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Abstract 

Introduction: Military helicopter pilots around the globe experience a high prevalence of 

neck pain. The requirement for pilots to use night vision goggles (NVGs) has been linked to 

increases in neck pain and injury prevalence. As a result, next generation helmet designs aim 

to offset or mitigate NVG-related consequences on cervical spine loading. However, in vivo 

human-participant experiments are currently required to collect necessary data (e.g., 

electromyography) to estimate joint contact forces on the cervical spine associated with 

unique helmet designs. This is costly, and inefficient. Thus, a more time and resource-

efficient approach is required. A digital human modelling approach wherein multi-body 

dynamics (MBD) models, which provide inverse dynamics, are combined with artificial 

neural networks (ANNs) can provide a surrogate for more costly musculoskeletal joint 

modeling to predict joint contact forces. 

Objective: To develop ANNs to predict cervical spine compression and shear, given inputs 

available through MBD modelling, with enough sensitivity to differentiate between 

compression and shear exposures associated with different helicopter helmet designs. 

Methods: ANNs with systematically varied inputs and parameters were developed to predict 

cervical spine compression and shear given head-trunk kinematics and C6-C7 neck joint 

moments, data readily available from digital human models. ANN development was driven 

by a previously collected and processed dataset. Motion capture and electromyography data 

were collected from 26 participants who performed flight-relevant reciprocal head 
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movements about pitch and yaw axes while donning one of four helmet configurations. 

These data were input into an electromyography-driven musculoskeletal model of the neck to 

generate time series C6-C7 compression and shear outputs. ANNs were trained to predict the 

electromyography-driven model compression and shear outputs given only the head-trunk 

kinematics and C6-C7 moments as inputs. 

Results: Rotation-specific (i.e., yaw and pitch) ANNs yielded stronger predictive 

performance than ANNs that generalized to both pitch and yaw axes of rotation. ANNs for 

pitch rotations accurately predicted peak and cumulative compression and shear outputs with 

an absolute error that was lower than absolute differences in joint contact forces between 

relevant helmet conditions. ANNs for yaw rotations were similarly successful in predicting 

cumulative C6-C7 compression and shear where absolute error was lower than corresponding 

differences between relevant helmet conditions. However, they were unable to do so for peak 

C6-C7 compression and shear.  

Conclusions: When combined with biomechanical data readily available from digital human 

modeling software, use of an ANN surrogate for joint musculoskeletal modeling can permit 

evaluation of joint contact forces in the cervical spine associated with novel helmet design 

concepts during upstream design. Improved consideration of joint contact forces during a 

computer-aided helmet design process will assist in identifying helmet designs that reduce 

the biomechanical exposures of the cervical spine during helicopter flight. 
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Chapter 1: Introduction 

1.1 Neck Pain Among Military Helicopter Aircrew 

Neck pain is a substantial issue among military helicopter pilots around the world. In the Royal 

Canadian Airforce, 80% of Griffon helicopter aircrew report chronic neck pain (Chafé & 

Farrell, 2016). In the Netherlands, the one-year prevalence of neck pain among military 

helicopter aircrew is reported to be 43% (van den Oord et al., 2010) while in Sweden the 3-

month prevalence is 57% (Äng & Harms-Ringdahl, 2006). Research suggests that the risk of 

neck pain among helicopter pilots is exacerbated by the use of night vision goggles (NVGs) 

(Farrell et al., 2020; Chafé & Farrell., 2016; Manoogian et al., 2006; Adam, 2004). This is 

highlighted by reports indicating that aircrew who use NVGs are 45% more likely to 

experience head and neck injury than those who do not (Shannon & Mason, 1997). While the 

etiology of neck pain is multifactorial (Dibblee et al., 2015; Croft et al. 2001; Côté et al., 2004), 

increases in compression and shear loading of the cervical spine during NVG use are 

considered to be an important factor (Forde et al., 2011). 

1.2 Designing Interventions to Prevent Neck Pain in Helicopter Aircrew 

NVGs, which are mounted to the front of aircrew helmets (Figure 1), are generally considered 

to increase the risk of neck pain by shifting the centre of mass (COM) of the head-helmet 

system anteriorly (Chafé & Farrell, 2014; Manoogian et al., 2006; Adam, 2004). In response, 

posteriorly mounted counter-weights (CWs) have been proposed as an ergonomic intervention 

to prevent neck pain in helicopter aircrew (Harrison et al., 2007). CWs have been considered 

to mitigate the injurious effects of NVGs by returning the head-helmet COM closer to the neck 
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to reduce associated external flexion moments about the spine (Harrison et al., 2007). While 

this may be efficacious when the head is static in a neutral posture, aircrew are required to 

perform dynamic head movements through a wide range of motion to scan their environment 

during flight (Forde et al., 2011). As a result, CWs have been reported to not reduce 

compression and shear loading of the cervical spine when performing flight-relevant head 

movement (Barrett, 2016). This is likely related to the associated increases in the mass and 

moment of inertia of the helmet system. 

 

Figure 1: Exemplar helmet-NVG system including depictions of COM locations. 

The multi-faceted relationship between helmet configurations and biomechanical 

exposures of the cervical spine creates a unique challenge for helmet designers. Several 
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parameters, such as the mass, distribution of mass, rate of change in posture and vibration 

exposure, may all independently or interdependently affect joint contact forces within the 

cervical spine during flight. As a result, the ability to assess the biomechanical implications of 

many candidate helmet-NVG system configurations would be ideal in order to identify 

candidate designs that minimize the associated joint contact forces within the cervical spine. 

Furthermore, because this biomechanical assessment is only one of many steps in the helmet 

design process, it is important that it can be performed in a time and resource-efficient manner 

to support rapid iterative computer-aided design (CAD) processes. 

At present, the ability to estimate joint contact forces during virtual design is limited. 

Existing digital human modeling tools can be used to solve multi-body dynamics problems to 

yield joint torques about a candidate joint, perhaps based on different head supported mass 

configurations, but few robustly consider joint contact forces (E.g. AnyBody Technology, 

Aalborg, Denmark). Open-source alternatives include OpenSim (Delp et al., 2007), however 

use of OpenSim requires additional programming and modelling expertise, where such 

software may not be as easily deployed within a business’s information technology 

infrastructure. Many engineering firms currently rely on commercially available enterprise-

based multi-body dynamics (MBD) solutions, such as Ansys Motion (Ansys, Pennsylvania, 

USA), or Adams Multibody Dynamics Simulation (MSC Software, Surrey, UK) to inform 

mechanical design and may not have time or expertise to learn additional software packages 

to estimate the underlying contact forces.  MBD modelling represents a relatively time and 

resource-efficient approach to estimate inter-body moments and reaction forces, or 
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intersegmental moments and reaction forces when applied in the digital human context. 

Specifically, MBD modelling allows helmet designers to apply different helmet “bodies” to a 

model and perform inverse dynamics computations to understand how different helmets might 

influence joint moments under specific load cases (i.e., pitch or yaw head rotation). While 

these exposure metrics may provide some indication of injury risk, they do not account for the 

significant (Reeves & Cholewicki, 2003) contributions of muscles to intervertebral joint 

contact forces as they do not consider EMG data. In contrast, modelling approaches capable of 

accounting for the contributions of muscles and other soft tissues to joint contact forces provide 

a more comprehensive indication of injury risk.  

To date, the joint contact forces associated with helmet-NVG designs have only been 

evaluated via in vivo human participant studies in which participants don physical helmet 

prototypes while performing flight-relevant actions or postures (Healey et al., 2021; McKinnon 

et al., 2016; Dibble et al., 2015). Electromyography (EMG) and motion capture data can then 

be recorded during these actions and input into EMG-driven (EMGD) musculoskeletal models 

to estimate joint contact forces (Barrett, 2016). However, in vivo human participant research 

and the production of physical helmet prototypes is time and resource intensive. This limits 

the ability of a helmet designer to feasibly assess the joint contact force consequences of 

multiple helmet designs in a rapid, iterative, process prior to physical helmet model creation. 

Ideally, designers could quickly assess the compression and shear joint contact forces 

associated with a given helmet design using a CAD-based approach, without necessitating the 

use of physical prototypes or laboratory-based collection of EMG and other in vivo data. 
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1.3 Artificial Neural Networks as a Potential Tool for Virtual Helmet Design 

Artificial neural networks (ANNs) represent an especially promising approach to predict joint 

contact forces given reduced data inputs. An ANN is a computational model inspired by the 

functional structure of the human brain, consisting of simple processing units known as nodes. 

ANNs can “learn” an input-output mapping by iteratively adjusting the weights and biases of 

internodal connections such that the model generates desired outputs for a given set of inputs. 

ANNs are known to be efficacious in mapping complex, nonlinear relationships (Haykin, 

2004; Agatonovic-Kustrin & Beresford, 2000). Additionally, because information processing 

in an ANN is distributed across a range of parallel computational units, ANN outputs are 

generally robust to error/noise in inputs (Gurney, 1997). In the field of biomechanics, ANNs 

have previously been applied to estimate intervertebral compression and shear within the 

lumbar spine with reduced data inputs relative to traditional biomechanical models (Mousavi 

et al., 2020; Arjmand et al., 2013; Parkinson & Callaghan, 2009; Hou et al., 2007; Hou et al., 

2004). However, similar ANNs have not been developed for the cervical spine. 

ANNs, in conjunction with MBD/digital human modelling may be a useful in-silico 

method of predicting cervical spine compression and shear within a virtual helmet design 

process. For example, flight-relevant head-trunk kinematics could be fed in to an MBD model 

and the resultant moments, as well as head-trunk kinematics, could be input to an ANN to 

generate compression and shear predictions.  Importantly, this approach would not require in 

situ data collection while providing a more comprehensive indication of injury risk than current 

engineering design methods. 
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While a general ANN model for application to a variety of head movement 

trajectories would be ideal, rotation-specific ANNs (pitch and yaw) may have improved 

performance relative to a more general ANN. This is due to biomechanical differences 

between trajectory types that may be difficult to account for with the ANN input features that 

are available through MBD modelling. For example, muscle activation profiles, which 

influence intervertebral contact forces (Granata & Marras, 1993), are likely to be 

consequentially different between pitch and yaw head movements. An ANN would likely 

have difficulty in accounting for these between-rotation type differences without EMG input. 

Therefore, both general and rotation-specific ANNs should be developed and assessed.  

In summary, ANNs may be a useful tool in a CAD process of helicopter aircrew 

helmets. Currently, helmet designers can leverage multi-body dynamics modelling to 

calculate intervertebral moments during simulated head movement as a function of the 

inertial properties of the head-helmet system. This allows the designer to understand how 

different helmet-NVG configurations influence associated joint moments but does not allow 

for estimation of joint contact forces. An ANN capable of predicting joint contact forces 

based on joint moments and head-trunk kinematics would facilitate the helmet design process 

by providing a more comprehensive indication of injury risk, without requiring in situ data 

collection. 
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1.4 Objective 

The aim of this thesis was to develop ANNs to predict C6-C7 compression and 

anteroposterior (AP) shear with adequate sensitivity to be a useful tool in a virtual helmet 

design process. The decision to focus on the C6-C7 joint was made because, while 

intervertebral joint contact forces generally increase cranially to caudally, they plateau 

between C5-C6 and C7-T1 (Barrett et al., 2020). Therefore, compression and shear measures 

at C6-C7 may be useful as proxy measures of compression and shear at both C5-C6 and C7-

T1 joints as well. 

1.5 Research Question 

Can an ANN predict C6-C7 compression and AP shear, given C6-C7 joint moments and 

head-trunk kinematics, with sufficient sensitivity to be able to differentiate between C6-C7 

compression and AP shear exposures associated with a helmet equipped with NVGs and 

exposures associated with a helmet equipped with a prevalent ergonomic counter-weight 

intervention during a reciprocal scanning task? 

1.6 Hypothesis 

An ANN can predict C6-C7 compression and AP shear where the absolute error, relative to a 

criterion standard EMGD model, is less than the  absolute difference in EMGD model-

computed C6-C7 compression and AP shear during flight-relevant head movement when 

donning a helmet with NVGs relative to donning a helmet with NVGs and a prevalent 

counter-weight intervention. 
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Chapter 2: Literature Review 

2.1 Overview of Artificial Neural Networks 

Traditional feedforward (FF) ANNs typically consist of an input layer, hidden layer(s) and an 

output layer (Figure 2). The input layer receives inputs in the form of a tensor. Tensors can 

be defined as an array of values with a variable number of dimensions. Hidden layers 

perform calculations to process inputs before transferring this processed information to the 

output layer. Finally, the output layer generates the overall output of the ANN. Each of these 

layers consists of simple processing units known as nodes. These nodes receive inputs, which 

are each multiplied by an associated weighting. Next, these weighted inputs are summed 

arithmetically. Each node also has a bias which increases or decreases the sum of the 

weighted inputs. The resultant value is then passed to an activation function which limits or 

“squashes” values to within a given range. Common examples of activation functions include 

hyperbolic tangent or sigmoid functions. Finally, the result of the activation function 

computation is transferred to nodes of the following layer or, in the output layer, returned as 

the final output of the ANN. A graphical representation of the process by which a node 

processes information in a simple ANN is presented in Figure 3. 
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Figure 2: Schematic of a 3-layer, densely connected FF ANN with one hidden layer 

from Haykin (2004). The term “densely connected” refers to each node being connected 

to all nodes of a previous layer. Arrows represent the unidirectional flow of data from 

one node to another. 
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Figure 3: Diagram of a node from Haykin (2004). Inputs, x, of a given node, k, are 

multiplied by weights, w, before being summed. m represents the number of input 

features. After the weighted inputs are summed, a bias, b, is added. The resultant value, 

v, is then passed through the activation function, φ, to generate the final output of the 

node, y. 

2.2 How do Artificial Neural Networks Learn? 

During supervised learning, ANNs “learn” by being presented with examples of input and 

target output pairs and iteratively adjusting the biases and weights of connections between 

nodes such that ANN outputs for a given input approximate target outputs. These input-target 

output pairs are collectively known as the training set. Best practice (Halilaj et al., 2018) in 

ANN development also requires the use of validation and test sets. Briefly, the validation set 

contains target input-output pairs that are used to assess ANN performance throughout the 

ANN development process. The test set contains target input-output pairs that are used to 
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assess the generalizability of the final ANN by evaluating ANN performance when provided 

data to which it has no prior exposure. 

 The adjustment of weights and biases can be considered an optimization problem 

where the loss function is the error of the outputs of the network relative to desired target 

values. There are many training methods available to optimize the weights and biases such as 

gradient descent-based methods (E.g. Kingma & Ba, 2015), the Newton method (Fischer, 

1992), conjugate gradient method (Gilbert & Nocedal, 1992) and Levenberg-Marquardt 

algorithm (Moré, 1978). However, gradient descent is the most popular (Shrestha & 

Mahmood, 2019; Ruder, 2016) and will thus be the focus of this chapter. Gradient descent 

involves minimizing a loss function over a number of training iterations by iteratively 

adjusting weights and biases in the manner that results in the steepest decrease of the loss 

function.   

