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Abstract

The semiparametric density ratio model (DRM) provides a flexible and useful platform
for combining information from multiple sources. It has been widely used in many fields.
This thesis considers several important inference problems under two-sample DRMs.

Chapter 1 serves as an introduction. We review the DRM, empirical likelihood, which
is a useful inference tool under the DRM, and some applications of DRMs. We also outline
the research problems that will be explored in the subsequent chapters.

How to effectively use auxiliary information and data from multiple sources to enhance
statistical inference is an important and active research topic in many fields. In Chapter
2, we consider statistical inference under two-sample DRMs with additional parameters,
including the main parameters of interest, defined through and/or additional auxiliary
information expressed as estimating equations. We examine the asymptotic properties
of the maximum empirical likelihood estimators (MELEs) of the unknown parameters
in the DRMs and/or defined through estimating equations, and establish the chi-square
limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that
the asymptotic variance of the MELEs of the unknown parameters does not decrease if
one estimating equation is dropped. Similar properties are obtained for inferences on the
cumulative distribution function and quantiles of each of the populations involved. We
also propose an ELR test for the validity and usefulness of the auxiliary information.
Simulation studies show that correctly specified estimating equations for the auxiliary
information result in more efficient estimators and shorter confidence intervals. Two real
examples are used for illustrations.

The Youden index is a popular summary statistic for receiver operating characteristic
curves. It gives the optimal cutoff point of a biomarker to distinguish the diseased and
healthy individuals. In Chapter 3, we model the distributions of a biomarker for indi-
viduals in the healthy and diseased groups via a DRM. Based on this model, we propose
MELEs of the Youden index and the optimal cutoff point. We further establish the asymp-
totic normality of the proposed estimators and construct valid confidence intervals for the
Youden index and the corresponding optimal cutoff point. The proposed method automat-
ically covers both cases when there is no lower limit of detection and when there is a fixed
and finite lower limit of detection for the biomarker. Extensive simulation studies and a
real-data example are used to illustrate the effectiveness of the proposed method and its
advantages over the existing methods.

The Gini index is a popular inequality measure with many applications in social and
economic studies. Chapter 4 studies inference on the Gini indices of two semicontinuous
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populations. We characterize the distribution of each semicontinuous population by a
mixture of a discrete point mass at zero and a continuous skewed positive component.
The DRM is then employed to link the positive components of the two distributions. We
propose the MELEs of the two Gini indices and their difference, and further investigate
the asymptotic properties of the proposed estimators. The asymptotic results enable us
to construct confidence intervals and perform hypothesis tests for the two Gini indices
and their difference. We show that the proposed estimators are more efficient than the
existing fully nonparametric estimators. The proposed estimators and the asymptotic
results are also applicable to cases without excessive zero values. Simulation studies show
the superiority of our proposed method over existing methods. Two real-data applications
are presented using the proposed methods.

In Chapter 5, we summarize our research contributions and discuss some interesting
topics, which are related to our current work, for future research.
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Chapter 1

Introduction

1.1 Two-sample Density Ratio Models

This thesis proposes new and effective procedures for several important inference problems
under two-sample density ratio models (DRMs). In this section, we introduce the definition
of two-sample DRMs, and explain relationships between DRMs and other commonly used
statistical models.

Suppose we have two independent random samples {X01, . . . , X0n0} and {X11, . . . , X1n1}
from two populations with cumulative distribution functions (CDFs) F0 and F1, respec-
tively. The dimension of Xij can be one or greater than one. Let dFi denote the density
of Fi for i = 0, 1. The two-sample DRM (Anderson, 1979; Qin, 2017) postulates

dF1(x) = exp{α + β>q(x)}dF0(x) = exp{θ>Q(x)}dF0(x), (1.1)

where θ = (α,β>)> are unknown parameters for the DRM; Q(x) = (1, q(x)>)> with
the basis function q(x) being a pre-specified, non-trivial function of dimension d; and the
baseline distribution F0 is unspecified. The DRMs can be broadened to allow for multi-
sample cases; see Wang (2017) and the references therein. Throughout this thesis, DRMs
refer to (1.1) for two samples.

The DRM in (1.1) links two distribution functions through a parametric form for the
log density ratio, which helps to utilize information across two samples. Meanwhile, the
baseline distribution F0 remains completely unspecified. The parametric and nonpara-
metric components together make DRMs semiparametric and flexible to embrace many
commonly used statistical models.
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The DRM has a natural connection to the well-studied logistic regression (Anderson,
1979; Qin and Zhang, 1997) if one treats D = 0 and 1 as indicators for the observations from
F0 and F1, respectively. On the one hand, conditional on X = x, the logistic regression is

P (D = 1|X = x) =
exp{α∗ + β>q(x)}

1 + exp{α∗ + β>q(x)}
. (1.2)

On the other hand, if the DRM (1.1) is satisfied, using the Bayes’ formula gives

P (D = 1|X = x) =
dF1(x)P (D = 1)

dF1(x)P (D = 1) + dF0(x)P (D = 0)
=

exp{α∗ + β>q(x)}
1 + exp{α∗ + β>q(x)}

, (1.3)

where α∗ = α + log{P (D = 1)/P (D = 0)}. Hence, the DRM is equivalent to the logistic
regression model. Because of that, the inference procedures for logistic regression models,
which are extensively investigated in the literature, provide some ideas to explore the
properties of DRMs. For example, the equivalence brings in the computational convenience
when calculating the estimate of θ in the DRM.

The DRM also includes many commonly used distributions as special cases. Any two
distributions in the same exponential family satisfy the DRM (1.1) with certain q(x). We
say a distribution belongs to the exponential family if the corresponding probability density
function or probability mass function takes the following form (Kay and Little, 1987),

f(x; ξ) = A(x)B(ξ) exp{h(ξ)>g(x)}, (1.4)

with the support of the distribution not depending on the parameter ξ. Suppose the two
distributions F0 and F1 are from the same exponential family with different parameters ξ0

and ξ1. Then

dF1(x)

dF0(x)
=
f(x; ξ1)

f(x; ξ0)
= exp[log{B(ξ1)/B(ξ0)}+ {h(ξ1)− h(ξ0)}>g(x)].

This suggests that F0 and F1 satisfy the DRM in (1.1) with α = log{B(ξ1)/B(ξ0)},
β = h(ξ1)− h(ξ0), and q(x) = g(x). Note that in the DRM (1.1), the baseline F0 is left
unspecified and q(x) is the only parametric component that needs to be specified. Hence
the DRM assumptions are weaker than the fully parametric model assumptions in (1.4).
For example, the basis function q(x) = log x includes two log-normal distributions with the
same variance with respect to the log-scale, as well as two gamma distributions with the
same scale parameter; the basis function q(x) = x embraces two normal distributions with

2



different means but a common variance and two exponential distributions with different
rates. We refer to Kay and Little (1987), Cai (2014), and Wang (2017) for more examples.

The DRMs are inherently biased sampling models with weight functions involving un-
known parameters (Qin, 1998). More precisely, let F0 be the interested but unknown
distribution and F1 be the distribution resulted from biased sampling of F0 according to
the weight function w(x;η) with unknown parameter η. Then the biased sampling model
with the weight function w(x;η) gives the density of F1 by (Rao, 1965)

dF1(x) =
w(x;η)dF0(x)∫
w(x;η)dF0(x)

.

For example, the choice of w(x;η) = x is related to a length-biased sampling (Qin, 1993).
It is clear that the biased sampling model with the weight function w(x;η) = exp{β>q(x)}
satisfy the DRM (1.1).

We wrap up this section with some discussion on the choice of q(x) in the DRM (1.1)
in applications. To use the DRM, we need to specify q(x) in advance. If the practitioners
believe that a logistic regression model in (1.2) with q(x) = x is adequate to describe the
relationship between D and X, then they can use the DRM (1.1) with q(x) = x. If it
is believed that gamma distributions or normal distributions provide good fit to F0 and
F1, then they can use the semiparametric DRM (1.1) with q(x) = (x, log x)> or (x, x2)>

instead of a parametric model to achieve robustness of inferences. The DRM (1.1) with
a particular choice of q(x) can be further checked by the goodness-of-fit test discussed in
Qin and Zhang (1997). The details of this test will be provided at the end of Section 1.2.2.

1.2 Empirical Likelihood Inference under DRMs

A nice property of the DRM is that it permits elegant inference solutions through empir-
ical likelihood. In this section, we briefly review the empirical likelihood for one-sample
problems and then apply it to two-sample problems under the DRM.

1.2.1 One sample empirical likelihood

The empirical likelihood is first introduced by Owen (1988) to mimic the parametric like-
lihood. Since Owen’s seminar paper, the empirical likelihood has become remarkably pop-
ular because it has many nice properties corresponding to those of parametric likelihood

3



methods, e.g., the empirical likelihood ratio (ELR) confidence region is range-respecting,
transformation-invariant, and Bartlett correctable. More importantly, the ELR statistic
obeys Wilks’ theorem (Owen, 1990; Hall and La Scala, 1990; DiCiccio et al., 1991; Owen,
1991; Qin and Lawless, 1994). In this subsection, we mainly review the empirical likelihood
method for making inference on the population mean and the parameters defined through
estimating equations. We refer to Owen (2001)’s monograph for a comprehensive review
and discussion of the empirical likelihood.

Let {X1, · · · , Xn} be independent observations from a population with completely un-
known CDF F . The likelihood function of F is defined as (Owen, 1988)

L(F ) =
n∏
i=1

{F (Xi)− F (X−i )}.

Following Owen (1988), the sample-based version of F is given by

F ∗(x) =
n∑
n=1

piI(Xi ≤ x),

where pi = F (Xi)− F (X−i ) and I(·) is an indicator variable. Note that pi’s should satisfy
the constraints

pi > 0 and
n∑
i=1

pi = 1 (1.5)

to ensure that F ∗ is a CDF. The maximizer of the likelihood function L(F ) =
∏n

i=1 pi sub-
ject to the constraints in (1.5) corresponds to the empirical CDF Fn(x) = n−1

∑n
i=1 I(Xi ≤

x). The ELR function is then defined as

R(F ) = L(F )/L(Fn) =
n∏
i=1

npi.

Consider the population mean µ as the parameter of interest. We assume the dimension
of µ is one for simplicity. By using Lagrange multipliers, we profile out pi’s and obtained
the profile ELR function of µ as (Owen, 1988)

Rn(µ) = sup
p1,··· ,pn

{
n∏
i=1

npi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piXi = µ

}
.
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Let µ∗ be the true value of µ. It has been shown that under some mild moment conditions,
the ELR statistic −2 logRn(µ∗) asymptotically follows a chi-square distribution with one
degree of freedom, which is a nonparametric version of the Wilks’ theorem. Similar prop-
erties remain valid when the empirical likelihood method is applied to other functionals
such as those in Owen (1988, 1990), and to linear regression model (Owen, 1991).

Next, we discuss the empirical likelihood inference for parameters defined through es-
timating equations (Qin and Lawless, 1994). Suppose the parameter of interest, ψ, is of
dimension p. The information of ψ and F are available through a set of r ≥ p functionally
independent unbiased estimating equations:

E{g(X;ψ)} = 0

with g(x;ψ) = (g1(x;ψ), · · · , gr(x;ψ))>. In this case, the profile likelihood function of ψ
takes the form

Ln(ψ) = sup
p1,··· ,pn

{
n∏
i=1

pi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(Xi;ψ) = 0

}
.

The maximum empirical likelihood estimator (MELE) of ψ, denoted as ψ̂, is the max-
imizer of Ln(ψ) with respect to ψ. Qin and Lawless (1994) showed that under some
regularity conditions, the estimator ψ̂ is consistent and asymptotically normal, and its
asymptotic variance cannot decrease if an estimating equation is dropped when r > p.
They further proved that the ELR statistic −2 log{Ln(ψ∗)/Ln(ψ̂)} converges in distribu-
tion to a chi-square distribution with p degree of freedom, where ψ∗ is the true value of
ψ.

1.2.2 Empirical likelihood under two-sample DRMs

Since the baseline distribution F0 in DRMs (1.1) is unspecified, it is natural to adopt the
empirical likelihood for inference under the DRM. Suppose we have two random samples

X01, . . . , X0n0 ∼ F0 and X11, . . . , X1n1 ∼ F1,

and two CDFs F0 and F1 are linked through the DRM (1.1). Based on the two samples,
the full empirical likelihood is

1∏
i=0

ni∏
j=1

dFi(Xij),
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with dFi(Xij) = Fi(Xij) − Fi(X−ij ). Following the empirical likelihood principle of Owen
(2001) and with the help of DRM (1.1), we use the combined sample to estimate the
baseline distribution F0 as

F ∗0 (x) =
1∑
i=0

ni∑
j=1

pijI(Xij ≤ x), (1.6)

where pij = dF0(Xij). The DRM (1.1) and (1.6) together imply that

F ∗1 (x) =
1∑
i=0

ni∑
j=1

exp{θ>Q(Xij)}pijI(Xij ≤ x). (1.7)

The fact that both F ∗0 and F ∗1 are CDFs introduces the following constraints:

pij > 0,
1∑
i=0

ni∑
j=1

pij = 1,
1∑
i=0

ni∑
j=1

pij exp{θ>Q(Xij)} = 1. (1.8)

With (1.6) and (1.7), the likelihood function under the DRM (1.1) then becomes

Ln =

{
1∏
i=0

ni∏
j=1

pij

}[
n1∏
j=1

exp{θ>Q(X1j)}

]
. (1.9)

Using Lagrange multipliers and for any given θ, it can be shown that the maximum of Ln
is reached at

pij = n−1{1 + λ[exp{θ>Q(Xij)} − 1]}−1, (1.10)

where the Lagrange multiplier λ satisfies

1∑
i=0

ni∑
j=1

exp{θ>Q(Xij)} − 1

1 + λ[exp{θ>Q(Xij)} − 1]
= 0. (1.11)

It is apparent that λ depends on the given θ.

Plugging (1.10) into (1.9) and taking the logarithm, the profile log-likelihood function
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of θ (Qin, 1998), up to a constant not depending on θ, is given by

`(θ) = −
1∑
i=0

ni∑
j=1

log{1 + λ[exp{θ>Q(Xij)} − 1]}+

n1∑
j=1

θ>Q(X1j).

The MELE of θ is then defined as

θ̃ = arg max
θ

`(θ).

Consequently, the MELEs of pij’s are

p̃ij = n−1{1 + λ̃[exp{θ̃>Q(Xij)} − 1]}−1, (1.12)

where λ̃ is the Lagrange multiplier corresponding to θ̃, or equivalently, λ̃ is the solution of
(1.11) with θ̃ in the place of θ.

The Lagrange multiplier λ defined through (1.11) usually does not have a closed form.
Because of that, maximizing `(θ) to numerically obtain θ̃ may not be an easy task. Keziou
and Leoni-Aubin (2008) and Cai et al. (2017) pointed out θ̃ also maximizes the following
dual empirical log-likelihood function:

`nd(θ) = −
1∑
i=0

ni∑
j=1

log
{

1 +
n1

n

[
exp{θ>Q(Xij)} − 1

]}
+

n1∑
j=1

θ>Q(X1j), (1.13)

i.e.,
θ̃ = arg max

θ
`nd(θ). (1.14)

We now provide some details for the claim in (1.14). We first argue that λ̃ = n1/n.
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Note that θ̃ satisfies

0 =
∂`(θ̃)

∂α

= −
1∑
i=0

ni∑
j=1

λ̃ exp{θ̃>Q(Xij)}
1 + λ̃[exp{θ̃>Q(Xij)} − 1]

−
1∑
i=0

ni∑
j=1

[exp{θ̃>Q(Xij)} − 1] · dλ
dα
|θ=θ̃

1 + λ̃[exp{θ̃>Q(Xij)} − 1]
+ n1

= −
1∑
i=0

ni∑
j=1

λ̃ exp{θ̃>Q(Xij)}
1 + λ̃[exp{θ̃>Q(Xij)} − 1]

+ n1

= −nλ̃+ n1,

where we have used (1.11) in the third step, and the following fact in the last step:

1∑
i=0

ni∑
j=1

λ̃ exp{θ̃>Q(Xij)}
1 + λ̃[exp{θ̃>Q(Xij)} − 1]

=
1∑
i=0

ni∑
j=1

nλ̃p̃ij exp{θ̃>Q(Xij)} = nλ̃.

Hence, λ̃ = n1/n and

∂`nd(θ̃)

∂α
= −

1∑
i=0

ni∑
j=1

n1

n
exp{θ̃>Q(Xij)}

1 + n1

n
[exp{θ̃>Q(Xij)} − 1]

+ n1 = 0. (1.15)

For ∂`nd(θ̃)/∂β, we notice that

0 =
∂`(θ̃)

∂β
=
∂`nd(θ̃)

∂β
−

1∑
i=0

ni∑
j=1

[exp{θ̃>Q(Xij)} − 1] · dλ
dβ
|θ=θ̃

1 + λ̃[exp{θ̃>Q(Xij)} − 1]
=
∂`nd(θ̃)

∂β
, (1.16)

where we have used (1.11) in the last step. Therefore, (1.15) and (1.16) together imply
that

∂`nd(θ̃)

∂θ
= 0.

That is, θ̃ is a stationary point of `nd(θ). It can be checked that `nd(θ) is a concave function
of θ. Hence θ̃ further maximizes `nd(θ) and (1.14) is proved.

Note that `nd(θ) can be rewritten as

`nd(θ) = `∗(α∗,β)− n0 log(n0/n)− n1 log(n1/n),
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where `∗(α∗,β) is the log-likelihood function of logistic regression model in (1.2) with
α∗ = α+ log(n1/n0). This fact and the result in (1.14) together make the computation of
θ̃ very straightforward. For instance, we can directly use the existing R functions such as
glm for such purpose.

With θ̃ and the fact that λ̃ = n1/n, the MELEs of pij’s are computed as

p̃ij = n−1
{

1 +
n1

n

[
exp{θ̃>Q(Xij)} − 1

]}−1

.

We then estimate the CDFs F0 and F1 as

F̃0(x) =
1∑
i=0

ni∑
j=1

p̃ijI(Xij ≤ x) and F̃1(x) =
1∑
i=0

ni∑
j=1

exp{θ̃>Q(Xij)}p̃ijI(Xij ≤ x). (1.17)

The estimators of other interesting population quantities, such as population mean and
quantiles, can be constructed from F̃0 and F̃1.

The two estimates F̃0 and F̃1 can also be used to construct a goodness-of-fit test to
check the validity of the DRM. Qin and Zhang (1997) defined a Kolmogorov-Smirnov-type
test statistic as

∆n = sup
−∞≤x≤∞

√
n|F̃0(x)− F̄0(x)|,

where F̄0(x) = n−1
0

∑n0

j=1 I(X0j ≤ x) represents the empirical CDF of F0. We reject the
null hypothesis that the DRM (1.1) is satisfied if ∆n is greater than some critical value.
The limiting distribution of ∆n has a complicated form. Qin and Zhang (1997) suggest to
use a Bootstrap method to find the critical value.

1.3 Literature Review: Applications and Developments

of DRMs

In the existing literature, the DRM has been investigated extensively because of its flexi-
bility and efficiency. In this section, we mainly review the applications and developments
of DRMs related to the research problems that we will study in later chapters.

Using the equivalence of the logistic regression model and the DRM, Qin (1998) stud-
ied the inference problems for the parameters of logistic regression models based on ret-
rospective case-control data. Qin et al. (2015) developed much improved methods for a
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retrospective case-control study under the logistic regression model by utilizing auxiliary
information from public registration databases.

The DRM is widely used to link the related distributions and improve inference on
population quantities. Zhang (2000), Chen and Liu (2013), and Cai and Chen (2018)
considered the quantile estimation under the DRMs. They showed that the MELEs of
quantiles admit Bahadur representation and are more efficient than empirical quantiles.
Recently, Zhang et al. (2020) investigated the ELR statistic for quantiles and showed that
the ELR-based confidence region of the quantiles is preferable to the Wald-type confidence
region. Li et al. (2018) studied the MELE and compared the dual empirical likelihood
Wald-type confidence interval (CI) and the profile-ELR-based CI for some specific one-
dimensional parameter (see Section 2.1.2 for more details). Their simulation shows that
the profile-ELR-based CI has better performance in terms of coverage probability. Fokianos
(2004) and Qin and Zhang (2005) discussed density estimation under the DRMs. They
show that the density estimators under the DRM are more efficient than the usual kernel
density estimators.

The DRM is also applied to multi-sample hypothesis-testing problems. Fokianos et al.
(2001) considered the homogeneity test of distributions under the DRM by using a Wald-
type test. Keziou and Leoni-Aubin (2008) and Cai et al. (2017) investigated the ELR test
for the homogeneity of distributions under the DRM. Wang et al. (2017a, 2018) further
developed the ELR statistics for testing the homogeneity of distributions and the equality of
population means, respectively, for multiple samples with excessive zeros. The simulation
studies in these papers all show that the proposed tests under the DRMs are more powerful
than the fully nonparametric tests.

The DRM has gained popularity in the field of receiver operating characteristic (ROC)
analysis. Qin and Zhang (2003) investigated the estimation of the ROC curve as well as one
of its popular summary statistic, the area under the curve (AUC). Zhang (2006) proposed a
Wald-type statistic to test whether the accuracy of a diagnostic test is acceptable in terms
of the AUC. Wan and Zhang (2007) constructed a smoothed ROC curve estimator based
on kernel technique. Wang and Zhang (2014) built an ELR-based CI for the AUC, which
is shown to be more robust than a fully parametric method, and more efficient than a fully
nonparametric approach. Wan and Zhang (2008) and Zhang and Zhang (2014) studied the
inference problems for the difference of AUCs for two correlated ROC curves.

The DRM has also been employed for inference based on censored samples. Shen et al.
(2007) considered the conditional empirical likelihood to make inference with the randomly
right-censored data. Ren (2008) performed the inference for various types of censored data
using the weighted empirical likelihood approach. Jiang and Tu (2012) compared the

10



performance of conditional and weighted empirical likelihood inference with the randomly
right-censored data. Wang et al. (2011) developed the empirical likelihood inference based
on the right-censored data with fixed censoring points while Shen et al. (2012) and Wei
and Zhou (2016) dealt with the empirical likelihood inference for randomly right-censored
data. Cai and Chen (2018) used dual empirical likelihood to perform inference for left-
and/or right-censored samples with fixed censoring points.

Diagnosis of the DRMs and selecting the basis function q(x) for the DRMs have been
a topic with extensive discussion. The estimators of the quantities of interest may suffer
from bias and loss of efficiency under a misspecified DRM (Fokianos and Kaimi, 2006). Qin
and Zhang (1997) and Zhang (2002) proposed goodness-of-fit tests to examine the validity
of DRMs for a pre-specified q(x). We refer to Section 1.2 for more details. Fokianos et al.
(1999) proposed a generalized-moments specification test for the logistic link. Box-Cox
family of transformations are suggested by Fokianos and Kaimi (2006) to choose the basis
function q(x) in the DRM, which may help reduce the negative effect caused by the model
misspecification. Zhang and Chen (2021) proposed to use functional principal component
analysis method to choose a data-adaptive basis function. The equivalence between DRMs
and logistic regression models also provides a direction for selecting the basis function
in the DRMs. Fokianos (2007) adjusted some popular selection criteria, such as Akaike
information criterion and Bayesian information criterion, for selecting the basis function
under the DRMs.

There are other applications of DRMs, including inference under semiparametric mix-
ture models (Qin, 1999; Zou et al., 2002; Li and Qin, 2011; Li et al., 2017), the modeling
of multivariate extremal distributions (de Carvalho and Davison, 2014), and dominance
index estimation (Zhuang et al., 2019).

1.4 Outline of the Thesis

In this thesis, we use the empirical likelihood to develop new and effective procedures
for three important inference problems: (1) inference under two-sample DRMs with ad-
ditional parameters defined through and/or additional auxiliary information expressed as
estimating equations; (2) inference on the Youden index and the optimal cutoff point under
two-sample DRMs; (3) inference on the Gini indices of two semicontinuous populations.

With the increasing availability of data sources, utilizing the auxiliary information to
enhance statistical inference is of great interest. Inspired by Qin and Lawless (1994), esti-
mating equations would provide a unified platform for the use of auxiliary information and
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inferences on the main parameters of interest such as the moments and quantiles of popula-
tion under DRMs. In Chapter 2, we propose general semiparametric inference procedures
to utilize the combined information from two samples as well as auxiliary information. We
model the CDFs of two populations by a DRM and assume that auxiliary information
about the CDFs and interested parameters are expressed through estimating equations.
We investigate the theoretical properties for the MELEs of the unknown parameters as
well as the ELR statistics on these parameters. The inference procedures on the CDFs
and population quantiles are also studied. It should be noted that misspecified auxiliary
information could have adverse effect on statistical inference. We further develop an ELR
test for checking the validity and usefulness of auxiliary information.

The Youden index is a widely-used summary statistic of the ROC curve and has the
advantage of providing a criterion to choose the “optimal” cutoff point of a biomarker to
distinguish the diseased and healthy individuals. Inference on the Youden index and the
optimal cutoff point has been studied based on either parametric methods or nonparametric
methods. The former relies on parametric assumptions on the CDFs of biomarkers in
the diseased and healthy groups, while the latter produces inefficient estimators of the
optimal cutoff point (Fluss et al., 2005; Bantis et al., 2019; Hsieh and Turnbull, 1996).
In Chapter 3, we propose to link the distributions of the biomarkers in the diseased and
healthy groups via a semiparametric DRM, and obtain the MELEs of the Youden index
and the corresponding optimal cutoff point. The asymptotic properties of the estimators
are explored, which enables us to construct valid CIs for the Youden index and the optimal
cutoff point. The measurement of a biomarker may be unquantifiable below a limit of
detection and missing from the dataset in applications (Ruopp et al., 2008; Bantis et al.,
2017). Our proposed method covers both cases with and without a fixed and finite lower
limit of detection.

The Gini index is a popular inequality measure with many applications in social and
economic studies. Many studies of the Gini index have applied nonparametric methods
and often focused on a single population (Hoeffding, 1948; Qin et al., 2010; Peng, 2011;
Wang et al., 2016). In applications, two related populations often share some common
characteristics, which is ignored by the nonparametric methods. In addition, it is common
to encounter semicontinuous data with a mixture of excessive zero values and positive
outcomes in practice (Zhou and Cheng, 2008). In Chapter 4, we consider the inference
on Gini indices of two semicontinuous populations. We model the distribution of each
semicontinuous population by a mixture of a discrete point mass at zero and a continuous
positive component, and further adopt a DRM to link the two positive components to
utilize the information from both population. Base on these models, we first establish
theoretical results for the MELEs of model parameters and a class of functionals. With
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these preliminary results, we propose the MELEs of two Gini indices and their difference,
and study the asymptotic properties of these estimators. The proposed estimators and the
asymptotic results are also applicable to cases when there is no excess of zero values.

Chapter 5 concludes the thesis with a brief summary of our research contributions and
provides some potential topics worthy of further investigation.
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Chapter 2

Empirical Likelihood Inference with
Estimating Equations under Density
Ratio Models

2.1 Introduction

2.1.1 Problem setup

Chapter 2 is devoted to developing statistical methods for inference problems under two-
sample DRMs with estimating equations. Suppose we have two independent random sam-
ples {X01, . . . , X0n0} and {X11, . . . , X1n1} from two distributions F0 and F1, respectively.
The dimension of Xij can be one or greater than one. We assume that the CDFs F0 and
F1 are linked through the DRM (1.1), i.e.,

dF1(x) = exp{α + β>q(x)}dF0(x) = exp{θ>Q(x)}dF0(x), (2.1)

where dFi(x) denotes the density of Fi(x) for i = 0 and 1; θ = (α,β>)> are the unknown
parameters for the DRM; Q(x) = (1, q(x)>)> with q(x) being the basis function of dimen-
sion d; and the baseline distribution F0 is unspecified. We further assume that the main
parameters of interest can be expressed and/or certain auxiliary information about F0, F1,
and θ is available in the form of functionally independent unbiased estimating equations:

E0{g(X;ψ,θ)} = 0, (2.2)
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where E0(·) refers to the expectation operator with respect to F0, the vector of param-
eters ψ consists of the main parameters of interest and/or nuisance parameters and has
dimension p, g(·; ·) is r-dimensional, and r ≥ p. In this chapter, our goal is twofold:

(1) we develop new and general semiparametric inference procedures for (ψ,θ) and
(F0, F1) along with their quantiles under the DRM (2.1) with unbiased estimating
equations in (2.2);

(2) we propose a new testing procedure on the validity of (2.2) under the DRM (2.1),
which leads to a practical validation method on the usefulness of the auxiliary infor-
mation.

As we discussed in Section 1, the semiparametric DRM in (2.1) provides a flexible
and useful platform for combining information from multiple sources. It also enables us
to utilize information from both F0 and F1 to improve inferences on the unknown model
parameters and the summary population quantities of interest. The estimating equations
in (2.2) play two important roles. First, they can be used to define many important
summary population quantities such as the ratio of the two population means, the centered
and uncentered moments, the generalized entropy class of inequality measures, the CDFs,
and the quantiles of each population. See Example 2.1 below and Section 2.6.1 for more
examples. Second, they provide a unified platform for the use of auxiliary information.
With many data sources being increasingly available, it becomes more feasible to access
auxiliary information, and using such information to enhance statistical inference is an
important and active research topic in many fields. Calibration estimators, which are
widely used in survey sampling, missing data problems and causal inference, rely heavily
on the use of auxiliary information; see Wu and Thompson (2020) and the references
therein. Many economics problems can be addressed using similar methodology. For
instance, knowledge of the moments of the marginal distributions of economic variables
from census reports can be used in combination with microdata to improve the parameter
estimates of microeconomic models (Imbens and Lancaster, 1994). Examples 2.2 and 2.3
below illustrate the use of auxiliary information through estimating equations in the form
of (2.2).

Example 2.1. (The mean ratio of two populations) The ratio of the means of two positive
skewed distributions is often of interest in biomedical research (Zhou et al., 1997; Wu et al.,
2002). Let µ0 and µ1 be the means with respect to F0 and F1, respectively. Further, let
δ = µ1/µ0 denote the mean ratio of the two populations. For inference on δ, a common
assumption is that both distributions are lognormal (Zhou et al., 1997; Wu et al., 2002). To
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alleviate the risk of parametric assumptions, we could use the DRM in (2.1) with q(x) =
log x or q(x) = (log x, log2 x)> depending on whether or not the variances with respect to
the log-scale are the same. Then, under the DRM (2.1), the mean ratio δ can be defined
through the following estimating equation:

g(x;ψ,θ) = δx− x exp{θ>Q(x)},

with ψ = δ. When additional information is available, we may add more estimating
equations to improve the estimation efficiency; see Section 2.4.1 for further detail.

Example 2.2. (Retrospective case-control studies with auxiliary information) Consider a
retrospective case-control study with D = 1 or 0 representing diseased or disease-free status,
and X representing the collection of risk factors. Note that the two samples are collected
retrospectively, given the diseased status. Let F0 and F1 denote the CDF of X given D = 0
and D = 1, respectively. Assume that the relationship between D and X can be modeled by
the logistic regression

P (D = 1|x) =
exp{α∗ + β>q(x)}

1 + exp{α∗ + β>q(x)}
,

where α∗ = α+ log{P (D = 1)/P (D = 0)}. Then, using the equivalence between the DRM
and the logistic regression discussed in Section 1.1, F0 and F1 satisfy the DRM (2.1).

Qin et al. (2015) used covariate-specific disease prevalence information to improve the
power of case-control studies. Specifically, let X = (Y, Z)> with Y and Z being two risk
factors. Assume that we know the disease prevalence at various levels of Y : φ(al−1, al) =
P (D = 1|al−1 < Y ≤ al) for l = 1, . . . , k. Let π = P (D = 1) be the overall disease
prevalence. Using Bayes’ formula, the information in the φ(al−1, al)’s can be summarized
as E0{g(X;ψ,θ)} = 0, where ψ = π and the lth component of g(x;ψ,θ) is

gl(x;ψ,θ) = I(al−1 < x ≤ al)

[
π

1− π
exp{θ>Q(x)} − φ(al−1, al)

1− φ(al−1, al)

]
. (2.3)

Chatterjee et al. (2016) improved the internal study by using summary-level information
from an external study. Suppose X = (Y >, Z>)>, where Y is available for both the internal
and external studies, while Z is available for only the internal study. Assume that the
external study provides the true coefficients (α∗Y ,β

∗
Y ) for the following logistic regression
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model, which may not be the true model:

h(Y ;αY ,βY ) = P (D = 1|Y ) =
exp(α + β>Y Y )

1 + exp(α + β>Y Y )
.

This assumption is reasonable when the total sample size n = n0 + n1 satisfies n/nE → 0,
where nE is the total sample size in the external study. Further, assume that the joint
distribution of (D,X) is the same for both the internal and external studies. Let h(y) =
h(y;α∗Y ,β

∗
Y ). In Section 2.6.2, we argue that if the external study is a prospective case-

control study, then E0{g(X;ψ,θ)} = 0, where

g(x;ψ,θ) = [−(1− π)h(y) + π exp{θ>Q(x)}{1− h(y)}](1, y>)> (2.4)

with ψ = π; if the external study is a retrospective case-control study, then E0{g(X;θ)} =
0, where

g(x;θ) = [−(1− πE)h(y) + πE exp{θ>Q(x)}{1− h(y)}](1, y>)> (2.5)

with πE being the proportion of diseased individuals in the external study.

Example 2.3. (A two-sample problem with common mean) Tsao and Wu (2006) consid-
ered two populations with a common mean. This type of problem occurs when two “instru-
ments” are used to collect data on a common response variable, and these two instruments
are believed to have no systematic biases but differ in precision. The observations from the
two instruments then form two samples with a common population mean. In the literature,
there has been much interest in using the pooled sample to improve inferences. A common
assumption is that the two samples follow normal distributions with a common mean but
different variances (Tsao and Wu, 2006). To gain robustness with respect to the paramet-
ric assumption, we may use the DRM (2.1) with q(x) = (x, x2)>. Under this model, the
common-mean assumption can be incorporated via the estimating equation:

E0{X exp{θ>Q(X)} −X} = 0. (2.6)

2.1.2 Literature review

As we discussed in Section 1.3, the DRM has been studied extensively in the literature
due to its flexibility and efficiency. In the following, we discuss several references in more
details, which are related to our work in this chapter. Li et al. (2018) studied the MELE
and compared two types of CIs for a parameter defined as ψ =

∫
u(x;θ)dF0(x), where
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u(·; ·) is a one-dimensional function. Because of the specific form of ψ, their results do not
apply to the mean ratio discussed in Example 2.1. Zhang et al. (2020) investigated the
ELR statistic for quantiles under the DRM and showed that the ELR-based confidence
region of the quantiles is preferable to the Wald-type confidence region. Both Li et al.
(2018) and Zhang et al. (2020) did not consider auxiliary information. In summary, the
existing literature on DRMs focuses on cases where there is no auxiliary information, and
furthermore, there is no general theory available to handle parameters defined through the
estimating equations in (2.2).

Using the connection of the DRM to the logistic regression model, Qin et al. (2015)
studied the MELE of θ and the ELR statistic for testing a parameter in θ under the DRM
(2.1) with the unbiased estimating equations in (2.3). Chatterjee et al. (2016) proposed
constrained maximum likelihood estimation for the unknown parameters in the internal
study using summary-level information from an external study. In Section 2.6.2, we argue
that their results are applicable to the MELE of θ under the DRM (2.1) with the unbiased
estimating equations in (2.4) but not to the MELE of θ under the DRM (2.1) with the un-
biased estimating equations in (2.5). Furthermore, they did not consider the ELR statistic
for the unknown parameters. Qin et al. (2015) and Chatterjee et al. (2016) focused on how
to use auxiliary information to improve inference on the unknown parameters, and they
did not check the validity of that information or explore inferences on the CDFs (F0, F1)
and their quantiles.

2.1.3 Our contributions

With two-sample observations from the DRM (2.1), we use the empirical likelihood of Owen
(1988, 2001) to incorporate the unbiased estimating equations in (2.2). We show that the
MELE of (ψ,θ) is asymptotically normal, and its asymptotic variance will not decrease
when an estimating equation in (2.2) is dropped. We also develop an ELR statistic for
testing a general hypothesis about (ψ,θ), and show that it has a χ2 limiting distribution
under the null hypothesis. The result can be used to construct the ELR-based confidence
region for (ψ,θ). Similar results are obtained for inferences on (F0, F1) and their quantiles.
Finally, we construct an ELR statistic with the χ2 null limiting distribution to test the
validity of some or all of the estimating equations in (2.2).

We make the following observations:

(1) Our results on the two-sample DRMs contain more advanced development than those
in Qin and Lawless (1994) for the one-sample case.
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(2) Our inferential framework and theoretical results are very general. The results in Qin
et al. (2015) and Chatterjee et al. (2016) for case-control studies are special cases
of our theory for an appropriate choice of g(x;ψ,θ) in (2.2). Our results are also
applicable to cases that are not covered by these two earlier studies, e.g., Example
2.2 with the estimating equations in (2.5) and Example 2.3.

(3) Our proposed ELR statistic, to the best of our knowledge, is the first formal procedure
to test the validity of auxiliary information under the DRM or for case-control studies.

(4) Our proposed inference procedures for (F0, F1) and their quantiles in the presence of
auxiliary information are new to the literature.

The rest of this chapter is organized as follows. In Section 2.2, we develop the empirical
likelihood inferential procedures and study the asymptotic properties of the MELE of
(ψ,θ). We also investigate the ELR statistics for (ψ,θ) and for testing the validity of the
estimating equations in (2.2). In Section 2.3, we discuss inference procedures for (F0, F1)
and their quantiles. Simulation results are reported in Section 2.4, and two real-data
examples are presented in Section 2.5. For convenience of presentation, more examples for
summary quantities, details on extracting the summary-level information from the external
case-control study, proofs, and additional simulation results are given in Section 2.6.

2.2 Empirical Likelihood and Inference on (ψ,θ)

In this section, we first use the similar strategy in Section 1.2.2 to develop the empirical
likelihood formulation under the DRM (2.1) with the unbiased estimating equations in
(2.2). With two samples {X01, . . . , X0n0} and {X11, . . . , X1n1} from F0 and F1, respectively,
the full likelihood is

1∏
i=0

ni∏
j=1

dFi(Xij).

Under the one-sample empirical likelihood formulation of Owen (2001), the baseline distri-
bution function F0(x) would have been estimated by F ∗0 (x) =

∑n0

j=1 pjI(X0j ≤ x), where
pj = dF0(X0j) for j = 1, . . . , n0. Under the two-sample DRM (2.1), we use the combined
sample to estimate the baseline function F0(x) as

F ∗0 (x) =
1∑
i=0

ni∑
j=1

pijI(Xij ≤ x), (2.7)
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where pij = dF0(Xij) for i = 0, 1 and j = 1, . . . , ni. Note that the size of the combined
sample is n = n0 + n1. With (2.7) and under the DRM (2.1), the empirical likelihood
function is given by

Ln =

{
1∏
i=0

ni∏
j=1

pij

}[
n1∏
j=1

exp{θ>Q(X1j)}

]
(2.8)

The feasible pij’s satisfy two sets of constraints given by

C1 =

{
(F0,θ) : pij > 0,

1∑
i=0

ni∑
j=1

pij = 1,
1∑
i=0

ni∑
j=1

pij exp{θ>Q(Xij)} = 1

}
(2.9)

and

C2 =

{
(F0,ψ,θ) :

1∑
i=0

ni∑
j=1

pijg(Xij;ψ,θ) = 0

}
, (2.10)

where the set of constraints C1 ensures that estimates of F0 and F1 are CDFs and the set
of constraints C2 is induced by the estimating equations in (2.2).

Using the Lagrange multiplier method and for the given ψ and θ, it can be shown that
the maximizer of the empirical likelihood function is given by

pij =
1

n

1

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

,

where the Lagrange multipliers λ and ν = (ν1, · · · , νr)> are the solutions to the following
set of r + 1 equations:

1∑
i=0

ni∑
j=1

exp{θ>Q(Xij)} − 1

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

= 0, (2.11)

1∑
i=0

ni∑
j=1

g(Xij;ψ,θ)

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

= 0. (2.12)

The profile empirical log-likelihood of (ψ,θ) is given by

`n(ψ,θ) = −
1∑
i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

}
+

n1∑
j=1

θ>Q(X1j).
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The MELEs of ψ and θ are then defined as (ψ̂, θ̂) = arg maxψ,θ `n(ψ,θ).

We now establish the asymptotic distribution of (ψ̂, θ̂). Let η = (ψ>,θ>)> be the
vector of parameters and u = (λ,ν>)> be the vector of Lagrange multipliers. We use ψ∗

and θ∗ to denote the true values of ψ and θ. We refer η∗ = (ψ∗>,θ∗>)> to the true value
of η. We further define λ∗ = n1/n, and

ω(x;θ) = exp
{
θ>Q(x)

}
, ω(x) = ω(x;θ∗), h(x) = 1 + λ∗ {ω(x)− 1} ,

h1(x) =
λ∗ω(x)

h(x)
, G(x;η) = (ω(x;θ)− 1, g(x;θ,β)>)>, G(x) = G(x;η∗),

Aθθ = (1− λ∗)E0

{
h1(X)Q(x)Q(x)>

}
,

Aθu = A>uθ = E0

{
∂G(X;η∗)

∂θ

}>
− E0

{
h1(X)Q(x)G(X)>

}
,

Aψu = A>uψ = E0

{
∂G(X;η∗)

∂ψ

}>
, Auu = E0

{
G(X)G(X)>

h(X)

}
.

Noting that ω(·), h(·), h1(·) and G(·) depend on ψ∗ and/or θ∗, we drop these redundant
parameters for notational simplicity.

Theorem 2.1. Assume that the regularity conditions in Section 2.6.3 are satisfied. As the
total sample size n = n0 + n1 goes to infinity, we have

n1/2(η̂ − η∗)→ N
(
0,J−1

)
in distribution, where

J = UV −1U>, U =

(
0 Aψu

Aθθ Aθu

)
, and V =

(
Aθθ 0
0 Auu

)
.

In the absence of the constraints C2 in (2.10), we can maximize the empirical likelihood
function in (2.8) with respect only to the CDF constraints C1 in (2.9) to obtain the MELE
θ̃ of θ. As we discussed in Section 1.2.2, the MELE θ̃ equivalently maximizes the following
dual likelihood:

`nd(θ) = −
1∑
i=0

ni∑
j=1

log
{

1 + λ∗
[
exp

{
θ>Q(Xij)

}
− 1
]}

+

n1∑
j=1

{
θ>Q(X1j)

}
. (2.13)

That is, θ̃ = arg maxθ `nd(θ).
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Corollary 2.1. Under the conditions of Theorem 2.1,

(a) if r = p, the asymptotic variance of n1/2(θ̂− θ∗) is the same as that of n1/2(θ̃− θ∗);

(b) if r > p, the asymptotic variance matrix of n1/2(η̂ − η∗) cannot decrease if one
estimating equation in (2.2) is dropped.

We provide some further comments on the results presented in Corollary 2.1. First,
when the dimensions of the parameters ψ and the estimating equations are equal, we can
solve ∫

g(X;ψ, θ̃)dF̃0(x) = 0

to get the estimator ψ̃ of ψ, where F̃0(x) is the MELE of F0 without the constraints C2 in
(2.10), and is defined in (1.17). Because of the result in Corollary 2.1(a), the estimators
ψ̃ and ψ̂ share the same asymptotic property. Second, Corollary 2.1(b) indicates that
additional auxiliary information leads to more efficient estimation of η.

The proposed semiparametric method provides a way to find the point estimator of
the unknown parameters, which has the asymptotic normality analogue to the parametric
estimator. The semiparametric framework also creates a natural platform for hypothesis
tests using the ELR statistic. We consider a general null hypothesis

H0 : H(η) = 0,

where the function H(·) is q × 1 with q ≤ p+ d+ 1, and the derivative of this function is
of rank q. This null hypothesis forms a third set of constraints

C3 =
{
η = (ψ>,θ>)> : H(η) = 0

}
.

The ELR statistic for testing H0 is then defined as

Rn = 2

{
sup
ψ,θ

`n(ψ,θ)− sup
η∈C3

`n(ψ,θ)

}
.

The next theorem establishes the asymptotic distribution of the ELR statistic Rn under
the null hypothesis H0.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Under H0, as n → ∞,
the ELR statistic Rn → χ2

q in distribution.
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The result of Theorem 2.2 is very general due to the general form of the function H(·).
First, it is applicable to testing problems that focus on some of the parameters in η. For
example, if we wish to test H0 : ψ = ψ0, we can choose H(η) = ψ − ψ0. Let R∗n(ψ) be
the ELR function of ψ. That is,

R∗n(ψ) = 2

{
sup
ψ,θ

`n(ψ,θ)− sup
θ
`n(ψ,θ)

}
.

ThenR∗n(ψ0) has a chi-squared null limiting distribution with p degrees of freedom. Second,
the result can be used to construct confidence regions for some of the parameters in η.
For example, we can construct an ELR-based confidence region for the parameter ψ at the
nominal level 1− a as

{ψ : R∗n(ψ) ≤ χ2
q,1−a}, (2.14)

where χ2
q,1−a is the 100(1− a)th quantile of the χ2

q distribution.

The use of valid auxiliary information leads to improved inference on η. However, if
the information is not properly specified in terms of unbiased estimating functions, the
resulting estimator of η may be biased (Qin et al., 2015). Our last major theoretical result
is to construct an ELR statistic for testing the validity and usefulness of the auxiliary
information. Let

Wn = 2

{
sup

(η,F0)∈C1
logLn − sup

(η,F0)∈C1∩C2
logLn

}
= 2

{
`nd(θ̃)− `n(ψ̂, θ̂)

}
. (2.15)

Theorem 2.3. Under the conditions of Theorem 2.1 and as n→∞, we have Wn → χ2
r−p

in distribution if (2.2) is correctly specified.

We can also test the validity of some but not all of the estimating equations in (2.2).
To do so, we partition the estimating equations in (2.2) into two parts:

g(x;ψ,θ) =

(
g1(x;ψ,θ)
g2(x;ψ,θ)

)
,

where g1(·) and g2(·) are of dimension r−m and m with r−m ≥ p. We are interested in
testing H0 : E0{g2(X;ψ,θ)} = 0. Let `n1(ψ,θ) be the profile empirical log-likelihood of
(ψ,θ) that uses the auxiliary information only through E0{g1(x;ψ,θ)} = 0. That is,

`n1(ψ,θ) = −
1∑
i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>1 g1(Xij;ψ,θ)

}
+

n1∑
j=1

θ>Q(X1j),
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where λ and ν1 are the solution to

1∑
i=0

ni∑
j=1

exp{θ>Q(Xij)} − 1

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>1 g1(Xij;ψ,θ)

= 0,

1∑
i=0

ni∑
j=1

g(Xij;ψ,θ)

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>1 g1(Xij;ψ,θ)

= 0.

Then the ELR statistic for testing H0 : E0{g2(X;ψ,θ)} = 0 can be constructed similar to
(2.15) as

W ∗
n = 2

{
sup
ψ,θ

`n1(ψ,θ)− sup
ψ,θ

`n(ψ,θ)

}
.

Corollary 2.2. Under the conditions of Theorem 2.1 and as n→∞, we have W ∗
n → χ2

m

if E0{g2(X;ψ,θ)} = 0 is true.

2.3 Inferences on CDFs and Quantiles

In this section, we discuss inferences on the CDFs F0 and F1 and their quantiles. For
convenience of presentation, we assume that the dimension of Xij is one.

We first construct point estimators of F0 and F1. Let λ̂ and ν̂ be the solutions to (2.11)
and (2.12) with (ψ,θ) replaced by (ψ̂, θ̂). The MELEs of pij are then given as

p̂ij =
1

n

1

1 + λ̂
[
exp{θ̂

>
Q(Xij)} − 1

]
+ ν̂>g(Xij; ψ̂, θ̂)

.

The MELEs of F0 and F1 are then defined as

F̂0(x) =
1∑
i=0

ni∑
j=1

p̂ijI(Xij ≤ x) and F̂1(x) =
1∑
i=0

ni∑
j=1

p̂ij exp{θ̂
>
Q(Xij)}I(Xij ≤ x).

We now present results on the asymptotic properties of the MELEs F̂0(x) and F̂1(x) of
the two population CDFs F0(x) and F1(x). Let

W = V −1U>J−1UV −1−
(

0 0
0 A−1

uu

)
, B∗0(x) =

(
B0θ(x)
B0u(x)

)
, B∗1(x) =

(
B1θ(x)
B1u(x)

)
,
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where

B0θ(x) = E0 {h1(X)Q(X)I(X ≤ x)} , B0u(x) = E0

{
G(X)

h(X)
I(X ≤ x)

}
,

B1θ(x) =
λ∗ − 1

λ∗
E0 {h1(X)Q(X)I(X ≤ x)} , B1u(x) = E0

{
ω(X)G(X)

h(X)
I(X ≤ x)

}
.

