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Abstract

This thesis examines problems faced in the distribution management of e-retailers, in di er-
ent stages of the supply chain, while accounting for sources of uncertainty. The rst prob-
lem studies distribution planning, under stochastic customer demand, in a transshipment
network. To decide on a transportation schedule that minimizes transportation, inventory
and outsourcing costs, the problem is formulated as a two-stage stochastic programming
model with recourse. Computational experiments demonstrate the cost-e ectiveness of dis-
tribution plans generated while considering uncertainty, and provide insights on conditions
under which the proposed model achieves signi cant cost savings.

We then focus our attention on a later phase in the supply chain: last-mile same-day
delivery. We speci cally study crowdsourced deliverya new delivery system where freelance
drivers deliver packages to customers with their own cars. We provide a comprehensive
review of this system in terms of academic literature and industry practice. We present a
classi cation of industry platforms based on their matching mechanisms, target markets,
and compensation schemes. We also identify new challenges that this delivery system
brings about, and highlight open research questions. We then investigate two important
research questions faced by crowdsourced delivery platforms.

The second problem in this thesis examines the question of balancing driver capacity
and demand in crowdsourced delivery systems when there is randomness in supply and
demand. We propose models and test the use of heatmaps as a balancing tool for directing
drivers to regions with shortage, with an increased likelihood, but not a guarantee, of a
revenue-producing order match. We develop an MDP model to sequentially select matching
and heatmap decisions that maximize demand ful lment. The model is solved using a
stochastic look-ahead policy, based on approximate dynamic programming. Computational
experiments on a real-world dataset demonstrate the value of heatmaps, and factors that
impact the e ectiveness of heatmaps in improving demand ful liment.

The third problem studies the integration of driver welfare considerations within a
platform's dynamic matching decisions. This addresses the common criticism of the lack
of protection for workers in the sharing economy, by proposing compensation guarantees
to drivers, while maintaining the work hour exibility of the sharing economy. We propose
and model three types of compensation guarantees, either utilization-based or wage-based.
We formulate an MDP model, then utilize value function approximation to e ciently solve
the problem. Computational experiments are presented to assess the proposed solution
approach and evaluate the impact of the di erent types of guarantees on both the platform
and the drivers.
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Chapter 1
Introduction

E-retailing is a global market that has experienced enormous growth in the last decade.
Today, many retailers that were once only o ering bricks-and-mortar stores are adopting
omnichannel models by expanding their services to online shopping. This growth comes
with higher expectations from customers; they are increasingly expecting shorter delivery
times without a hefty delivery charge. To create e cient and responsive distribution plans,
e-retailers need to account for the di erent sources of uncertainty that a ect their distri-
bution activities throughout the various phases of the supply chain. This thesis examines
three distribution management problems, faced by e-retailers, that aim to optimize their
distribution planning activities under uncertainty.

Chapter 2 studies distribution planning between suppliers and distribution centers,
where we consider a transshipment network under stochastic customer demand, applicable
to many three-tier supply chain networks. We study this problem from the perspective of
a third-party logistics provider (3PL) that is outsourced to handle the logistics needs of
its clients; the 3PL uses a consolidation center to achieve transportation cost savings. We
formulate a two-stage stochastic programming model with recourse that aims to minimize
the sum of transportation cost, expected inventory holding cost and expected outsourcing
cost. The recourse variables ensure that the problem is feasible regardless of the realization
of demand, by allowing the option of using a spot market carrier if demand exceeds capacity.
We use Sample Average Approximation (SAA) to solve the problem and show that it
results in reasonable optimality gaps for problem instances of di erent sizes. We conduct
extensive testing to evaluate the bene ts of the proposed stochastic model compared to
its deterministic counterpart. Computational experiments provide managerial insight into
the robustness and cost-e ectiveness of the distribution plans of the proposed stochastic
model, and the conditions under which the model achieves signi cant distribution cost
savings.



Chapter 3 onward, we shift our attention to a later phase in the supply chain, namely,
last-mile same-day delivery from distribution centers or stores to end customers. We par-
ticularly study an emergent delivery system, crowdsourced delivery, which relies on indi-
viduals completing last-mile delivery tasks with their own cars. In Chapter 3, we analyze
the current industry status of this delivery system and provide a classi cation of available
platforms based on their matching mechanisms, target markets and compensation schemes.
We review the operations research (OR) literature addressing this topic and assess the ap-
plicability of assumptions to real-world applications. We also compare the management
decisions within crowdsourced delivery systems to well-studied OR problems in the liter-
ature, and pinpoint new challenges that arise in the context of crowdsourced delivery. In
the following two chapters, we investigate two important managerial questions faced by
crowdsourced delivery platforms.