The gradient descent process requires both forward and backward propagation 

(Rumelhart et al., 1985) of information through the ANN (Figure 4). When a sample input 

from the training set is provided to the ANN, this information flows through the nodes of the 

network as described in Chapter 2.1 and outputs are generated. These outputs are compared 

to corresponding target values and performance is assessed through a loss function. The loss 

function (often mean squared error [LeCun, Bengio & Hinton, 2015]) provides a measure of 

how closely the outputs associated with a given set of weights and biases match the target 

values (Equation 1). During each training iteration, the gradient, or first derivative, of the 

calculated loss function is calculated, with respect to ANN weights and biases, over a number 
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of training samples and propagated backward, layer-by-layer, through the network. This 

information flows from the output layer, through the network such that each node receives a 

partial derivative that is the loss gradient normalized to the weight and bias of that particular 

node (Equation 2). Based on these partial derivatives, the weights and biases of each node are 

adjusted with the goal of converging on a configuration that results in the loss function 

ideally reaching its global minimum. Generally, the weights and biases of a node that 

receives a larger partial derivative will be adjusted to a greater degree than those of a node 

that receives a smaller partial derivative. Once the weight of each internodal connection is 

updated, this forward and backward propagation training cycle is repeated to provide the 

partial derivative information to drive another training iteration. 

 

Figure 4: Visual representation of forward and backward propagation adapted from 

Haykin (2004). 
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Equation 1: Mean squared error loss function. 

𝐿(𝑤, 𝑏)  =  
1

2𝑛
∑ ‖𝑦(𝑥)  −  𝑎‖2

𝑥
 

Where w represents the weights of nodes within the ANN, b denotes node biases, n is the 

number of training input-output pairs, y denotes the target outputs, x represents input training 

samples and a denotes the ANN outputs. ANN performance is improving when a approaches 

y(x), yielding smaller magnitudes of loss, L. 

Equation 2: General expression from Nielsen (2015) demonstrating the linear 

relationship between updates of weights, w and biases, b within layer j and changes in 

layer output, y. 

∆𝑦 ≈  ∑
𝝏𝒚

𝝏𝒘𝒋

 ∆𝒘𝒋  +  
𝝏𝒚

𝝏𝒃𝒋
 ∆𝒃𝒋

𝒋

 

2.2.1 Mini-Batch Gradient Descent 

Each iteration of the ANN training process can be performed while considering all available 

training samples, a subset of samples or a single sample. Calculating the derivative of a loss 

function over all available training samples involves computing the average gradient over all 

samples. This is likely to be very computationally expensive. Therefore, a common (Lipton 

et al., 2015) approach is to only consider a subset of samples at each training iteration in a 

process known as mini-batch gradient descent. During each training iteration, a portion 

known as a “mini-batch”, of the training data is processed to generate a loss function 

gradient. Each mini-batch contains a practitioner-defined number of samples where each 
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sample is a matching set of inputs and target outputs. The use of smaller mini-batch sizes 

tends to accelerate ANN training (Bengio, 2012) and may assist in ANN generalizability, by 

introducing noise in to the gradient descent process (Ruder, 2017).  However, there is no 

optimal mini-batch size for all ANN use cases. Nonetheless, mini-batch sizes of less than 32 

samples are the recommended default (Bengio, 2012).  

During ANN training, mini-batches continue to be passed through the network until a 

given number of epochs have passed. An epoch represents one complete pass through the 

training set where the ANN has been exposed to all available training samples. For example, 

a training set of 100 samples could be split in to four batches of 25 samples where one epoch 

would be completed when all four batches have been passed through the network. 

2.3  The Bias-Variance Dilemma (Geman et al., 1992) 

During training, weights and biases are optimized such that the overall network is able to 

map a relationship between a set of input and output features based on training data. Given 

adequate network complexity and training epochs, an ANN can theoretically map any 

function to any desired accuracy (Hornik, Stinchcombe & White, 1989). However, to be 

useful, the ANN must be able to generalize i.e. adequately map input-output relationships 

within novel datasets.  

When applying an ANN to novel data, the associated prediction error is composed of 

bias, variance and noise. Noise is intrinsic to the underlying data on which the ANN is 

trained and is due to factors that ANNs are unable to model directly. Bias (Figure 5) is the 
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average difference of model predictions and the corresponding target values. Bias is 

associated with the error present when an ANN is approximating the relationship between 

input and output features within a training dataset. An ANN with high bias oversimplifies its 

mapping of the input-output relationship and has high error on both training data and novel 

data. Variance (Figure 5) is the amount that ANN outputs for a given set of inputs would 

change if the ANN had been trained on a different set of training examples. A model with 

high variance has learned the specific relationships within training data very well but 

performs poorly when applied to novel data. The bias-variance dilemma stems from the fact 

that bias and variance are inversely related (Geman, Bienenstock & Doursat, 1992). 

Therefore, it is up to the ANN developer to achieve an appropriate balance between the two 

types of error. For example, reducing model complexity (e.g. decreasing the number of 

hidden nodes and/or input features) typically decreases variance but increases bias (Hastie, 

Tibshirani & Friedman, 2009; Geman, Bienenstock & Doursat, 1992) (Figure 6).  
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Figure 5: Visual representation of bias and variance from Fortmann-Roe (2012). Blue 

dots represent ANN outputs relative to corresponding target values represented by the 

red bulls-eye. 

 

Figure 6: Experimental findings from Geman, Bienenstock & Doursat, 1992 

demonstrating a decrease in bias error and increase in variance error as the number of 

hidden nodes in an ANN is increased. 
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2.4 Over/Underfitting 

The goal of an ANN is to learn a function that maps the underlying relationship between sets 

of inputs and outputs. An ANN’s ability to map functions of increasing complexity is termed 

capacity (Goodfellow, Bengio & Courville, 2016). An ANN with insufficient capacity will 

be unable to learn input-output relationships within the training set and will exhibit high bias 

and low variance. This is referred to as underfitting (Figure 7). In contrast, an ANN with 

excessive capacity will “memorize” the input-output relationship within the training set but 

have poor generalizability to novel data. This ANN would have low bias and high variance 

and would exhibit overfitting (Figure 7). ANN developers can modulate a network’s capacity 

by changing the number of layers and hidden units per layer (Goodfellow, Bengio & 

Courville, 2016). However, arriving at the set of ANN parameters that appropriately balance 

the risk of overfitting and underfitting typically requires trial and error during a process 

called hyperparameter tuning. This is discussed in Chapter 2.6. 

 

Figure 7: Visual representation of over/underfitting of a relationship between inputs (x) 

and outputs (y). The orange line represents the input-output relationship that is 

“learned” by the ANN. Blue circles represent input/output pairs from a training set. 
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2.5 Overview of the Vanishing (Hochreiter, 1998) and Exploding (Hochreiter, 

1991) Gradient Problems 

The vanishing and exploding gradient problems become increasingly important to consider 

when training deeper ANNs. Recall that weights and biases are updated during training based 

on the gradient of the loss function and associated partial derivatives. During 

backpropagation, the partial derivatives that drive weight and bias updates are calculated 

layer-by-layer, starting from the output layer. These calculations are performed via the chain 

rule which is used to calculate the portions of the change in a loss function that are due to 

adjustments of the values of the weights and biases of individual nodes. During 

backpropagation, the partial derivatives of nodes within a layer are multiplied by the partial 

derivatives of nodes within the previous layer (in this case, the previous layer is the layer 

closer to the output layer). Therefore, in an ANN with n hidden layers, n - 1 sets of 

derivatives have been multiplied together by the time information is backpropagated to the 

first hidden layer. The outcome of this is that gradients can increase or decrease 

exponentially from layer to layer (Philipp, Song & Carbonell, 2018). As a result, these 

gradients can “vanish” or “explode” and result in ineffective training. For example, a very 

small gradient will prevent weights and biases from being updated effectively after each 

training iteration. In this scenario, training will not be able to converge on an appropriate 

weight and bias configuration. In contrast, when gradients “explode”, weight and bias 

updates are excessively large in magnitude, leading to unstable training. As a result, selection 
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of the number of hidden layers within an ANN should consider the increased risk of 

vanishing and exploding gradients with deeper networks. 

2.6 Hyperparameter Tuning 

In the context of ANNs, hyperparameters are parameters that influence the ANN learning 

process but are not directly selected by a learning algorithm. Hyperparameters include 

architectural variables such as the number of hidden layers and number of nodes per layer. 

They also include the learning rate and mini-batch size variables that were introduced in 

Chapter 2.2. The process of hyperparameter tuning involves training multiple ANNs with a 

variety of hyperparameter values and then assessing the performance of the trained ANNs on 

novel data. This novel data is referred to as the validation set. It is data that was not input to 

the ANN during training, and which will not be considered during final evaluation of ANN 

performance (i.e. hypothesis testing). It is important that validation data remains separate 

from training and testing datasets to ensure valid evaluations of model generalizability.  

To select the set of hyperparameters that yield the best performance, trained ANNs 

are applied to the validation set and their performance is assessed through a pre-defined 

performance metric. When applying ANNs in sequence regression problems, mean squared 

error (MSE) is the recommended error metric (Halilaj et al., 2018) where MSE is calculated 

between ANN outputs and corresponding target values. Upon calculation of the MSE 

associated with each of the trained ANNs, the developer can select the ANN with the lowest 

MSE for final evaluation on the test set. 
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2.6.1 Tuning Architectural Parameters 

As mentioned previously, an ANN with a single hidden layer and a sufficient number of 

hidden nodes can learn to map a function of any level of complexity (Hornik, Stinchcombe & 

White, 1989). In practice, it is difficult to identify the “sufficient” number of hidden nodes. 

Furthermore, it is generally more computationally efficient to develop an ANN with more 

hidden layers than an ANN with a single hidden layer consisting of a very large number of 

nodes (Goodfellow, Bengio & Courville, 2016). Unfortunately, increasing the number of 

hidden layers poses other challenges such as increased risk of vanishing/exploding gradients 

(Goh, Hodas & Vishnu, 2017) (Chapter 2.5). 

Typically, each node within the input layer of an ANN corresponds to a single input 

feature. Therefore, the number of nodes in the input layer is determined by the number of 

input features being provided to the ANN. Similarly, when applying an ANN to a regression 

problem, the number of nodes within the output layer will be equal to the number of output 

variables. Identifying an appropriate number of hidden layers and nodes within hidden layers 

is less straightforward. Generally, including a greater number of hidden nodes will allow an 

ANN to map increasingly complex relationships at the cost of increased computational 

demands as well as an increased risk of overfitting (Sheela & Deepa, 2013). While advanced 

methods can be used to automate the selection of ANN architectural parameters (Cortes et al. 

2017), they are beyond the scope of this thesis. Traditionally, selecting ANN architectures 

has involved trial and error where developers train and evaluate ANNs with a range of 

number of hidden layers and nodes per layer. 
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2.6.2 Tuning the Learning Rate 

During ANN training, the magnitudes of weight and bias updates are scaled by a value called 

the learning rate. A larger learning rate will result in larger adjustments of weights and biases 

after each training iteration. Generally, a smaller learning rate will result in slower and more 

computationally expensive training and can cause training to get “stuck” in suboptimal, local 

minima and plateaus (Goodfellow, Bengio & Courville, 2016) (Figure 8). In contrast, a larger 

learning rate can lead to unstable training (Figure 9) as well as oscillation around minima 

which lead to difficulties in converging on these minima (Goodfellow, Bengio & Courville, 

2016). Large learning rates also increase the risk of weight values becoming extremely large 

(Goodfellow, Bengio & Courville, 2016), leading to the exploding gradient problem 

(Hochreiter, 1991) (Chapter 2.5). Unfortunately, it is generally not feasible to identify the 

optimal learning rate a priori (Reed & Marks, 1999). Therefore, ANNs with a variety of 

learning rates should be evaluated. Traditional default learning rates are 0.01 or 0.1 (Bengio, 

2012). 
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Figure 8: Visual representation of training becoming “stuck” in a local 

minimum/plateau. Each arrow represents an update to network weights. In practice, 

the relationship between the loss function and network weights would be in a much 

higher dimensional space where the weight and bias of each node corresponds to one 

dimension within the optimization space. 

 

Figure 9: 2D conceptual representation of the effects of different relative learning rates 

on the loss function of an ANN during training. Each arrow represents an update to 

weights within a network. Similar to Figure 8, this 2D figure is a simplification of what 

is a higher dimensional space in practice. 
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2.7 Overview of the Adam Optimization Algorithm 

Gradient descent provides the basis for weight and bias optimization in ANNs. However, 

several gradient-based optimization algorithms, such as stochastic gradient descent with 

momentum (Sutskever et al. 2013), Adagrad (Duchi, Hazan & Singer, 2011) RMSprop 

(Hinton, Srivastava & Swersky, 2012) and Adam (Kingma & Ba, 2014) exist. This chapter 

will introduce the Adam algorithm as it is the recommended default optimization algorithm 

for practical applications due to a combination of strong performance and computational 

efficiency (Ruder, 2016; Kingma & Ba, 2015) (Figure 10). 

 

Figure 10: Figure from Kingma & Ba (2015) demonstrating the performance of ANNs 

employing one of five different optimization algorithms to learn a handwriting 

recognition problem. Adam optimization yielded the best performance with fewer 

training iterations and lower computational cost relative to other optimization 

algorithms. 
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Traditional gradient descent (Chapter 2.2) employs a constant, user-defined, learning 

rate across all training iterations. However, it can be beneficial to apply a larger learning rate 

during early stages of training and a smaller learning rate as training progresses. Doing so 

provides the advantages of a larger learning rate (computational efficiency, lower risk of 

getting stuck in local minima) without the same difficulties in converging on minima. To 

achieve these benefits, learning rate schedules can be implemented to adjust learning rate 

according to a pre-defined schedule. However, this requires the practitioner to perform time-

consuming experiments to select a learning rate schedule that is appropriate for a given 

problem. The Adam optimization algorithm provides the benefits of adaptive learning rates 

without requiring a user-defined learning rate schedule (Kingma & Ba, 2014). Specifically, 

Adam calculates learning rates based on exponential weighted moving averages of the 

gradient. The exact formulae underlying Adam are complex and outside the scope of this 

thesis. However, the general outcome is that learning rates are adapted throughout training to 

decrease computational cost as well as improve convergence on optimal weight and bias 

configurations. 

2.8 Regularization Techniques 

Regularization involves modifying the ANN training process to reduce ANN 

variance/overfitting. Common regularization techniques include early stopping (Prechelt, 

2012) and dropout (Srivastava et al., 2014). 
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2.8.1 Early Stopping 

Training an ANN over a greater number of epochs will generally improve the performance of 

the ANN on training data at the cost of increasing the risk of overfitting (Tetko et al., 1995). 

Early stopping (Prechelt, 2012) is a regularization technique used to stop ANN training at the 

training epoch where the ANN begins to become overfit. Early stopping involves three basic 

steps. First, all available training data is split into a training set and a validation set. Next, the 

ANN is trained on the training set while performance is repetitively evaluated by applying 

the ANN to the validation set after a given number of training iterations. Finally, training is 

stopped when the performance of the ANN on the validation set begins to worsen. Training 

should generally not be stopped after just one epoch of increased validation error because 

validation error curves almost always exhibit several local minima (Figure 11). Prechelt 

(2012) suggests that the optimal trade-off between performance and training time was 

achieved in a variety of problems when training was stopped after 6 successive epochs of 

validation error increases. In this example, the early stopping algorithm would be referred to 

as having a “patience” of 6 epochs.  
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Figure 11: Validation error curve of an ANN’s validation error over 425 training 

epochs adapted from Prechelt (2013). The red arrow highlights a local minimum early 

in the training process. The green arrow indicates the global minimum. In this example, 

ANN training would ideally be stopped near epoch 200. 

