 2.5.

The upper bound on the true objective function value of each candidate solution is

obtained by evaluating the solution with a very large scenario tree of sizeN 0 that is

assumed to represent the true distribution of demand. Since each scenarios 2 f 1; : : : ; N 0g

is an i.i.d. random sample, the problem of evaluating a candidate solution decomposes

into N 0 subproblems. The size of the scenario treeN 0 is much larger than the size of the

scenario tree maintained in each SAA run,N . We denote the objective function value of
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a given subproblems as � (x m ; s), which is computed as shown in Equation (2.26). Note

that because each subproblem is solved separately,N 0 can be very large without causing a

signi�cant computational burden. The estimate of the true objective value of the second

stage problem, denoted as� (x m ), is computed as shown in (2.27).

� s(x m ; s) =
X

i 2 I

X

j 2 J (i )

X

p2 Pij

cijp � ijp 8s 2 f 1; : : : ; N 0g (2.26)

� (x m ) =
1

N 0

N 0X

s=1

� s(x m ; s) (2.27)

The value of the true objective function, �� m , for candidate solutionx m , and its variance,

� 2
N 0(x m ), are computed as shown in Equations (2.28) and (2.29), respectively,

�� m =
X

i 2 I

X

q2 Q

f ( �x iq ) +
X

j 2 J

X

l2 L

g( �y jl ) + � (x m ); (2.28)

� 2
N 0(x m ) =

1
N 0(N 0 � 1)

N 0X

s=1

[� s(x m ; s) � � (x m )]2: (2.29)

Finally, the upper bound of a candidate solution,zm
U is computed as:

� m
U = �� m + z� � N 0(x m ) (2.30)

wherez� is the � -critical value of the standard normal distribution. The upper bound of

the algorithm is the smallest� m
U ; 8m 2 f 1; : : : ; M g, as shown in Equation (2.31). The �nal

solution of SAA, x � , is the candidate solution that results in the smallest optimality gap

(� m
U � � L ) for all candidate solutionsm 2 f 1; : : : ; M g, which corresponds to the solution

with the smallest upper bound� m
U , as shown in (2.32).

UB = min
m2f 1;:::;M g

� m
U (2.31)

x � = argmin
m2f 1;:::;M g

(� m
U ) (2.32)

2.5 Computational Experiments and Analysis

In this section, we conduct extensive computational testing to assess the e�ectiveness of

SAA in solving the SDPC-PF and to evaluate the bene�t of accounting for uncertainty in

modeling SDPC. We solve problem instances of various sizes and di�erent experimental

settings using the SAA algorithm. We then compare the solution of SDPC to its deter-

ministic counterpart with average demand values. We refer to the deterministic problem

as thedeterministic distribution planning with consolidation(DDPC) and we describe its

formulation in Appendix A.2. We compare the stochastic and deterministic solutions and
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objective values to evaluate the bene�t of accounting for uncertainty, through computing

the value of stochastic solution.

We briey describe the data generation method used and discuss the di�erent data sets

used in testing and analysis, and how they compare and contrast, in Section 2.5.1. Detailed

explanation of data generation is provided in Appendix A.1. We further elaborate on our

computational testing by detailing the setting used for the SAA algorithm as well as some

key performance measures in Section 2.5.2. Finally, we report and discuss the results of our

computational testing in Section 2.5.3. The SAA algorithm was implemented in Python

2.7 on an Intel(R) Core(TM) i7 CPU, 2.90 GHz, 16.00 GB of RAM. The optimization

problems were solved by CPLEX 12.8.

2.5.1 Data Generation and Data Sets

We generate the parameters of the test instances partly following the method outlined by

Song et al. (2008), since their proposed model also studies a distribution planning problem

from the perspective of a 3PL. We randomly generate the additional parameters used in

our SDPC-PF. More particularly, we use Song et al.'s method to generate the network

of suppliers and customers and the sets of arrival times and dispatch times of inbound

and outbound options,X i ; Yj , for suppliers and customers, respectively. We modify their

proposed cost function of inbound and outbound optionsf (x iq ); g(yjl ), by incorporating

capacity. We also scale down their holding costhi to make it a cost per unit, rather

than per shipment. We then generate the following additional parameters: capacitiesCiq

and Cjl for inbound and outbound options, demand distributions for each (i; j ) shipment,

and spot market inbound and outbound transportation cost,� i and � j , respectively. The

detailed data generation method is outlined in Appendix A.1.

Based on this method, we generate 10 data sets of di�erent sizes. Each set is composed

of 5 instances that share the same network data but di�er in the demand distributions

and the transportation options available for suppliers and customers. Table 2.2 outlines

the problem size of each data set in terms of the numbers of suppliers and customers, and

number of (i; j ) shipments. The disutility factor of the spot market carrier is set to r = 4.

Recall that transportation cost through a spot market carrier is a variable per unit cost.

The 3PL thus pays for exactly the shipping amount needed and has more exibility in

shipping time, as opposed to the reserved transportation options, which justi�es the cost

di�erence. The e�ect of the disutility factor on the expected outsourcing amount and the

bene�t of using SDPC-PF are analyzed in Section 2.5.2
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Table 2.2. Sizes of the data sets used in the computational experiments.

Data
Set No.

No. of
Suppliers

No. of
Customers

No. of
Shipments

Set 1 5 5 20

Set 2 5 10 20

Set 3 5 10 40

Set 4 10 10 50

Set 5 10 20 50

Set 6 10 20 100

Set 7 10 30 100

Set 8 10 30 200

Set 9 20 20 100

Set 10 20 20 200

We now better examine how inventory holding times at the consolidation center and

the number of inbound and outbound transportation options may inuence the bene�t of

using the SDPC-PF. For each set outlined above, we develop four experimental settings.

