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Abstract

We study black hole evaporation and equilibration in the doubly holographic AEM4Z
model [1], which consists of a double sided black hole in JT gravity with holographic
matter. At t=0, the right side of the black hole is coupled to a bath which consists of the
same holographic matter on a half line. Beginning with the evaporation model in which
the bath is at zero temperature, we compute the generalized entropy of the left black hole
plus different bath intervals using the HRT prescription, and find the corresponding Page
curves. By studying the requirements for the Page transition, we study the structure of how
the black hole interior is encoded in the Hawking radiation during the evaporation process.
We then repeat the analysis with finite temperature baths, and find the importance of
the bath purification for reconstruction of the black hole interior past a certain critical
temperature.
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Chapter 1

Introduction

Over the past few years, our understanding of the black hole information paradox has seen
an explosion of progress thanks to exciting new tractable models of black hole evaporation
and equilibration [1, 10, 11]. The black hole information paradox is a long standing puzzle in
theoretical physics that arose when Hawking first discovered that black holes leak radiation
due to quantum fluctuations [12]. Moreover, he calculated that the radiation emitted by a
black hole during its evaporation is completely thermal. Hawking’s results indicated that
black hole evaporation appears to be non-unitary, in stark conflict with the fundamental
assumptions of quantum mechanics [13]. This remained an open puzzle for decades, until
these new tractable models were discovered and inspired new insights into the structure of
information and geometry in quantum gravity. This progress naturally led to the exciting
new topic of quantum extremal islands [1] and their relation to the ensemble interpretation
of gravity [14, 15]. The goal of this thesis is to summarize some of the lessons that have
been learned by studying holographic models of black hole evaporation and equilibration [1,
2, 3, 11].

The remainder of this chapter is organized as follows. We begin in section 1.1 with
an introduction and motivation into the subject. In section 1.2, we review some of the
necessary background material for the main topic of the thesis. Lastly, we summarize the
results and outline the structure of the rest of the thesis in section 1.3.

1



1.1 From black holes and thermodynamics to infor-

mation and geometry

Black holes are solutions to Einstein’s equations that have a few interesting properties
that stand out. One is the existence of a singularity at which the curvature of space-
time geometry diverges. The second is an event horizon, which consists of a surface that
encloses an inescapable region of space time and shields external observers from seeing the
singularity. The first and simplest example of a black hole was discovered by Schwarzschild
merely one year after Einstein published his theory of General Relativity. Over the years,
more and more generalizations of black hole solutions have been found, adding charge and
rotation to the black holes, being in space-times with non-zero cosmological constant, in
different numbers of dimensions, and even as solutions of more exotic gravitational theories.

While black holes were originally considered merely a mathematical curiosity, with the
advance of technology and improved observational tools, there is an ever growing catalog
of real black holes that have been observed. The first indirect evidence of a real black hole
was the galactic X-ray source Cygnus X-1 discovered in 1964 [16]. Cygnus X-1 is part of a
binary system with the blue supergiant star HDE 226868. Further studies and observations
led to it being widely accepted by the astronomical community as a black hole of around
21.2 solar masses [17]. The blue supergiant star provides material for an accretion disk
around Cygnus X-1, and this matter falling into the black hole is what produces the large
flux of X-rays observed. More recently, the new and exciting field of gravitational-wave
astronomy has produced many observations of black hole mergers [18], and just two years
ago the Event Horizon Telescope Collaboration produced the first direct image of a black
hole: a supermassive black hole of around 6.5 billion solar masses at the center of the
supergiant elliptical galaxy Messier 87 [19].

Theoretical studies of black holes have brought to light many interesting insights into
quantum field theory in curved spacetime and quantum gravity. A well known example
of this is Hawking radiation [12]. The natural space-time coordinates for a static observer
far from the black hole are different from the natural coordinates for an observer freely
falling though the event horizon. Asymptotically distant observers are in approximately
flat spacetime, and the global Minkowski-like coordinates t,x agree with local rest frame
coordinates. On the other hand, for observers close to the black hole, the curvature induced
by this massive object distorts the geometry, and local rest frame coordinates agree instead
with the Kruskal-Szekeres coordinates t̃, x̃. The decomposition of quantum fields in terms
of creation and annihilation operators will differ between the two observers, since it depends
on the coordinates used. Thus, the Kruskal vacuum state for an observer falling though
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the horizon is different from the Boulware vacuum for an observer far from the black hole.
Moreover, by the equivalence principle, the quantum fields in the vicinity of a black hole
are in the Kruskal vacuum, which appears to a distant observer as a thermal state. Indeed
finding the relation between the two different sets of creation and annihilation operators,
it is possible to show that the observer at rest far from the black hole sees particles with
a thermal spectrum [20]