Chapter 4 studies the problem of balancing driver capacity and demand in crowd-
sourced delivery systems, when there is randomness in both driver supply and demand.
Since crowdsourced drivers are independent contractors, their movement is not directly
managed. We investigate the use of heatmaps as a balancing tool for directing drivers
to regions with shortage, with an increased likelihood, but not a guarantee, of a revenue-
producing assignment. This creates a generalized framework for managing the movement of
crowdsourced drivers, without a direct assumption on their compensation scheme. We de-
velop a Markov decision process (MDP) model to sequentially select matching and heatmap
decisions that maximize demand ful lment. The model is solved using a stochastic look-
ahead policy, based on approximate dynamic programming. We also propose a simple
policy and an upper-bound problem that assumes drivers are directly managed. We nd
that optimized heatmaps induce driver repositioning to areas of shortage and improve de-
mand ful Iment up to the level where drivers are managed directly, when the number of
drivers is higher than demand. The e ectiveness of heatmap is most notable when the net-
work is imbalanced, where the demand in ow to some nodes is signi cantly higher/lower
than the out ow.

Chapter 5 examines the integration of driver welfare considerations in a platform's
dynamic matching decisions. Crowdsourced delivery and other sharing economy plat-
forms typically compensate workers per task and provide little guarantees for their earn-
ing amount while they are ready to work. We study the problem of designing dynamic
matching policies, in a crowdsourced delivery system, that guarantee a particular level of
utilization or earning for active workers, while maintaining the inherent work hour ex-
ibility promoted by the sharing economy. We propose, model, and test three types of
guarantees, that are either utilization-based or wage-based. To capture the dynamic and
stochastic nature of crowdsourced delivery operations, we propose an MDP model. We

2



utilize approximate dynamic programming techniques to e ciently obtain good solutions,
given the high dimensionality of the solution space. In particular, we use value function
approximation to obtain good estimates of the value of post-decision states, using forward
simulation. We conduct extensive computational testing to assess the performance of the
proposed solution methodology. We also compare the di erent types of guarantee policies,
and assess their impact on the platform and the drivers, relative to the base policy, which
models the no-guarantee case.

Chapter 6 concludes the thesis and discusses opportunities for future research.



Chapter 2

Distribution Planning with Random
Demand and Recourse in a
Transshipment Network 1

2.1 Introduction

In many supply chain networks, third party logistics providers (3PLs) are employed to
handle the distribution needs within the supply chain. The 3PL faces the challenging
task of coordinating these distribution activities between suppliers and customers, possibly
through the use of intermediate facilities, so as to create a lean cost-e cient supply chain,
while ensuring timely customer deliveries. Third party logistics is a fast growing market; in
2016, it had an estimated worldwide market size of 802.2 billion US dollars, 38% of which is
in the Asia Paci c region, 25% in North America, 21.5% in Europe ( , ). With
this growth comes increased competition which further necessitates that the 3PL create
leaner logistics solutions, in order to survive in a growingly contested market. In recent
years, there has been an increasing trend in businesses outsourcing their transportation
needs to 3PL's to focus on their core business competencies. The various players within
the supply chain expect the 3PL to accommodate shipping quantities that may uctuate
depending on customer demand. This creates a compelling need for a 3PL to operate more
e ciently, with imperfect information, to secure pro tability, while providing competitive
shipping rates for clients and building customer loyalty.

1This chapter is based substantially on a published article in the European Journal on Transportation
and Logistics. Alnaggar, A., Gzara, F., and Bookbinder, J.H., 2020. "Distribution planning with random
demand and recourse in a transshipment network." EURO Journal on Transportation and Logistics 9, no.
1 (2020): 100007.



Many variations of freight distribution coordination with intermediate facilities have
been investigated by researchers. However, very limited work addresses such problems
with stochastic customer demand. In their literature surveys, both
( ) and ( ) acknowledge the need for more research that considers
stochasticity in freight transportation planning. In addition, from an industrially-practical
point of view, when customer demand arrives in real-time, accounting for demand variation
at the distribution planning phase will enable the creation of e cient distribution plans
that more accurately anticipate actual distribution costs.