2.8.2 Dropout Regularization 

Dropout regularization (Srivastava et al., 2014) involves temporarily eliminating or 

“dropping out” a portion of nodes from the neural network during each training iteration 

(Figure 12). When a node is dropped, its connections are removed, and its weights are not 

updated during backward propagation. By randomly dropping a portion of nodes during each 

training cycle, excessive co-adaptation between nodes is prevented. Co-adaptation refers to a 
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node becoming overly dependent on another node (Hinton et al., 2012). For example, a given 

node may adapt such that it compensates for errors made by another node. These co-

adaptations are unlikely to generalize to novel data, resulting in overfitting. Dropout can be 

thought of as an approach to force nodes to work with a random subset of other nodes. In 

doing so, the network becomes more robust and typically demonstrates improved 

performance on novel datasets (Srivastava et al., 2014). 

 

Figure 12: Visual representation of dropout from Srivastava et al. (2014) of a FF neural 

network before and after applying dropout. Circles and arrows represent nodes and 

internode connections respectively. Crossed circles represent nodes that have been 

“dropped”. 

2.9 Recurrent Neural Networks 

When applying FF ANNs in sequence-to-sequence modelling, each frame of data is 

processed independently. When processing sequences of time-series data, which is required 
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to achieve the objective of this thesis project, recurrent neural networks (RNNs) are likely 

advantageous relative to traditional ANNs (Lipton et al., 2015). RNNs can process inputs at a 

given time step while recalling information from the previous time step and are typically 

applied to problems involving time-series data and/or forecasting (Shrestha & Mahmood, 

2019). RNNs are able to “recall” information from the previous time step by providing the 

hidden node activations at timepoint t – 1 as an additional input to the RNN at timepoint t 

(Figure 13). This feature allows RNNs to account for interdependencies between subsequent 

data points within a given sequence (Elman, 1990). Unfortunately, traditional RNNs are not a 

viable approach when there are long time lags between relevant input signals and the outputs 

at a given time step (Bengio et al., 1994). Furthermore, it is difficult to train deep RNNs 

(RNNs with several layers) as they are very susceptible to the exploding gradient problem. 

(Hochreiter et al., 2001) 
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Figure 13: Model of a simple RNN with one hidden layer consisting of two nodes. Blue 

arrows represent the flow of data from timepoint, t, while yellow arrows represent 

hidden node activations originating from timepoint t – 1. 

2.9.1 Long Short-Term Memory (Hochreiter & Schmidhuber, 1997a) 

Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997a) neural networks are a 

type of RNN that are well-suited to predict time-series outputs given lags of unknown 

duration between relevant input signals and outputs at a given time step (Hochreiter & 

Schmidhuber, 1997b). This separates them from traditional RNNs which are only capable of 

recalling information over one time step. As a result, LSTM networks are the current state of 

the art in sequence modelling contexts such as voice recognition (Chiu et al., 2017) and 

language translation (Sidorov, 2018). 
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 An LSTM network includes one or more LSTM cells which have four defining 

components: a cell state, a forget gate, an update gate and an output gate (Figure 14). The cell 

state allows for the flow of information over multiple time steps. It is an array of numerical 

values that can be thought of as the “memory” of the LSTM cell. In theory, information from 

the first timestep in a given sequence could be carried forward within the cell state to any 

future timestep in the sequence. The collective role of the gates is to control what information 

is added or removed from the cell state at each step within a sequence. The gates are 

composed of individual neural network layers that learn to perform their specific role by 

updating their weights and biases through training.  

 

Figure 14: Graphical representation of an LSTM cell from Ng, Katanforoosh & Mourri 

(n.d.). 

At a given timestep (t), the forget gate is the first to regulate the cell state. The inputs 

of the forget gate layer are the inputs to the LSTM cell (xt) at the current timestep as well as 



 

 31 

the hidden activation of the LSTM cell from the previous timestep (at-1). The forget gate 

layer applies a sigmoid activation function that receives xt and at-1 as inputs. It outputs values 

between zero and one, each value corresponding to a value within the cell state. Zero 

indicates “this information should be completely forgotten” and one indicates “this 

information should be completely retained”. The overall output (Equation 3) of the forget 

gate is a matrix of values between zero and one indicating to what degree cell states values 

should be forgotten. 

Equation 3: Output of the forget gate layer within an LSTM cell 

𝑓𝑡 = 𝜎(𝑊𝑓[𝑎𝑡 − 1, 𝑥𝑡] + 𝑏𝑓) 

Where ft is the output of the LSTM forget layer, and 𝑊𝑓 and bf, represents matrices of 

weights and biases of nodes respectively within the forget gate layer. 

 

Next, the update gate (also known as input gate) determines what information should 

be added to the cell state. The update gate (Equation 4) layer works alongside a hyperbolic 

tangent (tanh) activation layer (Equation 5). The update gate layer identifies which, and to 

what degree, cell state values should be updated while the tanh layer generates candidate 

values to add to the cell state. Similar to the forget gate, information regarding the degree to 

which candidate values should be added to the cell state are represented by a matrix 

containing values between zero and one. Greater values indicate that the candidate value 

should be considered to a greater degree within the cell state.  
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Equation 4: Outputs of the update gate layer within an LSTM cell 

𝒖𝒕 = 𝝈(𝑾𝒖[𝒂𝒕 − 𝟏, 𝒙𝒕] + 𝒃𝒖) 

Where ut is the output of the update gate layer, and 𝑊𝑢 and bu, represent associated weights 

and biases of the nodes within the update gate layer. 

 

Equation 5: Output of the tanh layer accompanying the update gate within an LSTM 

cell 

𝑐̃ 𝑡
 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎𝑡 − 1, 𝑥𝑡] + 𝑏𝑐) 

Where c 𝑡  represents candidate values with which to potentially update the cell state and 𝑊𝑐 

and bc, represent corresponding weight and bias matrices. 

 

The output gate consists of a sigmoid layer that determines what cell state 

information will be output and passed to the next time step (Equation 6). It receives the 

hidden activation from t – 1 and the input from the current timestep. Similar to the forget and 

update gates, the output of this gate is a matrix containing values between 0 and 1 that scale 

corresponding output values. The output values being scaled are the cell state, after it has 

been passed through a tanh function which “squashes” these values to the range -1 to 1. 

Equation 6: Output of the update gate layer within an LSTM cell 

𝑜𝑡 = 𝜎(𝑊𝑜[𝑎𝑡 − 1, 𝑥𝑡] + 𝑏𝑜) 

Where ot is the output of the update gate layer, and 𝑊𝑜 and bo, represent associated weight 

and bias matrices. 

 

https://en.wikipedia.org/w/index.php?title=C%CC%83&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=C%CC%83&action=edit&redlink=1
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The outputs of the whole LSTM cell are the cell state and hidden activation which are 

computed based on Equations 7 and 8 respectively. The cell state information is passed 

forward in time to be an input to the LSTM cell at time t + 1. The hidden activation, 𝑎𝑡 ,  can 

be passed to the next layer within an ANN or, if there is no subsequent layer, returned as the 

final output of the ANN. 

Equation 7: Cell state output of an LSTM cell 

𝑐̃𝑡  =  𝑢𝑡  ⋅  𝑐̃ 𝑡 + 𝑓𝑡  ⋅  𝑐̃𝑡 − 1 

Where ct represents the cell state at time t. 

Equation 8: Hidden activation output of an LSTM cell 

𝑎𝑡  =  𝑜𝑡  ⋅  𝑐̃𝑡  

2.10 Best Practices for Machine Learning in the Field of Biomechanics (Halilaj 

et al., 2018) 

Halilaj et al (2018) outlined best practices in machine learning applications in biomechanics. 

This chapter will summarize these concepts as they apply to ANNs in this thesis. 

2.10.1 Feature Selection and Scaling 

Feature engineering is the process of selecting and pre-processing input and output features 

prior to ANN training. It is important to select appropriate input features as reducing data 

dimensionality will reduce the risk of overfitting (Halilaj et al., 2018). Halilaj et al (2018) 

recommend testing a combination of automated feature extraction techniques, such as 

principal component analysis, as well as features selected by a researcher based on domain 

https://en.wikipedia.org/w/index.php?title=C%CC%83&action=edit&redlink=1
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knowledge. In this thesis, input features were selected based on domain knowledge. Once 

features are selected, they should be rescaled such that the magnitudes of values within each 

feature vector are similar across features. This ensures that each feature has equal opportunity 

to contribute to weight and bias updates and allows optimization algorithms to converge on 

minima more quickly (Bishop, 1995). Recommended rescaling techniques are Z-score 

normalization and min-max scaling (Halilaj et al., 2018). In this thesis, features were rescaled 

using min-max scaling. 

2.10.2 Assessing ANN Generalizability 

When assessing ANN performance, it is important that computed performance metrics 

represent the ANN’s ability to generalize to novel data. As discussed in Chapter 2.6, the data 

used to assess ANN generalizability must remain separate from the training data. It is 

recommended to split data into the training, validation and test sets such that all data from a 

given subject is included in only one of the aforementioned datasets. When testing the 

generalizability of a regression model on the test set, MSE or R2 values are recommended 

performance metrics. 

2.11 Combining Multi-Body Dynamics Models and ANNs as a Surrogate for 

More Computationally Expensive Models 

Lu et al. (2013) applied a combined MBD and ANN method as a surrogate for a finite 

element (FE) model to reduce computational demands in predicting cartilage stress within the 

knee joint. MBD models had previously been successfully applied to model joint kinematics 
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and reaction forces. However, they do not allow for the prediction of stress and/or strain 

distributions which influence cartilage degeneration within the knee. To predict these 

variables of interest, FE modelling was required. However, FE modelling is highly complex 

and computationally expensive. Therefore, ANNs were developed to predict cartilage tissue 

stress (outputs of FE model) given rigid body reaction forces (outputs of MBD model).  

Lu et al. (2013) developed FF ANNs as well as focused time delay neural networks 

(FTDNN). FTDNNs are similar to FF ANN but their input layer simultaneously receives 

inputs originating from multiple time steps within a sequence. The ANNs in this study had 

three layers (one hidden layer) and a variable number of hidden nodes. The selection of 

three-layer networks was motivated by a desire to minimize computational demands. Aligned 

with the dimensionality of ANN inputs and outputs, the input layer contained 1200 nodes and 

the output layer contained 400 nodes. The number of hidden nodes was increased in 

increments of ten and evaluated based on associated r and MSE values between ANN and FE 

modelling outputs. Specifically, hidden layer size was iterated from 10 to 200 in FF ANNs 

and 130 to 320 in FTDNNs. All hidden layers had sigmoid activation functions while output 

layers had linear activation functions. Committees of ANNs were applied to generate outputs. 

This involved applying three ANNs simultaneously and calculating the mean output across 

the three models. A committee of 3 FF ANNs with 80, 100 and 160 hidden nodes as well as a 

committee of 5 FTDNNs with 160, 230, 240, 280 and 320 hidden nodes were evaluated. 

Both committees performed well, yielding outputs with strong agreement (r ≈ 0.9) with FE 

model outputs. The success of Lu et al. in using ANNs as a surrogate for highly complex FE 
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models supports the use of ANNs as a surrogate for EMGD musculoskeletal models in this 

thesis. 

2.12 Applying an ANN to Predict Lumbar Muscle Activity (Nussbaum, Chaffin 

& Martin, 1995) 

The success of relatively low capacity ANNs in mapping the relationship between 

moments and nEMG suggest that more complex ANNs may be capable of mapping a 

relationship between moments and joint contact forces while accounting for active muscle 

force contributions. Nussbaum, Chaffin & Martin (1995) used FF ANNs to predict bilateral 

EMG normalized (nEMG) as a percentage of maximal voluntary contraction (%MVC) 

from erector spinae, rectus abdominus, external oblique and latissimus dorsi while 

participants resisted static moment loads that were applied in a variety of directions using a 

shoulder harness while standing upright.  Inputs to the ANN were the applied flexion, 

extension, right lateral bend and left lateral bend external moments. ANNs were developed 

with one hidden layer and all nodes within the ANN were assigned sigmoid activation 

functions. This led to outputs being constrained to the range of zero to one which aligned 

with the %MVC target outputs. Hyperparameter tuning was performed in two stages. First, 

ANNs were developed with eight hidden nodes and learning rate was iterated from 0.1 to 

0.9 in increments of 0.1. Learning rate did not substantially influence ANN performance. 

In the next tuning stage, the learning rate was set to 0.7 while the number of nodes in the 

hidden layer was iterated from two to twenty. Four ANNs were developed with each 



 

 37 

number of hidden nodes and each ANN was assessed by calculating R2 values between 

ANN-predicted nEMG and measured nEMG.  

ANNs with four to twenty hidden nodes performed similarly. However, as the 

number of hidden nodes decreased below four, R2 values began to decrease. Therefore, the 

authors averaged the outputs of all ANNs with three or more hidden nodes and assessed 

the correlation of these mean outputs to the measured nEMG. This average ANN output 

method yielded a mean R2 of 0.83 across all muscles and task conditions and outperformed 

two optimization-based approaches (mean R2 = 0.65) (Figure 15).  

 

Figure 15: Figure from Nussbaum et al. (1995) comparing the performance of a 

committee of ANNs to optimization models that minimized muscle activation intensity 

and lumbar compression (MIC) and sum of cubed muscle activation intensity (SCI). 

Included muscles are the right and left latissimus dorsi (R/LLD), erector spinae 

(R/LES), external obliques (R/LEO) and rectus abdominus (R/LRA). 
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2.13 Previous Applications of Artificial Neural Networks to Predict 

Intervertebral Contact Forces Within the Lumber Spine 

The literature does not include studies of the application of ANNs to predict cervical spine 

contact forces. However, ANNs have been applied to predict lumbar spine contact forces. 

While these ANNs were developed in the context of lifting/grasping tasks, they provide 

valuable information regarding the range of network hyperparameters that should be 

evaluated in the context of this thesis. Specifically, the choice of ANN activation functions, 

regularization techniques, number of hidden layers and number of nodes/hidden layer in the 

studies described in this chapter were used to inform ANN development in this thesis. 

Studies in which ANNs were used to predict intervertebral moments (e.g. Aghazadeh, 

Arjman & Nasrabadi, 2020; Kingma et al., 2001) are not included in this summary as they 

are mapping inherently different input-output relationships. 
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Table 1: ANN parameters in studies involving predictions of spinal contact forces with 

reduced data or modelling requirements. 

Author, 

Year 

Type of 

ANN 

Learning 

Rate 

Number 

of 

Layers 

Nodes per 

Hidden 

Layer 

Regularization 

Technique(s) 

Activation 

Functions 

Hou et al., 

2004 

Recurrent 0.2 3 35 Did not 

specify 

Hidden 

layer: Tanh 

Output 

layer: 

Sigmoid 

Hou et al., 

2007 

Recurrent 

fuzzy 

0.01 4 N/A Did not 

specify 

Gaussian 

membership 

function 

Parkinson 

& 

Callaghan, 

2009 

Densely 

connected 

feedforward 

Did not 

specify 

3 5 

 

Early 

stopping. 

Patience was 

not stated. 

