
Algorithms for Linearly Recurrent
Sequences of Truncated Polynomials

by

Seung Gyu Hyun

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Seung Gyu Hyun 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Linear recurrent sequences are those whose elements are defined as linear combinations of
preceding elements, and finding recurrence relations is a fundamental problem in computer
algebra. In this paper, we focus on sequences whose elements are vectors over the ring
A = K[x]/〈xd〉 of truncated polynomials. Finding the ideal of their recurrence relations has
applications such as the computation of minimal polynomials and determinants of sparse
matrices over A. We present three methods for finding this ideal: a Berlekamp-Massey-like
approach due to Kurakin, one which computes the kernel of some block-Hankel matrix over
A via a minimal approximant basis, and one based on bivariate Padé approximation. We
propose complexity improvements for the first two methods, respectively by avoiding the
computation of redundant relations and by exploiting the Hankel structure to compress
the approximation problem. Then we confirm these improvements empirically through a
C++ implementation, and we discuss the above-mentioned applications.

iii

Acknowledgements

I would like to thank my supervisor Prof. Eric Schost for all his guidance throughout my
university years, and especially for his patience and understanding during my undergradu-
ate research terms. I would also like to thank Prof. Vincent Neiger for being so welcoming
and friendly during my semester in France and beyond, as well as the countless hours he
has spent helping me.

I would like to thank Jean for her endless love and support.

Finally, I would like to thank the readers Prof. George Labahn and Prof. Mark Giesbrecht.

iv

Dedication

This is dedicated to my parents and brother.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 6

2.1 Basic algorithmic tools . 6

2.2 Linearly recurrent sequences over K . 6

2.3 Linearly recurrent sequences over K[x]/〈xd〉 8

2.4 Partial sequences . 9

2.5 Bivariate interpretation and generating sets 10

2.6 Univariate and bivariate approximations 11

3 Kurakin’s Algorithm 13

3.1 Kurakin’s algorithm over A . 13

3.2 Lazy algorithm based on Kurakin’s . 17

3.3 Example of Kurakin and Lazy Kurakin . 20

4 Approximation Approaches 23

4.1 Via Univariate Approximant Bases . 23

4.2 Speed-up by compression using structure 24

4.3 Via bivariate Padé approximation . 26

vi

5 Experimental Results 28

6 Applications to Sparse Matrices 30

6.1 Minimal polynomials of sparse matrices . 30

6.2 Determinant of sparse matrices . 31

7 Future Works and Conclusion 33

References 34

vii

List of Figures

1.1 Two-dimensional linearly recurrent sequence 2

1.2 Corresponding 2-dimensional sequence for (1 + 2x, 1 + 3x, 2 + 5x, 3 + 8x, . . .) 3

viii

List of Tables

1.1 Summary of proposed algorithms with costs in the number of operations in K 4

5.1 Runtimes, in seconds, of algorithms Kurakin, Lazy Kurakin, direct PM-
Basis, and Hankel-PM-Basis, observed on AMD Ryzen 5 3600X 6-Core
CPU with 16 GB RAM over K = F9001. 29

ix

Chapter 1

Introduction

Linear recurrences appear in many domains of computer science and mathematics, such as
coding theory [7, 43], economics [61], and are used in many fast algorithms in computer
algebra [65, 17]. The most famous example of a linearly recurrent sequence is the Fibonacci
sequence, where each element is the sum of the two preceding elements. More generally,
a r-dimensional sequence s = (Si1,i2,...,ir) of elements in K, for some field K, is said to
be linearly recurrent if all elements (after some index) of s can be written as a (fixed)
linear combination of preceding elements. Given such a sequence, we seek a representation
of its annihilator, which is a (r-variate) polynomial ideal corresponding to all recurrence
relations which are satisfied by the sequences; the polynomials in the annihilator are said
to cancel the sequence.

In the simplest case, when r = 1, the annihilator can be represented by a single unique
monic univariate polynomial of minimal degree. Continuing with the example of the Fi-
bonacci sequence sF = (Si)i≥0 = (1, 1, 2, 3, 5, 8, . . .), we can see that Si+2 = Si+1 + Si or
Si+2−Si+1−Si = 0. By replacing Si+j with yj, we get the canceling polynomial y2− y− 1
that corresponds to this relation. In general, a polynomial

∑
cjy

j is said to cancel a se-
quences if the ci’s also satisfy

∑
ciSi+j = 0, for all i (see Chapter 2 for more details). One

can verify that y2− y− 1 is minimal since there exists no c that satisfies both 1 · c = 1 and
1 · c = 2, which implies that there exists no canceling polynomial of degree 1. Together
with the fact that K[x] is a principal ideal domain, the annihilator of sF is 〈y2 − y − 1〉.

When r > 1, linear recurrences are defined in the same way, with the exception that
recurrences can be defined in multiple directions. Figure 1.1 shows an example of a sequence
that simultaneously satisfies Si1+2,i2 −Si1+1,i2 −Si1,i2 = 0 and Si1,i2+1−Si1+1,i2 −Si1,i2 = 0.
Again, by replacing Si1+j1,i2+j2 with yj11 y

j2
2 , we get the canceling polynomials y21−y1−1 and

1

... . .
.

13 21 34 55 89
5 8 13 21 34
2 3 5 8 13
1 1 2 3 5 · · ·

y2

y1+

+

Figure 1.1: Two-dimensional linearly recurrent sequence

y2− y1− 1 respectively. Note that unlike the previous case, the two canceling polynomials
that are not multiples of each other.

For r = 1, a quadractic algorithm to compute the unique monic canceling polynomial
was first proposed by Berlekamp and Massey [7, 43]. For high dimensions r > 1, Sakata
first extends the BM algorithm to dimension 2 [55] and then to the general case r > 1
[56]; see also Norton and Fitzpatrick’s extension to r > 1 [22]. Recent work includes
variants of Sakata’s algorithm such as one which handles relations that are satisfied by
several sequences simultaneously [57], approaches relating the problem to the kernel of a
multi-Hankel matrix and exploiting either fast linear algebra [8] or a process similar to
Gram-Schmidt orthogonalization [46], and an algorithm relying directly on multivariate
polynomial arithmetic [9]. Since uniqueness of monic canceling polynomials of minimal
degree does not hold for r > 1, algorithms must compute a suitable representation for
the annihilator; the above algorithms compute a Gröbner basis or border basis of the
annihilator.

In this thesis, we focus on computing recurrence relations for sequences whose elements
are in An, where A = K[x]/〈xd〉. When n = 1, such sequences correspond to bi-dimensional
(r = 2) sequences whose elements are zero when one of the indices is greater or equal to
d (see Section 2.5). By increasing n > 1, we want to find annihilators that simulatenously
cancel all n sequences over A. For example, setting d = 2 and n = 2, we could have a
Fibonacci-like sequences([

1 + 2x
3 + 9x

]
,

[
1 + 3x
6 + 3x

]
,

[
2 + 5x
9 + 12x

]
,

[
3 + 8x

12 + 15x

]
, · · ·

)
.

In this case, the canceling polynomials y2 − y − 1 and x(y2 − y − 1) cancel both (1 +
2x, 1+3x, 2+5x, 3+8x, . . .) and (3+9x, 6+3x, 9+12x, 12+15x, . . .), and are minimal in
degree; thus, the annihilator of this sequence is 〈y2−y−1〉 (see Section 3.1 for more details).
Note that this ideal is over A[y]; we can covert this to a bivariate ideal over K[α, β] by a

2

... . .
.

0 0 0 0 0
0 0 0 0 0
1 1 2 3 5 · · ·
2 3 5 8 13 · · ·

α

β

Figure 1.2: Corresponding 2-dimensional sequence for (1 + 2x, 1 + 3x, 2 + 5x, 3 + 8x, . . .)

“natural” mapping x 7→ α, y 7→ β and appending αd. For this sequence, the resulting ideal
〈β2 − β − 1, αd〉 also cancels the bi-dimensional sequences corresponding to the sequences
(1 + 2x, 1 + 3x, 2 + 5x, 3 + 8x, . . .) and (3 + 9x, 6 + 3x, 9 + 12x, 12 + 15x, . . .). An example
of the mapping between sequences with elements in A to K2 is shown in Fig. 1.2.

There are three main sources of motivation for this focus. Firstly, while the annihilator
can be computed in cost that is optimal (up to log factors) in the size of the output in
dimension 1, previous algorithms for higher dimensions are not optimal, even though this
problem has been studied extensively. Although the annihilators of sequences over An

can be computed via previous algorithms (by computing the annihilator of an equivalent
bidimensional sequence), our approach is able to exploit the specific structure of the base
ring A and yield algorithms with better complexities. Secondly, sequences over An arise
when designing Wiedemann-like algorithms for sparse matrices with truncated polynomial
entries [66]. Finally, computing the annihilators of linearly recurrent sequences forms
the basis for some algorithms that convert Gröbner basis of zero-dimensional ideals from
one monomial ordering to another (typically lexicographic), such as the sparse-FGLM
algorithm [17] and the algorithms of Neiger et. al. [51]. The former uses uni-dimensional
sequences (r = 1) but requires the underlying lexicographic Gröbner basis to be in shape
position, meaning that the points in the variety are separated by the coordinates of the
largest variable in lexicographic order. The latter extends this approach by only requiring
that the ideal is supported at the origin, but the computations use multi-dimensional
sequences (r > 1). By improving algorithms for a simpler restricted case (r = 2 and
truncated at index d), our aim is to eventually improve algorithms for general multi-
dimensional sequences; we leave this as future work.

Recurrence relations for sequences over An can be computed directly by using a spe-
cialization of Kurakin’s algorithm [37, 38], as detailed in Section 3.1, where we explicitly
describe the generating set of the annihilator as a lexicograhic Gröbner basis of some bi-
variate ideal. We derive a cost bound O (̃δd(n2δd + nωd)) operations in K, where δ is

3

Algorithm Complexity Description
Kurakin O (̃δd(n2δd+ nωd)) computes all d possible polynomials

Lazy Kurakin O (̃δd∗(n2δd+ nωd)) computes d∗ ≤ d polynomials
PM-basis O (̃δωnd) computes kernel of a Hankel matrix over A

Compressed PM-basis O (̃δ2nd+ δωd) compresses matrix then finds kernel
Bivariate Padé O (̃δdω+1) bivariate extension of PM-basis

Table 1.1: Summary of proposed algorithms with costs in the number of operations in K
the order of recurrence (see Section 2.3), and ω is an exponent for matrix multiplication
over K [14, 41, 1]. Because the Gröbner bases computed by Kurakin’s algorithm are often
non-minimal, in Section 3.2, we propose a modified algorithm which aims at limiting, as
much as possible, the computation of these extraneous generators. This lowers the cost to
O (̃δd∗(n2δd+ nωd)), where d∗ is a number arising in the algorithm as an upper bound on
the cardinality dopt of minimal Gröbner bases of the annihilator. In Chapter 5, we observe
empirically that d∗ is often close or equal to dopt.

