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Abstract

Computational multiphysics offers a safe, inexpensive, and rapid alternative to direct
experimentation, but there remain barriers to its widespread use.

One such barrier is the generation of conformal meshes of simulation domains, which
is the primary approach to spatial discretization used in multiphysics simulations. Gener-
ation of these meshes is time intensive, non-deterministic, and often requires manual user
intervention. For complex domain geometries, there is also a competition between domain-
conforming mesh elements, element and mesh quality within the domain, and simulation
stability.

A second barrier is lack of easy access to computational multiphysics software based
on the finite element method, which enables high-order spatial discretization at the cost
of complexity of implementation. Most computational multiphysics software is based on
the finite volume method, which involves inherently low-order spatial discretization. This
requires relatively high densities of mesh elements for adequate numerical accuracy but
is relatively simple to implement. However, higher mesh densities correspond to smaller
element scales, resulting in stability issues for convection-dominated simulations. There do
exist finite element method-based computational multiphysics software packages, however
these software packages are either closed-source or require extensive user skills in a broad
range of areas including continuum mechanics, applied math, and computational science.

This thesis presents OpenCMP, a new open-source computational multiphysics package.
OpenCMP implements the diffuse interface method, which allows even complex geometries
to be meshed with nonconforming structured grids, improving simulation stability and
sometimes speed. OpenCMP is built on the popular finite element library, NGSolve, and offers
both a simple user interface for running standard models and the ability for experienced
users to easily add new models. It has been validated on common benchmark problems
and used to extend the diffuse interface method to simulations with moving domains.
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Chapter 1

Introduction

1.1 Research Motivation

Simulations have the potential to play a key role in the engineering design process. They
offer an inexpensive, rapid, and safe alternative to physical prototyping for preliminary
design screening and optimization. Simulations also offer detailed insight into the physical
phenomena of interest, often beyond the capabilities of feasible experimentation. As such,
there is significant interest—in academia, government, and industry—in increasing the
usage of simulations, the computing infrastructure available to run them, and advancing
their predictive capabilities [1]. Computational multiphysics is of particular interest as
almost all engineering applications involve coupled physical and chemical phenomena [2].

However, computational multiphysics simulations are currently infeasible for high-
throughput design screening of most industrially-relevant processes. Typical processes
involve complex domain geometries that are time and labour intensive to conformally
mesh [3, 4]. The resulting meshes are often unstructured which increases computational
complexity compared to similar sized structured meshes [5] and may introduce numerical
inaccuracies and instabilities into the simulations [4].

Immersed boundary methods allow the use of simple structured meshes for any ge-
ometry, with the geometry boundary located by a marker field instead of the boundary
of the mesh itself [6]. This offers significant stability benefits, particularly for convective-
dominated processes. However, previous work on immersed boundary methods has focused
on obtaining equivalent accuracy to conformal mesh simulations, resulting in immersed
boundary simulations which are just as computationally intensive, if not more so (for ex-
ample, see work by Stoter et al [7]). Yet, such accuracy is unnecessary for preliminary
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design screening; simulations need only be sufficiently accurate to distinguish between dif-
ferent candidate designs in order to select relatively optimal designs for further analysis.
This is the focus of the diffuse interface method as implemented by Monte et al [8].

The diffuse interface method is a phase field-based immersed boundary method, where
a phase field is a continuous field which quantifies a physical characteristic of a material
which may be used to infer its phase [9]. Said implementation provides fast automated mesh
generation and has been shown to give simulation results which are sufficiently accurate
for design screening in an order-of-magnitude less time than standard conformal mesh
simulations [8]. It is well suited to screening large numbers of initial candidate designs and
coarse-grained design optimization.

A publicly available implementation of the diffuse interface method is desirable to enable
replication and further work. Incorporating it into a computational multiphysics software
package would make it easily accessible to the general simulation community. There is also
a need for easily accessible computational multiphysics software based on the finite element
method. Historically, computational multiphysics software has focused on the finite volume
method for fluid dynamics simulations, mainly due to its property of local conservation and
stability. However, the finite element method offers many advantages over the finite volume
method such as the easy use of high-order polynomial interpolants to improve simulation
accuracy [10]. The finite element method can even be made locally conservative through
the use of the discontinuous Galerkin method [11]. The commercial finite element-based
computational multiphysics software packages that exist are closed-source [12]. Thus, their
numerical implementations are hidden, which hampers replication of research, prevents
users from modifying or adding new models, and hides possibly undesirable (with respect to
accuracy and/or correctness) implementation details. Existing open-source finite element-
based computational multiphysics software has a steep learning curve and is inaccessible
to the general simulation community [13, 14, 15, 16, 17, 18, 19].

In summary, to enable the research community and general simulation community, a
computational multiphysics software package is needed which is user friendly, based on
the finite element method, and provides a publicly available implementation of the diffuse
interface method.

1.2 Objectives

The objective of this work is to develop the software package described in the previous
section. Said package, called OpenCMP, should fulfill the following criteria:
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Functionality The diffuse interface method should be incorporated. It and a discontin-
uous Galerkin formulation should be available for every model.

Usability OpenCMP should be very user friendly and typical use should require minimal
coding experience. It should support the main simulation workflow including basic
post-processing.

Extensibility OpenCMP should have a highly abstracted code structure to allow users to
easily implement their own models or modify existing models. It should interface
with widely used third-party packages for mesh generation and for more extensive
visualization and analysis of simulation results.

Standard benchmark problems will be used to verify the performance of OpenCMP.

OpenCMP will also be used to extend work on the diffuse interface method as follows:

1. Extension of the diffuse interface method to simulations with moving domains through
the use of a moving phase field.

2. Use of the diffuse interface method to simulate the rigid body rotation of an impeller
in a stirred tank reactor.

3. Comparison of the steady-state flow distribution to published experimental results.

1.3 Structure of Thesis

This work is organized into seven chapters: Chapter 2—background, Chapter 3—related
work, Chapter 4—overview of OpenCMP, Chapter 5—performance verification, Chapter 6—
extension of the diffuse interface method, and Chapter 7—conclusions.

Chapter 2 discusses the role of computational multiphysics in chemical engineering.
It then reviews the numerical methods used in this work, particularly the finite element
method and the discontinuous Galerkin method. The diffuse interface method is also
described.

Chapter 3 discusses key design considerations for a computational multiphysics software
package and reviews popular existing packages.

Chapter 4 gives an overview of OpenCMP. The finite element solver back-end and the
main components of the code structure are described. Then examples are given of the
user interface and user interaction through the command line. Finally, the simulation
capabilities of OpenCMP are discussed.

Chapter 5 details performance verification of the numerical and code implementation
of OpenCMP. All models and time discretization schemes are assessed for accuracy and error
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convergence rates. A timing and accuracy comparison to the popular computational fluid
dynamics software package OpenFOAM® [20] is also given.

Chapter 6 describes the extension of the diffuse interface method to simulations with
moving domains. The diffuse interface is used to model impeller rotation in the simulation
of a stirred tank reactor without mesh movement or re-meshing.

Chapter 7 summarizes conclusions from this work and recommends future additions to
OpenCMP and the diffuse interface method.
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Chapter 2

Background

This chapter provides a brief background on computational multiphysics and the numerical
methods used in OpenCMP.

2.1 Computational Multiphysics in Chemical Engi-

neering

Computational multiphysics is the use of numerical simulations to model complex coupled
processes. This is most commonly taken to mean systems governed by multiple different
physical or chemical phenomena. It can also refer to multiscale systems, where different
processes occur on significantly different length scales or time scales [21]. Some common
multiphysics processes include thermomechanics—coupling of heat transfer with structural
mechanics—hydromechanics—coupling of fluid and structural mechanics—electromagnetics—
coupling of electrostatics and magnetostatics—and elastodynamics—dynamics of elastic
bodies [2].

Most computational multiphysics problems in chemical engineering revolve around cou-
pled fluid dynamics, heat and mass transfer, and chemical reaction. Common applications
are chemical reactors and bioreactors, see for example work by Jimeno et al [22] and by
Tamrakar and Ramachandran [23], where chemical reaction, at catalysts or within biolog-
ical organisms, occurs in the presence of fluid flow and heat transfer. Reaction efficiency is
often highly dependent on optimal flow rates, mixing, and operating temperatures. Pho-
ton transport may also need to be considered in the case of photocatalysts as in work by
Casado et al [24], or extensive biokinetics and growth models as in work by Rajabzadeh et
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al [25]. Wastewater treatment involves similar physical and chemical phenomena, see for
example work by Ghadiri et al [26], and may further include models and closures for flow
through porous media.

All of these processes, and many more in chemical engineering, are governed by the
laws of physics and thermodynamics in the form of the conservation of mass, momentum,
and energy. Furthermore, most chemical engineering processes operate at length scales far
larger than molecular length scales. Thus, they are adequately represented by continuum
models such as the Navier-Stokes equations and the equation of change of temperature (for
Newtonian fluids), with additions and modifications for multi-component or multi-phase
flows, turbulence, and reaction [27].

2.2 Common Numerical Methods

The continuummodels mentioned in the previous section form systems of partial differential
equations. There are very few cases where these equations can be solved analytically,
instead their solutions must be approximated numerically.

The most common numerical methods in computational multiphysics are the finite
difference method, the finite volume method, and the finite element method [28]. All three
methods involve the discretization of the simulation domain into many smaller domains
by a mesh then the use of local interpolants—defined on mesh nodes or mesh elements—
to represent the solution over the global domain. The finite difference method uses a
Taylor series expansion to locally approximate the derivatives of the differential equation
in terms of solution values at nearby mesh nodes. It is very simple to implement and
very effective on Cartesian grids. However, the finite difference method is very difficult
to extend to the complex domains typical of real-world applications. The finite volume
method uses a zeroth-order approximation of the solution within each mesh element and
allows this approximation to vary discontinuously between mesh elements, rendering the
method very stable. The specific value of the approximate solution within each mesh
element is determined from flux balances over each mesh element and the continuity of
fluxes between neighbouring mesh elements. This also renders the finite volume method
locally conservative. In contrast, the finite element method uses higher-order polynomial
interpolants within mesh elements and enforces continuity of the approximate solution
across mesh element nodes without constraining fluxes. This improves accuracy relative
to the finite volume method at the cost of stability and local conservation [28].

Historically, the finite volume method has seen the most use for applications involving
fluid flow, while the finite element method has primarily been used for structural mechanics
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simulations [28]. However, as will be discussed, recent advances to the finite element
method resolve its main deficiencies while retaining its attractive qualities relative to the
other methods.

2.2.1 The Finite Element Method

The finite element method can be derived from the method of weighted residuals following
the process given by Rice and Do [29]. Consider the Poisson equation:

∇2u+ f = 0 (2.1)

defined on a domain Ω with appropriate boundary conditions. An approximate solution (or
trial function) can be constructed from a linear combination of interpolating polynomials:

uA(x) = u0(x) +
N
∑

i=1

aiψi(x) (2.2)

where u0(x) must be chosen to satisfy the boundary conditions. Substituting the approx-
imate solution into the original differential equation gives a residual error:

∇2uA + f =
N
∑

i=1

ai∇
2ψi + f = R(x) (2.3)

which will only be zero when the approximate solution is the exact solution to the differ-
ential equation. Thus, the trial function coefficients ai should be chosen to minimize the
residual and give the best approximation to the exact solution.

As shown in eqn. (2.3), the residual can vary spatially so it is challenging to minimize
it over the entire domain simultaneously. Instead, the residual is averaged over the domain
and the resulting scalar value is minimized. From here on, a spatially-varying residual
will be identified by R(x) while the scalar value obtained from averaging is simply R. A
set of weighting functions {vk(x)} (or test functions) can be included to control where in
the domain the residual is minimized and improve the accuracy of the final approximate
solution:

∫

Ω

R(x)vk(x) dx = 0 for k = 1...M (2.4)
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In the Galerkin finite element method, the weighting functions use the same family of
interpolating polynomials as the trial function [29]:

vk(x) =
N
∑

i=1

ψk,i(x) (2.5)

It is possible to define a single interpolating polynomial to span the entire domain.
However, this would be highly inaccurate if using a low-order polynomial and very high-
order interpolating polynomials can become wildly oscillatory over large domains [30].
Instead, the domain is discretized into multiple subdomains by a mesh and the trial and
weighting functions are defined to be piecewise continuous over the mesh elements. The
interpolating polynomials range from zero outside of their specific mesh element to one at
the mesh element nodes:

ψk,i(x) =

{

1 on node i of Ωk

0 outside of Ωk

(2.6)

thus the approximate solution is continuous across mesh element nodes. For further illus-
tration see figure 2.1.

Inserting these into eqn. (2.4) results in a system of equations that can be solved for
the coefficient values that minimize the residual on each mesh element:

∫

Ω

N
∑

i=1

ψk,i

[

ai∇
2ψi + f

]

dx = 0 for k = 1...M (2.7)

The finite element method offers several advantages over other continuum-based numer-
ical methods. It is preferable to use high-order numerical schemes—when computationally
feasible—to increase the potential accuracy of the final simulation result. In the finite
element method, polynomial interpolants are confined within single mesh elements. Thus,
the order of the scheme can be increased simply by increasing the order of the individual
polynomial interpolants in the trial and weighting functions and can even be increased
separately in different mesh elements. In contrast, the finite difference method and finite
volume method would require modified stencils or flux approximations that extend across
multiple mesh nodes or elements and are challenging to use on unstructured meshes. For
the same reason, the finite element method easily handles irregular or curved domains.
Boundary terms, particularly flux-type boundary conditions, arise naturally from the fi-
nite element method formulation. They inherently satisfy the governing equations and
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In the standard finite element method, the third term of eqn. (2.12) would be replaced
by known values of flux-type boundary conditions. However, as fluxes can only be balanced
over the entire domain the scheme will only be globally conservative. The scheme will also
have significant stability issues if the exact solution contains discontinuities such as shock
waves. Generally the standard Galerkin finite element method is unsuitable for hyperbolic
equations and artificial diffusion methods or the streamline-upwind Petrov Galerkin finite
element method must be used instead [31].

Now consider the discontinuous Galerkin method formulation. Since the discontinuous
Galerkin method uses trial and weighting functions that are discontinuous across mesh
element edges all domain integrals must be rewritten as sums of integrals over individual
mesh elements K:

∑

K∈Ω

∫

K

(

v
∂uA

∂t
− uAa ·∇v

)

dx+
∑

K∈Ω

∫

∂K

n · aûAv ds = 0 (2.13)

The third term of eqn. (2.13) can be further rewritten to account for each mesh element
edge having two facets (F). These facets will be denoted by (+) and (−) and have normals
which are parallel and in opposite directions:

∑

K∈Ω

∫

K

(

v
∂uA

∂t
− uAa ·∇v

)

dx+
∑

F∈Ω

(
∫

F+

n · aûAv ds+

∫

F−

n · aûAv ds

)

= 0 (2.14)

∑

K∈Ω

∫

K

(

v
∂uA

∂t
− uAa ·∇v

)

dx+
∑

F∈Ω

∫

F

(

n+ · a+û+Av
+ + n− · a−û−Av

−
)

ds = 0 (2.15)

Also note that the trial function now has no single value at mesh element edges; the value
of the trial function as evaluated within one mesh element containing an edge may be
different from the value evaluated within the other mesh element that shares said edge.
For further illustration, refer back to figure 2.2. Since a single value is needed to evaluate
surface integrals over mesh edges, the trial function must be replaced by a numerical flux
ûA in these integrals. The form of the numerical flux can be chosen to ensure a flux balance
across each mesh element, making the scheme locally conservative. With the appropriate
choice of numerical flux (generally an upwinding scheme to enforce an appropriate direction
of information flow and ensure a well-posed problem) the scheme is also stable and non-
oscillatory [31]. Discontinuities in the solution can of course be captured by discontinuities
in the trial function.

The discontinuous Galerkin method is very popular for hyperbolic equations for its
stability and ability to capture shock dynamics with minimal artificial diffusion [11]. How-
ever, the discontinuous Galerkin method is also suitable for differential equations with
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Unstructured triangular/tetrahedral meshes are commonly used in computational mul-
tiphysics as the complex geometries inherent to real-world problems are challenging to
conformally mesh with structured and/or quadrilateral/hexahedral meshes [37]. However,
this forgoes the many benefits of structured quadrilateral/hexahedral meshes. Structured
meshes have simple connectivity structures so are easier and less memory intensive to store
than unstructured meshes. Simulations are less computationally intensive as structured
meshes produce banded matrices which are easy to solve. Additionally, structured meshes
are highly amenable to GPU acceleration [5]. Quadrilateral/hexahedral mesh elements
improve simulation stability and numerical accuracy if aligned with the dynamics of the
solution field, for example, the direction of flow in fluid dynamics simulations. They can
also be stretched in this significant direction without skewing their shape, allowing coarser
meshes without sacrificing mesh quality [4].

Beyond the forced reliance on unstructured meshes, generation of conformal meshes
of complex geometries is very time and labour intensive. Automated mesh generation
algorithms exist, particularly for unstructured triangular/tetrahedral meshes. However,
the initial outputs of these algorithms are typically low quality and time must be spent
identifying and removing skewed, inverted, or sliver elements. Time must also be spent
selectively refining the mesh in regions expected to have high solution gradients, such as
near walls. For best mesh quality it is often preferable for the user to manually block out
different regions of the geometry for automated structured mesh generation then improve
the mesh at the interfaces of these regions. This labour and time investment makes up the
majority of the total simulation effort [3, 4].