Hidden and 

output 

layers: 

Linear 

Arjmand 

et al., 

2013 

Densely 

connected 

feedforward 

Did not 

specify 

6 20 

 

Early stopping 

with a 

patience of 6 

iterations 

Hidden 

layer: Tanh 

Output 

layer: 

Linear 

Mousavi 

et al. 2020 

Two RNNs, 

fuzzy logic 

algorithm 

Did not 

specify 

3 5 Did not 

specify 

Hidden 

layer: 

sigmoid 

Input layer: 

Linear 

Output 

layer: Not 

discussed 
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2.13.1 Hou et al., 2004 

Hou et al. (2004) demonstrated that modified RNNs (mRNNs) can predict lumbar spine 

compression as well as AP and mediolateral shear during a lifting task without direct 

consideration of EMG data. The mRNN input features included several anthropometric 

measures, load mass, lifting height, participant handedness and lifting style (stoop or squat), 

triaxial low back moments as well as angular displacement, velocity and acceleration of the 

trunk relative to the pelvis. At each time step, the mRNN produced intermediate EMG 

outputs. These EMG outputs were looped back to the mRNN at future timesteps as an 

additional input for generation of the lumbar spine loading outputs (Figure 16). The number 

of hidden nodes was set to 35 after experimentation with hidden layers of eight to fifty nodes. 

Similarly, a trial and error approach was applied to identify an appropriate learning rate 

which was 0.2.   
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Figure 16: mRNN diagram from Hou et al. (2004). EMG outputs were rescaled such 

that they had similar numerical magnitudes as the other mRNN inputs. After being 

rescaled, they were looped back as an input to the mRNN at one and two timesteps in 

the future. 

When the mRNNs were applied to a sagittal lifting task, mean absolute error (MAE) 

was 152 N, 60.3 N and 14.5 N for low back compression, AP shear and lateral shear joint 

contact forces respectively. MAE values were greater when the mRNN was applied to an 

asymmetric lifting task (Figure 17). It should be noted that these mRNNs were trained and 

tested on a sample of 2 male participants. The ability of these models to generalize to female 

and/or novel male participants was not assessed. 
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Figure 17: Figure from Hou et al., 2004 showing mean absolute error (N) of mRNN 

predictions of low back lateral shear (LSF), AP shear (ASF) and compression (CMP) 

during symmetric and asymmetric lifting tasks.  

2.13.2 Hou et al., 2007 

In a follow-up study, Hou et al. (2007) leveraged recurrent fuzzy neural networks (RFNN) 

(Figure 18) to predict lumbar compression, AP shear and mediolateral shear. Target 

compression and shear values were generated by an EMG-assisted model. The use of fuzzy 

logic was motivated by the noisy relationships between kinematics, EMG and contact forces. 

Briefly, fuzzy logic (Zadeh, 1966) allows models to mathematically incorporate the 

uncertainty inherent to real world phenomena. For example, when describing the temperature 

outside a human may define it as cold, warm or hot. However, some temperatures, for 

example 25°C could belong to two of these categories and be defined as “very warm” or 

“somewhat hot”. To model this, fuzzy logic would use a membership function to define how 

much a given numerical temperature value belongs to one of the three temperature categories 

(Figure 19). The process of determining the degree to which an input belongs to each of the 
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fuzzy sets (in this example, fuzzy sets are “cold”, “warm” and “hot”) is known as 

fuzzification. 

 

Figure 18: RFNN diagram from Hou et al., 2007. Layer 1 received kinematic inputs as 

well as recurrent EMG feedback. Layer 2 fuzzified these inputs i.e. converted the 

numerical inputs in to linguistic sets. Nodes in Layer 3 calculated the products of their 

inputs and output the firing strength of various fuzzy rules that aimed to model the 
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relationship between kinematics and EMG and lumbar forces. Layer 4 performed 

defuzzification in order to output numerical values. 

 

 

Figure 19: Graphical representation of the fuzzification of temperature values from 

https://commons.wikimedia.org/wiki/File:Fuzzy_logic_temperature_en.svg. 

During training, the RFNN received triaxial angular trunk displacement, velocity, 

acceleration, moments as well as EMG signals from six trunk muscles. These data were used 

to learn kinematics-EMG-force relationships such that, when applying the trained model, 

EMG input was not required. Specifically, the trained model generated EMG predictions 

based on kinematic and moment inputs at time t - 1 then fed these EMG outputs to itself as 

an additional input to the model at time t. The interval between timepoints was 

approximately one ms and aimed to represent electromechanical delay. However, this is not 

aligned with the much longer electromechanical delays reported in trunk musculature 

(Stokes, 2005). RFNNs were trained for specific task conditions and subject groups. Subjects 

were grouped by standing height, forearm length and spine length. The method of measuring 

spine length was not discussed. Task conditions included combinations of different levels of 
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load mass, lift height and lift asymmetry. RFNNs were successful in generating similar 

lumbar compression, anteroposterior shear and mediolateral shear as an EMG-assisted model 

across sagittal and asymmetric lifts of various load masses and lift height. Results indicate 

that mean absolute percent error in compression and shear outputs was less than 10% in both 

lift types (Figure 20). Visual examination of RFNN outputs suggest that they had difficulties 

in accurately predicting peak joint contact forces (Figure 21). 

 

Figure 20: Mean absolute error (in N) and percentage error of RFNN vs. EMG-driven 

model mediolateral shear (LSF), AP shear (ASF) and compression (CMP) outputs 

during sagittal and asymmetrical lifting tasks. Figure from Hou et al. (2007). 
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Figure 21: Comparison of RFNN (Predict) and EMG-driven model (Actual)  

mediolateral shear (LSF), AP shear (ASF) and compression (CMP) outputs during 

asymmetrical lifting. 

2.13.3 Parkinson & Callaghan, 2009 

Parkinson & Callaghan (2009) aimed to reduce the data requirements for estimation of 

lumbar spine loads during lifting and lowering trials with two load conditions and three lift 

asymmetry conditions (right, centre/sagittal, left). Two FF ANNs were developed, one to 

predict L5-S1 moments and the other to predict L5-S1 contact forces. This chapter will focus 

on the joint contact force ANN as that is more relevant to this thesis. Data was collected on 

two separate days from 20 participants and included ground reaction forces, motion capture 

and trunk musculature EMG. These data were used to drive an EMG-assisted model to 

generate compression and shear estimates at L5-S1.  

A data reduction approach was performed in which the utility of candidate ANN 

input variables was assessed by calculating coefficients of determination between inputs and 

joint contact force outputs. This procedure yielded bilateral internal oblique and erector 
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spinae EMG, trunk flexion angle, participant height, mass, trunk depth and width at the level 

of the umbilicus and gender as inputs for the ANN. Three-layer ANNs were developed where 

the number of nodes in the hidden layer was selected through a trial and error process. This 

process began by developing ANNs with the maximum number (25) of hidden nodes that 

would allow for training. The number of hidden nodes was pared down until additional 

removal of nodes resulted in increased training error. At each step in this process, three 

networks were trained to ensure stable estimates of ANN performance. Nodes of both the 

hidden and output layers contained linear activation functions. The hidden layer activation 

functions were not reported. 

Data from five participants were withheld to create a novel test set with which to test 

the generalizability of the ANN. The outputs of the ANN on this dataset were compared to 

corresponding EMG-assisted model outputs. Similar to the findings of Hou et al. (2007), 

statistical testing indicated that the ANN significantly underestimated peak joint contact 

forces (Figure 22). This was attributed to the use of a root mean squared difference (RMSD) 

loss function where alternative loss functions were theorized to improve peak error metrics at 

the cost of worsening cumulative error metrics. The ANN was successful in generating 

similar cumulative loads as the EMG-assisted model (Figure 23) on a group level. However, 

the authors note that the ANNs should only be applied to large scale studies, not estimates of 

exposure on an individual level as the ANN over and under-estimated contact forces at the 

single participant level. 
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Figure 22: Comparison of ANN (simulated) predictions of L4/L5 compression to EMG-

assisted (Original) model outputs from Parkinson & Callaghan, 2009. The authors note 

that the ANN was unable to replicate peak values. 

 

Figure 23: Cumulative compression as calculated by an EMG-assisted model (original) 

vs. FF ANN (simulated) over several lifts performed by one participant. Figure from 

Parkinson & Callaghan (2009). 
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2.13.4 Arjmand et al., 2013 

Arjmand et al. (2013) aimed to compare the performance of ANNs and quadratic regression 

equations in matching the outputs of a kinematics-driven finite element (FE) model of the 

trunk (Figure 24). The outputs of the FE model included L4-L5 and L5-S1 compression and 

AP shear and considered 76 trunk muscle forces during a simulated sagittal plane lifting task. 

The inputs of the FE model were the mass of the load, the anterior and lateral distance of the 

load to the L5-S1 joint centre, whether the lift was performed with one or two hands as well 

as sagittal plane trunk and pelvis kinematics that were calculated from markers tracked by an 

active motion capture system. The FE model calculated trunk muscle forces through an 

optimization algorithm whose cost function was the sum of squared muscle stresses.  
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Figure 24: The kinematics-driven FE model of Arjmand & Shirazi-Adl (2006) that was 

applied by Arjmand et al. (2013). Modelled muscles included iliocostalis lumborum 

pars thoracic (ICPT), longissimus thoracis pars thoracic (LGPT), multifidus (MFL), 

longissimus thoracis pars lumborum (LGPL), iliocostalis lumborum pars lumborum 

(ICPL), quadratus lumborum (QL),  iliopsoas (IP), rectus abdominus (RA), external 

oblique (EO) and internal oblique (IO). 

Two ANNs were developed, one to predict FE model-derived compression and shear 

joint contact forces and the other to predict muscle forces. This summary will focus on the 

joint contact force ANN as that is more relevant to this thesis. The inputs of the joint contact 
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force ANN were thorax flexion angle, load mass and the anterior and lateral location of the 

mass relative to the L5-S1 joint centre. A “trial and error” approach was used to select ANN 

hyperparameters to minimize RMSE of compression and shear outputs relative to the FE 

model outputs. This process led to an ANN with 6 layers and 20 nodes per hidden layer. This 

ANN outperformed the corresponding quadratic regression equation and achieved an R2 of 

0.99 (Figure 25).  

 

Figure 25: Scatter plot from Arjmand et al. (2013) showing ANN-predicted (y-axis) and 

kinematics-driven FE model (x-axis) outputs. 

A limitation of this study is that the trunk was assumed to only move in the sagittal 

plane. Additionally, the optimization approach that was used to calculate muscle forces 

within the FE model resulted in zero force production by antagonistic muscles. This does not 

reflect EMG-based reports of co-contraction during trunk flexion/extension (Granata, Lee & 
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Franklin, 2005). Overall, this study demonstrated that ANNs are effective in mapping 

complex relationships between relevant biomechanical inputs and outputs.  

2.13.5 Mousavi, Sayyaadi & Arjmand, 2020 

Mousavi, Sayyaadi & Arjmand (2020) applied a neuro-fuzzy approach consisting of two 

RNNs and a fuzzy logic algorithm (Figure 26) to predict 3D orientations of the thorax and 

pelvis as well as L5-S1 compression and shear. This summary will focus on their application 

of an RNN to predict compression and shear. Twenty male participants performed a series of 

reaching tasks in which participants picked up weights that were located at a variety of 

heights and horizontal distances. Thorax and pelvis orientations were tracked with inertial 

sensors and L5-S1 compression and AP shear were calculated via a kinematics-driven FE 

model of the thoraco-lumbar spine (Arjmand & Shirazi-Adl, 2006). These data were split 

such that 70% of data were used for RNN training, 15% was used for RNN validation and 

15% was used for testing.  
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Figure 26: Schematic adapted from Mousavi et al. (2020) illustrating the structure of 

their neuro-fuzzy approach. Aspects pertaining to prediction of lumbar compression 

and shear are highlighted in blue. Inputs to the first RNN were participant standing 

height, H, and the anteroposterior, mediolateral and inferosuperior distances (x, y, and 

z) of the load relative to a point on the floor on which participants were standing. 

An RNN with one hidden layer of 5 nodes, an input layer with 6 nodes and an output 

layer consisting of 2 nodes was developed to predict L5-S1 prediction and shear. Network 

inputs were participant height, the starting height of the load and it’s horizontal anterior and 

mediolateral distances from the participant as well as pelvis and thorax flexion angles. Nodes 

in the hidden layer were assigned sigmoid activation functions while the input layer was 

assigned linear activation functions. The activation functions of the output layer were not 

discussed. The network was trained using the Levenberg-Marqhardt algorithm (Moré, 1978). 

Comparison (Figure 27) of the RNNs developed in this study to FF ANNs developed by 
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Gholipour & Arjmand (2016) to predict lifting postures suggests that RNNs may be 

advantageous when estimating time-series intervertebral compression and shear. 

 

 

Figure 27: Compression and shear outputs of the RNNs (Neuro-Fuzzy) developed by 

Mousavi et al. (2020), the outputs of a FF ANN (FFNN) developed in a previous study 

(Gholipour & Arjmand, 2016) and corresponding FE model-derived values (Target) 

when lifting a load. Figure from Mousavi et al (2020). 

2.14 Summary 

This literature review provided several key considerations that inform the methodology of 

this thesis. First, while FF ANNs have been successful in predicting cumulative loading of 

the lumbar spine, RNNs are likely more well-suited to accounting for interdependencies 
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between timepoints within a sequence to predict time-series intervertebral compression and 

shear forces. Second, ANN development should include evaluation of ANNs with a wide 

range of hyperparameters to identify an appropriate balance between bias and variance. To 

mitigate the risk of overfitting, early stopping and dropout regularization are appropriate 

regularization techniques. Third, developing ANNs for specific motions (e.g. symmetric vs. 

asymmetric lifting) is likely to provide stronger ANN performance. Fourth, to appropriately 

assess ANN generalizability, it is important that ANNs are tested on data from participants 

whose data were not included in either training or validation sets. Additionally, MSE or r 

values are appropriate measures of model performance in this context. Each of these points 

played an important role in shaping the ANN development process described in Chapters 3.4-

3.6. 
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Chapter 3: Methods 

A variety of ANNs were systematically developed with different types of layers (FF and 

LSTM), inputs and hyperparameters. These ANNs produced time-series C6-C7 compression 

and shear prediction outputs. The motion capture and EMG data underlying the ANNs 

developed in this thesis were collected and processed by Laura Healey (Healey et al., 2021; 

Healey, 2019). These data were input to an EMGD musculoskeletal model of the neck 

(Barrett et al., 2021; Barrett, 2016) which output time-series compression and shear joint 

contact forces. These outputs were generated by Jeffery Barrett and used as target values for 

the ANNs in this thesis. 

3.1 Participants 

Participants (n = 26) included 14 females and 12 males (mean ± standard deviation; age: 24.7 

± 4.0 years, height: 173.7 ± 9.4 cm, and body mass: 77.9 ± 18.1 kg) from a university 

population. All participants provided informed written consent and collection of this data was 

approved by the University of Waterloo office of research ethics (ORE # 40080).  

3.2 Motion Capture and EMG Data Collection 

3.2.1 Visual Target Acquisition System 

Participants performed flight-relevant visual scanning trials using the 3D Visual Target 

Acquisition System (VTAS) (Derouin & Fischer., 2019). The VTAS is a validated system to 

elicit consistent head movement similar to that of a helicopter pilot during flight. It consists of 
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solar panels (6V 100mA, 100mm diameter, Sundance Solar, Hopkinton NH) that interact with 

helmet-mounted laser pointers. These solar panels are encased in a plastic frame with a 20 mm 

aperture which represent targets to be acquired. Mounted on the frame, are LEDs capable of 

emitting red, blue and green light. Participants don helmets to which a laser pointer is affixed 

such that the laser aligned with the centre of vision of the participant. When the laser beam 

interacts with a solar panel, the surrounding LEDs change colour from red to blue. When the 

laser has maintained contact for 300 ms, the LEDs turns green indicating that this visual target 

has been acquired (Figure 28). 