Recall that F̃0(x) and F̃1(x) are the MELEs of F0 and F1 under the DRM when there is
no auxiliary information, and are defined (1.17). We refer to Qin and Zhang (1997) for the
asymptotic properties of F̃0(x) and F̃1(x). Denote x ∧ y = min(x, y).

Theorem 2.4. Assume that the conditions of Theorem 2.1 are satisfied.

(a) For any l, s ∈ {0, 1} and real numbers x and y in the support of F0, as n→∞,

√
n

(
F̂l(x)− Fl(x)

F̂s(y)− Fs(y)

)
→ N

(
0,Σls(x, y)

)
,

where

Σls(x, y) =

(
σll(x, x) σls(x, y)
σsl(y, x) σss(y, y)

)
with

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) +B∗i (x)>WB∗j(y)

for any i, j ∈ {l, s}.

(b) If r = p, the asymptotic variance-covariance matrix Σls(x, y) reduces to the same one

of
√
n
(
F̃l(x)− Fl(x), F̃s(x)− Fs(x)

)>
.

(c) If r > p, the asymptotic variance matrix Σls(x, y) cannot decrease if one estimating
equation in (2.2) is dropped.

Theorem 2.4 indicates that the MELEs F̂0(x) and F̂1(x) have asymptotic properties
similar to those of η̂. That is, they are asymptotically normally distributed; they are
asymptotically equivalent to F̃0(x) and F̃1(x) when r = p; and they become more efficient
when r > p.
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In the second half of this section we discuss the estimation of the quantiles of Fi(x) for
i = 0 and 1. For any τ ∈ (0, 1), we define the τth-quantile of Fi as ξi,τ = inf{x : Fi(x) ≥ τ}
and its MELE as

ξ̂i,τ = inf{x : F̂i(x) ≥ τ}. (2.16)

Similarly, the estimator of ξi,τ based on F̃i(x) is defined as

ξ̃i,τ = inf{x : F̃i(x) ≥ τ}. (2.17)

See Zhang (2000) and Chen and Liu (2013) for the asymptotic properties of ξ̃i,τ . We refer

to ξ̂i,τ as the “DRM-EE” quantile estimators and ξ̃i,τ as the “DRM” quantile estimators.

The Bahadur representation is a useful tool for studying the asymptotic properties
of quantile estimators. In the following theorem, we show that the DRM-EE quantile
estimators are Bahadur representable. Let fi(x) be the probability density function of
Fi(x) for i = 0 and 1.

Theorem 2.5. Assume that the conditions of Theorem 2.1 are satisfied. Further, for
i = 0, 1 and any τ ∈ (0, 1), assume that fi(x) is continuous and positive at x = ξi,τ . Then

ξ̂i,τ admits the Bahadur representation

ξ̂i,τ = ξi,τ +
τ − F̂i(ξi,τ )
fi(ξi,τ )

+Op

(
n−3/4(log n)1/2

)
.

The following theorem shows that the DRM-EE quantile estimators have asymptotic
properties similar to those of the MELEs of η, F0(x), and F1(x).

Theorem 2.6. Assume that the conditions in Theorem 2.5 hold for x = ξl,τl and x = ξs,τs.

(a) As n→∞,
√
n

(
ξ̂l,τl − ξl,τl
ξ̂s,τs − ξs,τs

)
→ N(0,Ωls),

where

Ωls =

(
σll(ξl,τl , ξs,τs)/f

2
l (ξl,τl) σls(ξl,τl , ξs,τs)/fl(ξl,τl)fs(ξs,τs)

σsl(ξs,τs , x)/fs(ξs,τs)fl(ξl,τl) σss(ξs,τs , ξs,τs)/f
2
s (ξs,τs)

)
.

(b) If r = p, the asymptotic variance matrix Ωls of the DRM-EE quantile estimators is
the same as that for the DRM quantile estimators;
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(c) if r > p, the asymptotic variance matrix Ωls of the DRM-EE quantile estimators
cannot decrease if one estimating equation in (2.2) is dropped.

Using the results of Theorems 2.4 and 2.6, we may construct confidence regions and/or
test hypotheses on the CDFs at some fixed points and for quantiles through the Wald-
type statistics. However, methods based on the Wald-type statistics require a consistent
estimator of the corresponding asymptotic variance. It is more attractive to use the results
in Corollary 2.2 to construct the ELR-based confidence region for the CDFs at some fixed
points and for quantiles.

Suppose we are interested in constructing a (1 − a)-level CI for a CDF at some fixed
point x0 for i = 0 or 1. Denote the parameter of interest as ζ = Fi(x0). Let

g∗1(x;θ, ζ) =

{
I(x ≤ x0)− ζ, i = 0

exp{θ>Q(x)}I(x ≤ x0)− ζ, i = 1
.

We further define `∗n1(ψ,θ, ζ) to be the profile empirical log-likelihood of (ψ,θ, ζ) under
the DRM (2.1) with the unbiased estimating equations in (2.2) and E0{g∗1(X;θ, ζ)}=0.
Then the ELR function of ζ is defined as

Rn1(ζ) = 2{`n(ψ̂, θ̂)− sup
ψ,θ

`∗n1(ψ,θ, ζ)}.

We can similarly define the ELR function for a quantile ξ at the quantile level τ for
i = 0 or 1, i.e., ξ = ξi,τ . Let

g∗2(x;θ, ξ) =

{
I(x ≤ ξ)− τ, i = 0

exp{θ>Q(x)}I(x ≤ ξ)− τ, i = 1
.

We further define `∗n2(ψ,θ, ξ) to be the profile empirical log-likelihood of (ψ,θ, ξ) under
the DRM (2.1) with the unbiased estimating equations in (2.2) and E0{g∗2(X;θ, ξ)} = 0.
Then the ELR function of ξ is defined as

Rn2(ξ) = 2{`n(ψ̂, θ̂)− sup
ψ,θ

`∗n2(ψ,θ, ξ)}.

Using Corollary 2.2, we have the following results for Rn1(ζ∗) and Rn2(ξ∗), where ζ∗

and ξ∗ are the true values of ζ and ξ.

Corollary 2.3. Under the conditions of Theorem 2.1, as n→∞, both Rn1(ζ∗) and Rn2(ξ∗)
converge in distribution to χ2

1.
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Corollary 2.3 enables us to construct the ELR-based CI for ζ and ξ. For example, the
ELR-based CI for ξ with level 1− a can be constructed as {ξ : Rn2(ξ) ≤ χ2

1,1−a}.

2.4 Simulation Studies

We conducted simulation studies to investigate three aspects of the proposed semipara-
metric inference procedures:

(1) The performance of the inference procedures for ψ;

(2) The power of the ELR test for the validity and usefulness of the auxiliary information;

(3) The performance of the inference procedures for the population quantiles.

We consider four combinations of sample sizes (n0, n1): (50, 50), (50, 150), (100, 100), and
(200, 200). For each simulation setting, the number of simulation runs is 2,000.

2.4.1 Simulation studies for inferences on ψ

Simulation setup

We start by exploring the first aspect of the proposed semiparametric inference procedures.
In the simulations, F0 and F1 are the CDFs of LN(0, 1) and LN(0.5, 1), respectively,
where LN(a, b) denotes the lognormal distribution with mean a and variance b, both with
respect to the log scale. It is easy to show that F0 and F1 satisfy the DRM in (2.1) with
Q(x) = (1, log x)>. The parameter of interest is the mean ratio ψ = δ = µ1/µ0 which was
discussed in Example 2.1.

To examine the usefulness of auxiliary information, we construct another variable Z
using the following model:

Z = 1 + 0.5X + ε and ε ∼ N(0, 1). (2.18)

That is, given Xij, Zij is generated from (2.18), for i = 0, 1, j = 1, · · · , ni. Hence, the
two-sample data consist of T ij = (Xij, Zij)

> for i = 0, 1, j = 1, · · · , ni. We treat µz0 =
E(Z|D = 0), the population mean of covariate Z for the first group (i.e., the D = 0
group), as the known auxiliary information. Let the CDFs of T given D = 0 and D = 1
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be F 0 and F 1, respectively. It can be checked that F 0 and F 1 satisfy the DRM with
Q(x, z) = (1, log x)>.

To explore the effect of misspecified estimating equations for the auxiliary information,
we introduce a bias by using κµz0 instead of the true value µz0 for E(Z|D = 0). We con-
sider κ = 0.90, 0.95, 1.00, 1.05, 1.10. Note that κ = 1.00 corresponds to correctly specified
auxiliary information. We incorporate the biased/unbiased auxiliary information into our

problem by setting ψ = δ and g(t;ψ,θ) =
(
δx− x exp{θ>Q(x)}, z − κµz0

)>
in (2.2).

Performance of point estimators

We compare three point estimators:

(i) EMP: δ̄ = µ̄1/µ̄0, where µ̄i = n−1
i

∑ni
j=1 xij for i = 0 and 1;

(ii) DRM: δ̃ = µ̃1/µ̃0, where µ̃i =
∫
xdF̃i(x) for i = 0 and 1;

(iii) DRM-EE: δ̂ = µ̂1/µ̂0, where µ̂i =
∫
xdF̂i(x) for i = 0 and 1.

Note that the asymptotic properties of δ̃ and δ̂ are covered in Theorem 2.1. The perfor-
mance of each estimator is evaluated by the relative bias (RB) and the mean squared error
(MSE). Here, the RB in percentage is defined as

RB(%) =
1

B

B∑
b=1

a(b) − a∗

a∗
× 100,

where a∗ is the true value of the parameter of interest, a(b) is the estimate of a∗ from the
bth simulation run, and B = 2, 000 is the number of simulation runs. Simulation results
on the three point estimators are presented in Table 2.1.

We first compare the results reported in the third to fifth columns, i.e., EMP, DRM, and
DRM-EE with correctly specified auxiliary information (DRM-EE with κ = 1). We see that
the EMP estimator has the largest RBs and MSEs in all cases. The estimator of DRM-EE
with κ = 1 has the best performance, followed by the DRM estimator. This suggests that
using correctly specified auxiliary information improves the estimation efficiency, which
agrees with Corollary 2.1 in Section 2.2. We also note that as the sample size increases,
all three estimators have improved performance and the gaps between the three estimators
become less pronounced, especially between DRM and DRM-EE.
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Table 2.1: RB (%) and MSE (×100) of three point estimators of the mean ratio.

DRM-EE
(n0, n1) EMP DRM κ = 1 κ = 0.9 κ = 0.95 κ = 1.05 κ = 1.1

(50, 50) RB 3.37 1.46 1.15 12.73 6.83 -4.24 -9.32
MSE 20.03 12.50 9.61 16.59 12.07 9.00 9.96

(50, 150)
RB 3.70 1.75 0.89 16.61 8.50 -6.11 -12.41
MSE 12.91 8.07 4.67 13.94 7.46 4.92 7.50

(100, 100)
RB 1.86 1.21 0.89 12.32 6.48 -4.35 -9.20
MSE 9.35 6.17 5.08 10.46 6.78 5.11 6.56

(200, 200)
RB 0.90 0.46 0.53 11.87 6.06 -4.62 -9.27
MSE 4.88 3.15 2.56 7.03 3.84 2.92 4.60

The sensitivity of the DRM-EE estimator with respect to misspecified auxiliary infor-
mation can be observed from the last four columns of Table 2.1. The DRM-EE estimator
for κ 6= 1 are clearly not as good as the estimator for κ = 1. The absolute value of the RB
increases as κ moves further away from 1.

Performance of confidence intervals

We compare four CIs for δ:

(i) EMP-NA: Wald-type CI for δ based on the asymptotic normality of log δ̄;

(ii) EMP-EL: Owen (2001)’s ELR-based CI for δ;

(iii) DRM: the ELR-based CI for δ in (2.14) without auxiliary information;

(iv) DRM-EE: the ELR-based CI for δ in (2.14) with auxiliary information.

The performance of a CI is evaluated in terms of coverage probability (CP) and average
length (AL). The simulation results for the four CIs at the 95% nominal level are shown
in Table 2.2.

As we can see in the third to sixth columns, EMP-NA and EMP-EL are comparable
but are clearly inferior to DRM and DRM-EE (κ = 1) in terms of CP and AL. The
CPs of the CIs for DRM and DRM-EE with κ = 1 are close to the nominal level for all
sample size combinations. This suggests that the limiting distributions provide accurate
approximations to the finite-sample distributions of the ELR statistics. The ALs of the CIs
for DRM-EE with κ = 1 are always shorter than other CIs, a strong evidence that using
correctly specified auxiliary information improves the performance of a CI. On the other
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Table 2.2: CP (%) and AL of four CIs for the mean ratio at 95% nominal level.

DRM-EE
(n0, n1) EMP-NA EMP-EL DRM κ = 1 κ = 0.9 κ = 0.95 κ = 1.05 κ = 1.1

(50, 50) CP 92.6 91.6 94.5 94.2 90.7 93.9 92.1 88.1
AL 1.65 1.65 1.41 1.23 1.38 1.30 1.16 1.10

(50, 150)
CP 92.9 92.2 95.6 94.3 78.1 91.4 88.5 75.9
AL 1.33 1.31 1.15 0.84 1.00 0.92 0.77 0.71

(100, 100)
CP 94.9 93.9 95.3 94.3 85.6 92.5 92.0 85.1
AL 1.18 1.20 1.00 0.88 0.98 0.93 0.84 0.80

(200, 200) CP 93.8 93.3 94.6 94.7 75.3 89.0 90.4 78.4
AL 0.84 0.86 0.70 0.62 0.69 0.66 0.60 0.58

hand, misspecified auxiliary information results in inaccurate CIs. As κ moves further
away from 1, the CP of the ELR-based CI shifts away from the nominal value.

Power of the validity test

In this section, we explore the second aspect of the proposed semiparametric inference
procedures on the power of the ELR test for the validity of the auxiliary information.
The null hypothesis for the ELR test is H0 : E0(z − κµz0) = 0. According to Theorem
2.3 and Corollary 2.2, the ELR statistic has a χ2

1 limiting distribution under the null
hypothesis. We consider misspecified auxiliary information with κ = 0.90, 0.95, 1.05, 1.10
as the alternatives. Table 2.3 gives the simulated power (κ 6= 1) and type I error rate
(κ = 1) of the ELR test at the 5% significance level.

Table 2.3: Power and type I error rate of the ELR test (%) at 5% significance level.

(n0, n1) κ = 0.9 κ = 0.95 κ = 1 κ = 1.05 κ = 1.1
(50, 50) 21.43 8.76 5.36 9.41 20.48
(50, 150) 27.33 10.08 5.37 10.13 22.97
(100, 100) 36.44 11.26 5.51 13.61 32.48
(200, 200) 62.98 20.66 5.15 19.16 55.23

We observe from Table 2.3 that the type I error rates of the ELR tests are close to the
5% nominal level in all cases, which suggests that the limiting distribution for the ELR
test works very well. As κ deviates from 1 and the sample size increases, the power of the
test increases, as expected.
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2.4.2 Simulation studies for inferences on quantiles

Simulation setup

The third aspect of the proposed semiparametric inference procedures is inference on pop-
ulation quantiles with auxiliary information. In the simulations, we consider two distribu-
tional settings:

(1) f0 ∼ N(18, 4) and f1 ∼ N(18, 9);

(2) f0 ∼ Gam(6, 1.5) and f1 ∼ Gam(8, 1.125).

Here N(a, b) denotes the normal distribution with mean a and variance b and Gam(a, b)
is the gamma distribution with shape parameter a and scale parameter b. We are in-
terested in estimating and constructing CIs for the quantiles of F0 and F1 at the levels
τ = 0.10, 0.25, 0.5, 0.75, 0.90.

Performance of quantile estimators

We compare four quantile estimators:

(i) EMP: the quantile estimator based on the empirical CDFs;

(ii) EL: the quantile estimator based on the MELEs of the CDFs in Tsao and Wu (2006),
in which a common mean is assumed;

(iii) DRM: the DRM based quantile estimator in (2.17);

(iv) DRM-EE: our proposed quantile estimator in (2.16) with the common-mean assump-
tion or the estimating equation (2.6) in Example 2.3.

The DRM and DRM-EE methods are calculated with the correctly specified q(x), where
q(x) = (x, x2)> for the normal distributional setting and q(x) = (x, log x)> for the gamma
distributional setting. The performance of an estimator is evaluated by the RB and MSE.
The general patterns of the simulation results for the four methods are similar in the two
settings. Hence, Table 2.4 presented here is only for the normal setting; the results under
gamma distributions are included in Section 2.6.4.

Table 2.4 shows that the RBs are negligibly small for all methods under all scenarios.
The EMP estimator has the largest MSEs. The DRM-EE quantile estimators have the
smallest MSEs due to its use of additional information, and the results agree with Theorem
2.6. We also notice that the EL and DRM quantile estimators are comparable.
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Table 2.4: RB (%) and MSE (×100) for quantile estimators (normal distributions).

N(18, 4) N(18, 9)
(n0, n1) τ EMP EL DRM DRM-EE EMP EL DRM DRM-EE

(50, 50)

0.10
RB -0.58 0.08 0.25 0.19 -1.07 -0.10 0.17 -0.07
MSE 23.87 19.88 18.85 16.32 59.74 44.17 46.26 37.35

0.25
RB 0.04 0.02 0.15 0.14 0.01 -0.06 -0.14 -0.25
MSE 14.73 12.25 12.23 9.57 33.32 22.42 29.22 18.11

0.50
RB -0.21 0.03 0.04 0.03 -0.43 0.03 0.00 0.03
MSE 12.47 9.93 10.06 7.76 29.21 16.25 25.08 11.10

0.75
RB -0.01 -0.01 -0.08 -0.07 -0.05 0.02 0.03 0.14
MSE 13.92 11.81 11.97 9.64 34.86 21.55 29.68 16.95

0.90
RB -0.62 -0.08 -0.21 -0.18 -0.87 0.08 -0.08 0.10
MSE 23.36 21.36 19.51 17.66 53.89 43.03 46.50 37.61

(50, 150)

0.10
RB -0.60 0.01 0.26 0.17 -0.28 0.09 0.17 0.13
MSE 23.91 18.16 16.36 11.49 17.62 14.72 16.05 13.34

0.25
RB 0.04 0.02 0.14 0.12 0.06 0.03 -0.01 -0.03
MSE 14.81 10.08 11.22 6.64 11.00 8.67 10.20 7.88

0.50
RB -0.21 0.07 0.04 0.04 -0.10 0.05 0.05 0.06
MSE 12.39 7.69 9.09 4.59 8.97 6.92 8.15 5.84

0.75
RB -0.01 0.02 -0.10 -0.05 -0.06 -0.04 -0.01 0.00
MSE 13.90 10.24 10.87 6.49 10.49 8.18 9.89 7.71

0.90
RB -0.61 -0.03 -0.20 -0.12 -0.30 -0.02 -0.04 -0.02
MSE 23.32 19.87 17.26 12.94 17.04 14.93 16.25 14.40

(100, 100)

0.10
RB -0.35 0.03 0.10 0.09 -0.34 0.15 0.23 0.11
MSE 11.82 10.05 9.13 7.86 25.71 19.44 22.01 16.62

0.25
RB -0.17 0.03 0.04 0.04 -0.18 0.02 0.03 -0.06
MSE 7.42 6.20 6.33 5.04 15.56 9.84 13.54 8.01

0.50
RB -0.11 0.03 0.01 0.03 -0.15 0.03 0.07 0.05
MSE 6.07 4.81 5.21 3.88 13.53 7.87 11.53 5.41

0.75
RB -0.17 0.01 -0.05 -0.02 -0.30 -0.05 0.01 0.02
MSE 7.37 6.20 6.10 5.02 15.95 9.94 13.60 7.94

0.90
RB -0.35 -0.02 -0.11 -0.08 -0.45 -0.05 -0.05 -0.02
MSE 11.82 10.83 9.40 8.24 25.37 19.69 22.77 17.23

(200, 200)

0.10
RB -0.12 0.04 0.13 0.10 -0.29 -0.05 0.01 -0.02
MSE 5.77 5.01 4.50 3.91 13.65 10.89 11.81 8.94

0.25
RB -0.06 0.02 0.05 0.04 -0.12 0.02 -0.04 -0.04
MSE 3.58 3.00 3.03 2.41 8.37 5.04 7.30 4.18

0.50
RB -0.04 0.03 0.02 0.01 -0.15 -0.03 -0.02 0.00
MSE 3.02 2.40 2.57 1.99 7.07 3.99 6.04 2.80

0.75
RB -0.10 -0.03 -0.03 -0.04 -0.16 0.00 0.00 0.03
MSE 3.60 3.04 3.06 2.49 8.39 5.05 7.26 4.03

0.90
RB -0.18 -0.02 -0.05 -0.04 -0.18 0.06 0.01 0.06
MSE 5.90 5.24 4.68 4.10 12.78 10.16 11.75 8.75
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Performance of confidence intervals

We compare three CIs:

(i) EMP: Owen (2001)’s ELR-based CI for quantiles;

(ii) DRM: the ELR-based CI under the DRM without the common-mean assumption
(Zhang et al., 2020);

(iii) DRM-EE: the proposed ELR-based CI.

The construction of CIs for the quantiles under the two-sample empirical likelihood method
with the common-mean assumption has not been discussed in the literature, and hence is
not included in the simulation. The CP and AL are used to compare CIs. We present the
simulation results for the normal case in Table 2.5. The results for the gamma distributions
display similar patterns and are included in Section 2.6.4.

The CIs for all the methods have satisfactory performance in terms of CP. However,
the CIs using the DRM-EE method have the shortest AL. The results indicate that the
limiting distribution of the ELR statistic in Corollary 2.3 works very well, and additional
auxiliary information leads to shorter CIs.

2.5 Real Data Applications

The first dataset (Simpson et al., 1975) is from a randomized airborne pyrotechnic seeding
experiment, which is designed to test whether seeding clouds with silver iodide increase
rainfall. The measurements are the amount of rainfall (in acre-feet) from 52 isolated
cumulus clouds, half of which were randomly chosen and massively injected with silver
iodide smoke. The rest were untreated. We use D = 0 to indicate untreated clouds
and D = 1 for seeded clouds. We estimate the mean ratio δ of the two populations and
construct CIs for δ.

To use our proposed method to analyze the dataset, we need to choose an appropriate
q(x) in the DRM (2.1). Simpson et al. (1975) and Krishnamoorthy and Mathew (2003)
argued that this dataset is highly skewed. This suggests that the two-sample data can be
fitted by the DRM with q(x) = log x. The goodness-of-fit test of Qin and Zhang (1997)
gives a p-value of 0.568, which indicates that the DRM with q(x) = log x provides an
adequate fit to the two-sample data. Since there is no auxiliary information available, we
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Table 2.5: CP (%) and AL for 95% CIs of 100τ%-quantiles (normal distributions).

N(18, 4) N(18, 9)
(n0, n1) τ EMP DRM DRM-EE EMP DRM DRM-EE

(50,50)

0.10 CP 94.5 94.3 94.2 94.4 94.5 94.8
AL 1.96 1.74 1.61 2.94 2.89 2.48

0.25
CP 95.9 95.1 95.2 95.0 94.8 94.2
AL 1.60 1.40 1.25 2.36 2.18 1.64

0.50
CP 94.3 94.6 95.4 93.8 94.8 95.4
AL 1.32 1.28 1.11 1.98 1.98 1.36

0.75
CP 95.2 94.3 94.8 95.2 94.8 95.1
AL 1.59 1.39 1.24 2.36 2.16 1.63

0.90
CP 94.2 94.5 93.9 94.3 95.0 94.9
AL 1.97 1.74 1.62 2.97 2.92 2.50

(50,150)

0.10 CP 94.5 94.3 95.0 93.7 94.7 94.7
AL 1.96 1.62 1.38 1.63 1.63 1.49

0.25
CP 95.9 95.1 95.2 95.8 95.4 95.3
AL 1.60 1.33 1.02 1.34 1.28 1.11

0.50
CP 94.3 95.1 95.5 94.4 96.0 96.0
AL 1.32 1.20 0.86 1.16 1.16 0.97

0.75
CP 95.2 94.5 94.8 95.3 95.8 96.1
AL 1.59 1.31 1.00 1.32 1.27 1.10

0.90
CP 94.2 94.8 94.2 95.2 94.6 94.3
AL 1.97 1.62 1.39 1.65 1.63 1.50

(100,100)

0.10 CP 95.6 95.0 95.2 95.9 94.3 95.2
AL 1.42 1.20 1.12 2.12 1.95 1.67

0.25
CP 95.7 94.4 95.4 94.9 95.3 95.1
AL 1.10 1.00 0.89 1.66 1.51 1.14

0.50
CP 94.8 94.7 95.2 95.2 96.1 95.5
AL 0.96 0.90 0.79 1.45 1.38 0.94

0.75
CP 95.2 94.7 95.5 95.3 95.8 95.5
AL 1.09 0.98 0.87 1.62 1.51 1.14

0.90
CP 95.5 94.2 94.3 95.6 95.2 94.8
AL 1.43 1.21 1.13 2.15 1.96 1.66

(200,200)

0.10 CP 93.8 95.4 95.1 94.5 94.4 94.9
AL 0.93 0.84 0.79 1.39 1.36 1.16

0.25
CP 95.8 95.7 95.3 95.0 95.0 94.0
AL 0.77 0.69 0.62 1.14 1.06 0.80

0.50
CP 94.9 95.0 94.6 95.2 94.9 95.4
AL 0.68 0.63 0.55 1.03 0.96 0.66

0.75
CP 94.9 95.5 95.2 95.0 95.2 95.4
AL 0.76 0.69 0.62 1.14 1.07 0.81

0.90
CP 95.0 94.4 95.0 93.7 94.5 94.6
AL 0.94 0.85 0.79 1.41 1.37 1.18
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analyze the data using DRM and the other methods discussed in Section 2.4.1. For the
point estimates, the EMP method gives 2.685, while our proposed DRM based estimate
is 2.369. As we have demonstrated in Section 2.4.1, DRM provides smaller MSEs and
RBs than EMP, so we expect that the DRM estimate is more accurate. We consider the
three CIs at the 95% nominal level, EMP-NA, EMP-EL, and DRM. Table 2.6 presents
the lower bound (LB), the upper bound (UB), and the length of the CIs. The EMP-NA
CI is significantly longer than the others, and DRM provides the shortest CI. This agrees
with the simulation results in Section 2.4.1. The LBs of all three CIs are greater than 1,
indicating that the seeded clouds slightly increase rainfall.

Table 2.6: Summary of 95% CIs for δ (cloud data).

LB UB Length
EMP-NA 1.13 6.36 5.23
EMP-EL 1.41 5.24 3.83
DRM 1.21 4.89 3.68

The second dataset (Hawkins, 2002) is from a clinical study of cyclosporine measure-
ments in blood samples of organ transplant recipients. In total, 56 assay pairs for cy-
closporine are obtained by a standard approved method, high-performance liquid chro-
matography (HPLC), and an alternative radio-immunoassay (RIA) method. We would
like to investigate whether the RIA assay is essentially equivalent to the HPLC assay. The
results in Hawkins (2002) and Bebu and Mathew (2008) indicate that the measurements
from the two methods can be modeled by lognormal distributions and have a common
mean. Since the quantiles are important characteristics of the population, we consider
inference on these quantities at τ = 0, 25, 0.50, 0.75.

Our methods and theory are applicable to two independent samples, but in this dataset,
two methods are used to measure the same blood sample, so the two measurements may
be correlated. To demonstrate the value of auxiliary information, we randomly split the
56 blood samples into two equal groups. We use D = 0 to indicate the HPLC method
for the first group and D = 1 to indicate the RIA method for the second group. This
gives two independent samples, shown in Table 2.7. We set q(x) in the DRM (2.1) to
q(x) = (log x, log2 x)>. For this choice, the goodness-of-fit test of Qin and Zhang (1997)
gives a p-value of 0.839. An ELR test to check the validity of the common-mean assumption
gives a p-value of 0.530. This preliminary analysis indicates that the DRM with the
common-mean assumption is reasonable.

We use the methods of Section 2.4.2 to analyze the independent samples. Table 2.8
summarizes the point estimates and 95% CIs. Note that the empirical likelihood method
does not specify how to construct CIs for quantiles with the common-mean assumption.
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Table 2.7: Measurements from HPLC and RIA methods in two independent samples.

HPLC (D = 0) RIA (D = 1)
77 87 93 109 109 129 130 38 98 108 109 111 118 125
153 156 159 185 198 203 227 130 144 149 162 165 169 172
244 245 271 280 285 318 336 204 218 234 235 293 294 303
339 340 440 498 521 556 578 311 341 376 404 406 477 679

We also provide the results of analyzing the original 56 pairs using the EMP method; these
are recorded under “EMP–ALL” in Table 2.8 and serve as the benchmarks. Table 2.8
shows that the DRM-EE CIs are always shorter than the DRM and EMP CIs. This is
in line with our simulation results. Although each independent sample is half the size of
the original sample, the DRM-EE quantile estimates and CIs are similar to the EMP-ALL
quantile estimates and CIs. This indicates that our method can combine information from
two samples and effectively utilize available auxiliary information.

Table 2.8: Summary of point estimates and 95% CIs for quantiles (cyclosporine data).

HPLC (D = 0) RIA (D = 1)
τ Estimate LB UB Length Estimate LB UB Length

0.25

EMP-ALL 127 109 159 50 141 118 162 50
EMP 130 93 198 105 125 108 165 105
EL 130 – – – 130 – – –

DRM 144 109 185 76 129 108 162 54
DRM-EE 130 109 165 56 130 109 162 53

0.5

EMP-ALL 206 159 271 112 196 162 287 112
EMP 227 156 318 162 172 144 294 162
EL 227 – – – 204 – – –

DRM 234 162 303 141 198 149 280 131
DRM-EE 218 162 280 118 204 162 280 118

0.75

EMP-ALL 336 271 402 131 311 287 408 131
EMP 336 240 432 192 303 218 388 192
EL 336 – – – 311 – – –

DRM 339 280 477 197 311 235 406 171
DRM-EE 318 280 404 124 336 280 406 126
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2.6 Technical Details and Additional Simulation Re-

sults

2.6.1 More examples of summary quantities

In this section, we provide some more examples to demonstrate that the estimating equa-
tions E0{g(X;ψ,θ)} = 0 can define many important summary quantities.

Example 2.4. (Means and variances) Let µi and σ2
i be the mean and variance of Fi for

i = 0, 1. Further, let ψ = (µ0, µ1, σ
2
0, σ

2
1)> and

g(x;ψ,θ) =


x− µ0

x exp{θ>Q(x)} − µ1

x2 − µ2
0 − σ2

0

x2 exp{θ>Q(x)} − µ2
1 − σ2

1

 .

Then these means and variances can be defined through E0{g(X;ψ,θ)} = 0. The general
uncentered and centered moments can be defined similarly.

Applying the results in Theorem 2.2, we can construct an empirical likelihood ratio
(ELR) statistic for testing H0 : σ2

0 = σ2
1, which to our best knowledge is new for such a

testing problem.

Example 2.5. (Generalized entropy class of inequality measures) Suppose the Xij’s are
positive random variables. Let

GE
(ξ)
i =


1

ξ2−ξ

{∫∞
0

(
x
µi

)ξ
dFi(x)− 1

}
, if ξ 6= 0, 1,

−
∫∞

0
log
(
x
µi

)
dFi(x), if ξ = 0,∫∞

0
x
µi

log
(
x
µi

)
dFi(x), if ξ = 1

be the generalized entropy class of inequality measures of the ith population, i = 0, 1. We
assume that GE

(ξ)
i exists. In our setup, (GE

(ξ)
0 , GE

(ξ)
1 )> together with (µ0, µ1) can also be

defined through the estimating equations. For illustration, we consider ξ = 1.
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Let ψ = (µ0, µ1, GE
(1)
0 , GE

(1)
0 )> and

g(x;ψ,θ) =


x− µ0

x exp{θ>Q(x)} − µ1

x log(x/µ0)− µ0GE
(1)
0

x log(x/µ1) exp{θ>Q(x)} − µ1GE
(1)
1

 .

Then (GE
(ξ)
0 , GE

(ξ)
1 )> together with (µ0, µ1) can be defined through E0{g(X;ψ,θ)} = 0.

For other values of ξ, we can define the corresponding estimating equations similarly.

Applying the results in Theorem 2.2, we can also construct an ELR statistic for testing
H0 : GE

(ξ)
0 = GE

(ξ)
1 . Again, to our best knowledge this ELR statistic is new for such testing

problems.

Example 2.6. (Cumulative distribution functions) Suppose we are interested in ζ0 =
F0(x0) and ζ1 = F1(x1), where x0 and x1 are fixed points. Let ψ = (ζ0, ζ1)> and

g(x;ψ,θ) =

(
I(x ≤ x0)− ζ0

exp{θ>Q(x)}I(x ≤ x1)− ζ1

)
.

Then (ζ0, ζ1)> can be defined through E0{g(X;ψ,θ)} = 0.

Applying the results in Theorem 2.2, we can also construct an ELR-based confidence
interval (CI) for ζ0 or ζ1 or an ELR-based confidence region for (ζ0, ζ1)>.

Example 2.7. (Quantiles) Suppose we are interested in ξ0,τ0 = inf{x : F0(x) ≥ τ0} and
ξ1,τ1 = inf{x : F1(x) ≥ τ1}, where τ0, τ1 ∈ (0, 1). Let ψ = (ζ0, ζ1)> and

g(x;ψ,θ) =

(
I(x ≤ ξ0,τ0)− τ0

exp{θ>Q(x)}I(x ≤ ξ1,τ1)− τ1

)
.

Then (ξ0,τ0 , ξ1,τ1)
> can be defined through E0{g(X;ψ,θ)} = 0.

Applying the result of Corollary 2.2 or 2.3, we can also construct an ELR-based CI for
ξ0,τ0 or ξ1,τ1 or an ELR-based confidence region for (ξ0,τ0 , ξ1,τ1)

>.

2.6.2 Summary-level information from external case-control stud-
ies

Let {(Yi, Di) : i = 1, . . . , nE} be the data from an external study, where Di = 0 or
1 indicates that the individual is from a disease-free or diseased group. We model the
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relationship between D and Y through a logistic regression model, which may not be the
true model:

h(Y ;αY ,βY ) = P (D = 1|Y ) =
exp(αY + β>Y Y )

1 + exp(αY + β>Y Y )
. (2.19)

Let

a(αY ,βY ) =
1

nE

nE∑
i=1

{Di − h(Yi;αY ,βY )}(1, Y >)>,

which are the score functions based on the logistic regression model in (2.19). Further, let
(α∗Y ,β

∗
Y ) be the solution to E{a(αY ,βY )} = 0. That is,

E{a(α∗Y ,β
∗
Y )} = 0.

Note that (α∗Y ,β
∗
Y ) may not be known exactly. We can solve the score equations a(αY ,βY ) =

0 to obtain the estimator (α̂Y , β̂Y ). That is, a(α̂Y , β̂Y ) = 0. Assume that we have access
to the estimator (α̂Y , β̂Y ) but not necessarily to the individual-level data {(Yi, Di) : i =
1, . . . , nE}.

When the total sample size n = n0 + n1 for the internal study satisfies n/nE → 0,
we can use (α̂Y , β̂Y ) for (α∗Y ,β

∗
Y ). This will cause a negligible error for inference for

the internal study. In the following, we assume that (α∗Y ,β
∗
Y ) is known and we denote

h(y) = h(y;α∗Y ,β
∗
Y ).

Next, we discuss how to summarize the information from E{a(α∗Y ,β
∗
Y )} = 0 into

unbiased estimating equations with respect to F0. When the external study is a prospective
case-control study, by defining the unknown overall disease prevalence π = P (D = 1), we
have

E{a(α∗Y ,β
∗
Y )}

= E
[
{D − h(Y )}(1, Y >)>

]
(2.20)

= E0

(
[−(1− π)h(Y ) + π exp{θ>Q(X)}{1− h(Y )}](1, Y >)>

)
, (2.21)

where we have used the law of total expectation and the DRM (2.1) in the last step.

When the external study is a retrospective case-control study, we have

E{a(α∗Y ,β
∗
Y )}

= −(1− πE)E0{h(Y )(1, Y >)>}+ πEE1[{1− h(Y )}(1, Y >)>], (2.22)
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where E1 represents the expectation operators with respect to F1, and πE is the proportion
of diseased individuals in the external case-control study. Note that πE is a known and
fixed value.

Using the DRM (2.1), we further get

E{a(α∗Y ,β
∗
Y )}

= E0

(
[−(1− πE)h(Y ) + πE exp{θ>Q(X)}{1− h(Y )}](1, Y >)>

)
. (2.23)

Summarizing (2.21) and (2.23), we have that if the external study is a prospective
case-control study, then E0{g(X;ψ,θ)} = 0, where

g(x;ψ,θ) = [−(1− π)h(y) + π exp{θ>Q(x)}{1− h(y)}](1, y>)>

with ψ = π; if the external study is a retrospective case-control study, then E0{g(X;θ)} =
0, where

g(x;θ) = [−(1− πE)h(y) + πE exp{θ>Q(x)}{1− h(y)}](1, y>)>.

Similarly, we summarize the information from E{a(α∗Y ,β
∗
Y )} = 0 into unbiased esti-

mating equations with respect to the joint distribution of (D, Y ), which is the setup in
Chatterjee et al. (2016). Note that when the external study is a retrospective case-control
study, Equation (2.22) can be equivalently written as

E{a(α∗Y ,β
∗
Y )}

= E

[
1− πE
1− π

(1−D){D − h(Y )}(1, Y >)> +
πE
π
D{D − h(Y )}(1, Y >)>

]
. (2.24)

Summarizing (2.20) and (2.24), we have that if the external study is a prospective
case-control study, then E{u(D, Y )} = 0, where

u(D, Y ) = {D − h(Y )}(1, Y >)>;

if the external study is a retrospective case-control study, then E{u(D, Y ; π)} = 0, where

u(D, Y ; π) =
1− πE
1− π

(1−D){D − h(Y )}(1, Y >)> +
πE
π
D{D − h(Y )}(1, Y >)>.

Note that the method and theory in Chatterjee et al. (2016) are applicable when there
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is no unknown parameter in the functions u(·). Hence, their general results do not apply
when the external study is a retrospective case-control study.

2.6.3 Proofs

Regularity conditions

The asymptotic results in this chapter are established under the following regularity
conditions. We use || · || to denote the Euclidean norm, i.e., || · ||2 is the sum of squares of
the elements.

C1. The total sample size n = n0 +n1 →∞ and n1/n→ λ∗ for some constant λ∗ ∈ (0, 1).

C2. The two CDFs F0 and F1 satisfy the DRM (2.1) with a true parameter value θ∗, and∫
exp{θ>Q(x)}dF0(x) <∞ in a neighborhood of the true value θ∗.

C3.
∫
Q(x)>Q(x)dF0(x) exists and is positive definite.

C4. E0 {g(X;ψ∗,θ∗)} = 0, E0 {∂g(X;ψ∗,θ∗)/∂η} has rank p, and
∫
G(X)G(X)>dF0(x)

exists and is positive definite, where G(x) is defined before Theorem 2.1.

C5. G(x;η) is twice differentiable with respect to η, and ||G(x,η)||3, ||∂G(x,η)/∂η||2,
and ||∂G(x,η)/{∂η∂ητ}|| are bounded by some integrable functionR(x) with respect
to both F0 and F1 in the neighborhood of η∗.

Conditions C1–C3 ensure that the quadratic approximation of the dual likelihood `nd
in (2.13) is applicable. Condition C1 indicates that both n0 and n1 go to infinity at
the same rate. For simplicity, and convenience of presentation, we write λ∗ = n1/n and
assume that it is a constant. This does not affect our technical development. Condition
C2 guarantees the existence of finite moments of Q(x) in a neighborhood of θ∗. Condition
C3 is an identifiability condition, and it ensures that the components of Q(x) are linearly
independent under both Fi’s, and hence the elements of Q(x) except the first cannot be
constant functions. Conditions C3 and C4 together ensure that U and V in Theorem
2.1 have full rank, guaranteeing that J is invertible. Conditions C1–C5 guarantee that
quadratic approximations of the profile empirical log-likelihood `n(ψ,θ) are applicable.
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Some preliminary results

Recall that the profile empirical log-likelihood of (ψ,θ) is

`n(ψ,θ) = −
1∑
i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

}
+

n1∑
j=1

θ>Q(X1j),

where the Lagrange multipliers satisfy

1∑
i=0

ni∑
j=1

exp{θ>Q(Xij)} − 1

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

= 0,

1∑
i=0

ni∑
j=1

g(Xij;ψ,θ)

1 + λ
[
exp{θ>Q(Xij)} − 1

]
+ ν>g(Xij;ψ,θ)

= 0.

Then `n(ψ,θ) can be rewritten as

`n(ψ,θ) = inf
λ,ν

ln(ψ,θ, λ,ν),

where

ln(ψ,θ, λ,ν)

= −
1∑
i=0

ni∑
j=1

log
{

1 + λ
[
exp

{
θ>Q(Xij)

}
− 1
]

+ ν>g(Xij;ψ,θ)
}

+

n1∑
j=1

{θ>Q(X1j)}.

Equivalently, `n(ψ,θ) = ln(ψ,θ, λ,ν) with λ and ν being the solution to

∂ln(ψ,θ, λ,ν)

∂λ
= 0 and

∂ln(ψ,θ, λ,ν)

∂ν
= 0.

With the above preparation, it can be verified that the MELE (ψ̂, θ̂) of (ψ,θ) and the
corresponding Lagrange multipliers (λ̂, ν̂) satisfy

∂ln(ψ̂, θ̂, λ̂, ν̂)

∂θ
= 0,

∂ln(ψ̂, θ̂, λ̂, ν̂)

∂β
= 0,

∂ln(ψ̂, θ̂, λ̂, ν̂)

∂λ
= 0,

∂ln(ψ̂, θ̂, λ̂, ν̂)

∂ν
= 0.

To investigate the asymptotic properties of ψ̂ and θ̂, we need their approximations.
We first find the first and second derivatives of ln(ψ,θ, λ,ν).
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Recall that η = (ψ>,θ>)> and u = (λ,ν>)>. The MELE and true value of η are

η̂ = (ψ̂
>
, θ̂
>

)> and η∗ = (ψ∗>,θ∗>)>. Let γ = (η>,u>)>. We further define

û = (λ̂, ν̂>)>, u∗ = (λ∗,01×r)
>, γ̂ = (η̂>, û>)>, γ∗ = (η∗>,u∗>)>.

In the following, we use ln(γ) and g(x;η) to denote ln(ψ,θ, λ,ν) and g(x;ψ,θ).

• First and second derivatives of ln(γ)

After some straightforward algebraic manipulations, the first derivatives of ln(γ) are
found to be:

∂ln(γ)

∂ψ
= −

1∑
i=0

ni∑
j=1

{∂g(Xij;η)/∂ψ}>ν
1 + λ {ω(Xij;θ)− 1}+ ν>g(Xij;η)

,

∂ln(γ)

∂θ
= −

1∑
i=0

ni∑
j=1

λω(Xij;θ)Q(Xij) + {∂g(Xij;η)/∂θ}>ν
1 + λ {ω(Xij;θ)− 1}+ ν>g(Xij;η)

+

n1∑
j=1

Q(X1j),

∂ln(γ)

∂u
= −

1∑
i=0

ni∑
j=1

G(Xij;η)

1 + λ {ω(Xij;θ)− 1}+ ν>g(Xij;η)
.

Then the first derivatives at the true values η∗ and u∗ are

Sn =
∂ln(γ∗)

∂γ
=


∂ln(γ∗)
∂ψ

∂ln(γ∗)
∂θ

∂ln(γ∗)
∂u

 =

 0
Snθ
Snu

 ,

where

Snθ =

n1∑
j=1

Q(X1j)−
1∑
i=0

ni∑
j=1

h1(Xij)Q(Xij), Snu = −
1∑
i=0

ni∑
j=1

G(Xij)

h(Xij)
.

Similarly, we calculate the second derivatives of ln(γ). Evaluating them at γ∗ gives:

∂2ln(γ∗)

∂γ∂γ>
=

 0 0 ∂2ln(γ∗)
∂θ∂u>

0 ∂2ln(γ∗)

∂β∂β>
∂2ln(γ∗)
∂β∂u>

∂2ln(γ∗)

∂u∂θ>
∂2ln(γ∗)

∂u∂β>
∂2ln(γ∗)
∂u∂u>

 , (2.25)
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where h0(x) = (1− λ∗)/h(x) = 1− h1(x) and

∂2ln(γ∗)

∂ψ∂u>
=

(
∂2ln(γ∗)

∂u∂ψ>

)>
= −

1∑
i=0

ni∑
j=1

{∂G(Xij;η
∗)/∂ψ}>

h(Xij)
;

∂2ln(γ∗)

∂θ∂θ>
= −

1∑
i=0

ni∑
j=1

h0(Xij)h1(Xij)Q(Xij)Q(Xij)
>;

∂2ln(γ∗)

∂θ∂u>
=

(
∂2ln(γ∗)

∂u∂θ>

)>
=

1∑
i=0

ni∑
j=1

h1(Xij)Q(Xij)G(Xij)
>

h(Xij)
−

1∑
i=0

ni∑
j=1

{∂G(Xij;η
∗)/∂θ}>

h(Xij)
;

∂2ln(γ∗)

∂u∂u>
=

1∑
i=0

ni∑
j=1

G(Xij)G(Xij)
>

h(Xij)2
.

• Some useful lemmas

We first review a lemma from the supplementary material of Qin et al. (2015), which
helps to ease the calculation in our proofs. In the following, we assume that the DRM
(2.1) is satisfied as required in Condition C2.

Lemma 2.1. Suppose that S is an arbitrary vector-valued function. Let E0(·) represent
the expectation operator with respect to F0 and X refer to a random variable from F0. Then
we have for j = 1, · · · , n1,

E {S(X1j)} = E0 {ω(X)S(X)} and E

{
1∑
i=0

ni∑
j=1

S(Xij)

}
= nE0 {S(X)h(X)} .

Proof. Under the DRM with true parameter θ∗, we have

E {S(X1j)} =

∫
S(x)dF1(x) =

∫
S(x)ω(x)dF0(x) = E0 {ω(X)S(X)} .
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Using the fact that λ∗ = n1/n and the definition of the function h(·), we further have

E

{
1∑
i=0

ni∑
j=1

S(Xij)

}
= n0E0 {S(X)}+ n1E0 {ω(X)S(X)}

= n [(1− λ∗)E0 {S(X)}+ λ∗E0 {ω(X)S(X)}]
= nE0 [{(1− λ∗) + λ∗ω(X)}S(X)]

= nE0 {ω(X)S(X)} .

This completes the proof.

Recall that

Aθθ = (1− λ∗)E0

{
h1(X)Q(X)Q(X)>

}
,

Aθu = A>uθ = E0

{
∂G(X;η∗)

∂θ

}>
− E0

{
h1(X)Q(X)G(X)>

}
,

Aψu = A>uψ = E0

{
∂G(X;η∗)

∂ψ

}>
, Auu = E0

{
G(X)G(X)>

h(X)

}
.

Applying Lemma 2.1, after some algebra, we have the following Lemma.

Lemma 2.2. (a) With the form of ∂2ln(γ∗)/(∂γ∂γ>) defined in (2.25), we have

− 1

n
E

{
∂2ln(γ∗)

∂γ∂γ>

}
= A =

 0 0 Aψu

0 Aθθ Aθu

Auψ Auθ −Auu

 .

(b) Let S∗n = (S>nθ,S
>
nu)>. Then as n→∞,

n−1/2S∗n → N(0,Γ)

in distribution with

eθ =

(
1

0d×1

)
, eu =

(
1

0r×1

)
, C =

(
Aθθeθ

−λ∗(1− λ∗)Auueu

)
,

and Γ =

(
Aθθ 0
0 Auu

)
− 1

λ∗(1− λ∗)
CC>.
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Proof. For (a): Note that Conditions C3 and C4 ensure that A is well defined. The
results then follow by applying Lemma 2.1 to each term of E

{
∂2ln(γ∗)/(∂γ∂γ>)

}
. We

use E
{
∂2ln(γ∗)/(∂θ∂θ>)

}
as an illustration; for the other entries, the idea is similar and

we omit the details.

With Lemma 2.1 and the fact that h0(x)h(x) = 1− λ∗, we have

− 1

n
E

{
∂2ln(γ∗)

∂θ∂θ>

}
=

1

n
E

{
1∑
i=0

ni∑
j=1

h0(Xij)h1(Xij)Q(Xij)Q(Xij)
>

}
= (1− λ∗)E0

{
h1(X)Q(X)Q(X)>

}
= Aθθ.

For (b): Conditions C2–C4 ensure that E(S∗n) and V ar(S∗n) are well defined. We first
use the results in Lemma 2.1 to show that E(S∗n) = 0. For E(Snθ),

E(Snθ) = n1E{Q(X11)} − nE0{h(X)h1(X)Q(X)}
= n1E0{ω(X)Q(X)} − nE0{λ∗ω(X)Q(X)}
= 0.

The last step follows from the fact that λ∗ = n1/n.

The unbiasedness of the estimating equations leads to

E(Snu) = −nE0{G(X;η∗)} = 0.

Hence, we have E(S∗n) = 0.

Since S∗n is a summation of independent random vectors, by the central limit theorem,

n−1/2S∗n → N(0,Γ)

for some Γ. Next, we show that Γ has the form claimed in the lemma.