Despite the improvement, the above cost bound still has a dependence at least quadratic
in the dimension n. Our interest in the case n � 1 is motivated among others by the
following fact: given a zero-dimensional ideal I ∈ K[x, y], one can recover a Gröbner basis
of it via I = Ann(s) ⊆ K[x, y] for some well chosen s ∈ AN only if K[x, y]/I has the
Gorenstein property [42, 27]. When that is not the case, one can recover a basis of I via
the annihilator of several sequences simultaneously, which means precisely n > 1.

For large n, we compute the annihilator via a minimal approximant basis of a block-
Hankel matrix over A constructed from s. Computing this approximant basis via the algo-
rithm PM-Basis of [25] leads to a complexity of O (̃δωnd) operations in K (Section 4.1).
We then propose a novel improvement of this minimal approximant basis computation,
based on a randomized compression of the input matrix which leverages its block-Hankel
structure, reducing the cost to O (̃δ2nd+ δωd) operations in K (Section 4.2). Furthermore,
in Section 4.3 we propose an algorithm with cost quasi-linear in the order δ, whereas the
above cost bounds are at least quadratic. For d ∈ O(δ), we compute the annihilator via the
bivariate Padé approximation algorithm of [47]: this uses O (̃dω+1δ) operations in K, at
the price of restricting to n ∈ O(1). The complexities of the various algorithms proposed
is summarized in Table 1.1.

The four above algorithms have been implemented in C++ using the libraries NTL [60]
and PML [29], using Lazard’s structural theorem [40] for generating examples of sequences;
see Chapter 5 for more details. Our experiments on a prime field K highlight a good match
between cost bounds and practical running times, confirming also the benefit obtained from

4

the improvements of both Kurakin’s algorithm and the plain approximant basis approach.

Finally, in Chapter 6 we mention applications to the computation of minimal polyno-
mials and determinants of sparse matrices over A. To design Wiedemann-like algorithms
for such matrices A ∈ Aµ×µ, we need to compute annihilators from sequences of the form
(uTAiv)i≥0 ∈ AN for some vectors u and v; several such sequences may be needed, leading
to the case n > 1.

Sakata’s 2-dimensional algorithm shares similarities with the case n = 1 of Kurakin’s
algorithm, and has the same complexity O(δ2d2) [55, Thm. 3]. Apart from this, to the best
of our knowledge previous work has n = 1 and considers r-dimensional sequences over K
for an arbitrary r ≥ 2 [8, 9, 46]. Complexity in this r-variate context is often expressed
using the degree D of the considered zero-dimensional ideal; here, δ ≤ D ≤ δd and a
minimal Gröbner basis or a border basis will have at most min(δ, d) + 1 elements. The
Scalar-FGLM algorithm has cost O (̃doptδ

ωd) [8, Prop. 16]. Both the Artinian border
basis and Polynomial-Scalar-FGLM algorithms [46, 9] cost O(D2δd), which is O(δ3d)
in the most favourable case D = δ, and O(δ3d3) when D ∈ Θ(δd) (which will be the case in
our experiments, see Chapter 5). In all cases, a better complexity bound can be achieved
by one of our algorithms outlined above.

5

Chapter 2

Background

2.1 Basic algorithmic tools

The basic building blocks of our algorithms are univariate polynomial operations: addition,
truncation, and multiplication. While addition and truncation of polynomials of degree
< d are straightforward and have linear complexities, naive polynomial multiplication
requires quadratic operations over K. The first subquadratic multiplication algorithm is
the famous Karatsuba’s algorithm [34], which reduced the complexity to O(dlg 3). Methods
such as multi-point evaluation/interpolation and Fast Fourier Transform are quasi-linear
in d [23]. Note that this implies all ring operations over K[x]/〈xd〉 can be done in O (̃d),
where O (̃·) omits logarithmic factors.

We also frequently use polynomial matrix operations. Matrices of size n × n can be
multiplied naively in O(n3) operations over the base ring of the matrix. Fast matrix
multiplication has been extensively studied, with improvements still being made [1]. We
define 2 ≤ ω ≤ 3 as the exponent of matrix multiplication – that is, we can multiply two
matrices of size n × n in O(nω) ring operations. Since all ring operations over K[x]/〈xd〉
are quasi-linear, this brings the cost of polynomial matrix multiplication of size n× n and
degree < d as O (̃nωd).

2.2 Linearly recurrent sequences over K

While we focus on sequences over A = K[x]/〈xd〉, we begin by reviewing sequences with
elements in K (hereafter referred to as scalar sequences). Note that properties of linearly

6

recurrent sequences over An also apply to scalar sequences since setting d = n = 1 will
yield a scalar sequence.

A scalar sequence s = (S0, S1, . . .) is said to be linearly recurrent if it satisfies either

1. There exists e ∈ Z>0 and cj’s such that ceSi+e −
∑e−1

j=0 cjSi+j = 0, for all i ≥ 0.

2. There exist polynomials P andN , with degP > degN , such that S =
∑

i≥0 Siy
−i−1 =

N
P

.

For any coefficients cj’s that satisfies the first property, we define
∑e

i=0 ciy
i as the corre-

sponding canceling polynomial. We also say a canceling polynomial is a generating poly-
nomial if it is monic (since it describes a rule to generate si, i ≥ e). Using the notion of
canceling polynomials, we can relate the two properties: S = N

P
, N and P polynomials,

if and only if P is a canceling polynomial. The minimal possible degree of the canceling
polynomials is called the order of the sequence.

Over fields, all canceling polynomials of a linearly recurrent sequence are multiples of the
unique monic canceling polynomial of minimal degree since K[x] is a principal ideal domain;
thus, the task of finding the annihilator can be reduced to finding a single polynomial.
There are two main approaches for computing the minimal polynomial, which mirrors the
two properties above. First, we can build a linear system and compute coefficients cj’s of
the minimal polynomial, which corresponds to a nullspace element of this system. Second,
we can rewrite S = N/P as PS − N = 0 and find P (of minimal degree) along with a
corresponding N that satifisies this equation.

We conclude this section through a concrete example for both approaches. Using the
Fibonacci sequence sF again, we first truncate this sequence to 4 terms, since it is known
that the order is 2 (see Lemma 3 for details about partial sequences). First, to set up the
system, we need c0, c1 such that

2 + c1 + c0 = 0

3 + 2c1 + c0 = 0

or written in matrix form [
1 1 2
1 2 3

]c0c1
1

 = 0.

7

We can see that the resulting matrix has constant anti-diagonals (also known as a Hankel
matrix), which can be solved in quasi-linear time via fast structured algorithms [52]. If
we instead apply (structured) Gaussian elimination, this yields an algorithm close to the
Berlekamp-Massey algorithm [7, 43].

On the other hand, we can solve for Q and N in Q(1 + y+ 2y2 + 3y3)−N = 0 mod y4,
which can be written in matrix form as[

1 + y + 2y2 + 3y3 −1
] [Q
N

]
= 0 mod y4.

The basis of all pairs (Q,N) that satisfies the above can be computed via a right approx-
imant basis of order 4 in quasi-linear time as well (see Section 2.6). For scalar sequences,
the minimal approximant basis consists of two pairs (Q1, N1) and (Q2, N2); reversing the
Q with the smaller degree gives us the minimal polynomial.

2.3 Linearly recurrent sequences over K[x]/〈xd〉

We consider the set S = (An)N of (vector) sequences over the ring A = K[x]/〈xd〉 for some
d ∈ Z>0, that is, sequences s = (S0, S1, . . .) with each Sk in An. Such a sequence is said to
be linearly recurrent if there exist γ ∈ N and p0, . . . , pγ ∈ A with pγ invertible such that

p0Sk + · · ·+ pγ−1Sk+γ−1 + pγSk+γ = 0 for all k ≥ 0; (2.1)

the order of s is the smallest such γ, denoted by δ hereafter. A polynomial p0 + · · ·+ pγy
γ

in A[y] is said to cancel s if p0, . . . , pγ satisfies Eq. (2.1) (without requiring that pγ be
invertible). The set of canceling polynomials forms an ideal Ann(s) in A[y], called the
annihilator of s. Thus s is linearly recurrent of order δ if and only if there is a monic
polynomial of degree δ in Ann(s): such polynomials are called generating polynomials of s.
Unlike for sequences over fields, here there may be canceling polynomials of degree less than
δ, which prevents uniqueness of generating polynomials; and there are sequences which are
not linearly recurrent but still admit a nonzero canceling polynomial (i.e. Ann(s) 6= {0}).

Example 1. Consider A = K[x]/〈x2〉 and the sequence s = (1, 1+x, 1, 1+x, 1, 1+x, . . .) in
AN. Note that xs = (x, x, x, x, . . .). This sequence has order δ = 2, a generating polynomial
is y2− 1, and a canceling polynomial of degree less than 2 is x(y− 1). One can verify that
Ann(s) = 〈y2− 1, x(y− 1)〉; in particular y2 +x(y− 1)− 1 is also a generating polynomial.
For any sequence s in KN which is not linearly recurrent, the sequence xs in AN is not
linearly recurrent but is canceled by x, i.e. x ∈ Ann(xs) \ {0}.

8

Like for sequences over fields, here canceling polynomials can be characterized as de-
nominators of the (vector) generating series of the sequence, defined as G =

∑
k≥0 Sky

−k−1

in (A[[y−1]])n. In what follows, the elements of A[y]n are called polynomials, and for
g = (g1, . . . , gn) ∈ A[y]n we define deg(g) = max1≤j≤n deg(gj).

Lemma 2. Let s ∈ S, let G be its generating series, and let p ∈ A[y]. Then, p ∈ Ann(s)
if and only if the series pG ∈ (A[[y−1]])n is a polynomial, in which case deg(pG) < deg(p).

Proof. One has pG =
∑

0≤j≤γ
∑

k≥−j pjSk+jy
−k−1, where γ = deg(p) and p = p0+· · ·+pγyγ.

Thus all terms of pG have degree less than γ, and pG is a polynomial if and only if its
term in y−k−1 vanishes for all k ≥ 0, i.e. if and only if Eq. (2.1) holds.