The diffuse interface method offers an alternative to conformally meshing complex
geometries. It is a type of immersed boundary method where the complex geometry is
enclosed in a structured non-conforming mesh then mapped to the nodes of said mesh by
a phase field. See figure 2.6 for an example. The phase field φ is a scalar field, equal to one
on mesh elements inside of the complex geometry and zero on mesh elements outside of
the complex geometry, and which varies smoothly from zero to one at the boundary of the
complex geometry. The sharp boundary of the complex geometry can be approximated by
the level set φ = 0.5 while the diffuse boundary region of finite thickness is found where
|∇φ| > 0.

When the finite element method is used, the weak form of the original conformal mesh
problem can be reformulated for the diffuse interface method using the following integral

14



identities [38]:

∫

Ω

A dx =

∫

κ

AH dx ≈

∫

κ

Aφ dx (2.16)
∫

Γ

B ds =

∫

κ

δΓB dx ≈

∫

κ

B|∇φ| dx (2.17)

n ≈
−∇φ

|∇φ|
(2.18)

where Ω is the complex geometry with boundary Γ and κ is the enclosing domain. H

is the Heaviside function, δ is the Dirac delta function, and A and B are generic fields.
Diffuse interface method formulations of all of the models used in OpenCMP are given in
Appendix B.

The main benefit of any immersed boundary method is the ability to use structured
quadrilateral/hexahedral meshes for any complex geometry, avoiding the stability issues
and heavy time and labour requirements of unstructured meshes. However, the lack of mesh
conformance to the complex geometry boundary negatively impacts simulation accuracy.
Boundary conditions end up smeared over multiple mesh elements, curved boundaries gain
a step-like appearance, and the apparent size of the complex geometry may change. Prior
work has alleviated this issue either by modifying the integration schemes within mesh
elements containing the complex geometry boundary, as with the cut cell methods used
by Nguyen et al [39], or by significantly refining the mesh near the complex geometry
boundary [38]. However, both of these tactics significantly increase the computational
complexity of the simulation, rendering the savings in mesh complexity moot.

This thesis will instead follow the work of Monte et al [8] and focus on the potential of
the diffuse interface method to speed up inherently low accuracy simulations. A significant
use of computational multiphysics is design screening and optimization. This involves
simulating many different designs or variations of a design to narrow down on the best
few. High accuracy is not necessary as the best designs can be further evaluated through
more extensive simulation or physical prototyping. However, increasing simulation speed
would allow more potential designs to be evaluated or speed up the overall design process.
Thus, as long as the diffuse interface method is sufficiently accurate to distinguish between
different designs on select important performance parameters, its time savings compared
to standard conformal meshing can be valuable.
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Chapter 3

Related Work

Computational multiphysics is a broad field, even when restricted to chemical engineering-
relevant applications. As such, existing computational multiphysics software packages vary
widely in their purpose, capabilities, interface, and numerical implementation. However, all
computational multiphysics software intended for use beyond its original developers must
carefully consider its overall usability. This chapter will describe some key design decisions
that affect the potential use cases, likely audience, and user friendliness of a computational
multiphysics software package, then review the choices made by popular existing packages.
Raw performance is not discussed as it is heavily application-specific and difficult to com-
pare in a meaningful way across different types of computational multiphysics software
packages.

3.1 Design Considerations

3.1.1 Models and Numerical Methods

The models available in a computational multiphysics software package constrain its po-
tential use cases, while the numerical methods implemented primarily affect performance.
As mentioned in section 2.1, most chemical engineering applications of computational mul-
tiphysics center on fluid dynamics, heat and mass transfer, and chemical reaction. Thus,
the most relevant models are the following [4]:

• The incompressible Navier-Stokes equations and simplifications like Stokes flow
• Heat conduction
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• Conjugate heat transfer
• Turbulence models: Reynolds-averaged Navier-Stokes, large eddy simulation, and
sometimes direct numerical simulation

• Multi-component flow
• Multi-phase flow
• Reacting flow
• Particle tracking
• Fluid-structure interaction
• Rotating geometries

It should be noted that many of these models come from fluid dynamics and it is common
for computational fluid dynamics software packages to feature most, if not all, of the
models listed above. The benefit of computational multiphysics software packages, which
further include models for structural mechanics, acoustics, electromagnetics and more, is
the ability to extend to multidisciplinary projects [2].

Section 2.2 compared common spatial discretization schemes for continuum model sim-
ulations. When discussing the numerical methods in a computational multiphysics software
package, time discretization schemes are also of interest as are, more broadly, techniques
for improving computational efficiency such as the inclusion of adaptive time-stepping or
algorithms for adaptive mesh or polynomial order refinement. Similarly, the specific for-
mulations of the model governing equations, for instance, the choice to use the primitive
variable form of the incompressible Navier-Stokes equations instead of the pressure-Poisson
form [40], or large-scale reformulations such as the use of the diffuse interface method. Some
computational multiphysics software packages have arisen to showcase specific numerical
methods. For example, the adjoint solvers in SU2 [41] or the inclusion of the diffuse interface
method in OpenCMP. However, many users, especially those not active in numerical methods
research, are primarily interested in the overall performance and comprehensiveness of the
computational multiphysics package.

3.1.2 Location in the Simulation Workflow

A major design consideration that governs the overall use of a computational multiphysics
software package is how it fits into the simulation workflow. Tu et al [4] suggest breaking
the general simulation workflow into three main steps:

1. Pre-processing
1.1. Geometry creation
1.2. Mesh generation
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2. Solver
2.1. Model specification
2.2. Solver specification
2.3. Numerical solve

3. Post-processing
3.1. Parameter computation
3.2. Error analysis
3.3. Visualization

Step one, pre-processing, is a necessary component of the simulation workflow, but is often
handled by third-party software instead of the main computational multiphysics software
package. Real-world applications generally involve complex geometries that are best con-
structed with dedicated computer-aided design (CAD) software. Likewise, the moderate
mesh generation capabilities of most computational multiphysics packages are not suffi-
cient to produce high quality meshes of these complex geometries. However, the most
comprehensive computational multiphysics software packages integrate directly with CAD
software and have extensive mesh generation and optimization algorithms. These high per-
formance algorithms become an additional selling point of the computational multiphysics
software and minimizing dependence on third-party software significantly increases user
friendliness.

Step two, the models and solver, is a necessary component of any computational mul-
tiphysics software package. This includes the ability to specify model governing equations,
boundary conditions, and physical properties; the solver and solve criteria such as con-
vergence tolerances; and the numerical methods used for the actual simulation. Different
levels of control over the numerical implementation suit different audiences; researchers
may wish to insert custom models and solvers, while users in industry may prefer a small
set of default solvers with validated performance.

Step three, post-processing, is the final analysis of simulation results. When used in
the engineering design process, simulations are typically conducted to estimate key design
parameters. For example, evaluation of a heat exchanger design may concentrate on the
log mean temperature difference for different fin spacing. Conversely, verification of a new
numerical method or model may require an error comparison of the full solution fields
against a known reference solution. Most computational multiphysics software packages
include the ability to compute user-defined metrics and save simulation results to file. Vi-
sualization, of these metrics or of the solution fields, is generally dependent on the software
user interface. Computational multiphysics software packages with graphical interfaces can
offer visualization capabilities, but otherwise visualization must be relegated to third-party
software. This is again a significant factor in the user friendliness of the package.
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The simulation workflow comprises one single simulation run. However, typical use of
computational multiphysics software packages can involve many repetitions of the same
simulation to identify a mesh-independent solution, iterate on a design, or test the effects
of minor environmental variations. Tools for design optimization, parametric design ex-
ploration, and for automating common workflows can improve utility beyond the basic
simulation workflow. These tools are, for the most part, found only in industry-focused
commercial packages.

3.1.3 User Interface

There are three main types of user interface used by computational multiphysics soft-
ware packages: script-based user interfaces, configuration file-based user interfaces, and
graphical user interfaces. The type of user interface helps dictate the audience of the com-
putational multiphysics software package. It can also affect the software capabilities such
as the ability to visualize results.

Script-Based User Interface

A script-based user interface is the most basic type of user interface. The computational
multiphysics software package acts simply as a library of numerical methods for the user
to use while coding the simulation workflow.

An example, which uses the NGSolve finite element solver library [13], is shown in
figure 3.1. Similar to if the user were writing their own finite element method code from
scratch, the user must construct the weak form for their model, apply boundary conditions,
and solve the resulting system of equations to minimize the residual. However, instead of
implementing their own finite element spaces and solvers the user imports them from the
computational multiphysics library. Thus, the user has easy access to high performance
solvers and can focus their time on model development.

A script-based user interface provides the highest degree of user control over the simula-
tion. The user has complete control over the model governing equations and how they are
formulated. They control the numerical methods used, such as the type of finite element
used, and can generally choose from a variety of solvers and control solver tolerances and
convergence criteria. Script-based user interfaces are well-suited to automation; the user
can simply wrap their main simulation code in a loop that controls input values. Addi-
tionally, any text-based interface can be added to version control software to track changes
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Pre-implemented models are the main benefit of a configuration file-based user inter-
face over a script-based user interface. Beginner users in particular can quickly begin
running simulations without an in-depth knowledge of the governing equations and numer-
ical methods. The developers of the computational multiphysics software package will have
validated the model performance and correctness for the users. Computational efficiency
may also be higher since all code is under the control of the software developers. Yet, most
computational multiphysics software packages with configuration file-based user interfaces
still provide access to their code back-end. It is typically still possible for experienced users
to treat the packages as script-based packages and modify models or implement their own
models. Configuration file-based user interfaces are still suited to automation by external
scripts that modify the configuration files and run the software package through the com-
mand line. These are also still text-based interfaces and still amenable to version control.
In many ways, configuration file-based user interfaces can be considered the happy medium
suitable for beginner and experienced users alike.

However, there are still disadvantages. Pre-implemented models remove the potential
for errors in the model implementation, but users must still understand which models,
boundary conditions, and ranges of parameter values are physical for their particular use
case. Configuration file-based interfaces are unsuitable for meshing and results visualization
without an accompanying graphical interface. They also require users to be familiar with
the command line. Finally, configuration files can become large and unwieldy in an effort
to provide user control over all relevant simulation parameters. For example, the SU2

configuration file template, which includes all possible parameters, is 1686 lines long [43].
OpenFOAM® [20], which takes the opposite approach and splits the simulation information
across multiple configuration files, is able to limit individual configuration file sizes to
several hundred lines, but then requires at least 11 separate configuration files for one
single simulation.

Graphical User Interface

A graphical user interface is the most sophisticated type of user interface. Users interact
with the computational multiphysics software package through menus, buttons, and dialog
boxes while windows are used to visualize simulation progress and results.

Figure 3.3 shows an example of the COMSOL Multiphysics® [12] graphical user inter-
face. The tree in the leftmost panel maps out the various components of the simulation
including the geometry, mesh, physical properties, governing equations, solver, and results
visualization. Clicking on any item in the tree opens it in the middle panel and gives access
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software. From a developer perspective, creation of a graphical user interface is a much
larger task than a configuration file-based user interface. Graphics are also computationally
intensive compared to command line output.

Programming Language

A related consideration is the programming language used by the code back-end. This
impacts both the performance of the computational multiphysics software package and its
ease of use if users have access to the code back-end. For reasonable computational speed
the base code, primarily the solver, must use a compiled language. C++ [44] is a common
choice, see for example deal.II [45], OpenFOAM® [20], and MOOSE [46]. Some packages,
like FreeFEM++ [47], even implement their own programming languages. However, this
necessitates users learning said programming language. A recent trend is to include a
wrapper to a high-level interpreted language. This is predominantly for computational
multiphysics software packages with script-based user interfaces. For example, FEniCS [16]
and NGSolve [13] both have extensive Python [48] wrappers to their C++ back-ends. A
wrapper offers a simpler more readable language for major user interaction while retaining
most of the performance benefits of an entirely compiled package. A related option is to
write the entire computational multiphysics software package in a language like Julia [49].
Julia is a just-in-time compiled language with easy to read syntax similar to high-level
languages. It retains the performance benefits of a C++-based package and the usability of a
Python-based interface without the need to maintain code in multiple different languages.
However, Julia is quite new and remains relatively unknown.

3.1.4 Closed- or Open-Source

Though it does not affect the mechanics of running simulations with a computational
multiphysics software package, the choice to make the software either closed- or open-
source affects the type of user and use cases.

Closed-source means the source code is proprietary and not viewable by users or the
general public. Generally closed-source software is also commercial software, ie must be
paid for. Open-source means the source code is freely available to the general public. Many
open-source packages are free and distributed under licenses that allow anyone to use or
modify their source code. Some open-source computational multiphysics software packages
also provide commercial services such as consulting and technical support.
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Keeping software closed-source is mainly advantageous to its developers, as it allows
them to profit directly off of the software. Users are disadvantaged as the source code is
hidden and cannot be examined for specific model implementation details. Undisclosed
assumptions may affect the validity of a model setup, especially for unconventional ap-
plications. Exact replication of results is also impossible as the exact implementation is
unknown. Exact replication may not even be possible between different versions of the same
software package which can become highly problematic as older versions are deprecated
and become no longer available. Users are unable to modify models or implement custom
models beyond what is possible through the user interface, so closed-source computational
multiphysics software packages may be unsuitable for research applications, particularly if
they lag behind the most recent work in the field. Finally, the software licenses are typically
very expensive. However, the ability to profit off of the software also incentivizes continued
support and development. Commercial closed-source computational multiphysics software
packages are the most comprehensive computational multiphysics software packages avail-
able. They are also the most user friendly and have among the most readily available and
extensive official support and documentation.

Open-source software is often developed primarily by volunteers. It is highly susceptible
to being abandoned by the original developers and support and documentation often falls
to the community of users. Software quality can also be highly variable. For computational
multiphysics software packages in particular, open-source software is often highly special-
ized for specific applications. It is rarely as comprehensive as closed-source alternatives,
so users must often integrate multiple different packages to cover the entire simulation
workflow. However, the benefit is complete knowledge of and ability to modify the code
implementation. This is essential for users interested in developing or replicating cutting-
edge models and numerical methods.

3.2 Current Options

Many computational multiphysics software packages already exist. The following sections
will describe some of the most popular, grouped by their general structure and intended
audience. Computational fluid dynamics software packages are also included since, as dis-
cussed in section 3.1.1, they often offer sufficiently comprehensive feature sets for chemical
engineering applications.
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3.2.1 Commercial Software Packages

The first category of existing software is commercial software packages which, as the name
implies, are commercial closed-source packages. The objective of these packages is to be
comprehensive and intuitive. They encompass the entire simulation workflow. They are
also often integrated into a broader suite of simulation tools including CAD generation and
automated design optimization. This can include tools for additional physics—acoustics,
electromagnetics, and structural mechanics—if the package is not already a true computa-
tional multiphysics software package. The user experience is primarily through extensive
graphical interfaces, with optional command line customization for experienced users.

Some of the major commercial computational multiphysics software packages are COMSOL
Multiphysics® [12], ANSYS Fluent® [50], ANSYS CFX® [51], and Simcenter STAR-CCM+

[52]. COMSOL Multiphysics® is one of the few commercial packages based exclusively on
the finite element method, including support for the discontinuous Galerkin method. It
is known for extreme user friendliness, even by the standards of closed-source software.
Its graphical user interface is notable for the built-in interpreter, which allows for custom
user-specified model equations [12]. ANSYS Fluent® and ANSYS CFX® are two of the many
simulation software packages offered by Ansys Inc. and comprise its main computational
fluid dynamics software. ANSYS Fluent® uses the traditional finite volume method while
ANSYS CFX ® uses the vertex-centred finite volume method. They are also optimized for
different applications; ANSYS Fluent® is a general purpose computational fluid dynam-
ics software package while ANSYS CFX® is recommended for turbomachinery simulations
[50, 51]. Simcenter STAR-CCM+ is geared towards industry use and offers particularly
extensive design optimization tools including automated design exploration, specialized
algorithms for fast re-meshing of modified geometries, and stochastic analysis to estimate
the performance effect of specific design factors. It also includes an automated simulation
assistant to enforce company-defined simulation best practices [52].

3.2.2 Commercial Platforms and Toolboxes

The second category of existing software is commercial platforms and toolboxes. Like the
previous category, these are commercial packages. However, instead of being fully closed-
source, they are platforms built on top of pre-existing open-source computational multi-
physics software. These platforms typically integrate many different open-source packages
to provide a more comprehensive set of models than any one package and to support the
full simulation workflow, including mesh generation and visualization. They provide a
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graphical user interface for ease of use and their documentation and support services are
often superior to those of the underlying open-source packages.

Two popular commercial platforms are SimScale [53] and FEATool MultiphysicsTM

[54]. SimScale is built on the open-source software packages OpenFOAM® [20], Code Aster

[55], and CalculiX [56]. It offers commercial products for companies and a free community
edition for students and hobbyists. SimScale also offers a cloud-based high performance
computing system on which to run its simulation software. It caters to small companies
and individual users who cannot afford to or do not wish to maintain their own computing
infrastructure [53]. FEATool MultiphysicsTM provides both a graphical user interface and
a script-based interface to MATLAB [57], OpenFOAM® [20], SU2 [41], and FEniCS [16]. It offers
simulation consulting services in addition to its software [54].

3.2.3 Open-Source Software Packages

The third category of existing software is open-source software packages. These are the
open-source equivalent of ex COMSOL Multiphysics® [12] or ANSYS Fluent® [50]. They
are meant to encompass the majority of the simulation workflow and be reasonably user
friendly with predefined models and user interaction through a graphical user interface or
configuration file-based interface. Most open-source software packages began as specialized
software for specific applications, but the most popular have expanded to include a large
range of computational multiphysics or computational fluid dynamics models.