We start with the variances of n−1/2Snθ and n−1/2Snu. Note that

Snθ =

n1∑
j=1

h0(X1j)Q(X1j)−
n0∑
j=1

h1(X0j)Q(X0j).
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With the help of Lemma 2.1, we have

V ar(n−1/2Snθ) =
1

n
V ar

(
n1∑
j=1

h0(X1j)Q(X1j)−
n0∑
j=1

h1(X0j)Q(X0j)

)
= λ∗E0

{
h0(X)2ω(X)Q(X)Q(X)>

}
+(1− λ∗)E0

{
h1(X)2Q(X)Q(X)>

}
−λ∗E0 {h0(X)ω(X)Q(X)}E0

{
h0(X)ω(X)Q(X)>

}
−(1− λ∗)E0 {h1(X)Q(X)}E0

{
h1(X)Q(X)>

}
.

Using the definitions of functions h1(·) and h0(·) and the fact that λ∗ = n1/n, we further
have

V ar(n−1/2Snθ) = (1− λ∗)E0

{
h1(X)Q(X)Q(X)>

}
−1− λ∗

λ∗
E0 {h1(X)Q(X)}E0

{
h1(X)Q(X)>

}
= Aθθ − {λ∗(1− λ∗)}−1Aθθeθ (Aθθeθ)

> .

Similarly, we calculate the variance of n−1/2Snu as

V ar(n−1/2Snu)

=
1

n
V ar

{
−

1∑
i=0

ni∑
j=1

G(Xij)

h(Xij)

}

=
1

n

1∑
i=0

ni∑
j=1

E0

{
G(Xij)G(Xij)

>

h(Xij)2

}
− 1

n

n0∑
j=1

E0

{
G(X0j)

h(X0j)

}
E0

{
G(X0j)

>

h(X0j)

}

− 1

n

n1∑
j=1

E0

{
ω(X1j)G(X1j)

h(X1j)

}
E0

{
ω(X1j)G(X1j)

>

h(X1j)

}
= Auu − (1− λ∗)E0

{
G(X)

h(X)

}
E0

{
G(X)>

h(X)

}
−λ∗E0

{
ω(X)G(X)

h(X)

}
E0

{
ω(X)G(X)>

h(X)

}
.
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It can easily be verified that

(1− λ∗)E0

{
G(X)

h(X)

}
+ λ∗E0

{
ω(X)G(X)

h(X)

}
= E0 {G(X)} = 0,

which implies that

E0

{
{ω(X)− 1}G(X)

h(X)

}
= − 1

λ∗
E0

{
G(X)

h(X)

}
= Auueu.

Therefore,
V ar(n−1/2Snu) = Auu − λ∗(1− λ∗)Auueu(Auueu)>.

Lastly, we consider the covariance between n−1/2Snθ and n−1/2Snu:

Cov(n−1/2Snθ, n
−1/2Snu)

= − 1

n
Cov

(
n1∑
j=1

h0(X1j)Q(X1j)−
n0∑
j=1

h1(X0j)Q(X0j),
1∑
i=0

ni∑
j=1

G(Xij)
>

h(Xij)

)

= − 1

n

n1∑
j=1

Cov

(
h0(X1j)Q(X1j),

G(X1j)
>

h(X1j)

)
+

1

n

n0∑
j=1

Cov

(
h1(X0j)Q(X0j),

G(X0j)
>

h(X0j)

)
= λ∗E0 {ω(X)h0(X)Q(X)}E0

{
ω(X)G(X)>

h(X)

}
−(1− λ∗)E0 {h1(X)Q(X)}E0

{
G(X)>

h(X)

}
= (1− λ∗)E0 {h1(X)Q(X)}E0

{
{ω(X)− 1}G(X)>

h(X)

}
= Aθθeθ(Auueu)>.

Then Γ = V ar(n−1/2S∗n) has the form claimed in the lemma. This completes the proof.

Proof of Theorem 2.1

Recall that γ̂ = (η̂>, û>)> is the MELE of γ. Using an argument similar to that
in Qin and Lawless (1994) and Qin et al. (2015), we have that η̂ = η∗ + Op(n

−1/2) and
û = u∗ + Op(n

−1/2). To develop the asymptotic approximation of η̂, we apply the first-
order Taylor expansion to ∂ln(γ̂)/∂γ at the true value γ∗. This, together with Condition
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C5, gives

0 = Sn +
∂2ln(γ∗)

∂γ∂γ>
(γ̂ − γ∗) + op(n

1/2).

With the law of large numbers and Lemma 2.2, we have

1

n

∂2ln(γ∗)

∂γ∂γ>
=

1

n
E

{
∂2ln(γ∗)

∂γ∂γ>

}
+ op(1) = −A+ op(1). (2.26)

Hence, we can write(
0 0
0 Aθθ

)
(η̂ − η∗) +

(
Aψu

Aθu

)
(û− u0) =

1

n

(
0
Snθ

)
+ op(n

− 1
2 ); (2.27)(

Auψ Auθ

)
(η̂ − η∗)−Auu(û− u0) =

1

n
Snu + op(n

− 1
2 ). (2.28)

Recall that

U =

(
0 Aψu

Aθθ Aθu

)
, V =

(
Aθθ 0
0 Auu

)
, and J = UV −1U>. (2.29)

Conditions C3 and C4 ensure that U , V , and J have full rank. Then (2.27) and (2.28)
together imply that

n1/2(η̂ − η∗) = J−1UV −1(n−1/2S∗n) + op(1).

Applying Lemma 2.2 and Slusky’s theorem, we have as n→∞

n1/2(η̂ − η∗)→ N(0,Σ)

in distribution with Σ = J−1UV −1V ar(n−1/2S∗n)V −1U>J−1.

Recall that

V ar(n−1/2S∗n) = Γ = V − 1

λ∗(1− λ∗)
CC> and C =

(
Aθθeθ

−λ∗(1− λ∗)Auueu

)
.

Since

Aψueu = 0 and Aθueu =
1

λ∗
E0 {h1(X)Q(X)} =

1

λ∗(1− λ∗)
Aθθeθ,
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we have

UV −1C = UV −1

(
Aθθeθ

−λ∗(1− λ∗)Auueu

)
=

(
−λ∗(1− λ∗)Aψueu

Aθθeθ − λ∗(1− λ∗)Aθueu

)
= 0.

This leads to Σ = J−1 and completes the proof.

Proof of Corollary 2.1

Part (a). The results in Theorem 2.1 imply that

n1/2(θ̂ − θ∗)→ N (0,Jθ)

in distribution, where

Jθ =
{
Aθθ +AθuA

−1
uuAuθ −AθuA

−1
uuAuψ

(
AψuA

−1
uuAuψ

)−1
AψuA

−1
uuAuθ

}−1

.

From the definitions of Auψ and Auu, we have

Auψ =

(
0

E0

{
∂g(X;η∗)

∂ψ

} )

and

Auu =

 E0

{
{ω(X)−1}2

h(X)

}
E0

{
{ω(X)−1}g(X;η∗)

h(X)

}
E0

{
{ω(X)−1}g(X;η∗)>

h(X)

}
E0

{
g(X;η∗)g(X;η∗)>

h(X)

}  .

We write

A−1
uu =

(
A11
uu A12

uu

A21
uu A22

uu

)
.

When r = p, we have

(
AψuA

−1
uuAuψ

)−1
=

[
E0

{
∂g(X;η∗)

∂ψ

}>
A22
uuE0

{
∂g(X;η∗)

∂ψ

}]−1

=

[
E0

{
∂g(X;η∗)

∂ψ

}>]−1 (
A22
uu

)−1
[
E0

{
∂g(X;η∗)

∂ψ

}]−1

.
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This leads to

A−1
uuAuψ

(
AψuA

−1
uuAuψ

)−1
AψuA

−1
uu

=

(
A12
uu

(
A22
uu

)−1
A21
uu A12

uu

A21
uu A22

uu

)
= A−1

uu −
(
A11
uu −A12

uu

(
A22
uu

)−1
A21
uu 0

0 0

)
.

It can be verified that Aθueu = {λ∗(1− λ∗)}−1Aθθeθ and{
A11
uu −A12

uu

(
A22
uu

)−1
A21
uu

}−1

= E0

{
{ω(X)− 1}2

h(X)

}
=

1

λ∗(1− λ∗)

{
1− e>θAθθeθ

λ∗(1− λ∗)

}
.

By the Woodbury matrix identity, the variance matrix Jθ can be simplified as

Jθ =

{
Aθθ +

{
Aθθeθ

λ∗(1− λ∗)

}[
E0

{
{ω(X)− 1}2

h(X)

}]−1{
Aθθeθ

λ∗(1− λ∗)

}>}−1

= A−1
θθ −

eθe
>
θ

λ∗(1− λ∗)
.

This is the same as the asymptotic variance of n1/2(θ̃− θ∗) shown in Lemma 1 of Qin and
Zhang (1997) under Conditions C1–C3.

Part (b). For r > p, let Um,V m,Jm denote the corresponding U ,V ,J matrices obtained
by using only the first m estimating equations of g(x;η). With Theorem 2.1, to complete
the proof of this part it suffices to show that

Jm ≥ Jm−1.

From the definition of the matrix U , we notice that Um has one more column than
Um−1, and we denote this extra column um. Then we have Um = (Um−1, um). Following
the proof of Corollary 1 of Qin and Lawless (1994), we have

V −1
m ≥

(
V −1

m−1 0
0 0

)
. (2.30)
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Therefore,

Jm = UmV
−1
m U

>
m ≥ (Um−1, um)

(
V −1

m−1 0
0 0

)
(Um−1, um)> = Jm−1, (2.31)

as required. This completes the proof.

Proof of Theorem 2.2

Recall that the null hypothesis forms a constraint

C3 = {η : H(η) = 0} ,

and the ELR statistic for testing H0 : H(η) = 0 is defined as

Rn = 2

{
sup
ψ,θ

`n(ψ,θ)− sup
η∈C3

`n(ψ,θ)

}
= 2

{
`n(ψ̂, θ̂)− `n(ψ̌, θ̌)

}
,

where
(ψ̌, θ̌) = arg max

η∈C3
`n(ψ,θ).

In the following steps, we find the approximations of `n(ψ̂, θ̂) and `n(ψ̌, θ̌).

We first derive the approximation of ln(γ) when γ is in the n−1/2 neighborhood of its
true value γ∗. Applying the second-order Taylor expansion to ln(γ), and using (2.26) and
Condition C5, we have

ln(γ) = ln(γ∗) + S>n (γ − γ∗)− n

2
(γ − γ∗)>A(γ − γ∗) + op(1)

= ln(γ∗) +
(

0 S>nθ
)

(η − η∗) + S>nu(u− u0)

−n
2

(η − η∗)>
(

0 0
0 Aθθ

)
(η − η∗)− n(η − η∗)>

(
Aψu

Aθu

)
(u− u∗)

+
n

2
(u− u∗)>Auu(u− u∗) + op(1).

Setting the derivative of ln(γ) with respect to u equal to zero gives

u− u∗ = A−1
uu

(
Auψ Auθ

)
(η − η∗)−A−1

uu

(
1

n
Snu

)
+ op(n

− 1
2 ).
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Substituting the approximation of u−u∗ into ln(γ) leads to an approximation of `n(ψ,θ):

`n(ψ,θ) = ln(γ∗) + (η − η∗)>UV −1S∗n −
n

2
(η − η∗)>J(η − η∗)

− 1

2n
S>nuA

−1
uuSnu + op(1). (2.32)

With the approximation of η̂ in (2.32), we then have

`n(ψ̂, θ̂) = ln(γ∗) +
1

2n
S∗>n V

−1U>J−1UV −1S∗n −
1

2n
S>nuA

−1
uuSnu + op(1).

Next, we find an approximation for η̌ = (ψ̌
>
, θ̌
>

)>. We first define

`∗n(ψ,θ,v) = `n(ψ,θ) + nv>H(η),

where v is the Lagrange multiplier. Then η̌ and the corresponding Lagrange multiplier v̌
satisfy

∂`∗n(ψ̌, θ̌, v̌)

∂ψ
= 0,

∂`∗n(ψ̌, θ̌, v̌)

∂θ
= 0,

∂`∗n(ψ̌, θ̌, v̌)

∂v
= 0. (2.33)

It is easy to verify that γ̌ = γ∗ + Op(n
−1/2) and v̌ = Op(n

−1/2) (Qin and Lawless, 1995;
Qin et al., 2015).

Let h∗ = ∂H(η∗)/∂η. When η is in the n−1/2 neighborhood of the true value η∗, we
approximate H(η) with H(η) = h∗(η−η∗)+op(n

−1/2). Together with the approximation
of `n(ψ,θ) in (2.32), we approximate `∗n(ψ,θ,v) at an n−1/2 neighbor of (ψ>0 ,θ

>
0 ,01×q)

>

with

`∗n(ψ,θ,v) = ln(γ∗) + (η − η∗)>UV −1S∗n −
n

2
(η − η∗)>J(η − η∗)

+nv>h∗(η − η∗)− 1

2n
S>nuA

−1
uuSnu + op(1).

Applying the first-order Taylor expansion to (2.33), we have(
J −h∗>
−h∗ 0

)(
η̌ − η∗
v̌

)
=

1

n

(
UV −1S∗n

0

)
+ op(n

− 1
2 ).
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Hence,

n1/2(η̌ − η∗)

= (I,0)

(
J −h∗>

−h∗> 0

)−1(
n−1/2UV −1Sn

0

)
+ op(1)

= {J−1 − J−1h∗>(h∗J−1h∗>)−1h∗J−1}UV −1(n−1/2S∗n) + op(1), (2.34)

where I is the identity matrix with dimension p+ d+ 1.

Substituting the expression of η̌ in (2.34) into (2.32) gives

`n(ψ̌, θ̌) = ln(γ∗) +
1

2n
S∗>n V

−1U>{J−1 − J−1h∗>(h∗J−1h∗>)−1h∗J−1}UV −1S∗n

− 1

2n
S>nuA

−1
uuSnu + op(1).

Hence, the ELR statistic Rn can be written as

Rn =
1

n
S∗>n V

−1U>J−1h∗>(h∗J−1h∗>)−1h∗J−1UV −1S∗n + op(1).

We find that J−1/2h∗>(h∗J−1h∗>)−1h∗J−1/2 is an idempotent matrix with rank q. Fur-
ther, as n→∞,

J−1/2UV −1(n−1/2S∗n)→ N(0, I)

in distribution. Therefore, the limiting distribution of Rn is χ2
q under H0.

Proofs of Theorem 2.3 and Corollary 2.2

We start with the proof of Theorem 2.3. Recall that the ELR statistic for testing the
validity of the estimating equations is defined as

Wn = 2
{
`nd(θ̃)− `n(ψ̂, θ̂)

}
.

We first find an approximation of `nd(θ̃). Applying the second-order Taylor expansion
to `nd(θ̃) at the true value θ∗, we have

`nd(θ̃) = `nd(θ
∗) + (θ̃ − θ∗)>∂`nd(θ

∗)

∂θ
+

1

2
(θ̃ − θ∗)>∂

2`nd(θ
∗)

∂θ∂θ>
(θ̃ − θ∗) + op(1).

The fact that ν∗ = 0 implies `nd(θ
∗) = ln(γ∗). According to Qin and Zhang (1997), it is
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easy to verify that

θ̃−θ∗ =
1

n
A−1
θθ

∂`nd(θ
∗)

∂θ
+ op(n

−1/2),
∂`nd(θ

∗)

∂θ
= Snθ, and

1

n

∂2`nd(θ
∗)

∂θ∂θ>
= −Aθθ + op(1).

Then

`nd(θ̃) = ln(γ∗) +
1

2n
S>nθA

−1
θθSnθ + op(1).

Hence, the ELR statistic can be written as

Wn = 2
{
`nd(θ̃)− `n(ψ̂, θ̂)

}
=

1

n
S>nθA

−1
θθSnθ +

1

n
S>nuA

−1
uuSnu −

1

n
S∗>n V

−1U>J−1UV −1S∗n

=
1

n
S∗>n V

−1(V −U>J−1U)V −1S∗n + op(1). (2.35)

Since V is a positive-definite matrix, we define an inner product on the vector space
R2+d+r as < a, b >V −1= a>V −1b for any vector a, b in the vector space. Recall that

C =

(
Aθθeθ

−λ∗(1− λ∗)Auueu

)
.

The vector C and each row in U are linearly independent in the inner product space
because UV −1C = 0. Let V be the inner product space spanned by the vector C and
each row in U . Then there exists an orthogonal complement B of the subspace V with
the dimension r− p. Let the columns of C∗ be the basis of the orthogonal complement B.
Then C∗ satisfies C∗>V −1(C,U>) = 0. Define M> = (C∗,C,U>), which satisfies

MV −1M> =

 C∗>V −1C∗ 0 0
0 C>V −1C 0
0 0 J

 .

With the above construction, M is a full rank matrix and can be inverted. We can
write the inverse of MV −1M> as

(M>)−1VM−1 =

 (C∗>V −1C∗)−1 0 0
0 (C>V −1C)−1 0
0 0 J−1

 .
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Then

V = M>(M>)−1VM−1M
= C∗(C∗>V −1C∗)−1C∗> +C(C>V −1C)−1C> +U>J−1U .

Note that

C>V −1S∗n = e>θSnθ − λ∗(1− λ∗)e>uSnu

= n1 −
1∑
i=0

ni∑
j=1

h1(Xij) + λ∗(1− λ∗)
1∑
i=0

ni∑
j=1

ω(Xij)− 1

h(Xij)

= 0.

This helps to simplify Wn as

Wn =
1

n
S∗>n V

−1C∗(C∗>V −1C∗)−1C∗>V −1S∗n + op(1).

According to Lemma 2.2, we have

V ar
(
n−1/2S∗n

)
= V − 1

λ∗(1− λ∗)
CC>.

Together with C∗>V −1C = 0 and the fact that V −1/2{C∗(C∗>V −1C∗)−1C∗>}V −1/2 is
idempotent with rank r − p, we have

{V −1/2C∗(C∗>V −1C∗)−1C∗>V −1}V ar
(
n−1/2S∗n

)
{V −1C∗(C∗>V −1C∗)−1C∗>V −1/2}

= V −1/2C∗(C∗>V −1/C∗)−1C∗>V −1/2.

Therefore, Wn asymptotically follows χ2
r−p under H0 as n→∞.

We now prove Corollary 2.2. Let S∗n1 be the first d+ r−m+ 2 elements of S∗>n , U 1 be
the first r −m columns of U , V 1 be the upper (d+ r −m+ 2)× (d+ r −m+ 2) matrix
of V , and J1 = U 1V

−1
1 U

>
1 . Further, let `n1(ψ,θ) be the profile empirical log-likelihood

of (ψ,θ) using only g1(x;η) and

(ψ̂
∗
, θ̂
∗
) = arg max

ψ,θ
`n1(ψ,θ).
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Following the techniques used to obtain (2.35), we have

2
{
`nd(θ̃)− `n1(ψ̂

∗
, θ̂
∗
)
}

= S∗>n1V
−1
1 (V 1 −U>1 J−1

1 U 1)V −1
1 S

∗
n1 + op(1).

Then, the ELR statistic W ∗
n has the following approximation:

W ∗
n = 2{`n1(ψ̂

∗
, θ̂
∗
)− `n(ψ̂, θ̂)}

= 2
{
`nd(θ̃)− `n(ψ̂, θ̂)

}
− 2

{
`nd(θ̃)− `n1(θ̂

∗
, β̂
∗
)
}

=
1

n

[
S∗>n V

−1(V −U>J−1U)V −1S∗n − S∗>n1V
−1
1 (V 1 −U>1 J−1

1 U 1)V −1
1 S

∗
n1

]
+ op(1).

With the technique used to prove Corollary 2.1, we have

V −1(V −U>J−1U )V −1 ≥
(
V −1

1 {V 1 −U>1 J−1
1 U 1}V −1

1 0
0 0

)
.

Then

1

n

[
S∗>n V

−1(V −U>J−1U)V −1S∗n − S∗>n1V
−1
1 (V 1 −U>1 J−1

1 U 1)V −1
1 S

∗
n1

]
≥ 0.

Recall that as n→∞,

1

n
S∗>n V

−1(V −U>J−1U)V −1S∗n → χ2
r−p

in distribution. We can similarly prove that as n→∞,

1

n
S∗>n1V

−1
1 (V 1 −U>1 J−1

1 U 1)V −1
1 S

∗
n1 → χ2

r−m−p

in distribution.

By the arguments in Qin and Lawless (1994), we conclude that W ∗
n → χ2

(r−p)−(r−m−p) =

χ2
m in distribution as n→∞.
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Proof of Theorem 2.4

For (a): We start with some preparation. For any x in the support of F0, let

F0(x,γ) =
1

n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)

1 + λ {ω(Xij;θ)− 1}+ ν>g(Xij;ψ,θ)
,

F1(x,γ) =
1

n

1∑
i=0

ni∑
j=1

ω(Xij;θ)I(Xij ≤ x)

1 + λ {ω(Xij;θ)− 1}+ ν>g(Xij;ψ,θ)
.

Then

F̂0(x) = F0(x, γ̂), F0(x,γ∗) =
1

n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)

h(Xij)
,

F̂1(x) = F1(x, γ̂), F1(x,γ∗) =
1

n

1∑
i=0

ni∑
j=1

ω(Xij)I(Xij ≤ x)

h(Xij)
.

Next, we explore the properties of the first derivatives of F0(x,γ) and F1(x,γ) at the
true value γ∗. Define

∂F0(x,γ∗)

∂γ
=


∂F0(x,γ∗)

∂ψ
∂F0(x,γ∗)

∂θ
∂F0(x,γ∗)

∂u

 ,
∂F1(x,γ∗)

∂γ
=


∂F1(x,γ∗)

∂ψ
∂F1(x,γ∗)

∂θ
∂F1(x,γ∗)

∂u

 ,

where

∂F0(x,γ∗)

∂ψ
=
∂F1(x,γ∗)

∂ψ
= 0,

∂F0(x,γ∗)

∂θ
= − 1

n

1∑
i=0

ni∑
j=1

h1(Xij)h(Xij)Q(Xij)I(Xij ≤ x),

∂F0(x,γ∗)

∂u
= − 1

n

1∑
i=0

ni∑
j=1

G(Xij)

{h(Xij)}2
I(Xij ≤ x),

∂F1(x,γ∗)

∂θ
=

1

n

1∑
i=0

ni∑
j=1

ω(Xij)

h(Xij)
h0(Xij)Q(Xij)I(Xij ≤ x),
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∂F1(x,γ∗)

∂u
= − 1

n

1∑
i=0

ni∑
j=1

ω(Xij)

{h(Xij)}2
G(Xij)I(Xij ≤ x).

Applying Lemma 2.1, we have the following results for E
{
∂F0(x,γ∗)

∂γ

}
and E

{
∂F1(x,γ∗)

∂γ

}
.

Lemma 2.3. With the form of ∂F0(x,γ∗)/∂γ and ∂F1(x,γ∗)/∂γ defined above, we have

−E
{
∂F0(x,γ∗)

∂γ

}
= B0(x) =

 0
B0θ(x)
B0u(x)

 =

(
0

B∗0(x)

)
,

−E
{
∂F1(x,γ∗)

∂γ

}
= B1(x) =

 0
B1θ(x)
B1u(x)

 =

(
0

B∗1(x)

)
,

where

B0θ(x) = E0 {h1(X)Q(X)I(X ≤ x)} , B0u(x) = E0

{
G(X)

h(X)
I(X ≤ x)

}
,

B1θ(x) =
λ∗ − 1

λ∗
E0 {h1(X)Q(X)I(X ≤ x)} , B1u(x) = E0

{
ω(X)G(X)

h(X)
I(X ≤ x)

}
.

We now move to the joint asymptotic normality of F̂l(x) and F̂s(y). We first find an
approximation for F̂l(x) for l = 0 and 1. Applying the first-order Taylor expansion to F̂l(x)
and using the results in Lemma 2.3, we have

F̂l(x) = Fl(x,γ
∗)−B∗l (x)>(γ̂∗ − γ∗) + op(n

−1/2)

= Fl(x,γ
∗)− (0,Blθ(x)>)(η̂∗ − η∗)−B0u(x)>(û− u∗) + op(n

−1/2).

Using the relationship in (2.28) and the definitions of the matrices U and V in (2.29), we
have

F̂l(x) = Fl(x,γ
∗)−B∗l (x)>V −1U>(η̂∗ − η∗) +

1

n
Blu(x)>A−1

uuSnu + op(n
−1/2)

= Fl(x,γ
∗)−B∗l (x)>

{
V −1U>(η̂∗ − η∗)−

(
0 0
0 A−1

uu

)(
1

n
S∗n

)}
+ op(n

−1/2).

Recall that η̂ − η∗ = J−1UV −1(n−1S∗n) + op(n
−1/2). The approximation of F̂l(x) is then
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given by

F̂l(x) = Fl(x,γ
∗)− 1

n
B∗l (x)>WS∗n + op(n

−1/2)

with

W = V −1U>J−1UV −1 −
(

0 0
0 A−1

uu

)
.

Note that Fl(x) = E0{Fl(x,γ∗)}. Then

n1/2{F̂l(x)− Fl(x)} = n1/2{Fl(x,γ∗)− Fl(x)} − n−1/2B∗l (x)>WS∗n + op(1).

The two leading terms are summations of independent random variables and both have
mean zero. Hence, as n→∞,

√
n

(
F̂l(x)− Fl(x)

F̂s(y)− Fs(y)

)
→ N

(
0,Σls(x, y)

)
,

where

Σls(x, y) =

(
σll(x, x) σls(x, y)
σsl(y, x) σss(y, y)

)
.

To complete the proof of (a), we need to argue that Σls(x, y) has the form claimed in
the lemma. According to the expression of F̂l(x)− Fl(x), we have

σll(x, x) = nV ar {Fl(x,γ∗)}+ n−1V ar(B∗l (x)>WS∗n)

−2Cov
{
Fl(x,γ

∗),B∗l (x)>WS∗n
}

;

σss(y, y) = nV ar {Fs(y,γ∗)}+ n−1V ar(B∗s(y)>WS∗n)

−2Cov
{
Fs(y,γ

∗),B∗s(y)>WS∗n
}

;

σls(x, y) = nCov {Fl(x,γ∗), Fs(y,γ∗)} − Cov
{
Fl(x,γ

∗),B∗s(y)>WS∗n
}

−Cov
{
Fs(y,γ

∗),B∗l (x)>WS∗n
}

+B∗l (x)>{n−1V ar(WS∗n)}B∗s(y);

σsl(y, x) = σls(x, y).

Next, we calculate the covariances and variances appearing above. We start with the
covariance and variance related to Fl(x,γ

∗) and Fs(y,γ
∗). Let x ∧ y = min{x, y}. Using
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Lemma 2.1, we have

nCov {F0(x,γ∗), F0(y,γ∗)}

= (1− λ∗)Cov
{
I(X01 ≤ x)

h(X01)
,
I(X01 ≤ y)

h(X01)

}
+ λ∗Cov

{
I(X11 ≤ x)

h(X11)
,
I(X11 ≤ y)

h(X11)

}
= E0

{
I(X ≤ x ∧ y)

h(X)

}
− (1− λ∗)E0

{
I(X ≤ x)

h(X)

}
E0

{
I(X ≤ y)

h(X)

}
−λ∗E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}
.

After some algebra, we have that for any x in the support of F0,

B0u(x)>eu = E0

{
ω(X)I(X ≤ x)

h(X)

}
− E0

{
I(X ≤ x)

h(X)

}
,

F0(x) = E0

{
I(X ≤ x)

h(X)

}
+ λ∗B0u(x)>eu.

Then the covariance nCov {F0(x,γ∗), F0(y,γ∗)} is simplified as

nCov {F0(x,γ∗), F0(y,γ∗)}

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− λ∗B0u(x)>eue

>
uB0u(y)− λ∗B0u(x)>euE0

{
I(X ≤ y)

h(X)

}
−λ∗E0

{
I(X ≤ x)

h(X)

}
e>uB0u(y)− E0

{
I(X ≤ x)

h(X)

}
E0

{
I(X ≤ y)

h(X)

}
= E0

{
I(X ≤ x ∧ y)

h(X)

}
− λ∗B0u(x)>eue

>
uB0u(y)− λ∗B0u(x)>eu

[
F0(y)− λ∗e>uB0u(y)

]
−E0

{
I(X ≤ x)

h(X)

}
F0(y)

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− F0(x)F0(y)− λ∗(1− λ∗)B0u(x)>eue

>
uB0u(y).

The covariances nCov {F0(x,γ∗), F0(y,γ∗)} and nCov {F0(x,γ∗), F1(y,γ∗)} can be
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found in a similar manner. For nCov {F1(x,γ∗), F1(y,γ∗)}, we have

nCov {F1(x,γ∗), F1(y,γ∗)}

= E0

{
ω2(X)I(X ≤ x ∧ y)

h(X)

}
− (1− λ∗)E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}
−λ∗E0

{
ω2(X)I(X ≤ x)

h(X)

}
E0

{
ω2(X)I(X ≤ y)

h(X)

}
= E0

{
ω2(X)I(X ≤ x ∧ y)

h(X)

}
− F1(x)F1(y)− λ∗(1− λ∗)B1u(x)>eue

>
uB1u(y)

and

nCov {F0(x,γ∗), F1(y,γ∗)}

= E0

{
ω(X)I(X ≤ x ∧ y)

h(X)

}
− (1− λ∗)E0

{
I(X ≤ x)

h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}
−λ∗E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω2(X)I(X ≤ y)

h(X)

}
= E0

{
ω(X)I(X ≤ x ∧ y)

h(X)

}
− F0(x)F1(y)− λ∗(1− λ∗)B0u(x)>eue

>
uB1u(y).

In summary, for any l, s ∈ {0, 1}, we get

nCov {Fl(x,γ∗), Fs(y,γ∗)} = E0

{
ωl+s(X)I(X ≤ x ∧ y)

h(X)

}
− Fl(x)Fs(y)

−λ∗(1− λ∗)Blu(x)>eue
>
uBsu(y). (2.36)

Next, we consider the cross-terms with S∗n. We present the calculation of covariance
between F0(x,γ∗) and S∗n as an illustration. Using Lemma 2.1, we get

Cov {F0(x,γ∗),Snθ}

=
1

n
Cov

{
1∑
i=0

ni∑
j=1

I(Xij ≤ x)

h(Xij)
,

n1∑
j=1

h0(X1j)Q(X1j)
> −

n0∑
j=1

h1(X0j)Q(X0j)
>

}
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= λ∗Cov

{
I(X11 ≤ x)

h(X11)
, h0(X11)Q(X11)>

}
−(1− λ∗)Cov

{
I(X01 ≤ x)

h(X01)
, h1(X01)Q(X01)>

}
=

[
E0{h0(X)I(X ≤ x)} − 1− λ∗

λ∗
E0{h1(X)I(X ≤ x)}

]
E0{h1(X)Q(X)>}.

It can be checked that

E0{h1(X)Q(X)} =
1

1− λ∗
Aθθeθ,

E0{h0(X)I(X ≤ x)} − 1− λ∗

λ∗
E0{h1(X)I(X ≤ x)} = −(1− λ∗)B0u(x)>eu.

Then we have
Cov {F0(x,γ∗),Snθ} = −B0u(x)>eu(Aθθeθ)

>.

Similarly,

Cov {F0(x,γ∗),Snu}

= − 1

n
Cov

{
1∑
i=0

ni∑
j=1

I(Xij ≤ x)

h(Xij)
,

1∑
i=0

ni∑
j=1

G(Xij)
>

h(Xij)

}

= −λ∗Cov
{
I(X11 ≤ x)

h(X11)
,
G(X11)>

h(X11)

}
− (1− λ∗)Cov

{
I(X01 ≤ x)

h(X01)
,
G(X01)>

h(X01)

}
= −E0

{
I(X ≤ x)G(X)>

h(X)

}
+

1

1− λ∗

[
E0{h0(X)I(X ≤ x)} − 1− λ∗

λ∗
E0{h1(X)I(X ≤ x)}

]
E0{h0(X)G(X)>}

= −E0

{
I(X ≤ x)G(X)>

h(X)

}
−B0u(x)>eu · E0{h0(X)G(X)>}

= −B0u(x)> + λ∗(1− λ∗)B0u(x)>eu(Auueu)>,

where in the last step we used the facts that

B0u(x) = E0

{
I(X ≤ x)G(X)

h(X)

}
and E0{h0(X)G(X)} = −λ∗(1− λ∗)Auueu.
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Recall that

C =

(
Aθθeθ

−λ∗(1− λ∗)Auueu

)
.

Hence,

Cov {F0(x,γ∗),S∗n} = −
(

0
B0u(x)

)>
−B0u(x)>euC

>.

The covariance between F1(x,γ∗) and S∗n can be found in a similar manner; the details
are omitted. We conclude that for any x in the support of F0,

Cov {Fl(x,γ∗),S∗n} = −
(

0
Blu(x)

)>
−Blu(x)>euC

>, l ∈ {0, 1}.

We now return to the form of Σ(x, y). Recall that

n−1V ar(Sn) = Γ = V − 1

λ∗(1− λ∗)
CC> and UV −1C = 0.

This leads to

B∗l (x)>WΓ = B∗l (x)>V −1U>J−1U −
(

0
Blu(x)

)>
−Blu(x)>euC

>

= B∗l (x)>V −1U>J−1U + Cov {Fl(x,γ∗),S∗n} .

Consequently, for l = 0, 1, the summation of the last two terms in σll(x, x) is

n−1V ar(B∗l (x)>WS∗n)− 2Cov
{
Fl(x,γ

∗),B∗l (x)>WS∗n
}

=
[
B∗l (x)>WΓ− 2Cov {Fl(x,γ∗),S∗n}

]
WB∗l (x)

=

[
B∗l (x)>V −1U>J−1U +

(
0

Blu(x)

)>
+Blu(x)>euC

>

]
WB∗l (x)

= B∗l (x)>WB∗l (x) + λ∗(1− λ∗)Blu(x)>eue
>
uBlu(x). (2.37)

Combining (2.36) and (2.37) leads to

σll(x, x) = E0

{
ω2l(X)I(X ≤ x)

h(X)

}
− Fl(x)2 +B∗l (x)>WB∗l (x). (2.38)
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Using similar steps to derive (2.37), we find that the summation of the last three terms
in σls(x, y) is

B∗l (x)>WΓWB∗s(y)− Cov {Fl(x,γ∗),S∗n}WB∗s(y)−B∗l (x)>WCov {S∗n, Fs(y,γ∗)}
= B∗l (x)>V −1UJ−1U>WB∗s(y)−B∗l (x)>WCov {S∗n, Fs(y,γ∗)}
= B∗l (x)>WB∗s(y) + λ∗(1− λ∗)Blu(x)>eue

>
uBsu(y). (2.39)

Combining (2.36) and (2.39) gives

σls(x, y) = E0

{
ωl+s(X)I(X ≤ x ∧ y)

h(X)

}
− Fl(x)Fs(y) +B∗l (x)>WB∗s(y). (2.40)

Summarizing (2.38) and (2.40), we conclude that for any i, j ∈ {l, s}

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) +B∗i (x)>WB∗j(y), (2.41)

which is as claimed in the lemma. This completes the proof of (a).

For (b): We prove that the claim in (b) is correct for l = 0 and s = 1. The proofs for
the other cases are similar and are omitted.

We first simplify the matrix W . Let M>
q = (C,U>). Then Mq is full rank and

therefore invertible. Note that

V =M>
q (M>

q )−1VM−1
q Mq =M>

q (MqV
−1M>

q )−1Mq.

Recall that UV −1C = 0 and J = UV −1U>. Then

MqV
−1M>

q =

(
C>V −1C 0

0 J

)
and

V = C(C>V −1C)−1C> +U>J−1U .
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Note that

C>V −1C = e>θAθθeθ + {λ∗(1− λ∗)}2e>uAuueu

= (1− λ∗)E0{h1(X)}+ {λ∗(1− λ∗)}2E0

[
{ω(X)− 1}2

h(X)

]
= λ∗(1− λ∗),

where we use the fact that

λ∗E0

[
{ω(X)− 1}2

h(X)

]
+ E0

{
ω(X)− 1

h(X)

}
= 0

in the last step. The matrix V is expressed as

V = {λ∗(1− λ∗)}−1CC> +U>J−1U .

This expression helps us to simplify W as

W = V −1U>J−1UV −1 −
(

0 0
0 A−1

uu

)
= V −1{U>J−1U − V }V −1 +

(
A−1
θθ 0
0 0

)
=

(
A−1
θθ 0
0 0

)
− {λ∗(1− λ∗)}−1V −1CC>V −1

=

(
A−1
θθ 0
0 0

)
− {λ∗(1− λ∗)}−1

(
eθ

−λ∗(1− λ∗)eu

)(
eθ

−λ∗(1− λ∗)eu

)>
.

Substituting W into (2.41) and using the fact that

B∗0(x)>
(

eθ
−λ∗(1− λ∗)eu

)
= λ∗F0(x),

B∗1(x)>
(

eθ
−λ∗(1− λ∗)eu

)
= −(1− λ∗)F1(x),

we find that for any i, j ∈ {l, s}

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
+Biθ(x)>A−1

θθBjθ(y)− δijFi(x)Fj(y),
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where

δij =


(1− λ∗)−1, i = j = 0

(λ∗)−1, i = j = 1

0, i 6= j.

This form is the same as that in Chen and Liu (2013) for the two-sample case, which
completes the proof of (b).

For (c): Recall that Um,V m, and Jm denote the corresponding U ,V , and J matrices
obtained by using only the first m estimating equations of g(x;η). We further define

Σ
(m)
ls (x, y) = {σ(m)

ij (x, y)}i,j∈{l,s} andB
∗(m)
l (x) to denote the corresponding matrix Σls(x, y)

and vector Bl(x) obtained by using the first m estimating equations.

From the definitions of these matrices and vectors, we notice the following relationships:

Um = (Um−1, um); V m =

(
V m−1 ϑm−1,m

ϑm,m−1 ϑm,m

)
; B

∗(m)
l (x) =

(
B
∗(m−1)
l (x)
blm(x)

)
,

where um, ϑm−1,m, ϑm,m, and blm(x) are the extra terms coming from the mth dimension
of the estimating equations.

With the fact that

W = V −1(U>J−1U − V )V −1 +

(
A−1
θθ 0
0 0

)
,

the entry in the covariance matrix Σ
(m)
ls (x, y) can be written as

σ
(m)
ij (x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) +B

∗(m)
i (x)>WB

∗(m)
j (y)

= E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) +Biθ(x)>A−1

θθBjθ(y)

−B∗(m)
i (x)>V −1

m (V m −U>mJ−1
m Um)V −1

m B
∗(m)
j (x)

for any i, j ∈ {l, s}.
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Therefore,

Σ
(m−1)
ls (x, y)−Σ

(m)
ls (x, y)

=

(
B
∗(m)
l (x)

B∗(m)
s (y)

)>
(V m −U>mJ−1

m Um)V −1
m

(
B
∗(m)
l (x)

B∗(m)
s (y)

)
−
(
B
∗(m−1)
l (x)

B∗(m−1)
s (y)

)>
(V m−1 −U>m−1J

−1
m−1Um−1)V −1

m−1

(
B
∗(m−1)
l (x)

B∗(m−1)
s (y)

)
.

Using the results in (2.30) and (2.31), we have

V −1
m {V m −U>mJ−1

m Um}V −1
m

≥
(
V −1

m−1 0
0 0

){(
V m−1 ϑm−1,m

ϑm,m−1 ϑm,m

)
−
(
U>m−1

u>m

)
J−1
m−1(Um−1, um)

}(
V −1

m−1 0
0 0

)
≥

(
V −1

m−1{V m−1 −U>m−1J
−1
m−1Um−1}V −1

m−1 0
0 0

)
.

This implies that

Σ
(m−1)
ls (x, y)−Σ

(m)
ls (x, y)

≥
(
B
∗(m)
l (x)

B∗(m)
s (y)

)>(
V −1

m−1{V m−1 −U>m−1J
−1
m−1Um−1}V −1

m−1 0
0 0

)(
B
∗(m)
l (x)

B∗(m)
s (y)

)
−
(
B
∗(m−1)
l (x)

B∗(m−1)
s (y)

)>
(V m−1 −U>m−1J

−1
m−1Um−1)V −1

m−1

(
B
∗(m−1)
l (x)

B∗(m−1)
s (y)

)
= 0.

This completes the proof of (c).

Proof of Theorem 2.5

We first introduce two lemmas that will be helpful in the proof of Theorem 2.5. The
following lemma establishes the convergence rate of ξ̂i,τ .

Lemma 2.4. Assume the conditions of Theorem 5 are satisfied. For each fixed τ ∈ (0, 1)
and i = 0, 1, we have

ξ̂i,τ − ξi,τ = Op(n
−1/2).

69



Proof. We concentrate on the case i = 0; the case i = 1 can be proved similarly. Let
∆n = supx |F̂0(x)−F0(x)|. It suffices to show that (Chen and Liu, 2013; Chen et al., 2021)

∆n = Op(n
−1/2). (2.42)

Define

F̌0(x) =
1

n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)

1 + λ∗
[
exp{θ̂

>
Q(Xij)} − 1

] .
Then

∆n = sup
x
|F̂0(x)− F0(x)| ≤ sup

x
|F̂0(x)− F̌0(x)|+ sup

x
|F̌0(x)− Fi(x)| = ∆n1 + ∆n2,

where
∆n1 = sup

x
|F̂0(x)− F̌0(x)|

and
∆n2 = sup

x
|F̌0(x)− F0(x)|.

Following the proof of Theorem 3.1 in Chen and Liu (2013) and Lemma 1 in Chen et al.
(2021), we can verify that

∆n2 = Op(n
−1/2).

With this result, the claim (2.42) is proved if ∆n1 = Op(n
−1/2).

As preparation, we argue that

(np̂ij)
−1 = 1 + λ̂[exp{θ̂

>
Q(Xij)} − 1] + ν̂>g(Xij; ψ̂, θ̂) ≥ 1− λ∗ + op(1) (2.43)

or equivalently p̂ij ≤ n−1{1− λ∗ + op(1)}−1 = Op(1/n). Note that

(np̂ij)
−1 ≥ 1− λ̂+ ν̂>g(Xij; ψ̂, θ̂) ≥ 1− λ̂− ‖ν̂‖max

ij
‖g(Xij; ψ̂, θ̂)‖.

By Condition C5,

max
ij
‖g(Xij; ψ̂, θ̂)‖ ≤ max

ij
R1/3(Xij) = op(n

1/2),

which, together with γ̂ − γ∗ = Op(n
−1/2), implies that (2.43) is valid.
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We now return to argue that ∆n1 = Op(n
−1/2). After some algebra, we have

F̂0(x)− F̌0(x)

=
1∑
i=0

ni∑
j=1

p̂ij
(λ∗ − λ̂)

[
exp{θ̂

>
Q(Xij)} − 1

]
− ν̂>g(Xij; ψ̂, θ̂)

1 + λ∗
[
exp{θ̂

>
Q(Xij)} − 1

] I(Xij ≤ x).

Using (2.43), we have

|F̂0(x)− F̌0(x)| ≤ Op(1/n)
1∑
i=0

ni∑
j=1

|λ̂− λ∗|
[
exp{θ̂

>
Q(Xij)}+ 1

]
1 + λ∗

[
exp{θ̂

>
Q(Xij)} − 1

] I(Xij ≤ x)

+Op(1/n)
1∑
i=0

ni∑
j=1

|ν̂>g(Xij; ψ̂, θ̂)|

1 + λ∗
[
exp{θ̂

>
Q(Xij)} − 1

]I(Xij ≤ x)

≤ Op(1/n)
1∑
i=0

ni∑
j=1

|λ̂− λ∗|
λ∗(1− λ∗)

I(Xij ≤ x)

+Op(1/n)
1∑
i=0

ni∑
j=1

|ν̂>g(Xij; ψ̂, θ̂)|
1− λ∗

I(Xij ≤ x). (2.44)

By Condition C5,

∆n1 = sup
x
|F̂0(x)− F̌0(x)| ≤ Op(1)|λ̂− λ∗|+Op(1)

1

n

1∑
i=0

ni∑
j=1

{
‖ν̂‖R1/3(Xij)

}
,

which, together with γ̂ − γ∗ = Op(n
−1/2), implies that

∆n1 = Op(n
−1/2).

This completes the proof.

Lemma 2.5. Under the regularity conditions, for any c > 0 and i = 0, 1, we have

sup
x: |x−ξi,τ |<cn−1/2

|{F̂i(x)− F̂i(ξi,τ )} − {Fi(x)− Fi(ξi,τ )}| = Op(n
−3/4(log(n))1/2).

Proof. We prove this lemma for i = 0; the case i = 1 is equivalent. Without loss of
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generality we assume x ≥ ξ0,τ . Note that

|{F̂0(x)− F̂0(ξ0,τ )} − {F0(x)− F0(ξ0,τ )}|
≤ |{F̂0(x)− F̂0(ξ0,τ )} − {F̌0(x)− F̌0(ξ0,τ )}|

+|{F̌0(x)− F̌0(ξ0,τ )} − {F0(x)− F0(ξ0,τ )}|. (2.45)

Following the proof of Lemma A.2 in Chen and Liu (2013), we can verify that

sup
x: 0≤x−ξ0,τ<cn−1/2

|{F̌0(x)− F̌0(ξ0,τ )} − {F0(x)− F0(ξ0,τ )}| = Op(n
−3/4(log(n))1/2).

Consequently, we need to show only that the first term in (2.45) has a higher order than
n−3/4(log(n))1/2 uniformly in 0 ≤ x− ξ0,τ < cn−1/2.

With the technique used to obtain (2.44), we have

|{F̂0(x)− F̂0(ξ0,τ )} − {F̌0(x)− F̌0(ξ0,τ )}|

≤ Op(1/n)
1∑
i=0

ni∑
j=1

|λ̂− λ∗|
λ∗(1− λ∗)

I(ξ0,τ < Xij ≤ x)

+Op(1/n)
1∑
i=0

ni∑
j=1

‖ν̂‖R1/3(Xij)

1− λ∗
I(ξ0,τ < Xij ≤ x)

= Op(n
−1/2)

1

n

1∑
i=0

ni∑
j=1

{1 +R1/3(Xij)}I(ξ0,τ < Xij ≤ x).

By Condition C5,

E0{1 +R1/3(X)} <∞ and E1{1 +R1/3(X)} <∞,

then uniformly in x

E0[{1 +R1/3(X)}I(ξ0,τ < Xij ≤ x)] = Op(n
−1/2)

and
E1[{1 +R1/3(X)}I(ξ0,τ < Xij ≤ x)] = Op(n

−1/2).
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Therefore,

sup
x: 0≤x−ξ0,τ<cn−1/2

|{F̂0(x)− F̂0(ξ0,τ )} − {F̌0(x)− F̌0(ξ0,τ )}| = Op(n
−1).

This completes the proof.

We are now ready to prove Theorem 2.5. By Lemma 2.4, for i = 0, 1,

Fi(ξ̂i,τ )− Fi(ξi,τ ) = fi(ξi,τ )(ξ̂i,τ − ξi,τ ) +Op((ξ̂i,τ − ξi,τ )2)

= fi(ξi,τ )(ξ̂i,τ − ξi,τ ) +Op(n
−1). (2.46)

Note that F̂i(ξ̂i,τ ) = τ +Op(n
−1). Replacing x by ξ̂i,τ in Lemma 2.5 and using (2.46) yields

τ − F̂i(ξi,τ ) = fi(ξi,τ )(ξ̂i,τ − ξi,τ ) +Op(n
−3/4(log(n))1/2).

This completes the proof.

Proof of Theorem 2.6

The results in (a) and (b) are direct consequences of Theorems 4 and 5.

For (c): We note that

Ωls =

(
1/fl(ξl,τl) 0

0 1/fs(ξs,τs)

)
Σls(ξl,τl , ξs,τs)

(
1/fl(ξl,τl) 0

0 1/fs(ξs,τs)

)
.

Then Theorem 2.4(c) implies the results in (c). This completes the proof.

2.6.4 Additional simulation results

Table 2.9 presents the four quantile estimates under gamma distributions. Table 2.10
presents the three CIs for quantiles under gamma distributions. The general summary
statements are similar to those for normal distributions, and hence are omitted.
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Table 2.9: RB (%) and MSE (×100) for quantile estimators (gamma distributions).

