
Mathematical modelling of supraglacial
meltwater production and drainage

by

Tim Hill

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2021

© Tim Hill 2021



This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Tim Hill was the sole author for Chapters 1, 3, and 5, which were written under the
supervision of Dr. Christine Dow. Chapters 2, 4, and Appendices A, B of this thesis consist
of manuscripts and their corresponding supplementary material written for publication as
detailed below.

Chapter 2

Chapter 2 contains a copy of the peer-reviewed manuscript “Application of an improved
surface energy balance model to two large valley glaciers in the St. Elias Mountains, Yukon”
as published in the Journal of Glaciology. Appendix A contains a copy of the corresponding
supplementary material. This research was conducted at the University of Waterloo under
the supervision of Dr. Christine Dow, and with contributions from Dr. Eleanor Bash
(University of Calgary) and Dr. Luke Copland (University of Ottawa).

Eleanor Bash contributed to the design of the comparison experiment and consulted
on the methodology and software development. Luke Copland curated the in-situ data
and validated the satellite-derived albedo maps. Christine Dow supervised the project,
contributed to the design of the comparison between Kaskawulsh Glacier and Nàłùdäy
(Lowell Glacier), and curated in-situ data. All authors contributed to revising and editing
the manuscript.

Tim Hill contributed to the study’s design, and was the primary author responsible for
the methodology, software, running the numerical experiments, visualization, analysis, and
writing the manuscript draft.

Citation for Chapter 2:

Hill, T., Dow, C., Bash, E., & Copland, L. (2021). Application of an improved surface en-
ergy balance model to two large valley glaciers in the St. Elias Mountains, Yukon. Journal
of Glaciology, 67(262) 297–312. doi:10.1017/jog.2020.106

Chapter 4

Chapter 4 contains a modified version of the manuscript “Modeling the dynamics of
supraglacial rivers and distributed meltwater flow with the Subaerial Drainage System
(SaDS) model” submitted to the Journal of Geophysical Research: Earth Surface on 11
June 2021. Appendix B contains the companion supplementary information. This chapter
was modified to reference and avoid repeating the numerical methods described in Chapter
3, and to expand the discussion of the model’s mathematical formulation.

iii

https://doi.org/10.1017/jog.2020.106


This work was done in collaboration with Christine Dow, who contributed to the design
of the experiments, consulted on the methodology, and revised and edited the manuscript.
Tim Hill was the primary author responsible for the majority of the work including de-
veloping the mathematical framework of the model, developing and testing the numerical
model, designing and carrying out the model runs, and writing the manuscript.

Citation for Chapter 4:

Hill, T. & Dow, C.. Modeling the dynamics of supraglacial rivers and distributed melt-
water flow with the Subaerial Drainage System (SaDS) model. (submitted). Journal of
Geophysical Research: Earth Surface, 2021JF006309

iv



Abstract

Mountain glaciers and the polar ice sheets exert a critical control on water resource avail-
ability, drive sea level change, and impact global ocean circulation. These and other impacts
are controlled by surface meltwater that flows through the glacier hydrologic system to the
base of the ice and drives seasonal and long-term changes in ice flow velocity. This thesis
presents numerical models for the production and transport of meltwater runoff across the
surface of melting glaciers and ice sheet.

First, a surface energy balance model is developed that improves on existing models by
utilizing high resolution satellite data to capture spatial variations in surface melt. The
model is applied to Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias
Mountains, Yukon, Canada using six years of in-situ meteorological data. By validating
model outputs against in-situ measurements, it is shown that modelled seasonal melt agrees
with observations within 9% across a range of elevations.

In order to determine how surface meltwater is transported through moulins, we de-
velop the Subaerial Drainage System (SaDS) model. SaDS is a physics-based, finite-
volume numerical model that calculates supraglacial runoff in both a distributed sheet and
through supraglacial channels. The benefit of this approach is that a connected network of
supraglacial channels and lakes naturally emerges without using prior information about
the channel network, for example from satellite-derived maps. In synthetic settings and
when applied to the Greenland Ice Sheet, model outputs show realistic and varied moulin
flux rates, and modelled supraglacial lake and channel locations match those mapped from
satellite images. These results demonstrate that SaDS is a promising tool to provide moulin
inputs for subglacial and ice dynamic studies.