OpenFOAM®/FOAM-Extend [20, 58, 59] is likely the most widely used open-source com-
putational fluid dynamics software package. It is based on the finite volume method and
supports the main simulation workflow, from meshing to visualization and post-processing
of results. User interaction is through a configuration file-based interface and various un-
official graphical interfaces are also available [60]. SU2 [41] is another common open-source
computational fluid dynamics software package. It was originally developed to solve the
Reynolds-averaged Navier-Stokes equations and is still predominantly used for aerodynam-
ics applications. SU2 is notable for its specialized adjoint solvers which provide highly com-
putationally efficient calculations of solution field gradients. It also has extensive adaptive
mesh refinement, mesh deformation, and shape optimization capabilities. SU2 is mainly
based on the finite volume method, but provides some finite element and discontinuous
Galerkin solvers for multiphysics simulations [41].

MOOSE [46] and Elmer [15] are open-source multiphysics software packages. Both are
based on the finite element method and support the full simulation workflow apart from
mesh generation. Elmer is used primarily through its extensive graphical user interface
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with an optional command line interface [15]. MOOSE requires more scripting than is typical
of open-source software packages. The user constructs their model as a ”kernel”, calling
and combining different pre-implemented physics within an input script. All remaining
simulation parameters, such as boundary conditions and physical properties, are specified
through configuration files. This user interface uses C++ [44], but there are several helper
libraries based on Python [48]. To make up for its relatively steep learning curve, MOOSE
offers possibly the most extensive set of models of any open-source simulation software and
includes many tools for code testing and documentation [46].

SfePy [17] represents a subset of open-source simulation software packages meant for
solving general partial differential equations, but not geared towards any specific physics. It
provides broad support for generic partial differential equations formed from combinations
of common integral terms. SfePy is less popular than multiphysics-specific packages, but
can be a powerful tool for uncommon models. Beyond the finite element solver, only basic
meshing and post-processing operations are supported, though SfePy can load third-party
meshes and output results for post-processing in third-party software. User interaction is
either through configuration files or through a script-based interface. A graphical interface
is also provided for basic visualization [17].

3.2.4 Open-Source Solver Libraries

The fourth category of existing software is open-source solver libraries. These provide
the numerical methods and solvers needed to run computational multiphysics simulations,
though no pre-implemented models like the previously discussed software packages. User
interaction is generally through a script-based interface. Open-source solver libraries are
generally application agnostic; the solvers can be applied to any multiphysics model. Thus,
though not user friendly, they can be a powerful tool, particularly for cutting-edge numeri-
cal methods research. This discussion will focus specifically on finite element solver libraries
due to their relevance to OpenCMP.

FreeFEM++ [47] is one of the oldest finite element solver libraries, initially released as
MacFEM in 1987. deal.II [45] and libMesh [61] are also among the oldest solver libraries
still under active development, both released in the early 2000s. Of the three, deal.II is
the most widely used. It was designed and optimized for computation speed and efficiency
as exemplified by the choice to build it in C++. Significant work was also devoted to
algorithms for adaptive mesh refinement and coarsening, including support for hanging
nodes, though the mesh generation capabilities are limited. deal.II is notable for some
of the most extensive documentation and tutorials of open-source computational fluid
dynamics software [45].
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A major innovation in finite element solver libraries was the introduction of unified
form language [62] in the FEniCS finite element solver library [16]. This simplifies model
definition by allowing the finite element method weak form to be passed into the solver
in quasi-mathematical notation instead of the user manually assembling the mass matrix.
NGSolve [13] is another finite element solver library that uses symbolic weak form notation,
though not unified form language. FEniCS and NGSolve both also provide Python [48]
wrappers to their C++ back-ends to further improve ease of use. NGSolve is known for
its strong support of the discontinuous Galerkin method and the hybrid discontinuous
Galerkin method. It also integrates with the meshing software Netgen for mesh generation
and a graphical interface for visualization [13].

DUNE [18] deserves special mention for its extensive capabilities, though it is more prop-
erly a framework of multiple solver libraries. It has core libraries (modules) which provide
the basic code base and are maintained by the DUNE developers. Extensions provide addi-
tional functionality and support for specialized applications. DUNE has extensive support
for grid adaptivity. It offers mesh and polynomial order refinement including efficient par-
allelization of adaptive mesh refinement [18]. The DUNE-FEM [19] extension module provides
finite difference, finite volume, and finite element implementations for solving differential
equations. DUNE-PDELab [14] provides model templates for DUNE-FEM and uses the DUNE

Python wrapper to represent weak forms with unified form language.

A final example of note is Gridap [63]. Gridap is one of the few solver libraries written
in Julia [49] and may be a trail blazer for a new class of finite element solver library.

3.2.5 Auxiliary Software

The final category comprises not computational multiphysics/computational fluid dynam-
ics software but auxiliary software used to support or enhance computational multiphysics
software packages.

Gmsh [64], Netgen [13], and Salome [65] are meshing software. Gmsh and Salome both
include CAD engines for generation of complex geometries prior to meshing. Netgen sup-
ports importing CAD files but its own geometry creation capabilities are limited to simple
primitives. All three include routines for geometry clean-up, mesh optimization, and mesh
quality checks. Gmsh is an independent software, though many computational multiphysics
software packages can import native Gmsh meshes. In contrast, Netgen and Salome are
both integrated into broader open-source software ecosystems, Netgen with NGSolve [13]
and Salome with Code Aster [55] and related packages. Netgen and Salome can both be
used for visualization of simulation results from their coupled computational multiphysics
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software packages. Salome further provides extensive post-processing functionality through
its graphical user interface.

ParaView [66] is possibly the most popular open-source software for data visualization
and post-processing. Many computational multiphysics software packages support export-
ing results to its .vtk format. ParaView has also been integrated into several open-source
software packages like paraFoam in OpenFOAM® [20].
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Chapter 4

Overview of OpenCMP

This chapter provides an overview of the OpenCMP computational multiphysics software
package: the finite element solver library on which it is built, its overall code framework, its
user interface, and its simulation capabilities. OpenCMP is an open-source project released
under the GNU LGPL license [67]. Its code repository is publicly available at https:

//github.com/uw-comphys/opencmp and documentation and examples are available on
the website https://opencmp.io/.

4.1 Solver Back-end

The starting point of OpenCMP development was the choice of finite element solver library.
Writing an implementation of the finite element method from scratch was deemed infea-
sible; it would be a very time consuming process and the final result would be inferior to
existing libraries. On the other hand, using an existing library for the back-end of OpenCMP
would allow effort to be focused on implementing multiphysics models and developing a
user interface and general simulation framework. Existing finite element solver libraries
are also already optimized for performance and validated for efficiency and accuracy. As
such, OpenCMP is built on the open-source NGSolve finite element library [13].

One major benefit of NGSolve is its Python [48] wrapper and symbolic representation of
finite element weak forms. As mentioned in section 3.1.3 and section 3.2.4, these elements
significantly increase code readability. This speeds up the development of OpenCMP. Having
readable code also aids experienced users who may wish to modify OpenCMP models or add
their own models. NGSolve is available for all standard operating systems and has minimal
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dependencies, allowing OpenCMP to have the same. It integrates with the Netgen meshing
software and graphical interface [13] which, in the future, can allow OpenCMP to add mesh
generation and results visualization capabilities. NGSolve also offers several performance
benefits over other finite element solver libraries. It implements an extensive set of finite
element spaces including those for fluid dynamics, structural mechanics, electromagnetics,
and acoustics, so is suitable for true multiphysics simulations. NGSolve has the strongest
support of existing finite element libraries for the discontinuous Galerkin method. It also
offers a wide variety of state-of-the-art solvers and preconditioners including interfaces to
SciPy [68] and PETSc [69] solvers. Finally, NGSolve inherently runs multi-threaded and
can be run in parallel over multiple nodes if compiled with MPI support [70].

4.2 Code Structure

The basic structure of OpenCMP is shown in figure 4.1.

run

Solvererror

Model

ConfigFunctions

ConfigParser

DIM

error analysis

post processing

Figure 4.1: The code structure of OpenCMP. Solid lines indicate imported modules and
dashed lines indicate initialized classes.

4.2.1 Basic Workflow

A typical simulation run proceeds as follows:

1. The user creates a main simulation directory to hold user-specified simulation pa-
rameters.

2. run is called through the command line and pointed to the main simulation directory.
3. run sets the run parameters.
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4. run initializes Solver to control the time-stepping scheme.
5. Solver initializes Model to construct the spatial discretization.
6. Model initializes ConfigFunctions to load, store, and update the user-specified sim-

ulation parameters. It also initializes DIM if the diffuse interface method is being
used.

7. Solver runs the simulation for the specified length of time, saving results to file at
a user-specified frequency.

8. Once the simulation has finished, run may call error and error analysis to com-
pute error metrics. It may also call post processing for processing of saved results.

The following sections explain the major components of OpenCMP in more detail.

4.2.2 run

The run module controls the execution of a simulation. It is called from the command
line to begin a simulation and sets the run parameters, such as the number of threads
used for multi-threading and what level of messages and warnings to display to the user.
run then initializes Solver and runs the simulation. Once the simulation has finished,
run calls error and error analysis to compute user-specified error metrics and calls
post processing for conversion of saved simulation results to other file formats. This
structure separates the main simulation run from the post-processing and, in the future,
pre-processing. It allows stacking any arbitrary combination of individual post-processing
steps. Solver and Model code is also kept independent of post-processing code for ease of
development.

4.2.3 Solver

OpenCMP uses the method of lines [71]; partial differential equations are first discretized in
space using the finite element method then treated as ordinary differential equations in
time. Hence the division between the Solver class, which controls the time-stepping, and
the Model class, which controls the spatial discretization.

Three main sub-classes inherit from the base solver class: the stationary solver class,
the transient multi-step solver class, and the transient Runge-Kutta solver class. The
two base transient solver classes reflect structural differences in the pattern of information
flow for multi-step schemes and Runge-Kutta schemes. Sub-classes for various adaptive
time-stepping schemes further inherit from either of these two transient solver classes.
The exact inheritance structure is shown in figure 4.2. Note that Runge-Kutta methods
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are more properly a subset of single-step methods [71]. OpenCMP naming conventions use
“Runge-Kutta” simply because the only single-step methods currently implemented are
Runge-Kutta schemes.

During a simulation run, Solver loads user-specified time-stepping parameters and
initializes Model. It loads the initial conditions, assembles the mass and load matrices
from the finite element weak form, updates the preconditioner, and then proceeds through
the time integration. This includes updating boundary conditions and model parameter
values, computing global error metrics, and saving results at each time step. The adaptive
time-stepping classes contain additional methods to estimate local error at each time step
and modify the size of the time step accordingly.

A separate module, time integration schemes, specifies the exact combination of spa-
tial and temporal terms to produce the weak form for each time discretization scheme im-
plemented in OpenCMP. Spatial terms are obtained from Model as bilinear and linear forms.
These are evaluated at different time steps and combined with temporal terms to form the
final weak form. This structure allows new time discretization schemes to be added without
significantly modifying Solver code by simply adding them to time integration schemes

and specifying whether they are multi-step or Runge-Kutta schemes.

Solver

StationarySolver TransientMultiStepSolver

BaseAdaptiveTransientMultiStepSolver

AdaptiveTwoStep AdaptiveIMEX

TransientRKSolver

BaseAdaptiveTransientRKSolver

AdaptiveThreeStep

Figure 4.2: The inheritance structure of the Solver class.

4.2.4 Model

Model holds the spatial discretization of the differential equations. It loads the mesh and
user-specified parameter values, produces the spatial terms of the finite element weak form,
and constructs the preconditioner and matrix solver for the final system of equations.

The inheritance structure, shown in figure 4.3, reflects the interrelations between many
of the models currently implemented in OpenCMP. Two main model classes inherit from the
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base model class: Poisson and INS. The remaining model classes, MultiComponentINS and
Stokes, inherit from INS. This allows code reuse, for example, Stokes uses methods defined
in INS for loading model parameters and constructing the finite element space. However,
there is still separation between different models with different weak forms. Thus, a new
model can be added simply by adding a new sub-class for said model without affecting the
code for any existing models.

Model

Poisson INS

Stokes MultiComponentINS

Figure 4.3: The inheritance structure of the Model class.

4.2.5 ConfigFunctions

ConfigFunctions is a helper class with functionality to load, store, and update user-
specified parameters. There are four main sub-classes of ConfigFunctions for boundary
conditions, initial conditions, model parameters, and reference solutions/error metrics. The
exact inheritance structure is shown in figure 4.4. All of these sub-classes are initialized
by Model during its initialization.

ConfigFunctions

BCFunctions ICFunctions ModelFunctions RefSolFunctions

Figure 4.4: The inheritance structure of the ConfigFunctions class.

4.2.6 DIM

DIM is an optional class that is initialized by Model if the diffuse interface method is to be
used. It loads all user-specified parameters related to the creation of the phase fields, such
as the interface width parameter. DIM is also responsible for creating the phase fields or
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loading them from file and creating the masks used to apply multiple boundary conditions
along the diffuse interface.

4.2.7 ConfigParser

ConfigParser is another helper class specifically for parsing values from the configuration
files used to hold user-specified parameters. It also stores the defaults used to popu-
late model parameters when their values are not explicitly defined by the user. Various
ConfigParser objects are initialized from each of the simulation configuration files and
later called by Model, ConfigFunctions, and DIM.

4.2.8 error analysis and error

The error analysis module and error helper module handle error analysis. error pro-
vides functionality to compute various error metrics from a single simulation result, while
error analysis handles error metrics that require multiple simulation runs. At the mo-
ment, error analysis is only used to run mesh or polynomial order refinement conver-
gence tests. It includes functionality to reset the simulation to the starting time and to
refine and update the mesh and finite element space for successive simulations.

4.2.9 post processing

post processing is a helper module for converting saved results to different file formats.
OpenCMP supports saving simulation results to the native NGSolve [13] format, .sol, or to
.vtk for visualization in ParaView [66]. However, the conversion from .sol to .vtk is quite
time-consuming and resource-intensive. Thus, for efficiency, post processing is used to
convert all results to .vtk only after the simulation has finished. It can also be called as a
separate process during the simulation run to convert results as they are obtained. Finally,
post processing organizes the .vtk filenames into a .pvd file so transient simulations can
be visualized in time order.

4.3 User Interface

OpenCMP has a configuration file-based user interface. As discussed in section 3.1.3, a
configuration file-based user interface is more suited to pre-implemented models than a
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script-based interface while still being suited to automation and version control. It is
also easier to develop than a graphical user interface. Details on the structure of these
configuration files and the use of the command line to run OpenCMP are given in the following
sections.

As OpenCMP is an open-source package, its full code base is available for modification
by the user. Thus, users can treat OpenCMP as a script-based interface or extend the con-
figuration file-based interface with new models, time discretization schemes, or simulation
parameters. However, this will not be discussed further as it is not expected to be a
common use case.

4.3.1 Configuration Files

For clarity and to prevent overlong configuration files, OpenCMP uses separate configuration
files for the main simulation parameters, boundary conditions, initial conditions, model
parameters, reference solutions, and diffuse interface method parameters. Thus, setting up
a simulation requires creating a main simulation directory to hold all of these configuration
files. Furthermore, since OpenCMP allows parameter values to be loaded from file instead of
specified in closed form, the main simulation directory is split into multiple sub-directories
to hold specific configuration files and their relevant additional files. An example simulation
directory is shown in figure 4.5. In this example the diffuse interface method is used, so sub-
directories and configuration files are added for diffuse interface parameters and boundary
conditions. The initial condition is loaded from file and this file, ic.sol, is placed in the
initial condition sub-directory. An output sub-directory is also shown and contains saved
simulation results at two different time steps.
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main dir

config

bc dir

config

ic dir

config

ic.sol

dim dir

config

bc dir

config

model dir

config

ref sol dir

config

output

ins 0.0.sol

ins 1.0.sol

Figure 4.5: An example simulation directory structure.

Within the configuration files themselves, emphasis is placed on readability and ease of
use while still allowing extensive customization. Figure 4.6 shows an example configuration
file for the main simulation directory. This is a human-readable .txt file accessible to the
user without translation by OpenCMP. It is also very amenable to version control.

OpenCMP uses the configparser library [72] to read configuration files which allows a
deceptively simple syntax. Simulation parameters are organized into categories by headers,
denoted by [], and their values are given through the = marker with the -> marker used for
multi-level values. There is no need for dictionaries, as in OpenFOAM® [20] configuration files,
or the C++ syntax used by MOOSE [46] configuration files. With reference documentation
for the available simulation parameters it should be intuitive and easy for new users to
construct their own configuration files.

Figure 4.6 is a typical example of a transient incompressible Navier-Stokes simulation,
but many of the simulation parameters specified in the configuration file have default values
and could have been omitted. For example, the user has specified that the conjugate
gradient solver be used with a multigrid preconditioner. The user could instead have
omitted both lines and OpenCMP would default to a direct solver and preconditioner. In
this case, OpenCMP would warn the user of the default values, in case the omission was
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most chemical engineering applications, heat transfer models must also be added. OpenCMP
provides a good selection of numerical methods, focusing on the finite element method for
increased simulation accuracy and offering discontinuous Galerkin implementations for
improved simulation stability. Many time discretization schemes are provided, including
higher order ones to increase simulation accuracy. Adaptive time-stepping is also available
for improved computational efficiency. The available error metrics are quite comprehensive
and include automated convergence testing. However, the only design parameter which
can be computed during post-processing is surface traction. In the future, it would be
preferable for users to be able to specify any design parameter or general mathematical
expression to be included in the post-processing. OpenCMP contains a full implementation
of the diffuse interface method as described in work by Monte et al [8]. It offers simulations
with a stationary phase field or rigid body motion of the phase field, as will be discussed
further in Chapter 6. Performance-wise OpenCMP can be run multi-threaded with a user-
specified number of threads. In the future, it would also be desirable to run OpenCMP fully
parallelized over multiple nodes with MPI [70].
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Table 4.1: Current capabilities of OpenCMP.