Gam(8, 1.125) Gam(6, 1, 5)
(n0, n1) τ EMP EL DRM DRM-EE EMP EL DRM DRM-EE

(50, 50)

0.10 RB -2.25 -0.05 0.25 0.16 -1.40 0.71 1.26 0.65
MSE 29.71 25.04 23.26 20.29 31.70 26.96 26.66 22.88

0.25
RB 0.01 -0.04 0.08 0.03 0.75 0.30 0.47 -0.06
MSE 25.02 19.93 21.38 16.39 32.91 24.71 27.78 20.32

0.50
RB -1.03 -0.04 -0.15 -0.02 -0.74 -0.07 0.28 -0.08
MSE 30.99 23.20 25.91 17.32 40.46 25.74 35.52 19.68

0.75
RB -0.13 -0.02 -0.33 -0.13 -0.02 -0.20 0.15 0.12
MSE 48.41 35.85 42.11 28.23 65.70 43.10 57.48 33.81

0.90 RB -1.85 0.15 -0.47 -0.20 -1.93 0.01 0.12 0.14
MSE 99.19 86.91 83.12 62.28 133.79 110.01 120.28 86.79

(50, 150)

0.10 RB -2.25 0.05 0.41 0.32 -0.36 0.36 0.42 0.33
MSE 29.98 23.32 20.31 15.18 10.40 9.74 9.86 9.10

0.25
RB -0.02 0.01 0.03 -0.02 0.19 0.09 0.12 -0.03
MSE 25.11 17.45 19.28 11.05 10.58 9.27 9.89 8.61

0.50
RB -1.03 0.02 -0.18 -0.01 -0.21 0.01 0.12 -0.03
MSE 31.26 17.31 22.92 9.55 14.17 11.46 12.98 10.15

0.75
RB -0.15 0.04 -0.45 -0.16 -0.06 -0.18 0.02 -0.06
MSE 48.19 27.80 36.99 15.98 21.18 17.52 19.94 15.74

0.90 RB -1.83 0.42 -0.56 -0.09 -0.62 -0.05 0.11 0.03
MSE 99.26 74.83 74.58 43.00 44.60 40.83 40.68 36.31

(100, 100)

0.10 RB -1.03 0.07 0.41 0.32 -0.92 0.25 0.35 0.15
MSE 14.47 13.00 11.19 9.91 16.95 14.43 14.18 11.95

0.25
RB -0.54 0.06 0.06 0.03 -0.52 -0.02 0.10 -0.12
MSE 12.76 10.64 10.81 8.35 15.41 11.85 13.73 9.82

0.50
RB -0.48 0.03 -0.03 -0.02 -0.41 0.02 0.14 -0.03
MSE 15.70 11.67 12.92 8.89 20.57 13.41 17.58 9.84

0.75
RB -0.61 -0.04 -0.19 -0.14 -0.71 -0.17 0.04 -0.06
MSE 24.94 18.73 19.98 13.73 32.29 20.67 27.94 16.02

0.90 RB -0.94 0.05 -0.20 -0.09 -1.11 0.03 0.01 0.09
MSE 48.17 42.30 41.07 31.30 70.72 54.02 57.47 40.26

(200, 200)

0.10 RB -0.44 0.04 0.24 0.16 -0.50 0.15 0.15 0.07
MSE 7.03 6.34 5.54 4.80 8.17 7.06 6.80 5.81

0.25
RB -0.29 0.01 0.08 0.05 -0.31 -0.04 -0.01 -0.10
MSE 6.53 5.24 5.19 3.92 7.59 5.89 6.52 4.79

0.50
RB -0.23 0.02 -0.03 -0.03 -0.31 -0.11 -0.02 -0.07
MSE 7.83 5.84 6.15 4.25 9.90 6.03 8.39 4.76

0.75
RB -0.38 -0.12 -0.11 -0.10 -0.29 0.05 0.02 0.03
MSE 11.98 9.21 10.19 7.24 17.41 11.09 14.98 8.33

0.90 RB -0.48 0.00 -0.09 -0.07 -0.42 0.09 0.08 0.13
MSE 23.81 20.31 19.73 15.34 36.06 26.76 31.15 20.87

74



Table 2.10: CP (%) and AL for three 95% CIs of 100τ%-quantile (gamma distributions).

Gam(8, 1.125) Gam(6, 1.5)
(n0, n1) τ EMP DRM DRM-EE EMP DRM DRM-EE

(50,50)

0.10 CP 94.7 95.1 95.5 93.7 94.5 94.9
AL 2.10 1.89 1.77 2.24 2.10 1.93

0.25
CP 94.9 94.7 94.5 95.4 94.5 94.8
AL 2.03 1.82 1.60 2.25 2.04 1.73

0.50
CP 93.2 94.4 94.3 94.2 95.1 94.9
AL 2.06 1.99 1.62 2.33 2.31 1.74

0.75
CP 94.2 94.2 94.0 95.8 93.7 93.7
AL 2.86 2.55 2.10 3.46 3.04 2.29

0.90
CP 94.8 94.7 94.9 94.7 94.3 94.9
AL 4.17 3.73 3.27 5.03 4.68 3.80

(50,150)

0.10 CP 94.7 95.2 95.4 94.1 95.2 95.5
AL 2.10 1.77 1.56 1.29 1.24 1.20

0.25
CP 94.9 94.8 94.7 94.8 94.5 94.5
AL 2.03 1.72 1.33 1.28 1.22 1.14

0.50
CP 93.2 94.7 94.7 94.2 94.1 94.0
AL 2.06 1.86 1.20 1.37 1.37 1.22

0.75
CP 94.2 94.4 94.9 95.9 95.6 95.4
AL 2.86 2.41 1.58 1.88 1.79 1.60

0.90
CP 94.8 94.8 95.0 94.4 95.4 95.1
AL 4.17 3.44 2.60 2.72 2.68 2.47

(100,100)

0.10 CP 95.0 95.2 94.5 95.0 94.0 93.7
AL 1.53 1.33 1.24 1.66 1.47 1.35

0.25
CP 94.8 94.4 93.9 95.2 95.1 95.1
AL 1.42 1.28 1.12 1.58 1.44 1.22

0.50
CP 93.8 94.9 94.2 94.3 94.3 94.3
AL 1.48 1.39 1.14 1.73 1.61 1.22

0.75
CP 95.0 94.5 95.4 95.2 95.5 94.9
AL 1.99 1.78 1.46 2.33 2.11 1.60

0.90
CP 96.2 95.5 94.8 94.9 94.9 95.3
AL 3.01 2.57 2.25 3.58 3.15 2.60

(200,200)

0.10 CP 93.8 95.2 94.7 93.8 95.2 95.4
AL 1.02 0.94 0.87 1.10 1.03 0.95

0.25
CP 95.4 95.4 95.2 94.2 95.1 94.8
AL 0.99 0.90 0.79 1.10 1.01 0.85

0.50
CP 94.4 95.0 94.8 94.2 94.8 94.8
AL 1.05 0.98 0.81 1.21 1.13 0.85

0.75
CP 95.1 95.0 95.0 95.5 94.8 94.9
AL 1.37 1.26 1.04 1.61 1.49 1.13

0.90
CP 93.7 94.9 94.7 94.6 94.1 95.0
AL 1.94 1.78 1.55 2.30 2.17 1.80
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Chapter 3

Empirical Likelihood Inference on
the Youden Index and the Optimal
Cutoff Point under Density Ratio
Models

3.1 Introduction

ROC curves are widely used statistical tools in medical research to evaluate the discrim-
inatory effectiveness of a biomarker for distinguishing diseased individuals from healthy
ones. When the sampling distribution of the biomarker is continuous, the ROC curve
plots the proportion of true positive (sensitivity) versus proportion of false positive (one
minus specificity) across all possible choices of threshold values, called cutoff points, of
the biomarker. We refer to Zhou and McClish (2002), Pepe (2003), Krzanowski and Hand
(2009), Zou et al. (2011), Chen et al. (2016), and references therein for comprehensive
reviews and recent developments in ROC analysis.

The Youden index, first proposed by Youden (1950), is one of popular summary statis-
tics of the ROC curve. It is defined as the maximum of the sum of sensitivity and speci-
ficity minus one when the relative seriousness of false positive and false negative are treated
equally. The Youden index ranges from 0 to 1 with 1 indicating a complete separation of
distributions of biomarkers in healthy and diseased populations and 0 indicating a com-
plete overlap. It has the advantage of providing a criterion to choose the “optimal” cutoff
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point, which maximizes the sum of sensitivity and specificity minus one. See Fluss et al.
(2005) for more discussions on the advantages of the Youden index.

In medical researches, larger values of a biomarker are generally associated with dis-
eases. Therefore, an individual is classified as diseased when the biomarker of the individual
is greater than a given cutoff point. Let F0 and F1 denote the CDFs of the healthy pop-
ulation and the diseased population, respectively. The sensitivity and the specificity are
respectively equal to 1 − F1(x) and F0(x) for the given cutoff point x. Therefore, the
Youden index can be equivalently expressed as

J = maxx{F0(x)− F1(x)} = F0(c)− F1(c), (3.1)

where c is the corresponding optimal cutoff point.

In the literature, there are two types of methods, namely, the parametric methods and
the nonparametric methods, for estimating the Youden index J and the corresponding
optimal cutoff point c. For parametric methods, the original biomarkers or the biomarkers
after the Box-Cox transformation (Box and Cox, 1964) in the healthy and diseased groups
are assumed to follow the same parametric distribution family (Fluss et al., 2005; Ban-
tis et al., 2019). Nonparametric methods employ techniques such as the empirical CDF
(ECDF) method or the kernel method to obtain the estimators of F0 and F1, which are
then used to obtain the point estimators of J and c. More details about the ECDF-based
and kernel-based methods, and their modified versions can be found in Hsieh and Turnbull
(1996), Zhou and Qin (2012), and Shan (2015). Recently, Bantis et al. (2019) employed
hazard constrained natural spline (HCNS) as an alternative nonparametric approach to
estimate J and c. The delta and bootstrap methods (Schisterman and Perkins, 2007; Yin
and Tian, 2014; Bantis et al., 2019) and the empirical likelihood methods (Wang et al.,
2017b) are used to construct CIs for J and c.

In applications, the measurement of a biomarker may have a fixed and finite lower limit
of detection (LLOD). For instance, the quantitation of human immunodeficiency virus RNA
in human plasma has a LLOD 500 copies/ml with the Amplicor Monitor assay or has a
LLOD 50 copies/ml with the Ultrasensitive assay (Gulick et al., 2000). More examples of
LLODs can be found in Ruopp et al. (2008), Bantis et al. (2017), and references therein.
Ruopp et al. (2008) adapted the parametric method, the ECDF method, and the ROC-
generalized linear model (ROC-GLM) method (Pepe, 2000; Alonzo and Pepe, 2002; Pepe,
2003) to obtain point estimates and construct CIs for J and c in those situations.

Generally speaking, the parametric likelihood based estimators of (J, c) are quite effi-
cient, but may not be robust to model misspecifications (Fluss et al., 2005). Nonparametric
methods are free from model assumptions on F0 and F1, but the resulting estimators of
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(J, c), especially the estimator of c, may be inefficient. When there is no LLOD, Hsieh and
Turnbull (1996) showed that the convergence rates of the ECDF-based and the kernel-based
estimators of c are slower than n−1/2, where n is the total sample size.

In this chapter, we develop a semiparametric method that enables efficient estimation
of both J and c without making risky parametric assumptions on F0 and F1. In medical
researches, the two populations under consideration usually share certain common char-
acteristics (Qin and Zhang, 2003; Qin, 2017; Zhuang et al., 2019). To incorporate the
information from both samples, we suggest to use the DRM (1.1) to link F0 and F1. That
is, we postulate

dF1(x) = exp{α + β>q(x)}dF0(x) = exp{θ>Q(x)}dF0(x), (3.2)

where dFi(x) denotes the density of Fi(x) for i = 0, 1; θ = (α,β>)> are unknown param-
eters; and Q(x) = (1, q(x))> with a d-dimensional basis function q(x). As we discussed
in Section 1.3, the inference procedures based on DRMs are more efficient than the fully
nonparametric procedures. To the best of our knowledge, the inference procedures for
(J, c) under a DRM have not been studied in the existing literature. This chapter fills the
void.

The rest of the chapter is organized as follows. In Section 3.2, we propose the MELEs of
J and c under a DRM and study their asymptotic results. Confidence intervals of J and c
are then constructed based on the asymptotic properties. Simulation studies are presented
in Section 3.3 and a real-data application is given in Section 3.4. For the convenience of
presentation, detailed review of some existing methods, proofs, and additional simulation
results are deferred to Section 3.5.

3.2 Main Results

3.2.1 Point estimation of J and c under the DRM

Denote {X01, . . . , X0n0} and {X11, . . . , X1n1} as two independent random samples from the
healthy and diseased populations, respectively. Let f0 and f1 be the probability density
functions of F0 and F1, respectively. Following the definition of Youden index in (3.1), the
optimal cutoff point c satisfies f0(c) = f1(c), which together with (3.2) implies that

θ>Q(c) = 0. (3.3)
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The above equation serves as the basis for estimating c.

In the following, we focus on cases where the biomarker has a LLOD, denoted as r,
and develop estimators for (J, c). Analysis of data without a LLOD amounts to setting
r = −∞. Let m0 and m1 be the numbers of observations above the LLOD r in the
healthy and diseased groups, respectively. Without loss of generality, we assume the first
mi observations in sample i, Xi1, . . . , Ximi are above the LLOD. Let ζ0 = P (x01 ≥ r) and
ζ1 = P (x11 ≥ r).

We now discuss the maximum empirical likelihood procedure for estimating the un-
known parameters and functions. By the empirical likelihood principle (Owen, 2001) and
under the DRM (3.2), the full likelihood can be written as

Ln =
1∏
i=0

[
(1− ζi)ni−mi

mi∏
j=1

dFi(Xij)

]

=

{
1∏
i=0

(1− ζi)ni−mi
}[

1∏
i=0

mi∏
j=1

pij

m1∏
j=1

exp{θ>Q(X1j)}

]
,

where pij = dF0(Xij) for i = 0, 1, j = 1, . . . ,mi and they satisfy the following constraints:

pij ≥ 0, 0 <
1∑
i=0

mi∑
j=1

pij = ζ0 ≤ 1, 0 <
1∑
i=0

mi∑
j=1

pij exp{θ>Q(Xij)} = ζ1 ≤ 1. (3.4)

Let P = {pij}. The MELEs of (θ, ζ0, ζ1,P ), denoted as (θ̂, ζ̂0, ζ̂1, P̂ ), are defined as the
maximizer of Ln subject to the constraints in Equation (3.4). It is shown by Cai and Chen
(2018) that

ζ̂k = mk/nk, k = 0, 1 ,

and the θ̂ maximizes the following dual profile empirical log-likelihood function

`n(θ) =

m1∑
j=1

{θ>Q(X1j)} −
1∑
i=0

mi∑
j=1

log
[
1 + ρ exp{θ>Q(Xij)}

]
,

where ρ = n1/n0. That is, θ̂ = arg max
θ

`n(θ). The MELEs of pij’s are given by

p̂ij = n−1
0

[
1 + ρ exp{θ̂

>
Q(Xij)}

]−1

, i = 0, 1, j = 1, · · · ,mi.
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It follows that, for any x ≥ r, the MELEs of F0 and F1 are given by

F̂0(x) = (1− ζ̂0) +
1

n0

1∑
i=0

mi∑
j=1

1

1 + ρ exp{θ̂
>
Q(Xij)}

I(r ≤ Xij ≤ x) ,

F̂1(x) = (1− ζ̂1) +
1

n0

1∑
i=0

mi∑
j=1

exp{θ̂
>
Q(Xij)}

1 + ρ exp{θ̂
>
Q(Xij)}

I(r ≤ Xij ≤ x) ,

where I(·) is the indicator function.

With the MELE θ̂ and Equation (3.3), the MELE of the optimal cutoff point c, denoted
as ĉ, can be obtained as the solution to the equation

θ̂
>
Q(x) = 0. (3.5)

Let Xmin and Xmax be the minimum and maximum values of the observations in the two
samples which are above the LLOD, respectively. If multiple solutions exist for (3.5) in
[Xmin, Xmax], we choose the one that attains the maximum of F̂0(x) − F̂1(x) as ĉ. If a
solution to (3.5) does not exist in the range [Xmin, Xmax], we set ĉ to be

ĉ = arg max
x∈{Xij : i=0,1, j=1,...,mi}

{F̂0(x)− F̂1(x)}. (3.6)

The MELE Ĵ of J is then given by Ĵ = F̂0(ĉ)− F̂1(ĉ).

We conclude this subsection with a brief discussion on ĉ. Let c∗ be the true value of
c. According to the proof of Lemma 3.1 in Section 3.5.2, as n → ∞, with probability
approaching 1, Equation (3.5) has a solution in the neighbourhood of c∗. However, when
n is not large and c∗ is close to the LLOD, Equation (3.5) may not have a solution in the
range [Xmin, Xmax]. In such situations, Equation (3.6) ensures that ĉ is well defined.

3.2.2 Asymptotic properties

In this subsection, we study the asymptotic properties of the MELEs (Ĵ , ĉ) described in
Section 3.2.1. We first introduce some further notation. Let θ∗ be the true value of θ and
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ω(x) = exp{θ∗>Q(x)}. Note that Q(x) = (1, q(x)>)>. For x ≥ r, define

A0(x) =

∫ x

r

ω(x)

1 + ρω(x)
dF0(x),

A1(x) =

∫ x

r

ω(x)

1 + ρω(x)
q(x)dF0(x),

A2(x) =

∫ x

r

ω(x)

1 + ρω(x)
q(x)q(x)>dF0(x).

Further, let A0 = A0(∞), A1 = A1(∞), A2 = A2(∞), and

A =

(
A0 A>1
A1 A2

)
, S =

ρ

1 + ρ
A, V = S − ρ

(
A0

A1

)
(A0,A

>
1 ).

Define q̇(x) = dq(x)/dx.

Theorem 3.1. Let J∗ be the true value of J . Suppose the regularity conditions in Section
3.5.2 are satisfied and c∗ > r. As the total sample size n = n0 + n1 goes to infinity, we
have
(a)
√
n(ĉ− c∗)→ N(0, σ2

c ) in distribution, where

σ2
c =

Q(c∗)>S−1V S−1Q(c∗)

{β∗>q̇(c∗)}2
(3.7)

and β∗ is the true value of β;

(b)
√
n(Ĵ − J∗)→ N(0, σ2

J) in distribution, where

σ2
J = (ρ+ 1){F0(c∗)− F 2

0 (c∗)}+
ρ+ 1

ρ
{F1(c∗)− F 2

1 (c∗)}

−(ρ+ 1)3

ρ

{
A0(c∗)−

(
A0(c∗)
A1(c∗)

)>
A−1

(
A0(c∗)
A1(c∗)

)}
. (3.8)

We provide some comments on the results of Theorem 3.1. Let (ĴE, ĉE) and (ĴK , ĉK) be
the ECDF-based and kernel-based estimators of (J, c), respectively. First, the estimators
Ĵ and ĉ both reach the convergence rates of the parametric likelihood based estimators.
When there is no LLOD or r = −∞, the convergence rate of ĉ is faster than ĉE and ĉK .
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Second, when there is no LLOD or r = −∞, Hsieh and Turnbull (1996) showed that

nE{(ĴE − J∗)2} = σ2
N +O(n−1/3), nE{(ĴK − J∗)2} = σ2

N − γn−v{1 + o(1)}

for some γ > 0, where

σ2
N = (ρ+ 1){F0(c∗)− F 2

0 (c∗)}+
ρ+ 1

ρ
{F1(c∗)− F 2

1 (c∗)}.

Here the two bandwidths for the kernel method have the order n−v for some 0 < v < 1/3.
According to Theorem 1 in Qin and Zhang (1997), σ2

N − σ2
J ≥ 0. Hence, when n is large,

the asymptotic mean square error of Ĵ is smaller than those of ĴE and ĴK .

3.2.3 Confidence intervals on J and c under the DRM

Replacing (θ∗, J∗, c∗, F0) in σ2
J and σ2

c by their respective estimators (θ̂, Ĵ , ĉ, F̂0), we obtain
the estimators (σ̂2

J , σ̂
2
c ) for (σ2

J , σ
2
c ). It can be shown that σ̂2

J and σ̂2
c are both consistent.

Theorem 3.2. Under the conditions of Theorem 3.1, we have

σ̂2
J → σ2

J and σ̂2
c → σ2

c

in probability as n→∞.

Because of the asymptotic normality of ĉ presented in Theorem 3.1 and the consistency
of σ̂2

c , the quantity
√
n(ĉ − c∗)/σ̂c is asymptotically pivotal, which leads to the following

Wald-type CI for c at level 1− a:

Ic =
[
ĉ− z1−a/2σ̂c/

√
n, ĉ+ z1−a/2σ̂c/

√
n
]
,

where z1−a/2 is the 100(1− a/2)th quantile of the standard normal distribution.

We can similarly construct a Wald-type CI for J . However, the Wald-type CI for J
based on Ĵ directly is not range preserving. When J is close to the boundary 0 or 1, the
lower or upper bound of the Wald-type CIs could lie outside the range [0, 1]. Naturally,
we consider a logit transformation on Ĵ when constructing the CI for J . The resulting
CI for J is range-preserving. Further, our simulation experience indicates that the logit
transformation on Ĵ leads to a CI for J with better coverage accuracy, especially when J∗

is close to 0 or 1. More specifically, using the results in Theorems 3.1 and 3.2, it can be
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shown that
√
n{logit(Ĵ)− logit(J∗)} → N

(
0,

σ2
J

J∗2(1− J∗)2

)
in distribution as n → ∞, where logit(x) = log{x/(1 − x)} for 0 < x < 1. Hence√
nĴ(1 − Ĵ){logit(Ĵ) − logit(J∗)}/σ̂J is also asymptotically pivotal. This suggests the

following CI for J :

IJ =

[
expit

{
logit(Ĵ)−

z1−a/2σ̂J√
nĴ(1− Ĵ)

}
, expit

{
logit(Ĵ) +

z1−a/2σ̂J√
nĴ(1− Ĵ)

}]
,

where expit(x) = exp(x)/{1 + exp(x)}.

3.3 Simulation Studies

3.3.1 Candidate methods

In this section, we report results from simulation studies to compare the proposed point
estimators and CIs of J and c with the following candidate methods.

– The Box-Cox method in Bantis et al. (2019), where the corresponding point estima-
tors and CIs of J and c are denoted as ĴB, ĉB, IJB, and IcB, respectively.

– The ROC-GLM method in Ruopp et al. (2008), where the corresponding point esti-
mators and CIs of J and c are denoted as ĴG, ĉG, IJG, and IcG, respectively.

– The ECDF-based method, where the corresponding point estimators and CIs of J
and c are denoted as ĴE, ĉE, IJE, and IcE, respectively.

– The kernel-based method in Bantis et al. (2019), where the corresponding point
estimators and CIs of J and c are denoted as ĴK , ĉK , IJK , and IcK , respectively.

– The HCNS method in Bantis et al. (2019), where the corresponding point estimators
and CIs of J and c are denoted as ĴH , ĉH , IJH , and IcH , respectively.

For all the above candidate methods, except for IJB, which is obtained via the delta
method, the CIs are constructed using the nonparametric bootstrap percentile method.
Further details on these methods are deferred to Section 3.5.1.

83



When there is no LLOD, we compare the proposed method and all the candidate
methods listed above. When there is a fixed and finite LLOD, to the best of our knowledge,
the kernel-based method and the HCNS method have not been explored in the literature,
and hence we do not include these two methods in the comparisons.

3.3.2 Simulation setup

We conduct simulation studies under the following two distributional settings from Fluss
et al. (2005):

(1) f0 ∼ Gam(2, 0.5) and f1 ∼ Gam(2, η);

(2) f0 ∼ LN(2.5, 0.09) and f1 ∼ LN(µ, 0.25).

Here Gam(κ, η) denotes the gamma distribution with shape parameter κ and rate parame-
ter η and LN(µ, σ2) denotes the lognormal distribution with mean µ and variance σ2, both
with respect to the log scale. The proposed estimators are calculated under the correctly
specified q(x). For the setting with gamma distributions, we have q(x) = x, and for the
setting with lognormal distributions, we have q(x) = (log x, log2 x)>.

For each setting, we choose four values of η or µ such that the corresponding Youden
indexes equal 0.2, 0.4, 0.6, and 0.8. The details are given in Table 3.1. For the LLOD,
we consider three values: −∞, 15% quantile of F0, and 30% quantile of F0. Note that
when the LLOD equals −∞, there is no LLOD. For each simulation scenario, we consider
five sample size combinations: (n0, n1) = (50, 50), (100, 100), (200, 200), (150, 50), and
(50, 150), and results are based on 1,000 repeated simulation runs.

Table 3.1: Parameter values in simulation studies.

Distribution J η/µ c F0(c) F1(c)

Gamma

0.20 0.34 4.79 0.69 0.49
0.40 0.23 5.75 0.78 0.38
0.60 0.14 7.02 0.86 0.26
0.80 0.07 9.04 0.94 0.14

Lognormal

0.2 2.62 16.92 0.86 0.66
0.40 2.87 16.54 0.85 0.45
0.60 3.14 17.30 0.88 0.28
0.80 3.50 19.12 0.93 0.13
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The simulation results from different simulation scenarios demonstrate similar patterns.
To save space, we only report the simulation results under the setting with gamma dis-
tribution, without LLOD and with the LLOD equal to the 15% quantile of F0. Other
simulation results are provided in Section 3.5.3.

3.3.3 Comparison for point estimators

We first examine the point estimators of (J, c). The performance of a point estimator is
evaluated through the RB and the MSE. The simulation results are presented in Tables 3.2–
3.5.

When there is no LLOD, major observations from Tables 3.2 and 3.3 can be summarized
as follows. For estimating the Youden index J , the ECDF-based estimator ĴE has the
largest RBs and MSEs in almost all the cases. We also notice that when J = 0.2, the RBs
of ĴB, ĴG, and ĴH have greater than 5% RBs, which may not be acceptable, especially when
one of n0 and n1 is small. The estimators Ĵ , ĴB, ĴG, and ĴK have comparable performance
in terms of MSE, which are uniformly better than ĴE and ĴH . When sample sizes are
small, the kernel-based estimator ĴK has slightly smaller MSE than Ĵ ; when the sample
size increases, the proposed estimator Ĵ becomes more efficient in terms of MSE. This is
in line with our discussion after Theorem 3.1.

For estimating the optimal cutoff point c, the proposed estimator ĉ outperforms other
estimators significantly for the majority of cases. The parametric estimator ĉB is most
competitive. It has larger MSEs than ĉ when J = 0.2, 0.4, 0.6 and has slightly smaller
MSEs than ĉ when J = 0.8. Among the other four estimators, the estimator ĉE has the
worst performance and ĉG shows the best performance in most cases. The performances
of ĉK and ĉH are mixed. There is no obvious trend that one has dominating performance
over others.

When the LLOD equals 15% quantile of F0, Tables 3.4 and 3.5 show that the general
trend for comparing the proposed method with the Box-Cox method, ROC-GLM method,
and ECDF-based method are similar to the case when there is no LLOD. It is worth
mentioning that as the LLOD increases, the MSEs of all estimators increase, due to the
loss of information under censoring. The estimation of the optimal cutoff point c is more
sensitive to the increase of LLOD, especially when J is small.
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Table 3.2: RB (%) and MSE (×100) for point estimators of J when there is no LLOD
(gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 4.26 0.61 1.74 0.31 0.73 0.14 3.35 0.39 2.01 0.42

ĴB 8.53 0.62 4.17 0.32 2.48 0.15 6.61 0.41 5.40 0.43

ĴG 10.08 0.63 5.03 0.33 2.84 0.15 8.16 0.41 6.04 0.45

ĴE 40.20 1.29 26.63 0.64 17.72 0.30 33.05 0.86 32.69 0.89

ĴK 9.45 0.66 5.28 0.35 3.07 0.17 6.12 0.45 8.03 0.47

ĴH 17.27 0.78 7.96 0.37 5.39 0.22 12.91 0.49 9.72 0.55

0.4

Ĵ 2.43 0.57 0.95 0.29 0.41 0.13 1.62 0.35 1.18 0.40

ĴB 4.47 0.58 2.32 0.29 1.58 0.14 3.37 0.36 2.81 0.40

ĴG 3.38 0.56 1.63 0.29 1.07 0.14 2.40 0.34 2.37 0.42

ĴE 16.42 1.06 10.62 0.53 6.78 0.24 13.36 0.68 12.57 0.74

ĴK 2.70 0.57 1.08 0.31 0.49 0.15 1.57 0.38 1.86 0.41

ĴH 4.68 0.68 1.33 0.33 0.96 0.18 3.15 0.40 1.71 0.52

0.6

Ĵ 1.61 0.45 0.56 0.24 0.27 0.11 0.93 0.26 0.81 0.34

ĴB 2.95 0.44 1.58 0.22 1.13 0.11 2.13 0.26 1.87 0.32

ĴG 1.14 0.42 0.37 0.23 0.30 0.11 0.42 0.25 1.16 0.35

ĴE 8.89 0.76 5.38 0.37 3.71 0.19 7.14 0.48 6.73 0.56

ĴK 0.04 0.39 -0.63 0.22 -0.61 0.11 -0.07 0.27 -0.53 0.29

ĴH 1.78 0.61 0.16 0.28 0.05 0.15 0.96 0.31 0.39 0.47

0.8

Ĵ 1.06 0.26 0.38 0.14 0.16 0.06 0.55 0.13 0.63 0.21

ĴB 1.56 0.22 0.81 0.11 0.60 0.05 1.07 0.12 0.96 0.17

ĴG -0.26 0.26 -0.36 0.14 -0.32 0.07 -0.63 0.15 0.25 0.22

ĴE 4.51 0.39 2.86 0.20 1.94 0.1 3.73 0.24 3.53 0.30

ĴK -2.38 0.24 -2.40 0.15 -2.00 0.08 -1.74 0.14 -2.88 0.21

ĴH 1.55 0.40 0.71 0.19 0.75 0.11 1.01 0.19 0.82 0.32
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Table 3.3: RB (%) and MSE (×100) for point estimators of c when there is no LLOD
(gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ -0.39 12.22 -0.15 6.09 -0.03 2.78 -0.40 8.56 -0.02 7.68
ĉB -3.03 81.16 -1.97 41.56 -2.33 21.17 -1.83 56.07 -2.85 56.79
ĉG -6.33 108.4 -2.55 56.42 -2.20 29.56 -4.64 70.96 -1.79 73.30
ĉE -0.92 249.25 0.49 170.90 -0.76 116.8 -0.78 201.93 1.89 223.79
ĉK 16.99 405.52 10.39 164.68 5.99 91.84 13.63 287.86 13.00 254.68
ĉH 1.75 237.90 3.16 171.47 2.71 110.91 -1.09 179.73 7.6 243.96

0.4

ĉ -0.32 18.88 -0.13 9.35 0.00 4.27 -0.42 13.68 0.02 11.05
ĉB -3.25 42.84 -2.37 21.78 -2.22 11.46 -2.58 28.62 -2.53 26.45
ĉG -5.73 80.28 -3.26 40.06 -2.15 19.16 -4.16 46.09 -1.75 37.58
ĉE -2.89 160.26 -0.23 126.83 -0.45 75.26 -2.66 150.21 1.51 156.93
ĉK 7.67 109.91 6.77 74.57 4.68 39.14 6.38 96.15 7.36 77.39
ĉH 0.40 186.56 1.30 110.77 1.12 68.91 -0.36 136.04 1.29 147.84

0.6

ĉ -0.35 32.29 -0.18 15.91 0.01 7.38 -0.53 23.77 0.06 18.20
ĉB -2.75 43.66 -2.04 21.86 -1.76 10.88 -2.45 30.09 -1.89 23.40
ĉG -5.87 108.83 -3.71 54.12 -2.30 26.28 -3.94 52.16 -2.82 45.86
ĉE -2.29 161.37 -0.67 118.08 0.16 74.77 -2.40 147.73 1.22 146.35
ĉK 7.57 119.52 6.43 74.85 5.08 42.21 5.93 99.47 7.62 77.68
ĉH 0.40 174.95 0.78 82.95 0.60 42.69 0.16 100.73 0.25 127.29

0.8

ĉ -0.41 71.84 -0.31 36.11 0.02 17.53 -0.80 52.89 0.20 41.00
ĉB -1.53 60.09 -1.11 30.31 -0.78 13.91 -1.71 46.46 -0.66 31.67
ĉG -7.14 237.07 -4.14 111.72 -2.58 56.25 -3.34 99.57 -4.87 98.48
ĉE -3.17 236.85 -1.72 159.92 -1.24 107.54 -4.03 195.30 1.09 197.79
ĉK 7.09 184.22 6.21 113.61 5.07 65.86 5.56 152.15 7.02 107.26
ĉH -2.30 169.65 -2.76 104.87 -2.90 56.83 -3.58 116.50 -1.74 146.35
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Table 3.4: RB (%) and MSE (×100) for point estimators of J when the LLOD equals 15%
quantile of F0 (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 5.92 0.61 2.49 0.31 1.11 0.14 4.62 0.40 2.85 0.42
ĴB 9.59 0.64 4.75 0.32 2.85 0.15 7.38 0.41 5.85 0.43
ĴG 7.58 0.69 2.67 0.36 -0.34 0.17 5.99 0.46 3.50 0.50
ĴE 40.17 1.29 26.63 0.64 17.72 0.30 33.04 0.86 32.69 0.89

0.4

Ĵ 2.69 0.57 1.10 0.30 0.51 0.13 1.88 0.36 1.31 0.40
ĴB 4.92 0.59 2.59 0.29 1.75 0.14 3.59 0.36 3.12 0.41
ĴG 1.50 0.61 -0.21 0.32 -1.20 0.15 0.68 0.39 -0.01 0.46
ĴE 16.42 1.06 10.62 0.53 6.78 0.24 13.36 0.68 12.57 0.74

0.6

Ĵ 1.74 0.46 0.6 0.24 0.29 0.11 1.04 0.27 0.85 0.34
ĴB 3.17 0.44 1.70 0.22 1.19 0.11 2.16 0.27 2.09 0.32
ĴG 0.11 0.47 -0.64 0.26 -1.04 0.12 -0.56 0.29 -0.35 0.38
ĴE 8.89 0.76 5.38 0.37 3.71 0.19 7.14 0.48 6.73 0.56

0.8

Ĵ 1.10 0.26 0.40 0.14 0.16 0.06 0.58 0.14 0.63 0.21
ĴB 1.58 0.22 0.80 0.11 0.56 0.05 1.01 0.12 1.02 0.17
ĴG -0.60 0.30 -0.65 0.16 -0.80 0.08 -0.94 0.17 -0.39 0.24
ĴE 4.51 0.39 2.86 0.20 1.94 0.10 3.73 0.24 3.53 0.30

Table 3.5: RB (%) and MSE (×100) for point estimators of c when the LLOD equals 15%
quantile of F0 (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ -1.58 60.04 -0.86 24.25 -0.44 10.84 -1.53 38.67 -0.60 66.67
ĉB 1.04 148.39 0.49 51.29 -0.30 24.87 0.29 66.35 -0.07 67.79
ĉG 6.30 168.58 8.65 81.29 8.51 48.7 6.72 90.4 9.00 102.15
ĉE -0.65 257.51 0.49 170.8 -0.76 116.8 -0.79 202.38 1.89 223.79

0.4

ĉ -0.59 23.70 -0.24 11.48 -0.04 5.58 -0.67 15.51 -0.15 15.28
ĉB -0.82 47.68 -0.54 24.65 -0.57 12.19 -1.06 31.41 -0.33 29.38
ĉG 2.35 75.60 5.21 47.69 5.98 30.66 4.04 51.81 6.34 54.94
ĉE -2.89 160.26 -0.23 126.83 -0.45 75.26 -2.66 150.21 1.51 156.93

0.6

ĉ -0.39 32.90 -0.22 16.35 -0.01 7.71 -0.63 23.81 0.01 19.68
ĉB -1.05 48.30 -0.81 23.92 -0.64 11.46 -1.48 31.25 -0.27 26.75
ĉG 0.18 91.92 2.33 51.66 3.77 29.23 2.04 52.36 3.34 50.15
ĉE -2.29 161.37 -0.67 118.08 0.16 74.77 -2.40 147.73 1.22 146.35

0.8

ĉ -0.45 72.29 -0.34 36.11 0.02 17.60 -0.87 53.45 0.17 41.41
ĉB -0.65 66.17 -0.46 32.77 -0.17 15.11 -1.24 48.59 0.25 35.50
ĉG -3.53 193.47 -0.26 92.54 1.59 52.64 0.28 91.43 -0.43 99.37
ĉE -3.17 236.85 -1.72 159.92 -1.24 107.54 -4.03 195.30 1.09 197.79
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3.3.4 Comparison for confidence intervals

We now examine the behaviour of 95% CIs of J and c. The performance of a CI is evaluated
by the CP and the AL. The simulation results are presented in Tables 3.6–3.9.

Table 3.6: CP (%) and AL for CIs of J when there is no LLOD (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 94.1 0.32 94.9 0.22 96.4 0.15 93.6 0.25 94.7 0.26
IJB 94.5 0.30 93.9 0.21 95.2 0.15 92.7 0.24 94.6 0.25
IJG 92.6 0.29 93.7 0.21 94.7 0.15 91.9 0.23 93.7 0.25
IJE 70.2 0.30 72.1 0.22 78.0 0.16 66.7 0.24 72.6 0.26
IJK 93.6 0.30 93.7 0.23 94.7 0.16 92.3 0.25 93.7 0.26
IJH 92.1 0.31 94.0 0.23 94.1 0.17 91.1 0.25 93.3 0.27

0.4

IJ 95.4 0.28 94.9 0.20 96.0 0.14 93.3 0.22 94.3 0.24
IJB 95.1 0.28 94.2 0.20 95.3 0.14 93.1 0.22 94.2 0.24
IJG 93.1 0.29 93.6 0.20 94.7 0.14 91.6 0.22 92.9 0.25
IJE 79.2 0.30 80.5 0.22 83.5 0.16 75.1 0.23 80.4 0.26
IJK 93.7 0.29 93.1 0.21 95.1 0.15 92.7 0.23 93.5 0.24
IJH 93.7 0.31 95.0 0.22 94.7 0.16 93.3 0.23 96.5 0.28

0.6

IJ 95.6 0.25 94.3 0.18 95.0 0.13 94.2 0.19 94.0 0.22
IJB 95.8 0.25 94.2 0.18 95.1 0.13 93.8 0.19 94.2 0.22
IJG 93.3 0.26 93.5 0.18 94.8 0.13 92.5 0.19 92.6 0.23
IJE 79.4 0.26 80.7 0.19 85.3 0.14 75.7 0.20 81.8 0.23
IJK 94.4 0.24 94.1 0.17 95.4 0.13 92.4 0.19 93.5 0.21
IJH 94.0 0.30 95.3 0.21 95.3 0.15 92.6 0.21 95.8 0.27

0.8

IJ 95.1 0.20 94.0 0.14 95.0 0.10 95.1 0.14 95.9 0.18
IJB 96.0 0.18 94.1 0.13 95.3 0.09 94.1 0.13 95.2 0.16
IJG 92.7 0.20 94.0 0.14 95.2 0.10 93.3 0.14 92.2 0.18
IJE 81.6 0.19 85.5 0.14 85.9 0.10 76.1 0.14 83.5 0.17
IJK 95.0 0.17 91.8 0.13 91.0 0.09 93.6 0.13 92.3 0.15
IJH 86.9 0.23 95.8 0.17 95.5 0.12 92.8 0.17 92.2 0.22

We first summarize the findings on the CIs for the Youden index J . The CPs of IJE
have low coverage probabilities and are not acceptable regardless of the value of LLODs.
The proposed CI and the CI based on the Box-Cox method, IJ and IJB, have comparable
and most stable performance in almost all cases. The ROC-GLM based CI, IJG, performs
quite well in general but has undercoverage issues in some cases. When there is no LLOD,
the two confidence intervals IJK and IJH have similar issues as IJG with undercoverage
problems.

We next discuss the findings on the CIs for the optimal cutoff point c. When there is no
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Table 3.7: CP (%) and AL for CIs of c when there is no LLOD (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 94.1 1.31 94.1 0.94 95.2 0.67 94.2 1.11 94.8 1.05
IcB 92.8 7.26 93.9 2.64 93.8 1.77 93.7 3.25 92.6 3.25
IcG 94.0 4.50 94.7 3.02 94.3 2.07 93.7 3.43 94.8 3.47
IcE 97.0 5.36 96.5 4.65 96.8 3.89 95.6 4.83 97.2 5.05
IcK 95.6 7.02 94.3 5.70 95.0 3.89 95.2 6.68 92.6 6.36
IcH 97.2 5.98 97.9 4.79 95.8 3.67 96.4 4.59 95.4 5.80

0.4

Ic 93.9 1.63 94.5 1.16 95.6 0.82 93.3 1.40 94.5 1.27
IcB 92.0 2.38 92.0 1.72 92.5 1.23 92.5 1.98 92.1 1.83
IcG 91.5 3.13 94.0 2.30 93.4 1.63 92.2 2.36 93.4 2.31
IcE 95.1 4.52 96.6 3.80 95.0 3.18 94.2 4.02 96.8 4.32
IcK 93.9 4.23 93.2 2.91 93.4 2.19 94.3 3.55 92.5 3.13
IcH 97.0 4.87 95.6 3.83 94.6 2.92 94.4 3.97 97.1 4.58

0.6

Ic 93.2 2.13 94.4 1.52 95.0 1.08 93.4 1.85 94.0 1.63
IcB 91.5 2.36 92.1 1.70 92.2 1.21 91.4 1.99 92.3 1.76
IcG 90.2 3.57 90.8 2.59 92.4 1.86 90.9 2.57 91.1 2.44
IcE 94.5 4.43 95.7 3.76 97.0 3.05 92.2 3.96 95.9 4.21
IcK 92.7 3.60 90.9 2.73 90.0 2.04 92.7 3.31 87.8 2.65
IcH 96.7 4.80 96.6 3.76 96.4 2.78 94.7 3.80 97.6 4.50

0.8

Ic 92.9 3.25 94.3 2.31 95.0 1.65 93.8 2.78 93.7 2.46
IcB 91.9 2.87 93.3 2.03 94.5 1.44 90.6 2.49 93.8 2.14
IcG 87.8 5.18 91.5 3.81 90.0 2.71 92.0 3.65 86.6 3.27
IcE 88.8 4.93 93.7 4.28 93.9 3.55 84.5 4.42 94.5 4.78
IcK 91.3 4.34 90.9 3.29 89.7 2.49 92.1 4.06 88.8 3.16
IcH 95.6 4.74 97.3 3.99 94.8 2.91 93.6 3.97 98.7 4.74

LLOD, the proposed CI Ic has the most stable performance and its CPs are reasonably
close to 95% in almost all scenarios. The CPs of IcE fluctuate around the nominal level
95% while undercoverage problems are associated with the other four CIs IcB, IcG, IcK ,
and IcH . When there is a fixed and finite LLOD, the ALs of all CIs increase. The proposed
CI Ic and the ECDF-based CI IcE tend to have an issue with overcoverage, while the
CI based on the Box-Cox method has severe undercoverage problem and the ROC-GLM
based CI IcG also has the same issue for some cases. When J = 0.4, 0.6, 0.8, the proposed
CI Ic becomes quite stable in almost all cases. The performance of IcB improves as J
increases. The CPs of IcG are reasonably close to the nominal level. However, IcG has
longer ALs compared to Ic.
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Table 3.8: CP (%) and AL for CIs of J when the LLOD equals 15% quantile of F0 (gamma
distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 93.4 0.31 94.2 0.21 96.0 0.15 93.8 0.25 94.3 0.25
IJB 94.3 0.30 93.9 0.21 95.2 0.15 92.6 0.24 94.5 0.25
IJG 93.2 0.31 94.0 0.23 94.7 0.16 92.9 0.25 93.2 0.26
IJE 64.8 0.28 68.2 0.21 73.4 0.15 61.4 0.23 65.0 0.24

0.4

IJ 95.3 0.28 94.9 0.20 95.8 0.15 93.7 0.22 94.5 0.24
IJB 95.4 0.28 94.0 0.20 95.4 0.14 93.3 0.22 94.6 0.24
IJG 94.6 0.30 94.8 0.22 95.2 0.15 92.7 0.24 93.3 0.26
IJE 77.4 0.28 78.5 0.21 81.7 0.15 73.8 0.22 78.1 0.25

0.6

IJ 95.7 0.26 94.6 0.18 94.7 0.13 94.0 0.19 94.2 0.22
IJB 95.7 0.25 94.2 0.18 94.7 0.13 93.8 0.19 94.2 0.22
IJG 94.3 0.27 93.9 0.19 94.5 0.14 92.9 0.20 93.4 0.23
IJE 77.6 0.25 79.3 0.19 82.8 0.14 74.3 0.19 80.3 0.22

0.8

IJ 95.5 0.20 94.2 0.14 95.3 0.10 94.9 0.14 95.7 0.18
IJB 96.2 0.18 94.8 0.13 94.6 0.09 94.6 0.13 95.2 0.16
IJG 93.7 0.21 93.5 0.15 95.4 0.11 94.3 0.15 93.8 0.19
IJE 80.2 0.18 85.3 0.14 86.4 0.10 75.1 0.14 83.1 0.17

Table 3.9: CP (%) and AL for CIs of c when the LLOD equals 15% quantile of F0 (gamma
distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 97.5 5.97 97.5 1.95 96.5 1.26 96.9 2.73 96.8 4.02
IcB 83.6 5.06 83.7 2.10 81.8 1.43 77.4 2.35 84.8 2.74
IcG 95.3 4.83 93.1 3.27 89.5 2.23 91.1 3.80 91.9 3.77
IcE 96.6 5.07 95.4 4.41 96.9 3.75 94.6 4.55 96.4 4.82

0.4

Ic 95.3 1.87 95.0 1.32 95.7 0.93 94.0 1.53 95.5 1.52
IcB 86.8 2.19 87.9 1.58 87.8 1.12 83.5 1.58 91.3 1.84
IcG 94.3 3.20 92.7 2.36 87.3 1.68 91.2 2.48 92.0 2.41
IcE 95.1 4.43 95.9 3.74 95.3 3.14 93.6 3.93 97.3 4.27

0.6

Ic 93.4 2.17 94.3 1.55 95.3 1.10 93.5 1.85 94.3 1.70
IcB 91.0 2.39 91.3 1.71 92.1 1.22 87.8 1.81 93.0 1.91
IcG 94.0 3.59 94.2 2.62 92.3 1.88 93.7 2.65 93.6 2.51
IcE 94.4 4.40 95.5 3.72 96.5 3.04 91.6 3.94 95.9 4.17

0.8

Ic 92.9 3.24 94.4 2.31 94.9 1.65 93.2 2.78 93.7 2.48
IcB 92.8 2.99 94.9 2.14 94.7 1.52 91.1 2.51 94.2 2.27
IcG 92.5 5.28 95.0 3.79 94.8 2.71 94.2 3.74 92.8 3.39
IcE 88.5 4.90 93.5 4.26 94.3 3.54 84.7 4.39 94.3 4.76
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3.4 Real Data Analysis

In this section, we illustrate the performance of the proposed method by analyzing a dataset
on Duchenne Muscular Dystrophy (DMD). The DMD is a genetic disorder characterized
by progressive muscle degeneration and weakness. A particular gene on the X chromosome,
when mutated, leads to DMD. This disease is transmitted from a mother to her children
genetically. Affected male offsprings usually develop the disease and die at a young age
while the mutated gene does not affect the health of female offsprings. Therefore, detection
of potential affected females is of great interest.

Percy et al. (1982) pointed out that carriers of DMD tend to exhibit high levels of certain
biomarkers even though they do not show any symptoms. Andrews and Herzberg (2012)
collected the complete data of four biomarkers, namely, creatine kinase (CK), hemopexin
(H), lactate dehydroginase (LD), and pyruvate kinase (PK), from the blood serum samples
of a healthy group of people (n0 = 127) and a group of carriers (n1 = 67). Our goal is
to choose the most appropriate biomarker to distinguish healthy individuals from diseased
ones.

We choose q(x) = x in the proposed method for each biomarker, which is equivalent to
assuming a logistic regression model for an individual’s disease status and the biomarker
(Qin and Zhang, 1997). Table 3.10 presents Qin and Zhang (1997)’s test statistics along
with the p-values for the goodness-of-fit of the DRM in (3.2) with q(x) = x. It shows that
for each biomarker, the data does not provide evidence to reject the DRM in (3.2) with
q(x) = x.

Table 3.10: Qin and Zhang (1997)’s test statistics and their p-values when q(x) = x.

Biomarker CK LD PH H
Test statistic 0.138 0.247 0.226 0.222

P -value 0.912 0.291 0.507 0.676

Table 3.11 provides the point estimates and the CIs (in parentheses) from the proposed
method and all the competitive methods listed in Section 3.3. As we can see, for all
biomarkers, the point estimates of Youden index are similar for all methods: they differ
only in the second digit. For the CIs of the Youden index, the methods with Ĵ , ĴB, ĴG,
and ĴK have similar performances for all biomarkers; the CIs with ĴE and ĴH tend to be
wider than other four methods. For the optimal cutoff point, the point estimates have
substantial differences, especially for the biomarker LD, compared with the estimates of
the Youden index. For all biomarkers, the proposed method has the shortest CIs, while the
ECDF-based method and HCNS method tend to have the widest CIs. The performances
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of other three CIs are mixed: the CI based on the Box-Cox method has shorter length
for biomarkers CK and LD, while the CIs based on ROC-GLM and kernel methods have
shorter length for biomarkers PK and H. Furthermore, we find that the biomarker CK
gives the largest estimated Youden index which is around 0.6. Therefore, the biomarker
CK performs the best among these four biomarkers to distinguish the diseased individuals
and the healthy ones. The estimated optimal cutoff point for the biomarker CK using the
proposed method is 61.13 with the 95% CI being (54.59, 67.68).