 

Figure 28: Figure, adapted from Healey (2019), demonstrating the changes in colour of 

VTAS LEDs when the laser is not in contact with it (A), when target is initially exposed 

to the laser pointer (B) and when the laser pointer has been in contact with the target for 

greater than 300ms (C). 

3.2.2 Experimental Design 

Flight-relevant visual scanning was elicited by asking participants to perform 30-second 

scanning trials consisting of rapidly and reciprocally moving between pairs of targets. 

Participants  performed three scanning trials under each combination of two rotation axis 

conditions (pitch and yaw), two magnitude conditions (35° and 70°) (Figure 29) and four 
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helmet conditions: helmet (Gentex HGU-56/P [Gentex, Carbondale, Pennsylvania]) only 

(hOnly), helmet with NVG (hNVG), helmet with NVG and counter-weight (hNVGCW) and 

helmet with NVG and counter-weight liner (hCWL) (Table 2). The order in which conditions 

were presented was block randomized. Appropriate rest was provided to prevent participants 

from fatiguing throughout the protocol. During all trials, participants sat in an automobile seat 

with a four-point harness to mimic seating in a helicopter. 

 

Figure 29: VTAS target locations adapted from Healey (2019). “A” and “a” denote 

targets used to elicit yaw head movements of 70° and 35° respectively. Similarly, “B” and 

“b” denote targets used to elicit pitch head movements of 70° and 35°. 
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Table 2: Summary of the relative inertial properties of each helmet configuration 

adapted from Healey et al. 2021. 

 

Helmet Condition 

Relative Increase 

in Total Mass (%) 

Relative Increase in 

Moment of Inertia (%) 

hOnly                            
Baseline Baseline 

hNVG  

54.5 

Lateral bend = 12.2 

Rotation = 56.1 

 Flex/ext = 63.1 

 
 

96.5 

Lateral bend = 18.2 

Rotation = 71.5 

Flex/ext = 77.9 

 

hCWL  

96.5 

Lateral bend = 15.0 

Rotation = 65.3 

Flex/ext = 71.7 

 

 

3D printed 

tubes 

NVGs Battery pack 

CW 

NVGs 

NVGs 

hNVGCW 

CWL 

Battery pack 

Battery pack 
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3.2.3 Instrumentation 

EMG was sampled bilaterally at a frequency of 2000 Hz from sternocleidomastoid, upper 

trapezius and upper neck extensors using wireless Trigno mini sensors (Delsys, Natick MA). 

EMG data were linear enveloped where filter cut-off frequencies were specific to each muscle 

in consideration of their electromechanical delays (Almosnino et al., 2009). Participants were 

also instrumented with passive-reflective markers on the trunk (Figure 30) and helmet (Figure 

31). The 3D positions of these markers were sampled at a frequency of 80 Hz using a 12-

camera Vicon optical motion capture system (Vicon, Oxford, UK).  To mitigate potential 

learning effects, only data from the third (and final) trial within each combination of helmet, 

rotation axis and magnitude conditions was processed further. First, marker position data was 

labelled and gap filled in Nexus 2.0 (Vicon, Oxford, UK). These data were then imported into 

MATLAB R2018a (Mathworks Inc., USA) where head and trunk segments were defined in 

accordance with International Society of Biomechanics recommendations (Wu et al., 2002). 

Euler angles were calculated to yield angular displacement of the head relative to the trunk. 

Angular velocity was calculated using the “gradient” function in MATLAB 2019b which 

applies finite differentiation to the first and last points in a sequence and central difference 

differentiation to all other data points. Angular velocity was differentiated in the same manner 

to yield angular acceleration. 
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Figure 30: Reflective marker (circle) and rigid body marker cluster (square) placement 

on the trunk. Figure from Healey (2019). 

 

Figure 31: Reflective marker placement on the helmet. Figure from Healey (2019). 

3.3 Estimating C6-C7 Compression and Shear with an EMG-Driven Model 

Conditioned EMG and head-trunk kinematics data were down sampled to 10 Hz and input into 

a validated EMGD musculoskeletal model of the neck (Barrett et al., 2021) (Figure 32). The 
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outputs of the model included intervertebral moments calculated using inverse dynamics and 

compression and shear joint contact forces in consideration of both passive and active 

musculoskeletal force contributions. This model included rigid bodies representing the seven 

cervical vertebrae, T1 and the skull as well as 218 muscle elements and 511 ligament elements 

spanning from C7-T1 to the base of the skull. Active muscle force contributions were 

calculated using an EMG-assisted optimization routine (Gagnon et al., 2011; Cholewicki & 

McGill, 1994). The helmet system was represented within the model as its own rigid body with 

inertial parameters (mass and moment of inertia) obtained from CAD models of each helmet 

configuration. They were then attached to the skull-segment with a weld joint, with the center 

of mass offset relative to the head’s center of mass specific to the helmet configuration. The 

anatomical dimensions of the model were scaled to match a 50th percentile male.  
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Figure 32: EMG-driven model of the neck adapted from the OpenSim model of Barrett 

et al. (2021). (A) the model in a neutral posture with muscle elements represented in red, 

and ligaments in green. (B) demonstration of the pitch rotation kinematics, which 

involved reciprocal flexion-extension (flexion shown here). (C) the axial-twisting yaw 

rotation. The left image in (C) is the static portion of the trial, whereas the image on the 

right is taken during the accelerating phase of the movement, hence the notable activation 

in the sternocleidomastoid. 

Model validation, as described by Barrett et al., 2021, was performed in two stages: 

validation of the osteoligamentous elements of the model and validation of the passive muscle 

tension contributions. The overarching model was composed of individual functional spinal 
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unit (FSU) models where ligament force-elongation curves were based on the work of Mattuci 

et al. (2013) and the contributions of the intervertebral disc and zygapophyseal joints were 

represented by non-linear bushing elements (Christophy et al., 2013). The resultant passive-

moment angle curve of each FSU was then calibrated with experimental data in flexion-

extension (Camacho et al., 1997; Panjabi et al., 1988) lateral-bending (Yoganandan et al., 

2007) and axial-rotation (Yoganandan et al., 2008). The kinematic response of the 

osteoligamentous cervical spine model to applied forces was validated against experimental 

data (Ivancic, 2013; Panjabi et al., 2001). Next, the 218 muscle elements were added to the 

model and the whole spine’s passive moment angle curve was validated against equivalent in 

vivo passive curves, where participants were moved through their range-of-motion by an 

externally applied force (McClure et al., 1998; McGill et al., 1994). 

Alternative EMGD neck models, namely those of Vasavada et al. (1998) and Huber 

(2013) have been developed to serve the same purpose as that of Barrett, (2016). However, 

issues related to nonlinearities between EMG drive and subsequent muscle force generation 

have been identified in the Vasavada model (Netto et al., 2008). Meanwhile, the Huber 

(2013) model includes just 3 neck muscle elements whose paths were not modelled with via 

points for muscle wrapping. In light of these limitations, and the extensive validation of the 

Barrett (2016) model, it is likely the best available model for use in this study. 
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3.4 Artificial Neural Network Development 

A dataset consisting of head-trunk angular kinematics (Chapter 3.2), and corresponding 

EMGD model-derived C6-C7 triaxial moments, compression and shear (Chapter 3.3) was 

created and then split such that the data collected from 16/26 participants were exclusively 

used for ANN training, 5/26 were exclusively used for ANN cross validation and 5/26 were 

exclusively used for ANN testing. Each dataset contained data from a roughly equal number 

of male and female participants.  

Custom Python (v3.7.7, Python Software Foundation., DE, USA) scripts were written 

to develop ANNs using TensorFlow (Abadi et al., 2016) and Keras (Cholet et al., 2015) 

software libraries. Python is an open-source language and resultant models (stored in a 

Python-specific file format) are thus easily accessible without major financial barriers. The 

use of Keras and TensorFlow libraries simplified the creation of ANN development pipelines 

by eliminating the need to write custom code for certain aspects of the development pipeline. 

It is not feasible to identify the exact combination of ANN type, input and 

hyperparameters that yield the absolute best possible results.  This is because there is a 

virtually infinite number of possible ANN parameter combinations that can be tested. 

Therefore, an extensive two-stage hyperparameter tuning process was completed to select an 

ANN from a range of reasonable hyperparameter values. This two-stage approach was 

performed to reduce overall computational demands by first identifying a promising network 

type (e.g. LSTM vs. FF) and architecture before tuning other hyperparameters. In the first 
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stage of this process, I aimed to identify the most promising combination of a variety of 

ANN types, architectures and input features. To do so, FF ANNs, LSTM ANNs and ANNs 

consisting of a combination of LSTM and FF layers were developed with a variety of input 

features and network architectures. The performance of these ANNs was used to inform 

selection of the most promising combination of ANN type, inputs and architecture. In stage 

two of the hyperparameter tuning process I aimed to identify a combination of learning rate, 

dropout rate and mini-batch size values that further improved ANN performance.  

3.5 Hyperparameter Tuning Stage One: Selecting ANN Inputs, Type of ANN 

and ANN Architecture 

3.5.1 Hyperparameter Tuning Stage One Methods 

Three groups of ANNs were developed. “Dual-rotation” ANNs were trained and evaluated 

on both pitch and yaw head movement trials. “Labelled-trial” ANNs were also trained and 

evaluated on both pitch and yaw trials. However, these ANNs received binary trial labels as 

additional inputs. “Rotation-specific” ANNs were trained and evaluated exclusively on data 

from pitch or yaw trials. Within each of these ANN groups, five different sub-groups of 

ANNs (Table 3) were developed. These sub-groups are defined by the type of layers in the 

ANNs as well as their input features. The sub-groups contained ANNs consisting of only 

densely connected feedforward layers, only stacked LSTM cells, and ANNs consisting of an 

LSTM cell followed by FF layers (Figure 33). ANN inputs were either head-trunk angular 

displacement, velocity and acceleration as well as tri-axial C6-C7 moments or head-trunk 

displacement and C6-C7 moments. In labelled-trial ANNs, trial labels were additional one-
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hot encoded inputs where values of zero or one were concatenated to each frame of data 

within pitch and yaw trials respectively. One-hot encoding is a method of converting 

categorical data to numerical data such that ANNs are able to receive this information as an 

input feature. The inputs and ANN layer types within each sub-group are presented in Table 

3.  

The decision to investigate the use of head-trunk angular displacement and C6-C7 

moments as sole inputs was made to indirectly examine whether LSTM ANNs would 

account for velocity and acceleration information by recalling displacement inputs across 

timesteps. This would be advantageous as using fewer input features would reduce the 

likelihood of overfitting (Reed & Marks 1999), reduce the associated computational demands 

and simplify end-user (e.g. helicopter helmet design team) usage. The outputs of all ANNs 

developed in this thesis are time-series C6-C7 compression and AP shear. 
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Table 3: Description of each of the five ANN sub-groups that were developed. “ALL” 

subscripts denote ANNs who received head-trunk angular displacement, velocity, 

acceleration and moment inputs. “DM” subscripts denote ANNs that received head-

trunk angular displacement and moment inputs. 

Sub-Group Type of layers Inputs 

FFALL Only feed-forward Tri-axial head-trunk angular displacement, 

velocity, acceleration and C6-C7 moments 

LSTM ALL Only LSTM Tri-axial head-trunk angular displacement, 

velocity, acceleration and C6-C7 moments 

LSTM-FFALL LSTM and feed-

forward 

Tri-axial head-trunk angular displacement, 

velocity, acceleration and C6-C7 moments 

LSTM DM LSTM only Tri-axial head-trunk angular displacement 

and C6-C7 moments 

LSTM-FF DM LSTM and feed-

forward 

Tri-axial head-trunk angular displacement 

and C6-C7 moments 
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Figure 33: Overview of the groups and sub-groups of ANNs developed in the first stage 

of hyperparameter tuning. 
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Within each ANN sub-group, 75 ANNs were developed with a combination of 

different numbers of hidden layers and numbers of nodes per layer. The number of hidden 

layers was iterated from one to five for FF and LSTM-FF ANNs. In the case of LSTM 

ANNs, ANNs consisting of between one and five LSTM layers followed by a two-node FF 

output layer were developed. This range of hidden layers was selected as it spanned the range 

observed in relevant literature (Table 1). The number of nodes per hidden layer was set to 

either 16, 32, 64, 128 or 256 in consideration of Ng et al. (n.d.). Implementing a constant 

number of nodes across hidden layers is consistent with expert recommendations (Bengio, 

2012). At this stage, each ANN was assigned the same default hyperparameters (Table 4) 

based on general recommendations. 

Table 4: Default hyperparameters applied to all ANNs during first hyperparameter 

tuning stage. 

Hyperparameter Value 

Dropout rate 0.5, as recommended by Srivastava (2014) 

Early stopping patience 6, as recommended by Prechelt (2016) 

Learning rate 0.01, as recommended by Bengio (2012) 

Mini-batch size 10 
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All hidden and input layers were assigned hyperbolic tangent activation functions. 

This allowed for positive and negative node activation values which aligned with the fact that 

ANN inputs included both positive and negative values. Output layers consisted of two nodes 

which were assigned linear activation functions as was done by Lu et al. (2013) and 

Parkinson & Callaghan (2009). The use of linear activation functions in the output layer is 

likely beneficial in regression contexts as it allows for an unbounded range of possible output 

values. In contrast, other activation functions constrain values to within a given range (e.g. 

tanh outputs range from -1 to 1). Input layers consisted of 12 or 13 nodes as the ANNs had 

12 or 13 inputs. With the exception of trial label input features, each input and output feature 

was individually scaled to the range of -1 to 1 where the maximum value in the training set 

was set to 1 and the minimum value was set to -1 (Halilaj et al., 2018). Ensuring that all 

ANN input features are within the range of -1 to 1 ensures that each feature has equal 

opportunity to contribute to the loss function which in turn improves training speed (Bishop, 

1995). Weights were initialized through Glorot initialization (Glorot & Bengio., 2010) while 

biases were initialized as zero (Bengio, 2012). Briefly, Glorot initialization sets weights such 

that they are normally distributed with a mean of zero. This initialization method was 

selected as it has been demonstrated to improve both training speed and network 

performance relative to traditional uniform initialization (Glorot & Bengio, 2010). All ANNs 

were trained using the Adam optimization algorithm (Kingma & Ba, 2015) where 

minimization of MSE was the objective function. The Adam optimization algorithm is the 

recommended default learning algorithm in deep learning applications (Karpathy et al. 2016). 
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As in Parkinson & Callaghan (2009), three ANNs with each combination of 

architectural parameters were trained to ensure stable estimates of performance. This is 

required because glorot initialization yields pseudo-random initial weights and biases. The 

initial weighting of a given node influences how future training iterations will adjust the 

weight/bias of the node. Therefore, two ANNs with the same architecture and training 

parameters, but different initial node weightings, will likely have different weight and bias 

configurations upon completion of training. This results in varying levels of predictive 

performance between networks with the same hyperparameters. 

Consistent with best practices (Halilaj et al., 2018), the performance and 

generalizability of each ANN was evaluated by calculating the MSE of predicted time series 

compression and shear relative to corresponding EMGD model outputs on the validation set. 