2.4 Partial sequences

In this thesis, we want to compute a generating set for Ann(s), for a linearly recurrent
s ∈ S, but for algorithms we typically only have access to a finite number of terms of the
sequence. Suppose we have access to the partial sequence se = (S0, . . . , Se−1) in Se = (An)e,
for some e ∈ Z>0. Similar to Eq. (2.1), a polynomial p0 + · · ·+pγy

γ of degree γ < e cancels
se if

p0Sk + · · ·+ pγSk+γ = 0 for all 0 ≤ k < e− γ. (2.2)

Like for sequences over fields, here polynomials of degree γ which cancel se also cancel the
whole sequence s, provided the discrepancy between e and γ is sufficiently large (namely,
e ≥ γ + δ).

Lemma 3. Let s ∈ S be linearly recurrent of order δ. For any e ∈ Z>0 and any p ∈ A[y]
with deg(p) ≤ e− δ, one has p ∈ Ann(s) if and only if p cancels se.

Proof. Obviously, any polynomial p ∈ Ann(s) also cancels se, for any e ∈ Z>0 greater than
the degree of p. Now let p ∈ A[y] \ {0} such that γ = deg(p) ≤ e − δ and p cancels se.
Since e − γ ≥ δ, Eq. (2.2) yields

∑
0≤i≤γ piSk+i = 0 for 0 ≤ k < δ. Furthermore, since

s is linearly recurrent of order δ, there exists yδ −
∑

0≤j<δ−1 qjy
j ∈ A[y] which cancels s,

meaning that Sk+i =
∑

0≤j<δ qjSk−δ+j+i for any k ≥ δ. Therefore we get∑
0≤i≤γ

piSk+i =
∑

0≤j<δ

qj
∑
0≤i≤γ

piSk−δ+j+i.

Using this identity, it follows by induction on k ≥ δ that the relation
∑

0≤i≤γ piSk+i = 0
also holds for all k ≥ δ. Hence p ∈ Ann(s).

9

2.5 Bivariate interpretation and generating sets

Uni-dimensional sequences of vectors in An as above can be interpreted as two-dimensional
sequences of vectors in Kn, that is, sequences σ = (ζi,j)i,j≥0 in S = (Kn)N

2
. This is based

on the natural injection ϕ : A[y]→ K[α, β] with (ϕ(x), ϕ(y)) = (α, β).

Here we recall from [55, 22] that a polynomial q =
∑

i,j qijα
iβj in K[α, β] is said to

cancel a sequence σ = (ζi,j)i,j≥0 ∈ S if∑
i,j≥0

qijζi+k1,j+k2 = 0 for all k1, k2 ≥ 0.

Then, let s = (S0, S1, . . .) ∈ S, and define σ = (ζi,j)i,j≥0 ∈ S such that ζi,j ∈ Kn is the
coefficient of degree d − 1 − i of the truncated polynomial vector Sj ∈ An if i < d, and
ζi,j = 0 otherwise. Then, a polynomial p ∈ A[y] cancels s if and only if the polynomial
ϕ(p) cancels σ. Furthermore, the set of polynomials in K[α, β] which cancel σ is an ideal
of K[α, β] which contains αd, and this ideal is zero-dimensional if and only if s is linearly
recurrent.

In what follows, we define ϕ̄(I) = 〈{ϕ(p) | p ∈ I} ∪ {αd}〉 for any ideal I of A[y],
providing a correspondence between the ideals of A[y] and those of K[α, β] containing αd.
For insight into possible “nice” generating sets for Ann(s), we consider the lexicographic
order 4lex with α 4lex β, and use the fact that Gröbner bases of the ideals in K[α, β] for
this order are well understood [40]. Below, unless mentioned otherwise, we use 4lex when
some term order is needed, e.g. for leading terms and Gröbner bases.

Gröbner bases, originally introduced by Buchberger [13], are generating sets of ideals
over a multivariate polynomial ring K[y1, . . . , yn] with particularly desirable properties.
Formally, a generating set G of an ideal I ⊆ K[y1, . . . , yn] is a Gröbner basis (wrt a
monomial ordering) if G satisfies any of the following with respect to some monomial
ordering:

1. the ideal generated by the leading terms of all elements of I is equal to the ideal
generated by the leading terms of the elements in G

2. the leading term of any element in I is divisible by the leading term of some element
in G

3. the result of multivariate division for any element in K[y1, . . . , yn] by G is unique
(regardless of the order of reduction by elements in G)

10

4. the result of multivariate division of any element of I by G results in a remainder of
0.

The last two properties allow us to define reduction of elements in K[y1, . . . , yn] with I.
For sequences, reduction of monomials of high powers by the annihilator forms the basis
for fast algorithms for computing elements of linear sequences (via multivariate extensions
of Fiduccia’s algorithm [18]).

We conclude this section by giving a bound on the cardinality of the minimal Gröbner
basis. Consider a zero-dimensional ideal I in K[α, β] that contains a power of α and let G
be its reduced Gröbner basis. Let

(βe0 , αd1βe1 , . . . , αdt−1βet−1 , αdt)

be the leading terms of the elements of G listed in decreasing order, i.e. the ei’s are decreas-
ing and the di’s are increasing. We set d0 = et = 0, and for 1 ≤ i ≤ t we set δi = di− di−1,
so that di = δ1 + · · · + δi. Similarly, for 0 ≤ i < t we set εi = ei − ei+1. Then write
G = {g0, . . . , gt}, with gi having leading term αdiβei ; in particular gt = αdt = αδ1+···+δt and
g0 is monic in β.

Lazard’s Theorem states the following [40]: for 0 ≤ i ≤ t one can write gi = αdi ĝi, with
ĝi monic of degree ei in β. In addition, for 0 ≤ i < t, ĝi = gi/α

di is in the ideal generated
by

〈ĝi+1, α
δi+2 ĝi+2, . . . , α

δi+2+···+δt〉 =
〈 gi+1

αdi+1
,
gi+2

αdi+1
, . . . ,

gt
αdi+1

〉
;

in particular, αδ1 divides g1, . . . , gt. Lazard also proved that a set of polynomials which
satisfies these conditions is necessarily a minimal Gröbner basis.

With the above notation, a minimal Gröbner basis of I has cardinality t + 1, with
t ≤ min(e0, dt) since 0 = d0 < d1 < · · · < dt and 0 = et < · · · < e1 < e0. Since for the
reduced Gröbner basis G each polynomial gi is represented by at most e0dt coefficients in K,
the total size of G in terms of field elements is at most e0dt min(e0, dt). Finer bounds for the
cardinality and size of G could be given using the vector space dimension dimK(K[α, β]/I).

2.6 Univariate and bivariate approximations

For a univariate polynomial matrix F ∈ K[x]µ×ν and a positive integer d, we consider a
free K[x]-module of rank µ defined as

Ad(F) = {p ∈ K[x]1×µ | pF = 0 mod xd};

11

its elements are called approximants for F at order d [64, 3]. Bases of such submodules
can be represented as µ × µ nonsingular matrices over K[x] and are usually computed in
so-called reduced forms [67] or the corresponding canonical Popov forms [53]. Extensions
of these forms have been defined to accommodate degree weights or degree constraints,
and are called shifted reduced or Popov forms [64, 3, 5].

Given a vector v ∈ K[x]1×m, the pivot index of v is the largest index j such that
deg vj = deg v, where the degree of a vector is the maximal degree of its entries. A matrix
M ∈ K[x]n×n is said to be in (row-wise) weak Popov form if it has no zero row and the
pivot indices are all distinct for each row. A weak Popov form is ordered if its pivot indices
(arranged by the rows) are strictly increasing. Finally, M is in Popov form if it is in weak
Popov form, the corresponding pivot entries are monic, and for each column, all entries
have degree less than the corresponding pivot entry in that column (note that since we are
only considering square matrices, each column must contain a pivot entry). A matrix in
Popov form is canonical and have rows which have the minimal possible degrees. We can
also define a column-wise Popov form by defining the pivot column-wise.

The algorithm PM-Basis [25] computes an approximant basis in shifted reduced form
in time O (̃µω−1(µ + ν)d); using essentially two calls to this algorithm, one recovers the
unique approximant basis in shifted Popov form within the same cost bound [33].

More generally, in the bivariate case with F ∈ K[α, β]µ×ν and (d, e) ∈ Z>0, the set

Ad,e(F) = {p ∈ K[α, β]1×µ | pF = 0 mod (αd, βe)}

is a K[α, β]-submodule of K[α, β]1×µ whose elements are called approximants for F at order
(d, e). Such submodules are usually represented by a 4-Gröbner basis for some term order
4 on K[α, β]1×µ; for definitions of term orders and Gröbner bases for submodules we refer to
[15]. For ν ≤ µ algorithms based on an iterative approach or on efficient linear algebra yield
cost bounds inO (̃µ(νde)2+(νde)3) andO (̃µ(νde)ω−1+(νde)ω) operations in K respectively
[21, 50], whereas a recent divide and conquer approach costs O (̃(Mω + M2ν)de), where
M = µmin(d, e) [47, Prop. 5.5]; in these cases the output is a minimal Gröbner basis.

12

Chapter 3

Kurakin’s Algorithm

3.1 Kurakin’s algorithm over A

In [37], Kurakin gives an algorithm based on the Berlekamp-Massey algorithm that com-
putes the annihilators of a partial sequence over a ring R (and modules over R) that can
be decomposed as a disjoint union R = {0} ∪R0 ∪ · · · ∪Rd−1 where

Ri = {rir∗ | r∗ ∈ R invertible} for some ri ∈ R.

In this paper we consider R = A = K[x]/〈xd〉; in this case the canonical choice is ri = xi,
with

Ri = {xip∗ | p∗ ∈ A with nonzero constant term}.

Consider a partial sequence se ∈ Se of a linearly recurrent s ∈ S of order δ. Kurakin’s
algorithm computes d polynomials Pi ∈ A[y], i = 0, . . . , d − 1, such that Pi is a canceling
polynomial of se that has leading coefficient xi and is minimal in degree among all canceling
polynomials with leading coefficient xi. Furthermore, one has Ann(s) = 〈P0, . . . , Pd−1〉
provided e ≥ 2δ [38, Thm. 1].

We first define three operations on sequences. Given a partial sequence se and c ∈ A,
c ·se denotes multiplying c to every element in se, while yj ·se denotes a shift of j elements
— that is, removing the first j elements. Given another partial sequence ŝê, the sum se+ŝê
returns the first min(e, ê) elements of the two sequences added together element-wise.

Kurakin’s algorithm iterates on s = 0, . . . , e − 1, keeping track of polynomials Pi,s as
well as partial sequences se,i,s = Pi,s · se =

∑e−s
j=0 Pi,s[j] · yj · se, where Pi,s[j] is the j-th

13

coefficient of Pi,s. An invariant is that the leading coefficient of Pi,s is xi for all s. For each
s = 0, . . . , e − 1, the algorithm essentially attempts to either create a zero by using the
partial sequences from previous iterations with equal number of leading zeros (similar to
Gaussian elimination), or shift the sequence if we cannot cancel this element.