Each setting considers three arrival/dispatch times for each supplieri and customerj . We

assume that each supplier and customer have a slow option, an average-speed option and

a fast option. The arrival times � iq 2 X i of an inbound fast option, average-speed option,

and slow option for a given supplieri are generated uniformly in the ranges U[100,235],

U[235,370], and U[370,500], respectively. Similarly, the dispatch times� jl 2 Yj of outbound

options that are fast, of average speed option, and slow for a given customerj are generated

uniformly in the respective ranges U[370,500], U[235,370], and U[100,235].

The four experimental settings di�er in the following way:

ˆ (A) For each of the three arrival and dispatch times of inbound and outbound options,

two levels of capacity are considered, creating a total of six transportation options

per supplier and customer. The two capacity levels are = 1:00 and  = 1:15. In

this experimental setting, arrival/dispatch times of inbound and outbound options

are generated independently. For example, an average-speed option of supplieri

does not necessarily arrive before the dispatch time of the average-speed option of

customer j , given that i 2 I (j ). This results in higher average wait times at the

consolidation center, and therefore greater inventory cost.
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ˆ (B) For each of the three arrival and dispatch times of inbound and outbound options,

the same two levels of capacity are considered = 1:00 and  = 1:15, creating

six transportation options per supplier and customer. However, under this setting,

arrival times � iq 2 X i of suppliers i 2 I are synchronized with the dispatch times

� jl 2 Yj of customersj 2 J (i ) for speci�c speed levels. That is, for a given supplieri

and customerj 2 J (i ), supplier i 's fast transportation option is guaranteed to arrive

before customerj 's slow option is dispatched. The same synchronization is done

for di�erent speed levels, such that average-speed and slow supplier options arrive

before the dispatch time of average-speed and fast customer options, respectively.

This creates instances of lower average holding times at the consolidation center.

ˆ (C) Arrival and dispatch times are generated independently, similar to(A) , but

three capacity levels ( = 1:00;  = 1:15; and  = 1:3) are considered for each time,

thus creating a total of nine options per supplier and customer. We are interested

to know how having an additional capacity level may change the solution, and also

how increasing the number of transportation options may a�ect the e�ciency of the

SAA algorithm, when average holding times at the consolidation center are high.

ˆ (D) Arrival and dispatch times are synchronized, similar to(B) , and three capacity

levels are considered for each time, = 1:00;  = 1:15; and  = 1:3, creating a total

of nine options per supplier and customer. Similar to(C) , we wish to understand

the impact of an additional capacity level on the solution of SDPC, and the e�ciency

of SAA with the increased number of transportation options, when average holding

times are low.

2.5.2 Experiments

SAA settings

We use SAA to solve the SDPC-PF, as outlined in Section 2.4. We de�neN = 10 scenarios

to estimate the expected second stage cost. This is then repeated forM = 10 SAA problems

so as to estimate a lower bound on thetrue expected cost.

Each scenario includes a realization of demand for each shipment (i; j ). We sample

these realizations from the demand distribution data (Section A.1.2). Each SAA problem

is solved using CPLEX 12.8, with a maximum time limit of 1200 seconds (20 minutes). The

lower bound is computed as in Equation (2.25), witht � =5 ;v=9 = 1:833, for 95% con�dence

interval and 9 (N-1) degrees of freedom.
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Our choice ofN and M was based on empirical results so as to achieve a reasonable

trade-o� between gap and computational time. Figure 2.2 shows the gap and the com-

putational time of two instance sets, 6A and 8A. Though the computational time when

N = 10 and M = 10 is higher than when both or eitherN and M take lower values, the

bene�t is apparent in the reduced estimated optimality gap. Set 8A is more computation-

ally demanding; notice how increasing the value ofN and M actually causes an increase

in the estimated gap since the optimality of each SAA run is not achieved in the imposed

time limit.

(a) Gap estimate for di�erent values of N and
M - Set 6A.

(b) Total computational time of the M SAA
runs, each with N scenarios - Set 6A.

(c) Gap estimate for di�erent values of N and
M - Set 6A.

(d) Total computational time of the M SAA
runs, each with N scenarios - Set 8A.

Figure 2.2. Trade-o� between gap and computational time for di�erent values ofN and
M .

To obtain the upper bound on expected cost of thetrue problem, we consider all

individual solutions, xm , of the M runs, and evaluate them using a scenario tree ofN 0 =

1000 scenarios. For each of thexm solutions, we calculate the expected second stage cost

of the solution and compute �� m as shown in Equation (2.28). We then compute the upper

bound � m
U as in Equation (2.30), with z� =5 = 1:64, for a 95% con�dence interval. The

estimated upper bound of the algorithm is min
m= f 1;:::;M g

� m
U , as shown in Equation (2.31).
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Performance measures

To assess the advantage of taking demand uncertainty into account at the modeling phase,

we compare the SAA solution for each problem instance to the solution of its deterministic

counterpart DDPC-PF, shown in Section A.2. Particularly, we solve the deterministic

problem to obtain the distribution plan when the mean demand is used for each shipment

(i; j ). We then evaluate the deterministic distribution plan using the same 1000 scenario

tree used to obtain the upper bounds of the SAA solutions. This shows the expected

cost savings achieved when distribution plans are constructed using SDPC as opposed to

DDPC. This value is referred to in the literature asthe value of stochastic solution(Birge

and Louveaux, 2011). We report this value as(�� det � �� stoch )
�� stoch

, where �� det and �� stoch are the

objective values of the deterministic and the stochastic solutions, respectively, when the

second stage problem is assessed on the fullN 0 = 1000 scenario tree, computed as shown

in Equation (2.28). Note that �� stoch is the objective value of the best SAA run, with the

lowest optimality gap.