Table 3.11: Estimation of the Youden index and the optimal cutoff point with the DMD
dataset.

CK LD PK H

Ĵ 0.59 (0.48, 0.69) 0.55 (0.45, 0.65) 0.49 (0.38, 0.59) 0.36 (0.26, 0.48)

ĴB 0.62 (0.51, 0.70) 0.56 (0.46, 0.66) 0.48 (0.37, 0.58) 0.37 (0.26, 0.48)

ĴG 0.60 (0.50, 0.71) 0.57 (0.47, 0.68) 0.48 (0.38, 0.61) 0.39 (0.29, 0.50)

ĴE 0.61 (0.52, 0.73) 0.58 (0.50, 0.72) 0.51 (0.42, 0.65) 0.42 (0.34, 0.57)

ĴK 0.59 (0.51, 0.67) 0.55 (0.45, 0.66) 0.47 (0.37, 0.58) 0.37 (0.25, 0.49)

ĴH 0.61 (0.52, 0.80) 0.57 (0.46, 0.70) 0.48 (0.35, 0.62) 0.40 (0.31, 0.56)

ĉ 61.13 (54.59, 67.68) 198.56 (190.34, 206.78) 15.54 (14.65, 16.43) 87.74 (86.09, 89.39)
ĉB 58.01 (51.17, 65.42) 200.01 (188.99, 209.41) 16.56 (14.83, 18.24) 86.73 (83.59, 89.35)
ĉG 55.60 (48.83, 68.41) 197.54 (183.47, 211.64) 15.81 (14.58, 16.79) 85.25 (82.31, 87.90)
ĉE 56.00 (43.00, 75.00) 187.00 (181.00, 232.00) 16.60 (14.00, 18.20) 87.20 (80.50, 88.50)
ĉK 73.36 (54.15, 79.16) 202.32 (188.31, 216.94) 17.22 (15.87, 18.28) 85.52 (82.84, 88.36)
ĉH 52.02 (43.01, 68.50) 202.92 (179.20, 221.22) 14.37 (12.34, 18.05) 82.90 (80.26, 92.10)

3.5 Technical Details and Additional Simulation Re-

sults

3.5.1 Review of existing methods

In simulation studies, we compare the proposed method with five candidate methods: the
Box-Cox method (Bantis et al., 2019), the ROC-GLM method (Ruopp et al., 2008), the
ECDF-based method, the kernel-based method (Bantis et al., 2019), and the HCNS method
(Bantis et al., 2019). In the following, we provide detailed review of each method.

Methods for data without a LLOD

We start with the case when there is no LLOD.
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The Box-Cox method

For any x > 0, define the Box-Cox transformation of x as

x(λ) =

{
xλ−1
λ
, λ 6= 0

log x, λ = 0
.

The Box-Cox method assumes that

X
(λ)
01 , . . . , X

(λ)
0n0
∼ N(µ0, σ

2
0) and X

(λ)
11 , . . . , X

(λ)
1n1
∼ N(µ1, σ

2
1). (3.9)

Under (3.9), we have

f0(x) =
λxλ−1

σ0

φ

(
x(λ) − µ0

σ0

)
, f1(x) =

λxλ−1

σ1

φ

(
x(λ) − µ1

σ1

)
, (3.10)

and

F0(x) = Φ

(
x(λ) − µ0

σ0

)
, F1(x) = Φ

(
x(λ) − µ1

σ1

)
,

where φ(x) and Φ(x) are the probability density function and CDF of N(0, 1), respectively.

With (3.10) and the available data, Bantis et al. (2019) suggest to estimate unknown
parameters (λ, µ0, σ0, µ1, σ1) by the maximum likelihood method, where the corresponding
estimators are denoted by (λ̂, µ̂0, σ̂0, µ̂1, σ̂1). The Youden index J and the optimal cutoff
point c are then estimated by

ĴB = max
x>0

{
Φ

(
x(λ̂) − µ̂0

σ̂0

)
− Φ

(
x(λ̂) − µ̂1

σ̂1

)}
,

ĉB = arg max
x>0

{
Φ

(
x(λ̂) − µ̂0

σ̂0

)
− Φ

(
x(λ̂) − µ̂1

σ̂1

)}
.

The ROC-GLM method

Let S0 = 1 − F0 and S1 = 1 − F1 be the survival functions for the healthy population
and the diseased population, respectively. For any x ∈ [0, 1], the ROC curve is given by

ROC(x) = P
(
S0(X1) ≤ x

)
,

where X1 is a random variable from diseased distribution F1. The ROC-GLM method
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assumes a parametric model for ROC(x):

Φ−1
(
ROC(x)

)
= a0 + a1Φ−1(x), (3.11)

where a0 and a1 are unknown parameters (Ruopp et al., 2008).

Let

F̂E0(x) =
1

n0

n0∑
j=1

I(X0j ≤ x) and F̂E1(x) =
1

n1

n1∑
j=1

I(X1j ≤ x)

be the ECDFs of the sample from the healthy population and that from the diseased
population, respectively. Here I(·) is the indicator function. Further define Ŝ0(x) = 1 −
F̂E0(x) and Ŝ1(x) = 1− F̂E1(x). Ruopp et al. (2008) suggest to apply a binary regression
with the probit link to{(

I
(
Ŝ0(X1i) ≤ j/n0

)
,Φ−1

(
j/n0

))
, i = 1, . . . , n1, j = 1, . . . , n0 − 1

}
with I

(
Ŝ0(X1i) ≤ j/n0

)
and Φ−1

(
j/n0

)
being the response and covariate, respectively, to

obtain the estimators â0 and â1 of a0 and a1.

With â0 and â1, Ruopp et al. (2008) suggest to estimate ROC(x) by

R̂OC(x) = Φ
(
â0 + â1Φ−1(x)

)
and the Youden index J by

ĴG = max
x∈[0,1]

{R̂OC(x)− x} = R̂OC(x̂)− x̂,

where
x̂ = arg max

x∈[0,1]
{R̂OC(x)− x}.

Having R̂OC(x) and x̂, the estimator of the optimal cutoff point c can be obtained

by mapping R̂OC(x̂) back to a chosen population (Ruopp et al., 2008). We illustrate
the estimation method for c by mapping back to the diseased population. Suppose the
n1 observations from the diseased population are sorted in an descending order such that
X1,(1) ≥ · · · ≥ X1,(n1). Let i∗ be the index such that

Ŝ1

(
X1,(i∗)

)
≤ R̂OC(x̂) ≤ Ŝ1

(
X1,(i∗+1)

)
.
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Then ROC-GLM estimator of the optimal cutoff point is defined as (Ruopp et al., 2008)

ĉG = X1,(i∗) +
(
X1,(i∗+1) −X1,(i∗)

) R̂OC(x̂)− Ŝ1

(
X1,(i∗)

)
Ŝ1

(
X1,(i∗+1)

)
− Ŝ1

(
X1,(i∗)

) .
Note that the above estimation method for c can be similarly performed by mapping

back to the healthy population. In numerical calculation, if n1 ≥ n0, ĉG is obtained by
mapping back to the diseased population, otherwise, it is obtained by mapping back to the
healthy population.

The ECDF-based method

Recall that F̂E0(x) and F̂E1(x) are the ECDFs of the sample from the healthy population
and that from the diseased population, respectively. The ECDF-based estimator of the
Youden index J is defined as

ĴE = maxx∈{Xij : i=0,1, j=1,··· ,nk}{F̂E0(x)− F̂E1(x)}.

The corresponding estimator ĉE of the optimal cutoff point c is obtained at x where ĴE is
determined.

The kernel-based method

The kernel-based method uses the kernel method to estimate F0 and F1. Bantis et al.
(2019) suggest to estimate F0(x) and F1(x) as

F̂K0(x) =
1

n0

n0∑
i=1

Φ

(
x−X0i

h0

)
, F̂K1(x) =

1

n1

n1∑
i=1

Φ

(
x−X1i

h1

)
,

where h0 and h1 are are two bandwidths. They further recommended using

h0 = 0.9min{s0, q0/1.34}n−0.2
0 and h1 = 0.9min{s1, q1/1.34}n−0.2

1 .

Here s0 and q0 are the sample standard deviation and interquartile range of the sample
from the healthy population, and s1 and q1 are for the sample from the diseased population.
Let Xmin and Xmax be the minimum and maximum values of samples {Xij : i = 0, 1, j =
1, · · · , nk}. The estimators of J and c are then defined as

ĴK = max
x∈[Xmin,Xmax]

{F̂K0(x)− F̂K1(x)}
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and
ĉK = arg max

x∈[Xmin,Xmax]
{F̂K0(x)− F̂K1(x)}.

The HCNS method

Let x+ = max(x, 0) and H0(x) be the cumulative hazard for the healthy population.
The HCNS method models H0(x) by a cubic spline with parameters (θ1, · · · , θK−2):

H0(x) = θ1(x− τ1)3
+ + · · ·+ θK−2(x− τK−2)3

+ + θK−1(x− τK−1)3
+ + θK(x− τK)3

+, (3.12)

where τ1 < · · · < τK are the K knots,

θK−1 =

∑K−2
i=1 θi(τi − τK)

τK − τK−1

, θK =

∑K−2
i=1 θi(τi − τK−1)

τK−1 − τK
.

Let ĤKM(x) be the Kaplan-Meier estimator of H0(x). The estimators (θ̂1, · · · , θ̂K−2)
of (θ1, · · · , θK−2) minimize

Ψ(θ1, · · · , θK−2) =

n0∑
i=1

{
H0(X0i)− ĤKM(X0i)

}2

subject to the constraints such that H0(x) is a monotonically increasing function (Bantis
et al., 2012).

Regarding the knot selection, six is the most preferable number of knots as recom-
mended by Bantis et al. (2019). The six knots are selected from following eight values of
the sample: minimum, 2.5th percentile, 5th percentile, 10th percentile, 20th percentile, 50th

percentile, 80th percentile, and maximum. Bantis et al. (2019) suggest to explore all pos-
sible

(
8
6

)
knot schemes and then choose the knot scheme that provides the smallest value

of Ψ(θ̂1, · · · , θ̂K−2).

With the estimators (θ̂1, · · · , θ̂K−2), we plug them to (3.12) to obtain the estimator
Ĥ0(x) for H0(x). The CDF F0(x) is estimated subsequently as

F̂H0(x) = 1− exp
{
−Ĥ0(x)

}
.

The CDF F1 can be estimated in a similar manner and we denote the correponding esti-
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mator as F̂H1(x). The estimators of J and c are then defined as

ĴH = max
x∈[Xmin,Xmax]

{F̂H0(x)− F̂H1(x)}

and
ĉH = arg max

x∈[Xmin,Xmax]
{F̂H0(x)− F̂H1(x)}.

Methods for data with a fixed and finite LLOD

When the LLOD exists, the measurements of the biomarker below the LLOD cannot
be observed, which results in left-censored data in both samples. In the literature, only
three methods are available for this case: the Box-Cox method, the ROC-GLM method,
and the ECDF-based method.

The idea for the Box-Cox method in this case is similar to the one discussed before.
The unknown parameters (λ, µ0, σ0, µ1, σ1) in the Box-Cox transformation model can still
be estimated by the maximum likelihood method. We need to take the LLOD, i.e., left
censoring, into account when defining the likelihood function of the unknown parameters.

For the ROC-GLM method, Ruopp et al. (2008) suggest to slightly modify the es-
timation method for the unknown parameters (a0, a1) in (3.11). Recall that we use
X11, . . . , X1m1 to denote the observations in the sample from the diseased population which
are above the LLOD. Ruopp et al. (2008) suggest to apply a binary regression with the
probit link to{(

I
(
Ŝ0(X1i) ≤ j/n0

)
,Φ−1

(
j/n0

))
, i = 1, . . . ,m1, j = 1, . . . , n0 − 1

}
with I

(
Ŝ0(X1i) ≤ j/n0

)
and Φ−1

(
j/n0

)
being the response and covariate, respectively, to

obtain the estimators â0 and â1 of a0 and a1. Once â0 and â1 are available, the procedure
for estimating ROC(t), J , and c is the same as the case when there is no LLOD.

When applying the ECDF-based method, Ruopp et al. (2008) suggest an ad hoc pro-
cedure to first replace the unobserved values by a constant lower than the LLOD, for
example, half of LLOD or LLOD divided by

√
2, and then apply the ECDF-based method

discussed before.
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3.5.2 Proofs

Regularity Conditions

The asymptotic properties of (Ĵ , ĉ) are established under the following regularity con-
ditions.

C1. For any ε > 0, Jε = sup
|x−c∗|≥ε

{F0(x)− F1(x)} < J∗.

C2. The first and second derivatives of F0(x) and F1(x) are continuous in the neighbour-
hood of c∗, with F ′0(c∗)− F ′1(c∗) = 0 and F ′′0 (c∗)− F ′′1 (c∗) < 0.

C3. The total sample size n = n0 + n1 →∞ and n1/n0 → ρ for some constant.

C4. The two CDFs F0 and F1 satisfy the DRM (1.1) with a true parameter value θ∗ and∫∞
r

exp{θ>Q(x)}dF0 < ∞ in a neighbourhood of θ∗, and
∫∞
r

Q(x)Q(x)>dF0(x) is
positive definite.

Condition C1 is from Hsieh and Turnbull (1996), which ensures c∗ is unique. Condition
C2 comes from the definitions of the Youden index and its corresponding optimal cutoff
point. Condition C3 indicates that both n0 and n1 go to infinity at the same rate. For
simplicity and convenience of presentation, we write ρ = n1/n0 and assume that it is a
constant. This does not affect our technical development. Conditions C3 and C4 guarantee
that the asymptotic results in Cai and Chen (2018) can be applied.

Proof of Theorem 3.1

We first present some preliminary results, which serve as preparations for the proof of
Theorem 3.1. We need some further notation. Let

H(x) = F0(x)− F1(x), Ĥ(x) = F̂0(x)− F̂1(x).

Then J∗ = H(c∗) and Ĵ = Ĥ(ĉ). Further let

∆n0 = sup
x≥r
|F̂0(x)− F0(x)|, ∆n1 = sup

x≥r
|F̂1(x)− F1(x)|, ∆n = sup

x≥r
|Ĥ(x)−H(x)|.

Following the proof of Lemma 3 in Cai and Chen (2018), we have ∆n0 = Op(n
−1/2) and

∆n1 = Op(n
−1/2). Hence ∆n = Op(n

−1/2).

We can establish the consistency of ĉ and argue that, with the probability goes to 1,

the estimator ĉ is the solution to θ̂
>
Q(x) = 0.
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Lemma 3.1. Assume Conditions C1–C4 are satisfied. Then, as n→∞, we have

ĉ→ c∗ in probability (3.13)

and
P
(
θ̂
>
Q(ĉ) = 0

)
→ 1. (3.14)

Proof. For (3.13) to hold, it is sufficient to show that for any 0 < ε < c∗ − r,

lim
n→∞

P (ĉ > c∗ + ε) = 0, (3.15)

lim
n→∞

P (ĉ < c∗ − ε) = 0. (3.16)

We focus on proving (3.15). The other part in (3.16) can be similarly proved. Let
sup
|x−c∗|>ε

H(x) = Jε. We choose ε∗ < ε such that

(a) H(x) ≥ J∗+Jε
2

, for x ∈ [c∗ − ε∗, c∗ + ε∗];

(b) θ∗>Q(c∗ − ε∗) < 0 and θ∗>Q(c∗ + ε∗) > 0.

By Conditions C1 and C2, the existence of such ε∗ is obvious. We further define a subset
of the sample space as An,ε = An1,ε ∩ An2,ε ∩ An3,ε, where

An1,ε =

{
θ̂
>
Q(c∗ − ε∗) < 1

2
θ∗>Q(c∗ − ε∗)

}
,

An2,ε =

{
θ̂
>
Q(c∗ + ε∗) >

1

2
θ∗>Q(c∗ + ε∗)

}
,

An3,ε =

{
inf

x∈[c∗−ε∗,c∗+ε∗]
Ĥ(x) ≥ J∗ + 3Jε

4

}
.

The two subsets An1,ε and An2,ε together ensure that there exists a solution ĉ∗ to θ̂
>
Q(x) =

0 in [c∗ − ε∗, c∗ + ε∗], and An3,ε implies that Ĥ(ĉ∗) is very close to J∗.

With the choice of ε∗, the consistency of θ̂ (Cai and Chen, 2018), and the fact that
∆n = Op(n

−1/2), it can be shown that

lim
n→∞

P (An1,ε) = lim
n→∞

P (An2,ε) = lim
n→∞

P (An3,ε) = 1. (3.17)
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The details are sketched as follows. By the choice of ε∗,

P (An1,ε) = P

(
θ̂
>
Q(c∗ − ε∗)− θ∗>Q(c∗ − ε∗) < −1

2
θ∗>Q(c∗ − ε∗)

)
≥ P

(∣∣θ̂>Q(c∗ − ε∗)− θ∗>Q(c∗ − ε∗)
∣∣ < −1

2
θ∗>Q(c∗ − ε∗)

)
.

Then by the consistency of θ̂ (Cai and Chen, 2018), we have lim
n→∞

P (An1,ε) = 1. Similarly,

we also have lim
n→∞

P (An2,ε) = 1. As for the third term An3,ε, again by the choice of ε∗, when

x ∈ [c∗ − ε∗, c∗ + ε∗], we have

Ĥ(x) = {Ĥ(x)−H(x) +H(x)} ≥ −∆n +
J∗ + Jε

2
.

Therefore,

P (An3,ε) ≥ P

(
−∆n +

J∗ + Jε
2

≥ J∗ + 3Jε
4

)
= P

(
∆n ≤

J∗ − Jε
4

)
.

Since ∆n = Op(n
− 1

2 ), we have lim
n→∞

P (An3,ε) = 1.

We are now ready to prove (3.15). Note that

P (ĉ > c∗ + ε) ≤ P
(
H(ĉ) ≤ Jε

)
≤ P

(
Ĥ(ĉ) ≤ Jε + ∆n

)
≤ P

(
{Ĥ(ĉ) ≤ Jε + ∆n} ∩ An,ε

)
+ P (Acn,ε).

By the definition of An,ε, if {Ĥ(ĉ) ≤ Jε + ∆n} and An,ε both occur, we have

Jε + ∆n ≥ Ĥ(ĉ) ≥ Ĥ(ĉ∗) ≥ inf
x∈[c∗−ε∗,c∗+ε∗]

Ĥ(x) ≥ J∗ + 3Jε
4

,

which implies ∆n ≥ (J∗ − Jε)/4. Hence,

P (ĉ > c∗ + ε) ≤ P
(

∆n ≥
J∗ − Jε

4

)
+ P (Acn,ε)→ 0,

where the last step follows from (3.17) and ∆n = Op(n
− 1

2 ). This finishes the proof of (3.15)
and the consistency of ĉ stated in (3.13).
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For (3.14), we note that

An1,ε ∩ An2,ε ⊂
{
θ̂
>
Q(ĉ) = 0

}
,

which, together with (3.17), implies that

lim
n→∞

P
(
θ̂
>
Q(ĉ) = 0

)
= 1.

This completes the proof of (3.14).

Proof of Theorem 3.1. We first consider Part (a). By (3.14) of Lemma 3.1 and the Slutsky’s

theorem, we can derive the asymptotic normality of ĉ from θ̂
>
Q(ĉ) = 0. Applying the first-

order Taylor expansion on q(ĉ) at the point x = c∗ and using the consistency result of ĉ in
(3.13) of Lemma 3.1, we have

0 = α̂ + β̂
>
q(c∗) + β̂

>
q̇(c∗)(ĉ− c∗) + op(1) · (ĉ− c∗).

By Theorem 1 of Cai and Chen (2018), we have

√
n(θ̂ − θ∗)→ N(0,S−1V S−1) (3.18)

in distribution as n→∞. This together with the fact θ∗>Q(c∗) = 0 implies that

√
n(ĉ− c∗) = − Q(c∗)>

β∗>q̇(c∗)

{√
n(θ̂ − θ∗)

}
+ op(1)→ N(0, σ2

c )

in distribution as n→∞, where σ2
c is defined in (3.7).

We next consider Part (b). Recall that

Ĵ − J∗ = {F̂0(ĉ)− F̂1(ĉ)} − {F0(c∗)− F1(c∗)}.

Let

Mn0 = F̂0(c∗)− F0(c∗), Mn1 = F̂1(c∗)− F1(c∗),

en0 = {F̂0(ĉ)− F̂0(c∗)} − {F0(ĉ)− F0(c∗)},
en1 = {F̂1(ĉ)− F̂1(c∗)} − {F1(ĉ)− F1(c∗)},
en2 = {F0(ĉ)− F1(ĉ)} − {F0(c∗)− F1(c∗)}.
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It can be shown that

Ĵ − J∗ = Mn0 −Mn1 + en0 − en1 + en2. (3.19)

One of the key technical arguments is to show that en0, en1, and en2 are all of order
op(n

−1/2).

By Lemma 4 of Cai and Chen (2018), we have for any b > 0,

sup
x:|x−c∗|<bn−1/2

|{F̂0(x)− F̂0(c∗)} − {F0(x)− F0(c∗)}|

= Op(n
−3/4(log(n))1/2) = op(n

−1/2). (3.20)

The result in Part (a) implies that ĉ − c∗ = Op(n
−1/2), which, together with (3.20), leads

to en0 = op(n
−1/2). Similarly, we also have en1 = op(n

−1/2). By the second order Taylor
expansion and Condition A2, we have en2 = op(n

−1/2). It follows that

√
n
(
Ĵ − J∗

)
=
√
n(Mn0 −Mn1) + op(1). (3.21)

Applying Theorem 2 of Cai and Chen (2018), we have

√
n

(
Mn0

Mn1

)
=
√
n

(
F̂0(c∗)− F0(c∗)

F̂1(c∗)− F1(c∗)

)
→ N

(
0,

(
σ2

00 σ2
01

σ2
01 σ2

11

))
(3.22)

in distribution as n→∞, where

σ2
00 = (1 + ρ){F0(c∗)− F 2

0 (c∗)}

−ρ(1 + ρ)

{
A0(c∗)−

(
A0(c∗)
A1(c∗)

)>
A−1

(
A0(c∗)
A1(c∗)

)}
,

σ2
01 = (1 + ρ)

{
A0(c∗)−

(
A0(c∗)
A1(c∗)

)>
A−1

(
A0(c∗)
A1(c∗)

)}
,

σ2
11 =

1 + ρ

ρ
{F1(c∗)− F 2

1 (c)}

−1 + ρ

ρ

{
A0(c∗)−

(
A0(c∗)
A1(c∗)

)>
A−1

(
A0(c∗)
A1(c∗)

)}
.
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It immediately follows that, as n→∞,

√
n (Mn0 −Mn1)→ N(0, σ2

J)

in distribution, where σ2
J is defined in (3.8). Recall that

√
n(Ĵ − J∗) =

√
n (Mn0 −Mn1) +

op(1). By the Slusky’s theorem, we have

√
n(Ĵ − J∗)→ N(0, σ2

J)

in distribution as n→∞. This completes the proof of the theorem.

3.5.3 Additional simulation studies

Additional simulations for the gamma distributional setting

Tables 3.12 and 3.13 compare the RBs and MSEs of point estimators of (J, c) under
gamma setting when the LLOD equals 30% quantile of F0. Tables 3.14–3.15 present the
CPs and ALs of the CIs of (J, c) under the same setting. The general trend for comparing
the proposed method and all candidate methods is similar to the case when the LLOD is
equal to the 15% quantile of F0. Hence, we omit the comparison results here.
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Table 3.12: RB (%) and MSE (×100) for point estimators of J when the LLOD equals
30% quantile of F0 (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 8.62 0.64 3.78 0.31 1.71 0.14 6.89 0.41 4.69 0.41
ĴB 10.52 0.65 5.12 0.32 2.94 0.16 8.24 0.42 6.35 0.43
ĴG 5.85 0.80 0.77 0.40 -2.84 0.20 4.31 0.53 0.83 0.57
ĴE 39.99 1.29 26.6 0.64 17.72 0.30 32.97 0.86 32.52 0.89

0.4

Ĵ 3.16 0.58 1.36 0.30 0.62 0.13 2.25 0.37 1.55 0.40
ĴB 5.06 0.59 2.57 0.29 1.67 0.14 3.74 0.37 3.01 0.41
ĴG -0.34 0.73 -2.06 0.38 -3.18 0.19 -1.13 0.47 -2.07 0.53
ĴE 16.42 1.06 10.62 0.53 6.78 0.24 13.36 0.68 12.57 0.74

0.6

Ĵ 1.81 0.46 0.66 0.24 0.33 0.11 1.11 0.28 0.89 0.35
ĴB 3.14 0.44 1.64 0.23 1.11 0.11 2.16 0.27 2.03 0.33
ĴG -1.12 0.56 -1.91 0.30 -2.42 0.15 -1.72 0.37 -1.90 0.42
ĴE 8.89 0.76 5.38 0.37 3.70 0.19 7.14 0.48 6.73 0.56

0.8

Ĵ 1.15 0.27 0.42 0.14 0.17 0.07 0.62 0.14 0.64 0.21
ĴB 1.55 0.22 0.78 0.12 0.53 0.05 0.98 0.13 1.00 0.17
ĴG -1.17 0.36 -1.27 0.18 -1.50 0.10 -1.46 0.22 -1.21 0.27
ĴE 4.51 0.39 2.86 0.20 1.94 0.10 3.73 0.24 3.52 0.30

Table 3.13: RB (%) and MSE (×100) for point estimators of c when the LLOD equals 30%
quantile of F0 (gamma distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ 1.72 166.59 -0.14 76.36 -1.11 25.61 -0.17 100.80 0.16 99.95
ĉB 1.22 120.35 1.62 64.03 0.53 30.39 1.06 84.80 1.17 83.72
ĉG 18.38 241.37 20.51 170.02 19.84 126.64 19.37 187.87 22.02 267.68
ĉE 0.21 246.68 0.65 169.08 -0.76 116.80 -0.59 204.52 2.51 215.93

0.4

ĉ -1.39 40.03 -0.42 18.20 -0.11 7.98 -1.23 25.73 -0.24 25.09
ĉB 0.14 56.14 0.33 29.60 0.10 13.84 -0.47 38.37 0.81 35.86
ĉG 11.39 121.93 14.37 109.64 14.58 91.16 13.27 108.65 14.72 115.49
ĉE -2.89 160.26 -0.23 126.83 -0.45 75.26 -2.65 149.91 1.53 156.36

0.6

ĉ -0.59 35.72 -0.27 17.64 -0.04 8.36 -0.81 24.8 -0.01 22.01
ĉB -0.32 51.67 -0.27 26.14 -0.20 12.4 -1.09 33.34 0.40 30.83
ĉG 6.94 123.88 9.08 90.88 10.55 78.96 8.81 93.44 9.86 98.53
ĉE -2.29 161.37 -0.67 118.08 0.20 74.7 -2.40 147.73 1.22 146.64

0.8

ĉ -0.52 72.34 -0.34 36.15 0.01 17.71 -0.95 53.74 0.17 41.95
ĉB -0.33 69.75 -0.29 34.76 -0.04 16.50 -1.12 49.95 0.50 39.56
ĉG 1.13 200.79 4.49 108.25 6.35 85.81 5.11 124.86 4.12 117.41
ĉE -3.18 236.72 -1.72 159.92 -1.25 107.68 -4.03 195.3 1.14 197.76
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Table 3.14: CP (%) and AL for CIs of J when the LLOD equals 30% quantile of F0 (gamma
distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 92.1 0.31 93.6 0.21 96.0 0.15 92.8 0.24 93.7 0.25
IJB 93.8 0.30 94.1 0.21 95.3 0.15 92.8 0.24 94.6 0.25
IJG 93.2 0.33 95.2 0.24 95.3 0.17 93.6 0.27 94.0 0.27
IJE 55.5 0.25 59.9 0.19 67.3 0.14 52.9 0.21 55.6 0.21

0.4

IJ 95.0 0.28 95.1 0.20 95.8 0.15 93.8 0.23 94.28 0.24
IJB 95.6 0.29 93.7 0.20 95.4 0.14 92.9 0.22 94.08 0.24
IJG 93.8 0.33 94.3 0.23 94.9 0.16 94.3 0.26 93.18 0.27
IJE 72.1 0.26 75.0 0.19 78.8 0.14 69.2 0.21 73.22 0.23

0.6

IJ 95.6 0.26 94.5 0.18 95.28 0.13 94.3 0.20 93.79 0.22
IJB 95.8 0.25 94.1 0.18 95.08 0.13 94.2 0.19 94.29 0.22
IJG 94.8 0.29 94.8 0.20 94.57 0.14 94.1 0.22 93.29 0.25
IJE 76.0 0.24 78.1 0.18 81.61 0.13 72.8 0.19 77.35 0.21

0.8

IJ 95.5 0.20 94.6 0.14 95.18 0.10 95.3 0.14 95.48 0.18
IJB 95.8 0.18 95.0 0.13 95.08 0.09 94.9 0.14 95.58 0.17
IJG 94.4 0.23 93.8 0.16 94.18 0.11 94.1 0.16 94.18 0.20
IJE 80.2 0.18 84.7 0.14 84.94 0.10 73.7 0.13 81.22 0.16

Table 3.15: CP (%) and AL for CIs of c when the LLOD equals 30% quantile of F0 (gamma
distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 96.6 4.37 95.3 3.27 96.4 2.02 97.7 4.67 94.7 4.42
IcB 81.5 4.53 81.3 2.14 83.7 1.53 70.4 2.19 85.1 2.69
IcG 89.8 5.34 75.7 3.59 63.6 2.42 80.9 4.42 80.6 4.17
IcE 95.9 4.72 94.5 4.13 95.5 3.55 93.8 4.25 95.0 4.52

0.4

Ic 95.4 2.37 94.7 1.61 95.7 1.12 94.8 1.86 95.6 1.91
IcB 84.4 2.19 84.0 1.57 86.8 1.13 75.4 1.47 89.1 1.94
IcG 89.5 3.39 75.2 2.45 51.2 1.75 78.1 2.68 73.8 2.49
IcE 94.1 4.27 95.4 3.66 95.1 3.09 93.0 3.78 96.4 4.18

0.6

Ic 92.4 2.28 94.3 1.62 95.1 1.14 92.9 1.90 94.8 1.83
IcB 89.5 2.34 89.2 1.67 91.1 1.19 83.9 1.65 93.3 1.98
IcG 93.7 3.67 86.4 2.68 69.5 1.92 87.1 2.80 83.4 2.59
IcE 94.4 4.31 95.1 3.68 96.4 3.03 91.8 3.82 94.6 4.14

0.8

Ic 93.0 3.25 94.0 2.31 95.0 1.65 93.0 2.78 94.28 2.51
IcB 92.4 3.01 93.0 2.14 93.47 1.52 89.9 2.43 93.88 2.35
IcG 94.9 5.43 94.9 3.86 89.46 2.75 94.2 3.90 94.58 3.44
IcE 88.5 4.88 93.7 4.24 94.28 3.53 84.7 4.34 94.48 4.73
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Additional simulations for the lognormal distributional setting

We present the simulation results under the lognormal distributional setting. Ta-
bles 3.16–3.19 provide the simulation results of the point estimators and CIs of (J, c)
when there is no LLOD. Tables 3.20–3.23 summarize the simulation results of the point
estimators and CIs of (J, c) when the LLOD equals 15% quantile of F0. Tables 3.24–3.27
summarize the simulation results of the point estimators and CIs of (J, c) when the LLOD
equals 30% quantile of F0. We only summarize the comparison results between the pro-
posed method and the Box-Cox method. The general trend for comparing our method and
other candidate methods is similar to the gamma distributional setting. Hence we omit
their comparison.

First, we discuss the point estimators of (J, c). For estimating the Youden index, the
RBs and MSEs of the estimators Ĵ and ĴB are very close and small in majority cases.
For estimating the optimal cutoff point, the estimator ĉB is uniformly better than our
estimator in terms of MSE. This is expected because the parametric assumption for the
Box-Cox method is satisfied.

Next, we discuss the findings for the CIs of (J, c). In general, the ALs of both IJ
and IJB are comparable and small, while both CIs encounter slight overcoverage in some
cases especially in the cases that one of the sample sizes is small. The performance of the
CI Ic is stable with short ALs and reasonable CPs when there is no LLOD or when the
LLOD equals 15% quantile of F0. When the LLOD increases to 30% quantile of F0, the
CI Ic tends to have undercoverage and longer AL especially in the cases when one of small
sample sizes is small or when the Youden index is small. When there is no LLOD, the
CI IcB has similar performance as Ic. However, with the existence of a fixed and finite
LLOD, the CI IcB experiences severe undercoverage when J = 0.2 and 0.4. Consequently,
the CPs of IcB are much worse than those of Ic in those cases.
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Table 3.16: RB (%) and MSE (×100) for point estimators of J when there is no LLOD
(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 5.37 0.48 3.22 0.25 0.83 0.14 4.15 0.26 3.34 0.41

ĴB 2.80 0.46 1.61 0.23 0.19 0.13 3.03 0.25 0.31 0.38

ĴG 2.10 0.48 1.42 0.25 -0.27 0.14 1.84 0.26 2.14 0.42

ĴE 29.91 0.88 20.20 0.46 12.17 0.22 24.49 0.54 24.86 0.69

ĴK 8.50 0.49 6.00 0.28 3.12 0.16 5.59 0.29 8.20 0.43

ĴH 9.48 0.60 5.96 0.29 2.89 0.16 7.85 0.34 6.54 0.48

0.4

Ĵ 2.87 0.55 1.55 0.26 0.27 0.15 1.99 0.29 1.36 0.44

ĴB 2.60 0.52 1.38 0.25 0.23 0.14 1.90 0.28 0.91 0.40

ĴG 1.06 0.53 0.54 0.25 -0.27 0.15 0.55 0.28 0.64 0.44

ĴE 14.10 0.91 9.31 0.43 5.54 0.23 11.46 0.54 10.99 0.67

ĴK 2.08 0.49 1.18 0.25 0.17 0.16 1.03 0.29 1.72 0.40

ĴH 2.12 0.64 2.01 0.31 0.97 0.18 3.04 0.35 1.29 0.50

0.6

Ĵ 1.90 0.45 0.92 0.21 0.20 0.12 1.15 0.24 0.76 0.35

ĴB 2.18 0.41 1.10 0.19 0.26 0.11 1.35 0.22 0.95 0.31

ĴG 0.32 0.43 0.13 0.21 -0.26 0.12 -0.11 0.23 0.23 0.36

ĴE 7.97 0.69 5.16 0.34 3.16 0.17 6.48 0.41 5.91 0.51

ĴK -1.15 0.37 -1.38 0.19 -1.43 0.12 -1.21 0.23 -1.60 0.29

ĴH 0.65 0.52 0.26 0.25 -0.38 0.14 0.84 0.28 0.05 0.43

0.8

Ĵ 1.42 0.25 0.64 0.12 0.18 0.07 0.72 0.13 0.63 0.19

ĴB 1.36 0.21 0.66 0.10 0.19 0.05 0.78 0.11 0.61 0.16

ĴG -0.12 0.26 -0.24 0.13 -0.31 0.07 -0.59 0.14 0.03 0.20

ĴE 4.61 0.39 2.91 0.19 1.86 0.10 3.70 0.23 3.20 0.28

ĴK -3.27 0.28 -3.02 0.16 -2.61 0.10 -2.56 0.17 -3.77 0.25

ĴH 1.38 0.38 1.00 0.19 0.35 0.10 1.04 0.19 0.92 0.31
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Table 3.17: RB (%) and MSE (×100) for point estimators of c when there is no LLOD
(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ 0.20 165.43 0.10 74.31 0.22 38.72 -0.08 106.52 0.58 92.00
ĉB -0.57 150.88 -0.31 64.87 0.00 32.17 -0.39 99.33 -0.10 72.64
ĉG -1.93 249.45 -0.76 100.65 -0.30 51.49 -1.29 130.09 -0.21 99.08
ĉE -2.90 547.53 -1.50 343.76 -0.34 228.25 -3.14 448.08 -0.34 448.97
ĉK 2.86 480.18 1.95 253.76 1.87 155.61 2.65 404.36 2.33 285.09
ĉH 1.98 300.68 0.09 225.39 0.21 110.75 -0.32 298.09 0.99 258.55

0.4

ĉ -0.26 86.21 -0.05 41.36 -0.02 20.08 -0.16 56.25 0.14 53.16
ĉB -0.85 77.38 -0.38 38.58 -0.18 18.08 -0.43 53.77 -0.42 42.94
ĉG -2.17 159.00 -1.10 71.71 -0.54 36.52 -1.19 80.69 -0.51 72.77
ĉE -1.58 347.41 -0.57 242.58 -0.44 151.00 -1.55 285.24 0.25 299.00
ĉK 3.33 211.66 2.62 129.96 2.10 75.34 2.67 187.62 3.06 130.84
ĉH 0.79 279.02 0.60 141.91 0.47 66.56 0.38 181.29 1.00 178.57

0.6

ĉ -0.66 76.57 -0.29 36.89 -0.20 17.93 -0.43 48.70 -0.24 47.57
ĉB -0.56 67.27 -0.25 32.86 -0.19 16.09 -0.38 45.19 -0.22 36.87
ĉG -2.46 174.05 -1.07 82.60 -0.60 37.54 -1.15 80.66 -0.82 77.85
ĉE -1.20 282.61 -0.63 183.82 -0.09 115.00 -1.50 237.71 0.39 230.26
ĉK 4.32 200.28 3.44 112.79 2.63 66.22 3.32 154.10 3.89 116.61
ĉH 0.57 244.48 1.43 132.73 0.97 57.63 1.00 155.92 1.20 181.91

0.8

ĉ -0.88 99.18 -0.56 48.62 -0.41 24.13 -0.84 65.16 -0.48 60.61
ĉB -0.22 70.70 -0.13 34.19 -0.16 16.96 -0.36 51.67 0.02 37.30
ĉG -3.48 287.68 -1.58 137.17 -0.77 63.57 -1.01 116.65 -1.94 134.35
ĉE -1.37 291.59 -0.55 189.65 -0.74 128.34 -1.46 232.99 0.43 233.55
ĉK 3.66 199.67 3.16 114.55 2.37 65.77 3.04 163.09 3.33 114.45
ĉH -1.78 247.56 -1.45 135.38 -1.38 78.60 -1.95 156.22 -1.49 194.25
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Table 3.18: CP (%) and AL for CIs of J when there is no LLOD (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 96.0 0.28 95.2 0.20 94.2 0.14 94.8 0.20 94.4 0.25
IJB 95.2 0.27 94.0 0.19 93.8 0.13 95.8 0.20 93.8 0.23
IJG 95.4 0.27 93.8 0.20 92.8 0.14 95.0 0.20 94.3 0.25
IJE 80.6 0.29 82.7 0.21 82.8 0.15 73.5 0.21 83.7 0.26
IJK 94.9 0.27 92.7 0.20 92.5 0.14 93.3 0.20 93.4 0.24
IJH 93.4 0.28 93 0.20 94.8 0.15 90 0.21 94.8 0.25

0.4

IJ 96.2 0.28 96.0 0.20 94.0 0.15 95.2 0.21 95.2 0.25
IJB 95.4 0.29 95.6 0.20 93.5 0.14 95.7 0.21 95.2 0.25
IJG 95.9 0.29 94.6 0.20 93.9 0.14 95.3 0.21 93.9 0.26
IJE 82.3 0.29 86.0 0.22 85.4 0.16 77.7 0.22 85.7 0.27
IJK 94.8 0.28 94.7 0.20 92.7 0.14 94.3 0.21 93.7 0.24
IJH 94.0 0.30 94.9 0.22 95.6 0.16 95.2 5.66 94.4 0.27

0.6

IJ 95.7 0.26 96.2 0.18 94.8 0.13 95.8 0.19 95.3 0.23
IJB 95.6 0.25 96.0 0.18 94.7 0.13 95.7 0.19 95.4 0.22
IJG 94.3 0.26 94.9 0.18 93.7 0.13 94.4 0.19 93.9 0.23
IJE 84.2 0.26 83.7 0.19 85.7 0.14 77.7 0.19 84.5 0.24
IJK 94.3 0.24 95.8 0.17 93.1 0.13 95.1 0.19 94.4 0.21
IJH 93.9 0.29 94.2 0.20 95.0 0.14 92.1 0.20 94.7 0.27

0.8

IJ 96.9 0.20 95.7 0.14 94.9 0.10 96.0 0.15 94.9 0.17
IJB 96.0 0.18 96.2 0.13 94.9 0.09 95.2 0.14 95.6 0.16
IJG 92.8 0.20 94.5 0.14 94.6 0.10 94.0 0.14 92.5 0.18
IJE 82.3 0.18 85.6 0.14 86 0.10 77.7 0.14 84.5 0.17
IJK 94.2 0.18 92.5 0.13 88.9 0.09 94.1 0.14 91.6 0.16
IJH 89.5 0.23 95.7 0.17 94.7 0.12 92.4 0.17 91.3 0.22
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Table 3.19: CP (%) and AL for CIs of c when there is no LLOD (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 93.9 5.06 95.3 3.44 95.0 2.44 94.3 4.14 95.3 3.82
IcB 93.7 6.57 94.3 3.33 94.7 2.26 93.4 4.12 93.5 4.56
IcG 93.4 6.95 94.6 4.22 95.1 2.89 93.1 4.67 95.8 4.42
IcE 93.4 8.05 95.7 6.70 96.5 5.56 91.6 7.08 96.6 7.49
IcK 95.5 8.95 95.0 6.48 94.8 4.67 95.6 7.53 95.2 7.21
IcH 94.9 8.44 96.2 5.60 94.6 4.26 93.7 6.23 95.0 7.22

0.4

Ic 94.1 3.57 94.5 2.51 95.4 1.77 93.7 2.92 94.6 2.84
IcB 93.8 3.36 92.9 2.37 94.6 1.68 93.7 2.84 92.8 2.52
IcG 92.4 4.70 93.1 3.30 94.8 2.33 94.1 3.43 94.6 3.31
IcE 94.7 6.48 96.8 5.39 97.0 4.45 94.0 5.78 96.7 6.05
IcK 94.8 5.74 93.5 4.00 93.2 3.07 94.6 4.89 92.1 4.16
IcH 96.1 6.38 96.0 4.71 96.7 3.46 95.4 5.09 95.2 5.66

0.6

Ic 92.9 3.35 94.1 2.38 95.2 1.67 93.9 2.69 94.7 2.73
IcB 92.9 3.09 94.6 2.21 94.3 1.57 93.6 2.60 93.7 2.34
IcG 91.6 4.71 92.9 3.37 93.9 2.39 92.2 3.33 92.3 3.28
IcE 94.2 5.78 95.5 4.84 96.7 3.90 92.7 5.16 96.4 5.43
IcK 91.9 4.86 90.7 3.46 91.2 2.56 92.8 4.26 88.8 3.37
IcH 96.9 6.02 96.1 4.46 96.6 3.18 94.7 4.72 98.0 5.38

0.8

Ic 93.2 3.87 94.9 2.78 96.1 1.97 94.4 3.14 95.0 3.16
IcB 94.0 3.26 94.9 2.31 94.7 1.64 93.8 2.79 95.3 2.49
IcG 90.2 5.81 92.8 4.34 93.0 3.05 92.8 4.15 89.1 3.72
IcE 88.3 5.61 95.3 4.87 96.5 3.96 86.9 5.08 96.1 5.45
IcK 92.8 5.12 91.6 3.59 90.2 2.68 92.3 4.39 89.4 3.43
IcH 97.6 5.75 96.2 4.48 95.3 3.31 92.4 4.44 98.6 5.40
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Table 3.20: RB (%) and MSE (×100) for point estimators of J when the LLOD equals
15% quantile of F0 (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 7.56 0.50 4.49 0.26 1.35 0.14 5.47 0.27 4.94 0.41
ĴB 5.45 0.48 3.00 0.24 0.80 0.13 4.20 0.26 2.02 0.38
ĴG 34.64 1.13 33.44 0.80 30.59 0.57 33.94 0.83 34.23 1.02
ĴE 29.86 0.88 20.13 0.46 12.08 0.22 24.42 0.54 24.80 0.68

0.4

Ĵ 3.76 0.56 2.21 0.27 0.62 0.15 2.71 0.30 1.92 0.45
ĴB 3.29 0.52 1.79 0.25 0.51 0.14 2.26 0.28 1.26 0.40
ĴG 8.26 0.69 8.27 0.39 6.94 0.25 7.99 0.42 8.23 0.59
ĴE 14.11 0.91 9.35 0.44 5.61 0.23 11.48 0.54 10.90 0.67

0.6

Ĵ 2.43 0.46 1.27 0.22 0.42 0.12 1.59 0.24 1.08 0.35
ĴB 2.21 0.41 1.12 0.19 0.28 0.11 1.33 0.22 1.05 0.31
ĴG 1.04 0.48 0.96 0.24 0.26 0.13 0.65 0.27 0.79 0.39
ĴE 7.97 0.69 5.15 0.34 3.18 0.18 6.48 0.41 5.96 0.51

0.8

Ĵ 1.73 0.26 0.84 0.13 0.33 0.07 1.03 0.14 0.82 0.20
ĴB 1.27 0.21 0.63 0.10 0.17 0.06 0.73 0.12 0.68 0.16
ĴG -0.64 0.29 -0.62 0.15 -0.92 0.08 -1.00 0.17 -0.71 0.23
ĴE 4.60 0.39 2.91 0.19 1.87 0.10 3.70 0.23 3.24 0.28

Table 3.21: RB (%) and MSE (×100) for point estimators of c when the LLOD equals 15%
quantile of F0 (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ -0.17 225.03 -0.22 112.48 0.09 58.83 -0.54 148.20 0.37 143.62
ĉB -0.25 164.45 -0.15 75.43 0.09 37.46 -0.30 108.84 0.08 88.84
ĉG -6.76 321.47 -5.66 181.59 -5.08 118.25 -6.36 244.43 -5.32 181.49
ĉE -2.94 554.67 -1.49 346.36 -0.38 225.67 -3.20 450.15 -0.39 452.45

0.4

ĉ 0.07 116.35 0.06 61.77 0.06 30.91 -0.25 81.46 0.51 80.19
ĉB -0.23 92.05 0.06 45.31 0.02 22.06 -0.16 60.59 0.15 54.55
ĉG -1.49 148.7 -0.54 72.78 0.02 36.59 -0.84 82.54 0.04 70.48
ĉE -1.59 346.94 -0.53 244.02 -0.37 150.03 -1.53 285.84 0.21 300.37

0.6

ĉ -0.22 90.66 -0.02 46.55 -0.11 24.47 -0.42 61.71 0.34 58.21
ĉB -0.06 72.49 0.05 35.93 -0.06 17.92 -0.18 47.64 0.16 44.06
ĉG -0.53 151.34 0.84 79.10 1.38 41.43 0.75 80.73 1.23 75.74
ĉE -1.20 282.61 -0.57 182.46 -0.12 115.12 -1.50 237.71 0.37 230.93

0.8

ĉ -0.41 105.32 -0.23 51.60 -0.26 27.89 -0.68 68.33 0.09 67.62
ĉB 0.00 74.60 -0.01 36.17 -0.12 17.85 -0.29 53.10 0.25 41.60
ĉG -1.29 235.86 0.54 116.04 1.16 65.54 1.00 114.92 0.40 120.53
ĉE -1.37 292.03 -0.55 189.9 -0.77 128.77 -1.46 232.99 0.44 235.25
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Table 3.22: CP (%) and AL for CIs of J when the LLOD equals 15% quantile of F0

(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 95.4 0.29 94.3 0.20 93.8 0.14 94.1 0.21 94.2 0.25
IJB 95.5 0.28 94.5 0.20 93.7 0.14 95.3 0.20 93.8 0.25
IJG 86.3 0.32 76.2 0.23 65.0 0.16 75.4 0.24 82.6 0.29
IJE 75.4 0.26 77.7 0.19 79.0 0.14 70.2 0.20 77.8 0.24

0.4

IJ 95.8 0.29 95.9 0.21 94.5 0.15 95.2 0.21 95.2 0.26
IJB 95.8 0.29 95.4 0.21 93.6 0.14 95.6 0.21 95.0 0.26
IJG 92.3 0.30 89.7 0.22 86.1 0.15 88.7 0.23 89.8 0.27
IJE 80.0 0.27 82.5 0.20 83.6 0.15 75.2 0.21 82.8 0.25

0.6

IJ 95.6 0.26 96.0 0.19 94.7 0.13 94.9 0.19 95.3 0.23
IJB 95.3 0.25 95.9 0.18 94.5 0.13 95.6 0.19 96.0 0.22
IJG 93.4 0.27 94.5 0.19 93.6 0.14 93.7 0.20 92.5 0.24
IJE 81.4 0.25 81.7 0.18 83.5 0.14 75.9 0.19 82.3 0.23