We study the problem of a 3PL that is coordinating transportation needs between
suppliers and customers when customer demand is stochastic. That coordination considers
the release time of shipments from suppliers, the delivery due dates of customers, the
di erent transportation options that could be used, as well as the holding cost at the
consolidation center. In our problem setting, the 3PL does not operate its own eet, but
rather chooses the best available multi-modal transportation services for its clients. The
3PL determines a suitable shipping schedule, arranging for the pickup at suppliers when
shipments are ready, i.e., after their release time.

For a given supplier, orders of multiple customers are consolidated in fewer high-volume
loads and sent to the consolidation center, operated by the 3PL, through one or more trans-
portation options. A transportation option between a supplier and the consolidation center
is referred to as aninbound transportation option We de ne an inbound transportation
option as a combination of a transportation mode (or multiple modes), a capacity, an
arrival time at the consolidation center, and a cost associated with the service. At the
consolidation center, the 3PL combines orders from multiple suppliers to the same cus-
tomer and delivers them through one or more transportation options, such that customer
delivery deadlines are satis ed. A transportation option from the consolidation center to
a customer is referred to as aoutbound transportation option and is de ned as a combi-
nation of transportation mode, capacity, dispatch time from the consolidation center, and
cost.

Most transportation service prices are not simply based on the weight and volume of
the shipment. Prices also depend on when the service is taking place (e.g., peak seasons,
holidays), the mode of transportation used, as well as other factors such as the particular
route taken. Thus, inbound and outbound transportation cost may not be monotonically
increasing or decreasing with lead time. We adopt this general de nition, where inbound
and outbound transportation options have nonlinear discrete cost functions.

The distribution service provided by the 3PL is for a prede ned number of periods,
rather than a one-time service. However, the choice of transportation options, for inbound



and outbound shipments, is contractual, and is kept for the full length of the planning

horizon. Once customer demand is known, if the actual demand cannot be ful lled with the
particular choice of inbound and outbound options made at the beginning of the planning
horizon, a spot market carrier may be used to ship the additional demand at a higher
cost. The goal of the 3PL is to select transportation options that minimize the expected
transportation cost of the network plus the expected holding cost at the consolidation
center, while ensuring that customer demand is ful lled by the due date.

One motivating example of the problem comes from a 3PL that manages the distribu-
tion planning of an e-retailer. The latter operates multiple distribution centers and orders
its products from a number of global suppliers. Each supplier provides di erent types of
products that the e-retailer sells. To manage their inventory, each distribution center peri-
odically places a replenishment order, which varies depending on end-customer's demand.
In ful lling those orders, the 3PL uses a consolidation center to save on transportation
cost between suppliers and the e-retailer's distribution centers. The 3PL needs to choose
a minimal-cost transportation plan with speci c transportation modes, capacity and ar-
rival/dispatch times at the consolidation center, for inbound and outbound shipments,
respectively, to carry on the regular transportation needs between suppliers and distribu-
tion centers. For simplicity and to make our problem applicable to other application areas,
we will refer to the third-tier of the supply chain (which are the distribution centers in this
example) simply as customers.

The main contributions of this research are threefold. Firstly, we address the need
for considering randomness in freight distribution planning with intermediate facilities by
proposing a two-stage stochastic programming model that accounts for stochastic customer
demand at the planning phase. Our proposed model addresses tactical decisions, i.e., the
choice of transportation options, and minimizes the sum of transportation-choice costs
plus expected operational costs. Secondly, modeling this problem from the perspective of
a third party logistics provider, even without demand uncertainty, has received very little
attention. This work aims to Il that gap. Thirdly, we conduct a thorough analysis on
the bene ts and limitations of our proposed model and present managerial insights on the
conditions under which our model achieves signi cant distribution cost savings.

The rest of this chapter is arranged as follows. In Section 2.2 we provide a review of
relevant literature. In Section 2.3, we detail the problem setting and assumptions, and
formulate the proposed stochastic model. We discuss the solution methodology used in
solving the problem in Section 2.4. We then discuss our numerical testing and analysis,
and compare the performance of our stochastic model to its deterministic counterpart in
Section 2.5. Finally, we outline some concluding remarks and future directions in Section
2.6.



2.2 Literature Review

References on freight consolidation have considered distinct goals and the viewpoints of
di erent decision makers. Relevant literature is in three main categories: freight/shipment
consolidation, freight transportation with intermediate facilities, and freight forwarder/3PL
operations. We also discuss important publications that explicitly incorporate stochasticity.