To further highlight the potential bene�ts of our model, we report the expected out-

sourcing that each distribution plan requires. That is, the expected shipment amount,

as a percentage of total expected demand, that travels via spot market carriers rather

than a reserved �rst stage transportation option in the 1000-scenario tree demand dis-

tribution. This provides a measure of risk associated with the transportation plan of a

given solution by emphasizing the extent to which �rst stage reserved transportation op-

tions �x iq ; �y jl are capable of satisfying demand. We also report theexpected utilizationof

reserved transportation options for each instance, seeking a possible relationship between

expected utilization of options and expected outsourcing.

2.5.3 Computational Results

SAA results

The SAA algorithm was applied to the di�erent data sets of Section 2.5.1 for experimental

settings A, B, C and D. Results are shown in Tables 2.3 and 2.4. Note that each row

reports the average over 5 instances of the speci�ed size and setting. For example, row 1A

in Table 2.3 shows the average results of 5 instances of Set 1 (5 suppliers, 5 customers, 20

shipments), experimental setting A. For additional clarity, we also provide detailed results

for one problem instance in Appendix A.3.

The �rst column of Tables 2.3 and 2.4 speci�es the data set number. The relative gap

of the algorithm is reported in the second column and the number of feasible paths used to

23



form the model is shown in the third, to demonstrate the problem size. Column 4 exhibits

the value of stochastic solution, a measure of the bene�t of using our proposed stochastic

model over its deterministic counterpart. Columns 5 and 6 report theexpected outsourcing

for solutions of the stochastic and the deterministic models, respectively. Columns 7 and 8

show theexpected utilizationof reserved inbound and outbound transportation options for

the stochastic and deterministic models. For insight on the uctuation of cost over di�erent

scenarios, we report the relative standard deviation of the lower and upper bounds, as a

percentage of their respective means, in columns 9 and 10. Finally, columns 11 to 14

respectively report the computational time (in seconds) of the full algorithm, the time to

solve the 10 SAA runs, the time to compute upper bounds, and the time to solve the

deterministic counterpart (DDPC).

SAA performance

The results clearly demonstrate that the optimal distribution plans of the SDPC are more

cost e�cient than the plans of DDPC, once the actual demand is realized. Instances across

the di�erent data sets and experimental settings show that the SDPC yields signi�cant

expected cost savings, as outlined by thevalue of stochastic solution. Observe, however,

that the advantage of the SDPC, compared to DDPC with nominal values, is less notable

for denser problem instances, when a greater number of customer orders are consolidated

in a single load. This can be observed in the averagevalue of stochastic solutionof Sets 2

and 3, 5 and 6, 7 and 8, 9 and 10 across all experimental settings. For each of these pairs

of sets, the network size is the same, i.e., the same number of suppliers and customers, but

the number of shipments doubles. For example, the average value of stochastic solution

drops from 39.11% in Set 2A to 11.79% in Set 3A. The same trend can be observed when

comparing Sets 9A and 10A; the value of stochastic solution drops from 16.57% to 3.00%.

This implies that the SDPC problem is more bene�cial in sparse networks as opposed to

denser ones. This observation can be explained by the fact that as the number of combined

(i; j ) shipments in an inbound or outbound transportation option increases, the mean of the

consolidated shipment approaches thetrue mean, and therefore the deterministic solution,

with mean demand, becomes comparable to the stochastic one.

To show the relationship between the value of stochastic solution and the number

of shipments in an instance, we calculate the average ratio of number of shipments per

supplier and per customer as (no:shipments
jI j + no:shipments

jJ j )=2. Then, for all instances shown

in Tables 2.3 and 2.4, we graph the ratio of the average number of shipments per supplier

and customer versus the value of stochastic solution in Figure 2.3. The x-axis shows the

ratio in an ascending order and its corresponding set number. We see in the �gure that
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as the number of shipments per supplier and customer increases, the value of stochastic

solution decreases. We also observe that the di�erent experimental settings show very

similar trends, with a slightly higher value of stochastic solution for settings B and D, with

the lower average holding time.

Note from the tabular results that denser problem instances have much higher compu-

tational burden than sparser ones. This is seen in the SAA time reported in column 12 of

Tables 2.3 and 2.4. Sets 7 and 8, for example, both have 10 suppliers and 30 customers.

However, Set 8 has double the number of shipments of Set 7, i.e., 200 and 100 shipments,

respectively. The average computational time of Set 8B for solving the 10 SAA runs is

12022 seconds, while that of Set 7B is only 524 seconds. Nonetheless, the average compu-

tational time of the upper bound calculation is slightly higher for Set 8B, but somewhat

comparable, respectively 340 and 259 seconds for 8B and 7B.