These models represent significant steps forward in their respective domains. Together,
these tools will be valuable components of future modelling work, including for studies
that aim to constrain how climatic variables control sea level contributions from glaciers
and ice sheets.
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Chapter 1

Introduction

1.1 Overview

Glaciers and ice sheets cover 10% of the Earth's surface and represent the largest reservoir
of freshwater on Earth [143; 75]. With such a signi�cant volume of water, glaciers and
ice sheets e�ect both human and natural systems, including impacting water resource
availability, natural hazards, sea level change, and downstream ecosystems [143]. Glacier
hazards, including �oods, debris �ows, and the potential for damaging sea level rise receive
considerable attention beyond the glaciological community [e.g. 56; 127].

Along with the human and natural implications of glacier change, glaciers represent
a uniquely interesting and important application for mathematical modelling. At the
simplest level, glaciers are nonlinear and complex systems. We need numerical models to
understand these systems since alpine glaciers and polar ice sheets are di�cult to access,
especially when some important physical processes occur under hundreds (or thousands) of
meters of ice. Given that glaciers and ice sheets represent a signi�cant source for sea level
rise throughout this century and beyond, predictive models are critical to inform decision
making in response to climate change.

Numerical models of glacier systems encounter multiple challenges. There is a disparity
of scales between the scale of the relevant physical mechanisms, which can be tens of meters
or smaller, and the scale of the domain, which can be hundreds or thousands of kilometres.
Ice �ow models routinely couple thermal and mechanical processes (ice deformation and
sliding), yet a truly comprehensive model would also have to include hydrological processes
at the surface and the bed, fracture mechanics, and frontal ablation processes, including
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calving. These challenges, and the importance of understanding these systems, makes
numerical modelling of glacier systems particularly interesting and relevant.

1.2 Background

Glaciers are best thought of as complex systems including not just the ice itself, but also
liquid meltwater, snow, �rn, bedrock, and proglacial outputs. This section traces the path
of liquid water generated at the melting glacier surface through the glacier system in order
to explain how surface melt and the �ow paths taken by water on the glacier surface
in�uences glacier �ow velocities and dynamics. This relationship between surface melt
and glacier velocity is important since climate-driven acceleration and retreat of glaciers
contributes to sea level rise [76] and terminus position changes of lake-terminating glaciers
can impact the frequency of glacial lake outburst �oods [61].

1.2.1 Mass balance and melt

A glacier's mass balance is determined by the di�erence between accumulation (mass gain)
and ablation (mass loss). Typically, the dominant source of accumulation is snowfall.
Avalanching, wind-blown snow, hoar frost, and rain may also contribute to accumulation
[16]. The dominant sources of ablation are surface melt, calving, and basal melt, with
smaller contributions by sublimation, evaporation, and snow redistribution by winds [16].
When a glacier is in balance with the climate its long-term average mass balance should
be zero.

Mass balance and surface melt rates have wide implications. In some regions, glaciers
provide an important water resource as summer melt provides a steady source of water
in what might be an otherwise dry season. For example, 8�20% of the Bow River's �ow
through Calgary in the summer is attributed to glacier melt in the Rocky Mountains [13],
providing an important source for downstream demands [144]. In the context of a warming
climate, �ow in rivers stemming from glacier runo� will increase at �rst as glacier melt rates
increase. However, as glacierized area decreases, a turning point will be reached where the
decrease in area becomes more important than increasing melt rates. This is called �peak
water�. After this point, �ow will decrease until the glaciers disappear [70]. Understanding
the timing of peak water is critical for communities who rely on glacier runo�.

Changes in mass balance can also shift natural hazard risks. Terminus retreat driven by
mass loss combined with increased melt rates can lead to the development or enlargement
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