In the past three decades, considerable research has been done on shipment consolida-
tion (SCL). This classical problem mainly aims to nd the optimal dispatch policy, from
the perspective of a shipper, that determines for how long to consolidate shipments, and
when to dispatch the aggregate load. Early research laid the foundation of this topic (

: )- Later, ( ) ( )

( ), and ( ) used simulation and stochastic modeling

to compare di erent dispatch policies and determine optimal ones under various settings
and considering additional costs, such as inventory cost.

The preceding references explicitly analyze SCL policies, but other researchers have in-
tegrated those decisions within wider-scope supply chain network decisions. Freight trans-
portation problems with intermediate facilities were reviewed by ( ).
The authors suggested three classes of such problems, the second of which: intermediate
facilities in transshipment problems, is the closest to our problem setting, since the con-
solidation center acts as a transshipment node. Our problem extends the cited references
in ( ) by considering a stochastic model rather than a deterministic
one. Another article by ( ) surveys the literature on multi-modal
freight transportation planning. Our proposed model ts under their category of tactical
planning, i.e., choice of transport services, associated modes and capacities, and allocating
customer orders to the services selected.

( ), ( ) and ( ) each studied
distribution coordination with consolidation center(s) or merge-in-transit centers. Each
paper developed di erent models to determine the best distribution plan that minimizes
transportation plus inventory costs. ( ) assume that suppliers provide
components, which are shipped to a merge-in-transit center, assembled, and dispatched
to the customer as a nished product. ( ) suppose that suppliers also
furnish components, but the customer assembles the product after receiving all parts as
one consolidated load. ( ) assume that each supplier provides a
number of products, which are sent to customers via a cross-dock.

Both ( ) and ( ) assume that freight is moved
via a pre-determined transportation arrangement, so the choice of carriers is not studied.



( ), however, assume that the decision maker (a 3PL) selects from a large
number of possible carriers, each with a given dispatch time and cost. We adopt this latter
assumption: a typical 3PL chooses the modes and capacities from a number of potential
transportation service providers.

The three aforementioned papers had nonlinear cost functions. Transportation costs
follow a nonlinear discrete cost function in ( ). Similar to those authors, we
adopt a general cost function that can capture the various factors a ecting transportation
cost.

In the context of freight forwarding, most publications assume the relevant company
operates its own eet, proposing di erent models that extend the classical vehicle routing
problem, or the pickup and delivery problem with time windows ( ,

, , , : ). Models that study 3PL coordination issues are
closely related to freight forwarders problems; transportation in supply chains is typically
outsourced to both 3PLs and freight forwarders. However, 3PLs may coordinate addi-
tional distribution activities, like warehousing and managing inventory. ( )
study the scheduling problem faced by a 3PL who is arranging shipments between suppliers
and customers in an international distribution network through the use of a consolidation
center. ( ) analyze the outsourcing of fresh products to a 3PL, where the
products could deteriorate during the transportation process, and derive the optimal de-
cisions for supply chain members. ( ) consider the freight consolidation and
containerization problem from the perspective of a 3PL that wants to determine the opti-
mal allocation of shipments to international shipping containers and the routing of those
containers.

Of some relevance to our work is the extensive family of problems on service network
design (SND), as surveyed by ( ) and ( ). SND decisions relate
to the network structure, i.e., selection of routes where service is conducted, and also the
movement of freight on the network. Our problem, however, assumes an already-established
network, where only the modal choice and scheduling of the freight movements, on prede-
ned routes, is of interest. Furthermore, SND problems often take the carrier's perspective,
whereas our view is that of a 3PL that also manages a consolidation center, hence inventory
holding cost need be included. ( ) argue that most papers on SND
with intermediate facilities concern applications at a national or regional level with a single
transport mode. Contrarily, our problem is applicable to global distribution networks, with
multiple transportation modes.

All previously reviewed papers assume deterministic customer demand. Limited work
addresses similar stochastic demand problems. ( ) recognize that



intermediate facilities in stochastic transshipment problems have received no attention, and
highlight this for future research. To the best of our knowledge, the only related papers
that consider randomness, but without transshipment, are ( ) and
some stochastic service network design papers, surveyed below.

( ) investigate a two-echelon distribution network design problem
between distribution centers and wholesalers when demand is uncertain. The authors use
two-stage stochastic mixed integer programming, where the rst stage selects location of
distribution centers; the second stage addresses transportation and inventory decisions, as
well as unmet demand. In contrast to that article, our work addresses transportation needs
in an already-established network.