0.8

IJ 96.8 0.20 95.6 0.14 95 0.10 95.5 0.15 95.1 0.18
IJB 94.9 0.18 96.2 0.13 95.2 0.09 96.1 0.14 95.1 0.16
IJG 94.2 0.21 95.0 0.15 95.2 0.11 95.1 0.15 93.7 0.19
IJE 81.5 0.18 85.2 0.14 85.8 0.10 77.6 0.14 83.7 0.17

Table 3.23: CP (%) and AL for CIs of c when the LLOD equals 15% quantile of F0

(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 93.7 5.96 94.3 4.22 95.0 3.05 93.5 4.84 93.5 4.83
IcB 84.6 5.35 84.1 2.50 83.5 1.70 84.9 3.20 79.1 2.95
IcG 82.8 5.55 81.6 3.73 71.5 2.57 81.9 4.41 82.2 4.22
IcE 92.9 7.55 95.3 6.47 95.3 5.42 90.8 6.77 95.4 7.16

0.4

Ic 93.0 4.27 93.4 3.11 95.3 2.27 92.6 3.52 91.9 3.55
IcB 88.8 3.03 88.9 2.12 88.7 1.51 87.1 2.35 89.2 2.41
IcG 94.4 4.58 93.2 3.29 94.3 2.34 93.6 3.51 94.2 3.22
IcE 94.5 6.31 96.2 5.25 96.8 4.38 93.1 5.64 96.5 5.96

0.6

Ic 91.7 3.72 93.2 2.72 94.5 1.97 93.5 3.04 94.3 3.12
IcB 91.6 3.04 92.2 2.15 92.0 1.52 90.9 2.36 93.4 2.44
IcG 94.5 4.70 94.0 3.36 93.7 2.42 94.3 3.40 94.6 3.26
IcE 93.9 5.74 95.3 4.79 96.5 3.88 92.3 5.10 95.8 5.40

0.8

Ic 93.6 3.97 94.8 2.91 95.0 2.10 93.5 3.23 94.1 3.33
IcB 94.2 3.34 95.8 2.36 95.6 1.67 94.3 2.77 94.4 2.60
IcG 94.8 5.86 94.9 4.29 94.7 3.03 95.6 4.21 94.7 3.84
IcE 88.6 5.57 95.1 4.84 96.0 3.94 86.5 5.06 95.5 5.48
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Table 3.24: RB (%) and MSE (×100) for point estimators of J when the LLOD equals
30% quantile of F0 (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

Ĵ 8.39 0.52 4.76 0.26 1.57 0.14 6.10 0.28 5.56 0.43
ĴB 4.89 0.50 2.83 0.25 0.80 0.14 4.59 0.26 -1.52 0.44
ĴG 47.93 1.70 45.32 1.25 42.55 0.94 46.74 1.32 46.29 1.50
ĴE 29.86 0.89 20.03 0.46 12.13 0.22 24.31 0.53 24.86 0.69

0.4

Ĵ 3.81 0.57 2.26 0.27 0.59 0.16 2.83 0.31 1.99 0.46
ĴB 3.36 0.52 1.95 0.25 0.45 0.14 2.35 0.28 1.45 0.43
ĴG 10.94 0.85 10.33 0.49 9.08 0.32 10.50 0.55 10.25 0.68
ĴE 14.00 0.90 9.36 0.43 5.54 0.23 11.46 0.54 10.91 0.67

0.6

Ĵ 2.52 0.48 1.28 0.22 0.42 0.12 1.73 0.26 1.06 0.37
ĴB 2.21 0.41 1.10 0.19 0.27 0.11 1.36 0.22 1.05 0.31
ĴG 0.65 0.54 0.41 0.26 -0.31 0.14 0.30 0.32 0.18 0.42
ĴE 7.95 0.69 5.15 0.34 3.16 0.17 6.51 0.41 5.95 0.51

0.8

Ĵ 1.85 0.27 0.93 0.13 0.35 0.07 1.14 0.14 0.77 0.20
ĴB 1.16 0.21 0.56 0.10 0.15 0.06 0.62 0.12 0.52 0.16
ĴG -1.38 0.36 -1.51 0.18 -1.92 0.11 -1.78 0.22 -1.84 0.26
ĴE 4.57 0.38 2.91 0.19 1.86 0.10 3.65 0.23 3.17 0.28

Table 3.25: RB (%) and MSE (×100) for point estimators of c when the LLOD equals 30%
quantile of F0 (lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J RB MSE RB MSE RB MSE RB MSE RB MSE

0.2

ĉ 0.65 258.41 0.43 136.56 0.48 73.65 0.18 174.52 1.09 184.57
ĉB -0.50 281.55 -0.31 93.98 0.06 43.73 -0.48 127.55 -1.24 154.60
ĉG -3.91 233.83 -2.66 117.81 -2.33 62.51 -3.21 154.52 -2.20 121.42
ĉE -2.88 543.75 -1.48 340.90 -0.36 227.91 -3.10 447.73 -0.34 448.97

0.4

ĉ 0.91 138.59 0.60 75.44 0.29 39.32 0.36 96.11 1.06 96.88
ĉB 0.09 101.96 0.15 52.63 0.08 24.67 -0.20 69.73 0.22 69.45
ĉG 1.86 155.21 2.88 95.61 3.35 69.84 2.76 103.54 3.45 103.53
ĉE -1.56 349.31 -0.54 243.76 -0.41 151.41 -1.56 283.63 0.22 300.01

0.6

ĉ 0.38 103.45 0.34 51.80 0.14 28.56 0.00 69.41 0.80 68.51
ĉB 0.13 79.98 0.14 38.93 -0.01 19.06 -0.21 51.75 0.47 49.46
ĉG 2.69 171.73 4.13 122.81 4.62 100.98 4.08 130.54 4.46 135.43
ĉE -1.12 281.90 -0.61 183.18 -0.09 115.00 -1.54 239.01 0.35 228.98

0.8

ĉ 0.00 111.15 0.02 56.67 -0.10 29.70 -0.44 74.27 0.41 75.64
ĉB 0.13 77.44 0.06 37.09 -0.07 18.56 -0.21 52.89 0.39 44.46
ĉG 1.28 236.85 3.12 156.06 3.86 113.08 3.47 165.46 2.88 155.10
ĉE -1.36 292.78 -0.56 189.16 -0.74 128.34 -1.43 232.44 0.44 233.30
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Table 3.26: CP (%) and AL for CIs of J when the LLOD equals 30% quantile of F0

(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

IJ 94.7 0.29 94.2 0.20 94.1 0.14 93.8 0.21 94.5 0.25
IJB 94.5 0.28 93.5 0.20 93.5 0.14 95.4 0.21 90.5 0.23
IJG 78.3 0.35 67.7 0.25 48.2 0.18 64.5 0.27 74.7 0.31
IJE 71.2 0.24 75.1 0.18 76.0 0.13 67.2 0.19 72.8 0.22

0.4

IJ 96.5 0.29 96.0 0.21 94.4 0.15 95.3 0.21 95.2 0.26
IJB 96.0 0.29 95.2 0.20 93.9 0.14 95.5 0.21 94.1 0.25
IJG 89.2 0.32 87.8 0.23 83.5 0.16 86.4 0.24 88.2 0.28
IJE 75.3 0.25 78.9 0.19 80.7 0.14 72.5 0.20 78.3 0.23

0.6

IJ 95.2 0.26 96.0 0.19 94.7 0.13 94.8 0.19 94.7 0.23
IJB 95.4 0.25 96.0 0.18 94.8 0.13 95.5 0.19 95.6 0.23
IJG 94.0 0.29 94.3 0.20 93.8 0.14 94.1 0.22 92.3 0.25
IJE 78.4 0.24 80.3 0.18 82.1 0.13 75.2 0.18 80.4 0.21

0.8

IJ 96.4 0.20 95.2 0.14 95.2 0.10 95.2 0.15 95.4 0.18
IJB 95.4 0.19 96.1 0.14 94.5 0.10 96.6 0.14 94.4 0.17
IJG 94.6 0.23 95.2 0.16 93.5 0.11 94.9 0.17 95.0 0.20
IJE 80.3 0.18 83.9 0.14 84.4 0.10 76.6 0.14 82.2 0.16

Table 3.27: CP (%) and AL for CIs of c when the LLOD equals 30% quantile of F0

(lognormal distributions).

(n0, n1) (50, 50) (100, 100) (200, 200) (50, 150) (150, 50)
J CP AL CP AL CP AL CP AL CP AL

0.2

Ic 90.0 6.50 91.2 4.63 93.7 3.41 92.0 5.26 89.9 5.26
IcB 80.9 5.72 80.6 2.76 79.3 1.73 75.9 2.88 80.6 4.26
IcG 90.2 5.64 91.6 3.84 90.5 2.69 91.2 4.38 91.3 4.15
IcE 92.4 7.15 95.0 6.28 95.0 5.27 90.3 6.44 94.4 6.88

0.4

Ic 91.1 4.67 93.2 3.40 93.1 2.51 91.9 3.89 91.4 3.83
IcB 86.6 3.16 86.5 2.12 86.0 1.49 80.2 2.12 90.3 3.02
IcG 95.1 4.72 92.5 3.36 85.7 2.39 92.6 3.62 90.1 3.28
IcE 94.0 6.15 95.8 5.17 96.2 4.34 92.7 5.48 96.8 5.85

0.6

Ic 92.2 3.97 94.0 2.94 94.0 2.14 93.7 3.30 93.7 3.33
IcB 89.6 2.98 91.0 2.08 89.6 1.47 85.3 2.14 92.0 2.57
IcG 95.0 4.77 89.3 3.39 78.0 2.43 89.6 3.55 87.2 3.29
IcE 93.6 5.61 95.5 4.75 96.4 3.85 92.1 5.00 96.0 5.35

0.8

Ic 92.7 4.08 94.1 3.02 95.0 2.20 92.5 3.34 93.3 3.45
IcB 93.1 3.30 95.2 2.33 94.7 1.64 93.2 2.63 95.0 2.66
IcG 96.3 5.97 94.2 4.25 87.6 3.04 93.4 4.34 94.2 3.91
IcE 88.3 5.55 94.6 4.81 96.1 3.95 86.2 5.00 95.4 5.42
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Chapter 4

Empirical Likelihood Inference on
Gini Indices of Two Semicontinuous
Populations under Density Ratio
Models

4.1 Introduction

The Gini index, first proposed by Gini (1912), has been widely used to measure population
inequality. In economic studies, it is an important measure of income or wealth inequality
among individuals or households in a particular population (Wang et al., 2016; Peng, 2011).
In life expectancy studies, it is used to describe the concentration of survival times and
to evaluate inequality among people in the target population (Bonetti et al., 2009; Lv
et al., 2017). The index is closely related to the Lorenz curve (Lorenz, 1905), a widely used
measure for the size distribution of income or wealth. It is the ratio of the area between the
Lorenz curve and the 45-degree line to the area under the 45-degree line. Hence, the Gini
index ranges from 0 to 1, with 0 indicating perfect equality and 1 for extreme inequality.

Study variables such as income and survival time are often modelled by using a posi-
tive continuous distribution. One important scenario in applications is that there are two
related populations, each containing a sizeable zero values for the study variable. The in-
ferential problems can be on the Gini index for each population separately or the difference
of the two Gini indices. The scenario is quite common in practice but efficient inferential
procedures are not available in the existing literature.
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In this chapter, we propose new semiparametric inference procedures for the Gini indices
of two semicontinuous populations. Specifically, suppose that we have two independent
samples from two related populations with values of the study variable X generated from
the following mixture models:

(Xi1, · · · , Xini) ∼ Fi(x) = νiI(x ≥ 0) + (1− νi)I(x > 0)Gi(x), for i = 0, 1, (4.1)

where νi is the zero proportion in population i, ni is the sample size for sample i, I(·) is
an indicator function, and Gi(·) is the CDF of the positive observations in sample i. For
population i = 0, 1, the Gini index can be equivalently defined (David, 1968) as

Gi =
Di

2µi
, (4.2)

where Di = E(|Xi1 − Xi2|) is the expected absolute difference of X for two randomly
selected units from population i and µi = E(Xi1) is the expectation of population i. Our
discussions in this chapter focus on statistical inferences on G0, G1, and G0−G1. It is worth
mentioning that although our results are presented for cases where the two populations
contain excess zeros for the study variable, the proposed methods and the theoretical results
are also applicable to cases without excess zeros, i.e., νi = 0 in model (4.1). In addition,
inferences on a general function of G0 and G1 can also be conducted. See Section 4.2 for
further discussion.

Samples with positive outcomes only, i.e., νi = 0 in model (4.1), are common in studies
of family income or wealth or a country’s gross domestic products (Gastwirth, 1972; Cowell,
2011). For instance, all the household incomes are positive in the 1997 Family and Income
and Expenditure Survey conducted by the Philippine Statistics Authority. More details
can be found in Section 4.4. Samples with a mixture of excess zero values and skewed
positive outcomes, i.e., νi > 0 in model (4.1), naturally arise in studies of expenditure data
and health cost data (Zhou and Tu, 1999, 2000; Zhou and Cheng, 2008). For example,
Zhou and Cheng (2008) presented a dataset from the assessment of inpatient charges (see
Section 4.4), and most patients with uncomplicated hypertension had no hospitalization
and therefore zero costs. This chapter systematically studies both cases (νi = 0 and νi > 0)
in a unified framework via model (4.1).

Many studies of the Gini index have applied nonparametric methods. For example,
point estimators of G0, G1, and G0 − G1 and their asymptotic variance estimation have
been discussed in Hoeffding (1948), Anand (1983), Ogwang (2000), Giles (2004), Modarres
and Gastwirth (2006), Yitzhaki (1991), Karagiannis and Kovacevic (2000), and Davidson
(2009). See Wang and Zhao (2016) for a detailed review. Qin et al. (2010) and Peng
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(2011) used the empirical likelihood method (Owen, 2001) to construct CIs for the index.
More recently, Wang et al. (2016) derived the jackknife empirical likelihood (JEL). Peng
(2011) and Wang and Zhao (2016) compared two Gini indices of independent or correlated
populations using the empirical likelihood method and the JEL method, respectively.

Fully nonparametric methods enjoy the robustness against the model misspecifications.
However, these methods ignore the characteristics common to the two samples and/or the
relation between the two populations, which have been shown to be useful for more efficient
statistical inferences; see, for instance, the studies on the strengths of lumber produced in
Canada in different years (Chen and Liu, 2013; Cai et al., 2017; Cai and Chen, 2018).
Ignoring such information may result in less efficient inference procedures.

To combine the information from the two samples without making risky parametric
distributional assumptions, we use the DRM (1.1) to link the CDFs of the positive ob-
servations G0 and G1 in model (4.1). Let dGi be the probability density function of Gi,
i = 0, 1. The DRM postulates that

dG1(x) = exp{α + β>q(x)}dG0(x) = exp{θ>Q(x)}dG0(x) , (4.3)

where θ = (α,β>)> is the vector of unknown parameters and Q(x) = (1, q(x)>)> with
q(x) being a d-dimensional basis function. As far as we are aware, inferential procedures
for two Gini indices G0, G1 and their difference G0 − G1 have not been explored under the
mixture model (4.1) and the DRM (4.3). This chapter aims to fill this void.

The rest of the chapter is organized as follows. In Section 4.2, we first present some
preliminary results for the MELEs of all unknown parameters and the MELEs of general
functionals. These results serve as preparations for studying the estimators G0 and G1.
After that, we propose the MELEs of G0, G1, and G0−G1 and investigate their asymptotic
properties . We construct CIs and conduct hypothesis tests on G0, G1, and G0−G1 based on
the theoretical results. Results from simulation studies are presented in Section 4.3, and
applications to two real-world datasets are given in Section 4.4. Proofs, technical details
and additional simulation results are provided in Section 4.5.

4.2 Main Results

Let ni0 and ni1 be the (random) numbers of zero observations and positive observations,
respectively, in each sample i = 0, 1. Clearly, ni = ni0 + ni1, for i = 0, 1. Without loss of
generality, we assume that the first ni1 observations in group i, Xi1, · · · , Xini1 , are positive,
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and the remaining ni0 observations are 0. Let n be the total (fixed) sample size, i.e.,
n = n0 + n1.

We first investigate the estimators of parameters in models (4.1) and (4.3) and the
estimators of a class of functionals. These help to obtain the estimators of G0 and G1, and
study the asymptotic properties of the estimators of numerator and denominator of the
Gini index in (4.2).

4.2.1 Estimation of model parameters

With the two samples of observations from model (4.1), the full likelihood function is

Ln =
1∏
i=0

{
νni0i (1− νi)ni1

ni1∏
j=1

dGi (Xij)

}
.

Following the empirical likelihood principle (Owen, 2001), we estimate the baseline distri-
bution G0(x) as

G∗0(x) =
1∑
i=0

ni1∑
j=1

pijI(Xij ≤ x), (4.4)

where pij = dG0(Xij) for i = 0, 1 and j = 1, . . . , ni1. With (4.4) and under the DRM (4.3),
the full likelihood function can be rewritten as

Ln =
1∏
i=0

νni0i (1− νi)ni1 ·

{
1∏
i=0

ni1∏
j=1

pij

}
·

[
n11∏
j=1

exp
{
θ>Q(X1j)

}]
,

where the pij’s satisfy the constraints

pij > 0,
1∑
i=0

ni1∑
j=1

pij = 1, and
1∑
i=0

ni1∑
j=1

pij exp
{
θ>Q(Xij)

}
= 1. (4.5)

These constraints ensure that the estimates of G0 and G1 are CDFs.

Let P = {pij} and ν = (ν0, ν1)>. The MELE of (ν,θ,P ) is then defined as

(ν̂, θ̂, P̂ ) = arg max
ν,θ,P

Ln

subject to the constraints in (4.5). We write the logarithm of the empirical likelihood
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function Ln as
˜̀(ν,θ, G0) = `0 (ν) + ˜̀

1 (θ,P ) , (4.6)

where

`0 (ν) =
1∑
i=0

log {νni0i (1− νi)ni1} and ˜̀
1 (θ,P ) =

n11∑
j=1

{
θ>Q(X1j)

}
+

1∑
i=0

ni1∑
j=1

log pij.

Here `0 (ν) is the binomial log-likelihood function corresponding to the number of zero
observations, and ˜̀

1 (θ,P ) represents the empirical log-likelihood function associated with
the positive observations.

Following Wang et al. (2017a), we have ν̂ = arg maxν `0(ν) and

(θ̂, P̂ ) = arg max
θ,P

{
˜̀
1 (θ,P ) : pij > 0,

1∑
i=0

ni1∑
j=1

pij = 1,
1∑
i=0

ni1∑
j=1

pij exp
{
θ>Q(Xij)

}
= 1

}
.

By the method of Lagrange multipliers, θ̂ can be obtained by maximizing the following
dual empirical log-likelihood function (Cai et al., 2017):

`1(θ) = −
1∑
i=0

ni1∑
j=1

log
{

1 + ρ̂[exp{θ>Q(Xij)} − 1]
}

+

n11∑
j=1

{θ>Q(Xij)}, (4.7)

where ρ̂ = n11(n01 +n11)−1. That is, θ̂ = arg maxθ `1(θ). Note that ρ̂ is a random variable
in our setup. This is fundamentally different from the case where there is no excess of zeros
in the data (Qin and Zhang, 1997), and it creates theoretical challenges for our asymptotic
development.

Once θ̂ is obtained, the MELEs of the p̂ij’s are

p̂ij = (n01 + n11)−1
{

1 + ρ̂[exp{θ̂
>
Q(Xij)} − 1]

}−1

, (4.8)

and the MELEs of G0(x) and G1(x) are

Ĝ0(x) =
1∑
i=0

ni1∑
j=1

p̂ijI(Xij ≤ x), Ĝ1(x) =
1∑
i=0

ni1∑
j=1

p̂ij exp{θ̂
>
Q(Xij)}I(Xij ≤ x). (4.9)

We now study the asymptotic properties of η̂ = (ν̂>, ρ̂, θ̂
>

)>. For ease of presentation,
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we introduce some notation. We use ν∗ and θ∗ to denote the true values of ν and θ,
respectively. Let wi = ni/n and

∆∗ =
1∑
i=0

wi(1− ν∗i ), ρ∗ =
w1(1− ν∗1)

∆∗
, ω(x) = exp{θ∗>Q(x)},

h(x) = 1 + ρ∗{ω(x)− 1}, h1(x) = ρ∗ω(x)/h(x),

Aν = diag

{
w0

ν∗0(1− ν∗0)
,

w1

ν∗1(1− ν∗1)

}
, Aθ = ∆∗(1− ρ∗)E0

{
h1(X)Q(X)Q(X)>

}
,

where E0(·) represents the expectation operator with respect to G0 and X refers to a
random variable from G0. Noting that although ω(·), h(·), and h1(·) also depend on θ∗

and/or ρ∗, we drop these redundant parameters for notational simplicity.

The following theorem establishes the asymptotic normality of η̂.

Theorem 4.1. Let η∗ = (ν∗>, ρ∗,θ∗>)>. Assume Conditions C1–C4 in Section 4.5.1 are
satisfied. As the total sample size n→∞,

n1/2(η̂ − η∗)→ N (0,Λ) ,

in distribution, where

Λ =

 A−1
ν ρ∗(1− ρ∗)A−1

ν W
> 0

ρ∗(1− ρ∗)WA−1
ν (∆∗)−1ρ∗(1− ρ∗){ρ∗ν∗0 + (1− ρ∗)ν∗1} 0

0 0 A−1
θ − ee>

∆∗ρ∗(1−ρ∗)


with W = ((1− ν∗0)−1,−(1− ν∗1)−1) and e = (1,0>d×1)>.

Qin and Zhang (1997) considered the asymptotic normality of
√
n(θ̂ − θ∗) when there

is no excess of zeros in the data. Theorem 4.1 generalizes their results to the case where
the data contain excessive zeros. Furthermore, it establishes the joint limiting distribution
of
√
n(θ̂ − θ∗),

√
n(ν̂ − ν∗), and

√
n(ρ̂ − ρ∗), where the latter two are induced by the

semicontinuous data structure.
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4.2.2 Estimation of a class of functionals

Under the mixture model (4.1) and the DRM (4.3), we consider a class of functionals γ of
length p, defined as

γ =

∫ ∞
0

u(x;ν,θ)dG0(x), (4.10)

where u(x;ν,θ) = (u1(x;ν,θ), . . . , up(x;ν,θ))> is a given (p× 1)-dimensional function.

The functional γ include µi’s in (4.2) as special cases. Let

u1(x;ν,θ) = (1− ν0)x and u2(x;ν,θ) = (1− ν1)x exp{θ>Q(x)}.

Then γ = (µ0, µ1)>. More examples of γ can be found in Yuan et al. (2021d). As we will
show in Section 4.5.1, the MELEs of Di’s in (4.2) can be approximated by the MELEs
of some specific γ. In the following, we construct the MELE of γ in (4.10) and study its
asymptotic properties. This will pave our road to study the MELEs of G0 and G1.

By the definition of γ in (4.10), γ is a function of (ν,θ) and G0. Replacing them with
(ν̂, θ̂) and Ĝ0, the MELE of γ is

γ̂ =

∫ ∞
0

u(x; ν̂, θ̂)dĜ0(x) =
1∑
i=0

ni1∑
j=1

p̂iju(Xij; ν̂, θ̂). (4.11)

Based on the results in Theorem 4.1, we have the following theorem.

Theorem 4.2. Let γ∗ be the true value of γ. Assume that u(x;ν,θ) is twice continu-
ously differentiable with respect to (ν,θ), ||∂2u(x;ν,θ)/∂ν∂ν>||, ||∂2u(x;ν,θ)/∂ν∂θ>||,
||∂2u(x;ν,θ)/∂θ∂θ>|| are bounded by some integrable function with respect to G0 in the
neighbourhood of (ν∗,θ∗), the variance-covariance matrix of u(X;ν∗,θ∗) with respect to
G0 is positive definite, and E0{∂u(X;ν∗,θ∗)/∂ν} and E0{∂u(X;ν∗,θ∗)/∂θ} have ranks
two and d respectively. Under the conditions of Theorem 4.1, as n→∞, we have

√
n(γ̂ − γ∗)→ N(0,Γ)

in distribution, where

Γ =
1

∆∗
E0

{
u(X;ν∗,θ∗)u(X;ν∗,θ∗)>

h(X)

}
− γ

∗γ∗>

∆∗

+M1A
−1
ν M>

1 −
M2M>

2

∆∗ρ∗(1− ρ∗)
+M3A

−1
θ M

>
3 , (4.12)
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with

M1 = E0

{
∂u(X;ν∗,θ∗)

∂ν

}
,

M2 = E0 [{∂u(X;ν∗,θ∗)/∂θ} e]− ρ∗γ∗,
M3 = E0

{
∂u(X;ν∗,θ∗)/∂θ − h1(X)u(X;ν∗,θ∗)Q(X)>

}
.

Li et al. (2018) derived a similar result in their Theorem 2.1 for γ̂ when there is no
excess of zeros in the data and p = 1. Theorem 4.2 covers the case with excessive zeros.
The two results complement each other to cover both cases.

4.2.3 Estimation of Gini indices

We now move to the estimation of the Gini indices G0 and G1. In Section 4.5.1, we show
that Gi in (4.2) can be equivalently expressed as

Gi = (2νi − 1) + (1− νi)ψi/mi, (4.13)

where mi =
∫∞

0
xdGi(x) and ψi =

∫∞
0
{2xGi(x)}dGi(x). Using the alternative form given

in (4.13) and the MELEs of G0 and G1 in (4.9), the MELE of the two Gini indices are
given by

Ĝi = (2ν̂i − 1) + (1− ν̂i)ψ̂i/m̂i, i = 0, 1, (4.14)

where

m̂i =

∫ ∞
0

xdĜi(x) and ψ̂i =

∫ ∞
0

{
2xĜi(x)

}
dĜi(x).

Remark. We comment that the MELEs of the two Gini indices in (4.14) are also applicable
to the case where there is no excess of zero values, i.e., ν = (0, 0) and ni1 = ni. We need
to set ν̂i = 0 and obtain θ by maximizing `1(θ) in (4.7) with ρ̂ = n1(n0 + n1)−1; then the
MELEs in (4.9) and (4.14) can be directly applied.
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Let G∗0 and G∗1 be the true values of Gini indices G0 and G1. Define

J =

(
− G

∗
0

m0

1
m0

0 0

0 0 − G
∗
1

m1

1
m1

)
,

u0(x) = (2ν∗0 − 1)x+ (1− ν∗0)

[
2

{
xG0(x) +

∫ ∞
x

ydG0(y)

}
− ψ0

]
,

u1(x) = (2ν∗1 − 1)x+ (1− ν∗1)

[
2

{
xG1(x) +

∫ ∞
x

ydG1(y)

}
− ψ1

]
.

The following theorem establishes the asymptotic normality of the MELEs (Ĝ0, Ĝ1).

Theorem 4.3. Assume Conditions C1–C5 in Section 4.5.1 are satisfied. As the total
sample size n→∞,

n1/2

(
Ĝ0 − G∗0
Ĝ1 − G∗1

)
→ N (0,Σ)

in distribution with the asymptotic variance-covariance matrix

Σ =
1

∆∗
J

[
E0

{
u(X)u(X)>

h(X)

}
+

1

(ρ∗)2
B

]
J> + diag

{
ν∗0(1− G∗0)2

∆∗(1− ρ∗)
,
ν∗1(1− G∗1)2

∆∗ρ∗

}
, (4.15)

where

u(x) = (x, u0(x), ω(x)x, ω(x)u0(x))> , ũ0(x) = −ρ∗ (x, u0(x))> ,

ũ1(x) = (1− ρ∗) (x, u1(x))> , ũ(x) =
(
ũ0(x)>, ũ1(x)>

)>
,

B = E0{h1(X)ũ(X)Q(X)>}A−1
θ E0{h1(X)Q(X)ũ(X)>}.

Repeating all the steps in the proof of Theorem 4.3, we obtain a similar result for cases
where ν∗i = 0 for i = 0, 1 in the following theorem.

Theorem 4.4. Assume that Conditions C2–C5 are satisfied. When there is no excess
of zeros, i.e., ν∗i = 0 for i = 0, 1, the joint distribution of

√
n(Ĝ0 − G∗0) and

√
n(Ĝ1 − G∗1)

asymptotically follows a bivariate normal distribution with mean zero and variance in (4.15)
with ν∗i being replaced by 0.

Since the proposed method utilizes more information to obtain the MELEs of Gini
indices, we expect that the proposed MELEs are more efficient than fully nonparametric
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estimators. With the alternative form of the Gini index in (4.13), the fully nonparametric
estimators of the two Gini indices for sample i = 0, 1 are

G̃i = (2ν̂i − 1) + (1− ν̂i)ψ̃i/m̃i, i = 0, 1, (4.16)

where

m̃i = ni1
−1

ni1∑
j=1

Xij, ψ̃i =

∫ ∞
0

{2xG̃i(x)}dG̃i(x),

and G̃i(x) = ni1
−1
∑ni1

j=1 I(Xij ≤ x) is the empirical CDF of the positive observations in
sample i.

The following theorem compares the proposed estimators MELEs Ĝi and the nonpara-
metric estimators G̃i in terms of their asymptotic variance-covariance matrices. Recall that
Σ is the asymptotic variance-covariance matrix of (Ĝ0, Ĝ1) given in Theorem 4.3.

Theorem 4.5. Assume that Conditions C2–C5 in Section 4.5.1 are satisfied.

(a) For the nonparametric estimators (G̃0, G̃1) and as n→∞, we have

√
n

(
G̃0 − G∗0
G̃1 − G∗1

)
→ N(0,Σnon)

in distribution, where the variance-covariance matrix

Σnon = Jdiag

{
E0{ũ0(X)ũ0(X)>}

∆∗(ρ∗)2(1− ρ)
,
E0{ω(X)ũ1(X)ũ1(X)>}

∆∗ρ∗(1− ρ)2

}
J>

+diag

{
ν∗0(1− G∗0)2

∆∗(1− ρ∗)
,
ν∗1(1− G∗1)2

∆∗ρ∗

}
.

(b) The two asymptotic variance-covariance matrices Σnon and Σ satisfy

Σnon −Σ =
1

∆∗(ρ∗)2(1− ρ∗)
JE0{h1(X)D(X)D(X)>}J> ≥ 0,

where D(x) =
(
D0(x)>,D1(x)>

)>
for x > 0 and

Di(x) = ũi(x)−∆∗(1− ρ∗)E0

{
h1(X)ũi(X)Q(X)>

}
A−1
θ Q(x), i = 0, 1.
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Note that Σnon −Σ is a positive semidefinite matrix, which implies that the proposed
MELEs for the Gini indices are at least as efficient as the nonparametric estimators. Our
simulation results reported in Section 4.3 confirm this result. It is worth mentioning that
the theorem is applicable whether or not there are excess zero values.

4.2.4 Inference on functions of Gini indices

Under the current setting of two samples, we may be interested in performing inference
on the Gini index for only one of the samples or other functions of the two Gini indices,
such as their difference. The results of Theorems 4.3 and 4.4 can be used to develop the
following theorem for parameters which are a general function of the two Gini indices.

Theorem 4.6. Assume the conditions of Theorem 4.5 hold. Let φ(·, ·) be a bivariate smooth
function. As n→∞, we have

√
n{φ(Ĝ0, Ĝ1)− φ(G∗0 ,G∗1)} → N(0, σ2

φ) in distribution with

σ2
φ =

(
∂φ(G∗0 ,G∗1)

∂G0

,
∂φ(G∗0 ,G∗1)

∂G1

)
Σ

(
∂φ(G∗0 ,G∗1)

∂G0

,
∂φ(G∗0 ,G∗1)

∂G1

)>
.

With the results in Theorems 4.5 and 4.6, we can easily show that σ2
φ is no larger than

the asymptotic variance of the fully nonparametric estimator φ(G̃0, G̃1). That is, utilizing
the information from both samples via the DRM (4.3) improves the estimation of φ(G0,G1).

The general form φ(·, ·) covers many interesting functions of G0 and G1. For example,
when φ(x1, x2) = logit(x1) = log{x1/(1−x1)}, the parameter φ(G0,G1) represents the logit
transformation of the Gini index G0; when φ(x1, x2) = x1 − x2, the parameter φ(G0,G1)
refers to the difference of two Gini indices.

The variance σ2
φ may depend on G∗0 , G∗1 , and (ν,θ,P ). Replacing these unknown

quantities by their MELEs leads to a consistent estimator σ̂2
φ of σ2

φ. Together with the
result in Theorem 4.6, we have as n→∞,

√
n{φ(Ĝ0, Ĝ1)− φ(G∗0 ,G∗1)}/σ̂φ → N(0, 1)

in distribution. Hence,
√
n{φ(Ĝ0, Ĝ1)−φ(G∗0 ,G∗1)}/σ̂φ is asymptotically pivotal and can be

used to construct CIs and to conduct hypothesis tests on φ(G0,G1).

For ease of presentation, we use φ̂ and φ to denote φ(Ĝ0, Ĝ1) and φ(G0,G1). Then the
100(1− a)% Wald-type CI for φ is given by

[φ̂− z1−a/2σ̂φ/
√
n, φ̂+ z1−a/2σ̂φ/

√
n],
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where z1−a/2 is the (1 − a/2) quantile of the standard normal distribution. When testing

H0 : φ = 0, we reject the null hypothesis if |
√
nφ̂/σ̂φ| > z1−a/2 at the significance level a.

4.3 Simulation Studies

In this section, we compare finite-sample performances of our semiparametric methods
with existing methods of inferences on the Gini indices through simulation studies. We
focus on three inferential problems:

(1) Point estimation for G0, G1, and G0 − G1;

(2) Confidence intervals on G0, G1, and G0 − G1;

(3) Hypothesis testing on H0 : G0 = G1.

We conduct the simulation studies under two distributional settings: (i) G0 and G1 are
the CDFs of χ2

3 and χ2
4; and (ii) G0 and G1 are the CDFs of Exp(0.5) and Exp(1). Here

χ2
k represents the chi-square distribution with k degrees of freedom, and Exp(k) refers to

the exponential distribution with the rate parameter k. The proposed inference procedures
under the DRM are implemented with the correctly specified q(x), where q(x) = log(x) in
the χ2 setting and q(x) = x in the exponential setting. For each scenario, we consider two
combinations of sample sizes, (n0, n1) = (100, 100), (300, 300), and the results are based
on 2,000 simulation runs.

4.3.1 Performance of point estimators

We start by exploring the performance of the point estimators. We consider the following
three estimators:

– EMP: G̃0, G̃1, and G̃0 − G̃1, where G̃i is the nonparametric estimator given in (4.16)
for i = 0, 1;

– JEL: Ḡ0, Ḡ1, and Ḡ0−Ḡ1, which are the JEL estimators defined in Wang et al. (2016),
where

Ḡi = (2µ̃i)
−1

(
n

2

)−1 ∑
1≤j1<j2≤ni

|Xij1 −Xij2|

with µ̃i =
∑ni

j=1Xij/ni for i = 0, 1;
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– DRM: Ĝ0, Ĝ1, and Ĝ0 − Ĝ1, where Ĝi is the MELE given in (4.14) for i = 0, 1.

Three combinations of ν are considered for the zero population proportions: (0, 0),
(0.3, 0.3), (0.7, 0.7). We evaluate the performance of a point estimator in terms of the bias
and the MSE. Tables 4.1 and 4.2 present the simulated results for different settings.

Table 4.1: Bias (×1000) and MSE (×1000) for point estimators (χ2 distributions).

G0 G1 G0 − G1
(n0, n1) ν Bias MSE Bias MSE Bias MSE
(100,100) (0,0) EMP 5.37 0.74 7.80 0.62 -2.43 1.29

JEL -0.39 0.73 1.57 0.57 -1.96 1.31
DRM 2.06 0.37 4.18 0.40 -2.13 0.31

(0.3,0.3) EMP 6.17 1.19 6.19 1.21 -0.02 2.35
JEL 2.16 1.18 1.83 1.20 0.33 2.40
DRM 2.60 0.95 3.04 1.06 -0.44 1.71

(0.7,0.7) EMP 6.56 0.91 6.01 1.01 0.54 1.86
JEL 4.88 0.91 4.18 1.01 0.70 1.89
DRM 2.70 0.79 2.97 0.91 -0.28 1.56

(300,300) (0,0) EMP 1.70 0.23 2.31 0.19 -0.61 0.40
JEL -0.22 0.23 0.23 0.19 -0.45 0.40
DRM 0.66 0.13 1.12 0.14 -0.46 0.11

(0.3,0.3) EMP 2.52 0.39 1.75 0.41 0.78 0.79
JEL 1.18 0.39 0.29 0.41 0.90 0.80
DRM 0.94 0.32 0.89 0.37 0.06 0.57

(0.7,0.7) EMP 2.84 0.31 2.40 0.34 0.44 0.67
JEL 2.28 0.31 1.78 0.34 0.49 0.67
DRM 1.30 0.27 1.50 0.31 -0.20 0.55

We observe from Tables 4.1 and 4.2 that the biases of the estimators of G0 and G1 are
acceptable for all three methods under all scenarios. The EMP estimators G̃0 and G̃1 always
give the largest biases. When the proportions of zero values are small, i.e., ν = (0, 0) or
(0.3, 0.3), the biases of the JEL estimators Ḡ0 and Ḡ1 are the smallest. The DRM estimators
Ĝ0 and Ĝ1 have a clear advantage in terms of bias when ν = (0.7, 0.7). The performance of
the EMP estimators G̃0 and G̃1 and the JEL estimators Ḡ0 and Ḡ1 is similar in terms of the
MSE. The DRM estimators Ĝ0 and Ĝ1 give the smallest MSEs in all cases; this agrees with
the result in Theorem 4.5. The MSEs of all the estimators decrease as ν moves toward
(0, 0) or the sample size increases.

For the estimators of the difference G0−G1, we find that the biases of all the estimators
are relatively small in all cases. The biases of the DRM estimator Ĝ0 − Ĝ1 are usually the
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Table 4.2: Bias (×1000) and MSE (×1000) for point estimators (exponential distributions).

G0 G1 G0 − G1
(n0, n1) ν Bias MSE Bias MSE Bias MSE
(100,100) (0,0) EMP 4.59 0.81 5.94 0.86 -1.35 1.59

JEL -0.42 0.81 0.95 0.84 -1.37 1.63
DRM 1.55 0.66 2.82 0.41 -1.27 0.58

(0.3,0.3) EMP 4.85 1.09 3.53 1.10 1.31 2.14
JEL 1.36 1.09 0.03 1.11 1.33 2.19
DRM 1.64 0.96 0.73 0.82 0.91 1.46

(0.7,0.7) EMP 5.17 0.81 3.62 0.80 1.55 1.55
JEL 3.71 0.81 2.14 0.80 1.57 1.58
DRM 1.81 0.73 1.24 0.65 0.56 1.20

(300,300) (0,0) EMP 1.78 0.28 1.97 0.27 -0.18 0.57
JEL 0.11 0.28 0.30 0.27 -0.19 0.58
DRM 0.76 0.22 0.96 0.13 -0.20 0.21

(0.3,0.3) EMP 1.80 0.37 1.48 0.36 0.32 0.73
JEL 0.63 0.37 0.31 0.36 0.32 0.74
DRM 0.74 0.34 0.73 0.27 0.01 0.51

(0.7,0.7) EMP 1.81 0.26 1.98 0.26 -0.16 0.53
JEL 1.32 0.26 1.48 0.26 -0.16 0.54
DRM 0.80 0.24 0.90 0.22 -0.10 0.43

smallest. The MSEs of the EMP estimator for G0 − G1 and JEL estimator for G0 − G1 are
very close, whereas the MSEs of the DRM estimator are significantly smaller than those
of the other two estimators. For instance, the MSE of Ĝ0 − Ĝ1 is less than 25% of the
MSEs of G̃0− G̃1 and Ḡ0− Ḡ1 when the simulated samples come from χ2 distributions with
(n0, n1) = (100, 100) and ν = (0, 0).

We conducted additional simulations with ν = (0.1, 0.3) and (0.6, 0.4); the results show
similar patterns and are presented in the Section 4.5.2.

4.3.2 Performance of confidence intervals

We examine and compare the performance of the following CIs for the Gini indices in the
simulation studies:

– NA-EMP: Wald-type CIs based on the normal approximation (Qin et al., 2010);

– BT-EMP: bootstrap-t CIs (Qin et al., 2010);
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– EL: ELR-based CIs (Qin et al., 2010);

– BT-EL: bootstrap ELR-based CIs (Qin et al., 2010);

– JEL: jackknife ELR-based CIs (Wang et al., 2016; Wang and Zhao, 2016);

– AJEL: adjusted jackknife ELR-based CIs (Wang et al., 2016; Wang and Zhao, 2016);

– NA-DRM: Wald-type CIs based on the normal approximation under the DRM;

– BT-DRM: bootstrap-t CIs under the DRM.

The EL method, to our best knowledge, has not been used to construct CIs for the
difference of two Gini indices in the existing literature. Hence, we consider all the methods,
except for EL and BT-EL, in our comparisons of the CIs for the parameter G0 − G1. For
those calibrated by the bootstrap method, we used 1,000 bootstrap samples drawn from
the original samples with replacement.

Three combinations of ν are considered for the zero population proportions: (0, 0),
(0.3, 0.3), (0.7, 0.7). We evaluate the performance of a CI in terms of the CP and the AL.
Tables 4.3 and 4.4 contain the simulated results for the CIs of G0 and G1 under different
settings. The simulated results for the CIs of G0 − G1 are shown in Table 4.5.

When the sample sizes are (100, 100), we can see from Tables 4.3 and 4.4 that the NA-
EMP and EL CIs for G0 and G1 tend to be narrow and have lower CPs, especially when
the proportions of zero values are large, i.e., ν = (0.7, 0, 7). With the help of bootstrap
calibration, the BT-EMP and BT-EL CIs achieve better performance in terms of CP.
However, when ν = (0.7, 0.7), the BT-EMP CIs have slight overcoverage with inflated
ALs. The AJEL CIs always have the longest ALs, and the JEL CIs are only slightly
shorter. Moreover, when ν = (0, 0) and (0.3, 0.3), the CPs of the JEL and AJEL CIs are
close to the nominal level of 95%. The JEL and AJEL CIs suffer from undercoverage when
ν = (0.7, 0.7). The NA-DRM CIs have the shortest ALs, and their CPs are very close
to the 95% nominal level in all cases. This is strong evidence that using DRMs improves
the performance of the CIs. The bootstrap calibration does little to improve the CIs: the
performances of the NA-DRM and BT-DRM CIs are similar.

When the sample sizes increase to (300, 300), the performance of all the CIs becomes
satisfactory in terms of CP. The NA-DRM and BT-DRM CIs always have the shortest
ALs, and there is little variation among the ALs of the other CIs.

Since the Gini index ranges from 0 to 1, a logit transformation may improve the perfor-
mance of the CIs for G0 and G1 under the DRM. However, the results (reported in Section
4.5.2) show that the transformation does not provide any significant improvement.
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Table 4.3: CP(%) and AL of CIs (χ2 distributions).

(100,100) (300,300)
G0 G1 G0 G1

ν CP AL CP AL CP AL CP AL
(0,0) NA-EMP 93.85 0.100 94.20 0.092 94.60 0.059 94.80 0.054

BT-EMP 94.10 0.103 94.75 0.094 94.85 0.059 95.05 0.054
EL 93.85 0.100 94.20 0.091 94.55 0.059 94.80 0.054

BT-EL 94.45 0.103 95.10 0.095 94.90 0.059 94.95 0.054
JEL 94.45 0.102 94.85 0.094 94.70 0.059 95.15 0.054
AJEL 94.80 0.105 95.50 0.096 94.90 0.060 95.30 0.055

NA-DRM 95.25 0.074 94.65 0.078 94.70 0.043 94.70 0.045
BT-DRM 95.55 0.075 95.00 0.079 94.55 0.043 94.55 0.046

(0.3,0.3) NA-EMP 93.80 0.132 93.65 0.134 94.60 0.077 94.05 0.079
BT-EMP 95.30 0.135 94.55 0.137 95.20 0.077 94.40 0.079

EL 93.75 0.131 93.65 0.134 94.60 0.077 94.00 0.078
BT-EL 94.50 0.136 94.85 0.139 94.65 0.078 94.55 0.079
JEL 94.45 0.137 93.80 0.141 94.50 0.078 94.55 0.080
AJEL 95.35 0.141 94.20 0.144 94.80 0.079 94.80 0.081

NA-DRM 95.10 0.120 94.35 0.130 95.45 0.070 94.90 0.076
BT-DRM 95.75 0.121 94.65 0.130 95.25 0.070 94.65 0.075

(0.7,0.7) NA-EMP 92.20 0.113 92.95 0.119 94.90 0.067 93.90 0.070
BT-EMP 96.75 0.122 96.55 0.128 96.30 0.068 95.40 0.072

EL 92.35 0.111 92.90 0.117 95.15 0.067 93.75 0.070
BT-EL 94.70 0.120 95.30 0.127 95.75 0.069 94.55 0.072
JEL 90.75 0.123 90.80 0.129 94.00 0.069 93.00 0.072
AJEL 91.35 0.127 91.55 0.133 94.25 0.070 93.10 0.073

NA-DRM 94.50 0.111 94.85 0.121 95.10 0.065 95.20 0.071
BT-DRM 95.40 0.113 95.90 0.123 95.45 0.064 95.60 0.070

We now discuss the simulation results for the CIs of the difference G0−G1 presented in
Table 4.5. We observe that the NA-EMP and BT-EMP CIs have similar performance; their
performance is acceptable except when the simulated samples are from χ2 distributions with
(n0, n1) = (100, 100) and ν = (0, 0). In this case, the CPs of the NA-EMP and BT-EMP
CIs are below the 95% nominal level. The JEL and AJEL CIs always have the longest
ALs. They experience overcoverage in some cases, especially when the proportions of zero
values are high. The BT-DRM CIs have the shortest ALs, which leads to undercoverage
in some cases. The performance of the NA-DRM CIs is consistently satisfactory in terms
of CP and AL.

We also conduct additional simulations with ν = (0.1, 0.3) and (0.6, 0.4); the results
display similar patterns and are presented in the Section 4.5.2.
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Table 4.4: CP(%) and AL of CIs (exponential distributions).

(100,100) (300,300)
G0 G1 G0 G1

ν CP AL CP AL CP AL CP AL
(0,0) NA-EMP 93.85 0.110 93.50 0.111 94.65 0.065 94.45 0.065

BT-EMP 94.35 0.115 94.05 0.115 94.75 0.065 94.75 0.065
EL 93.90 0.110 93.50 0.110 94.65 0.065 94.55 0.065

BT-EL 94.50 0.113 94.00 0.113 94.80 0.065 94.60 0.065
JEL 94.35 0.113 93.90 0.113 94.90 0.065 94.55 0.065
AJEL 94.95 0.115 94.35 0.116 95.10 0.066 94.75 0.066

NA-DRM 94.80 0.100 94.05 0.079 93.95 0.059 95.20 0.045
BT-DRM 94.45 0.104 94.75 0.079 93.65 0.060 94.95 0.045

(0.3,0.3) NA-EMP 93.55 0.127 94.25 0.128 94.55 0.075 93.45 0.075
BT-EMP 95.35 0.132 94.90 0.132 94.70 0.075 93.80 0.075

EL 93.60 0.126 94.10 0.127 94.70 0.075 93.30 0.075
BT-EL 94.75 0.131 94.85 0.132 95.05 0.076 93.70 0.076
JEL 93.80 0.132 94.55 0.133 94.65 0.076 93.65 0.076
AJEL 94.50 0.136 95.15 0.136 95.00 0.076 93.80 0.076

NA-DRM 95.55 0.124 94.95 0.112 95.15 0.073 94.60 0.065
BT-DRM 95.45 0.125 95.30 0.112 94.60 0.072 94.60 0.064

(0.7,0.7) NA-EMP 91.40 0.104 92.15 0.105 94.60 0.062 94.55 0.062
BT-EMP 96.30 0.114 95.70 0.115 95.85 0.064 95.50 0.064

EL 92.05 0.102 92.35 0.102 94.70 0.062 94.55 0.062
BT-EL 95.00 0.110 94.20 0.111 95.40 0.064 95.25 0.064
JEL 90.40 0.114 91.00 0.114 94.30 0.064 93.95 0.064
AJEL 90.85 0.117 91.60 0.118 94.40 0.064 94.05 0.064

NA-DRM 94.65 0.109 93.90 0.101 96.10 0.064 95.40 0.059
BT-DRM 95.80 0.109 95.55 0.102 95.65 0.062 95.95 0.058

4.3.3 Performance of tests on the equality of two Gini indices

In this section, we examine the performance of our proposed semiparametric test for testing
the equality of the two Gini indices, i.e., H0 : G0 = G1, with comparisons to other existing
methods. We consider the following tests:

– NA-EMP: Wald-type test based on the normal approximation of G̃0− G̃1 (Qin et al.,
2010);

– NL-EMP: Wald-type test based on the normal approximation of logit(G̃0)− logit(G̃1);

– JEL: jackknife ELR test (Wang and Zhao, 2016);
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Table 4.5: CP(%) and AL of CIs for G0 − G1.