A composite error score for each network was calculated by dividing the MSE of predicted 

compression and shear values by the mean of the corresponding EMGD model-derived 

values and then summing the quotients. This allowed for error within both compression and 

shear outputs to be considered within a single error metric 

3.5.2 Hyperparameter Tuning Stage One Results 

3.5.2.1 Comparing Dual-rotation, Labelled-Trial and Rotation-specific ANNs 

Comparison of the dual-rotation and labelled-trial ANNs suggests that including trial labels 

improved predictive performance. In fact, both the mean and minimum composite error 

scores of labelled-trial ANNs were lower than those of dual-rotation ANNs across all sub-
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groups (Table 5). This was to be expected as the identification of trials as pitch or yaw may 

assist ANNs in accounting for differences in muscle activation profiles that would in turn 

influence joint contact forces. 

Table 5: Summary statistics of composite error scores within each ANN sub-group. The 

best performing ANNs within each group are highlighted in bold text. 

   Sub-Group 

Mean Composite Error Score 

(SD) 

Minimum Composite 

Error Score 

Dual-Rotation 

FFALL 28.2 (3.5) 24.6 

LSTM ALL 29.6 (3.5) 25.2 

LSTM-FFALL 25.0 (1.2) 23.6 

LSTM DM 30.3 (3.4) 26.2 

LSTM-FF DM 26.5 (1.3) 24.0 

Labelled-

Trial 

FFALL 25.8 (3.3) 22.0 

LSTM ALL 27.6 (4.1) 21.2 

LSTM-FFALL 23.0 (1.6) 20.3 

LSTM DM 29.2 (3.7) 24.4 

LSTM-FF DM 25.1 (1.6) 22.7 

Pitch-Specific 

FFALL 30.0 (5.7) 24.6 

LSTM ALL 35.4 (6.8) 25.5 

LSTM-FFALL 26.6 (2.5) 23.5 

LSTM DM 37.0 (6.1) 30.1 

LSTM-FF DM 30.2 (2.3) 26.8 

Yaw-Specific 

FFALL 19.3 (1.8) 17.0 

LSTM ALL 24.9 (3.1) 18.7 

LSTM-FFALL 17.7 (1.1) 16.2 

LSTM DM 24.7 (2.2) 20.3 

LSTM-FF DM 19.1 (1.2) 17.6 

Mean of Yaw 

and Pitch-

Specific 

FFALL 24.6 (6.8) 20.8 

LSTM ALL 30.1 (7.4) 22.1 

LSTM-FFALL 22.1 (4.8) 19.9 

LSTM DM 30.9 (7.7) 25.2 

LSTM-FF DM 24.6 (5.9) 22.2 
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While the use of a single model for application to both pitch and yaw head 

movements would simplify the use of ANNs in the helmet design process, rotation-specific 

ANNs outperformed the dual axis and labelled-trial ANNs. Yaw-specific ANNs achieved 

lower mean and minimum composite error scores than both the dual-rotation and labelled-

trial ANNs. The pitch-specific ANNs had greater composite error scores than the labelled-

trial ANNs. However, this is due to the magnitude of compression and shear values being 

greater during pitch movements. The mean of the composite error scores of both pitch and 

yaw-specific ANNs indicate that the combined use of pitch and yaw-specific ANNs yields 

better overall performance than the labelled-trial ANNs (Table 5). 

3.5.2.2 Comparing ANN Sub-Groups (Types of Layers and Inputs) 

Within the dual-rotation, labelled-trial and rotation-specific groups, ANNs within the LSTM-

FFALL (LSTM cell followed by hidden FF layers with displacement, velocity, acceleration 

and moment inputs)  sub-group had the lowest mean and minimum composite error scores 

(Table 5) as well as the lowest standard deviation, indicating consistently strong 

performance. In the dual-rotation, labelled-trial, and yaw-specific groups, LSTM-FFDM  

ANNs had the next best mean composite error score. In contrast, FF ANNs had the second 

best performance in the pitch-specific ANN group. The results discussed in this chapter 

motivated a focus on further assessment of LSTM-FFALL ANNs in subsequent analysis of 

hyperparameter tuning results. 
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3.5.2.3 Comparing Architectural Parameters 

ANN architectural parameters were evaluated by calculating the composite error scores of 

each LSTM-FFALL ANN architecture configuration within each of the dual-rotation, labelled-

trial and rotation-specific groups. With the exception of the dual-rotation ANN group, the 

best-performing ANNs had 256 nodes per hidden layer. In the dual-rotation ANN group, 

ANNs with 16 nodes per hidden layer performed best. The number of hidden FF layers that 

provided the strongest performance differed across ANN groups. In the dual-rotation group, 

ANNs with one hidden layer had the strongest performance. In pitch and yaw-specific 

groups, ANNs with 3 hidden layers performed best. In the labelled-trial ANN group, ANNs 

with 4 hidden layers had the strongest performance. The performance levels of LSTM-FFALL 

ANNs are presented in Figure 34.  Detailed depictions of ANN performance, inclusive of the 

other 4 ANN sub-groups, are presented in Appendix A. 
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Figure 34: Performance of LSTM-FFALL ANNs with a variety of number of hidden 

layers and nodes per hidden layer. 

3.6 Hyperparameter Tuning Stage Two: Selecting Initial Learning Rate, 

Dropout rate and Mini-Batch Size 

3.6.1 Hyperparameter Tuning Stage Two Methods 

Within each ANN group, 60 LSTM-FFALL ANNs, with the appropriate number of hidden 

feed-forward layers and nodes per layer (Chapter 3.5), were developed with a variety of 

learning rate, dropout rate and mini-batch size values. Initial learning rates were 0.1, 0.01, 

0.001 or 0.0001 as recommended by Bengio (2012). Dropout rate was set to 0.1, 0.25 or 0.5 

to mimic the range of values recommended by Srivastava et al., (2014). Mini-batch sizes 

were set to 2, 4, 8, 16 or 32 in consideration of the findings of Masters & Luschi (2018). 
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Each ANN was evaluated by calculating composite error scores in the same manner as in the 

previous chapter.  

3.6.2 Hyperparameter Tuning Stage Two Results 

Composite error scores (Table 6) across all ANN groups appeared to be predominantly 

influenced by learning rate. More detailed depictions of ANN hyperparameter tuning results 

from this stage are presented in Appendix B. Of note, the 0.1 learning rate caused ANNs to 

output extremely large or “not a number” (NaN) values. NaN is a data type used in Python to 

represent undefinable values. The occurrence of these NaN outputs is a known symptom of 

the exploding gradient problem (Zhang et al., 2019). This issue is common in recurrent 

neural networks and is further exacerbated in deeper networks (Pascanu, Mikolov & Bengio 

2012). 
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Table 6: Mean composite error scores (N) of ANNs grouped by learning rate. Except in 

the dual-rotation group, ANNs with a learning rate of 0.1 often yielded values that were 

undefinable/not a number. Models that yielded NaN values were excluded from 

calculation of mean values. 

Initial 

Learning 

Rate 

Dual-rotation Labelled 

Trial 

Pitch-

Specific 

Yaw-

Specific 

Mean of 

Pitch and 

Yaw-

Specific 

0.1 25.56 236.91 151.27 278.40 214.84 

0.01 22.76 43.35 37.82 21.94 29.88 

0.001 22.55 23.18 26.16 18.08 22.12 

0.0001 23.71 24.65 27.97 19.00 23.49 

 

Within each ANN group, the ANN with the lowest composite score was identified 

(Table 7). Surprisingly, the best-performing dual-rotation ANN achieved stronger 

performance than the corresponding labelled trial ANN. Because a simpler model is 

preferable for practical reasons, and because the more complex labelled-trial ANN did not 

provide stronger performance than the dual-rotation ANN, the labelled-trial ANN was not 
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considered for further analysis. Hypothesis testing was only performed on the best-

performing dual-rotation and rotation-specific ANNs. 

Table 7: Overview of the hyperparameters that yielded the lowest composite error score 

within each ANN group. 

ANN 

Group 

ANN 

Type 

# of 

Hidden 

Layers 

# of 

Nodes 

per 

Layer 

Initial 

Learning 

Rate 

Dropout 

Rate 

Mini-

Batch 

Size 

Composite 

Error 

Score 

Dual-

rotation 

LSTM-

FFALL 

1 16 0.01 0.1 32 20.94 

Labelled-

Trial 

LSTM-

FFALL 

4 256 0.001 0.5 8 21.33 

Pitch-

Specific 

LSTM-

FFALL 

3 256 0.001 0.25 8 23.99 

Yaw-

Specific 

LSTM-

FFALL 

3 256 0.001 0.1 8 16.15 
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3.7 Hypothesis Testing 

While MSE is useful as a model evaluation metric, peak and cumulative compression and 

shear values are more clinically relevant. Therefore, hypothesis testing was performed by 

comparing the error in peak and cumulative compression and shear ANN outputs relative to 

the EMGD model to differences in EMGD model-derived loading under two relevant helmet 

configuration conditions. 

3.7.1 Generating Variables of Interest 

The dual-rotation, pitch and yaw-specific LSTM-FFALL ANNs with the lowest composite 

error score were applied to the test dataset. The time series compression and shear outputs of 

the dual axis, pitch and yaw-specific ANNs and EMGD model on the test set were processed 

further to generate peak and cumulative compression and shear values over individual head 

movement cycles. First, each 30-second trial in the test set was split into head movement 

cycles that were identified given head-trunk angular velocity waveforms (Figure 35). A head 

movement cycle was defined as looking towards a new target before returning to the original 

target (e.g. during yaw trials: gaze began as fixed on the right target, then the head moved to 

acquire a target on the left, and then returned to acquire the initial target on the right). Within 

each head movement cycle, peak and cumulative compression and shear values were 

calculated from both the ANN and EMG model compression and shear time series outputs. 

Cumulative values were calculated in MATLAB R2019b (Mathworks Inc., USA) through 

trapezoidal integration of the corresponding time series compression and shear outputs over 
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the course of individual head movement cycles. Calculation of cumulative shear values was 

performed based on the absolute value of the time-series shear outputs. This was required as 

shear outputs had both positive negative values representing anterior and posterior shear 

respectively. The durations over which the ANN and EMG model outputs were integrated 

were identical as the kinematics used to define the movement cycles were identical. Absolute 

error (AE) values between ANN and EMG model outputs were calculated for the peak and 

cumulative compression and shear values within each head movement cycle. Next, absolute 

difference (AD) values were calculated between EMG-model derived peak and cumulative 

compression and shear values between hNVG and hNVGCW conditions within the test set. 

Differences between these particular helmet conditions were chosen for this analysis as they 

had previously been found to not exhibit statistically significant differences in cervical spine 

loading outcomes (Barrett, 2019). 
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Figure 35: Head-trunk flexion angle (upper figure) and C6-C7 time-series compression 

(lower figure) during a pitch trial. The blue curve represents ANN-predicted C6-C7 

compression while the yellow curve represents EMGD model C6-C7 compression 

outputs. Vertical dotted lines approximate where head movement cycles would be 

defined as beginning and ending.  

Hypothesis Testing 

Hypothesis testing was performed in SPSS Version 26 (IBM, Armonk, NY) to compare the 

AE values between ANN and EMGD model outputs to corresponding AD values within the 

test set. For each of the dual-rotation, pitch-specific and yaw-specific ANNs, four one-tailed 

Welch’s t-tests were performed to determine if the AE values between ANN and EMG model 

outputs were significantly (p < 0.05) different from the relevant AD values between hNVG 
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and hNVGCW conditions. Specifically, Welch’s t-tests were performed to compare the 

distribution of AE values to the corresponding hNVG-hNVGCW AD values for each of the 

eight variables of interest (peak and cumulative compression and shear in pitch and yaw 

trials). The Welch’s t-test was used as it is more robust to Type one error relative to Student’s 

t-tests when comparing samples of unequal sample size and/or variance (Delacre, Lakens & 

Leys, 2017) 

3.7.2 Secondary Analysis: Mean Time-Series Error 

This research focused on the ability of ANNs to accurately predict peak and cumulative 

compression and shear metrics. These measures are meaningful predictors of pain incidence 

within the lumbar spine (Norman et al., 1998) and these findings may extend to the cervical 

spine. Additionally, these measures have previously been associated with helicopter flight-

related neck injury (Forde et al., 2011). As a result, these measures would be of primary 

interest to a helmet designer. However, for some practitioners, the ability to observe trends 

and events within time series compression and shear data as an individual moves their head 

may also be important. To evaluate the LSTM-FFALL ANNs in this context, I calculated the 

mean error of predicted compression and shear relative to EMG model-derived values within 

the test set. Mean error was calculated across all frames of data within the test set as the 

mean difference between ANN and EMGD model outputs. 
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3.7.3 Secondary Analysis: Temporal Error in ANN-Predicted Peak 

Compression and Shear 

Given the targeted end use of the ANNs for in-silico design, it is important to assess the 

agreement between the ANNs and the EMGD model in terms of the timing of peak 

compression/shear occurrence. The ability of the ANNs to accurately predict when peak 

loading occurs may be useful within the helmet design process by helping designers to 

understand loading-posture relationships. To assess the ANNs in this context, the indices of 

the frames in which ANN-predicted and EMGD-derived peak compression and shear 

occurred within each head movement cycle were extracted. The absolute temporal 

differences between these indices were then expressed as a percentage of the duration of the 

head movement cycle. 
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Chapter 4: Results 

4.1.1 Statistical Testing 

The ANN for pitch rotations predicted cumulative compression (mean absolute error (MAE) 

± SD  = 116.87 ± 62.87 Ns), peak compression (MAE = 28.81 ± 21.20 N), cumulative shear 

(MAE = 7.26 ± 6.21 Ns) and peak shear (MAE = 2.73 ± 2.51 N) outputs whose absolute 

error values relative to the criterion EMG-model based outputs were all significantly lower (p 

< 0.05) than corresponding AD values (Table 8) between hNVG and hNVGCW conditions.  

Table 8: Mean absolute differences in compression and shear measures during hNVG vs. 

hNVGCW conditions. 

 Compression Shear 

Peak (N) (SD) Cumulative (Ns) 

(SD) 

Peak (N) (SD) Cumulative (Ns) 

(SD) 

Pitch 39.94 (30.34) 226.04 (186.82) 4.92 (5.14) 19.38 (12.05) 

Yaw 33.71 (51.52) 203.81 (154.62) 7.01 (8.61) 23.99 (18.46) 

 

The ANN for yaw rotations generated cumulative compression (MAE = 74.10 ± 

44.51 Ns) and cumulative shear (MAE = 17.68 ± 13.32 Ns) values whose absolute error 

values were significantly lower (p < 0.05) than AD values (Table 8) between hNVG and 
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hNVGCW conditions. Absolute error values were not significantly lower than corresponding 

AD values in peak shear (MAE = 6.46 ± 6.45 N) (p = 0.16) and peak compression (MAE = 

19.89 ± 21.11 N) (p = 0. 09). Overall, the use of rotation-specific ANNs yielded error levels 

that were below corresponding between-helmet condition differences in six of eight variables 

When applying the dual-rotation ANNs to pitch trials, error levels in cumulative 

compression (MAE = 656.68 ± 214.87), peak compression (MAE = 131.49 ± 46.16), 

cumulative shear (MAE = 62.13 ± 27.35) and peak shear (MAE = 15.74 ± 10.30) were all 

significantly greater (p < 0.05) than corresponding between-helmet condition differences . 