Meshing Accepts Netgen [13] or Gmsh [64] meshes
Numerical Methods Standard finite element method

Discontinuous Galerkin finite element method
Models Poisson equation

Stokes equations
Incompressible Navier-Stokes equations
Multi-component flow
Reacting flow

Time Discretization Schemes First-, second-, or third-order schemes
Adaptive time-stepping

Solvers Direct or iterative solvers
Direct, Jacobi, or multigrid preconditioners
Oseen or IMEX linearization of nonlinear models

Post-Processing Error norms calculated based on reference solutions
Divergence of velocity field
Magnitude of discontinuities in solution field
Surface traction calculated at specified boundaries
Mesh and polynomial refinement convergence tests
Saves results to Netgen [13] or ParaView [66] format

Diffuse Interface Method Automatic phase field and mesh generation from CAD
Rigid body motion

Performance Multi-threading
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Chapter 5

Performance Verification

This chapter describes the verification of the numerical implementation of OpenCMP. Prob-
lems with known analytical solutions are used to confirm that the various models imple-
mented in OpenCMP show expected error convergence behaviour, including the expected
convergence rates for mesh refinement and time step refinement. Some common bench-
marks are also shown to confirm that OpenCMP meets the performance expected of com-
putational multiphysics packages. The fidelity of the models to real-world processes is not
assessed as proper model selection will be the responsibility of the users. General software
quality, reliability, repeatability, and coverage is also not discussed here. These are tested
by a suite of unit tests which are publicly available as part of the OpenCMP package.

In most cases in the following sections, error is examined in the L2 norm:

error2 =

√

∫

Ω

(u− uexact)2 dx (5.1)

where u is the model variable or computed parameter of interest and uexact is a known
reference solution. Error may also be examined in the L1 norm:

error1 =

∫

Ω

|u− uexact| dx (5.2)

or the L∞ norm:

error∞ = max (|u− uexact|) (5.3)

45



In the case of incompressible flow, the divergence of the velocity field is computed to ensure
it is close to zero:

∇ · u =

√

∫

Ω

(∇ · u)2 dx (5.4)

When the discontinuous Galerkin method is used the degree of discontinuity in the final
solution field is also of interest:

[[u]] =

√

∑

K∈Ω

∫

F

(u+ − u−)2 ds (5.5)

Many of the following verification tests include mesh and time step refinement to de-
termine error convergence rates in the L2 norm. When the standard finite element method
is used, mesh refinement convergence is expected to be of order n where n is the order
of the polynomial interpolant. The discontinuous Galerkin method is expected to give
convergence at the order of n+ 1 [11]. Time step convergence rates are expected to agree
with the order of the time discretization scheme used. For example, a first-order scheme
like implicit Euler is expected to give first-order convergence [71].

The online resource by Arnold and Logg [76] gives a visual overview of typical finite
element spaces. This work uses the H1 space discretized by Lagrange elements as the
standard for scalar variables. For incompressible flow problems, the Taylor-Hood finite
element pair—VectorH1 for velocity and H1 for pressure—is standard. Note that when
using this finite element pair, the polynomial interpolant order of the velocity space must
be one higher than that of the pressure space to satisfy the inf-sup condition [31]. If the
discontinuous Galerkin method is used for incompressible flow problems it is preferable to
use HDiv for velocity and L2 for pressure. As discussed in section 2.2.2, this finite element
pair strongly enforces the incompressibility constraint without requiring additions to the
finite element weak form. The same constraint on polynomial interpolant order is needed
to satisfy the inf-sup condition as with the Taylor-Hood element pair [11].
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OpenCMP does not allow pressure Dirichlet boundary conditions to be directly specified.
As noted by Rempfer [40], it is challenging to specify pressure boundary conditions for
incompressible flow which are both mathematically well-posed and consistent with the
governing equations (the Stokes or incompressible Navier-Stokes equations). However, in
this case, since the flow is unidirectional and perpendicular to the inlet and outlet, the
pressure boundary conditions can be imposed through normal stress boundary conditions:

n · (−ν∇u+ pI) = h on Γ (5.22)

0 + n · pI = h on Γ (5.23)

p = h on Γ (5.24)

The discontinuous Galerkin method is used with the HDiv-L2 mixed finite element
space in order to strongly enforce the incompressibility constraint. A polynomial order of
three is used for velocity and two for pressure to satisfy the inf-sup condition. Error is
mesh-independent for any reasonable mesh, so results are given (see table 5.1) for one single
mesh with 128 elements. All error norms are quite low, indicating an accurate result. The
incompressibility constraint is satisfied, as shown by a velocity divergence close to zero.
The discontinuities in the velocity and pressure fields are also very low as expected; this
problem has a continuous solution.

Table 5.1: Error results for Poiseuille flow.

Error Metric Value
u L2 Norm 1.064× 10−10

p L2 Norm 6.219× 10−11

u L1 Norm 3.776× 10−11

p L1 Norm 2.437× 10−11

u L∞ Norm 2.824× 10−11

p L∞ Norm 2.079× 10−10

∇ · u 3.416× 10−10

[[u]] 6.694× 10−14

[[p]] 4.112× 10−12

The velocity and pressure fields are visualized in figure 5.5 and appear very similar to
the exact solution.
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three is used for velocity and two for pressure to satisfy the inf-sup condition. Error is
again mesh-independent for any reasonable mesh, so results are given (see table 5.2) for
one single mesh with 128 elements. All error norms are quite low, indicating an accurate
result. The incompressibility constraint is satisfied, as shown by a velocity divergence close
to zero. The discontinuities in the velocity and pressure fields are also very low as expected;
this problem has a continuous solution.

Table 5.2: Error results for Couette flow.

Error Metric Value
u L2 Norm 2.619× 10−14

p L2 Norm 3.062× 10−14

u L1 Norm 9.573× 10−15

p L1 Norm 9.595× 10−15

u L∞ Norm 2.818× 10−14

p L∞ Norm 3.508× 10−13

∇ · u 6.837× 10−16

[[u]] 1.894× 10−14

[[p]] 7.024× 10−13

The velocity and pressure fields are visualized in figure 5.6 and appear very similar
to the exact solution. There are minor discontinuities in the pressure field, but they are
simply numerical error. The pressure field is effectively uniformly zero as expected.
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which has the exact solution:

u = sin(x) sin(y)e−tδx + cos(x) cos(y)e−tδy (5.38)

p = sin(x) cos(y)e−t (5.39)

The discontinuous Galerkin method is used with the HDiv-L2 mixed finite element
space in order to strongly enforce the incompressibility constraint. A polynomial order
of two is used for velocity and one for pressure to satisfy the inf-sup condition. A mesh
convergence test is conducted, comparing the error after 1 s for a series of increasingly
refined meshes. The time step is held constant at ∆t = 1× 10−3 s to ensure the error
in the spatial discretization outweighs the error in the temporal discretization. As shown
in figure 5.7a–b, the expected convergence rate of one more than the polynomial order is
achieved for both velocity and pressure. Generally the convergence of the divergence of
velocity would also be considered. However, due to the use of HDiv-L2 finite elements, the
divergence of velocity is close to machine precision for any mesh size. Next a time step
convergence test is conducted, starting with a time step of 0.2 s. A refined mesh with 2296
elements is used to ensure error is dominated by the temporal discretization error. Implicit
Euler is used as the time discretization scheme and, as shown in figure 5.7c–d, both velocity
and pressure have the expected first-order convergence. Again, the divergence of velocity
is close to machine precision for any time step so is not considered.

Figure 5.8 and figure 5.9 visualize the velocity and pressure fields at several different
times. As expected, they appear similar to the known exact solution.
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5.3 The Incompressible Navier-Stokes Equations

5.3.1 Taylor-Green Vortices

One common benchmark for the incompressible Navier-Stokes equations with a known
analytical solution is the Taylor-Green vortices, which describes the unsteady flow of vor-
tices as they decay to zero [77]. In two dimensions with a kinematic viscosity of one the
equations are as follows:

0 =
∂u

∂t
+∇ · (uu)−∇2u+∇p in x ∈ [0, 2π], y ∈ [0, 2π] (5.40)

∇ · u = 0 in x ∈ [0, 2π], y ∈ [0, 2π] (5.41)

u(t = 0) = − cos(x) sin(y)δx + sin(x) cos(y)δy in x ∈ [0, 2π], y ∈ [0, 2π] (5.42)

p(t = 0) = −
1

4

(

cos(2x) + cos(2y)
)

in x ∈ [0, 2π], y ∈ [0, 2π] (5.43)

u = − sin(y)e−2tδx on x = 0, 2π (5.44)

u = sin(x)e−2tδy on y = 0, 2π (5.45)

which has the exact solution:

u = − cos(x) sin(y)e−2tδx + sin(x) cos(y)e−2tδy (5.46)

p = −
1

4

(

cos(2x) + cos(2y)
)

e−4t (5.47)

The convection term in eqn. (5.40) is nonlinear due to the dyadic product of velocity
with itself. OpenCMP has two options for linearizing systems of nonlinear equations so they
can be solved with linear solvers—Oseen-style linearization or IMEX time discretization—
implementation details for which can be found in Appendix A. For this test, Oseen-style
linearization is used and one of the unknown velocities is replaced by a known velocity field
w:

∇ · (uu) → ∇ · (uw) (5.48)

The value of the known velocity field is initially taken to be the solution of the previous
time step then refined through Picard iterations [71]. The value is considered sufficiently
converged at a relative tolerance of 1× 10−4 and an absolute tolerance of 1× 10−6 or after
five iterations.
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The discontinuous Galerkin method is used with the HDiv-L2 mixed finite element
space in order to strongly enforce the incompressibility constraint. A polynomial order of
three is used for velocity and two for pressure to satisfy the inf-sup condition. A mesh
convergence test is conducted, comparing the error after 1 s for a series of increasingly
refined meshes. The time step is held constant at ∆t = 1× 10−3 s to ensure the error in
the spatial discretization outweighs the error in the temporal discretization. As shown in
figure 5.10a–b, the expected convergence rate of one more than the polynomial order is
achieved for both velocity and pressure. Generally the convergence of the divergence of
velocity would also be considered. However, due to the use of HDiv-L2 finite elements, the
divergence of velocity is close to machine precision for any mesh size. Next a time step
convergence test is conducted, starting with a time step of 0.2 s. A refined mesh with 378
elements is used to ensure error is dominated by the temporal discretization error. Implicit
Euler is used as the time discretization scheme and, as shown in figure 5.10c–d, both
velocity and pressure have the expected first-order convergence. Again, the divergence of
velocity is close to machine precision for any time step so is not considered.

Figure 5.11 and figure 5.12 visualize the velocity and pressure fields at several different
times. As expected, they appear similar to the known exact solution.
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5.3.2 Schäfer-Turek Benchmark

Another common benchmark is the Schäfer-Turek benchmark; transient laminar flow past
an immersed object which exhibits vortex-shedding [78]. The problem domain is shown in
figure 5.13.

2m

0.41m
0.15m

0.15m

0.16m

0.1m

object

inlet outlet

walls

x

y

Figure 5.13: The simulation geometry for the two-dimensional Schäfer-Turek benchmark.

There are several different benchmarks defined on this domain, one of which is unsteady
flow with a time-constant inlet velocity (test case 2D-2 [78]):

0 =
∂u

∂t
+∇ · (uu)− ν∇2u+∇p in Ω (5.49)

∇ · u = 0 in Ω (5.50)

u = 0 on walls and object (5.51)

u =
6y(0.41− y)

0.412
δx at inlet (5.52)

0 = n · (uu− ν∇u+ pI)−max (u · n, 0)u at outlet (5.53)

A kinematic viscosity of ν = 1× 10−3 results in a Reynolds number of 100. The simulation
is initialized by a steady-state Stokes solve with the same boundary conditions.

Again the convection term must be linearized, in this case through the use of an IMEX
scheme which treats the convection term explicitly and all remaining terms implicitly. The
discontinuous Galerkin method is used with the HDiv-L2 mixed finite element space in
order to strongly enforce the incompressibility constraint. A polynomial order of three is
used for velocity and two for pressure to satisfy the inf-sup condition. A refined mesh with
776 elements is used and the time discretization scheme is a first-order IMEX scheme with
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Figure 5.16: The simulation geometry for one of the three-dimensional Schäfer-Turek
benchmarks.

The problem considered is unsteady flow with a time-varying inlet velocity (test case
3D-3Q [78]):

0 =
∂u

∂t
+∇ · (uu)− ν∇2u+∇p in Ω (5.54)

∇ · u = 0 in Ω (5.55)

u = 0 on walls and object (5.56)

u =
36y(0.41− y)z(0.41− z)

0.414
δx at inlet (5.57)

0 = n · (uu− ν∇u+ pI)−max (u · n, 0)u at outlet (5.58)

A kinematic viscosity of 1× 10−3 results in a time-varying Reynolds number in the range
[0, 100].

The same finite elements, polynomial order, time discretization scheme, and time step
are used as for the two-dimensional benchmark but, in this case, a mesh with 1592 elements
is used. The computed maximum values for the drag and lift coefficients, 4.6179 and 0.0428
respectively, again agree reasonably well with the literature values of 4.3000− 4.5000 and
0.0100− 0.0500 [78].
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5.4 Multi-Component Flow

5.4.1 Multi-Component Diffusion

As a first example of multi-component flow, consider pure diffusion of some components
A, B, and C:

∂cA

∂t
−DA∇

2cA = 0 in Ω (5.59)

∂cB

∂t
−DB∇

2cB = 0 in Ω (5.60)

∂cC

∂t
−DC∇

2cC = 0 in Ω (5.61)

cA(t = 0) = 1 in Ω (5.62)

cB(t = 0) = 0 in Ω (5.63)

cC(t = 0) = 0.5 in Ω (5.64)

cA = e−10t on one wall (5.65)

cB = 1− e−10t on one wall (5.66)

cC = 0.5e−10t on one wall (5.67)

−n ·∇cA = −n ·∇cB = −n ·∇cC = 0 on other walls (5.68)

The diffusion coefficients are DA = 1, DB = 7× 10−1, and DC = 3× 10−1. After some
time, the overall concentrations of the components in the domain are expected to plateau
to zero for components A and C and one for component B following the concentration
boundary conditions.

Error in the steady-state concentrations is given in table 5.3. An H1 finite element
space with a polynomial order of three is used for each component concentration. Results
are mesh- and time step-independent, so a mesh with 938 elements and a time step of
∆t = 0.01 s is used. All errors are very low as desired.

The time-evolution of the concentrations is shown in figure 5.17. As expected, given
the different diffusion coefficients, the curve for component A plateaus the fastest followed
by component B and then component C.
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with:

RA = −cA at objects (5.86)

while the velocity and pressure fields are given by the solution of the incompressible Navier-
Stokes equations:

0 =
∂u

∂t
+∇ · (uu)−∇2u+∇p in Ω (5.87)

∇ · u = 0 in Ω (5.88)

u(t = 0) = 0 in Ω (5.89)

p(t = 0) = 0 in Ω (5.90)

u = 4y(0.5− y)δx at inlet (5.91)

u = 0 on walls and objects (5.92)

0 = n · (uu−∇u+ pI)−max (u · n, 0)u at outlet (5.93)

The diffusion coefficients are DA = DB = 1 and a kinematic viscosity of ν = 1 gives a
Reynolds number of 0.125.

The Taylor-Hood finite element pair (VectorH1-H1) is used for the velocity and pressure
with polynomial orders of two and one respectively. H1 elements of order two are used for
components A and B. The nonlinear convection terms—for convection of the components
and velocity—are linearized through the Oseen method to a relative error tolerance of
1× 10−4 and absolute error tolerance of 1× 10−6 or five iterations. The simulation is run
for 10 s, to ensure a steady-state is reached, with a time step ∆t = 1× 10−2 s. This problem
has no exact solution so the results must be examined qualitatively. Figure 5.20 shows the
concentration profiles of components A and B after 10 s. Component A enters at the inlet
of the channel and is transported towards the objects. Its concentration quickly drops as
it reacts at the surfaces of the objects. Component B shows the opposite, its concentration
increasing along the length of the channel as it is produced at the surfaces of the objects.
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5.5.2 Adaptive Time-Stepping

Only one adaptive time-stepping scheme is implemented in OpenCMP and fully working so
can be validated, the so-called adaptive two step scheme. At each time step, this scheme
runs an implicit Euler solve (first-order) and a Crank-Nicolson solve (second-order). The
local error is estimated based on the error between the first- and second-order results then
is used to adjust the size of the time step to achieve a desired error tolerance. The final
solution for the time step is taken from the implicit Euler solve so that the scheme remains
unconditionally stable.

The adaptive time-stepping scheme is tested on the Poiseuille flow problem from sec-
tion 5.2.1, but now with a time-varying inlet pressure boundary condition. This pressure
boundary condition, and the velocity it produces, is shown in figure 5.23a. Its time evolu-
tion includes sharp jumps and long plateaus to force variation in the time step. A refined
mesh with 128 elements is used to ensure fairly low spatial discretization error. The initial
time step is ∆t = 0.001 s and the estimated local error is constrained to a relative toler-
ance of 1× 10−4 and an absolute tolerance of 1× 10−4. The time step is also restricted to
remain in the range [1× 10−10, 1× 10−1] to prevent either excessively small time steps or
time steps too large to capture simulation dynamics.