(100,100) (300,300)
χ2 Exp χ2 Exp

ν CP AL CP AL CP AL CP AL
(0,0) NA-EMP 92.69 0.137 94.90 0.157 94.65 0.079 95.15 0.092

BT-EMP 92.89 0.139 94.80 0.161 94.35 0.080 95.15 0.092
JEL 93.84 0.142 95.80 0.164 95.00 0.081 95.55 0.093
AJEL 94.54 0.144 96.05 0.166 95.20 0.081 95.75 0.094

NA-DRM 94.44 0.070 94.95 0.092 94.65 0.041 94.70 0.055
BT-DRM 92.94 0.069 94.95 0.092 93.80 0.041 94.65 0.054

(0.3,0.3) NA-EMP 94.19 0.188 93.05 0.181 95.00 0.110 94.65 0.106
BT-EMP 94.54 0.191 93.45 0.184 95.00 0.110 94.65 0.106

JEL 95.45 0.202 94.75 0.195 95.55 0.113 95.35 0.108
AJEL 95.70 0.205 95.10 0.198 95.55 0.113 95.55 0.109

NA-DRM 94.24 0.165 94.30 0.149 95.00 0.096 95.05 0.087
BT-DRM 93.34 0.161 93.45 0.146 94.35 0.094 94.60 0.086

(0.7,0.7) NA-EMP 93.20 0.164 94.29 0.148 94.05 0.097 94.90 0.088
BT-EMP 93.65 0.170 94.14 0.153 94.05 0.098 94.90 0.089

JEL 96.65 0.188 97.65 0.175 95.20 0.101 95.95 0.092
AJEL 96.90 0.192 98.00 0.179 95.50 0.102 96.05 0.093

NA-DRM 95.55 0.162 96.19 0.138 95.60 0.094 95.70 0.080
BT-DRM 93.40 0.153 94.49 0.133 94.60 0.090 95.10 0.078

– AJEL: adjusted jackknife ELR test (Wang and Zhao, 2016);

– NA-DRM: Wald-type test based on the normal approximation of Ĝ0 − Ĝ1 under the
DRM;

– NL-DRM: Wald-type test based on the normal approximation of logit(Ĝ0)− logit(Ĝ1)
under the DRM.

Several combinations of ν are chosen to satisfy the null hypothesis H0 or the alternative
hypothesis Ha. The details are presented in Table 4.6. Tables 4.7 and 4.8 give the simulated
type I error rate and simulated power of each test at the 5% significance level.

From Table 4.7, we observe that the type I error rates for NA-DRM are stable and
close to the 5% significance level in all cases. The type I error rates for NL-DRM are
similar to those for NA-DRM when the sample sizes are (300, 300) and smaller when
(n0, n1) = (100, 100). This implies that the logit transformation of the Gini indices is
unnecessary for the equality test. The type I error rates for NA-EMP and NL-EMP show
similar trends. When the sample sizes are (100, 100) and the proportions of zero values
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Table 4.6: Choices of ν in simulations of testing the equality of the two Gini indices.

Null hypothesis H0

χ2 Exp
ν (0,0.079) (0.3,0.355) (0.7,0.724) (0,0) (0.3,0.3) (0.7,0.7)

Alternative hypothesis Ha

χ2 Exp
ν (0,0) (0.1,0.3) (0.4,0.65) (0.1,0.3) (0.3,0.45) (0.5,0.4)

G0 − G1 0.049 -0.081 -0.127 -0.100 -0.075 0.050
logit(G0)− logit(G1) 0.206 -0.323 -0.633 -0.418 -0.350 0.251

Table 4.7: Type I error rate (%) for testing H0 : G0 = G1 at the 5% significance level.

χ2 Exp
ν (0,0.079) (0.3,0.355) (0.7,0.724) (0,0) (0.3,0.3) (0.7,0.7)

(100,100) NA-EMP 5.50 5.00 7.10 5.55 4.85 6.90
NL-EMP 5.45 4.85 6.40 5.50 4.70 6.30

JEL 4.55 4.05 3.70 4.85 3.10 2.70
AJEL 4.15 3.85 3.45 4.45 2.70 2.40

NA-DRM 4.90 5.15 5.15 5.05 4.70 5.20
NL-DRM 4.85 4.80 4.75 4.95 4.65 4.95

(300,300) NA-EMP 5.10 5.70 5.70 6.15 5.35 5.55
NL-EMP 5.10 5.70 5.70 6.15 5.35 5.55

JEL 4.90 5.35 5.10 5.70 4.85 4.20
AJEL 4.80 5.20 4.80 5.55 4.80 4.00

NA-DRM 5.05 4.90 4.90 5.25 5.30 5.15
NL-DRM 5.05 4.85 4.95 5.25 5.25 5.05

are high, NA-EMP, NL-EMP, JEL, and AJEL have either inflated or conservative type I
error rates. Large sample sizes seem to improve their performance.

We observe from Table 4.8 that NA-DRM always gives the largest testing powers. The
performance of NL-DRM is comparable to NA-DRM. When the true difference of the Gini
indices is large, the testing powers of NA-DRM and NL-DRM are significantly larger than
those of the other methods. For example, when the simulated samples are from the χ2

distributions with (n0, n1) = (100, 100) and ν = (0, 0), the testing powers of NA-DRM and
NL-DRM are more than twice the others.
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Table 4.8: Simulated testing power (%) of rejecting H0 : G0 = G1 at the 5% significance
level.

χ2 Exp
ν (0,0) (0.1,0.3) (0.4,0.65) (0.1,0.3) (0.3,0.45) (0.5,0.4)

(100,100) NA-EMP 30.15 43.45 78.05 59.65 38.20 18.50
NL-EMP 30.00 42.95 76.95 59.10 37.40 18.15

JEL 28.85 42.90 75.70 58.00 33.75 14.90
AJEL 28.00 42.05 74.85 56.95 32.75 14.00

NA-DRM 82.60 58.35 83.20 80.75 50.05 23.20
NL-DRM 82.45 58.05 82.25 80.45 49.95 22.05

(300,300) NA-EMP 67.30 85.80 99.75 97.00 79.85 45.90
NL-EMP 67.30 85.70 99.70 96.90 79.50 45.50

JEL 66.90 86.10 99.65 97.10 79.05 44.70
AJEL 66.50 85.85 99.65 96.85 78.60 44.05

NA-DRM 99.95 95.70 99.85 99.90 90.75 56.90
NL-DRM 99.95 95.70 99.80 99.90 90.80 55.75

4.4 Real Data Applications

In this section, we apply our proposed methods to analyze two real datasets. Each dataset
can be viewed as consisting of two samples from two different populations, and we are
interested in computing the point estimates as well as the construction of 95% CIs for
the Gini indices and their difference. The populations for the first dataset contain a large
proportions of zeros and the study variables for the second dataset are strictly positive.

The first dataset (Zhou and Cheng, 2008) is from a clinical drug utilization study of
patients with uncomplicated hypertension, originally conducted by Murray et al. (2004).
It consists of the inpatient charges of 483 patients by gender. We label the charges of
the 282 male patients as sample 0 and those of the 201 female patients as sample 1. In
most cases, uncomplicated hypertension can be controlled if the patients follow guidelines
and take antihypertensive drugs regularly. If they do not need inpatient treatment, the
corresponding charges are zero. There are 253 zero values (89.7%) in sample 0 and 171
(85.0%) in sample 1.

To analyze the dataset with our proposed method, we need to choose an appropriate
q(x) in the DRM (4.3). The dataset is highly skewed to the right because of the high
proportions of zero values and extra skewness in the positive inpatient charges. To balance
model fit and model complexity, we choose q(x) = log(x). The goodness-of-fit test of
Qin and Zhang (1997) gives a p-value of 0.563, which indicates that this is a suitable
choice. Figure 4.1(a) shows the fitted population distribution functions F̂0 and F̂1 under
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Figure 4.1: Fitted population distributions for real datasets. F̂0 and F̂1: fitted CDFs under
the DRM; F̃0 and F̃1: empirical CDFs.

the DRM with q(x) = log(x) together with the empirical CDFs F̃0 and F̃1. Clearly, the fit
is adequate.

We apply the methods discussed in Sections 4.3.1 and 4.3.2 to this dataset. Table 4.9
presents the point estimates, and Table 4.10 shows the lower bound (LB), upper bound
(UB), and length of the 95% CIs. The estimates of G0, G1, and G0 − G1 for all three
methods are very close. In particular, the EMP and JEL estimates are almost the same.
The estimates of G0 and G1 are greater than 0.93, indicating the large inequality of the
inpatient charge for patients with uncomplicated hypertension; the high proportion of zero
values contributes to this. All the methods give similar 95% CIs for G0. The 95% CIs for
G1 and G0−G1 for NA-DRM and BT-DRM are the shortest. All the CIs for G0−G1 contain
0, which suggests no significant difference between the inequality of the inpatient charge
for female and male patients at the 95% confidence level.

The second dataset comes from the 1997 Family and Income and Expenditure Survey
conducted by the Philippine Statistics Authority; the metadata is available in the R package
ineq. The province of Pangasinan is located in the Ilocos Region of Luzon. The dataset
contains household incomes from different areas of Pangasinan: urban (Sample 0) and rural
(Sample 1). Sample 0 has 245 observations and sample 1 has 138 observations. All the
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Table 4.9: Point estimates of Gini indices and their difference (hypertension data).

G0 (male) G1 (female) G0 − G1
EMP 0.959 0.933 0.026
JEL 0.959 0.933 0.026
DRM 0.956 0.934 0.022

Table 4.10: 95% CIs for the two Gini indices and their difference (hypertension data).

G0 (male) G1 (female) G0 − G1
LB UB Length LB UB Length LB UB Length

NA-EMP 0.942 0.977 0.035 0.902 0.964 0.062 -0.009 0.062 0.071
BT-EMP 0.936 0.974 0.039 0.888 0.959 0.071 -0.013 0.066 0.078

EL 0.941 0.975 0.034 0.903 0.961 0.058 – – –
BT-EL 0.938 0.976 0.038 0.897 0.966 0.068 – – –
JEL 0.942 0.980 0.038 0.904 0.967 0.063 -0.017 0.069 0.086
AJEL 0.942 0.981 0.039 0.904 0.967 0.064 -0.018 0.069 0.087

NA-DRM 0.938 0.974 0.036 0.906 0.961 0.056 -0.009 0.054 0.063
BT-DRM 0.934 0.972 0.038 0.901 0.957 0.056 -0.007 0.048 0.055

incomes are positive.

The skewness of the dataset suggests setting q(x) = log(x) in the DRM (4.3). The
goodness-of-fit test of Qin and Zhang (1997) gives a p-value 0.607. Hence, there is no
strong evidence to reject the choice of q(x) = log(x). Figure 4.1(b) also shows that the
DRM with q(x) = log(x) fits the data well.

We use all the methods of Sections 4.3.1 and 4.3.2 to analyze the dataset and summarize
the results in Tables 4.11 and 4.12. The EMP and JEL methods give similar estimates of
G0, G1, and G0 − G1. The DRM estimate of G0 is comparable to the other estimates, while
the DRM estimate of G1 is smaller than the others. Hence, the DRM estimate of G0 − G1

is larger. All the methods give similar results for the 95% CIs for G0. The 95% CIs for G1

and G0 −G1 by NA-DRM and BT-DRM are significantly shorter than the other CIs. This
is strong evidence that our method helps to utilize information across the two samples and
effectively improves inference when sample sizes are small or moderate. We do not reject
the hypothesis that the income inequalities of urban and rural households are the same,
since all the 95% CIs for G0 − G1 contain 0.
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Table 4.11: Point estimates of Gini indices and their difference (Pangasinan data).

G0 (urban) G1 (rural) G0 − G1
EMP 0.393 0.394 -0.001
JEL 0.391 0.389 0.002
DRM 0.399 0.371 0.028

Table 4.12: 95% CIs for the two Gini indices and their difference (Pangasinan data).

G0 (urban) G1 (rural) G0 − G1
LB UB Length LB UB Length LB UB Length

NA-EMP 0.354 0.433 0.079 0.332 0.455 0.123 -0.074 0.073 0.146
BT-EMP 0.356 0.441 0.085 0.338 0.481 0.143 -0.085 0.068 0.153

EL 0.354 0.433 0.079 0.333 0.456 0.123 – – –
BT-EL 0.353 0.434 0.080 0.335 0.455 0.120 – – –
JEL 0.356 0.436 0.081 0.339 0.466 0.127 -0.083 0.070 0.153
AJEL 0.355 0.437 0.081 0.338 0.467 0.129 -0.084 0.071 0.154

NA-DRM 0.361 0.436 0.075 0.343 0.399 0.055 -0.003 0.059 0.062
BT-DRM 0.359 0.443 0.084 0.343 0.403 0.060 -0.006 0.057 0.063

4.5 Technical Details and Additional Simulation Re-

sults

4.5.1 Proofs

Regularity conditions

The asymptotic results in this chapter are developed under some of the following reg-
ularity conditions:

C1: The true value ν∗i satisfies 0 < ν∗i < 1 for i = 0, 1.

C2: As the total sample size n goes to infinity, n0/n→ w0 for some constant w0 ∈ (0, 1).

C3: The two CDFs G0 and G1 satisfy the DRM (4.3) with the true parameter θ∗, and∫∞
0

exp{θ>Q(x)}dG0(x) <∞ for all θ in a neighborhood of the true value θ∗.

C4: The components of Q(x) are continuous and stochastically linearly independent.

C5: The moments
∫∞

0
x2dG0(x) and

∫∞
0
x2 exp{θ>Q(x)}dG0(x) exist for all θ in a neigh-

borhood of the true value θ∗.
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Condition C1 ensures that the binomial log-likelihood function `0(ν) has regular prop-
erties and the quadratic approximation is applicable. Condition C2 indicates that both
n0 and n1 go to infinity at the same rate. For simplicity, and convenience of presentation,
we write w0 = n0/n and assume that it is a constant. This does not affect our technical
development. Conditions C1 and C2 imply that Aν is positive definite. Condition C3
guarantees the existence of the moment generating function of Q(X) in a neighborhood
of θ∗ and therefore all its finite moments. Condition C4 is an identifiability condition.
Conditions C3 and C4 together imply that Aθ is positive definite and the quadratic ap-
proximation of the dual empirical log-likelihood function `1(θ) is applicable. Conditions
C2–C5 guarantee that the linear approximations of Ĝ0 and Ĝ1 can be used.

Alternative form of Gini index

According to David (1968), the Gini’s mean difference for sample i can be equivalently
expressed by

Di = E|Xi1 −Xi2| = 2

∫ ∞
−∞
{2xFi(x)− x} dFi(x). (4.17)

Under model (4.1), Fi(x) = νiI(x ≥ 0) + (1 − νi)I(x > 0)Gi(x). Then Di can be further
written as

Di = 2(1− νi)
∫ ∞

0

[2x{νi + (1− νi)Gi(x)} − x]dGi(x)

= 2(1− νi)
∫ ∞

0

x{(2νi − 1) + (1− νi)2Gi(x)}dGi(x)

= 2(2νi − 1)

∫ ∞
0

x(1− νi)dGi(x) + 2(1− νi)2

∫ ∞
0

{2xGi(x)}dGi(x)

= 2(2νi − 1)µi + 2(1− νi)2

∫ ∞
0

{2xGi(x)}dGi(x).

Recall that mi =
∫∞

0
xdGi(x) and ψi =

∫∞
0
{2xGi(x)}dGi(x). We then have µi = (1−νi)mi

and

Gi =
Di

2µi
= (2νi − 1) + (1− νi)

ψi
mi

.
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Proof of Theorem 4.1

To derive the asymptotic properties, we define an expanded function:

H(ν, ρ,θ) = n00 log(ν0) + n01 log(1− ν0) + n10 log(ν1) + n11 log(1− ν1)

−
1∑
i=0

ni1∑
j=1

log
{

1 + ρ[exp{θ>Q(Xij)} − 1]
}

+

n11∑
j=1

{β>q(X1j)}. (4.18)

Since the MELEs are obtained by ν̂ = arg maxν `0 (ν) and θ̂ = arg maxθ `1(θ), we have

∂H(ν̂, ρ̂, θ̂)

∂ν
= 0 and

∂H(ν̂, ρ̂, θ̂)

∂θ
= 0. (4.19)

Note that
1∑
i=0

ni1∑
j=1

1

n01 + n11

1

1 + ρ̂[exp{α̂ + β̂
>
q(Xij)} − 1]

= 1,

which ensures that the MELE of G0(x) is a CDF. From this, we can verify that

∂H(ν̂, ρ̂, θ̂)

∂ρ
= 0. (4.20)

Then (4.19) and (4.20) together imply that η̂ satisfies

∂H(η̂)

∂η
= 0, (4.21)

which serves as the starting point of our proof for η̂.

Next, we apply the first-order Taylor expansion to ∂H(η̂)/∂η to find an approximation
for η̂. In this process, the first and second derivatives of H(ν, ρ,θ) play important roles.
Their detailed forms are given below.

• First derivatives of H(ν, ρ,θ)

After some calculation, we find the first derivatives of H(ν,θ, ρ) as follows:

∂H(ν, ρ,θ)

∂ν
=

(
∂H(ν, ρ,θ)

∂ν0

,
∂H(ν, ρ,θ)

∂ν1

)>
=

(
n00

ν0

− n01

1− ν0

,
n10

ν1

− n11

1− ν1

)>
,
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∂H(ν, ρ,θ)

∂ρ
= −

∑
ij

ω(Xij;θ)− 1

1 + ρ{ω(Xij;θ)− 1}
I(Xij > 0),

∂H(ν, ρ,θ)

∂θ
=

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

ρω(Xij;θ)

1 + ρ{ω(Xij;θ)− 1}
Q(Xij)I(Xij > 0),

where
∑

ij refers to summation over the full range of data.

We evaluate the above derivatives at η∗ and define

Sn =
∂H(η∗)

∂η
=


∂H(η∗)
∂ν

∂H(η∗)
∂ρ

∂H(η∗)
∂θ

 =

 Sn,ν
Sn,ρ
Sn,θ

 , (4.22)

where the corresponding entries are

Sn,ν =

(
n00

ν∗0
− n01

1− ν∗0
,
n10

ν∗1
− n11

1− ν∗1

)>
,

Sn,ρ = −
∑
ij

ω(Xij)− 1

h(Xij)
I(Xij > 0),

Sn,θ =

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

h1(Xij)Q(Xij)I(Xij > 0).

• Second derivatives of H(ν, ρ,θ)

We next calculate the second derivatives of H(ν, ρ,θ) and evaluate them at η∗. This
leads to

∂2H(η∗)

∂η∂η>
=


∂2H(η∗)
∂ν∂ν>

∂2H(η∗)
∂ν∂ρ

∂2H(η∗)
∂ν∂θ>

∂2H(η∗)
∂ρ∂ν>

∂2H(η∗)
∂ρ2

∂2H(η∗)
∂ρ∂θ>

∂2H(η∗)
∂θ∂ν>

∂2H(η∗)
∂θ∂ρ

∂2H(η∗)
∂θ∂θ>

 , (4.23)

where h0(x) = (1− ρ∗)/h(x) = 1− h1(x) and

∂2H(η∗)

∂ν∂ν>
= diag

{
−n00

ν∗20

− n01

(1− ν∗0)2
,−n10

ν∗21

− n11

(1− ν∗1)2

}
,
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∂2H(η∗)

∂ρ2
= −

∑
ij

−{ω(Xij)− 1}2

h(Xij)2
I(Xij > 0),

∂2H(η∗)

∂ν∂ρ
=

{
∂2H(η∗)

∂ρ∂ν>

}>
= 0,

∂2H(η∗)

∂θ∂ρ
=

{
∂2H(η∗)

∂ρ∂θ>

}>
= −

∑
ij

ω(Xij)

h(Xij)2
Q(Xij)I(Xij > 0),

∂2H(η∗)

∂θ∂θ>
= −

∑
ij

h0(Xij)h1(Xij){Q(Xij)Q(Xij)
>}I(Xij > 0),

∂2H(η∗)

∂ν∂θ>
=

{
∂2H(η∗)

∂θ∂ν>

}>
= 0.

• Some useful lemmas

In the proof of Theorem 4.1, we need the expectation of ∂2H(η∗)/(∂η∂η>) and the
asymptotic property of Sn. The following lemma is used to ease the calculation burden in
our main proofs.

Lemma 4.1. Suppose that f is an arbitrary vector-valued function. Let E0(·) represent
the expectation with respect to G0 and X refer to a random variable from G0. Then

E

{∑
ij

f(Xij)I(Xij > 0)

}
= n∆∗E0{h(X)f(X)}.

Proof. Note that

E

{∑
ij

f(Xij)I(Xij > 0)

}
=

1∑
i=0

niE{f(Xi1)I(Xi1 > 0)}

= n0(1− ν∗0)E0{f(X)}+ n1(1− ν∗1)E0{ω(X)f(X)},

where we use the DRM (4.3) in the last step. Using the facts that wi = ni/n, we further
have

E

{∑
ij

f(Xij)I(Xij > 0)

}
= nw0(1− ν∗0)E0{f(X)}+ nw1(1− ν∗1)E0{ω(X)f(X)}.
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Recall the definitions of ∆∗ and ρ∗. We then have

E

{∑
ij

f(Xij)I(Xij > 0)

}
= n∆∗E0{(1− ρ∗)f(X)}+ n∆∗E0[ρ∗ω(X)f(X)]

= n∆∗E0{h(X)f(X)}.

This completes the proof.

With the help of Lemma 4.1, we calculate the expectation of ∂2H(η∗)/(∂η∂η>).

Lemma 4.2. With the form of ∂2H(η∗)/(∂η∂η>) given in (4.23), we have

− 1

n
E

{
∂2H(η∗)

∂η∂η>

}
= A =

 Aν 0 0
0 −Aρ Aρ,θ

0 Aθ,ρ Aθ

 ,

where

Aν = diag

{
w0

ν∗0(1− ν∗0)
,

w1

ν∗1(1− ν∗1)

}
, Aθ = ∆∗(1− ρ∗)E0

[
h1(X)Q(X)Q>(X)

]
,

Aρ = ∆∗E0

{
{ω(X)− 1}2

h(X)

}
= {ρ∗(1− ρ∗)}−1

[
∆∗ − {ρ∗(1− ρ∗)}−1e>Aθe

]
,

Aθ,ρ = A>ρ,θ = ∆∗E0

{
ω(X)

h(X)
Q(X)

}
= {ρ∗(1− ρ∗)}−1Aθe

with e = (1,0>d×1)>.

Proof. Note that n00 ∼ Bin(n0, ν0) and n10 ∼ Bin(n1, ν1), where “Bin” denotes the bino-
mial distribution. Since wi = ni/n, we can easily show that

− 1

n
E

{
∂2H(η∗)

∂ν∂ν>

}
= Aν .

Next, we apply Lemma 4.1 to find the remaining entries of E
{
∂2H(η∗)/(∂η∂η>)

}
. We

use

E

{
∂2H(η∗)

∂θ∂θ>

}
as an illustration. For the other entries, the idea is similar and we omit the details.
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Note that

− 1

n
E

{
∂2H(η∗)

∂θ∂θ>

}
=

1

n
E

{∑
ij

h0(Xij)h1(Xij)Q(Xij)Q(Xij)
>I(Xij > 0)

}
= ∆∗E0

{
h(X)h0(X)h1(X)Q(X)Q(X)>

}
= ∆∗(1− ρ∗)E0

{
h1(X)Q(X)Q(X)>

}
,

where we have used Lemma 4.1 in the second step and the fact that h(x)h0(x) = 1− ρ∗ in
the third step. This completes the proof.

We now study the asymptotic properties of Sn defined in (4.22). Recall that W =
((1− ν∗0)−1,−(1− ν∗1)−1) and define S = w−1

0 + w−1
1 .

Lemma 4.3. With the form of Sn in (4.22), as n→∞

n−1/2Sn → N(0,B),

in distribution, where

B =

 Aν 0 0
0 Aρ 0
0 0 Aθ


+

 0 −ρ∗(1− ρ∗)AρW> W>e>Aθ

−ρ∗(1− ρ∗)AρW −S{ρ∗(1− ρ∗)}2A2
ρ Sρ∗(1− ρ∗)Aρe>Aθ

AθeW Sρ∗(1− ρ∗)AρAθe −SAθe(Aθe)>

 .

Proof. Using the results in Lemma 4.1, it is easy to show that E(Sn) = 0; we omit the
details.

Next, we verify that V ar(Sn) = B. For convenience, we write B as

B =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 .

We concentrate on deriving B13; the other entries can be similarly obtained and we omit
the details.
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Note that Sn,ν and Sn,θ can be rewritten as

Sn,ν0 =
n00

ν∗0
− n01

1− ν∗0
= − n01

ν∗0(1− ν∗0)
= − 1

ν∗0(1− ν∗0)

n0∑
j=1

I(X0j > 0),

Sn,ν1 =
n10

ν∗1
− n11

1− ν∗1
= − n11

ν∗1(1− ν∗1)
= − 1

ν∗1(1− ν∗1)

n1∑
j=1

I(X1j > 0),

Sn,θ =

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

h1(Xij)Q(Xij)I(Xij > 0)

=

n1∑
j=1

h0(X1j)Q(X1j)I(X1j > 0)−
n0∑
j=1

h1(X0j)Q(X0j)I(X0j > 0).

Then we have

1

n
Cov(Sn,ν0 ,S

>
n,θ)

=
1

nν∗0(1− ν∗0)
Cov

{
n0∑
j=1

I(X0j > 0),

n0∑
j=1

h1(X0j)Q(X0j)
>I(X0j > 0)

}
=

n0

nν∗0(1− ν∗0)

[
(1− ν∗0)E0

{
h1(X)Q(X)>

}
− (1− ν∗0)2E0

{
h1(X)Q(X)>

}]
= w0E0

{
h1(X)Q(X)>

}
= (1− ν∗0)−1(Aθe)>.

Similarly,

1

n
Cov(Sn,ν1 ,S

>
n,θ)

=
−1

nν∗1(1− ν∗1)
Cov

{
n1∑
j=1

I(X1j > 0),

n1∑
j=1

h0(X1j)Q(X1j)
>I(X1j > 0)

}

=
−n1

nν∗1(1− ν∗1)

[
(1− ν∗1)E0

{
h0(X)ω(X)Q(X)>

}
− (1− ν∗1)2E0

{
h0(X)ω(X)Q(X)>

}]
= −w1 ·

1− ρ∗

ρ∗
E0

{
h1(X)Q(X)>

}
= −(1− ν∗1)−1(Aθe)>.
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Recall that W = ((1− ν∗0)−1,−(1− ν∗1)−1). Then B13 = W>e>Aθ.

Note that Sn in (4.22) is a sum of independent random vectors. Therefore, by the
classical central limit theorem, we have as n→∞

n−1/2Sn → N(0,B),

in distribution, which completes the proof.

Proof of Theorem 4.1

With the above preparation, we now move to the asymptotic property of η̂.

Recall that η̂ satisfies
∂H(η̂)

∂η
= 0.

Applying the first-order Taylor expansion to ∂H(η̂)/∂η, and using (4.22) and Lemma 4.2,
we have

0 =
∂H(η∗)

∂η
+

(
∂2H(η∗)

∂η∂η>

)
(η̂ − η∗) + op(n

1/2)

= Sn − nA(η̂ − η∗) + op(n
1/2).

Conditions C1–C4 ensure that the matrix A is positive definite. Hence, we obtain an
approximation for η̂ − η∗ as

η̂ − η∗ =

 ν̂ − ν∗
ρ̂− ρ∗
θ̂ − θ∗

 =
1

n
A−1Sn + op(n

−1/2). (4.24)

This together with the asymptotic property of Sn in Lemma 4.3 and Slutsky’s theorem
gives

n1/2(η̂ − η∗)→ N(0,A−1BA−1),

in distribution, as n→∞.

To find the explicit form of A−1BA−1, we first identify the structure of A−1. We write(
−Aρ Aρ,θ

Aθ,ρ Aθ

)−1

=

(
A11 A12

A21 A22

)
.
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Using the formula for the inverse of a 2× 2 block matrix, we have

A11 = {−Aρ − (Aρ,θ)A
−1
θ (Aθ,ρ)}−1

=
[
{ρ∗(1− ρ∗)}−2e>Aθe−∆∗{ρ∗(1− ρ∗)}−1 − {ρ∗(1− ρ∗)}−2e>Aθe

]−1

= −ρ
∗(1− ρ∗)

∆
,

A12 = (A21)> = −A11(Aρ,θ)A
−1
θ =

e>

∆∗
,

A22 = A−1
θ +A−1

θ (Aθ,ρ)A
11(Aρ,θ)A

−1
θ = A−1

θ −
ee>

∆∗ρ∗(1− ρ∗)
.

Hence, A−1 is given by

A−1 =

 A−1
ν 0 0

0 −ρ∗(1−ρ∗)
∆∗

e>

∆∗

0 e
∆∗

A−1
θ − ee>

∆∗ρ∗(1−ρ∗)

 . (4.25)

With the form of A−1 in (4.25) and the form of B in Lemma 4.3, after some tedious
algebra, we find that

Λ = A−1BA−1

=

 A−1
ν ρ∗(1− ρ∗)A−1

ν W
> 0

ρ∗(1− ρ∗)WA−1
ν ρ∗(1− ρ∗){ 1

∆∗
− Sρ∗(1− ρ∗)} 0

0 0 A−1
θ − ee>

∆∗ρ∗(1−ρ∗)

 .

Recall that S = w−1
0 + w−1

1 . Some algebra leads to

1

∆∗
− Sρ∗(1− ρ∗) =

1

∆∗
{ρ∗ν∗0 + (1− ρ∗)ν∗1}.

This completes the proof of Theorem 4.1.
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Proof of Theorem 4.2

Recall that

p̂ij =
1

n01 + n11

{
1 + ρ̂[exp{θ̂

>
Q(Xij)} − 1]

}−1

=
1

nw0(1− ν̂0) + nw1(1− ν̂1)

{
1 + ρ̂[exp{θ̂

>
Q(Xij)} − 1]

}−1

. (4.26)

The MELE of γ is then given by

γ̂ =
1∑
i=0

ni1∑
j=1

p̂iju(Xij; ν̂, θ̂)

=
1

nw(1− ν̂0) + nw1(1− ν̂1)

∑
ij

u(Xij; ν̂, θ̂)

1 + ρ̂[exp{θ̂
>
Q(Xij)} − 1]

I(Xij > 0).

Note that γ̂ is a function of η̂, so we define

γ(η) =
1

nw(1− ν0) + nw1(1− ν1)

∑
ij

u(Xij;ν,θ)

1 + ρ[exp{θ>Q(Xij)} − 1]
I(Xij > 0).

We then have γ̂ = γ(η̂). From Theorem 4.1, we have η̂ = η∗ + Op(n
−1/2). Applying the

first-order Taylor expansion to γ(η̂), we get

γ̂ = γ(η∗) +

(
∂γ(η∗)

∂η

)
(η̂ − η∗) + op(n

−1/2). (4.27)

For convenience, we write u(x) = u(x;ν∗,θ∗). Note that

∂γ(η∗)

∂η
=

(
∂γ(η∗)

∂ν
,
∂γ(η∗)

∂ρ
,
∂γ(η∗)

∂θ

)
where

∂γ(η∗)

∂ν
=

1

n∆∗2

∑
ij

{
∂u(Xij;ν

∗,θ∗)/∂ν

h(Xij)
∆∗ + (w0, w1)⊗ u(Xij)

h(Xij)

}
I(Xij > 0),

∂γ(η∗)

∂ρ
= − 1

n∆∗

∑
ij

u(Xij){ω(Xij)− 1}
h(Xij)2

I(Xij > 0),
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∂γ(η∗)

∂θ
=

1

n∆∗

∑
ij

{∂u(Xij;ν
∗,θ∗)/∂θ} · h(Xij)− u(Xij)ρ

∗ω(Xij)Q(X)>

h(Xij)2
I(Xij > 0),

and ⊗ indicates the Kronecker product. By the law of large numbers and Lemma 4.1, we
have

∂γ(η∗)

∂η
→ C

in probability, as n→∞, where C = (Cν ,Cρ,Cθ) with

Cν = E0

{
∂u(X;ν∗,θ∗)

∂ν

}
+ (w0, w1)⊗ γ

∗

∆∗
,

Cρ = −E0

{
u(X){ω(X)− 1}

h(X)

}
=
ρ∗γ∗ − E0 {h1(X)u(X)}

ρ∗(1− ρ∗)
,

Cθ = E0

[
{∂u(X;ν∗,θ∗)/∂θ} · h(X)− u(X)ρ∗ω(X)Q(X)>

h(X)

]
= E0

{
∂u(X;ν∗,θ∗)

∂θ

}
− E0

{
h1(X)u(X)Q(X)>

}
.

For convenience, we let

E0u = E0{h0(X)u(X)} and E1u = E0{h1(X)u(X)}.

Then E0u + E1u = γ∗ and

Cρ =
ρ∗γ∗ − E1u

ρ∗(1− ρ∗)
.

Note that the first term of (4.27) involves

γ̂(η∗) =
1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0).

Then Equation (4.27) can be written as

γ̂ =
1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0) +C(η̂ − η∗) + op(n

−1/2). (4.28)
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Recall from (4.24) that η̂ − η∗ = n−1A−1Sn + op(n
−1/2). Therefore, as n → ∞,

n1/2(γ̂ − γ∗) has the same limiting distribution as

n1/2

[{
1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0)− γ∗

}
+CA−1Sn/n

]
. (4.29)

It can easily be verified that (4.29) has expectation zero. We will now decompose its
asymptotic variance into three parts.

The variance of the first term in (4.29) is

Γ1 = V ar{γ(η∗)}

=
1

∆∗
E0

{
u(X)u(X)>

h(X)

}
− 1

w0

E0{h0(X)u(X)}E0{h0(X)u(X)>}

− 1

w1

E0{h1(X)u(X)}E0{h1(X)u(X)>}

=
1

∆∗
E0

{
u(X)u(X)>

h(X)

}
− 1

w0

E0uE>0u −
1

w1

E1uE>1u, (4.30)

where in the first step we have used the results in Lemma 4.1, and in the second step we
have used the definitions of E0u and E1u.

Next, we derive the variance of the second term in (4.29):

Γ2 = nV ar(CA−1Sn/n) = CΛC>.

Together with the form of Λ in Theorem 1, we have

Γ2 = CνA
−1
ν C

>
ν + ρ∗(1− ρ∗)CνA

−1
ν W

>C>ρ + ρ∗(1− ρ∗)CρWA−1
ν C

>
ν

+(∆∗)−1ρ∗(1− ρ∗){ρ∗ν∗0 + (1− ρ∗)ν∗1}CρC
>
ρ +Cθ

{
A−1
θ −

ee>

∆∗ρ∗(1− ρ∗)

}
C>θ .

Note that

WA−1
ν W

> =
ρ∗ν∗0 + (1− ρ∗)ν∗1

∆∗ρ∗(1− ρ∗)
.
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Then

Γ2 = {Cν + ρ∗(1− ρ∗)CρW }A−1
ν {Cν + ρ∗(1− ρ∗)CρW }>

− 1

∆∗ρ∗(1− ρ∗)
(Cθe)(Cθe)> +CθA

−1
θ C

>
θ . (4.31)

Lastly, we derive the covariance of the two terms in (4.29). That is,

Γ3 = nCov[γ(η∗), n−1{CA−1Sn}>] = Cov{γ(η∗),S>n }A−1C>.

For convenience, we write Cov{γ(η∗),S>n } = (Dν ,Dρ,Dθ).

We first look at

Cov{γ(η∗),Sn,ν1}

= Cov

{
1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

−n11

ν∗1(1− ν∗1)

}

=
−1

n∆∗ν∗1(1− ν∗1)
Cov

{
n1∑
j=1

u(X1j)

h(X1j)
I(X1j > 0),

n1∑
j=1

I(X1j > 0)

}

=
−n1

n∆∗ν∗1(1− ν∗1)

[
(1− ν∗1)E0

{
u(X)ω(X)

h(X)

}
− (1− ν∗1)2E0

{
u(X)ω(X)

h(X)

}]
=
−w1

∆∗
E0

{
u(X)ω(X)

h(X)

}
= −(1− ν∗1)−1E1u.

Similarly, we find

Cov{γ(η∗),Sn,ν0} = −(1− ν∗0)−1E0u.

Hence,

Dν =
(
−(1− ν∗0)−1E0u,−(1− ν∗1)−1E1u

)
.
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We can find Dρ and Dθ in a similar manner. For Dρ,

Dρ = Cov{γ(η∗), Sn,ρ}

= − 1

n∆∗
Cov

{∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

∑
ij

ω(Xij)− 1

h(Xij)
I(Xij > 0)

}

= Cρ +
∆∗

w0

E0{h0(X)u(X)}E0[h0(X){ω(X)− 1}]

+
∆∗

w1

E0{h1(X)u(X)}E0[h1(X){ω(X)− 1}]

= Cρ −∆∗mE0[h1(X){ω(X)− 1}],

where m = γ∗/w0 − SE0{h1(X)u(X)} = γ∗/w0 − E1u/{w0w1}.

For Dθ,

Dθ = Cov{γ(η∗),S>n,θ}

=
1

n∆∗
Cov

{∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n1∑
j=1

Q(X1j)
>I(X1j > 0)

−
∑
ij

h1(Xij)Q(Xij)
>I(Xij > 0)

}

=
1

n∆∗
Cov

{∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n1∑
j=1

h0(X1j)Q(X1j)
>I(X1j > 0)

}

− 1

n∆∗
Cov

{∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n0∑
j=1

h1(X0j)Q(X0j)
>I(X0j > 0)

}
= (1− ρ∗)∆∗mE0{h1(X)Q(X)>}
= m(Aθe)>.
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With the form of (Dν ,Dρ,Dθ) and the form of A−1 in (4.25), Γ3 is given as

Γ3 = (Dν ,Dρ,Dθ)A
−1C>

= DνA
−1
ν C

>
ν −

ρ∗(1− ρ∗)
∆∗

DρC
>
ρ +Dρ

e>

∆∗
C>θ +Dθ

e

∆∗
C>ρ

+Dθ

{
A−1
θ −

ee>

∆∗ρ∗(1− ρ∗)

}
C>θ

= DνA
−1
ν C

>
ν +DθA

−1
θ C

>
θ +

1

∆∗
{Dθe− ρ∗(1− ρ∗)Dρ}C>ρ

+

{
Dρ

∆∗
− Dθe

∆∗ρ∗(1− ρ∗)

}
e>C>θ .

With the forms of Dρ and Dθ, we have

DθA
−1
θ = me> and

1

∆∗
{Dθe− ρ∗(1− ρ∗)Dρ} = ρ∗(1− ρ∗)m− ρ∗(1− ρ∗)Cρ/∆

∗.

Hence,

Γ3 = DνA
−1
ν C

>
ν +me>C>θ +

(
m− Cρ

∆∗

){
ρ∗(1− ρ∗)C>ρ − e>C>θ

}
= DνA

−1
ν C

>
ν +

(
m− Cρ

∆∗

)
ρ∗(1− ρ∗)C>ρ +

1

∆∗
Cρe

>C>θ . (4.32)

Substituting Γ2 into (4.31) and Γ3 into (4.32) and using the facts that Cθ =M3,

Cν + ρ∗(1− ρ∗)CρW +Dν =M1, (4.33)

and

−(Cθe)(Cθe)>

∆∗ρ∗(1− ρ∗)
+

1

∆∗
Cρe

>C>θ +
1

∆∗
CθeC

>
ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ = − M2M>

2

∆∗ρ∗(1− ρ∗)
,
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we have

Γ2 + Γ3 + Γ>3

= (M1 −Dν)A−1
ν (M1 −Dν)> − M2M>

2

∆∗ρ∗(1− ρ∗)
+M3A

−1
θ M

>
3

+DνA
−1
ν C

>
ν +CνA

−1
ν D

>
ν + ρ∗(1− ρ∗)(mC>ρ +Cρm

>)− Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

= M1A
−1
ν M>

1 −
M2M>

2

∆∗ρ∗(1− ρ∗)
+M3A

−1
θ M

>
3

+DνA
−1
ν (Cν −M1)> + (Cν −M1)A−1

ν D
>
ν +DνA

−1
ν D

>
ν

+ρ∗(1− ρ∗)(mC>ρ +Cρm
>)− Cρ

∆∗
ρ∗(1− ρ∗)C>ρ . (4.34)

Next we further simplify the form of Γ2 + Γ3 + Γ>3 . Note that with (4.33), we have

DνA
−1
ν (Cν −M1)> +DνA

−1
ν D

>
ν + ρ∗(1− ρ∗)mC>ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

= −ρ∗(1− ρ∗)DνA
−1
ν W

>C>ρ + ρ∗(1− ρ∗)mC>ρ −
Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

= ρ∗(1− ρ∗)
(
−DνA

−1
ν W

> +m− Cρ

∆∗

)
C>ρ .

With the forms of Dν , A−1
ν , and W , we have

DνA
−1
ν W

> = − ν0

∆∗(1− ρ∗)
γ∗ +

ρ∗ν0 + (1− ρ∗)ν1

∆∗ρ∗(1− ρ∗)
E1u

= − ν0

∆∗(1− ρ∗)
γ∗ +

{
1

∆∗ρ∗(1− ρ∗)
− S

}
E1u

=
1− ν0

∆∗(1− ρ∗)
γ∗ − SE1u −

1

∆∗ρ∗(1− ρ∗)
{ρ∗γ∗ − E1u}

= m− Cρ

∆∗
.

Hence,

DνA
−1
ν (Cν −M1)> +DνA

−1
ν D

>
ν + ρ∗(1− ρ∗)mC>ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ = 0
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and Γ2 + Γ3 + Γ>3 in (4.34) becomes

Γ2 + Γ3 + Γ>3 = M1A
−1
ν M>

1 −
M2M>

2

∆∗ρ∗(1− ρ∗)
+M3A

−1
θ M

>
3

+(Cν −M1)A−1
ν D

>
ν + ρ∗(1− ρ∗)Cρm

>. (4.35)

With Γ1 in (4.30) and Γ2 + Γ3 + Γ>3 in (4.35), to show that Γ = Γ1 + Γ2 + Γ3 + Γ>3 , we
need to argue that

−γ
∗γ∗>

∆∗
= (Cν −M1)A−1

ν D
>
ν + ρ∗(1− ρ∗)Cρm

> − 1

w0

E0uE>0u −
1

w1

E1uE>1u. (4.36)

Note that

Cν =M1 + (w0, w1)⊗ γ
∗

∆∗
.

Then

(Cν −M1)A−1
ν D

>
ν = − ν0

∆∗
γE>0u −

ν1

∆∗
γE>1u = −γ

( ν0

∆∗
E>0u +

ν1

∆∗
E1u

)>
. (4.37)

Recall that
ρ∗(1− ρ∗)Cρ = ρ∗γ∗ − E1u = ρ∗E0u − (1− ρ∗)E1u

and
m = γ∗/w0 − E1u/{w0w1} = E0u/w0 − E1u/w1.

Then

ρ∗(1− ρ∗)Cρm
> − 1

w0

E0uE>0u −
1

w1

E1uE>1u

= {ρ∗E0u − (1− ρ∗)E1u} {E0u/w0 − E1u/w1}> −
1

w0

E0uE>0u −
1

w1

E1uE>1u

= −1− ρ∗

w0

E0uE>0u −
1− ρ∗

w0

E1uE>0u −
ρ∗

w1

E0uE>1u −
ρ∗

w1

E1uE>1u

= −(E0u + E1u)

(
1− ρ∗

w0

E0u +
ρ∗

w1

E1u

)>
= −γ∗

(
1− ν0

∆∗
E0u +

1− ν1

∆∗
E1u

)>
. (4.38)
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Since E0u + E1u = γ, combining (4.37) and (4.38) gives

(Cν −M1)A−1
ν D

>
ν + ρ∗(1− ρ∗)Cρm

> − 1

w0

E0uE>0u −
1

w1

E1uE>1u = − 1

∆
γγ∗>,

which verifies (4.36). Hence,

Γ = Γ1 + Γ2 + Γ3 + Γ>3 .

Applying Slutsky’s theorem and the central limit theorem to (4.29), we get as n→∞

n1/2 (γ̂ − γ∗)→ N (0,Γ) ,

in distribution. This completes the proof of Theorem 4.2.

Proof of Theorem 4.3

• Approximations of ψ̂0 and ψ̂1

To develop the asymptotic properties of (Ĝ0, Ĝ1), we first find the linear approximations
of ψ̂0 and ψ̂1. We start with ψ̂0.

With the form of p̂ij in (4.26), the MELE ψ̂0 is then given by

ψ̂0 =
1∑
i=0

ni1∑
j=1

p̂ij{2XijĜ0(Xij)}

=
1∑
i=0

ni1∑
j=1

p̂ijXij

{
2

1∑
l=0

nl1∑
s=1

p̂lsI(Xls ≤ Xij)

}
= {nw0(1− ν̂0) + nw1(1− ν̂1)}−2 ×∑

ij

∑
ls

2I(Xls ≤ Xij)Xij · I(Xij > 0)I(Xls > 0){
1 + ρ̂[exp{θ̂

>
Q(Xij)} − 1]

}{
1 + ρ̂[exp{θ̂

>
Q(Xls)} − 1]

} .
Note that ψ̂0 is a function of η, and hence we define

ψ0(η) = {nw0(1− ν0) + nw1(1− ν1)}−2 ×∑
ij

∑
ls

2I(Xls ≤ Xij)Xij · I(Xij > 0)I(Xls > 0){
1 + ρ[exp{θ>Q(Xij)} − 1]

}{
1 + ρ[exp{θ>Q(Xls)} − 1]

} .
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We then have ψ̂0 = ψ0(η̂). With the definition of ∆∗ and h(x), we have

ψ0(η∗) =
1

(n∆∗)2

∑
ij

∑
ls

2I(Xls ≤ Xij)Xij

h(Xij)h(Xls)
I(Xij > 0)I(Xls > 0)

and E0{ψ0(η∗)} = ψ0.

By Theorem 4.1, we have η̂ = η∗+Op(n
−1/2). Applying the first-order Taylor expansion

gives

ψ0(η̂) = ψ0(η∗) +

{
∂ψ0(η∗)

∂η

}>
(η̂ − η∗) + op(n

−1/2). (4.39)

Define

U(a, b) =
I(b ≤ a)a

h(a)h(b)
I(a > 0)I(b > 0), Vnil =

1

ni

1

nl

ni∑
j=1

nl∑
s=1

U(Xij, Xls),

Vni =
1

n2
i

ni∑
j=1

ni∑
s=1

2U(Xij, Xis) =
1

n2
i

ni∑
j=1

ni∑
s=1

{U(Xij, Xis) + U(Xis, Xij)} ,

for i, l ∈ {0, 1} and i 6= l. We then rewrite ψ0(η∗) as

ψ0(η∗) =
1

(∆∗)2

1∑
i=0

1∑
l=0

wiwl
1

ni

1

nl

ni∑
j=1

nl∑
s=1

2U(Xij, Xls)

=
1

(∆∗)2

{
1∑
i=0

w2
i Vni +

1∑
i=0

∑
l 6=i

wiwl2Vnil

}
.

Note that Vni is a von Mises statistic (Mises, 1947). We denote the associated U-statistic
by

Uni =

(
ni
2

)−1 ∑
1≤j<s≤ni

{U(Xij, Xis) + U(Xis, Xij)} .

According to Serfling (1980), the projection of Uni is defined as

Ûni = E{Ui(Xi1)}+
2

ni

ni∑
j=1

[Ui(Xij)− E{Ui(Xi1)}] ,

where Ui(a) = E{U(a,Xi1) +U(Xi1, a)}. It follows from Serfling (1980, p. 190 & p. 206)

157



that under Condition C5,

√
ni(Ûni − Uni) = op(1) and

√
ni(Vni − Uni) = op(1).

This leads to

Vni = E{Ui(Xi1)}+
2

ni

ni∑
j=1

[Ui(Xij)− E{Ui(Xi1)}] + op(n
−1/2).

When l 6= i, Vnil is a two-sample U-statistic. Define Uil = E{U(Xi1, Xl1)}, Uil10(a) =
E{U(a,Xl1)} − Uil, and Uil01(a) = E{U(Xi1, a)} − Uil. From Theorem 12.6 in Van der
Vaart (2000), we have

Vnil = Uil +
1

ni

ni∑
j=1

Uil10(Xij) +
1

nl

nl∑
s=1

Uil01(Xls) + op(n
−1/2).

Since

E{Ui(Xi1)} = 2E{U(Xi1, Xi1)} = 2Uii

Ui(a)− E{Ui(Xi1)} = Uii10(a) + Uii01(a),

we have

Vni = 2

{
Uii +

1

ni

ni∑
j=1

Uii10(Xij) +
1

ni

ni∑
j=1

Uii01(Xij)

}
+ op(n

−1/2).