At each iteration s, let I[k] be the A-submodule of An generated by the elements se,i,s′ [k]
for all i = 0, . . . , d − 1 and s′ < s such that se,i,s′ has k leading zeros. Furthermore, let
P [k, j] and S[k, j] be the corresponding polynomial and partial sequence to the j-th element
in the basis of I[k], I[k, j]. At iteration s, if se,i,s has k leading zeros and se,i,s[k] ∈ I[k],
then we can find coefficients such that se,i,s[k] −

∑
j cjI[k, j] = 0 and se,i,s −

∑
j cjS[k, j]

results in a sequence with at least k+ 1 zeros since both sequences had k leading zeros and
we canceled se,i,s[k]. The algorithm terminates when all se,i,s = 0 (see Algorithm 1).

We track the subiterations by the index t for analysis; this does not play a role in the
algorithm. Kurakin shows that the total number of subiterations across all s is O(e) per
polynomial, bringing the total to O(ed) ([37, Thm. 2]). However, the analysis of the runtime
in [37] treats all ring operations (including computing solution to line 12 of Algorithm 1)
as constant time operations, which is unrealistic over An. Thus, we will give a cost analysis
in terms of number of field operations over K.

We note that, since An is a free K[x]-module of rank n (with a basis given by the canon-
ical vectors of length n) and K[x] is a principal ideal domain, any of its K[x]-submodule
is free of rank at most n. As a consequence, the number of generators of I[k] is at most
n. This will allow us to bound the cost for solving submodule membership as well as the
equation s

(t)
e,s,i[k]−

∑
j cjI[k, j] = 0 by finding the right approximant basis of

F =
[
I[k, 0] · · · I[k, n− 1] se,s,i[k]

]
.

The following lemma shows that the same approximant basis can be used to reduce I.

Lemma 4. Let u1, . . . , un+1 ∈ K[x]n, then there exists a non-trivial solution to
∑
ciui = 0,

ci ∈ K[x]. Furthermore, there exists a solution such that at least one ci has a non-zero
constant term.

Proof. Working over the field of fractions over K[x], there must be a solution to
∑
diui = 0

since there are n + 1 vectors of size n; this implies that there exists a non-trivial solution
to
∑
ciui = 0 such that no ci is a fraction by multiplying both sides of

∑
diui = 0 by the

least common multiple of the di’s. For the second part of the statement, suppose that all
ci’s have zero constant terms and let j be the lowest valuation of the ci’s. Then we have
that

∑
ciui = xj(

∑
c′iui) = 0, such that c′i ∈ K[x] and some ci has a nonzero constant

term.

14

Algorithm 1 Kurakin(se)

Input: partial sequence se
Output: minimal canceling polynomials of se
1: for i = 0, . . . , d− 1 do
2: set Pi,0 = xi and se,i,0 = xise
3: set k to be index of first non-zero element of se,i,0
4: if se,i,0[k] 6= 0 then
5: add se,i,0[k], Pi,0, se,i,0 to I[k],P [k],S[k] resp.

6: for s = 1, . . . , e− 1 do
7: for i = 0, . . . d− 1 do
8: set t = 0; P

(t)
i,s = yPi,s−1; and shift s

(t)
e,i,s = y · se,i,s−1

9: if s
(t)
e,i,s = 0 then continue to next i

10: set k to be the first non-zero index of s
(t)
e,i,s

11: if s
(t)
e,i,s[k] /∈ I[k] then continue to next i

12: solve for cj’s such that s
(t)
e,s,i[k]−

∑
j cjI[k, j] = 0

13: set s
(t+1)
e,i,s = s

(t)
e,i,s −

∑
j cjS[k, j]

14: set P
(t+1)
i,s = P

(t)
i,s −

∑
j cjP [k, j]

15: go to line 9 with t = t+ 1

16: for i = 0, . . . , d− 1 do
17: set se,i,s = s

(t)
e,i,s and Pi,s = P

(t)
i,s

18: set k to be the index of first non-zero element of se,i,s
19: if se,i,s[k] /∈ I[k] then
20: add se,i,s[k], Pi,s, se,i,s to I[k],P [k],S[k] resp.
21: reduce the basis of I[k] if needed

22: for i = 0, . . . , d− 1 do
23: return Pi,s that makes se,i,s = 0 for the first time

15

The above lemma implies that if F has n+1 columns, then there is a column in the right
approximant basis such that at least one entry has a nonzero constant term (and thusly
invertible in A); thus, we can always reduce F to have at most n columns by removing
the corresponding element from I[k]. Since F has n rows and at most n + 1 columns, we
can compute this in cost O (̃nωd) [33]. At lines 13 and 14, S[k, j] and P [k, j] have length
and degree at most e resp., making the cost of these lines O (̃n(ned)) = O (̃n2ed). Finally,
using the fact that the total number of subiterations is bounded by O(ed), we arrive at the
total cost O (̃ed(n2ed+ nωd)).

We conclude by showing that the output of Algorithm 1 is indeed a basis of Ann(s)
and that it forms a lexicographical Gröbner basis.

Theorem 5. For each i ∈ {0, . . . , d−1}, let Pi be a canceling polynomial of s with leading
coefficient xi that is minimal in degree among all polynomials with leading coefficient xi.
Then one has Ann(s) = 〈P0, . . . , Pd−1〉. Furthermore, {ϕ(P0), · · · , ϕ(Pd−1), α

d} forms a
Gröbner basis of ϕ̄(Ann(s)) with respect to the lexicographic term order with α 4lex β.

Proof. Suppose that there exists some Q ∈ A[y] with leading coefficient xt that is in Ann(s)
but Q /∈ 〈P0, . . . , Pd−1〉. Note that for any polynomial in A[y], we can always make the
leading coefficient to be some xt by pulling out the minimal power of x from the leading
coefficient and multiplying by its inverse. Now, since we assumed minimality of degrees
for Pi’s, deg(Q) > deg(Pt) and Q′ = Q − ydegQ−degPtPt ∈ Ann(s) has degree less than
Q. By normalizing the leading coefficient of Q′ to be some xt

′
, we can repeat the same

process and keep decreasing the degree. This process must terminate when we encounter
some Q′ with leading coefficient xt

′
such that degQ′ < degPt′ , or Q′ = 0. Both cases lead

to contradictions; thus, such Q cannot exist and Ann(s) = 〈P0, . . . , Pd−1〉.

Next, let G = {g0, . . . , gk}, gi ∈ K[α, β] with leading coefficient xdi , be the minimal
reduced (lexicographic) Gröbner basis of ϕ̄(Ann(s)). We can turn G into another non-
minimal Gröbner basis by adding the polynomials acgi, for c = 1, . . . , di+1 − 1; we define
the resulting basis as G ′ = {g′0, · · · , g′d}, with g′d = αd and each g′i has leading term αiβri .
Furthermore, define ui as the degree of Pi such that ϕ(Pi) has leading term αiβui .

For i = 0, . . . , d, we have that ui ≥ ri, otherwise G ′ would not reduce ϕ(Pi) to zero,
which G ′ must since ϕ(Pi) ∈ ϕ̄(Ann(s)). We also have that ui ≤ ri due to the assumed
minimality of degree for Pi’s. Thus, the leading terms of {ϕ(P0), . . . , ϕ(Pd−1), α

d} generate
the leading terms of ϕ̄(Ann(s)).

16

3.2 Lazy algorithm based on Kurakin’s

Kurakin’s algorithm requires that we keep track of all d possible generators, regardless of
the actual number of generators needed. For example, consider s = (1, 1, 2, 3, 5, . . .) ∈ AN

with Ann(s) = 〈y2 − y − 1〉: Kurakin’s algorithm returns {xi(y2 − y − 1), 0 ≤ i < d}. In
this section, we outline a modified version of Kurakin’s algorithm that attempts to avoid
as many extraneous computations as possible.

In the previous example, we can see that the polynomials associated with xi, i ≥ 1, were
not useful. The next definition aims to qualify precisely the usefulness of the monomial xi.

Definition 6. Let Pi,s and se,i,s be the polynomial and sequence at the end of step s
associated with monomial xi. A monomial xi2 is useful wrt to xi1, i1 < i2, at step s if at
least one of two conditions is true at the end of s:

U1. Pi2,s 6= xi2−i1Pi1,s

U2. let ki1 and ki2 be the index of the first non-zero element of se,i1,s and se,i2,s resp., then
ki1 6= ki2

Suppose a monomial xi2 is not useful wrt xi1 at step s, then by negating condition
U1, we have Pi2,s = xi2−i1Pi1,s. Due to negation of U2, se,i2,s is the zero sequence if and
only if se,i1,s is the zero sequence; so either we return Pi2,s = xt2−t1Pi1,s or we do not
terminate at this step for both monomials. Finally, since ki1 = ki2 and se,i2,s = xi2−i1se,i1,s,
we always have that se,i2,s[ki2] = xi2−i1se,i1,s[ki1] ∈ (〈se,i1,s[ki1]〉 ∪ I[ki1]), meaning we can
safely ignore se,i2,s[ki2] when updating I[ki2] at the end of step s. Thus, the negation of
usefulness conditions U1 and U2 implies that any computation associated with xi2 is not
needed at step s.

However, as defined, U1 and U2 do not impose any conditions about the subitera-
tions (indexed by t). The next lemma gives a different characterization of the usefulness
conditions in terms of t.

Lemma 7. If xi2 is useful wrt to xi1 at some step s, then at some subiteration t of step s,
one of u1, u2, u3 is true at the start of t:

u1. P
(t)
i2,s
6= xi2−i1P

(t)
i1,s

u2. if P
(t)
i2,s

= xi2−i1P
(t)
i1,s

, then k
(t)
i2
6= k

(t)
i1

17

u3. if P
(t)
i2,s

= xi2−i1P
(t)
i1,s

and k
(t)
i2

= k
(t)
i1

, then s
(t)
e,i1,s

[k
(t)
i1

] /∈ I[k
(t)
i1

] and s
(t)
e,i2,s

[k
(t)
i1

] ∈ I[k
(t)
i1

]

Proof. We prove that if u1, u2, and u3 are false for every subiteration t and s, then U1
and U2 are false for xi2 wrt xi1 . Suppose the conditions u1, u2, and u3 are all false for
every subiteration t at s. The negation of u1 forces P

(t)
i2,s

= xi2−i1P
(t)
i1,s

at the start of t,

which sets the hypothesis of u2 true, implying k
(t)
i2

= k
(t)
i1

. Finally, since the hypothesis of

u3 holds, we must have s
(t)
e,i1,s

[k
(t)
i1

] ∈ I[k
(t)
i1

] or s
(t)
e,i2,s

[k
(t)
i1

] /∈ I[k
(t)
i1

]. The two are mutually

exclusive since s
(t)
e,i2,s

= xi2−i1s
(t)
e,i1,s

, if s
(t)
e,i1,s

[k
(t)
i1

] ∈ I[k
(t)
i1

], then s
(t)
e,i2,s

[k
(t)
i1

] ∈ I[k
(t)
i1

]. When

s
(t)
e,i1,s

[k
(t)
i1

] ∈ I[k
(t)
i1

], we can update

P
(t+1)
i1,s

= P
(t)
i1,s
−
∑

cjI[k
(t)
i1
, j]

P
(t+1)
i2,s

= xi2−i1P
(t)
i1,s
− xi2−i1

∑
cjP [k

(t)
i1
, j] = xi2−i1P

(t+1)
i1,s

,

which was already implied by the assumption that u1 is false for all t. On the other hand,
when s

(t)
e,i2,s

[k
(t)
i1

] /∈ I[k
(t)
i1

], we also have s
(t)
e,i1,s

[k
(t)
i1

] /∈ I[k
(t)
i1

], so the subiterations terminate
and we must have Pi2,s = xi2−i1Pi1,s with ki2 = ki1 . This implies U1 and U2 also do not
hold for step s.