Tables 2.3 and 2.4 also suggest that the di�erence inexpected outsourcingpercentage

between solutions of SDPC and DDPC is more signi�cant for sparser problems. This

di�erence decreases for denser problem instances. In other words, for denser instances,

the expected outsourcing percentage of DDPC is low (compared to sparser instances)

and is closer in value to that of SDPC. Figure 2.4 plots the expected outsourcing for

solutions of both SDPC and DDPC versus the ratio of number of shipments to suppliers

and customers and highlights such an observation; the di�erence between the expected

outsourcing percentage of SDPC and DDPC decreases for denser problem instances. For

the expected utilization of reserved options, we observe that denser problem instances have

slightly higher expected utilization than sparser instances in the solutions of both SDPC

and DDPC.

The average optimality gap is at most 1.28% for instances of all data sets except Sets

8 and 10, with 200 shipments. For those two sets, the average optimality gap is at most

3.74%. We note, however, that in those sets, the maximum time limit of each SAA run

(1200 seconds) is reached, which implies that some or all of the SAA runs may have not

been solved to optimality, negatively a�ecting the quality of the candidate solutions and,

in turn, the optimality gap estimate. Because of the low optimality gap across di�erent

instances under the current SAA setting outlined in Section 2.5.2, there is no motive to

increase the number of scenariosN maintained in the SAA problem.

We notice that the results of Set B, with the lower holding time at the consolidation

center, are comparable to those of Set A, implying that holding time does not have a

major impact on the bene�t of SDPC. Nonetheless, the value of stochastic solution is

slightly higher for Set B compared to Set A, and the expected outsourcing of Set B is a bit

lower than that of Set A. This indicates that the reduced wait time in Set B marginally
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Figure 2.3. Relationship between value of stochastic solution and number of shipments per
supplier and customer.

decreases the need for outsourcing done to reduce holding cost, thus improving the value

of stochastic solution.

Sets C and D, with the greater number of options, show similar trends to Sets A and B,

in terms of the value of stochastic solution, the percentage of outsourcing and utilization for

both SDPC and DDPC. However, Sets C and D have higher average computational time of

SAA runs, for most instances, compared to Sets A and B. This increase in computational

time is at most double for most instances, with a few exceptions, e.g., the SAA time of 6C

is about 3 times that of 6A.

E�ect of the spot market disutility factor and the holding cost on the bene�t

of SDPC

We conduct analysis on experimental settings A and B, for all datasets, when the disutility

factor changes fromr = 4 to r = 2 and the holding cost decreases by 50%. Since experi-

mental settings C and D show similar trends to A and B in the computational results in

Tables 2.3 and 2.4 but have higher computational time, we focus on settings A and B only.

We compare the optimality gap estimate, the value of stochastic solution, the expected

outsourcing and expected utilization for di�erent combinations ofr and h. Results are

shown in Table 2.5, where each row displays the average of 5 instances of the speci�ed size

and setting.

We observe that the change in optimality gap as the disutility factor and holding

cost decrease is very slight for both experimental settings. We also note that for a given
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Figure 2.4. Expected outsourcing vs. number of shipments per supplier and customer for
SPDC and DDPC.

disutility level, reducing the holding cost provides minor improvements in the value of

stochastic solution. In other words, reduction in holding cost only provides a very small

amount of additional cost savings for the solutions of SDPC compared to DDPC, even for

instances with higher average holding time. The value of stochastic solutions improves an

average of 0.67% and 0.29% for settings A and B, respectively, with the reduction in holding

cost. This result is explained by the fact that the lower holding cost is reected in both

SDPC and DDPC, and the cost savings between the two problems are mainly achieved

through reserving higher transportation option capacity to reduce the need to outsource

to the spot market when demand is high. Nevertheless, we note that the reduction in

holding cost does slightly reduce the amount of expected outsourcing, and this decrease is

more notable for setting A instances as compared to B. We also observe that the expected

utilization is only marginally a�ected by the changes in holding cost. Settings A and B

have an average increase of utilization of 1.83% and 0.30% as holding cost decreases.

Results also suggest that the disutility factor has the most impact on both the value

of stochastic solution and expected outsourcing percentage. This is anticipated, since the

disutility cost is a variable per unit cost and the model assumes that shipping through a spot

market carrier results in no holding cost. Lowering the disutility factor tor = 2 therefore

reduces the cost di�erence between �rst stage options and spot market. Particularly, we

notice that the bene�t of incorporating randomness in the model is positively correlated

to the value of the disutility factor. That is, as the spot market shipping gets closer to
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that of reserving a transportation option ahead of time, and the 3PL is indi�erent to spot

market shipping, considering customer demand stochasticity in the planning phase does

not result in remarkable cost savings. Thus, any chosen �rst-stage transportation plan can

easily be adjusted when actual demand is realized, at only a small cost.

Structural di�erences between solutions of the di�erent con�gurations of disu-

tility factor and holding cost

The previous section examines the impact of changes in the disutility factor and holding

cost on the bene�t of SDPC. Here we analyze how the structure of the distribution plans

obtained from solution of SDPC di�ers as the con�guration of disutility factor and holding

cost changes. To do so, we focus on instance 9A3, discussed in Appendix A.3, and see

how the transportation plan changes for distinct capacity and speed levels. Figure 2.5

shows a breakdown of inbound and outbound transportation options for each of the four

combinations of disutility and holding cost considered in Section 2.5.3. The x-axis refers

to the instance name by the speci�c values ofr and h in the instance. For example,

r4 h50% shows the results of the instance 9A3 when we solve it withr = 4 and 50% of the

holding cost. Each column in Figures 2.5a and 2.5b shows the breakdown of all reserved

inbound and outbound transportation options, respectively, based on their capacity and

speed levels, under each parameter setting. The di�erent parts of a given column show

the number of options with a given capacity and speed level, where HighCap and AvgCap

refer to options with  = 1:15 and = 1:00, respectively, and Fast, Avg, Slow, refer to the

three speed levels considered in the instance.