n(ω) =
Γl(ω)

exp ω
TH
± 1

(1.1)

being emitted from the black hole. This emission is known as Hawking radiation. Of
course, the choice of plus or minus above depends on whether the fields in question are
fermions of bosons, and Γl(ω) < 1 are greybody factors.

A complementary method to find that quantum fields in black hole backgrounds are in
a thermal state is to consider regularity of the geometry at the event horizon. A typically
spherically symmetric black hole metric with an event horizon at r = rh will have the
following form

ds2 = −f(r)dt2 + g−1(r)dr2 + r2dΩ2
d−2 , (1.2)

where both f(r) and g(r) have a first order zero at r = rh. Analytically continuing the
metric to Euclidean space-time τ = it and switching to conical coordinates

ρ2 =
4(r − rh)
g′(rh)

, φ =
1

2

√
g′(rh)f ′(rh)τ , (1.3)

leads to a metric of the form

ds2 = ρ2dφ2 + dρ2 + r(ρ)2dΩ2
d−2 + · · · , (1.4)

where we have omitted higher powers of ρ2. This metric has a conical defect at the event
horizon ρ = 0 unless φ is periodic φ ∼ φ+2π. This in turn implies that the Euclidean time
direction must have a period of 4π/

√
f ′(rh)g′(rh), and any quantum fields in a black hole

background must be periodic in the Euclidean time direction. The periodicity in Euclidean
time corresponds to the quantum fields being at finite temperature with density matrix
ρ ∝ exp (−βH), with inverse temperature given by β = 1/T = 4π/

√
f ′(rh)g′(rh). The

temperature found this way corresponds to the same Hawking temperature TH calculated
in the previous method.

The realization that black holes have a temperature led to interesting insights about
what is now known as black hole thermodynamics [12, 20, 21, 22, 23, 24]. A lot of the
properties of black holes can be summarized into four laws which have analogues in the
corresponding four laws of thermodynamics.
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� The zeroth law of black hole thermodynamics states that the surface gravity is con-
stant over the event horizon of a stationary black hole, and is the analogue of thermal
equilibrium in standard thermodynamics. This suggests that the surface gravity κ
can be interpreted as an analogue of temperature, and indeed the Hawking temper-
ature determined with the methods outlined above is given by TH = κ

2π
.

� The first law states energy conservation, and it relates the change in the mass of the
black hole to the change in its area, angular momentum and charge. Among other
things, this suggests the area of the event horizon is the analogue of the thermal
entropy in standard thermodynamics. Calculating the relation between the change
in horizon area and the change in the mass of the black hole fixes the Bekenstein-
Hawking entropy as SBH = A

4G
.

� The second law states that the area of the event horizon can only increase, and further
establishes a connection between the area of the event horizon and thermal entropy in
standard thermodynamics. There is a generalization of the second law which states
that the total entropy of a black hole plus matter system never decreases [25, 26].

� The third law is the analogue of Nernst law, and states that it is impossible to reduce
the surface gravity to zero by a finite number of operations.

An interesting feature of black hole thermodynamics is that it relates the entropy of
the black hole to its surface area, rather than its volume, as one might naively expect.
This is remarkable in the context of the second law of black hole thermodynamics because
it implies that there is an upper bound on the entropy of any system in a dynamical
gravity theory, and in particular it is bounded by the surface area of a black hole that
can be formed by that system [25, 26], independent of any other microscopic details! This
remarkable observation is explained by the holographic principle [27, 28, 29]: that the
description of a volume of space in a theory of quantum gravity can be thought of as
encoded on the (lower-dimensional) boundary of the region. Moreover, the appearance
of an entropy term in black hole thermodynamics inspired physicists to properly define
and investigate entanglement entropy in quantum field theory and quantum gravity, and
together with the concept of holography, led to breakthroughs in our understanding of the
nature of space-time in quantum gravity.