While the converse is not true, we say a monomial xi2 is potentially useful wrt xi1 when
at some step s and subiteration t, at least one of the conditions u1, u2, and u3 holds.
Using this, we can construct a Lazy variant of Kurakin’s algorithm (see Algorithm 2).
While most of the algorithm remains the same as Algorithm 1, we only iterate through the
potentially useful monomials, rather than i = 0, . . . , d− 1.

Proposition 8. The output Algorithm 2 is an equivalent ideal to Algorithm 1 and costs
O (̃ed∗(n2ed+ nωd))), where d∗ ≤ d is the number of potentially useful monomials.

Proof. At each subiteration, we check to see if there exists i′ > i, i′ /∈ U such that xi
′

satisfies one of u2 or u3, and add the smallest such i′ to U . Note that we need not
check u1 since if u1 holds, then either u2 or u3 must have been true at some previous
subiteration, thus i′ is already included in U . Condition u2 can be checked in O(n) by
checking the valuations of all entries in se,i,s[k] at lines 4 and 10. Condition u3 can be
checked in O(log d) membership computations via a binary search to find the minimal i′

such that xi
′−ise,i,s[k] ∈ I[k] when se,i,s[k] /∈ I[k] on line 11. Thus, the complexity for

the subiterations do not change in terms of O (̃·). Defining d∗ = |U| ≤ d, this brings the
total cost to O (̃ed∗(n2ed + nωd)). Since we only omit monomials that never satisfy any
conditions u1 through u3, by the contrapositive of Lemma 7, we only omit monomials that
are not useful.

18

Algorithm 2 LazyKurakin(se)

Input: partial sequence se
Output: minimal canceling polynomials of se
1: set U = {1} and U0 = U
2: while U0 not empty do
3: set i = U0[0] and pop U0[0]
4: set Pi = xi and se,i,0 = xise
5: set k to be index of first non-zero element of se,i,0
6: add se,i,0[k], Pi,0, se,i,0 to I[k],P [k],S[k] resp.
7: if there exists i′ such that i′ + i < d and xi

′
se,i,0[k] = 0 then

8: add i′ + i to U and U0
9: for s = 1, . . . , e− 1 do
10: Us = U
11: while Us is not empty do
12: set i = Us[0] and pop Us[0]

13: set t = 0; P
(t)
i,s = yPi,s−1; and shift s

(t)
e,i,s = y · se,i,s−1

14: if s
(t)
e,i,s = 0 then continue to next i

15: set k to be the first non-zero index of s
(t)
e,i,s

16: if s
(t)
e,i,s[k] /∈ I[k] then

17: if there exists i′ such that i′ + i < d and xi
′
s
(t)
e,i,s[k] ∈ I[k] then

18: set P 0
e,i′+i,s = xi

′
Pe,i,s and s0e,i′+i,s = xi

′
se,i,s

19: add i′ + i to U and Us
20: continue to next i
21: solve for cj’s such that s

(t)
e,s,i[k]−

∑
j cjI[k, j] = 0

22: set s
(t+1)
e,i,s = s

(t)
e,i,s −

∑
j cjS[k, j]

23: set P
(t+1)
i,s = P

(t)
i,s −

∑
j cjP [k, j]

24: go to line 14 with t = t+ 1

25: for i ∈ U do
26: set se,i,s = s

(t)
e,i,s and Pi,s = P

(t)
i,s

27: set k to be the index of first non-zero element of se,i,s
28: if se,i,s[k] /∈ I[k] then
29: add se,i,s[k], Pi,s, se,i,s to I[k],P [k],S[k] resp.
30: reduce the basis of I[k] if needed

31: for i = 0, . . . , d− 1 do
32: return Pi,s that makes se,i,s = 0 for the first time

19

While we do not know how far d∗ is from the number dopt of polynomials in the minimal
lexicographic Gröbner basis of ϕ̄(Ann(s)), we have observed empirically that d∗ is often
equal or close to dopt (see Section 5).

3.3 Example of Kurakin and Lazy Kurakin

In order to highlight the different between Kurakin’s algorithm and our lazy variant, we
will run through a small example with d = 3 and input (truncated) sequence

s4 = (1 + x+ x2, 1 + 2x+ 2x2, 1 + 3x+ 3x2, 1 + 4x+ 4x2)

whose annihilator is s is 〈y2 − 2y + 1, x2(y − 1)〉. Kurakin’s algorithm first initializes
Pi,0 = xi and since xis does not have a leading zero for all i = 0, 1, 2, we initialize only
I[0] = 〈1 + x+ x2〉,P [0] = [1],S[0] = [s4,0,0].

At s = 1, i = 0, t = 0:

� s04,0,1 = (1 + 2x+ 2x3, 1 + 3x+ 3x2, 1 + 4x+ 4x2)

� P 0
0,1 = y

Since 1 + 2x+ 2x2 /∈ I[0], we move to next i.

At s = 1, i = 1, t = 0

� s04,1,1 = (x+ 2x2, x+ 3x2, x+ 4x2)

� P 0
1,1 = xy

Since x+ 2x2 /∈ I[0], we move to next i.

At s = 1, i = 2, t = 0

� s04,2,1 = (x2, x2, x2)

� P 0
1,1 = x2y

20

Now, x2 ∈ I[0], with solution x2 − x2I[0][0] = 0. The update s04,2,1 − x2S[0][0] = 0, so
P2 = x2 − x2P [0][0] = x2 − x2 · 1 = x2(y − 1).

We now move on to the second part of the iteration (on s) to update I. Since 1 + 2x+
2x2 /∈ I[0], we add it to I[0]. Now, x + 2x2 is in the updated I[0] and since there are no
other non-zero leading terms, we move to the next iteration.

At s = 2, i = 0, t = 0:

� s04,0,2 = (1 + 3x+ 3x2, 1 + 4x+ 4x2)

� P 0
0,1 = y2

We have 1 + 3x + 3x2 ∈ I[0] with (1 + 3x + 3x2) − 2I[0][1] + I[0][0] = 0. Now, s04,0,2 −
2S[0][1] + S[0][0] = 0 so P0 = y2 − 2P [0][1] + P [0][0] = y2 − 2y + 1.

At s = 2, i = 1, t = 0:

� s04,1,2 = (x+ 3x2, x+ 4x2)

� P 0
1,1 = xy2

We have (from the solution above) (x+ 32)− 2xI[0][1] + xI[0][0] = 0; thus, P1 = xP0.

Since all Pi’s are canceling polynomials, we terminate the algorithm. During the iter-
ations, we can see that all the computations we do for i = 1 could have been deduced by
computations for i = 0. Next, we will see how our lazy variant of Kurakin’s algorithm at-
tempts to avoid these extraneous computations. We begin by setting the set of potentially
useful monomials U to be empty. Now, since se[0] has a nonzero constant, we only add 1
to U . As before, we also initialize I[0] = 〈1 + x+ x2〉,P [0] = [1],S[0] = [s4,0,0].

At s = 1, U = [1]. We start by popping 1:

� s04,0,1 = (1 + 2x+ 2x3, 1 + 3x+ 3x2, 1 + 4x+ 4x2)

� P 0
0,1 = y

Now, 1+2x+2x3 /∈ I[0], but x2(1+2x+2x3) ∈ I[0], so we add x2 to U with P2,0 = x2P0,0.

At s = 1, U = [x2]. We pop x2:

� s04,2,1 = (x2, x2, x2)

21

� P 0
1,1 = x2y

We have x2 ∈ I and P2 = x2(y − 1) as above.

Now, U is empty, so we move to the second part of the iteration. Again, since 1 + 2x+
2x2 /∈ I[0], we add it to I[0]. Finally, we populate U = [1, x2] with all the potentially
useful monomials we found before.

At s = 2, U = [1, x2]. We pop 1:

� s04,0,2 = (1 + 3x+ 3x2, 1 + 4x+ 4x2)

� P 0
0,1 = y2

We have 1 + 3x + 3x2 ∈ I[0] with (1 + 3x + 3x2) − 2I[0][1] + I[0][0] = 0. Now, s04,0,2 −
2S[0][1] + S[0][0] = 0 so P0 = y2 − 2P [0][1] + P [0][0] = y2 − 2y + 1.

At this point, we can terminate the algorithm since we have already found a canceling
polynomial that leads with x2. We can see that we did not do any computations involving
x. Indeed, in the output of Kurakin’s algorithm, we had P1 = xP0, so P1 was redundant;
thus, we have found an equivalent set of generators for the annihilator of se.

22

Chapter 4

Approximation Approaches

4.1 Via Univariate Approximant Bases

Extending the classical theory of linearly recurrent sequences over the field K, another
approach is to consider the left kernel of the block-Hankel matrix

Hs,e =


S0 S1 · · · Se−1

S1 S2 . .
.

Se
... . .

.
. .
. ...

Se Se+1 · · · S2e−1

 ∈ A(e+1)×(en).

Indeed, if e is large enough, vectors in this kernel represent polynomials which cancel s,
and which even generate all of Ann(s).

Lemma 9. Let s ∈ S be linearly recurrent of order δ, and define

Ks,e = {p = p0 + · · ·+ pey
e ∈ A[y] | [p0 · · · pe]Hs,e = 0}

for e ∈ N. Assume e ≥ δ. Then Ks,e = Ann(s) ∩ A[y]≤e, and in particular Ks,e is a
generating set of Ann(s).