Figure 2.5 suggests that both the holding cost and the disutility factor impact the

actual distribution plan of SDPC. A decrease of 50% in holding cost, whenr = 4, reduces

the number of inbound by 5, but keeps the number of outbound options unchanged. This

implies that with a high holding cost, and when average holding time is high, reserving

additional capacity may diminish the total network cost by cutting down on holding cost.

We note, however, that the reduction in holding cost has a greater impact on the choice of

speed levels of reserved options more than their capacity levels. For example, for a given

value of r , when h decreases by 50%, approximately the same number of high capacity

options is reserved as whenh is kept at 100%. However, the change in the breakdown of

the reserved options based on speed is more apparent. This is intuitive since as holding cost

decreases, the trade-o� between transportation and holding cost becomes less important.

Therefore, the solution may choose plans that result in higher wait times in an e�ort to

reduce transportation cost and in turn, minimize total cost.

As opposed to reduction in holding cost, we note from Figure 2.5 that the reduction in
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the disutility factor a�ects both the choice of the reserved transportation options' capacity

and speed levels. For example, whenh is at 100%, the number of high capacity inbound

options decreases from 15 to 11, and the number of high capacity outbound options de-

creases from 19 to 16, whenr changes from 4 to 2. We also notice an increase in the number

of average-capacity average-speed options, both inbound and outbound. This reinforces

the results of the analysis in Section 2.5.3; as the value of the disutility factor decreases

and the spot market cost decreases, there is less need to develop robust distribution plans,

since adjusting plans after demand is realized is not costly.

(a) Inbound reserved options (b) Outbound reserved options

Figure 2.5. Breakdown of the transportation plan of the best SAA run of di�erent con�gurations of r
and h.

2.6 Conclusion

In this chapter, we studied the stochastic distribution planning with consolidation problem

from the viewpoint of a 3PL managing a three-echelon supply chain network. We proposed

a two-stage stochastic program with recourse to model the problem of selecting inbound

and outbound transportation options for 3PL distribution planning, subject to stochastic

customer demand. To date, the literature on distribution planning in transshipment net-

works does not consider uncertainty faced in practical applications. This study o�ers an

extension of previous work by considering probabilistic demand in tactical decisions faced

by a 3PL that is handling the distribution needs of its clients.

Because of the nonlinearity in the objective function of our proposedstochastic distribu-

tion planning with consolidation - ow based formulation(SDPC-FF) model, we suggested

an alternative linear formulation, the stochastic distribution planning with consolidation -

path based formulation(SDPC-PF). The latter generates all feasible paths for shipments

in the network, and decides on the transportation options to reserve and the allocation

of shipments to paths. We applied Sample Average Approximation (SAA) to solve the
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SDPC-PF, and tested it extensively to evaluate its bene�ts and limitations. We also com-

pared the solutions obtained by the SDPC-PF to a deterministic heuristic for the stochastic

problem, the deterministic distribution planning with consolidation (DDPC), with mean

demand values, to assess the advantage of incorporating stochasticity in the modeling

phase.

Our computational testing suggests that signi�cant cost savings can be achieved when

generating distribution plans using the SDPC rather than DDPC. The results also demon-

strate that the stochastic model greatly reduces the amount of outsourcing needed in the

second stage problem, compared to the deterministic case. We notice, however, that the

bene�t of SDPC is less notable for denser problem instances, where large numbers of ship-

ments are consolidated in a single load. We also observe that changes in second-stage cost

may a�ect the bene�t of SDPC or the structure of the choice of �rst-stage transportation

options, or both. For instance, reduction in holding cost does not a�ect the bene�t of

SDPC, but changes the choice of transportation options. On the other hand, the spot

market cost plays a major role in how bene�cial the SDPC problem is, and in the choice

of transportation options. This �nding suggests that if the cost of shipping through a

spot market carrier is not much greater than the cost of reserving transportation options,

and the 3PL's disutility of shipping through the spot market is low, there is less need to

establish a robust distribution plan ahead of time. That follows since correcting the initial

plan, once actual demand is realized, would not result in remarkable additional costs.

Future research could extend SDPC to also incorporate stochasticity in the ar-

rival/dispatch times of transportation options and study how the solution would change

compared to the current model as well as the deterministic case. Another possible exten-

sion is to consider the decision variables of transportation options as integer rather than

binary, with the 3PL having to choose how many vehicles, of a particular level of capacity

and a certain arrival/dispatch time, to reserve for inbound and outbound shipping for the

duration of the planning horizon.

Studying multiple consolidation centers, but choosing to send each shipment through

exactly one, is another interesting direction. A related suggestion is a model with two

consolidation centers, one closer to suppliers and the other closer to customers. This is a

more representative model of global distribution planning; what is the bene�t of accounting

for uncertainty under that setting? Other directions include considering di�erent cost

functions for the spot market, and the possibility of consolidating inbound and outbound

spot market shipments, to achieve economies of scale.
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Chapter 3

Crowdsourced Delivery: A Review of

Platforms and Academic Literature 1

3.1 Introduction

E-retailing and same-day delivery continue to experience remarkable growth year after year.

The total revenue of online sales of physical goods in the US totaled up to$504.6 billion

US dollars, in the year 2018, and is expected to rise to$735 billion US dollars in 2023

(Statista, 2019). With this growth comes increased competition, especially in providing

shorter delivery time windows. In an e�ort to improve their logistics competitiveness, well-

established e-retailers as well as local small to medium sized businesses have experimented

with new innovative delivery systems to provide faster deliveries in cost-e�ective manners.