Hence,

ψ0(η∗) =
2

(∆∗)2

1∑
i=0

1∑
l=0

wiwlUil +
2

(∆∗)2

1∑
i=0

1∑
l=0

wiwl
1

ni

ni∑
j=1

Uil10(Xij)

+
2

(∆∗)2

1∑
i=0

1∑
l=0

wiwl
1

nl

nl∑
s=1

Uil01(Xls) + op(n
−1/2)

=
2

(n∆∗)2

1∑
i=0

1∑
l=0

ninlUil +
2

(n∆∗)2

1∑
i=0

1∑
l=0

nl

ni∑
j=1

Uil10(Xij)

+
2

(n∆∗)2

1∑
i=0

1∑
l=0

ni

nl∑
s=1

Uil01(Xls) + op(n
−1/2). (4.40)
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We now simplify each term in (4.40). With Lemma 4.1 and the definition of Uil, we
have

1∑
l=0

nlE{U(Xi1, Xl1)|Xi1} =
1∑
l=0

nlE

{
I(Xl1 ≤ Xi1)Xi1

h(Xi1)h(Xl1)
I(Xi1 > 0)I(Xl1 > 0)|Xi1

}
= n∆∗

Xi1

h(Xi1)
I(Xi1 > 0)E0 {I(X ≤ Xi1)}

= n∆∗
Xi1G0(Xi1)

h(Xi1)
I(Xi1 > 0).

Hence,

2

(n∆∗)2

1∑
i=0

1∑
l=0

ninlUil =
2

(n∆∗)2

1∑
i=0

niE

[
1∑
l=0

nlE{U(Xi1, Xl1)|Xi}

]

=
2

n∆∗

1∑
i=0

niE

{
Xi1G0(Xi1)

h(Xi1)
I(Xi1 > 0)

}
.

Using the result in Lemma 4.1, we have

2

(n∆∗)2

1∑
i=0

1∑
l=0

ninlUil = 2E0{XG0(X)} = ψ0.

We move to the second term of ψ0(η∗) in (4.40). Recall that

Uil10(a) = E{U(a,Xl1)} − E{U(Xi1, Xl1)}.

We then have

1∑
l=0

nlUil10(Xij) =
1∑
l=0

nl {E{U(Xij, Xl1)|Xij} − E[E{U(Xij, Xl1)|Xij}]}

= n∆∗
[
XijG0(Xij)

h(Xij)
I(Xij > 0)− E

{
XijG0(Xij)

h(Xij)
I(Xij > 0)

}]
.
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This leads to

2

(n∆∗)2

1∑
i=0

1∑
l=0

nl

ni∑
j=1

Uil10(Xij)

=
2

n∆∗

∑
ij

[
XijG0(Xij)

h(Xij)
I(Xij > 0)− E

{
XijG0(Xij)

h(Xij)
I(Xij > 0)

}]
=

2

n∆∗

∑
ij

I(Xij > 0)

h(Xij)
XijG0(Xij)− ψ0.

Similarly, with the definition of Uil01(a), we have

1∑
i=0

niUil01(Xls) =
1∑
i=0

ni {E{U(Xi1, Xls)|Xls} − E[E{U(Xi1, Xls)|Xls}]} .

Note that

1∑
i=0

niE{U(Xi1, Xls)|Xls} =
1∑
i=0

niE

{
I(Xls ≤ Xi1)Xi1

h(Xi1)h(Xls)
I(Xi1 > 0)I(Xls > 0)|Xls

}
= n∆∗

I(Xls > 0)

h(Xls)
E {XI(Xls ≤ X)}

= n∆∗
I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG0(x).

Together with the result of Lemma 4.1, we have

2

(n∆∗)2

1∑
i=0

1∑
l=0

ni

nl∑
s=1

Uil01(Xls)

=
2

n∆∗

∑
ls

[
I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG0(x)− E
{
I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG0(x)

}]
=

2

n∆∗

∑
ls

I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG0(x)− ψ0.
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For a > 0, we define the function

H0(a) =

{
aG0(a) +

∫ ∞
a

xdG0(x)

}
.

The approximation of ψ0(η∗) is then given by

ψ0(η∗) =
1

n∆∗

∑
ij

I(Xij > 0)

h(Xij)
· {2H0(Xij)} − ψ0 + op(n

−1/2).

We also need the first derivative of ψ0(η) when finding the approximation of ψ0(η̂). We
take the first derivative of ψ0(η) with respect to η and evaluate the derivative at the true
value η∗. This leads to

∂ψ0(η∗)

∂ν
=

2

∆∗
ψ0(η∗)

(
w0

w1

)
,

∂ψ0(η∗)

∂ρ
= − 2

(n∆∗)2

∑
ij

∑
ls

{
ω(Xij)− 1

h(Xij)2h(Xls)
+

ω(Xls)− 1

h(Xij)h(Xls)2

}
×I(Xls ≤ Xij)XijI(Xij > 0)I(Xls > 0),

∂ψ0(η∗)

∂θ
= − 2

(n∆∗)2

∑
ij

∑
ls

{
ρ∗ω(Xij)Q(Xij)

h(Xij)2h(Xls)
+
ρ∗ω(Xls)Q(Xls)

h(Xij)h(Xls)2

}
×I(Xls ≤ Xij)XijI(Xij > 0)I(Xls > 0),

= − 2

(n∆∗)2

∑
ij

∑
ls

{h1(Xij)Q(Xij) + h1(Xls)Q(Xls)}

×I(Xls ≤ Xij)XijI(Xij > 0)I(Xls > 0)

h(Xij)h(Xls)
.

By the law of large numbers, we have

∂ψ0(η∗)

∂η
= E

{
∂ψ0(η∗)

∂η

}
+ op(1) = C0 + op(1),

with C0 = (C>0ν ,C0ρ,C
>
0θ)
>.

Since E{ψ0(η∗)} = ψ0, we have

C0ν =
2ψ0

∆∗
(w0, w1)>.
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For C0ρ = E {∂ψ0(η∗)/∂ρ},

E

{
∂ψ0(η∗)

∂ρ

}
= − 2

(n∆∗)2
E

[∑
ij

E

{∑
ls

ω(Xij)− 1

h(Xij)2h(Xls)
I(Xls ≤ Xij)XijI(Xij > 0)I(Xls > 0)|Xij

}]

− 2

(n∆∗)2
E

[∑
ls

E

{∑
ij

ω(Xls)− 1

h(Xij)h(Xls)2
I(Xls ≤ Xij)XijI(Xij > 0)I(Xls > 0)|Xls

}]

= − 2

n∆∗
E

[∑
ij

ω(Xij)− 1

h(Xij)2
XijI(Xij > 0)G0(x)

]

− 2

n∆∗
E

[∑
ls

ω(Xls)− 1

h(Xls)2
I(Xls > 0)E0 {I(Xls ≤ X)X}

]

= − 2

n∆∗
E

[∑
ij

ω(Xij)− 1

h(Xij)2
I(Xij > 0)H0(Xij)

]

= −2E0

{
H0(X){ω(X)− 1}

h(X)

}
.

The expression for C0θ can be found in a similar manner:

C0θ = −2E0 {h1(X)H0(X)Q(X)} .

The details are omitted here.

It can be verified that the matrix C>0 is the same as the matrix C in (4.28) when we
set u(x;ν,θ) = 2H0(x) in the definition of γ in (4.10). Hence, the expression in (4.39) can
be further written as

ψ̂0 =
1

n∆∗

∑
ij

I(Xij > 0)

h(Xij)
· {2H0(Xij)} − ψ0 +C>0 (η̂ − η∗) + op(n

−1/2)

=
1∑
i=0

ni1∑
j=1

p̂ij{2H0(Xij)} − ψ0 + op(n
−1/2). (4.41)

The remaining term op(n
−1/2) is introduced by the projection of the von Mises statistic

and the U-statistic when approximating ψ0(η∗).
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Define
H0(a) = 2H0(a)− ψ0.

With the natural constraint
∑1

i=0

∑ni1
j=1 pij = 1, Equation (4.41) implies

ψ̂0 =
1∑
i=0

ni1∑
j=1

p̂ijH0(Xij) + op(n
−1/2). (4.42)

Next, we consider the approximation of MELE ψ̂1. Recall that

ψ̂1 =
1∑
i=0

ni1∑
j=1

p̂ijω(Xij; θ̂)Xij

{
2

1∑
l=0

nl1∑
s=1

p̂lsω(Xls; θ̂)I(Xls ≤ Xij)

}
.

With the definition of p̂ij in (4.26), the MELE ψ̂i can be written as

ψ̂1 = {nw0(1− ν̂0) + nw1(1− ν̂1)}−2

×
∑
ij

∑
ls

2I(Xls ≤ Xij)Xijω(Xij; θ̂)ω(Xls; θ̂)I(Xij > 0)I(Xls > 0){
1 + ρ̂[exp{θ̂

>
Q(Xij)} − 1]

}{
1 + ρ̂[exp{θ̂

>
Q(Xls)} − 1]

} . (4.43)

Define

Ũ(a, b) =
I(b ≤ a)a

h(a)h(b)
ω(a)ω(b)I(a > 0)I(b > 0), Ṽnil =

1

ni

1

nl

ni∑
j=1

nl∑
s=1

Ũ(Xij, Xls),

Ṽni =
1

n2
i

ni∑
j=1

ni∑
s=1

2Ũ(Xij, Xis) =
1

n2
i

ni∑
j=1

ni∑
s=1

{
Ũ(Xij, Xis) + Ũ(Xis, Xij)

}
,
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for i, l ∈ {0, 1}. We use ψ1(η̂) to denote ψ̂1 and have

ψ1(η∗) =
1

(n∆∗)2

∑
ij

∑
ls

2Ũ(Xij, Xls)

=
1

(∆∗)2

1∑
i=0

1∑
l=0

wiwl
1

ni

1

nl

ni∑
j=1

nl∑
s=1

2Ũ(Xij, Xls)

=
1

(∆∗)2

{
1∑
i=0

w2
i Ṽni +

1∑
i=0

∑
l 6=i

wiwl2Ṽnil

}
.

Note that Ṽni is a von Mises statistic and Ṽnil is a two-sample U-statistic. Using the
technique used to obtain the approximation of ψ0(η∗) in (4.40), we have

ψ1(η∗) =
2

(n∆∗)2

1∑
i=0

1∑
l=0

ninlŨil +
2

(n∆∗)2

1∑
i=0

1∑
l=0

nl

ni∑
j=1

Ũil10(Xij)

+
2

(n∆∗)2

1∑
i=0

1∑
l=0

ni

nl∑
s=1

Ũil01(Xls) + op(n
−1/2),

where Ũil = E{Ũ(Xi1, Xl1)}, Ũil10(a) = E{Ũ(a,Xl1)}− Ũil, and Ũil01(a) = E{Ũ(Xi1, a)}−
Ũil.

With Lemma 4.1 and the definition of Ũ(a, b), we have

1∑
l=0

nlE{Ũ(Xij, Xl1)|Xij}

=
1∑
l=0

nlE

{
I(Xl1 ≤ Xij)Xij

h(Xij)h(Xl1)
ω(Xij)ω(Xl1)I(Xij > 0)I(Xl1 > 0)|Xij

}
= n∆∗

Xijω(Xij)

h(Xij)
I(Xij > 0)E0 {ω(X)I(X ≤ Xij)}

= n∆∗
Xijω(Xij)G1(Xij)

h(Xij)
I(Xij > 0)
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and

1∑
i=0

niE{Ũ(Xi1, Xls)|Xls}

=
1∑
i=0

niE

{
I(Xls ≤ Xi1)Xi1

h(Xi1)h(Xls)
ω(Xi1)ω(Xls)I(Xi1 > 0)I(Xls > 0)|Xls

}
= n∆∗

ω(Xls)I(Xls > 0)

h(Xls)
E0 {Xω(X)I(Xls ≤ X)}

= n∆∗
ω(Xls)I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG1(x).

It follows that

2

(n∆∗)2

1∑
i=0

1∑
l=0

ninlŨil =
2

n∆∗

1∑
i=0

niE

{
Xi1ω(Xi1)G1(Xi1)

h(Xi1)
I(Xi1 > 0)

}
= 2E0{Xω(X)G1(X)}
= ψ1,

2

(n∆∗)2

1∑
i=0

1∑
l=0

nl

ni∑
j=1

Ũil10(Xij) =
2

n∆∗

∑
ij

ω(Xij)I(Xij > 0)

h(Xij)
XijG1(Xij)− ψ1,

2

(n∆∗)2

1∑
i=0

1∑
l=0

ni

nl∑
s=1

Ũil01(Xls) =
2

n∆∗

∑
ls

ω(Xls)I(Xls > 0)

h(Xls)

∫ ∞
Xls

xdG1(x)− ψ1.

Hence, ψ1(η∗) is given by

ψ1(η∗) =
1

n∆∗

∑
ij

ω(Xij)I(Xij > 0)

h(Xij)
· {2H1(Xij)} − ψ1 + op(n

−1/2),

where H1(a) = aG1(a) +
∫∞
a
xdG1(x) for a > 0.

Applying the first-order Taylor expansion to ψ̂1 in (4.43) yields

ψ1(η̂) = ψ1(η∗) +

{
∂ψ0(η∗)

∂η

}>
(η̂ − η∗) + op(n

−1/2).
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With the law of large numbers, we have

∂ψ1(η∗)

∂η
= E

{
∂ψ1(η∗)

∂η

}
+ op(1) = C1 + op(1)

with C1 = (C>1ν ,C1ρ,C
>
1θ)
> and

C1ν =
2ψ1

∆∗

(
w0

w1

)
,C1ρ = −2E0

{
H1(X){ω(X)− 1}

h(X)

}
,C1θ = 2E0 {h0(X)H1(X)Q(X)} .

The expression of each element in C1 can be found similarly to the derivation of C0; we
omit the details. By setting u(x;ν,θ) = 2ω(x;θ)H1(x) in (4.10), we can verify that the
matrix C>1 is the same as the matrix C in (4.28). Hence, the approximation is given by

ψ1(η̂) =
1

n∆∗

∑
ij

ω(Xij)I(Xij > 0)

h(Xij)
· {2H1(Xij)} − ψ1 +C>1 (η̂ − η∗) + op(n

−1/2).

With the natural constraint
∑1

i=0

∑ni
j=1 p̂ijω(Xij; θ̂) = 1, the above approximation equation

implies

ψ̂1 =
1∑
i=0

ni1∑
j=1

p̂ijω(Xij; θ̂)H1(Xij) + op(n
−1/2), (4.44)

where we define H1(a) = 2H1(a)− ψ1 for a > 0.

• Asymptotic properties of Ĝ0 and Ĝ1

We now proceed to derive the asymptotic properties of Ĝ0 and Ĝ1. Recall that

Ĝ0 = (2ν̂0 − 1) + (1− ν̂0)
ψ̂0

m̂0

,

where m̂0 =
∑1

i=0

∑ni1
j=1 p̂ijXij and the approximation of ψ̂0 is in (4.42). Then

Ĝ0 =
(2ν̂0 − 1)m̂0 + (1− ν̂0)ψ̂0

m̂0

=

∑1
i=0

∑ni1
j=1 p̂ij {(2ν̂0 − 1)Xij + (1− ν̂0)H0(Xij)}∑1

i=0

∑ni1
j=1 p̂ijXij

+ op(n
−1/2). (4.45)
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Similarly,

Ĝ1 =

∑1
i=0

∑ni1
j=1 p̂ij

{
(2ν̂1 − 1)ω(Xij; θ̂)Xij + (1− ν̂1)H1(Xij; θ̂)

}
∑1

i=0

∑ni1
j=1 p̂ijω(Xij; θ̂)Xij

+ op(n
−1/2). (4.46)

Note that the numerators and denominators of the leading terms in (4.45) and (4.46)
all have the forms in (4.11) with u(·; ·) taking some specific forms. We define these specific
u(x;ν,θ) as

u(x;ν,θ) = (x, u0(x;ν), ω(x;θ)x, ω(x;θ)u1(x;ν))> (4.47)

with

u0(x;ν) = (2ν0 − 1)x+ (1− ν0)H0(x) and u1(x;ν) = (2ν1 − 1)x+ (1− ν1)H1(x).(4.48)

Further, we define

γ =

∫ ∞
0

u(x;ν,θ)dG0(x) = (γ1, γ2, γ3, γ4)> (4.49)

and

γ̂ =

∫ ∞
0

u(x; ν̂, θ̂)dĜ0(x) = (γ̂1, γ̂2, γ̂3, γ̂4)>. (4.50)

Then we have

Ĝ0 = γ̂1/γ̂2 + op(n
−1/2) and Ĝ1 = γ̂3/γ̂4 + op(n

−1/2). (4.51)

Hence, the joint limiting distribution of
√
n(Ĝ0 − G∗0 , Ĝ1 − G∗1) is determined by that of√

n(γ̂ − γ∗), where the G∗i are the true values of Gi for i = 0, 1, and

γ∗ =

∫ ∞
0

u(x;ν∗,θ∗)dG0(x) = (m0,m0G∗0 ,m1,m1G∗1)>

is the true value of γ.

Let

ũ(x) = (ũ0(x)>, ũ1(x)>)> = (−ρ∗(x, u0(x;ν∗)), (1− ρ∗)(x, u1(x;ν∗)))>.
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By using the form of u(x;ν,θ) in (4.47), we obtain the simplified forms of M1, M2, and
M3 in Theorem 4.2 as follow:

M1 =


0 0

2m0 − ψ0 0
0 0
0 2m1 − ψ1

 , M2 =


−ρ∗m0

−ρ∗(m0G∗0)
(1− ρ∗)m1

(1− ρ∗)(m1G∗1)

 = E0{ũ(X)},

M3 =


−E0{h1(X)XQ(X)>}

−E0{h1(X)u0(X;ν∗)Q(X)>}
E0{h0(X)ω(X)XQ(X)>}

E0{h0(X)ω(X)u1(X;ν∗)Q(X)>}

 =
1

ρ∗
E0{h1(X)ũ(X)Q(X)>}.

Let g(γ) = (γ2/γ1, γ4/γ3)> = (G0,G1)>. Then g(γ̂) = (Ĝ0, Ĝ1)> and g(γ∗) = (G∗0 ,G∗1)>.
Applying the Delta method to the limiting distribution in Theorem 4.2, we have, as n→∞,

√
n
(
Ĝ0 − G∗0

)
→ N(0,Σ)

in distribution, where Σ = JΓJ> and

J =
∂g(γ∗)

∂γ
=

(
J>0 0
0 J>1

)
=

(
− G

∗
0

m0

1
m0

0 0

0 0 − G
∗
1

m1

1
m1

)
. (4.52)

To finish the proof of Theorem 4.3, we use the forms of Γ in (4.12) and J in (4.52) to
simplify Σ. Note that

J>0

(
m0

m0G∗0

)
= −G

∗
0

m0

·m0 +
1

m0

· (m0G∗0) = 0,

J>1

(
m1

m1G∗1

)
= −G

∗
1

m1

·m1 +
1

m1

· (m1G∗1) = 0.

This leads to

J

{
γ∗γ∗>

∆∗

}
J> = J

{
− M2M>

2

∆∗ρ∗(1− ρ∗)

}
J> = 0. (4.53)

With the fact that

J>0

(
0

2m0 − ψ0

)
=

1− G∗0
1− ν0

and J>1

(
0

2m1 − ψ1

)
=

1− G∗1
1− ν1

,
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we have

JM1 = diag

{
1− G∗0
1− ν0

,
1− G∗1
1− ν1

}
.

Hence,

J(M1A
−1
ν M1)J> = diag

{
ν∗0(1− G∗0)2

∆∗(1− ρ∗)
,
ν∗1(1− G∗1)2

∆∗ρ∗

}
. (4.54)

Substituting (4.12) and (4.52) into Σ and using (4.53)–(4.54), Σ has the following
simplified form:

Σ =
1

∆∗
J

[
E0

{
u(X;ν∗,θ∗)u(X;ν∗,θ∗)>

h(X)

}
+

1

(ρ∗)2
B

]
J>

+diag

{
ν∗0(1− G∗0)2

∆∗(1− ρ∗)
,
ν∗1(1− G∗1)2

∆∗ρ∗

}
, (4.55)

where
B = E0{h1(X)ũ(X)Q(X)>}A−1

θ E0{h1(X)Q(X)ũ(X)>},

as claimed in Theorem 4.3. This completes the proof.

Proof of Theorem 4.4

The proof of Theorem 4.4 is similar to that of Theorem 1. The results of Li et al. (2018)
are helpful for this proof.

Proof of Theorem 4.5

We start with (a). Recall that the nonparametric estimator of the Gini index for sample
i = 0, 1 is defined as

G̃i = (2ν̂i − 1) + (1− ν̂i)ψ̃i/m̃i,

where

m̃i = ni1
−1

ni1∑
j=1

Xij and ψ̃i =

∫ ∞
0

{2xG̃i(x)}dG̃i(x).

After some algebra, we have

G̃i =
n−1
i

∑ni
j=1{2F̃i(Xij)− 1}Xij

µ̃i
, (4.56)
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where µ̃i = ni
−1
∑ni

j=1Xij and F̃i(x) = ni
−1
∑ni

j=1 I(Xij ≤ x) are the sample mean and the
empirical CDF based on sample i.

Applying Theorem 1 of Qin et al. (2010), we have

√
n

(
G̃0 − G∗0
G̃1 − G∗1

)
→ N(0,Σnon)

in distribution with

Σnon =

(
σ2

0 0
0 σ2

1

)
, (4.57)

where

σ2
i =

V arFi{ui(X)− G∗iX}
wiµ2

i

, (4.58)

where V arFi means the variance is taken with respect to Fi and ui(x) = ui(x;ν∗) with
ui(x;ν) defined in (4.48).

We now show that Σnon has the form claimed in (a). Note that

V arFi{ui(X)− G∗iX} = EFi [{ui(X)− G∗iX}2]− [EFi{ui(X)− G∗iX}]2, (4.59)

where EFi indicates that the expectation is taken with respect to Fi. After some calculus
work, we can show that

EFi{ui(X)− G∗iX} = ν∗i (1− ν∗i )(2mi − ψi). (4.60)

For EFi [{ui(X)− G∗iX}2], we have under model (4.1)

EFi [{ui(X)− G∗iX}2] = ν∗i u
2
i (0) + (1− ν∗i )EGi [{ui(X)− G∗iX}2],

where EGi indicates that the expectation is taken with respect to Gi. Then

EFi [{ui(X)− G∗iX}2]

= ν∗i u
2
i (0) + (1− ν∗i )EGi{u2

i (X)− 2G∗iXui(X) + G∗2i X2}. (4.61)

With the form of ui(x;ν) in (4.48), we have

ui(0) = ui(0;ν∗) = 2(1− ν∗i )mi − (1− ν∗i )ψi. (4.62)
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Combining (4.59)–(4.62) gives

V arFi{ui(X)− GiX}
= ν∗i (1− ν∗i )3(2mi − ψi)2 + (1− ν∗i )EGi{u2

i (X)− 2G∗iXui(X) + G∗2i X2}. (4.63)

The fact that µi = (1−ν∗i )mi and (4.63) together imply that σ2
i in (4.58) has the following

form:

σ2
i =

ν∗i (1− ν∗i )3(2mi − ψi)2 + (1− ν∗i )EGi{u2
i (X)− 2G∗iXui(X) + G∗2i X2}

wi(1− ν∗i )2m2
i

=
ν∗i (1− ν∗i )3(2mi − ψi)2 + (1− ν∗i )EGi{u2

i (X)− 2G∗iXui(X) + G∗2i X2}
wi(1− ν∗i )2m2

i

=
EGi{u2

i (X)− 2G∗iXui(X) + G∗2i X2}
wi(1− ν∗i )m2

i

+
ν∗i (1− G∗i )2

wi(1− ν∗i )
,

where in the last step, we have used the fact that G∗i = (2ν∗i − 1) + (1− ν∗i )ψi/mi.

Under the DRM (4.3) and since ∆∗ρ∗ = w1(1 − ν∗1) and ∆∗(1 − ρ∗) = w0(1 − ν∗0), we
further have

σ2
0 =

E0{u2
0(X)− 2G∗0Xu0(X) + G∗20 X

2}
∆∗(1− ρ∗)m2

0

+
ν∗0(1− G∗0)2

∆∗(1− ρ∗)

and

σ2
1 =

E0[ω(X){u2
1(X)− 2G∗1Xu1(X) + G∗21 X

2}]
∆∗ρ∗m2

1

+
ν∗1(1− G∗1)2

∆∗ρ∗
.

Recall that

J0 =

(
−G

∗
0

m0

,
1

m0

)>
, J1 =

(
−G

∗
1

m1

,
1

m1

)>
and

ũ0(x) = −ρ∗
(
x, u0(x)

)>
, ũ1(x) = (1− ρ∗)

(
x, u1(x)

)>
.

After some algebra work, we get

σ2
0 =

1

∆∗(ρ∗)2(1− ρ∗)
J>0 E0{ũ0(X)ũ0(X)>}J0 +

ν∗0(G∗0 − 1)2

∆∗(1− ρ∗)
(4.64)
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and

σ2
1 =

1

∆∗ρ∗(1− ρ∗)2
J>1 E0{ω(X)ũ1(X)ũ1(X)>}J1 +

ν∗1(G∗1 − 1)2

∆∗ρ∗
. (4.65)

Substituting (4.64) and (4.65) into (4.57) gives the asymptotic variance Σnon as

Σnon = JΣnp1J
> + diag

{
ν∗0(1− G∗0)2

∆∗(1− ρ∗)
,
ν∗1(1− G∗1)2

∆∗ρ∗

}
, (4.66)

with

Σnp1 =
1

∆∗ρ∗(1− ρ)
diag

{
E0{ũ0(X)ũ0(X)>}

ρ∗
,
E0{ω(X)ũ1(X)ũ1(X)>}

1− ρ∗

}
.

Hence, Σnon has the form claimed in (a).

We now move to (b). Since u(x;ν∗,θ∗) = (−(ρ∗)−1ũ0(x)>, (1 − ρ∗)−1ũ1(x)>)>, after
some algebra, we find that

1

∆∗
E0

{
u(X;ν∗,θ∗)u(X;ν∗,θ∗)>

h(X)

}
=

1

∆∗(ρ∗)2(1− ρ∗)

(
E0{h0(X)ũ0(X)ũ0(X)>} −E0{h1ũ0(X)ũ1(X)>}
−E0{h1(X)ũ1(X)ũ0(X)>} ρ∗

1−ρ∗E0{h1(X)ω(X)ũ1(X)ũ1(X)>}

)
= Σnp1 −

1

∆∗(ρ∗)2(1− ρ)
E0{h1(X)ũ(X)ũ(X)>}.

Together with the expression for Σ in (4.55), it follows that

Σnon −Σ =
1

∆∗(ρ∗)2(1− ρ∗)
J

[
E0{h1(X)ũ(X)ũ(X)>} −∆∗(1− ρ∗)B

]
J>,

where
B = E0{h1(X)ũ(X)Q(X)>}A−1

θ E0{h1(X)Q(X)ũ(X)>}. (4.67)

Let D(a) =
(
D0(a)>,D1(a)>

)>
for a > 0 with

Di(a) = ũi(x)−∆∗(1− ρ∗)E0

{
h1(X)ũi(X)Q(X)>

}
A−1
θ Q(a), i = 0, 1.
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Recall that
Aθ = ∆∗(1− ρ∗)E0

[
h1(X)Q(X)Q>(X)

]
.

It can be verified that for i, j ∈ {0, 1},

E0{h1(X)Di(X)Dj(X)>}
= E0{h1(X)ũi(X)ũj(X)>}
−∆∗(1− ρ∗)E0{h1(X)ũi(X)Q(X)>}A−1

θ E0{h1(X)Q(X)ũj(X)>}.

Recall that

ũ(X) = (ũ0(X)>, ũ1(X)>)>

and B is given in (4.67). Then,

Σnon −Σ =
1

∆∗(ρ∗)2(1− ρ∗)
JE0{h1(X)D(X)D(X)>}J>,

as claimed in (b). This completes the proof.

Proof of Theorem 4.6

The result in Theorem 4.6 is a direct consequence of applying the Delta method and
the results in Theorems 4.3 and 4.4.

4.5.2 Additional simulation results

Results for point estimator

Tables 4.13 and 4.14 present the additional simulated results for the point estimators of
the Gini indices G0, G1, and their difference G0−G1 under different distributional settings.
The general trends are similar to those in Section 4.3.1. The DRM method always gives
the smallest MSEs.

Results for CIs

Tables 4.15 and 4.16 contain the the complete results for the CIs of G0 and G1 under
different distributional settings. NL-DRM and BL-DRM refer to the Wald-type CIs for G0

or G1 using the logit transformation under the DRM and the corresponding bootstrap-t
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Table 4.13: Bias (×1000) and MSE (×1000) for point estimators (χ2 distributions).

G0 G1 G0 − G1
(n0, n1) ν Bias MSE Bias MSE Bias MSE
(100,100) (0.1,0.3) EMP 6.13 0.98 7.43 1.30 -1.30 2.23

JEL 0.96 0.96 3.08 1.28 -2.13 2.28
DRM 2.51 0.67 3.79 1.10 -1.28 1.40

(0.6,0.4) EMP 7.15 1.14 6.00 1.27 1.15 2.44
JEL 4.90 1.14 2.27 1.27 2.63 2.49
DRM 2.71 0.94 3.48 1.18 -0.77 1.98

(300,300) (0.1,0.3) EMP 1.40 0.31 2.96 0.41 -1.56 0.72
JEL -0.33 0.31 1.51 0.40 -1.83 0.72
DRM 0.75 0.23 1.38 0.35 -0.63 0.46

(0.6,0.4) EMP 2.63 0.38 1.58 0.43 1.05 0.80
JEL 1.87 0.38 0.33 0.43 1.54 0.81
DRM 1.02 0.32 0.78 0.41 0.25 0.66

Table 4.14: Bias (×1000) and MSE (×1000) for point estimators (exponential distribu-
tions).

G0 G1 G0 − G1
(n0, n1) ν Bias MSE Bias MSE Bias MSE
(100,100) (0.1,0.3) EMP 4.83 0.99 4.12 1.08 0.70 1.95

JEL 0.33 0.99 0.63 1.09 -0.30 1.98
DRM 1.63 0.88 1.61 0.77 0.02 1.22

(0.6,0.4) EMP 6.12 0.95 3.94 1.12 2.19 2.04
JEL 4.17 0.95 0.95 1.13 3.22 2.09
DRM 2.34 0.83 2.09 0.92 0.25 1.51

(300,300) (0.1,0.3) EMP 1.52 0.33 2.26 0.37 -0.75 0.66
JEL 0.02 0.33 1.10 0.36 -1.08 0.67
DRM 0.70 0.29 0.96 0.25 -0.25 0.40

(0.6,0.4) EMP 2.03 0.31 1.26 0.38 0.77 0.69
JEL 1.37 0.31 0.27 0.38 1.11 0.70
DRM 0.83 0.29 0.45 0.30 0.39 0.51

CIs. The additional results for the CIs of G0 − G1 are shown in Table 4.17. Again, the
general patterns are similar to those in 4.3.2. The NA-DRM CIs provide accurate CPs in
all situations and have shorter ALs than the existing nonparametric methods. Further, the
bootstrap method and logit transformation do not help to improve the coverage accuracy.
Hence, we recommend using the NA-DRM CI.
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Table 4.15: CP(%) and AL of CIs (χ2 distributions).

(100,100) (300,300)
G0 G1 G0 G1

ν CP AL CP AL CP AL CP AL
(0,0) NA-EMP 93.85 0.100 94.20 0.092 94.60 0.059 94.80 0.054

BT-EMP 94.10 0.103 94.75 0.094 94.85 0.059 95.05 0.054
EL 93.85 0.100 94.20 0.091 94.55 0.059 94.80 0.054

BT-EL 94.45 0.103 95.10 0.095 94.90 0.059 94.95 0.054
JEL 94.45 0.102 94.85 0.094 94.70 0.059 95.15 0.054
AJEL 94.80 0.105 95.50 0.096 94.90 0.060 95.30 0.055

NA-DRM 95.25 0.074 94.65 0.078 94.70 0.043 94.70 0.045
BT-DRM 95.55 0.075 95.00 0.079 94.55 0.043 94.55 0.046
NL-DRM 95.35 0.074 94.50 0.077 94.75 0.043 94.75 0.045
BL-DRM 95.45 0.075 94.80 0.079 94.50 0.043 94.55 0.045

(0.1,0.3) NA-EMP 94.00 0.116 93.85 0.134 95.00 0.068 95.10 0.079
BT-EMP 94.80 0.119 95.05 0.137 95.35 0.068 95.10 0.079

EL 93.90 0.116 93.95 0.133 95.00 0.068 95.05 0.078
BT-EL 95.25 0.119 94.65 0.139 95.20 0.068 95.10 0.080
JEL 94.70 0.120 94.00 0.140 95.25 0.069 94.65 0.080
AJEL 95.25 0.123 94.60 0.144 95.40 0.069 94.80 0.081

NA-DRM 93.60 0.099 94.80 0.128 94.60 0.058 95.25 0.075
BT-DRM 93.95 0.100 95.25 0.129 94.55 0.058 94.95 0.074
NL-DRM 93.85 0.099 95.00 0.128 94.65 0.058 95.20 0.075
BL-DRM 93.65 0.099 94.95 0.127 94.55 0.058 94.85 0.074

(0.3,0.3) NA-EMP 93.80 0.132 93.65 0.134 94.60 0.077 94.05 0.079
BT-EMP 95.30 0.135 94.55 0.137 95.20 0.077 94.40 0.079

EL 93.75 0.131 93.65 0.134 94.60 0.077 94.00 0.078
BT-EL 94.50 0.136 94.85 0.139 94.65 0.078 94.55 0.079
JEL 94.45 0.137 93.80 0.141 94.50 0.078 94.55 0.080
AJEL 95.35 0.141 94.20 0.144 94.80 0.079 94.80 0.081

NA-DRM 95.10 0.120 94.35 0.130 95.45 0.070 94.90 0.076
BT-DRM 95.75 0.121 94.65 0.130 95.25 0.070 94.65 0.075
NL-DRM 95.60 0.120 94.70 0.129 95.50 0.070 95.00 0.076
BL-DRM 95.30 0.119 94.60 0.128 95.10 0.069 94.60 0.075

(0.6,0.4) NA-EMP 93.45 0.124 94.10 0.138 94.30 0.073 95.10 0.080
BT-EMP 95.85 0.131 95.00 0.142 95.55 0.074 95.10 0.081

EL 94.00 0.123 94.10 0.137 94.45 0.073 95.05 0.080
BT-EL 95.35 0.130 94.95 0.143 94.90 0.075 95.30 0.082
JEL 92.90 0.133 94.15 0.145 93.35 0.075 94.90 0.082
AJEL 93.40 0.137 94.90 0.149 93.60 0.075 95.05 0.083

NA-DRM 94.60 0.119 95.05 0.137 95.30 0.069 95.15 0.080
BT-DRM 94.95 0.120 95.45 0.137 95.55 0.069 94.95 0.078
NL-DRM 95.00 0.119 95.25 0.136 95.60 0.069 95.15 0.080
BL-DRM 94.45 0.116 94.85 0.134 95.10 0.068 94.80 0.078

(0.7,0.7) NA-EMP 92.20 0.113 92.95 0.119 94.90 0.067 93.90 0.070
BT-EMP 96.75 0.122 96.55 0.128 96.30 0.068 95.40 0.072

EL 92.35 0.111 92.90 0.117 95.15 0.067 93.75 0.070
BT-EL 94.70 0.120 95.30 0.127 95.75 0.069 94.55 0.072
JEL 90.75 0.123 90.80 0.129 94.00 0.069 93.00 0.072
AJEL 91.35 0.127 91.55 0.133 94.25 0.070 93.10 0.073

NA-DRM 94.50 0.111 94.85 0.121 95.10 0.065 95.20 0.071
BT-DRM 95.40 0.113 95.90 0.123 95.45 0.064 95.60 0.070
NL-DRM 95.70 0.111 96.05 0.121 96.05 0.065 96.10 0.071
BL-DRM 94.60 0.108 95.05 0.118 95.30 0.063 95.20 0.069
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Table 4.16: CP(%) and AL of CIs (exponential distributions).

(100,100) (300,300)
G0 G1 G0 G1

ν CP AL CP AL CP AL CP AL
(0,0) NA-EMP 93.85 0.110 93.50 0.111 94.65 0.065 94.45 0.065

BT-EMP 94.35 0.115 94.05 0.115 94.75 0.065 94.75 0.065
EL 93.90 0.110 93.50 0.110 94.65 0.065 94.55 0.065

BT-EL 94.50 0.113 94.00 0.113 94.80 0.065 94.60 0.065
JEL 94.35 0.113 93.90 0.113 94.90 0.065 94.55 0.065
AJEL 94.95 0.115 94.35 0.116 95.10 0.066 94.75 0.066

NA-DRM 94.80 0.100 94.05 0.079 93.95 0.059 95.20 0.045
BT-DRM 94.45 0.104 94.75 0.079 93.65 0.060 94.95 0.045
NL-DRM 94.90 0.100 94.10 0.078 93.95 0.059 95.25 0.045
BL-DRM 94.20 0.103 94.50 0.079 93.55 0.059 94.85 0.045

(0.1,0.3) NA-EMP 93.45 0.119 94.30 0.128 95.25 0.070 94.50 0.075
BT-EMP 94.25 0.123 95.50 0.132 95.00 0.071 94.80 0.075

EL 93.45 0.119 94.45 0.127 95.25 0.070 94.40 0.075
BT-EL 94.40 0.122 95.20 0.131 95.35 0.071 94.60 0.076
JEL 94.30 0.122 94.85 0.133 95.35 0.071 94.75 0.076
AJEL 94.80 0.126 95.20 0.136 95.40 0.071 95.05 0.076

NA-DRM 94.70 0.114 94.75 0.109 95.35 0.067 94.95 0.063
BT-DRM 94.35 0.116 95.15 0.109 95.10 0.066 94.85 0.063
NL-DRM 94.90 0.113 95.10 0.108 95.45 0.067 95.10 0.063
BL-DRM 93.90 0.114 94.70 0.108 94.85 0.066 94.85 0.062

(0.3,0.3) NA-EMP 93.55 0.127 94.25 0.128 94.55 0.075 93.45 0.075
BT-EMP 95.35 0.132 94.90 0.132 94.70 0.075 93.80 0.075

EL 93.60 0.126 94.10 0.127 94.70 0.075 93.30 0.075
BT-EL 94.75 0.131 94.85 0.132 95.05 0.076 93.70 0.076
JEL 93.80 0.132 94.55 0.133 94.65 0.076 93.65 0.076
AJEL 94.50 0.136 95.15 0.136 95.00 0.076 93.80 0.076

NA-DRM 95.55 0.124 94.95 0.112 95.15 0.073 94.60 0.065
BT-DRM 95.45 0.125 95.30 0.112 94.60 0.072 94.60 0.064
NL-DRM 95.65 0.123 95.00 0.111 95.25 0.073 94.90 0.064
BL-DRM 95.25 0.122 95.15 0.110 94.45 0.071 94.55 0.064

(0.6,0.4) NA-EMP 92.70 0.115 94.05 0.127 93.65 0.068 94.30 0.075
BT-EMP 95.50 0.123 95.35 0.132 94.90 0.070 94.80 0.075

EL 93.10 0.113 94.05 0.126 93.75 0.068 94.40 0.074
BT-EL 94.30 0.121 95.20 0.132 94.15 0.070 94.75 0.075
JEL 92.45 0.124 94.55 0.133 93.45 0.070 94.50 0.076
AJEL 92.75 0.127 95.15 0.137 93.85 0.070 94.50 0.076

NA-DRM 94.95 0.116 95.30 0.118 94.70 0.068 94.60 0.068
BT-DRM 95.45 0.116 95.50 0.118 94.30 0.066 94.50 0.067
NL-DRM 96.05 0.116 95.80 0.118 95.10 0.068 94.85 0.068
BL-DRM 94.75 0.112 95.05 0.116 94.05 0.066 94.35 0.067

(0.7,0.7) NA-EMP 91.40 0.104 92.15 0.105 94.60 0.062 94.55 0.062
BT-EMP 96.30 0.114 95.70 0.115 95.85 0.064 95.50 0.064

EL 92.05 0.102 92.35 0.102 94.70 0.062 94.55 0.062
BT-EL 95.00 0.110 94.20 0.111 95.40 0.064 95.25 0.064
JEL 90.40 0.114 91.00 0.114 94.30 0.064 93.95 0.064
AJEL 90.85 0.117 91.60 0.118 94.40 0.064 94.05 0.064

NA-DRM 94.65 0.109 93.90 0.101 96.10 0.064 95.40 0.059
BT-DRM 95.80 0.109 95.55 0.102 95.65 0.062 95.95 0.058
NL-DRM 97.05 0.109 95.75 0.102 96.75 0.065 95.95 0.059
BL-DRM 94.40 0.104 94.50 0.098 95.35 0.061 95.50 0.057
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Table 4.17: CP(%) and AL of CIs for the difference G0 − G1.

(100,100) (300,300)
χ2 Exp χ2 Exp

CP AL CP AL CP AL CP AL
(0.1,0.3) NA-EMP 94.45 0.178 94.55 0.104 95.20 0.175 94.69 0.103

BT-EMP 95.10 0.181 94.55 0.104 95.15 0.179 94.74 0.103
JEL 95.45 0.190 95.15 0.106 96.40 0.187 95.15 0.105
AJEL 95.60 0.193 95.25 0.107 96.60 0.190 95.25 0.106

NA-DRM 94.40 0.146 95.65 0.085 94.85 0.138 94.89 0.080
BT-DRM 93.45 0.143 95.10 0.083 93.80 0.135 94.34 0.080

(0.6,0.4) NA-EMP 94.60 0.186 94.30 0.109 93.84 0.172 95.00 0.101
BT-EMP 94.90 0.190 94.70 0.109 94.39 0.177 95.10 0.102

JEL 96.25 0.205 94.90 0.112 96.85 0.192 96.30 0.105
AJEL 96.40 0.208 95.00 0.113 97.10 0.196 96.40 0.105

NA-DRM 95.35 0.175 95.25 0.102 95.40 0.150 95.10 0.088
BT-DRM 93.95 0.168 94.05 0.098 94.59 0.147 94.75 0.086
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Chapter 5

Discussion and Future work

In this chapter, we present a summary of our contributions in previous chapters along with
some possible extensions and future research problems.

5.1 Summary of Current Achievements

In this thesis, we studied several important inference problems under two-sample DRMs
by using the empirical likelihood method.

In Chapter 2, we developed empirical likelihood inference procedures for unknown pa-
rameters and distribution functions along with their quantiles under two-sample DRMs
with estimating equations. We also proposed a testing procedure on the validity of esti-
mating equations under DRMs, which leads to a practical validation method on the use-
fulness of the auxiliary information. Our inferential framework and theoretical results are
very general. The results in Qin et al. (2015) and Chatterjee et al. (2016) for case-control
studies are special cases of our theory for an appropriate choice of estimating functions.
We also generalized the inference under DRMs to incorporate auxiliary information and
covered more interesting parameters. Our results on the two-sample DRMs contain more
advanced development than those in Qin and Lawless (1994) for the one-sample case. Our
proposed ELR test, to our best knowledge, is the first formal procedure to test the validity
of auxiliary information under the DRM or for case-control studies. Our proposed inference
procedures for distribution functions and quantiles in the presence of auxiliary information
are also new to the literature. The work in this chapter has been prepared as a research
paper (Yuan et al., 2021a) submitted to a journal for publication.
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In Chapter 3, we constructed the MELEs of the Youden index and optimal cutoff point
under the DRM based on the two-sample data with or without a LLOD. Our method
provide a simple solution to the estimation of optimal cutoff point. Our asymptotic re-
sults show that when there is no LLOD the proposed estimator of optimal cutoff point has
a faster convergence rate than the existing nonparametric estimators, and the proposed
estimator of the Youden index is asymptotically more efficient than the existing nonpara-
metric estimators. When there is a LLOD, the proposed method is the first semiparametric
or nonparametric method with rigorous theoretical justifications. Simulation experiments
show that the proposed estimator for the optimal cutoff point has clear advantages over
existing ones for all scenarios considered in the simulation. The work in this chapter has
been wrapped up as a research paper (Yuan et al., 2021b), which has been published by
The Canadian Journal of Statistics.

In Chapter 4, we proposed the MELEs of Gini indices of two semicontinuous distribu-
tions under the DRM. In order to establish the asymptotic normality of proposed MELEs,
we first investigated the asymptotic properties of the estimators of model parameters and a
special class of statistical functionals. Using techniques from U-statistics and V-statistics,
we derived the asymptotic normality of the MELEs of Gini indices and showed that their
asymptotic variances are smaller than those of nonparametric estimators. We also explored
the asymptotic properties of a general function of two Gini indices, and used the difference
of the two Gini indices as an illustrating example. We used the asymptotic results to
construct CIs and perform hypothesis tests for single Gini index and difference of two Gini
indices. Our methods are applicable whether or not there are excess zero values. Extensive
simulation studies and applications to two real datasets demonstrate the advantages of our
proposed methods over existing ones. The work of Section 4.2.1 and 4.2.2 in Chapter 4
serves as the main results in a research paper (Yuan et al., 2021d), which has been accepted
for publication by Annals of the Institute of Statistical Mathematics. The rest of the work
in this chapter has been prepared as a research paper (Yuan et al., 2021c) submitted to a
journal for publication.

5.2 Future Work

In this section, we highlight some potential topics for future research.

Extension to multi-sample DRMs

In practice, many statistical problems involve multiple samples. Suppose we have k+ 1
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independent samples

{Xi1, · · · , Xini} ∼ Fi, for i = 0, · · · , k,

where ni is the size of sample i and Fi’s are CDFs. Let dFi denote the density of Fi. The
multi-sample DRM is defined as

dFi(x) = exp{αi + β>i q(x)}dF0(x), i = 1, · · · , k,

for unknown parameters αi’s and βi’s, and a pre-specified, non-trivial basis function q(x).
The multi-sample DRM is a desirable tool for combing information when the samples share
certain characteristics; see for example Cai et al. (2017); Chen and Liu (2013) and Wang
et al. (2017a). In this thesis, we focused on two-sample data under the DRM. We may
generalize our framework and results in Chapter 2 to multi-sample DRM. Comparison for
multiple Gini indices under multi-sample DRM would also be an interesting topic.

Inference on Gini indices based on paired data

Paired data are frequently seen in many field. For example, in biomedical studies, there
is always interest in finding new promising substitutes for the conventional biomarkers or
approaches. Different diagnostic tests are administered to the same or identical subjects.
In economics, some indices of each country such as gross domestic product are collected
every year. The pairs are correlated and do share some common characteristics. Simply
ignoring the correlation would result in efficiency loss. Chen et al. (2021) proposed a
composite empirical likelihood method for the inference problems for clustered data under
DRMs, and demonstrated the advantages of this approach numerically. This motivates us
to adopt the composite empirical likelihood for paired data under the DRM.

Suppose we have a paired sample {(X01, X11), · · · , (X0n, X1n)} from the a population
with joint distribution function F . Let F0(x) = F (x,∞) and F1(x) = F (∞, x) denote two
marginal CDFs. We propose to link F0 and F1 by a DRM

dF1(x) = exp{α + β>q(x)}dF0(x),

where dFi is the density of Fi; α and β are the unknown parameters; q(x) is the basis
function. Instead of directly modelling the correlation structure between X0j and X1j, we
propose to use the composite empirical likelihood of Chen et al. (2021) as the inference
tool. We plan to study the asymptotic properties of the corresponding maximum composite
empirical likelihood estimators of two Gini indices under the DRM based on the paired
data. We leave this as a future research problem.
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ELR-based CIs for Gini indices

As we discussed in Section 1.2.1, the ELR-based CIs have many nice properties such as
range-preserving. In Chapter 4, we concentrated on the Wald-type CIs for two Gini indices
G0 and G1, and their difference G0−G1. It would be interesting to consider the ELR-based
CIs for G0, G1, and G0 − G1. For convenience of presentation, we assume that there is no
excessive zero in the two samples and we focus on the ELR-based CI for G0.

Note that the definition of Gini index in (4.2) and the equivalent form of Di in (4.17)
imply that G0 can be expressed as

G0 =
E0{2XF0(X)−X}

E0(X)
,

where E0 means the expectation is taken with respect to F0. Hence, G0 satisfies the
following estimating equation:

E0{g(X;G0, F0)} = 0 (5.1)

with g(x;G0, F0) = 2xF0(x)−(G0+1)x. The above estimating equation is different from the
estimating equations we considered in Chapter 2 since it involves the unknown distribution
function F0(x).

Following Qin et al. (2010), we can replace F0 in g(x;G0, F0) by the empirical CDF
F̄0(x) = n−1

0

∑n0

j=1 I(X0j ≤ x) or F̃0(x) in (1.17), the MELE of F0(x) under two-sample

DRMs without auxiliary information. We then use g(x;G0, F̄0) or g(x;G0, F̃0) as one of the
estimating equations in Chapter 2 and construct the ELR-based CI for G0. We plan to
examine the asymptotic properties of the corresponding ELR statistic for G0 and compare
the ELR-based CI with the Wald-type CI.

Following a similar approach, we could embed the nuisance functionals into the esti-
mating equations (2.2) in Chapter 2; consequently, the framework of Chapter 2 will include
more complex quantities such as Lorenz curve and ROC curve. We leave this for future
research.
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