Similarly, applying the dual-rotation ANNs to yaw trials yielded outputs whose error levels 

in cumulative compression (MAE = 438.92 ± 311.03), peak compression (MAE = 148.72 ± 

88.55), cumulative shear (MAE = 77.98 ± 24.18) and peak shear (MAE = 14.64 ± 8.62) were 

significantly greater than corresponding between-helmet condition differences . The dual-

rotation ANN exhibited error levels that were greater than between-helmet condition 

differences in all variables during both pitch and yaw trials.  
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4.1.2 Mean Time-Series Error 

Mean error data (Table 9) suggest that both pitch and yaw specific LSTM-FFALL ANNs 

overpredicted compression magnitudes by an average of approximately 22 and 15 N during 

pitch and yaw trials respectively. ANN-predicted shear values underestimated EMGD values 

by an average of less than 2 N. This can be observed in the exemplar data presented in 

Figures 36 and 37. 

Table 9: Mean error of rotation-specific LSTM-FFALL ANN-predicted compression and 

shear relative to EMG model-derived compression and shear. 

 Mean Compression Error (N) Mean Shear Error (N) 

Pitch  21.94 0.22 

Yaw 14.81 1.22 
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Figure 36: Exemplar compression (bottom) and shear (top) LSTM-FFALL ANN outputs 

for a single pitch trial selected from the test set. These specific waveforms were selected 

as they are representative of mean error values calculated across all pitch trials within 

the test set. 
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Figure 37: Exemplar compression (bottom) and shear (top) LSTM-FFALL ANN outputs 

for a single yaw trial selected from the test set. These specific waveforms were selected 

as they are representative of mean error values calculated across all yaw trials within 

the test set. 

4.1.3 Temporal Error in Timing of ANN-Predicted Peak Compression and Shear 

The pitch- and yaw-specific LSTM-FFALL ANNs appear to exhibit similar magnitudes of 

mean absolute error in the timing of peak loading occurrence (Table 10). The standard 

deviations of these error values are also relatively high. Visual examination of C6-C7 loading 

waveforms (Figures 36 and 37) suggests that there are typically two peaks in loading 
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magnitude within each head movement cycle. This is likely related to the fact that each head 

movement cycle contained two acceleration-braking cycles. Consideration of the frequency 

of different ranges of error (Figures 38-41) suggests that a substantial portion of temporal 

error in peak loading timing may be due to ANNs predicting peak loading to occur during the 

incorrect acceleration/braking phase within a head movement cycle. This would likely lead to 

a temporal offset in peak loading occurrence of approximately 50% of cycle duration. The 

error in timing of peak shear and compression occurrences was between zero and ten or 40 

and 60 percent in 72% and 89% of pitch trials respectively (Figures 38 and 39). Yaw trials 

exhibited a similar trend but with weaker performance in the prediction of peak compression 

timing. Specifically, 53% and 82% of peak compression and shear occurrences were 

predicted with zero to ten or 40 to 60 percent temporal error (Figures 40 and 41). 
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Figure 38: Histogram indicating proportion of head movement cycles with various 

magnitudes of absolute error in timing of predicted peak compression loading during 

pitch trials within the test set. 
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Figure 39: Histogram indicating proportion of head movement cycles with various 

magnitudes of absolute error in timing of predicted peak shear loading during pitch 

trials within the test set. 
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Figure 40: Histogram indicating proportion of head movement cycles with various 

levels of error in timing of predicted peak compression loading during yaw trials within 

the test set. 

 

Figure 41: Histogram indicating proportion of head movement cycles with various 

levels of error in timing of predicted peak shear loading during yaw trials within the 

test set. 
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Table 10: Mean absolute difference in timing of peak loading within pitch- and yaw-

specific LSTM-FFALL ANNs relative to EMGD model outputs as a percentage of head 

movement cycle duration. 

 Mean Absolute Difference in Timing of Peak Loading (SD) 

 Pitch Yaw 

Compression 17.9% (20.2%) 22.0% (18.5%) 

Shear 19.1% (26.5%) 19.3% (21.8%) 
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Chapter 5: Discussion 

5.1 ANN Performance 

This study successfully developed rotation-specific ANNs to predict C6-C7 joint contact 

forces to permit rapid, iterative virtual helmet design evaluation. The study hypothesis was 

that an ANN could predict C6-C7 compression and AP shear where the absolute error, 

relative to a criterion standard EMGD model, is less than AD values between EMGD model-

computed C6-C7 compression and AP shear during flight-relevant head movement under 

hNVG vs. hNVGCW helmet conditions. Data support this hypothesis as absolute error values 

were significantly lower than between-helmet condition differences in all variables of interest 

with the exception of peak shear and compression during yaw trials. While model 

generalizability can be a concern when applying ANNs, the ANNs developed in this thesis 

were tested on data from participants who were not included in the training set to measure the 

ability to generalize.  

Rotation-specific ANNs were successful in achieving error less than associated 

between-helmet condition differences but dual-rotation ANNs were not. In fact, dual-rotation 

ANNs failed to achieve acceptable performance across all four variables of interest in both 

pitch and yaw trials. This was likely due to biomechanical differences between pitch and yaw 

movements such as differing muscle activation profiles. Muscle force contributions strongly 

influence intervertebral contact forces (Granata & Marras, 1993), and are likely to be 

consequentially different between pitch and yaw head movements. It appears that the dual-

rotation ANNs in this thesis were unable to account for these differences as they did not 
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receive EMG input. Overall, rotation-specific ANNs can be used as a tool in a helmet CAD 

process to differentiate between relevant helmet designs in consideration of biomechanical 

exposures. While the etiology of neck pain is multifactorial, reduction of joint contact forces 

in helicopter pilots through improved helmet design would likely be beneficial in reducing 

the incidence of neck pain and injury. 

5.2 Comparison to Previous ANN Models 

Because no previous studies have applied ANNs to predict cervical spine loading, parallels 

are drawn between the ANNs developed in this study to previous applications of ANNs to 

predict lumbar spine loading. Compression and shear magnitudes are generally an order of 

magnitude greater in the lumbar spine (Callaghan & McGill, 2001) than the cervical spine 

(Barrett, McKinnon & Callaghan, 2020) during unloaded conditions. To account for 

differences in the scale of target value magnitudes, the ANNs in this thesis are compared to 

the models of Parkinson & Callaghan (2009) and Arjmand et al. (2013) as they reported 

coefficients of correlation and determination respectively. 

The ANN of Arjmand et al. (2013) yielded an R2 value of 0.99 between ANN-

predicted compression and corresponding kinematics-driven FE model outputs. Interestingly, 

their study also developed quadratic regression equations which also achieved a R2 of 0.99, 

albeit with greater RMSE. Their ANN and regression models outperformed the rotation-

specific ANNs in this thesis which generated compression predictions with R2 values of 0.50 

and 0.72 in pitch and yaw trial conditions respectively (Appendix C). The near-perfect R2 
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values of the models of Arjmand et al. may be related to the method by which target 

compression and shear values were generated. As a reminder, target values were generated 

by a kinematics-driven FE model (Arjmand & Shirazi-Adl, 2006) of the thoracolumbar spine. 

The inputs to the ANN model were the mass of the handled load, the anterior and right lateral 

distance to the L5-S1 joint centre, whether the load was lifted with one or two hands as well 

as trunk flexion angle. Data used to develop the ANN and regression models were generated 

by simulating static lifting postures where the anterior and lateral distances of the load were 

iterated from 0 cm to 65 cm and 0 cm to 85 cm respectively. A driver of the very high 

observed R2 value of the ANN in the study of Arjmand et al. may be the deterministic nature 

of the FE model where sets of input features have consistent relationships with each other. 

Specifically, changes in muscle activation profiles, which would greatly influence lumbar 

contact forces, were not accounted for in the FE model. In contrast, the ANNs in this thesis 

were trained and tested on data derived from an EMGD model whose inputs did not have 

constant relationships (i.e. a given set of kinematic inputs was not always accompanied by 

the same EMG inputs). This, combined with the fact that ANNs in this thesis did not receive 

the same inputs as the EMGD model that they tried to mimic is a likely reason for their 

weaker performance relative to the ANNs of Arjmand et al. (2013). 

The ANN of Parkinson & Callaghan (2009) achieved an average r value of 0.6 

between ANN-predicted time series L4-L5 compression and corresponding EMG-assisted 

model values when applied to novel data. Correlation coefficients for shear outputs were not 

reported. The pitch-specific ANN in this thesis achieved an r value of 0.71 between time-
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series C6-C7 compression outputs and corresponding EMGD outputs. The yaw-specific 

ANN had an r value of 0.85 with respect to compression outputs. Scatterplots depicting ANN 

predictions vs. corresponding EMGD model outputs are presented in Appendix C.  

Parkinson & Callaghan (2009) speculated about potential avenues by which ANN 

performance could be improved. These considerations were factored in to the design of the 

ANN development process in this thesis and may partially explain the observed 

improvements in r values. As mentioned in Chapter 2.13.3, the ANNs of Parkinson & 

Callaghan used a RMSD loss function. They speculated that an alternate loss function had 

the potential to improve performance outcomes. In this thesis, a MSE loss function was 

applied. MSE loss functions are the default choice when applying ANNs to regression 

problems (Moshagen, Adde & Rajgopal, 2021; Reed, 1999). MSE loss functions penalize the 

model for larger errors exponentially more than for smaller errors, e.g. an error of 10 units is 

considered to be more than twice as bad as an error of 5 units. In other words, MSE loss is 

highly sensitive to outliers, thus “encouraging” the ANN to better map peaks and valleys 

within a wave-form (Moshagen, Adde & Rajgopal, 2021).  

The ANN of Parkinson & Callaghan was concluded to be promising for use in large 

scale studies of cumulative loading across a group of subjects. However, they noted that their 

ANN was not a reasonable approach to obtain estimates of exposure on an individual level. 

In this thesis, the standard deviations of the absolute errors in peak and cumulative 

compression and shear are relatively high compared to their respective means. A high degree 

of variability in absolute error across head movement cycles suggests that, similar to the 
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ANN of Parkinson & Callaghan (2009), predictive performance may not be consistent 

between individual head movement cycles. Therefore, practitioners who use the ANNs from 

this thesis should aim to draw conclusions from mean results generated over several visual 

scanning trials. These ANNs should not be used as a tool for injury risk assessment at an 

individual level. Overall, these results suggest that the ANNs developed in this study are 

useful in understanding how different helmet conditions may influence biomechanical 

exposures of the cervical spine across a group of head movements. 

Parkinson & Callaghan (2009) speculated that implementation of recurrence in their 

ANN could improve their results by better accounting for inter-dependencies between frames 

of data. Therefore, this thesis compared the performance of FF and LSTM-based ANNs. 

Results demonstrate a consistent pattern across the dual-rotation, labelled-trial and rotation-

specific ANN groups. LSTM-FF ANNs generally performed best followed by FF ANNs then 

LSTM ANNs. The improved performance of LSTM-FF vs. FF ANNs suggests that there 

were important interdependencies between timepoints and that the LSTM-FF ANNS were 

able to leverage this information for improved performance.  

5.3 ANN Input Features 

Conceptually, the ANNs in this thesis were tasked with learning the relationship between 

inverse kinematics data and the compression and shear outputs of an EMGD model. 

However, to be useful in applied practice, the ANNs were required to do so without EMG 

inputs. With that in mind, ANN inputs were selected based on whether they were likely to 
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influence muscle activation profiles. Head-trunk kinematics were investigated as they are 

likely to influence muscle activation profiles through force-velocity (Hill, 1938) and force-

length (Gordon, Huxley & Julian, 1966) relationships. C6-C7 joint moment inputs were also 

included as they are likely related to the magnitude of muscle forces required to generate 

observed head movements. However, the addition of other input features may have improved 

ANN performance. For example, C6-C7 reaction forces, which are also available through 

inverse dynamics and MBD modelling, contribute to compression and shear contact forces. 

Similarly, a helmet mass input feature may have improved ANN predictions by providing 

explicit information by which the ANN could differentiate between helmet configurations. 

While the inclusion of reaction force and helmet mass input features may improve ANN 

performance, this would also increase the risk of overfitting (Ying, 2018). Additionally, the 

use of a reaction force input feature would increase data requirements when applying these 

ANNs in practice. Cognizant of these issues and that the rotation-specific ANNs developed 

in this thesis achieved error levels below corresponding between-helmet condition 

differences in six of eight variables, additional ANN input features were not formally 

evaluated in this thesis. Nonetheless, the evaluation of additional input features may be 

useful in cases where acceptable error thresholds are lower. 

The ability of recurrent ANNs to model interdependencies between timepoints, was 

indirectly examined by assessing whether the inclusion of time-derivative measures (angular 

velocity and acceleration) influenced predictive performance. Across all recurrent models in 

this thesis (LSTM and LSTM-FF), predictive performance was improved when kinematic 
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input features included angular velocity and acceleration in addition to angular displacement. 

The angular velocity input feature may have improved predictive performance by allowing 

the ANN to account for the muscle force-velocity relationship (Hill, 1938). Similar to the C6-

C7 moment inputs, the angular acceleration input feature may have provided information 

related to muscle activation patterns required to produce the observed head movements. 

Given that LSTM-based ANNs can remember information over multiple timesteps, it is 

possible that they could have derived velocity and acceleration data from angular 

displacement inputs. However, results suggest that this was not the case in the ANNs 

developed in this thesis.  

5.4 Future Directions 

In regression tasks, traditional supervised ANN models have typically had single outputs (Xu 

et al., 2019). However, the ANNs developed in this thesis are multi-output models. Multi-

output ANNs have the advantage of simplifying the application of these ANNs for the end-

user and to provide improved computational efficiency (Borchani et al., 2015). Additionally, 

the machine learning literature includes several recent examples of multi-output ANNs 

providing similar or better performance than their single-output counterparts in a variety of 

applied contexts. These include prediction of stock prices (Sharma et al., 2017), waste 

gasification (Pandey et al., 2016) and meteorological variables (Raza & Jothiprakash, 2014). 

Nonetheless, it is possible that a single-output ANN would have provided stronger 

performance than multi-output ANNs (Claveria, Monte & Torra, 2015). For example, an 

ANN whose sole output was C6-C7 compression may achieve faster and more effective 
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convergence on the set of weights and biases that provide optimal prediction of compression 

values. This is because the loss function would only consider compression rather than 

compromising between consideration of both compression and shear outputs (Xu et al., 

2019). A future direction that could yield improved performance, would be to develop single-

output ANNs to predict cervical spine compression and shear separately. 

This thesis focused on the use case of ANNs to facilitate in-silico assessment of 

military helicopter helmet designs. However, these ANNs may be useful in biomechanical 

assessment of other head-supported masses in which individuals perform similar head 

movements. For example, virtual reality headsets, which can increase flexion/extension 

moments about the cervical spine (Penumudi et al., 2020), may require biomechanical 

assessment for ergonomic design of headsets. While the application of these ANNs to other 

use cases may be possible, this should be undertaken with caution as well as with the 

understanding that ANN error would likely be greater. 

5.5 Limitations 

In this study, ANNs were developed based on data collected from a university student 

population. It is possible that trained military helicopter pilots exhibit distinct muscle 

recruitment strategies that could influence compression and shear outcomes. Additionally, 

real-world helicopter flight exposes pilots to whole-body vibration which may also influence 

neck muscle recruitment strategies (Law et al., 2017). Helicopter flight may also induce 

accelerations of the head due to rapid helicopter maneuvers. These factors may influence 
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cervical spine contact forces in a manner that the ANNs would not be able to account for. 