One such systems is \crowdsourced delivery", where ordinary people carry out last-mile

deliveries with their own vehicles, from stores or warehouses to customers' destinations.

This system falls under the broader emergent concept of the \sharing economy", which

has created highly successful business models, such asUber and Airbnb, in the last decade.

The main distinguishing factor in those business models is that they rely on individuals

sharing their under-utilized property for the mutual bene�t of deriving value for themselves

and for the business. Though the concept of the sharing economy is fairly old, also known

as collaborative consumption, advances in mobile communication technologies and global

positioning systems (GPS) enabled its widespread emergence in recent years. Habibi et al.

(2017) argue that the boom of the sharing economy followed the �nancial collapse of 2008,

1This chapter is based substantially on a published article in Omega: The International Journal of
Management Science. Alnaggar, A., Gzara, F., and Bookbinder, J.H., 2021. "Crowdsourced Delivery: A
Review of Platforms and Academic Literature." Omega, 98, 102139.
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which has created a greater need to reduce customer costs. According to Pricewaterhouse-

Coopers (2015), the global revenue of the sharing economy was worth$15 billion in 2015,

and is estimated to grow to$335 billion by 2025.

In 2015, Amazon implemented crowdsourced last-mile delivery by introducingAmazon

Flex; an on-demand package delivery service that hires independent freelance drivers to

transport same-day delivery packages to Amazon customers (Halzack, 2015). Some of

the items delivered are ordered underPrime Now, a delivery scheme o�ered by Amazon

with a guaranteed 2-hour delivery time window. Other items are ordered underAmazon

Fresh, a company division that handles grocery orders (Amazon.com, 2019). In 2018,

Walmart began piloting crowdsourced delivery in two US cities, under the nameSpark

Delivery (Bose, 2018). In addition to implementations of this system by large e-retailers,

multiple start-ups have been launched in the last decade that o�er last-mile crowdsourced

deliveries (e.g. Deliv, DoorDash, Hitch, Postmates). Those companies aim to provide more

a�ordable shipping services than old-school shipping methods through postal services or

overpriced couriers. They do so by connecting shippers to a network of people who are

willing to provide shared-mobility services, as a side activity that generates additional

income. Those services may be used for personal use or by businesses that o�er fast,

same-day shipping.

The goal of this survey is to describe and analyze the state of the art of current crowd-

sourced delivery systems in the industry, and review the OR literature addressing this

emerging topic. In doing so, we also identify and review related subproblems in this sys-

tem that span other classical transportation problems heavily studied in the literature. We

outline the key di�erences of crowdsourced delivery systems and the new challenges they

bring about. To the best of our knowledge, there is no work in the literature that surveys

and compares existing crowdsourced delivery systems, provides a classi�cation or taxonomy

of existing systems in practice, and proposes a typology of decisions within crowdsourced

delivery systems

The rest of this chapter is arranged as follows. In Section 3.2 we describe the current

crowdsourced delivery systems in the industry and compare their matching and scheduling

mechanisms as well as their compensation schemes. Section 3.3 reviews the literature on

crowdsourced delivery and compares the literature's features and assumptions to the real

industry crowdsourced delivery systems. In Section 3.4, we provide a disaggregation of the

managerial decisions within a crowdsourced delivery system, compare those subproblems to

classical problems in the literature and identify new challenges that this emergent system

creates. Section 3.5 is dedicated to discussing future research opportunities. Finally, we

make some concluding remarks in Section 3.6.
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3.2 Crowdsourced Delivery Platforms

3.2.1 Overview of Available Crowdsourced Delivery Platforms

In this section, we review the di�erent crowdsourced delivery platforms, mostly available

in North America. We compare and contrast how the di�erent platforms work, what

distinguishes them from their competitors, and what are the main items they deliver.

We also observe how drivers are compensated, and the type of information collected from

drivers. Note that we do not review companies that provide crowdsourced delivery in other

regions, such as Europe and China, if their o�cial websites are not in English. From our

research, we found that the main companies in other countries that do not provide o�cial

documentation in English are Trunkrs and PickThisUp in the Netherlands, and Renren

Kuaidi in China. Since these are only three companies, we believe that this exclusion does

not signi�cantly a�ect our analysis.

We group the delivery platforms into two main categories, e-retailers and couriers.

For e-retailers, Amazon Flex (Amazon.com, 2019) and Walmart Spark Delivery (Walmart,

2019) are currently the only available crowdsourced delivery platforms in North Amer-

ica. In contrast, courier crowdsourced delivery companies are quickly growing in number.

Those include companies like Postmates (2019), Deliv (2019), DoorDash (2019), Kanga

(2019), UberEats (2019), Hitch (2019), Roadie (2019), PiggyBee (2019), Nimber (2019),

DHL MyWays (DHL, 2013), UberFreight (2019), Truxx (2019), and BuddyTruk (2019).

With the exception of Amazon Flex, which pays a driver a per-hour rate from the time

he/she checks in at the distribution center, all the other delivery platforms pay drivers a

compensation per completed delivery. According to the driver information on the o�cial

websites of those platforms, the value of such compensation is calculated by a formula,

which may be city-speci�c, which considers factors like mileage, wait time, size of package

and other factors. Drivers are noti�ed of the earning amount before they accept a delivery

task. We note that not all those companies are equally as established. Some of them are

operating in multiple cities in the US and Canada, while others are just in a single city.