Proof. Let p = p0 + · · · + pey
e ∈ A[y] and γ = deg(p) ≤ e. Then p ∈ Ks,e if and only

if [p0 · · · pe]Hs,e = 0, and by definition of canceling partial sequences this exactly means
that p cancels se+γ. Now, deg(p) = γ ≤ e + γ − δ holds under the assumption e ≥ δ,

23

hence p cancels se+γ if and only if p ∈ Ann(s) by Lemma 3. It follows that Ks,e generates
Ann(s), since there exists a generating set of Ann(s) whose polynomials all have degree at
most δ.

Computing the left kernel of Hs,e can be done via univariate approximation. Indeed,
calling F ∈ K[x](e+1)×(en) the natural lifting of Hs,e, an approximant basis of F at order d
gives a generating set of that left kernel. As recalled in Section 2.6, using PM-Basis, a
basis of Ad(F) in shifted reduced or Popov form can be computed in O (̃eω−1(e+ en)d) =
O (̃eωnd) operations in K.

4.2 Speed-up by compression using structure

Now we show that, when n is large, one can speed up the above approach by a ran-
domized “compression” of the matrix Hs,e. Precisely, taking a random constant ma-
trix C ∈ K(en)×(e+1) and performing the right-multiplication FC, one obtains a square
(e+ 1)× (e+ 1) matrix such that Ad(F) = Ad(FC) holds with good probability. The cost
of the approximant basis computation is thus reduced to O (̃eωd) operations in K, and the
right-multiplication can be done efficiently by leveraging the block-Hankel structure of F .

Theorem 10. Algorithm 3 takes as input an integer d ∈ Z>0, vectors F0, . . . , Fµ+e−2 ∈
K[x]1×n of degree less than d, and a shift w ∈ Zµ>0, and uses O (̃µend+µωd) operations in
K to compute a w-Popov matrix P ∈ K[x]µ×µ of degree at most d. It chooses at most µen
elements independently and uniformly at random from a subset of K of cardinality κ, and
P is the w-Popov basis of Ad(F) with probability at least 1− µ

κ
, where F is the block-Hankel

matrix

F =


F0 F1 · · · Fe−1

F1 F2 . .
.

Fe
... . .

.
. .
. ...

Fµ−1 Fµ · · · Fµ+e−2

 ∈ K[x]µ×(en). (4.1)

When applied to the computation of Ann(s) with µ = e+1, the cost becomes O (̃e2nd+
eωd). Below we focus on the case of interest µ ≤ en, since when en ∈ O(µ) this w-
Popov approximant basis is computed deterministically by PM-Basis at a cost of O (̃µωd)
operations in K. Our approach is based on the following two lemmas.

24

Lemma 11. Let F ∈ K[x]µ×ν and d ∈ Z>0. Let C ∈ K[x]ν×r and K ∈ K[x]ν×(ν−r), for
some r ∈ {0, . . . , ν}, such that FK = 0 and [C(0) K(0)] ∈ Kν×ν is invertible. Then,
r ≥ ρ where ρ is the rank of F , and Ad(F) = Ad(FC).

Proof. Let N = [C K] ∈ K[x]ν×ν . The assumption that N(0) is invertible ensures that
N is nonsingular (since det(N)(0) = det(N(0)) 6= 0), and therefore K has full rank ν − r.
The assumption that the columns of K are in the right kernel of F , which has rank ν − ρ,
implies that ν − r ≤ ν − ρ and therefore r ≥ ρ.

The inclusion Ad(F) ⊂ Ad(FC) is obvious. For the other inclusion, let p ∈ Ad(FC),
i.e. there exists q ∈ K[x]1×r such that pFC = xdq. It follows that pFN = xd[q 0], and
thus

pF = xd[q 0]N−1 =
xd[q 0]Adj(N)

det(N)

where Adj(N) ∈ K[x]ν×ν is the adjugate of N . Our assumption det(N)(0) 6= 0 means
that xd and det(N) are coprime, hence det(N) divides [q 0]Adj(N), and pF = 0 mod xd

follows.

Lemma 12. Let F ∈ K[x]µ×ν with rank ρ and µ ≤ ν, and let r ∈ {ρ, . . . , µ}. Let R
be a finite subset of K of cardinality κ ∈ Z>0, and let C ∈ Kν×r with entries chosen
independently and uniformly at random from R. Then, the probability that there exists
K ∈ K[x]ν×(ν−r) such that [C K(0)] is invertible and FK = 0 is at least 1− r

κ
; furthermore

if K is finite and R = K, this probability is at least
∏r

i=1(1− κ−i).

Proof. Consider a right kernel basis B ∈ K[x]ν×(ν−ρ) for F . Then B has unimodular row
bases [69, Lem. 3.1], implying that there exists V ∈ K[x](ν−ρ)×ν such that V B = Iν−ρ. In
particular V (0)B(0) = Iν−ρ and therefore B(0) has full rank ν−ρ. Define K ∈ K[x]ν×(ν−r)

as the matrix formed by the first ν− r columns of B (recall ν− r ≤ ν− ρ by assumption).
Then FK = 0. Furthermore K(0) has rank ν − r, hence the DeMillo-Lipton-Schwartz-
Zippel lemma implies that [C K(0)] ∈ Kν×ν is singular with probability at most r/κ
[16, 59, 70]. If K is finite and R = K then [C K(0)] is invertible with probability exactly∏r

i=1(1− κ−i).

These lemmas lead to Algorithm 3 and Theorem 10; indeed computing FC has quasi-
linear cost O (̃µend) thanks to the block-Hankel structure of F , and then the call
PM-Basis(d, FC,w) costs O (̃µωd) operations as recalled in Section 2.6.

Note that 1 − r/κ ≥ 3/4 as soon as κ ≥ 4µ (which implies κ ≥ 4r); furthermore∏r
i=1(1 − κ−i) ≥ 3/4 already for κ = 7. The randomization is of the Monte Carlo type,

25

Algorithm 3 Hankel-PM-Basis(d, F, w)

Input: integers d, µ, e, n ∈ Z>0, vectors F0, . . . , Fµ+e−2 ∈ K[x]1×n of degree less than d, a
shift w ∈ Zµ>0

Output: a w-Popov matrix P ∈ K[x]µ×µ of degree at most d
1: F ∈ K[x]µ×(en) ← form the block-Hankel matrix as in Eq. (4.1)
2: if µ ≥ en then return PM-Basis(d, F, w)
3: Choose r ∈ {ρ, . . . , µ} where ρ is the rank of F (by default, choose r = µ if no

information is known on ρ)
4: Fill a matrix C ∈ K(en)×r with entries chosen uniformly and independently at random

from a subset of K of cardinality κ
5: Compute FC ∈ K[x]µ×r (exploiting the Hankel structure of F)
6: return PM-Basis(d, FC,w)

since the algorithm may return P which is not a basis of Ad(F). Still, since the expected
w-Popov basis P of Ad(F) is unique, one can easily increase the probability of success by
repeating the randomized computation and following a majority rule. Another approach is
to rely on the non-interactive, Monte Carlo certification protocol of [26], which has lower
cost than Algorithm 3 but requires a larger field K; this first asks to compute the coefficient
of degree d of PF , which here can be done via bivariate polynomial multiplication in time
O (̃µend) thanks to the structure of F . For a given output P , this certification can be
repeated for better confidence in P (in which case the coefficient of degree d of PF needs
only be computed once).

4.3 Via bivariate Padé approximation

In this section, we propose another approach which directly uses the interpretation of can-
celing polynomials as denominators of the generating series of the sequence (see Lemma 2).
The next lemma describes more precisely the link between the annihilator and these denom-
inators when we have access to a partial sequence, that is, denominators of the generating
series truncated at some order. One can also view this lemma as a description of the kernel
of the univariate Hankel matrix Hs,e via bivariate Padé approximation.

Lemma 13. Let s ∈ S be linearly recurrent of order δ, and for e ∈ N define G =∑
j<2e Sjy

2e−1−j ∈ A[y]n and

Ps,e = {p ∈ A[y]≤e | pG = q mod y2e for some q ∈ A[y]n<e}.

26

Assume e ≥ δ. Then Ps,e = Ann(s) ∩ A[y]≤e, and in particular Ps,e is a generating set
of Ann(s); furthermore for any p ∈ Ps,e the corresponding q ∈ A[y]n<e satisfies deg(q) <
deg(p).

Proof. Let p = p0 + · · ·+ pγy
γ ∈ A[y]≤e where γ = deg(p). Then p ∈ Ps,e if and only if the

coefficient of pG of degree 2e− 1− k is zero for 0 ≤ k < e. Since γ ≤ e ≤ 2e− 1− k, this
coefficient is

Coeff(pG, 2e− 1− k) =

γ∑
i=0

piS2e−1−(2e−1−k−i) =

γ∑
i=0

piSk+i = 0.

Thus we have proved Ps,e = Ks,e, and Lemma 9 shows the claims in this lemma except the
last one. Let p ∈ Ps,e and define q as the polynomial in A[y]n<e such that pG = q mod y2e.
Since p ∈ Ann(s), Lemma 2 shows that pG is a polynomial. On the other hand the
definitions of G and G yield pG = y2epG − p

∑
j≥2e Sjy

2e−1−j. Hence −p
∑

j≥2e Sjy
2e−1−j

is a polynomial, and since it has degree less than γ, and thus in particular less than 2e, it
is equal to q.

From G, define F ∈ K[α, β]1×n of bi-degree less than (d, 2e) via the morphism ϕ from
Section 2.5. Equip K[α, β] with the lexicographic order 4lex, and let 4 be the corresponding
term over position order on K[α, β]n+1. Then a minimal 4-Gröbner basis of the submodule
of simultaneous Padé approximants

{(p, q) ∈ K[α, β]×K[α, β]1×n | pF = q mod (xd, y2e)}

is computed in O (̃(nω min(d, e)ω + n3 min(d, e)2)de) operations, using the algorithm of
[47] (see also Section 2.6) with input matrix of size (n + 1) × n formed by stacking the
identity In below F . Lemma 13 shows that from this 4-Gröbner basis one can find a
minimal 4lex-Gröbner basis of ϕ̄(Ann(s)) by selecting p for each (p, q) in the basis such
that degβ(q) < degβ(p).

While the PM-Basis approach had cost quasi-linear in d and n, the method here is
most efficient in an opposite parameter range: for n ∈ O(1) and d ≤ e the above cost
bound becomes O (̃dω+1e).