Several papers have examined the bene t of considering demand randomness in design-
ing service networks. ( ) study demand stochasticity in SND by formulating
a two-stage stochastic programming model that chooses the routes and frequency of service
in the rst stage, and decides on the allocation of commodities to established routes or

outsourcing a portion of demand in the second stage. ( ) later extend this
model to allow possible rerouting of vehicles, to reduce the amount of outsourcing needed
when demand is high. Both our research and ( ) consider outsourcing de-

mand when it exceeds available rst-stage capacity. However, since the 3PL in our case
does not operate its own vehicle eet, rerouting is not an option. Moreover, we examine
the trade-o between choice of rst-stage transportation options and inventory holding
cost, a dimension not studied in stochastic network design problems.

Other publications ( , and , ) focused on creating
e cient solution methodologies for solving realistic instances of stochastic SND problems.
Furthermore, more recent work by ( ) examined the value of deterministic
solutions, in terms of their quality and upgradeability, in a stochastic environment. Another
publication by ( ) studied the e ect of considering spot markets at
the design stage of creating a transportation plan under uncertain demand. The article
showed that in most situations, accounting for spot markets when designing a service
network reduces total cost.

In the following section, we describe our problem setting, assumptions and formulation.

2.3 Problem Description and Formulation

We propose a two-stage stochastic programming model with recourse, to formulate the
Stochastic Distribution Planning with Consolidation (SDPC) problem faced by a 3PL that



is coordinating shipments between suppliers,2 |, and customersj 2 J, whose demands,
Dj , are uncertain. Given customers' demand distributions, delivery due dates and supplier
release times, the 3PL needs to select the transportation options for shipments inbound
to and outbound from the consolidation center, at the beginning of the planning horizon.
Similar to ( ), we adopt general, possibly nonlinear, cost functions for
inbound and outbound transportation options,f (xiq) and g(y; ), respectively. Note that
these cost functions may di er for distinct inbound and outbound transportation options,
g2 Qi andl 2 L;, respectively. Exploiting a general cost function enables consideration of
di erent transportation modes or multi-modal transportation options with varying capacity
levels, with those di erences re ected in the cost structure.

In our problem setting, the chosen transportation options and their associated capacities
are xed for the whole planning horizon. Once demand is realized, if total demand from
a supplier (to a customer) exceeds the capacity of inbound (outbound) transportation
option(s) reserved for that supplier (customer), a spot market carrier is used. A spot
market may also be used if inventory cost savings outweigh the increased spot market
cost. We note that the preceding additional cost of utilizing a spot market carrier is
incurred by the 3PL. This cost is composed of two parts, (a) the estimated spot market
per unit price premium between the origin and destination, and (b) a disutility factor that
represents the 3PL's disutility to transport shipments through a spot market carrier. Such
a disutility factor can be set to zero, if shipping price is the only consideration for the
3PL to make shipments through a spot market carrier. However, the 3PL may not favor
shipping through a spot market carrier, e.g., due to unpredictable price uctuations in that
market, or limited availability of spot market carriers in peak seasons. Thus, the disutility
factor is meant to adjust the level of favorability in using a spot market carrier by the
speci c 3PL.

The rst stage of the two-stage stochastic program tackles the selection of inbound and
outbound transportation options to be reserved for the duration of the planning period.
The second stage allocates orders to chosen rst-stage options, or to spot market carriers.
The two stages are optimized simultaneously so as to minimize the sum of transportation
cost, expected inventory holding cost and expected spot market carrier shipping cost.

Let xiq be a binary variable indicating whether inbound transportation optionq 2 Q;
is reserved for suppliei 2 1. Similarly, the binary variable y; shows whether outbound
transportation option | 2 L; is reserved for customej 2 J. Let S be the set of possible
scenarios or demand realizationsui, and w;, are binary variables that express whether
shipment (i;] ) is shipped through reserved inbound and outbound transportation options
g and |, respectively, in scenarics 2 S. Similarly, § and § are binary variables that
indicate whether shipment {; ) is moved via an inbound and outbound spot market carrier,
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respectively, in scenarios 2 S. Table 2.1 outlines the complete list of notation. We
formulate the problem as shown below and refer to the model as te®chastic distribution
planning with consolidation - ow based formulation(SDPC-FF).

Note that we assume that if shipment (] ) is transported by a spot market carrier, no
holding cost is incurred at the consolidation center, since the shipping time will be chosen
such that the interval the load is held at the consolidation center is negligible. Therefore,
the holding cost is incurred only if a shipmentij ) is shipped through reserved inbound
and outbound transportation options, i.e., for a speci ¢ shipmenti(j ), if both variables
Ui, andwi; have a value of 1. This requirement results in the nonlinearity of the holding
cost component of objective function (2.4).