The time evolution of the time step is shown in figure 5.23b and is seen to follow the
evolution of the velocity and pressure fields. The time step is very small, on the order of
1× 10−5, during the step changes in the inlet pressure to ensure the local error constraint
is met. However, once the inlet pressure plateaus, the time step increases rapidly up to
the maximum allowed time step.
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the OpenFOAM® simulation in this comparison are taken from said user guide with some
modifications to the exact physical properties and simulation parameters.

The OpenFOAM® simulation uses the icoFoam solver to run a transient solve to the
steady-state solution of the lid-driven cavity. The initial conditions are as follows:

u(t = 0) = 0 in x ∈ [0, 0.1], y ∈ [0, 0.1] (5.99)

p(t = 0) = 0 in x ∈ [0, 0.1], y ∈ [0, 0.1] (5.100)

and the simulation runs for 2 s, as suggested by the user guide, with a time step of ∆t =
1× 10−3 s.

The OpenCMP simulation directly solves the stationary problem through iterations of
Oseen-style linearization. Convergence is specified as a relative tolerance of 1× 10−6 and an
absolute tolerance of 1× 10−6 to match the residual tolerance of the OpenFOAM® simulation.
OpenCMP simulations were carried out using both the standard finite element method with
the Taylor-Hood mixed finite element space and using the discontinuous Galerkin method
with the HDiv-L2 mixed finite element space. In both cases, the polynomial order was two
for the velocity and one for the pressure to satisfy the inf-sup condition.

The original mesh was a uniform structured quadrilateral mesh with 1600 elements.
Subsequent meshes were generated by refining this original mesh until approximately mesh-
independent solutions were achieved for each numerical method. Time needed for mesh
construction is not included in the overall timing comparison, but it was negligible in all
cases.

The top half of table 5.4 compares the simulation time on the original mesh for the
three simulations, all of which were run on the same personal computer under equivalent
settings. OpenFOAM® is the fastest, though OpenCMP compares well when the standard finite
element method is used. The discontinuous Galerkin method takes 30 − 50× longer than
the other two simulations which is expected given the additional degrees of freedom and
computational complexity of the numerical implementation. However, the discontinuous
Galerkin method is also significantly more accurate on the original mesh than the other
two simulations. Instead examining the mesh-independent results (the bottom half of
table 5.4), the discontinuous Galerkin method is the fastest of the three numerical methods
and remains slightly more accurate than either of the other two results. These results are
expected and illustrate the benefits of including the discontinuous Galerkin method in
OpenCMP. Compared to the finite volume method, the high-order polynomial interpolants
of the discontinuous Galerkin method are able to accurately capture simulation dynamics
without significant mesh refinement, lowering the computational costs for a given level of
accuracy. The discontinuous Galerkin method also outperforms the standard finite element
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Chapter 6

Extension of the Diffuse Interface

Method

This chapter describes recent work on the diffuse interface method culminating in its use to
model a rotating impeller. OpenCMP implements the diffuse interface method as described
by Monte et al [8], including algorithms for automated phase field generation from CAD
files and for applying multiple different boundary conditions along different regions of the
same diffuse interface. A brief background on the diffuse interface method is also given
in section 2.3. As discussed, the diffuse interface method offers the potential to speed
up simulations by removing the need for time and labour intensive conformal meshing of
complex geometries. It is particularly suited to preliminary design screening and similar
applications where high accuracy is unnecessary. Monte et al [8] restricted their work to
stationary domains. However, the diffuse interface method also has significant potential
for applications with moving domains as the mesh no longer needs to move or deform to
accommodate the domain movement. One such application, highly relevant to chemical
engineering, is the simulation of impeller movement inside a chemical reactor.

6.1 Use of Impellers in Chemical Engineering

Figure 6.1 outlines a basic stirred tank reactor. The central shaft may hold several impellers
and rotates to force mechanical mixing of the fluids inside the tank. Baffles on the walls
of the tank break up the flow to prevent swirling and further assist axial mixing [81].

Mixing plays a key role in many chemical engineering applications. Improper mixing
affects process yield and can cause problems during process scale-up. It can even affect the
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the intricacies of meshing a rotating impeller.

6.2 Phase Field Motion

Immersed boundary methods like the diffuse interface method have a long history with
moving domains. Some of the first work on immersed boundary methods by Peskin [82]
was used to model a human heart valve accounting for the movement of the valve leaflet
to open and close the valve during a heartbeat. More recently, Aland et al [83] used a
diffuse interface approach to model the movement and breakup of liquid droplets convected
through a channel as well as the interface dynamics of a solid ball impacting a fluid. Sanders
et al [84] used a level set method to model the settling and rising of discs of different
buoyancies in a stationary fluid. Benk et al [85] validated an immersed boundary method
on the FSI1 benchmark for fluid-structure interaction [86]. Most relevant to this work,
Blais et al [87] used an immersed boundary method to simulate a pitched blade impeller in
baffled and unbaffled tanks and obtained reasonable comparisons to experimental results
and conformal mesh-based techniques.

Blais et al [87] added forcing terms to the incompressible Navier-Stokes equations within
the fluid domain in order to mimic the force exerted by the impeller in the impeller-fluid
interface region. A similar approach can be taken with the diffuse interface method. The
fluid is modelled by the incompressible Navier-Stokes equations, restricted to the fluid
domain by the use of the phase field (for the full equations see Appendix B). Then, the
movement of the impeller is accounted for both by moving the phase field over time and by
forcing the impeller-fluid interface to travel at the velocity of the impeller through Dirichlet
boundary conditions at the diffuse interface (effectively a no-slip boundary condition).

This approach naturally requires a method for moving the phase field and determining
its velocity. Sanders et al [84] suggest a method for updating the velocity of an immersed
object at each time step which can account for the effects of fluid forces on the object.
However, in the case of a stirred tank reactor, the impeller can be assumed to be a com-
pletely rigid body moving at a known, often constant, rotation speed. Thus, the phase
field motion can be modelled by the equation of rigid body rotation [88]:

x = R(t)(X − b) + b (6.1)

where x is the current location of the impeller given a starting location X, R(t) is the
rotation tensor, and rotation is about point b. For a typical simulation of a stirred tank
reactor, b would simply be the origin. R(t) would be as follows for a rotation speed of N
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6.3 Diffuse Interface Simulation of a Stirred Tank Re-

actor

For verification of the application of the diffuse interface method to the simulation of
impeller motion, this work considers the Rushton impeller shown in figure 6.4 and the tank
geometry given in table 6.1 and shown in figure 6.4. The impeller design and geometry
ratios were taken from experimental work by Bates et al [89] to enable comparison to said
experimental results.

Table 6.1: Geometry of the stirred tank reactor and Rushton impeller.

Component Geometry
Tank Height 12 cm
Tank Diameter 12 cm
Number of Baffles 4
Baffle Width 1 cm
Baffle Thickness 0.1 cm
Baffle Height 12 cm
Impeller Diameter 4 cm
Distance of Impeller from Tank Bottom 4 cm
Number of Impeller Blades 6
Impeller Blade Width 0.8 cm
Impeller Blade Thickness 0.1 cm
Impeller Blade Height 1 cm

Two dimensionless numbers can be used to predict the performance of a stirred tank re-
actor: the impeller Reynolds number and the Power number. These dimensionless numbers
are defined as follows [81]:

Re =
ρND2

µ
(6.4)

Np =
2πM

ρN2D5
(6.5)

where N is the rotational speed of the impeller (RPS), D is the diameter of the impeller,
ρ is the density of the fluid, µ is the dynamic viscosity of the fluid, and M is the torque
acting on the impeller. The impeller Reynolds number predicts the flow regime inside
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interpolation scheme used to produce rigid body rotation of the phase field is very slow in
three dimensions. Thus, it was not possible to run the simulation to a steady-state.

Figure 6.5 and figure 6.6 show velocity and pressure profiles after 0.86 s. Some degree
of rotational flow is seen and regions of high and low pressure are seen at the front and
back edges respectively of the impeller blades and baffles (the impeller rotates counter-
clockwise). However, flow is clearly still developing; movement is only seen in the fluid
close to the impeller blades and central shaft.

The Power number can be obtained from eqn. (6.5) with the torque on the impeller
calculated as follows using the phase field to approximate the impeller geometry:

M =

∫

κ

r ×
[

∇φ ·
(

pI− µ
(

∇u+
(

∇u
)T )

)]

dx (6.6)

where r is the position vector, in this case r = xδx+yδy, µ is the dynamic viscosity, and the
integral is a volume integral over the entire tank domain κ. The calculated Power number is
0.092 which is more than an order-of-magnitude lower than the expected value of 3–4 [89].
This is likely in part due to the undeveloped flow profile. It could also indicate inaccuracies
in the phase field-based torque calculation. The phase field models the impeller surface as
a diffuse region of finite thickness and includes this entire region in the torque calculation.
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Chapter 7

Conclusions

7.1 Conclusions

This work presents OpenCMP, an open-source finite element-based computational multi-
physics software package. The design of OpenCMP learns from and improves upon existing
computational multiphysics software with a focus on high performance numerical methods,
open access, ease of use, and a capacity for extensive customization. OpenCMP is validated
on standard benchmarks and a short comparison—of speed and accuracy—is made to ex-
isting software. OpenCMP is also used to extend the diffuse interface method described by
Monte et al [8] to problems with moving domains. Specifically, the diffuse interface method
is used to simulate the rigid body rotation of an impeller in a stirred tank reactor.

The following lessons were learned from the OpenCMP design process:

• Consistent regular feedback from users during software development ensures the final
software is easy to use and useful.

• For efficiency, the code back-end must use a compiled language. However, the addi-
tion of a Python [48] wrapper (or other high-level language) significantly increases
code readability and aids development.

• It is more efficient to build off of existing finite element solver libraries than to im-
plement the finite element method from scratch. The NGSolve finite element library
[13] in particular offers high performance, access to meshing software and a graphical
interface, and a Python wrapper and symbolic depictions of the finite element weak
form for ease of development.

• A configuration file-based user interface provides the best trade-off between user
friendliness and ease of development.
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• Use of extensive back-end parsing tools allows a highly readable and intuitive con-
figuration file format, including the ability to specify parameter values symbolically.

• A compartmentalized code structure allows models, time discretization schemes, and
post-processing functionality to be modified or added without significant changes to
the main code base.

The following conclusions can be drawn from the performance verification of OpenCMP:

• Expected mesh refinement error convergence rates are achieved both for the standard
finite element method and the discontinuous Galerkin method for all models imple-
mented in OpenCMP. Super-optimal convergence rates are achieved for some problems.

• Expected time step refinement error convergence rates are achieved for all time dis-
cretization schemes fully implemented in OpenCMP.

• Adaptive time-stepping constrains local error without requiring an excessively small
time step for the full duration of the simulation.

• Using the standard finite element method, OpenCMP compares well to the popular
computational fluid dynamics package OpenFOAM® [20] in speed and accuracy on a
standard benchmark. The discontinuous Galerkin method is significantly slower but
more accurate for a given mesh and polynomial interpolant order.

Finally, the following conclusions can be drawn regarding the application of the diffuse
interface method to simulations with moving domains:

• The diffuse interface method can be used to simulate a moving domain through
movement of the phase field without re-meshing or mesh movement.

• In the case of prescribed motion, such as rigid body rotation with a known rotation
speed and axis of rotation, phase field motion can be solved independently then used
to force movement of the fluid domain via a velocity Dirichlet boundary condition at
the diffuse interface.

7.2 Recommendations

OpenCMP currently has a reasonably comprehensive feature set, particularly for laminar flow
problems. However, the following additional functionality is required for it to compete with
popular existing computational multiphysics software packages:

• Models for multi-phase flow and turbulent flow.
• Models for additional physics beyond fluid dynamics, in particular, heat transfer.
• Support for parallelization over multiple nodes with MPI [70].
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• Built-in mesh generation capabilities.
• Built-in results visualization capabilities.

The following additions would also be desirable to improve the built-in capabilities of
OpenCMP:

• More extensive post-processing including computation of user-specified design pa-
rameters.

• Adaptive mesh refinement based on local simulation error.

Finally, more rigorous comparison to other existing computational multiphysics software,
particularly on computational efficiency, is desirable to justify the use of OpenCMP to the
broader public.

The application of the diffuse interface method to the simulation of impeller motion in
a stirred tank reactor could not be fully verified due to time constraints. The accuracy of
fully developed flow must still be assessed. The diffuse interface method must also be eval-
uated against conformal mesh-based approaches—for accuracy and speed—to determine
if it is a viable alternative. Finally, the current implementation of phase field motion is
unreasonably slow and requires optimization.
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Online, Electricité de France. [Online]. Available: https://www.code-aster.org

[56] G. Dhondt and K. Wittig, “CalculiX: A free software three-dimensional
structural finite element program,” Online, CalculiX. [Online]. Available: http:
//www.calculix.de/

[57] “MATLAB,” Online, The Mathworks Inc., Natick, Massachusetts. [Online]. Available:
https://www.mathworks.com/products/matlab.html

[58] “OpenFOAM,” Online, CFD Direct Ltd. [Online]. Available: https://cfd.direct/

[59] “FOAM-Extend,” Online, Wikki Ltd. [Online]. Available: http://wikki.gridcore.se/
foam-extend

[60] “GUI,” Online, Wikki Ltd. [Online]. Available: https://openfoamwiki.net/index.
php/GUI

[61] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh: A C++ library
for parallel adaptive mesh refinement/coarsening simulations,” Eng. Comput., vol. 22,
no. 3-4, pp. 237–254, 2006.

[62] M. S. Alnaes, A. Logg, K. B. Olgaard, M. E. Rognes, and G. N. Wells, “Unified form
language: A domain-specific language for weak formulations of partial differential
equations,” ACM Trans. Math. Software, vol. 40, no. 9, Mar. 2014.

[63] S. Badia and F. Verdugo, “Gridap: An extensible finite element toolbox in Julia,” J.
Open Source Softw., vol. 5, no. 52, p. 2520, 2020.

97



[64] C. Geuzaine and J.-F. Remacle, “Gmsh: A three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities,” Int. J. Numer. Methods
Eng., vol. 79, no. 11, pp. 1309–1331, 2009.

[65] A. Ribes and C. Caremoli, “Salome platform component model for numerical sim-
ulation,” in COMPSAC 07: Proceeding of the 31st Annual International Computer
Software and Applications Conference. Washington, DC, USA: IEEE Computer So-
ciety, 2007, pp. 553–564.

[66] J. Ahrens, B. Geveci, and C. Law, “ParaView: An end-user tool for large data vi-
sualization,” Los Alamos National Laboratory, Los Alamos, NM, USA, techreport
LA-UR-03-1560, 2005.

[67] F. S. F. Inc., “GNU lesser general public license v2.1,” Online, Feb. 1999. [Online].
Available: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

[68] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
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Appendix A

Discontinuous Galerkin Formulations

of OpenCMP Models

The following derivations were produced with the help of James Lowman and Alex Vasile
based on a similar derivation by Arnold et al [35].

In all of the derivations the gradient and double inner product operators are defined as
follows:

∇φ =
∑

i

∑

j

∂φi

∂xj
δiδj (A.1)

γ : η =
∑

i

∑

j

γijηij (A.2)

to agree with the conventions of the NGSolve finite element library [13].

A.1 The Poisson Equation

Consider a domain Ω with boundary Γ meshed by a triangulation T of mesh elements K.
The Poisson equation is defined as follows with possible Dirichlet, Neumann, and Robin
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boundary conditions on mesh boundary regions ΓD, ΓN , and ΓR respectively:

−∇2u = f in Ω (A.3)

u = g on ΓD (A.4)

−n ·∇u = h on ΓN (A.5)

n ·∇u = r(u− q) on ΓR (A.6)

where f is some source function.