27

Chapter 5

Experimental Results

In this section, we compare timings for the algorithms in Sections 3.1, 3.2 and 4.1, imple-
mented in C++ using the libraries NTL [60] and PML [29] which provide high-performance
support for univariate polynomials and polynomial matrices. We leave the implementation
of the bivariate algorithm of Section 4.3 as future work. To control the cardinality and
shape of the Gröbner basis, we use Lazard’s structural theorem (see Section 2.5). The
shape of the monomial staircase is randomized with maximal β-degree δ and αd included
in the basis. After generating a random Gröbner basis G of target degree and size, we use
it to generate n sequences (with e = 2δ terms), using random initial conditions. Finally,
we compute the annihilator of the sequence, which may not necessarily recover G itself (see
Section 6.1). Runtimes are showed below.

As we claim in Section 3.2, d∗ is often close or equal to dopt. More interestingly,
Lazy Kurakin outperforms Kurakin more than d/d∗ would suggest. For example, for
δ = 256, d = 64, dopt = 49, then d/d∗ ≈ 1.2 but Kurakin is 23 times slower than Lazy
Kurakin. This is because the cost bound O (̃ed∗(n2ed + nωd)) for Lazy Kurakin assumes
that d∗ polynomials are tracked from the beginning of the algorithms. However, due to
its lazy nature, polynomials are often added later in the algorithm and the bound of ed∗

subiterations may significantly overestimate the true number of subiterations.

When δ, d, n are fixed, Kurakin’s algorithm performs worse for dopt = 1 than dopt > 1,
although this is a favourable case for Lazy Kurakin. In this case, Kurakin’s algorithm
computes Pi = xiP0 so there cannot be any early termination. Additionally, the size of
the staircase is maximal (D = ed), so this is also the worst case for algorithms whose
complexity depends directly on D. Lazy Kurakin’s algorithm somewhat remedies this
by using the extra structure of A and adding monomials in a lazy fashion. (When it is

28

n d δ dopt D/dδ K LK d∗ PM-B HPM
1 64 256 1 1 62.8 0.93 1 1.06 NA
1 64 256 49 0.62 38.0 1.65 53 2.10 NA
1 128 512 16 0.92 > 100 12 17 20.5 NA
1 128 32 12 0.91 7.85 0.078 12 0.029 NA
1 256 32 14 0.94 27.3 0.12 14 0.08 NA
1 256 128 27 0.92 > 100 1.28 27 1.60 NA
1 512 256 29 0.96 > 100 8.65 29 27.8 NA
2 17 256 2 0.5 14.1 0.91 2 0.33 0.29
3 12 512 4 0.4 6.93 1.40 4 2.47 1.86
8 16 256 1 1 54.1 3.16 1 0.56 0.25
32 16 256 1 1 > 100 39.8 1 2.79 0.35
64 16 128 1 1 > 100 > 100 1 1.02 0.13

Table 5.1: Runtimes, in seconds, of algorithms Kurakin, Lazy Kurakin, direct PM-Basis,
and Hankel-PM-Basis, observed on AMD Ryzen 5 3600X 6-Core CPU with 16 GB
RAM over K = F9001.

known that Ann(s) = 〈P 〉, it is possible to design an algorithm that is quasilinear in e via
structured system solving, see Section 6.2).

For scalar sequences over A, i.e. n = 1, Lazy Kurakin’s algorithm seems to be the best
choice when δ is large compared to d, whereas PM-Basis seems to be the best choice in the
converse. When e = 2δ = d, Lazy Kurakin outperforms PM-Basis, given that d∗ is small.
This is predicted by the theoretical complexities, as the former has complexity O (̃e3d∗),
while the latter has complexity O (̃eω+1).

For n > 1, PM-Basis and Hankel-PM-Basis clearly outperform Kurakin and Lazy
Kurakin. This is as predicted since the complexity of the former depends linearly on n,
while the latter has a factor nω. The theoretical improvement of Hankel-PM-Basis over
PM-Basis is observed empirically, especially for the two cases of n = 32, 64.

29

Chapter 6

Applications to Sparse Matrices

In this section, we outline two applications to sparse matrices A ∈ An×n: first, the compu-
tation of minimal polynomials of A, which are polynomials of minimal degree that cancel
the matrix sequence sA = (A0, A1, A2, . . .); second, the computation of the determinant of
A. In what follows, we assume A has sparsity O(n), i.e. it has O(n) nonzero entries, and
that the representation of A allows us to compute matrix-vector products at cost O (̃nd).
Our approach is based on Wiedemann’s [66], designed for matrices over fields.

6.1 Minimal polynomials of sparse matrices

Given a matrix A, the well-known Cayley-Hamilton theorem states that A cancels its own
characteristic polynomial. This implies that the sequence of successive powers of A is
linearly recurrent, and a polynomial of minimal degree that cancels this sequence is said
to be a minimal polynomial of A. A different view one can take is that such canceling
polynomials must cancel the n2 linearly recurrent sequences ((Ai)j1,j2)i≥0 simultaneously
for 1 ≤ j1, j2 ≤ n. Then, as usual, we want to compute a Gröbner basis of the ideal of
these canceling polynomials, denoted by Ann(A) ⊆ K[α, β].

Over A, trying to deduce Ann(A) from Ann((uTAiv)i≥0), for random vectors u, v ∈
An×1, presents a problem when Ann(A) does not have the Gorenstein property [42, 27].
When Ann(A) has the Gorenstein property, it has been showed that Ann(A) can be re-
covered, with high probability, by using a bidimensional sequence with random initial
conditions, provided K has large characteristic [8]. When it does not have the property,
Ann(A) is still recoverable with a similar approach, but using several sequences [49]. Over

30

various commutative rings, the problem of computing minimal polynomials of a matrix
have been studied in [12, 28, 54]. However, the algorithms given in these works do not
exploit sparsity.

Given matrix A as above, we start by choosing random u1, v ∈ An and generating
sA,1 = (uT1A

iv)0≤i<2n. Next, we apply one of the algorithms in the previous sections to
compute Ann(sA,1). If Ann(sA,1) = Ann(A), which can be checked probabilistically by
checking if Ann(sA,1) also cancels some validation sequence ((u′)TAiv)0≤i<2n, we terminate
the process. Otherwise, we double the number of sequences by doubling the number of
random ui’s and generating sA,1, . . . , sA,2s . The cost of the process is O (̃τn2d+L(n, d, τ)),
where τ is the number of sequences used and L(n, d, τ) is the cost of finding the annihilators
of a partial sequence of length n in (K[x]/〈xd〉)τ . Note that this process must terminate.
The crudest bound is when τ > n2 since then we could simply compute Ann(A) directly.
Another slightly more refined bound for the number of generic linear forms needed is τ ≤ D,
where D is the size of the staircase of Ann(A) [49, Prop. 1].

6.2 Determinant of sparse matrices

The determinant of a matrix is easily obtained from its minimal polynomial when the latter
is equal to the characteristic polynomial. Wiedemann [66] calls such matrices nonderogatory
and shows that preconditioning any matrix B ∈ Kn×n with a random diagonal matrix D
results in a nonderogatory matrix with high probability. We will show that the same
preconditioning can be applied to matrices over A. Here, a particular role will be played
by sequences s ∈ (An)N such that Ann(s) = 〈P 〉, for some monic P ∈ A[y]. Indeed, the
next theorem shows that it is sufficient for the constant part of A to be nonderogatory in K
for A to be nonderogatory in A and for the sequence of its powers to satisfy this property.

Theorem 14. Let A0 ∈ Kn×n be the constant part of A (i.e. for x = 0). If A0 is non-
derogatory, then Ann(A) = 〈P 〉 for some monic P ∈ A[y] of degree n.

Proof. Let P ∈ A[y] be the minimal monic polynomial of the sequence sA = (A0, A1, A2, . . .),
then deg(P) ≤ n since A is n× n. Now, A0 is nonderogatory, so any canceling polynomial
must have degree ≥ n; thus, deg(P) = n. Furthermore, if there exists another polynomial
Q of degree n and leading coefficient xi such that Q 6= xiP , then Q−xiP is a canceling poly-
nomial of degree less than n, contradicting the previous statement. Thus, P, xP, . . . , xd−1P
are minimal in degree and, by Theorem 5, Ann(A) = 〈P, xP, . . . , xd−1P 〉 = 〈P 〉.

31

The above theorem allows us to use the same preconditioner as in [66]: a random
constant diagonal matrix D. The preconditioning ensures that the ideal of canceling
polynomial is generated by a single monic polynomial; thus, ϕ̄(Ann(AD)) is Gorenstein
and requires only a single linear form to be recovered. Furthermore, when it is known
that the ideal is generated by a single polynomial, we can recover this polynomial in
O (̃nd) by taking advantage of the fact that the constant part of the leading n × n sub-
matrix of Hs,2n is an invertible Hankel matrix [11]. Once we have P , we can compute
det(A) = P (0)(

∏
iDi,i)

−1. Under our sparsity assumption, the cost of this method is
O (̃n2d) for computing (uTAiv)i≤2n, O (̃nd) for computing P , and O (̃n+ d) for recovering
the determinant from P , leading to the total cost of O (̃n2d) operations in K. This is to
be compared with computing the determinant of A “at full precision”, i.e. by seeing A as a
matrix over K[x], and then truncating the result modulo xd: this costs O (̃nωd) operations
in K [39].

32

Chapter 7

Future Works and Conclusion

A possible future direction is to investigate if our methods can be used to improve algo-
rithms over K[x]. More precisely, given a sequence over K[x]n, our algorithms can find the
annihilator of this sequences at precision d and we want to ‘lift’ this solution to sufficient
precision d′ > d to apply rational reconstruction. For many matrix algorithms over K[x]
of size m × m and maximal degree d, we typically want the precision to be O(md) as
this is the maximal degree of the determinant. Via high-order lifting [63], one could solve
such systems at ‘full precision’ at cost O (̃mωd). Assuming the sparsity assumption and
applying the algorithms of Chapter 6 at precision O(md) yields costs at least cubic in m.
A problem with such approach is that while we improve the cost of computing solutions
to sparse systems at fixed d, the cost of lifting the solution becomes the bottleneck at high
precisions.

Linearly recurrent sequences are fundamental to many areas in computer science and
mathematics, and there are many important open questions for sequences over rings. By
tailoring our focus to sequences over An, we propose algorithms that have better complexi-
ties than more general algorithms applied to our context. While Lazy Kurakin’s algorithm
attempts reduce the number of output polynomials, approximation algorithms reduce the
dependence in one of the dimensions at the cost of the other dimension. Our experiments
show that the theoretical complexities are reflected in practise, particularly between the
different parameter regimes. We also present applications to sparse matrices over K[x]/xd,
as linearly recurrent sequences naturally arise when designing Wiedemann-like algorithms.

33

References

[1] J. Alman and V. Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings SODA 2021, pages 522–539, 2021.

[2] B. Beckermann. A reliable method for computing M-Padé approximants on arbitrary
staircases. J. Comput. Appl. Math., 40(1):19–42, 1992.