However, these concessions in external validity were required to enable the collection of 

reliable motion capture and EMG data from a reasonable number of participants. A future 

direction may be to replicate the data collection while participants are seated on a vibrating 

platform to mimic helicopter flight. 

As with any ANN, performance may be negatively affected when exposed to input 

data that are outside the range of input values in this study. While the training set consisted of 

256 30-second trials collected from 16 individuals, these data only represent yaw and pitch 

motions performed under head supported mass conditions consistent with helicopters. The 

model may not generalize as well to conditions that require alternative rotation axes or head 

supported mass parameters beyond those tested here. Another consideration regarding the 

data used to develop these ANNs is that target values were derived from EMGD model 

estimates which may have differed from true compression and shear values. However, I am 

confident in the validity of the EMGD model as it exhibits good agreement with previous 

modelling of spinal load during isometric contractions (Choi & Vanderby, 2000) and has 

undergone an extensive sensitivity analysis (Barrett et al, 2021). Unfortunately, it is not 

feasible to directly verify the outputs of the EMGD model with in vivo measurements as this 

would likely require surgically implanted force transducers within the spine. 

The data that were used to train and evaluate ANNs were derived from the EMGD 

model whose anatomical dimensions were that of a 50th percentile adult male. OpenSim does 

have the capability of scaling the model to individual participant characteristics; however, it 
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is unclear if the properties of the passive-tissues, most notably the lumped passive 

contributions from intervertebral disc and facet joints, scale to a similar degree with size. 

Considerable efforts were made to validate the model’s passive elements for a 50th percentile 

male and altering structural dimensions would have added extra uncertainty into the EMG 

model-derived compression and shear forces. While anatomical differences between 

participants were not considered, subject-specific active motor patterns were incorporated 

using individual EMG measurements. 

Assessment of the agreement between ANN and EMGD model outputs for the timing 

of peak loading occurrence indicate that ANNs exhibited errors in timing of approximately 

20% of head movement cycles. As discussed in Chapter 4.1.3, this may be related to the 

tendency of head movement cycles to include two peaks and ANNs having difficulty in 

correctly identifying the peak that exhibits the maximum loading magnitude. These findings 

suggest that the ANNs developed in this thesis should not be used to investigate the timing of 

peak loading within the helmet CAD process. 

5.6 Appropriate Application of ANNs Within a Military Helicopter Helmet 

Design Process 

The application of the ANNs developed in this thesis to a helicopter design process should be 

performed with consideration of the following constraints. As discussed in Chapter 5.2, the 

ANNs in this thesis should be used for assessment of cervical spine loading at a population 

level rather than the individual level. These assessments may include consideration of peak 

and cumulative loading during pitch head movements. However, assessment of loading 
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during yaw movements should be constrained to cumulative loading as error levels in 

predicted peak loading indicated insufficient sensitivity to differentiate between helmet 

designs. Additionally, the pitch- and yaw-specific ANNs should only be applied to visual 

scanning trials where participants perform head rotations solely about the relevant axis. 

Kinematic data collected during off-axis movements may lie outside the range of data used to 

develop the ANNs in this thesis and would likely lead to greater ANN error. Helmet design 

teams who wish to understand posture-loading relationships should do so with the 

understanding that the ANNs may predict the timing of peak loading occurrence to occur 

during the wrong acceleration-braking phase within a given head movement cycle. Finally, as 

discussed in Appendix D, design teams should apply the ANNs to sequences of input data 

that include several head movement cycles as ANN performance appears to improve in the 

latter movement cycles within a trial. Specifically, ANN performance is improved during the 

second vs. first movement cycle during pitch trials. During yaw trials, ANN performance was 

improved during the third and fourth vs. first and second movement cycles. 

5.7 Novel Contributions 

The ANNs that were developed in this thesis only require triaxial C6-C7 moments and head-

trunk kinematics as inputs to generate compression and shear outputs. Such data are readily 

available from digital human models or MBD models of the neck and head system. The 

addition of these ANNs allows helmet designers to quickly evaluate the cervical spine 

contact force consequences of novel designs, avoiding the resource intensive process of 

laboratory-based human participant research. Data from Lu et al. (2013) also support the 
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feasibility of an MBD + ANN method, where they developed an ANN to estimate cartilage 

deformation within the knee by developing an ANN to replace a more computationally 

expensive finite element modeling approach. The findings of this thesis continue to support 

that robustly designed ANNs can provide a reasonable, time efficient alternative to more 

resource intensive approaches in order to support a rapid, iterative, helmet CAD process. 

In addition to developing a tool to improve helmet CAD processes, this thesis 

identified important considerations regarding the use of ANNs as a surrogate for 

musculoskeletal models. I attribute the ability of the ANNs in this thesis to generate accurate 

joint contact force predictions without important information regarding muscle activation to 

the use of LSTM networks. LSTM networks are distinct amongst recurrent neural networks 

in that they can learn interdependencies between multiple timesteps in the past and a current 

timestep. This property makes LSTM networks especially powerful and versatile (Van 

Houdt, Mosquera & Napoles, 2020). As machine learning increases in popularity within the 

field of ergonomics and human factors (Lau et al., 2018), LSTM networks may be an 

especially efficacious and versatile tool in human simulation contexts.  

This thesis explored how ANN performance was affected by different sets of 

kinematic input features (displacement only vs. displacement, velocity and acceleration). A 

novel finding is that although LSTM networks can recall information over multiple 

timesteps, performance was improved when angular velocity and acceleration inputs were 

included in addition to angular displacement inputs. Therefore, future applications of ANNs 
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for musculoskeletal simulation/modelling in the absence of EMG inputs should consider 

including these higher order kinematic inputs.  

The importance of considering direction of motion is another key finding of this 

work. Although the dual-rotation ANNs in this thesis achieved relatively low MSE across 

time series data, they were not successful in generating clinically relevant peak and 

cumulative values with error less than between-helmet condition differences. In contrast, 

rotation-specific ANNs generated clinically relevant values with error less than between-

helmet condition differences.  Future applications of ANNs to modeling of joint contact 

forces should consider movement direction by developing ANNs for specific movement 

types. 
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Chapter 6: Conclusion 

This thesis developed ANNs as a tool to inform helicopter helmet design through in-silico 

design. Overall, rotation-specific LSTM-based ANNs are useful as a helmet design tool as 

they exhibit adequate sensitivity to differentiate between relevant helmet designs in terms of 

associated cervical spine compression and shear. While dual-rotation ANNs were 

unsuccessful in generating clinically relevant outputs with adequate sensitivity to 

differentiate between helmets, pitch and yaw-specific ANNs were. Pitch-specific LSTM-FF 

ANNs were successful in predicting four of four variables of interest with adequate 

sensitivity to differentiate between helmets while yaw-specific ANNs were successful in two 

of four variables.  

This thesis included an extensive hyperparameter tuning process in which a total of 

1,740 ANNs were developed and assessed. This process involved the development of FF, 

LSTM and LSTM-FF ANNs with a variety of network sizes, input features, learning rates, 

mini-batch sizes and dropout ratios. From these ANNs, the best-performing dual-rotation, 

pitch-specific and yaw-specific ANNs were identified. Across these groups, the LSTM-FF 

ANNs performed best which highlights the benefit of LSTM-based ANNs and their ability to 

account for interdependencies between multiple frames within a sequence. Additionally, the 

ANNs performed best when angular velocity and acceleration were included in addition to 

angular displacement input features. Overall, the rotation-specific ANNs represent a useful 
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tool in assisting the design of next generation helicopter helmets that reduce cervical spine 

joint contact forces with the goal of preventing neck pain in military helicopter aircrew. 
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Appendix A: Results of Hyperparameter Tuning Stage Two 

 

 

  

Figure 42: Composite error scores of dual-rotation ANNs of various types with a range 

of number of layers and nodes per layer. 
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Figure 43: Composite error scores of labelled-trial ANNs of various types with a range 

of number of layers and nodes per layer. 
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Figure 44 Composite error scores of pitch-specific ANNs of various types with a range 

of number of layers and nodes per layer. 
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Figure 45: Composite error scores of yaw-specific ANNs of various types with a range 

of number of layers and nodes per layer. 
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Appendix B: Results of Hyperparameter Tuning Stage Two 

 

 

Figure 46: Composite error score of dual-rotation LSTM-FF ANNs with 3 hidden 

layers and a variety of learning rates, mini-batch sizes and dropout rates when applied 

to the validation set.  
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Figure 47: Composite error score of labelled-trial LSTM-FF ANNs with 3 hidden layers 

and a variety of learning rates, mini-batch sizes and dropout rates when applied to the 

validation set. Although ANNs with a learning rate of 0.1 and 0.01 were developed, they 

yielded composite error scores that were consistently 2 to 5 times higher than ANNs 

with other learning rates and were therefore excluded from the figure. 
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Figure 48: Composite error score of pitch-specific LSTM-FF ANNs with 3 hidden 

layers and a variety of learning rates, mini-batch sizes and dropout rates when applied 

to the validation set. Although ANNs with a learning rate of 0.1 were developed, they 

yielded composite error scores that were consistently 2 to 5 times higher than ANNs 

with other learning rates and were therefore excluded from the figure. 
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Figure 49: Composite error score of yaw-specific LSTM-FF ANNs with 3 hidden layers 

and a variety of learning rates, mini-batch sizes and dropout rates when applied to the 

validation set. Although ANNs with a learning rate of 0.1 were developed, they yielded 

composite error scores that were consistently 2 to 5 times higher than ANNs with other 

learning rates and were subsequently excluded from the figure. 

  



 

 130 

 

  



 

 131 

 

Appendix C: Scatterplots of ANN-Predicted vs. EMG-Driven Model 

C6-C7 Compression and Shear Outputs 

 

 

Figure 50: Scatterplot comparing C6-C7 compression outputs of the best performing 

LSTM-FFALL ANN and corresponding EMGD model-derived C6-C7 compression 

during pitch rotation trials. Each point represents data from one frame from the test 

dataset. 
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Figure 51: Scatterplot comparing C6-C7 compression outputs of the best performing 

LSTM-FFALL ANN and corresponding EMGD model-derived C6-C7 compression 

during yaw rotation trials. Each point represents data from one frame from the test 

dataset. 

 



 

 133 

 

Figure 52: Scatterplot comparing C6-C7 shear outputs of the best performing LSTM-

FFALL ANN and corresponding EMGD model-derived C6-C7 shear during pitch 

rotation trials. Each point represents data from one frame from the test dataset. 
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Figure 53: Scatterplot comparing C6-C7 shear outputs of the best performing LSTM-

FFALL ANN and corresponding EMGD model-derived C6-C7 shear during yaw rotation 

trials. Each point represents data from one frame from the test dataset. 
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Appendix D: ANN Performance Across Multiple Cycles Within a 

Trial 

The recurrent nature of the best-performing ANNs in this study, specifically the ability of 

LSTM-based ANNs to recall information over long durations, raises the question of whether 

ANN performance progressively improves over the course of a sequence of inputs. To 

investigate this, ANN error magnitudes in peak and cumulative compression and shear (as 

calculated in Chapter 3.7.1) were compared across head movement cycles within each trial of 

the test set. The minimum number of completed head movement cycles within the pitch and 

yaw trials was two and four cycles respectively. Therefore, comparison of ANN performance 

was performed between the first and second head movement cycle during pitch trials and 

between the first, second and third and fourth head movement cycles during yaw trials. 

Repeated measures ANOVAs (RMANOVAs) were performed to detect differences in 

absolute error magnitudes of ANN-predicted vs. EMGD model-derived peak and cumulative 

compression and shear values within the first, second, third and fourth head movement cycles 

of yaw trials from the test set. Absolute error of ANN-predicted peak and cumulative loading 

values were the dependent variable while cycle number was the independent variable. 

Greenhouse-Geisser corrections were applied where assumptions of sphericity were not met 

as determined by Mauchly’s test. Post hoc Tukey’s pairwise comparisons were performed to 

identify significant differences between individual head movement cycle numbers where 

appropriate. A RMANOVA failed to detect significant differences in cumulative 

compression error magnitudes across head movement cycles (p adj. = 0.59). However, 



 

 136 

significant differences were detected for error magnitudes of cumulative shear (p adj. > 0.01), 

peak compression (p adj. = 0.12) and peak shear (p adj. > 0.01). The results of pairwise 

comparisons are presented in Figures 54-57. 

 

Figure 54: Absolute error of ANN-predicted C6-C7 cumulative compression vs. EMGD 

model-derived values across the first four head movement cycles of yaw trials within 

the test set. 

 



 

 137 

 

Figure 55: Absolute error of ANN-predicted C6-C7 cumulative shear vs. EMGD model-

derived values across the first four head movement cycles of yaw trials within the test 

set. Asterisks denote significant pairwise differences (p < 0.05). 
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Figure 56: Absolute error of ANN-predicted C6-C7 peak compression vs. EMGD 

model-derived values across the first four head movement cycles of yaw trials within 

the test set. Asterisks denote significant pairwise differences (p < 0.05). 
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Figure 57: Absolute error of ANN-predicted C6-C7 peak compression vs. EMGD 

model-derived values across the first four head movement cycles of yaw trials within 

the test set. Asterisks denote significant pairwise differences (p < 0.05). 

 

 Two-tailed paired sample t-tests were performed to compare the magnitudes of 

absolute error in ANN-predicted peak and cumulative compression and shear between the 

first two head movement cycles of pitch trials within the test set (Table 11). Similar to in yaw 

trials, there were no significant differences in cumulative compression (p = 0.87) between 

cycle numbers. In contrast, absolute error magnitudes were significantly lower during the 

second vs. first head movement cycle in cumulative shear (p = 0.03), peak compression (p = 

0.049 and peak shear (p = 0.04). 
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Table 11: Absolute error of ANN-predicted vs. EMGD model-derived values across the 

first two head movement cycles of pitch trials within the test set. 

 First Cycle Second Cycle 

Cumulative Compression 

(Ns) (SD) 

121.52 (71.47) 118.84 (53.41) 

Cumulative Shear (Ns) (SD) 9.69 (6.79) 6.09 (3.63) 

Peak Compression (N) (SD) 37.95 (28.92) 24.52 (18.19) 

Peak Shear (N) (SD) 4.29 (3.09) 2.44 (1.91) 

 

 Results indicate that the LSTM-based ANNs in this thesis perform more effectively 

on later head movement cycles within a given trial. During yaw trials, cumulative shear, peak 

compression and peak shear error magnitudes were lower in the third and fourth movement 

cycles vs. the first and second cycles. During pitch trials, error in these variables of interest 

was lower in the second vs. first head movement cycle. Cumulative compression error 

magnitudes did not exhibit statistically significant differences across head movement cycles 

during both pitch and yaw trials. Overall, decreases in error magnitudes in later movement 

cycles are likely related to the ability of LSTM-based ANNs to recall information over long 

durations within a sequence.  
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Although this analysis did not assess whether trends in improved performance continue past 

two and four movement cycles in pitch and yaw trials respectively, it appears that ANN 

performance generally improved over the course of a trial. When applying the ANNs from 

this thesis within a helicopter helmet CAD process, designers should apply the ANNs to 

input sequences that include several head movement cycle repetitions. Additionally, they 

should draw conclusions based on ANN predictions from later cycles within a trial where 

available. 