Define σ to be the gradient of u and use it to reduce this second order partial differential
equation into a redundant system of first order partial differential equations:

σ = ∇u (A.7)

−∇ · σ = f (A.8)

Insert trial functions σA and uA to form residuals and average with weighting functions τ
for eqn. (A.7) and v for eqn. (A.8):

∫

Ω

τ · σA dx−

∫

Ω

τ ·∇uA dx = Rσ (A.9)

−

∫

Ω

v (∇ · σA) dx−

∫

Ω

vf dx = Ru (A.10)

Apply the product rule and then the divergence theorem to eqn. (A.9):

∫

Ω

τ · σA dx−

∫

Ω

∇ · (uAτ ) dx+

∫

Ω

uA (∇ · τ ) dx = Rσ (A.11)
∫

Ω

τ · σA dx−

∫

Γ

n · (uAτ ) ds+

∫

Ω

uA (∇ · τ ) dx = Rσ (A.12)

and to eqn. (A.10):

∫

Ω

σA ·∇v dx−

∫

Ω

∇ · (vσA) dx−

∫

Ω

vf dx = Ru (A.13)
∫

Ω

σA ·∇v dx−

∫

Γ

n · (vσA) ds−

∫

Ω

vf dx = Ru (A.14)

Substituting eqn. (A.12) into eqn. (A.14) produces the standard finite element method
weak form. Using the discontinuous Galerkin method instead, the trial functions uA and
σA are allowed to be discontinuous across mesh element boundaries. Integrals over the
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entire simulation domain Ω become the sum of integrals over individual mesh elements
K. Furthermore, integrals over the simulation domain boundary Γ now include all mesh
element boundaries ∂K. The degeneracy of the trial functions on mesh element boundaries
poses a problem for boundary integral terms as they may evaluate to different values within
each of the two mesh elements that share any given mesh element boundary. To resolve
this, new variables are defined which are single-valued on mesh element boundaries. These
variables, û and σ̂, will be referred to as facet values. They are functions of uA and σA and
their specific definitions will be given later in this section. Accounting for this, eqn. (A.12)
and eqn. (A.14) become as follows:

∑

K∈T

∫

K

τ · σA dx−
∑

K∈T

∫

∂K

n · (ûτ ) ds+
∑

K∈T

∫

K

uA (∇ · τ ) dx = Rσ (A.15)

∑

K∈T

∫

K

σA ·∇v dx−
∑

K∈T

∫

∂K

n · (vσ̂) ds−
∑

K∈T

∫

K

vf dx = Ru (A.16)

Apply the product rule and divergence theorem for a second time to the third term of
eqn. (A.15):

∑

K∈T

∫

K

τ · σA dx−
∑

K∈T

∫

∂K

n · (ûτ ) ds+
∑

K∈T

∫

K

∇ · (uAτ ) dx

−
∑

K∈T

∫

K

τ ·∇uA dx = Rσ (A.17)

∑

K∈T

∫

K

τ · σA dx−
∑

K∈T

∫

∂K

n · (ûτ ) ds+
∑

K∈T

∫

∂K

n · (uAτ ) ds

−
∑

K∈T

∫

K

τ ·∇uA dx = Rσ (A.18)

∑

K∈T

∫

K

τ · σA dx−
∑

K∈T

∫

∂K

n · (û− uA) τ ds−
∑

K∈T

∫

K

τ ·∇uA dx = Rσ (A.19)

Now define τ = ∇v and substitute eqn. (A.19) into eqn. (A.16):

∑

K∈T

∫

K

(

∇uA ·∇v − vf
)

dx+
∑

K∈T

∫

∂K

n ·
(

(û− uA)∇v − vσ̂
)

ds = R (A.20)

where R = Ru +Rσ.

This gives a single unified weak form. However, it is generally easier to perform nu-
merical integration over mesh element facets instead of mesh element edges. Each mesh
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element edge ∂K has two facets, F+ and F−, on the interior and exterior respectively of
the mesh element under consideration. Both facets have a unit normal, n+ and n−, and
these normals are equal and opposite to each other n+ = −n−. An integral over a mesh
element edge can then be rewritten as follows:

∫

∂K

n · qφ ds =

∫

F+

n+ · q+φ+ ds+

∫

F−

n− · q−φ− ds (A.21)

=

∫

F

(

n+ · q+φ+ + n− · q−φ−
)

ds (A.22)

where superscript (+) and (−) indicate the values of the scalar q and vector φ on the
interior and exterior of the mesh element respectively. However, this is only true of mesh
element edges in the interior of the simulation domain (FI); mesh element edges on the
boundary of the simulation domain (FB) only have one single facet. Accounting for this,
sums over all mesh elements of integrals over mesh element edges can be rewritten as
follows:

∑

K∈T

∫

∂K

n · qφ ds =
∑

F∈FI

∫

F

(

n+ · q+φ+ + n− · q−φ−
)

ds+
∑

F∈FB

∫

F

n · qφ ds (A.23)

To simplify notation and follow standard convention define average {·} and jump [[·]]
operators:

{q} :=

{

1
2
(q+ + q−) interior edges

q exterior edges
(A.24)

[[q]] :=

{

q+ + q− interior edges

q exterior edges
(A.25)
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Consider the following combination of these operators:

[[qn]] · {φ}+ {q}[[φ · n]] =
(

q+n+ + q−n−
)

·
1

2

(

φ+ + φ−
)

+
1

2

(

q+ + q−
) (

φ+ · n+ + φ− · n−
)

(A.26)

=
1

2

(

2q+n+ · φ+ + q+n+ · φ− + q+n− · φ−

+ q−n− · φ+ + q−n+ · φ+ + 2q−n− · φ−

)

(A.27)

=
1

2

(

2q+n+ · φ+ + q+n+ · φ− − q+n+ · φ−

+ q−n− · φ+ − q−n− · φ+ + 2q−n− · φ−

)

(A.28)

=q+n+ · φ+ + q−n− · φ− (A.29)

Now use eqn. (A.29) to rewrite eqn. (A.23) in terms of the average and jump operators:

∑

K∈T

∫

∂K

n · qφ ds =
∑

F∈FI

∫

F

(

n+ · q+φ+ + n− · q−φ−
)

ds+
∑

F∈FB

∫

F

n · qφ ds (A.30)

=
∑

F∈FI

∫

F

(

[[qn]] · {φ}+ {q}[[φ · n]]
)

ds+
∑

F∈FB

∫

F

n · qφ ds (A.31)

Insert eqn. (A.31) into eqn. (A.20) to put the weak form in standard notation:

∑

K∈T

∫

K

(∇uA ·∇v − vf) dx

+
∑

F∈FI

∫

F

(

[[(û− uA)n]] · {∇v}+ {û− uA}[[∇v · n]]
)

ds

−
∑

F∈FI

∫

F

(

[[vn]] · {σ̂} − {v}[[σ̂ · n]]
)

ds

+
∑

F∈FB

∫

F

n ·
(

(û− uA)∇v − vσ̂
)

ds = R (A.32)

Now the values of û and σ̂ must be defined. This thesis uses the interior penalty
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discontinuous Galerkin method [35]:

û =



















{uA} on FI

g on FD

uA on FN

uA on FR

(A.33)

σ̂ =



















{∇uA} − α[[uAn]] on FI

∇uA − α (uA − g)n on FD

hn on FN

−r (uA − q)n on FR

(A.34)

where α is a penalty coefficient typically taken as α = 10n2

h
for a polynomial interpolant

order n and mesh element size h.

Substitute these values into eqn. (A.32):

∑

K∈T

∫

K

(

∇uA ·∇v − vf
)

dx

+
∑

F∈FI

∫

F

(

[[({uA} − uA)n]] · {∇v}+ {{uA} − uA}[[∇v · n]]
)

ds

−
∑

F∈FI

∫

F

(

[[vn]] · {{∇uA} − α[[uAn]]} − {v}[[{∇uA} · n− α[[uA]]]]
)

ds

+
∑

F∈FD

∫

F

n ·
(

(g − uA)∇v − v (∇uA − α (uA − g)n)
)

ds

+
∑

F∈FN

∫

F

n ·
(

(uA − uA)∇v − vhn
)

ds

+
∑

F∈FR

∫

F

n ·
(

(uA − uA)∇v + vr (uA − q)n
)

ds = R (A.35)

Now simplify by noting that the average of an average or jump is just that average or jump
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and the jump of an average or jump is zero:

∑

K∈T

∫

K

(

∇uA ·∇v − vf
)

dx

−
∑

F∈FI

∫

F

(

[[uAn]] · {∇v}+ [[vn]] · {∇uA} − α[[uA]][[v]]
)

ds

−
∑

F∈FD

∫

F

(

n · (uA − g)∇v + n · v∇uA − α (uA − g) v
)

ds

−
∑

F∈FN

∫

F

vh ds+
∑

F∈FR

∫

F

vr (uA − q) ds = R (A.36)

Eqn. (A.36) is the final weak form for the discontinuous Galerkin formulation of the Poisson
equation and is in the correct form to be passed into a finite element method solver.

A.2 The Stokes Equations

Consider a domain Ω with boundary Γ meshed by a triangulation T of mesh elements
K. The Stokes equations are defined as follows with possible Dirichlet and normal stress
boundary conditions on mesh boundary regions ΓD and ΓS:

−ν∇2u+∇p = f in Ω (A.37)

∇ · u = 0 in Ω (A.38)

u = g on ΓD (A.39)

(−ν∇u+ pI) · n = h on ΓS (A.40)

where f is some body force and ν is the kinematic viscosity.

Initially only consider the conservation of momentum equation eqn. (A.37). Define σ

to be the gradient of u and use it to reduce this second order partial differential equation
into a redundant system of first order partial differential equations:

σ = ∇u (A.41)

−ν∇ · σ +∇p = f (A.42)
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Insert trial functions σA, uA, and pA to form residuals and average with weighting functions
τ for eqn. (A.41) and v for eqn. (A.42):

∫

Ω

σA : τ dx−

∫

Ω

∇uA : τ dx = Rσ (A.43)
∫

Ω

νv ·∇ · σA dx−

∫

Ω

v ·∇pA dx+

∫

Ω

v · f dx = Ru (A.44)

Apply the product rule and then the divergence theorem to eqn. (A.43):

∫

Ω

σA : τ dx−

∫

Ω

∇ · (uA · τ ) dx+

∫

Ω

uA · (∇ · τ ) dx = Rσ (A.45)
∫

Ω

σA : τ dx−

∫

Γ

uA · τ · n ds+

∫

Ω

uA · (∇ · τ ) dx = Rσ (A.46)

and to eqn. (A.44):

−

∫

Ω

(

νσA : ∇v − pA (∇ · v)− v · f
)

dx+

∫

Ω

∇ ·
(

νv · σA − pAv
)

dx = Ru (A.47)

−

∫

Ω

(

νσA : ∇v − pA (∇ · v)− v · f
)

dx+

∫

Γ

v ·
(

νσA − pAI
)

· n ds = Ru (A.48)

For convenience, define H = νσA − pAI and use it to rewrite eqn. (A.48):

−

∫

Ω

(

νσA : ∇v − pA (∇ · v)− v · f
)

dx+

∫

Γ

v ·H · n ds = Ru (A.49)

Substituting eqn. (A.46) into eqn. (A.49) produces the standard finite element method
weak form. Using the discontinuous Galerkin method instead, the trial functions uA, σA,
and pA are allowed to be discontinuous across mesh element boundaries. Integrals over
the entire simulation domain Ω become the sum of integrals over individual mesh elements
K. Furthermore, integrals over the simulation domain boundary Γ now include all mesh
element boundaries ∂K. The degeneracy of the trial functions on mesh element boundaries
poses a problem for boundary integral terms as they may evaluate to different values within
each of the two mesh elements that share any given mesh element boundary. To resolve
this, new variables are defined which are single-valued on mesh element boundaries. These
variables, Ĥ and σ̂, will be referred to as facet values. They are functions of uA, σA, and
pA and their specific definitions will be given later in this section. Accounting for this,
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eqn. (A.46) and eqn. (A.49) become as follows:

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

K

uA · (∇ · τ ) dx = Rσ (A.50)

−
∑

K∈T

∫

K

(

νσA : ∇v − pA (∇ · v)− v · f
)

dx+
∑

K∈T

∫

∂K

v · Ĥ · n ds = Ru (A.51)

Apply the product rule and divergence theorem for a second time to the third term of
eqn. (A.50):

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

K

∇ · (uA · τ ) dx

−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.52)

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

∂K

uA · τ · n ds

−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.53)

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

(û− uA) · τ · n ds−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.54)

Now define τ = ∇v and substitute eqn. (A.54) into eqn. (A.51):

−
∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− v · f
)

dx

+
∑

K∈T

∫

∂K

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = R (A.55)

where Rm = Ru +Rσ.

This gives a single unified weak form. However, it is generally easier to perform nu-
merical integration over mesh element facets instead of mesh element edges. Each mesh
element edge ∂K has two facets, F+ and F−, on the interior and exterior respectively of
the mesh element under consideration. Both facets have a unit normal, n+ and n−, and
these normals are equal and opposite to each other n+ = −n−. An integral over a mesh
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element edge can then be rewritten as follows:

∫

∂K

φ · γ · n ds =

∫

F+

φ+ · γ+ · n+ ds+

∫

F−

φ− · γ− · n− ds (A.56)

=

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds (A.57)

where superscript (+) and (−) indicate the values of the vector φ and second order tensor
γ on the interior and exterior of the mesh element respectively. However, this is only true
of mesh element edges in the interior of the simulation domain (FI); mesh element edges
on the boundary of the simulation domain (FB) only have one single facet. Accounting for
this, sums over all mesh elements of integrals over mesh element edges can be rewritten as
follows:

∑

K∈T

∫

∂K

φ · γ · n ds =
∑

F∈FI

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.58)

To simplify notation and follow standard convention define average {·} and jump [[·]]
operators for general tensor variables:

{φ} :=

{

1
2
(φ+ + φ−) interior edges

φ exterior edges
(A.59)

[[φ]] :=

{

φ+ + φ− interior edges

φ exterior edges
(A.60)
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Consider the following combination of these operators:

{φ} · [[γ · n]] + [[φn]] : {γ}

=
1

2

(

φ+ + φ−
)

·
(

γ+ · n+ + γ− · n−
)

+
(

φ+n+ + φ−n−
)

:
1

2

(

γ+ + γ−
)

=
1

2

(

φ+ · γ+ · n+ + φ+ · γ− · n− + φ− · γ+ · n+ + φ− · γ− · n−

+ φ+n+ : γ+ + φ+n+ : γ− + φ−n− : γ+ + φ−n− : γ−

)

=
1

2

(

φ+ · γ+ · n+ + φ+ · γ− · n− + φ− · γ+ · n+ + φ− · γ− · n−

+ φ+ · γ+ · n+ + φ+ · γ− · n+ + φ− · γ+ · n− + φ− · γ− · n−

)

=
1

2

(

2φ+ · γ+ · n+ + φ+ · γ− · n− − φ+ · γ− · n−

+ φ− · γ+ · n+ − φ− · γ+ · n+ + 2φ− · γ− · n−

)

=φ+ · γ+ · n+ + φ− · γ− · n− (A.61)

where φ is a vector and γ is a second order tensor. Note that the following identity was
used to rewrite some of the terms:

φ · γ · n = φn : γ (A.62)

Now use eqn. (A.61) to rewrite eqn. (A.58) in terms of the average and jump operators:

∑

K∈T

∫

∂K

φ · γ · n ds =
∑

F∈FI

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.63)

=
∑

F∈FI

∫

F

(

{φ} · [[γ · n]] + [[φn]] : {γ}
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.64)
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Insert eqn. (A.64) into eqn. (A.55) to put the weak form in standard notation:

−
∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− v · f
)

dx

+
∑

F∈FI

∫

F

(

{v} · [[Ĥ · n]] + [[vn]] : {Ĥ}
)

ds

−
∑

F∈FI

∫

F

(

{ν (û− uA)} · [[∇v · n]] + [[ν (û− uA)n]] : {∇v}
)

ds

+
∑

F∈FB

∫

F

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = Rm (A.65)

Now the values of û and Ĥ must be defined. This thesis uses the interior penalty
discontinuous Galerkin method [35]:

û =











{uA} on FI

g on FD

uA on FS

(A.66)

Ĥ =











ν{∇uA} − να[[uAn]] on FI

ν∇uA − να (uA − g)n on FD

−ν∇uA + pAI on FS

(A.67)

where α is a penalty coefficient typically taken as α = 10n2

h
for a polynomial interpolant

order n and mesh element size h.
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Substitute these values into eqn. (A.65):

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− v · f
)

dx

−
∑

F∈FI

∫

F

(

{v} · [[ν{∇uA} · n− να[[uAn]] · n]]
)

ds

−
∑

F∈FI

∫

F

(

[[vn]] : {ν{∇uA} − να[[uAn]]}
)

ds

+
∑

F∈FI

∫

F

(

{ν ({uA} − uA)} · [[∇v · n]] + [[ν ({uA} − uA)n]] : {∇v}
)

ds

−
∑

F∈FD

∫

F

(

v · (ν∇uA − να (uA − g)n) · n− ν (g − uA) ·∇v · n
)

ds

−
∑

F∈FS

∫

F

(

v · (−ν∇uA + pAI) · n− ν (uA − uA) ·∇v · n
)

ds = Rm (A.68)

Now simplify by noting that the average of an average or jump is just that average or jump
and the jump of an average or jump is zero and using identity eqn. (A.62):

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− v · f
)

dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

−
∑

F∈FS

∫

F

v ·
(

− ν∇uA + pAI
)

· n ds = Rm (A.69)

Finally, notice that the term in the stress boundary condition integral can be replaced by

114



the value of said stress boundary condition:

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− v · f
)

dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

−
∑

F∈FS

∫

F

v · h ds = Rm (A.70)

Eqn. (A.70) is the final weak form for the conservation of momentum equation.

Now the conservation of mass equation eqn. (A.38) can be considered. Insert trial
function uA to form the residual and average with weighting function q:

∫

Ω

q (∇ · uA) dx = Rc (A.71)

Then allow the trial function and weighting function to be discontinuous:

∑

K∈T

∫

K

q (∇ · uA) dx = Rc (A.72)

Finally, sum together eqn. (A.70) and eqn. (A.72) noting that R = Rm +Rc:

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

−
∑

F∈FS

∫

F

v · h ds = R (A.73)

Eqn. (A.73) is the final weak form for the discontinuous Galerkin formulation of the Stokes
equations and is in the correct form to be passed into a finite element method solver.
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However, in some cases it is desirable to include a stabilization term ǫpAq, where ǫ ≈
1× 10−10, giving the following formulation:

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− ǫpAq − v · f
)

dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

−
∑

F∈FS

∫

F

v · h ds = R (A.74)

A.3 The Incompressible Navier-Stokes Equations

Consider a domain Ω with boundary Γ meshed by a triangulation T of mesh elements K.
The incompressible Navier–Stokes equations are defined as follows with possible Dirichlet
and normal stress boundary conditions on mesh boundary regions ΓD and ΓS:

∂u

∂t
+∇ · (uu)− ν∇2u+∇p = f in Ω (A.75)

∇ · u = 0 in Ω (A.76)

u(t = 0) = u0 in Ω (A.77)

p(t = 0) = p0 in Ω (A.78)

u = g on ΓD (A.79)

(uu− ν∇u+ pI) · n−max (u · n, 0)u = h on ΓS (A.80)

where f is some body force and ν is the kinematic viscosity. The formulation of the normal
stress boundary condition to additionally enforce no-backflow comes from [90].