[3] B. Beckermann and G. Labahn. A uniform approach for the fast computation of
matrix-type Padé approximants. SIAM J. Matrix Anal. Appl., 15(3):804–823, 1994.

[4] B. Beckermann and G. Labahn. Recursiveness in matrix rational interpolation prob-
lems. J. Comput. Appl. Math., 77(1):5–34, 1997.

[5] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial
matrices. In ISSAC’99, pages 189–196. ACM, 1999.

[6] C. Berkesch and F.-O. Schreyer. Syzygies, finite length modules, and random curves.
In Commutative Algebra and Noncommutative Algebraic Geometry, pages pp. 25–52.
Mathematical Sciences Research Institute Publications (Vol. 67), 2015.

[7] E. Berlekamp. Nonbinary bch decoding (abstr.). IEEE Trans. Inf. Theory, 14(2):242–
242, 1968.

[8] J. Berthomieu, B. Boyer, and J.-C. Faugère. Linear algebra for computing Gröbner
bases of linear recursive multidimensional sequences. J. Symb. Comput., 83:36–67,
2017.

[9] J. Berthomieu and J.-C. Faugère. A polynomial-division-based algorithm for comput-
ing linear recurrence relations. In ISSAC’18, pages 79–86, 2018.

[10] D. Bini and V. Y. Pan. Polynomial and Matrix Computations (Vol. 1): Fundamental
Algorithms. Birkhauser Verlag, 1994.

34

[11] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems with
large displacement rank. Theor. Comput. Sci., 407(1):155–181, 2008.

[12] W. C. Brown. Null ideals of matrices. Communications in Algebra, 33(12):4491–4504,
2005.

[13] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation, 41(3-4):475–511, 2006.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990.

[15] D. A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry (second edition).
Springer-Verlag New-York, New York, NY, 2005.

[16] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inform. Process. Lett., 7(4):193–195, 1978.

[17] Jean-Charles Faugère and Chenqi Mou. Sparse fglm algorithms. Journal of Symbolic
Computation, 80:538–569, 2017.

[18] Charles M Fiduccia. An efficient formula for linear recurrences. SIAM Journal on
computing, 14(1):106–112, 1985.

[19] P. Fitzpatrick. A theoretical basis for Padé approximation. Irish Math. Soc. Bull,
30:6–17, 1993.

[20] P. Fitzpatrick. On the key equation. IEEE Trans. Inf. Theory, 41(5):1290–1302, 1995.

[21] P. Fitzpatrick. Solving a Multivariable Congruence by Change of Term Order. J.
Symb. Comput., 24(5):575–589, 1997.

[22] P. Fitzpatrick and G. H. Norton. Finding a basis for the characteristic ideal of an
n-dimensional linear recurring sequence. IEEE Trans. Inf. Theory, 36(6):1480–1487,
1990.

[23] Joachim Gathen and Jürgen Gerhard. Modern computer algebra (2. ed.). 01 2003.

[24] Patrizia Gianni and Teo Mora. Algebrric solution of systems of polynomirl equa-
tions using groebher bases. In International Conference on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, pages 247–257. Springer, 1987.

35

[25] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix
computations. In ISSAC’03, pages 135–142. ACM, 2003.

[26] P. Giorgi and V. Neiger. Certification of minimal approximant bases. In ISSAC’18,
pages 167–174. ACM, 2018.

[27] W. Gröbner. Über irreduzible Ideale in kommutativen Ringen. Mathematische An-
nalen, 110(1):197–222, 1935.

[28] C. Heuberger and R. Rissner. Computing J-ideals of a matrix over a principal ideal
domain. Linear Algebra Appl., 527:12–31, 2017.

[29] S. G. Hyun, V. Neiger, and É. Schost. Implementations of efficient univariate poly-
nomial matrix algorithms and application to bivariate resultants. In ISSAC’19, pages
235–242. ACM, 2019.

[30] Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, and Éric Schost. Sparse fglm using
the block wiedemann algorithm. ACM Commun. Comput. Algebra, 52(4):123–125,
May 2019.

[31] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Fast computation of minimal
interpolation bases in Popov form for arbitrary shifts. In ISSAC’16, pages 295–302.
ACM, 2016.

[32] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Computing minimal interpo-
lation bases. J. Symb. Comput., 83:272–314, 2017.

[33] C.-P. Jeannerod, V. Neiger, and G. Villard. Fast computation of approximant bases
in canonical form. J. Symb. Comput., 98:192–224, 2020.

[34] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital
numbers by automatic computers. In Doklady Akademii Nauk, volume 145, pages
293–294. Russian Academy of Sciences, 1962.

[35] M. Kuijper and K. Schindelar. The predictable leading monomial property for poly-
nomial vectors over a ring. In Proceedings ISIT 2010, pages 1133–1137, 2010.

[36] M. Kuijper and K. Schindelar. Minimal Gröbner bases and the predictable leading
monomial property. Linear Algebra Appl., 434(1):104–116, 2011.

[37] V. L. Kurakin. The Berlekamp–Massey algorithm over finite rings, modules, and
bimodules. Discrete Mathematics and Applications, 8(5):441–474, 1998.

36

[38] V. L. Kurakin. Construction of the annihilator of a linear recurring sequence over
finite module with the help of the Berlekamp-Massey Algorithm. In FPSAC 2000,
pages 476–483. Springer, 2000.

[39] G. Labahn, V. Neiger, and W. Zhou. Fast, deterministic computation of the Hermite
normal form and determinant of a polynomial matrix. 42:44–71, 2017.

[40] D. Lazard. Ideal bases and primary decomposition: Case of two variables. J. Symb.
Comput., 1(3):261–270, 1985.

[41] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages
296–303. ACM, 2014.

[42] F. S. Macaulay. Modern algebra and polynomial ideals. In Math. Proc. Camb. Philos.
Soc, volume 30, pages 27–46. Cambridge University Press, 1934.

[43] J. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory,
15:122–127, 1969.

[44] H.M. Möller, T. Mora, and C. Traverso. Gröbner bases computation using syzygies.
In Papers from the international symposium on Symbolic and algebraic computation,
pages 320–328, 1992.

[45] T. Mora. The FGLM problem and Möller’s algorithm on zero-dimensional ideals. In
M. Sala, S. Sakata, T. Mora, C. Traverso, and L. Perret, editors, Gröbner Bases,
Coding, and Cryptography, pages 27–45, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[46] B. Mourrain. Fast algorithm for border bases of Artinian Gorenstein algebras. In
ISSAC’17, pages 333–340. ACM, 2017.

[47] S. Naldi and V. Neiger. A divide-and-conquer algorithm for computing Gröbner bases
of syzygies in finite dimension. In ISSAC’20, pages 380–387. ACM, 2020.

[48] V. Neiger. Bases of relations in one or several variables: fast algorithms and applica-
tions. PhD thesis, École Normale Supérieure de Lyon, November 2016.

[49] V. Neiger, H. Rahkooy, and É. Schost. Algorithms for zero-dimensional ideals using
linear recurrent sequences. In CASC 2017, pages 313–328. Springer, 2017.

[50] V. Neiger and É. Schost. Computing syzygies in finite dimension using fast linear
algebra. J. Complexity, 60:101502, 2020.

37

[51] Vincent Neiger, Hamid Rahkooy, and Éric Schost. Algorithms for zero-dimensional
ideals using linear recurrent sequences. In International Workshop on Computer Al-
gebra in Scientific Computing, pages 313–328. Springer, 2017.

[52] Victor Pan. Structured matrices and polynomials. Unified superfast algorithms. 01
2001.

[53] V. M. Popov. Invariant description of linear, time-invariant controllable systems.
SIAM Journal on Control, 10(2):252–264, 1972.

[54] R. Rissner. Null ideals of matrices over residue class rings of principal ideal domains.
Linear Algebra Appl., 494:44–69, 2016.

[55] S. Sakata. Finding a minimal set of linear recurring relations capable of generating a
given finite two-dimensional array. J. Symb. Comput., 5(3):321–337, 1988.

[56] S. Sakata. Extension of the berlekamp-massey algorithm to n dimensions. Information
and Computation, 84(2):207–239, 1990.

[57] S. Sakata. The bms algorithm. In Gröbner Bases, Coding, and Cryptography, pages
143–163. Springer, 2009.

[58] F-O. Schreyer. Die Berechnung von Syzygien mit dem verallgemeinerten Weier-
straßschen Divisionssatz. PhD thesis, Master’s thesis, Fakultät für Mathematik, Uni-
versität Hamburg, 1980.

[59] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[60] V. Shoup. NTL: A library for doing number theory, version 11.4.3.
http://www.shoup.net, 2020.

[61] Nancy L Stokey. Recursive methods in economic dynamics. Harvard University Press,
1989.

[62] A. Storjohann. Notes on computing minimal approximant bases. In Challenges in
Symbolic Computation Software, Dagstuhl Seminar Proceedings, 2006.

[63] Arne Storjohann. High-order lifting and integrality certification. Journal of Symbolic
Computation, 36(3):613 – 648, 2003. ISSAC 2002.

38

[64] M. Van Barel and A. Bultheel. A general module theoretic framework for vector
M-Padé and matrix rational interpolation. Numer. Algorithms, 3:451–462, 1992.

[65] Gilles Villard. On computing the resultant of generic bivariate polynomials. In Pro-
ceedings of the 2018 acm international symposium on symbolic and algebraic compu-
tation, pages 391–398, 2018.

[66] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory, 32(1):54–62, 1986.

[67] W. A. Wolovich. Linear Multivariable Systems, volume 11 of Applied Mathematical
Sciences. Springer-Verlag New-York, 1974.

[68] W. Zhou and G. Labahn. Efficient algorithms for order basis computation. J. Symb.
Comput., 47(7):793–819, 2012.

[69] W. Zhou and G. Labahn. Computing column bases of polynomial matrices. In IS-
SAC’13, pages 379–386. ACM, 2013.

[70] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM’79, vol-
ume 72 of LNCS, pages 216–226. Springer, 1979.

39

	List of Figures
	List of Tables
	Introduction
	Background
	Basic algorithmic tools
	Linearly recurrent sequences over K
	Linearly recurrent sequences over K[x]/xd
	Partial sequences
	Bivariate interpretation and generating sets
	Univariate and bivariate approximations

	Kurakin's Algorithm
	Kurakin's algorithm over A
	Lazy algorithm based on Kurakin's
	Example of Kurakin and Lazy Kurakin

	Approximation Approaches
	Via Univariate Approximant Bases
	Speed-up by compression using structure
	Via bivariate Padé approximation

	Experimental Results
	Applications to Sparse Matrices
	Minimal polynomials of sparse matrices
	Determinant of sparse matrices

	Future Works and Conclusion
	References