Companies like Postmates (2019), Deliv (2019), Roadie (2019) and Kanga (2019) allow

for the delivery of all items, with the exception of a shortlist of prohibited items. Other com-

panies like DoorDash (2019) and UberEats (2019) focus mainly on food delivery. UberEats

(2019) partners with local restaurants to provide delivery for their meals. DoorDash (2019)

provides both delivery from restaurants as well as grocery delivery. Instacart (2019) and

Shipt (2019) provide grocery delivery, and require its independent contractors to not only

deliver groceries to customers, but also to do the shopping themselves from a nearby gro-

cery store. It's worth noting that aside from Walmart's piloted service, Spark Delivery,
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Walmart is currently also using Doordash and Postmates in ful�lling customers' online

grocery orders (Bose, 2018).

All platforms, with the exception of Hitch (2019) and Roadie (2019), assume that drivers

are making dedicated trips just for the sake of ful�lling the delivery request, and are not

necessarily heading in that direction. Contrarily, Hitch (2019) and Roadie (2019) match

delivery requests with a traveler's already pre-planned trip. In other words, they collect

information on when a driver is planning to go somewhere (the time and destination), and

o�er to drivers delivery requests that are already on their way. While Hitch (2019) mainly

supports local deliveries, Roadie (2019) allows for local and long-haul deliveries. All other

platforms, with the exception of truck crowdsourced services, provide only local deliveries.

UberFreight (2019), Truxx (2019) and BuddyTruk (2019) are the main platforms that

match bulky delivery requests to crowdsourced drivers with a truck. UberFreight (2019)

is mainly for long-haul full-truckload requests by businesses or enterprises that can be

ful�lled by owner-operators of trucks. Truxx (2019) and BuddyTruk (2019), on the other

hand, aim to match personal delivery requests of bulky items (e.g. furniture) with drivers

that own smaller-size trucks. Typically, requested trips for those platforms are less than

an hour long.

Kanga (2019) and Hitch (2019)'s target market is individuals rather than enterprises,

i.e., connecting people who want to send or receive a package or item with a driver willing

to make the delivery. Kanga (2019) gives shippers and drivers even the ability to agree on

a delivery price, while charging a service fee for connecting them.

Table 3.1 compares the di�erent features of the various crowdsourced delivery platforms.

We note that Amazon Flex is composed of four divisions:Amazon Logistics, Amazon Prime

Now, Amazon Fresh, and Amazon Restaurants. The di�erence between the four divisions

is indicated in Table 3.1, the primary di�erence being in the delivery time window and type

of items delivered. We also observe that all platforms have a system for rating drivers,

and incentives based on good performance. Drivers may earn higher compensation during

busy seasons and periods of high demand.

3.2.2 Crowdsourced Delivery Scheduling and Matching Mecha-

nisms

Available crowdsourced delivery platforms follow distinct approaches in scheduling crowd-

sourced drivers and matching them with delivery requests. We classify the scheduling and

matching mechanisms into four main schemes.
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1. Pure self-scheduling. All crowdsourced delivery services use exibility of working

hours as a major selling point that attracts crowdsourced delivery drivers. Yet dif-

ferent crowdsourced delivery systems use varying levels of such exibility. Systems

that follow pure self-scheduling refer to platforms that do not require drivers to indi-

cate their hours of availability beforehand. Simply, when a driver is available to be

matched with a delivery request, he/she logs into the mobile app and keeps the app

running in the background. Once an order arrives, whose pickup is within a speci�ed

radius of where the driver is, the driver is noti�ed through the app of the request,

and may choose to accept or reject the o�er. Those platforms are very similar to how

ride-hailing services such as Uber and Lyft operate. The following crowdsourced de-

livery platforms follow this scheduling and matching mechanism: Postmates (2019),

DoorDash (2019), UberEats (2019), as well as Truxx (2019) and BuddyTruk (2019)

for truck delivery.

2. Hybrid and centralized scheduling. Some crowdsourced delivery systems use a

more centralized scheduling approach to better balance supply and demand at various

times of the day. Those systems either require drivers to indicate their availability

on the mobile app, then receive delivery o�ers when they become available, or pick

shifts that work for their schedule on a �rst-come �rst-serve basis. Shifts are usually

posted well in advance, up to a week ahead, and additional on-demand shifts may

be posted on the app throughout the day. Amazon Flex, Deliv (2019), Instacart

(2019) and Shipt (2019) follow this type of scheduling and matching approach. Such

scheduling and matching is closest to traditional delivery services with a company's

own eet, since supply and capacity are more predictable. Some systems, such as

Amazon Flex and Deliv (2019), provide minimum pay guarantees for drivers, which

means that drivers are promised to be paid a given minimum amount, even if they

are not matched. Such programs further reduce uncertainty in supply and make the

system closer to classical scheduling, matching and routing problems.

As per the driver information on their o�cial websites, Amazon Flex guarantees

drivers a pay of$18 per hour, regardless of the number of delivery requests. Deliv,

on the other hand, guarantees half the amount of the \Time on Task" rate, which is

one factor in computing driver pay, in addition to a per mile rate. The time on task

for Deliv is between$13-$18, depending on the city.

3. En-route matching. For this type of matching, drivers are matched with delivery

requests that are on their way of a pre-planned trip. A traveler or commuter indicates

on the system's mobile app the date, time, origin, and destination of an upcoming

trip. Then the app matches the traveler with delivery requests on his/her way, such
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that a maximum distance or time deviation of the original travel route is observed.