X X X X
[SDPC-FF ] min f (xiq) + alyi) + (Xiq; Vi) (2.1)
i21 q2Q i2Jd 12L
subject to Xiq;yy 2f0;1g;, 121;,02Q;j2J12L (2.2)
where
(Xia:Yi) = E s(Xig:Yiis ) (2.3)
X X X
s(Xiq; Yji;d®) =min dihi( w0
i21 j2J(i) 2L
X X X
iqUjg (1§ + dGCij+ i) (2.4)
02Q i21 j2J3(i)
subject to
Uiq + § =1, i21;j 2J3() (2.5)
%
W§|+ ﬁzl; j23121() (2.6)
%L S X S S H H H
iq Uijq Wi toig s j23i121() (2.7)
X q2Q 12L
di uig  CiaXia; i21,2Q (2.8)
J§(J(i)
diwi Gy j2312L (2.9)
i21(j)
Uiqs i 210 1g; i21;02Q;j 2 J(i)
w5 5 210 1g; j2Ji21(G)l2L (2.10)

The objective function (2.1) minimizes the total inbound and outbound transportation
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cost, f (Xiq) and g(y; ), respectively, plus the recourse function: the expected value of
the second-stage problem. For a particular demand realizatial? of the random vector
objective (2.4) minimizes the sum of the holding cost and the cost of shipping through a spot
market carrier. Constraints (2.5) and (2.6) guarantee that the model allocates each order to
exactly one inbound shipment, and exactly one outbound shipment, respectively, whether
the shipment is through a reserved rst-stage transportation option or a spot market
carrier. Constraints (2.7) make sure that the outbound dispatch time of an order is greater
than its inbound arrival time. Constraints (2.8) and (2.9) ensure that the total demand
allocated to a transportation option, for a given supplier and customer, respectively, does
not exceed the capacity of that option. Finally, Constraints (2.10) impose the binary
requirement on all variables.

In order to avoid the nonlinearity in objective function (2.4), we propose an equivalent
linear path-based formulation that replaces the ow variables with path variables. We refer
to this formulation as the stochastic distribution planning with consolidation - path based
formulation (SDPC - PF), and we detalil it next.

Linear path formulation

We de ne a set of feasible paths for shipment;( ) from supplieri to customerj through the
consolidation center a®; , where a feasible patip;q 2 Py represents a pair of inbound and
outbound transportation options (g; I) that is feasible with regard to arrival/dispatch times
for shipment (i;j ). In other words, shipment (;j ) has a feasible patlpjq if inbound option
g arrives at the consolidation center before outbound optiohis dispatched. Shipmentij )
also has feasible paths through each of its inbound optiomsand through an outbound
spot market, and similarly, there are feasible paths along each outbound optibrand an
inbound spot market. For a shipment {;j ), inbound and outbound shipping via a spot
market carrier is also a feasible path. For brevity, we refer to a feasible path a2 P .
We de ne the following additional notation. aqp and by, are binary parameters indicating
if options g and | are on pathp 2 P; . ¢, is the cost of sending shipmentifj ) on path p
in scenarios where

dIJ hi( i iq); if no spot market carrier is used on pathp 2 Pj
% ” ; if a spot market carrier is used only for inbound shipping on pathp 2 Pj
d; = if a spot market carrier is used only for outbound shipping on pathp 2 P;;
g (i+ j)di; if a spot market carrier is used for both inbound and outbound shipping on
path p 2 Pj

12



We also de ne decision variables i, as binary variables that indicate whether or not
shipment (i;] ) traverses pathp 2 P; in scenarios. Figure 2.1 shows a visual representation
of the network with both the ow and path variables. The path based formulation, SDPC-

PF, can then be expressed as follows:

X X X X
[SDPC-PF ] min f (Xiq) + alyi) + (XigsYir) (2.11)
i21 q2Q j2d 12L
subjectto Xiq;yy 2f0;1g; 121;,02Q;)2J312L (2.12)
where
Xig;Yijt) = E s(Xiq; Yiji s 2.13
( qyj|) s(.q%JIX) X ( )
s(Xiq Yy ;d®) =min Co ip (2.14)
i21 j23(i) p2Pj
subject to
s =1 8i21; 2J(i) (2.15)
D)Z(Pij
Agp ip  Xig 8i21;j 2J3(1);q2 Q (2.16)
p2 Pjj
X . . .
B Vi 8i2Ji21(G)l2L (2.17)
P2 Pj;
X S S H
‘ - ajquij ijp Ciq 8| 2 I,q 2 Q (218)
p>2<Pij J§<J(I) . |
bpdi 5 Ci 8j2J12L (2.19)
pP2Pj i21(j)
ijsp 210;1g; 121 23(),p2 Pj (2.20)