Initially only consider the conservation of momentum equation eqn. (A.75). Define σ

to be the gradient of u and use it to reduce this second order partial differential equation
into a redundant system of first order partial differential equations:

σ = ∇u (A.81)

∂u

∂t
+∇ · (uu)− ν∇ · σ +∇p = f (A.82)
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Insert trial functions σA, uA, and pA to form residuals and average with weighting functions
τ for eqn. (A.81) and v for eqn. (A.82):

∫

Ω

σA : τ dx−

∫

Ω

∇uA : τ dx = Rσ (A.83)

∫

Ω

(

v ·
∂uA

∂t
+ v ·∇ · (uAuA)− νv ·∇ · σA + v ·∇pA

)

dx−

∫

Ω

v · f dx = Ru (A.84)

Apply the product rule and then the divergence theorem to eqn. (A.83):

∫

Ω

σA : τ dx−

∫

Ω

∇ · (uA · τ ) dx+

∫

Ω

uA · (∇ · τ ) dx = Rσ (A.85)
∫

Ω

σA : τ dx−

∫

Γ

uA · τ · n ds+

∫

Ω

uA · (∇ · τ ) dx = Rσ (A.86)

and to eqn. (A.84):

∫

Ω

(

v ·
∂uA

∂t
− uAuA : ∇v + νσA : ∇v − pA (∇ · v)− v · f

)

dx

+

∫

Ω

∇ ·
(

v · uAuA − νv · σA + pAv
)

dx = Ru (A.87)

∫

Ω

(

v ·
∂uA

∂t
− uAuA : ∇v + νσA : ∇v − pA (∇ · v)− v · f

)

dx

+

∫

Γ

(

v · uAuA − νv · σA + pAv
)

· n ds = Ru (A.88)

For convenience, define H = uAuA − νσA + pAI and use it to rewrite eqn. (A.88):

∫

Ω

(

v ·
∂uA

∂t
− uAuA : ∇v + νσA : ∇v − pA (∇ · v)− v · f

)

dx

+

∫

Γ

v ·H · n ds = Ru (A.89)

Substituting eqn. (A.86) into eqn. (A.89) produces the standard finite element method
weak form. Using the discontinuous Galerkin method instead, the trial functions uA, σA,
and pA are allowed to be discontinuous across mesh element boundaries. Integrals over
the entire simulation domain Ω become the sum of integrals over individual mesh elements
K. Furthermore, integrals over the simulation domain boundary Γ now include all mesh
element boundaries ∂K. The degeneracy of the trial functions on mesh element boundaries
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poses a problem for boundary integral terms as they may evaluate to different values within
each of the two mesh elements that share any given mesh element boundary. To resolve
this, new variables are defined which are single-valued on mesh element boundaries. These
variables, Ĥ and σ̂, will be referred to as facet values. They are functions of uA, σA, and
pA and their specific definitions will be given later in this section. Accounting for this,
eqn. (A.86) and eqn. (A.89) become as follows:

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

K

uA · (∇ · τ ) dx = Rσ (A.90)

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAuA : ∇v + νσA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

K∈T

∫

∂K

v · Ĥ · n ds = Ru (A.91)

Apply the product rule and divergence theorem for a second time to the third term of
eqn. (A.90):

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

K

∇ · (uA · τ ) dx

−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.92)

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

û · τ · n ds+
∑

K∈T

∫

∂K

uA · τ · n ds

−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.93)

∑

K∈T

∫

K

σA : τ dx−
∑

K∈T

∫

∂K

(û− uA) · τ · n ds−
∑

K∈T

∫

K

∇uA : τ dx = Rσ (A.94)

Now define τ = ∇v and substitute eqn. (A.94) into eqn. (A.91):

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAuA : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

K∈T

∫

∂K

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = Rm (A.95)

where Rm = Ru +Rσ.
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This gives a single unified weak form. However, it is generally easier to perform nu-
merical integration over mesh element facets instead of mesh element edges. Each mesh
element edge ∂K has two facets, F+ and F−, on the interior and exterior respectively of
the mesh element under consideration. Both facets have a unit normal, n+ and n−, and
these normals are equal and opposite to each other n+ = −n−. An integral over a mesh
element edge can then be rewritten as follows:

∫

∂K

φ · γ · n ds =

∫

F+

φ+ · γ+ · n+ ds+

∫

F−

φ− · γ− · n− ds (A.96)

=

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds (A.97)

where superscript (+) and (−) indicate the values of the vector φ and second order tensor
γ on the interior and exterior of the mesh element respectively. However, this is only true
of mesh element edges in the interior of the simulation domain (FI); mesh element edges
on the boundary of the simulation domain (FB) only have one single facet. Accounting for
this, sums over all mesh elements of integrals over mesh element edges can be rewritten as
follows:

∑

K∈T

∫

∂K

φ · γ · n ds =
∑

F∈FI

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.98)

To simplify notation and follow standard convention define average {·} and jump [[·]]
operators for general tensor variables:

{φ} :=

{

1
2
(φ+ + φ−) interior edges

φ exterior edges
(A.99)

[[φ]] :=

{

φ+ + φ− interior edges

φ exterior edges
(A.100)
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Consider the following combination of these operators:

{φ} · [[γ · n]] + [[φn]] : {γ}

=
1

2

(

φ+ + φ−
)

·
(

γ+ · n+ + γ− · n−
)

+
(

φ+n+ + φ−n−
)

:
1

2

(

γ+ + γ−
)

=
1

2

(

φ+ · γ+ · n+ + φ+ · γ− · n− + φ− · γ+ · n+ + φ− · γ− · n−

+ φ+n+ : γ+ + φ+n+ : γ− + φ−n− : γ+ + φ−n− : γ−

)

=
1

2

(

φ+ · γ+ · n+ + φ+ · γ− · n− + φ− · γ+ · n+ + φ− · γ− · n−

+ φ+ · γ+ · n+ + φ+ · γ− · n+ + φ− · γ+ · n− + φ− · γ− · n−

)

=
1

2

(

2φ+ · γ+ · n+ + φ+ · γ− · n− − φ+ · γ− · n−

+ φ− · γ+ · n+ − φ− · γ+ · n+ + 2φ− · γ− · n−

)

=φ+ · γ+ · n+ + φ− · γ− · n− (A.101)

where φ is a vector and γ is a second order tensor. Note that the following identity was
used to rewrite some of the terms:

φ · γ · n = φn : γ (A.102)

Now use eqn. (A.101) to rewrite eqn. (A.98) in terms of the average and jump operators:

∑

K∈T

∫

∂K

φ · γ · n ds =
∑

F∈FI

∫

F

(

φ+ · γ+ · n+ + φ− · γ− · n−
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.103)

=
∑

F∈FI

∫

F

(

{φ} · [[γ · n]] + [[φn]] : {γ}
)

ds

+
∑

F∈FB

∫

F

φ · γ · n ds (A.104)
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Insert eqn. (A.104) into eqn. (A.95) to put the weak form in standard notation:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAuA : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

F∈FI

∫

F

(

{v} · [[Ĥ · n]] + [[vn]] : {Ĥ}
)

ds

−
∑

F∈FI

∫

F

(

{ν (û− uA)} · [[∇v · n]] + [[ν (û− uA)n]] : {∇v}
)

ds

+
∑

F∈FB

∫

F

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = Rm (A.105)

Eqn. (A.105) is nonlinear and thus challenging to solve completely implicitly. One
possible solution is to substitute a known velocity field w for one of the velocities in the
nonlinear convection term:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

F∈FI

∫

F

(

{v} · [[Ĥ · n]] + [[vn]] : {Ĥ}
)

ds

−
∑

F∈FI

∫

F

(

{ν (û− uA)} · [[∇v · n]] + [[ν (û− uA)n]] : {∇v}
)

ds

+
∑

F∈FB

∫

F

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = Rm (A.106)

Combining eqn. (A.106) with a conservation of mass equation gives the linear Oseen equa-
tions. The value of w can come from the solution of a previous time step or be obtained
through Picard iterations. An alternative is to treat the convection term explicitly and
solve all remaining terms implicitly. This is known as an IMEX (implicit-explicit) scheme
[91] and will be given in Appendix A.3.1.

Now the values of û and Ĥ must be defined. This thesis uses the interior penalty
discontinuous Galerkin method [35]. Note that Ĥ is just the summation of the facet
values for the convection term, viscous term, and pressure term Ĥ = Ĥc + Ĥv + Ĥp.
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Thus, for clarity, the facet value for the convection term is given separately:

û =











{uA} on FI

g on FD

uA on FS

(A.107)

Ĥc =











{uA} (w · n)n+ 1
2

(

u+
A − u−

A

)

|w · n|n on FI

1
2
(uA + g) (w · n)n+ 1

2
(uA − g) |w · n|n on FD

uAw on FS

(A.108)

Ĥv + Ĥp =











−ν{∇uA}+ να[[uAn]] on FI

−ν∇uA + να (uA − g)n on FD

−ν∇uA + pAI on FS

(A.109)

where α is a penalty coefficient typically taken as α = 10n2

h
for a polynomial interpolant

order n and mesh element size h.
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Substitute these values into eqn. (A.106):

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

F∈FI

∫

F

(

{v} · [[{uA} (w · n) +
1

2

(

u+
A − u−

A

)

|w · n|]]
)

ds

−
∑

F∈FI

∫

F

(

{v} · [[ν{∇uA} · n− να[[uAn]] · n]]
)

ds

+
∑

F∈FI

∫

F

(

[[vn]] : {{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n}
)

ds

−
∑

F∈FI

∫

F

(

[[vn]] : {ν{∇uA} − να[[uAn]]}
)

ds

−
∑

F∈FI

∫

F

(

{ν ({uA} − uA)} · [[∇v · n]] + [[ν ({uA} − uA)n]] : {∇v}
)

ds

+
∑

F∈FD

∫

F

v ·

(

1

2
(uA + g) (w · n) +

1

2
(uA − g) |w · n|

)

ds

−
∑

F∈FD

∫

F

v ·
(

ν∇uA − να (uA − g)n · n− ν (g − uA) ·∇v · n
)

ds

+
∑

F∈FS

∫

F

(

v · (uAw − ν∇uA + pAI) · n− ν (uA − uA) ·∇v · n
)

ds = Rm (A.110)

Now simplify by noting that the average of an average or jump is just that average or jump
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and the jump of an average or jump is zero and using identity eqn. (A.102):

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

+
∑

F∈FD

∫

F

vn :

(

1

2
(uA + g) (w · n)n+

1

2
(uA − g) |w · n|n

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + uAn : ∇v − α (uA − g) · v
)

ds

+
∑

F∈FS

∫

F

v ·
(

uAw − ν∇uA + pAI
)

· n ds = Rm (A.111)

Finally, notice that the term in the stress boundary condition integral can be replaced by
the value of said stress boundary condition:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− v · f

)

dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

+
∑

F∈FD

∫

F

vn :

(

1

2
(uA + g) (w · n)n+

1

2
(uA − g) |w · n|n

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + uAn : ∇v − α (uA − g) · v
)

ds

+
∑

F∈FS

∫

F

v ·
(

h+max (w · n, 0)uA

)

ds = Rm (A.112)

Eqn. (A.112) is the final weak form for the conservation of momentum equation.
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Now the conservation of mass equation eqn. (A.76) can be considered. Insert trial
function uA to form the residual and average with weighting function q:

∫

Ω

q (∇ · uA) dx = Rc (A.113)

Then allow the trial function and weighting function to be discontinuous:

∑

K∈T

∫

K

q (∇ · uA) dx = Rc (A.114)

Finally, sum together eqn. (A.112) and eqn. (A.114) noting that R = Rm +Rc:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

+
∑

F∈FD

∫

F

vn :

(

1

2
(uA + g) (w · n)n+

1

2
(uA − g) |w · n|n

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + uAn : ∇v − α (uA − g) · v
)

ds

+
∑

F∈FS

∫

F

v ·
(

h+max (w · n, 0)uA

)

ds = R (A.115)

Eqn. (A.115) is the final weak form for the discontinuous Galerkin formulation of the incom-
pressible Navier–Stokes equations. The time derivative must be discretized but otherwise
it is in the correct form to be passed into a finite element method solver. However, in some
cases it is desirable to include a stabilization term ǫpAq, where ǫ ≈ 1× 10−10, giving the
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following formulation:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− ǫpAq

)

dx

−
∑

K∈T

∫

K

v · f dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

+
∑

F∈FD

∫

F

vn :

(

1

2
(uA + g) (w · n)n+

1

2
(uA − g) |w · n|n

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + uAn : ∇v − α (uA − g) · v
)

ds

+
∑

F∈FS

∫

F

v ·
(

h+max (w · n, 0)uA

)

ds = R (A.116)

A.3.1 IMEX Time Discretization

The full discontinuous Galerkin formulation of the weak form of the incompressible Navier-
Stokes equations is given below prior to defining expressions for the facet values:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAuA : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− ǫpAq

)

dx

−
∑

K∈T

∫

K

v · f dx

+
∑

F∈FI

∫

F

(

{v} · [[Ĥ · n]] + [[vn]] : {Ĥ}
)

ds

−
∑

F∈FI

∫

F

(

{ν (û− uA)} · [[∇v · n]] + [[ν (û− uA)n]] : {∇v}
)

ds

+
∑

F∈FB

∫

F

(

v · Ĥ · n− ν (û− uA) ·∇v · n
)

ds = R (A.117)
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The convection term makes eqn. (A.117) nonlinear. The previous section handled this
by replacing one of the velocities with a known velocity field, w, making eqn. (A.117)
linear. Another option is to leave the convection term as is but treat it explicitly in
the time discretization scheme. A fully explicit time discretization scheme, such as explicit
Euler, could be used. However, the viscous term is generally stiff so explicit schemes require
a very small time step to ensure stability. A better option is to couple an explicit treatment
of the nonlinear convection term with an implicit treatment of the remaining terms. This
is known as an IMEX (implicit-explicit) time discretization scheme and enables the use
of large time steps without requiring a nonlinear or iterative solve [91]. In the case of
the incompressible Navier-Stokes equations, the terms treated implicitly comprise a Stokes
system, so can further take advantage of optimized Stokes solvers and preconditioners [92].

Ascher et al [91] describe a variety of IMEX schemes of different orders. For simplicity,
this derivation will consider a basic first-order scheme:

un+1
A − un

A

∆t
+ F n +Gn+1 = R (A.118)

where n and n + 1 represent the current and future time steps respectively and ∆t is
the time step size. F n comprises all terms that are to be treated explicitly, evaluated at
the current time step, and Gn+1 comprises all terms that are to be treated implicitly and
whose values at the future time step are to be solved for. Considering eqn. (A.117), F n is
as follows:

F n = −
∑

K∈T

∫

K

un
Au

n
A : ∇v dx (A.119)
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and Gn+1:

Gn+1 =
∑

K∈T

∫

K

(

ν∇un+1
A : ∇v − pn+1

A (∇ · v)− q
(

∇ · un+1
A

)

− ǫpn+1
A q

)

dx

−
∑

K∈T

∫

K

v · fn+1 dx

+
∑

F∈FI

∫

F

(

{v} · [[Ĥn+1 · n]] + [[vn]] : {Ĥn+1}
)

ds

−
∑

F∈FI

∫

F

{ν
(

ûn+1 − un+1
A

)

} · [[∇v · n]] ds

−
∑

F∈FI

∫

F

[[ν
(

ûn+1 − un+1
A

)

n]] : {∇v} ds

+
∑

F∈FB

∫

F

(

v · Ĥn+1 · n− ν
(

ûn+1 − un+1
A

)

·∇v · n
)

ds (A.120)

Now the values of û and Ĥ can be defined. Note that since the convection term is
treated fully explicitly Ĥ only comprises the facet values for the viscous term and pressure
term:

û =











{uA} on FI

g on FD

uA on FS

(A.121)

Ĥ =











−ν{∇uA}+ να[[uAn]] on FI

−ν∇uA + να (uA − g)n on FD

−ν∇uA + pAI on FS

(A.122)

where α is a penalty coefficient typically taken as α = 10n2

h
for a polynomial interpolant

order n and mesh element size h.
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Substitute these values into eqn. (A.120):

Gn+1 =
∑

K∈T

∫

K

(

ν∇un+1
A : ∇v − pn+1

A (∇ · v)− q
(

∇ · un+1
A

)

− ǫpn+1
A q

)

dx

−
∑

K∈T

∫

K

v · fn+1 dx

−
∑

F∈FI

∫

F

{v} · [[ν{∇un+1
A } · n− να[[un+1

A n]] · n]] ds

−
∑

F∈FI

∫

F

[[vn]] : {ν{∇un+1
A } − να[[un+1

A n]]} ds

−
∑

F∈FI

∫

F

{ν
(

{un+1
A } − un+1

A

)

} · [[∇v · n]] ds

−
∑

F∈FI

∫

F

[[ν
(

{un+1
A } − un+1

A

)

n]] : {∇v} ds

−
∑

F∈FD

∫

F

(

vn :
(

ν∇un+1
A − να

(

un+1
A − gn+1

)

n
)

− ν
(

gn+1 − un+1
A

)

·∇v · n
)

ds

+
∑

F∈FS

∫

F

(

v ·
(

− ν∇un+1
A + pn+1

A I

)

· n− ν
(

un+1
A − un+1

A

)

·∇v · n
)

ds (A.123)

Now simplify by noting that the average of an average or jump is just that average or jump
and the jump of an average or jump is zero and using identity eqn. (A.102):

Gn+1 =
∑

K∈T

∫

K

(

ν∇un+1
A : ∇v − pn+1

A (∇ · v)− q
(

∇ · un+1
A

)

− ǫpn+1
A q

)

dx

−
∑

K∈T

∫

K

v · fn+1 dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇un+1
A }+ [[un+1

A n]] : {∇v} − α[[un+1
A n]] : [[vn]]}

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇un+1
A +

(

un+1
A − gn+1

)

n : ∇v − α
(

un+1
A − gn+1

)

· v
)

ds

+
∑

F∈FS

∫

F

v ·
(

− ν∇un+1
A + pn+1

A I

)

· n ds (A.124)
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Finally, notice that the term in the stress boundary condition integral can be replaced by
the value of said stress boundary condition:

Gn+1 =
∑

K∈T

∫

K

(

ν∇un+1
A : ∇v − pn+1

A (∇ · v)− q
(

∇ · un+1
A

)

− ǫpn+1
A q

)

dx

−
∑

K∈T

∫

K

v · fn+1 dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇un+1
A }+ [[un+1

A n]] : {∇v} − α[[un+1
A n]] : [[vn]]}

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇un+1
A +

(

un+1
A − gn+1

)

n : ∇v − α
(

un+1
A − gn+1

)

· v
)

ds

+
∑

F∈FS

∫

F

v · h ds (A.125)

Then the final weak form, including time discretization, is as follows:

∑

K∈T

∫

K

un+1
A − un

A

∆t

−
∑

K∈T

∫

K

un
Au

n
A : ∇v dx

+
∑

K∈T

∫

K

(

ν∇un+1
A : ∇v − pn+1

A (∇ · v)− q
(

∇ · un+1
A

)

− ǫpn+1
A q

)

dx

−
∑

K∈T

∫

K

v · fn+1 dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇un+1
A }+ [[un+1

A n]] : {∇v} − α[[un+1
A n]] : [[vn]]}

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇un+1
A +

(

un+1
A − gn+1

)

n : ∇v − α
(

un+1
A − gn+1

)

· v
)

ds

+
∑

F∈FS

∫

F

v · h ds = R (A.126)
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Appendix B

Diffuse Interface Formulations of

OpenCMP Models

The following models were developed with the help of James Lowman and are based on
work by Nguyen et al [38].