Such matching closely resembles ride-sharing problems, which aim to match drivers

with riders on their way, with a small possible deviation. We review the literature of

ride-sharing in Section 3.3.3.

4. Bulletin-board type matching. This refers to systems that simply post deliv-

ery requests and a driver picks requests that match his/her schedule and preference.

In such systems, no algorithm is used to automatically match drivers to delivery re-

quests, and the matching is done mainly through the sharing of information. Walmart

Spark Delivery follows such a system, where orders, with their associated destination

and delivery time window, are posted on the app, and drivers pick orders that they

can ful�ll. Kanga (2019) and DHL MyWays employ that sort of approach, where re-

quests are posted and drivers match themselves. Nimber (2019) and PiggyBee (2019)

follow a similar system, but matching is also based on a driver's pre-planned trip. In

PiggyBee, a traveler/commuter posts his/her travel plans and a customer who wants

to send or receive something along that route contacts the traveler with information

about the request, and they agree on a price. Nimber (2019), on the other hand,

works the opposite way. A list of requests is maintained and a driver may look up

a request that matches his/her travel plans. If none is available, a driver may input

his/her travel plans and get noti�ed once delivery requests become available along

his/her route. UberFreight (2019) also uses this type of matching, where delivery

requests are posted on the app, and a truck owner-operator chooses the loads that

work for him/her.

Figure 3.1 provides an overview of the �rst three scheduling and matching schemes,

and a sample of their resulting routes. Note that we exclude the fourth pattern as the

matching is manually done, entirely through the sharing of information. The actual trip

under pattern 4 may resemble either pattern 1 or 3. In other words, a driver who manually

matches him/herself to a request may make a dedicated trip similar to pattern 1, though

not necessarily in a short time window. He/she may also choose to match him/herself with

an en-route order, similar to pattern 3. Note that the termadditional functions, in the

second pattern of Figure 3.1, refers to the possibility of a crowdsourced driver having to

conduct other tasks, such as shopping for customers.

In Table 3.2, we analyze the target markets of di�erent platforms categorized by the

matching mechanisms described above. Note that we di�erentiate between platforms de-

signed for the targeted use by individual consumers ordering from local stores/restaurants,

and those designed as an alternate transportation solution for businesses. In the former,

the crowdsourced delivery platform partners with local stores and restaurants that do not

40




	List of Tables
	List of Figures
	Introduction
	Distribution Planning with Random Demand and Recourse in a Transshipment Network
	Introduction
	Literature Review
	Problem Description and Formulation
	Solution Methodology: Sample Average Approximation
	Computational Experiments and Analysis
	Data Generation and Data Sets
	Experiments
	Computational Results

	Conclusion

	Crowdsourced Delivery: A Review of Platforms and Academic Literature
	Introduction
	Crowdsourced Delivery Platforms
	Overview of Available Crowdsourced Delivery Platforms
	Crowdsourced Delivery Scheduling and Matching Mechanisms
	Compensation Schemes and Managing Supply of Drivers in Crowdsourced Delivery Systems

	OR Literature on Crowdsourced Delivery
	Overview of Crowdsourced Delivery OR Literature
	Other Crowdsourced Delivery Studies and Hybrid Transportation Systems
	Crowdsourced Delivery vs. Ride-sharing
	Crowdsourced Delivery Services vs. Ride-hailing

	Breakdown of Decision Problems within Crowdsourced Delivery Systems
	Future Research
	Conclusion

	Heatmap Design for Crowdsourced Delivery
	Introduction
	Literature Review
	Markov Decision Process (MDP) Model
	State and Action Spaces
	Post-decision State, Exogenous Information, Contribution
	Reduction of the Dimension of State and Action Spaces

	Solution Methodology
	Matching with Controlled Driver Relocation - an Upper Bound
	Matching and Heatmap Selection Problem
	Simple Policy for Heatmap Selection

	Computational Experiments
	Chicago Dataset Instances
	Detailed Analysis of a Decision Epoch
	Assessing the Effectiveness of Heatmaps
	The Effect of Changes in Demand Patterns on the Benefit of Heatmaps
	Sensitivity to Transition Probabilities
	Main Takeaways

	Conclusion

	Dynamic Matching with Driver Welfare Considerations in Crowdsourced Delivery
	Introduction
	Literature Review
	Markov Decision Process (MDP) Model
	State Space
	Action Space
	Myopic Objective Function
	Myopic Policy
	MDP Contribution Function
	Transition Function and Post-decision State
	Pre-decision State

	Guarantee Policies
	Value Function Approximation
	Hierarchical Aggregation
	Structural Analysis

	Computational Experiments
	Data Generation
	Value Function Approximation
	Utilization Guarantee: Comparing Computational Policies
	Comparison of Guarantee Policies: Utilization vs. Wage Guarantee

	Concluding Remarks

	Conclusion and Future Research
	References
	Appendices
	Chapter 2 Appendix
	Data generation
	The network of suppliers and customers
	Distribution of demand, holding cost, and transportation option capacity
	Supplier and Customer Data

	Deterministic distribution planning with consolidation (DDPC)
	Detailed SAA results example

	Chapter 4 Appendix
	Proofs
	Proof of Proposition 1
	Proof of Lemma 1

	Additional Formulations
	Matching and Heatmap Selection Problem (MHSP)
	Matching with No Driver Relocation (MNDRP) - a Lower Bound

	Repositioning Probabilities
	Additional Computational Results
	Notation Summary

	Chapter 5 Appendix
	Notation Summary