The objective function (2.11) minimizes the total transportation cost plus the expected
value of the second-stage problem. For a speci c realizatiat of the random vector , ob-
jective (2.14) minimizes the total allocation cost of shipments to feasible paths. Constraints
(2.15) ensure that exactly one path is chosen for each shipment () in the network. Con-
straints (2.16) and (2.17) guarantee that shipmenti(j ) traverses a path only if both the
inbound transportation option of supplieri (xiq) and the outbound transportation option
of customerj (y;) have a value of 1. Constraints (2.18) and (2.19) require that the total
demand that traverses a given path does not exceed the capacity of the inbound or out-
bound transportation options of that path. Finally, Constraints (2.20) impose the binary
requirement on the variables.

Note that constraints (2.18) and (2.19) may be modi ed by multiplying their left-hand-
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Figure 2.1. Visual representation of the network with the main decision variables and param-
eters.

side byxiq andy; , respectively. However, empirical testing showed that such modi cation
caused a slight increase in computational time for some instances. Therefore, we refrain
from using this adjustment in our computational testing.

We use Sample Average Approximation (SAA) to solve SDPC-PF. The main advantage
of this technique is that it provides a statistical estimate of the optimality gap of therue
stochastic optimization problem, which is discretized by a very large scenario tree. In
contrast, solving the problem directly with a commercial solver with 50 or more scenarios
is computationally intensive for reasonable size problems, as it results in a large number
of path variables. Solving the problem directly also gives little information on the quality
of the solutions obtained, relative to thetrue stochastic problem. We therefore use SAA
to measure the quality of the resulting distribution plans by utilizing the optimality gap
estimate as a quality metric, and also to keep the problem size manageable and obtain
good solutions in a reasonable amount of time.
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2.4 Solution Methodology: Sample Average Approx-
imation

Sample Average Approximation is a Monte Carlo simulation-based solution technique for
solving two-stage or multi-stage stochastic optimization problems ( : ,
: ). In this technique, the objective function of the stochastic model is
approximated by a sample average estimate obtained from a random nite set of samples.
The problem is then solved, with the approximate objective function and a set of scenarios
SN, as a deterministic optimization problem either directly or using other solution tech-
niques. The process is repeatdd times with di erent samples, and each time results in
a candidate solution. To assess the quality of the candidate solutions, statistical estimates
of their optimality gaps can be obtained.

SAA solves thetrue problem with a reasonable level of accuracy provided some condi-
tions are met ( , , , ). Those conditions, and
justi cations on how SDPC-PF meets them, are as follows:

1. It is possible to generate a sample realization of the random vector For our
proposed problem, this can be done by sampling from eadhj () demand distribution.

2. The SAA problem can be solved e ciently with a moderate sample size. We will
show in Section 2.5 that we can solve SDPC-PF in a reasonable amount of time, for
most test instances, with a sample size & = 10.

3. The function s(Xiq;Y;j ;d®) can be easily computed for givexq;yj andd®. That
is, for a given rst stage solution and a given realization of demand, the optimal
objective function (2.14) can be easily evaluated by solving the model in Equations
(2.14) to (2.20).

4. The true problem has relatively complete recourse, i.e., any solution to the rst stage
problem is feasible to the second stage because it candoerected In SDPC-PF, this
is done through the assumption that a spot market carrier is always available when
demand cannot be ful lled with reserved rst stage variables. Thus, any choice of
transportation plan would result in a feasible second stage problem, because shipping
via the spot market is a feasible path for all shipmentsiy| ).

We now detail how SAA is used to solve SDPC-PF. Applying SAA, the objective

function of the second stage problem m;(SD)I?C-)P(F isxapproximated as:
1
(X iqy Yil ) = W Cﬁp ijsp (221)
s2SN i2l1 j2J(i) p2Pj
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whereSN is the set of scenarios of siZd sampled in a given SAA problem. The full SAA
model is expressed as follows:

X X X X
[SAA Model ] min f (Xiq) + Q(le ) + (X iq ;le ) (222)
i21 g2Q j2d12L
subject to
constraints (215) (2:20); (2:21) 8s2 sN

To assess the quality of the SAA solution, statistical estimates of lower and upper
bounds on the objective function value of the original stochastic problem may be obtained,
as well as estimates of the variances of these bounds. This is achieved by solving the SAA
model M times, where each time a set of independent samples of shkteis generated.