B.1 The Poisson Equation

Consider the Poisson equation defined on a complex domain Ω with boundaries ΓD, ΓN ,
and ΓR corresponding to Dirichlet, Neumann, and Robin boundary conditions respectively:

−∇2u = f in Ω (B.1)

u = g on ΓD (B.2)

−n ·∇u = h on ΓN (B.3)

n ·∇u = r(u− q) on ΓR (B.4)

where f is some source function.

The standard finite element method weak form is derived in Appendix A to be eqn. (A.14)
and is repeated below with boundary conditions inserted:

∫

Ω

∇uA ·∇v dx+

∫

ΓN

vh ds−

∫

ΓR

vr (uA − q) ds−

∫

Ω

vf dx = R (B.5)
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Now enclose the complex domain Ω in a simple domain κ and discretize it with a mesh
that does not necessarily conform to the boundaries of Ω. Define a phase field φ which
takes the value one at any mesh elements within Ω and zero at any mesh elements outside
of Ω, and varies smoothly from zero to one across the boundary Γ. The following identities
can be used to replace volume integrals over Ω and surface integrals over Γ with volume
integrals over κ [38]:

∫

Ω

A dx =

∫

κ

AH dx ≈

∫

κ

Aφ dx (B.6)
∫

Γ

B ds =

∫

κ

δΓB dx ≈

∫

κ

B|∇φ| dx (B.7)

n ≈
−∇φ

|∇φ|
(B.8)

where H is the Heaviside function and δΓ is the Dirac delta function, which are approxi-
mated by φ and |∇φ| respectively.

Substituting these identities into eqn. (B.5) gives the diffuse interface formulation of
the finite element weak form for the Poisson equation with Neumann and Robin boundary
conditions:
∫

κ

∇uA ·∇vφ dx+

∫

κ

vh|∇φ|φN dx−

∫

κ

vr (uA − q) |∇φ|φR dx−

∫

κ

vfφ dx = R (B.9)

Note that φN and φR are masks to mark the portions of the phase field corresponding
to Neumann and Robin boundary conditions respectively. For more details see work by
Monte et al [8].

Dirichlet boundary conditions are imposed by directly setting the value of the trial
function at the relevant mesh nodes. However, this is not possible with the diffuse inter-
face method as the mesh does not necessarily conform to the boundary of the complex
domain. Instead, the Nitsche method [93] can be used to weakly impose Dirichlet bound-
ary conditions in the region of the complex boundary. This requires the following additions
to the weak form:

∫

κ

∇uA ·∇vφ dx+

∫

κ

vh|∇φ|φN dx−

∫

κ

vr (uA − q) |∇φ|φR dx−

∫

κ

vfφ dx

+

∫

κ

(uA − g)∇φ ·∇vφD dx+

∫

κ

v∇φ ·∇uAφD dx

+β

∫

κ

v(uA − g)|∇φ|φD dx = R (B.10)
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where β is a penalty parameter in this work taken to be β = 10n2

h
for a polynomial inter-

polant order n and mesh element size h. Eqn. (B.10) is the diffuse interface formulation of
the standard finite element method weak form for the Poisson equation.

The discontinuous Galerkin formulation can be obtained by the same means. Begin
with the weak form for a complex domain-conforming mesh (eqn. (A.36)):

∑

K∈T

∫

K

(

∇uA ·∇v − vf
)

dx

−
∑

F∈FI

∫

F

(

[[uAn]] · {∇v}+ [[vn]] · {∇uA} − α[[uA]][[v]]
)

ds

−
∑

F∈FD

∫

F

(

n · (uA − g)∇v + n · v∇uA − α (uA − g) v
)

ds

−
∑

F∈FN

∫

F

vh ds+
∑

F∈FR

∫

F

vr (uA − q) ds = R (B.11)

Redefine the triangulation T to be for a nonconforming mesh. Then use eqns. (B.6) to (B.8)
to convert all volume and surface integrals on the conforming mesh into volume integrals
on the nonconforming mesh:

∑

K∈T

∫

K

(

∇uA ·∇v − vf
)

φ dx

−
∑

F∈FI

∫

F

(

[[uAn]] · {∇v}+ [[vn]] · {∇uA} − α[[uA]][[v]]
)

φ ds

+
∑

K∈T

∫

K

(

(uA − g)∇φ ·∇v + v∇φ ·∇uA + β (uA − g) v|∇φ|
)

φD dx

+
∑

K∈T

∫

K

vh|∇φ|φN dx

−
∑

K∈T

∫

K

vr (uA − q) |∇φ|φR dx = R (B.12)

Eqn. (B.12) is the diffuse interface formulation of the discontinuous Galerkin method weak
form for the Poisson equation. Note that integrals over boundary facets have been replaced
by volume integrals due to the lack of complex boundary-conforming mesh elements. How-
ever, the integrals over interior facets used to penalize discontinuities in the final solution
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field remain facet integrals as the nonconforming mesh still contains interior facets. Also
note that the discontinuous Galerkin terms used to weakly impose Dirichlet boundary con-
ditions become the Nitsche method when boundary facet integrals are transformed into
volume integrals. The discontinuous Galerkin penalty parameter α is generally equal to
the Nitsche method penalty parameter β.

B.2 The Stokes Equations

Consider the Stokes equations defined on a complex domain Ω with boundaries ΓD and ΓS

corresponding to Dirichlet and normal stress boundary conditions respectively:

−ν∇2u+∇p = f in Ω (B.13)

∇ · u = 0 in Ω (B.14)

u = g on ΓD (B.15)

(−ν∇u+ pI) · n = h on ΓS (B.16)

where f is some body force and ν is the kinematic viscosity.

The standard finite element method weak form is derived in Appendix A to be the sum
of eqn. (A.49) and eqn. (A.71) and is repeated below with boundary conditions inserted:

∫

Ω

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

dx+

∫

ΓS

v · h ds = R (B.17)

Now enclose the complex domain Ω in a simple domain κ and discretize it with a mesh
that does not necessarily conform to the boundaries of Ω. Define a phase field φ which
takes the value one at any mesh elements within Ω and zero at any mesh elements outside
of Ω, and varies smoothly from zero to one across the boundary Γ. The following identities
can be used to replace volume integrals over Ω and surface integrals over Γ with volume
integrals over κ [38]:

∫

Ω

A dx =

∫

κ

AH dx ≈

∫

κ

Aφ dx (B.18)
∫

Γ

B ds =

∫

κ

δΓB dx ≈

∫

κ

B|∇φ| dx (B.19)

n ≈
−∇φ

|∇φ|
(B.20)

134



where H is the Heaviside function and δΓ is the Dirac delta function, which are approxi-
mated by φ and |∇φ| respectively.

Substituting these identities into eqn. (B.17) gives the diffuse interface formulation
of the finite element weak form for the Stokes equations with normal stress boundary
conditions:
∫

κ

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

φ dx+

∫

κ

v · h|∇φ|φS dx = R (B.21)

Note that φS is a mask that marks the portions of the phase field corresponding to normal
stress boundary conditions. For more details see work by Monte et al [8].

Dirichlet boundary conditions are imposed by directly setting the value of the trial
function at the relevant mesh nodes. However, this is not possible with the diffuse inter-
face method as the mesh does not necessarily conform to the boundary of the complex
domain. Instead, the Nitsche method [93] can be used to weakly impose Dirichlet bound-
ary conditions in the region of the boundary. This requires the following additions to the
weak form:

∫

κ

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

φ dx+

∫

κ

v · h|∇φ|φS dx

+

∫

κ

(uA − g) ·∇v ·∇φφD dx+

∫

κ

v ·∇uA ·∇φφD dx

+β

∫

κ

v · (uA − g)|∇φ|φD dx = R (B.22)

where β is a penalty parameter in this work taken to be β = 10n2

h
for a polynomial inter-

polant order n and mesh element size h. Eqn. (B.22) is the diffuse interface formulation of
the standard finite element method weak form for the Stokes equations.

The discontinuous Galerkin formulation can be obtained by the same means. Begin
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with the weak form for a complex domain-conforming mesh (eqn. (A.73)):

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

−
∑

F∈FS

∫

F

v · h ds = R (B.23)

Redefine the triangulation T to be for a nonconforming mesh. Then use eqns. (B.18)
to (B.20) to convert all volume and surface integrals on the conforming mesh into volume
integrals on the nonconforming mesh:

∑

K∈T

∫

K

(

ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f
)

φ dx

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

φ ds

+
∑

K∈T

∫

K

ν
(

v∇φ : ∇uA + (uA − g)∇φ : ∇v − β (uA − g) · v|∇φ|
)

φD dx

−
∑

K∈T

∫

K

v · h|∇φ|φS dx = R (B.24)

Eqn. (B.24) is the diffuse interface formulation of the discontinuous Galerkin method weak
form for the Stokes equations. Note that integrals over boundary facets have been replaced
by volume integrals due to the lack of complex boundary-conforming mesh elements. How-
ever, the integrals over interior facets used to penalize discontinuities in the final solution
field remain facet integrals as the nonconforming mesh still contains interior facets. Also
note that the discontinuous Galerkin terms used to weakly impose Dirichlet boundary con-
ditions become the Nitsche method when boundary facet integrals are transformed into
volume integrals. The discontinuous Galerkin penalty parameter α is generally equal to
the Nitsche method penalty parameter β.
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B.3 The Incompressible Navier-Stokes Equations

Consider the incompressible Navier-Stokes equations defined on a complex domain Ω with
boundaries ΓD and ΓS corresponding to Dirichlet and normal stress boundary conditions
respectively:

∂u

∂t
+∇ · (uu)− ν∇2u+∇p = f in Ω (B.25)

∇ · u = 0 in Ω (B.26)

u(t = 0) = u0 in Ω (B.27)

p(t = 0) = p0 in Ω (B.28)

u = g on ΓD (B.29)

(uu− ν∇u+ pI) · n−max (u · n, 0)u = h on ΓS (B.30)

where f is some body force and ν is the kinematic viscosity.

The standard finite element method weak form is derived in Appendix A to be the sum
of eqn. (A.89) and eqn. (A.113) and is repeated below with boundary conditions inserted:

∫

Ω

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

dx

+

∫

ΓS

v ·
(

h+max (w · n, 0)uA

)

ds = R (B.31)

Eqn. (B.31) uses Oseen-style linearization to handle the nonlinear convection term. How-
ever, the following modifications for the diffuse interface method would apply equally to
an IMEX-style linearization.

Now enclose the complex domain Ω in a simple domain κ and discretize it with a mesh
that does not necessarily conform to the boundaries of Ω. Define a phase field φ which
takes the value one at any mesh elements within Ω and zero at any mesh elements outside
of Ω, and varies smoothly from zero to one across the boundary Γ. The following identities
can be used to replace volume integrals over Ω and surface integrals over Γ with volume
integrals over κ [38]:

∫

Ω

A dx =

∫

κ

AH dx ≈

∫

κ

Aφ dx (B.32)
∫

Γ

B ds =

∫

κ

δΓB dx ≈

∫

κ

B|∇φ| dx (B.33)

n ≈
−∇φ

|∇φ|
(B.34)
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where H is the Heaviside function and δΓ is the Dirac delta function, which are approxi-
mated by φ and |∇φ| respectively.

Substituting these identities into eqn. (B.31) gives the diffuse interface formulation of
the finite element weak form for the incompressible Navier-Stokes equations with normal
stress boundary conditions:

∫

κ

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

φ dx

+

∫

κ

v ·
(

h+max (w ·∇φ, 0)uA

)

|∇φ|φS dx = R (B.35)

Note that φS is a mask that marks the portions of the phase field corresponding to normal
stress boundary conditions. For more details see work by Monte et al [8].

Dirichlet boundary conditions are imposed by directly setting the value of the trial
function at the relevant mesh nodes. However, this is not possible with the diffuse inter-
face method as the mesh does not necessarily conform to the boundary of the complex
domain. Instead, the Nitsche method [93] can be used to weakly impose Dirichlet bound-
ary conditions in the region of the boundary. This requires the following additions to the
weak form:

∫

κ

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

φ dx

+

∫

κ

v ·
(

h+max (w ·∇φ, 0)uA

)

|∇φ|φS dx

+

∫

κ

(uA − g) ·∇v ·∇φφD dx+

∫

κ

v ·∇uA ·∇φφD dx

+β

∫

κ

v · (uA − g)|∇φ|φD dx = R (B.36)

where β is a penalty parameter in this work taken to be β = 10n2

h
for a polynomial inter-

polant order n and mesh element size h. Eqn. (B.36) is the diffuse interface formulation
of the standard finite element method weak form for the incompressible Navier-Stokes
equations.

The discontinuous Galerkin formulation can be obtained by the same means. Begin
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with the weak form for a complex domain-conforming mesh (eqn. (A.115)):

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

ds

+
∑

F∈FD

∫

F

vn :

(

1

2
(uA + g) (w · n)n+

1

2
(uA − g) |w · n|n

)

ds

−
∑

F∈FD

∫

F

ν
(

vn : ∇uA + (uA − g)n : ∇v − α (uA − g) · v
)

ds

+
∑

F∈FS

∫

F

v ·
(

h+max (w · n, 0)uA

)

ds = R (B.37)

Redefine the triangulation T to be for a nonconforming mesh. Then use eqns. (B.32)
to (B.34) to convert all volume and surface integrals on the conforming mesh into volume
integrals on the nonconforming mesh:

∑

K∈T

∫

K

(

v ·
∂uA

∂t
− uAw : ∇v + ν∇uA : ∇v − pA (∇ · v)− q (∇ · uA)− v · f

)

φ dx

+
∑

F∈FI

∫

F

[[vn]] :

(

{uA} (w · n)n+
1

2

(

u+
A − u−

A

)

|w · n|n

)

φ ds

−
∑

F∈FI

∫

F

ν
(

[[vn]] : {∇uA}+ [[uAn]] : {∇v} − α[[uAn]] : [[vn]]
)

φ ds

−
∑

K∈T

∫

K

v ·

(

1

2
(uA + g) (w ·∇φ) +

1

2
(uA − g) |w ·∇φ|

)

φD dx

+
∑

K∈T

∫

K

ν
(

v∇φ : ∇uA + (uA − g)∇φ : ∇v − α (uA − g) · v|∇φ|
)

φD dx

+
∑

K∈T

∫

K

v ·
(

h+max (w ·∇φ, 0)uA

)

|∇φ|φS dx = R (B.38)

Eqn. (B.38) is the diffuse interface formulation of the discontinuous Galerkin method weak
form for the incompressible Navier-Stokes equations. Note that integrals over bound-
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ary facets have been replaced by volume integrals due to the lack of complex boundary-
conforming mesh elements. However, the integrals over interior facets used to penalize
discontinuities in the final solution field remain facet integrals as the nonconforming mesh
still contains interior facets. Also note that the discontinuous Galerkin terms used to
weakly impose Dirichlet boundary conditions become the Nitsche method, modified to
enforce upwinding, when boundary facet integrals are transformed into volume integrals.
The discontinuous Galerkin penalty parameter α is generally equal to the Nitsche method
penalty parameter β.
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