This results in M candidate solutionsx?®;:::;xM , wherex™ is the vector notation of the
solution of the rst stage variables,Xiq;y; for candidate solutionm 2 f 1;:::; Mg, with
objective function values ;:::; M

mean () and the variance (‘% ) of the objective function values %;:::; M as
1 X
m=1
1 hd
g (™ )2 (2.24)

NM ~ MMM 1)
The lower bound is expressed as:

LB =ty um (2.25)
wheret ., isthe -critical value of the t-distribution with v degrees of freedomy= M 1.

m=1

( ) note there is a trade-o between SAA solution quality and
computational requirements as the sizBl changes. With a largelN, the objective function
value of the SAA problem gets closer to the true objective value, but the computational
requirement increases signi cantly. Similarly, as the number of replicationdl increases, a
better lower bound can be obtained with a smaller standard deviationg}, . However, the
algorithm may become computationally ine cient. The exact values ofN and M used in
our computational testing are explained in Section 2.5.

The upper bound on the true objective function value of each candidate solution is
obtained by evaluating the solution with a very large scenario tree of sizé® that is

is an i.i.d. random sample, the problem of evaluating a candidate solution decomposes
into N °subproblems. The size of the scenario tréé¢®is much larger than the size of the

scenario tree maintained in each SAA runN. We denote the objective function value of
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a given subproblems as (x™;s), which is computed as shown in Equation (2.26). Note
that because each subproblem is solved separateéiy?’ can be very large without causing a
signi cant computational burden. The estimate of the true objective value of the second
stage problem, denoted %?(X;)' i&computed as shown in (2.27).

s(xM;s) = Gip iip 8s2f1:::;N% (2.26)
i21 j23(i) p2Py
1 X°
(x™) = N© s(x™;s) (2.27)
s=1

The value of the true objective function, ™, for candidate solutionx™ , and its variance,
2o(x™), are computed a&sh}gwn in Equa)t(ioni (2.28) and (2.29), respectively,

"= f(Xiq) + alyj )+ (x™); (2.28)
i2l 2Q j2J 12L
0
1

2 my — m. m\12.
WM = ey LTS I (2.:29)

Finally, the upper bound of a candidate solutionz{} is computed as:
0= "+2z No(x™M) (2.30)

wherez is the -critical value of the standard normal distribution. The upper bound of

— H m
UB = mzm!:r:l:;Mg U (2.31)
x = argmin () (2.32)
m2f 1;::5M g

2.5 Computational Experiments and Analysis

In this section, we conduct extensive computational testing to assess the e ectiveness of
SAA in solving the SDPC-PF and to evaluate the bene t of accounting for uncertainty in
modeling SDPC. We solve problem instances of various sizes and di erent experimental
settings using the SAA algorithm. We then compare the solution of SDPC to its deter-
ministic counterpart with average demand values. We refer to the deterministic problem
as the deterministic distribution planning with consolidation(DDPC) and we describe its
formulation in Appendix A.2. We compare the stochastic and deterministic solutions and
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objective values to evaluate the bene t of accounting for uncertainty, through computing
the value of stochastic solution

We brie y describe the data generation method used and discuss the di erent data sets
used in testing and analysis, and how they compare and contrast, in Section 2.5.1. Detailed
explanation of data generation is provided in Appendix A.1. We further elaborate on our
computational testing by detailing the setting used for the SAA algorithm as well as some
key performance measures in Section 2.5.2. Finally, we report and discuss the results of our
computational testing in Section 2.5.3. The SAA algorithm was implemented in Python
2.7 on an Intel(R) Core(TM) i7 CPU, 2.90 GHz, 16.00 GB of RAM. The optimization
problems were solved by CPLEX 12.8.

2.5.1 Data Generation and Data Sets

We generate the parameters of the test instances partly following the method outlined by

( ), since their proposed model also studies a distribution planning problem
from the perspective of a 3PL. We randomly generate the additional parameters used in
our SDPC-PF. More particularly, we use 's method to generate the network
of suppliers and customers and the sets of arrival times and dispatch times of inbound
and outbound options,X;;Y;, for suppliers and customers, respectively. We modify their
proposed cost function of inbound and outbound option&(Xiq); 9(y; ), by incorporating
capacity. We also scale down their holding codt; to make it a cost per unit, rather
than per shipment. We then generate the following additional parameters: capaciti€,
and C; for inbound and outbound options, demand distributions f