A direct consequence of Hawking radiation is that black holes in vacuum will radiate
away all of their energy and evaporate into a cloud of thermal radiation [23]. Strikingly,
this outcome is independent of the initial state of matter from which the black hole was
formed. This means that if one were to start with a pure state of matter that had then
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collapsed to form a black hole, after the evaporation of the black hole one would end
up with a mixed state of thermal gas. This contradicts one of the main assumptions of
quantum mechanics: that time evolution is unitary, and therefore if one begins with a pure
state, after time evolution the state should remain pure.

Another way to state this paradox relies on considering the information accessible by
measuring the quantum state throughout this process. Before the collapse into a black
hole, the state is in one of many possible quantum states with overall energy, charge and
angular momentum which will match that of the black hole. Once it collapses to a black
hole, by the no-hair theorem, the only parameters needed to characterize the state are the
mass, charge and angular momentum of the black hole. After evaporation of the black
hole, one is left with Hawking radiation in a grand canonical ensemble with the energy,
charge and angular momentum determined by those of the black hole. Therefore, the
microscopic details of the initial pure state have been somehow lost. This non-surjective
mapping of initial states to final states during black hole formation and evaporation is in
contradiction with the unitarity of quantum mechanics. This is because unitarity implies
that given a complete set of information about a state on a Cauchy surface, it would be
possible to evolve the state to the past or the future and recover all the information of
the corresponding state on a different Cauchy surface. But since many initial states before
the collapse to a black hole result in the same Hawking radiation after evaporation, it is
clearly impossible to determine what initial state gave rise to the Hawking radiation by
simply measuring the final state.

The black hole information paradox can be quantitatively described by considering the
entropy of the Hawking radiation throughout the evaporation process [30, 31]. The original
semiclassical calculation would yield a Hawking entropy curve which begins at zero and
increases monotonically as more and more thermal quanta is radiated away from the black
hole. The final state would have non-zero entropy, which is an indication that it is now
in a mixed state. To recover a unitary evaporation process, the entropy of the Hawking
radiation should follow a Page curve, which initially increases until a phase transition
occurs and the entropy then begins to decrease back to zero. The time at which this
transition occurs is called the Page time.

This surprising paradox has been an active area of investigation for the past few
decades [13, 32, 33, 34, 35, 36, 37], and many exotic resolutions have been proposed: from
black hole remnants, baby universes and explosions of information at the end of evapora-
tion to the acceptance of the loss of information or the loss of the equivalence principle in
the form of firewalls. An indirect resolution was provided by running with a holographic
argument [27, 28, 29]. Inspired by the AdS/CFT correspondence (see section 1.2) it was
suggested that the quantum gravitational system that undergoes collapse and evaporation
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is encoded on, or dual to, a lower dimensional quantum theory at the boundary. Since the
lower dimensional quantum theory at the boundary is a standard QFT, then by definition
the time evolution is unitary, and information has to be somehow preserved. This line of
argument suggests that something subtle was missing in the semiclassical derivations a la
Hawking, and that careful considerations of other corrections would restore unitarity and
bring a resolution to the paradox. Moreover, in the past couple of years, progress has been
sparked through the discovery of tractable holographic models of black hole evaporation.
The topic of this thesis is to summarize some of the work that has been done in this area
through the use of these doubly holographic models. It is based on two papers [2, 3], which
build on the original work [1, 10, 11] that sparked the recent progress in this area.

1.2 Background: holography and all that

In this section we give a quick review of some of the most important concepts needed to
study the black hole plus bath models in chapters 2 and 3.

1.2.1 AdS/CFT

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [38] is the most
well known and widely studied realization of the holographic principle, which states that
the degrees of freedom of a gravitational theory in a given volume V are encoded in the
boundary ∂V of said volume. This principle was inspired by the aforementioned Beken-
stein bound on the entropy of any system in a gravitational theory [25, 26], which comes
as a consequence of the second law of black hole thermodynamics [21]. The AdS/CFT
correspondence relates gravitational theories in asymptotically AdS space to conformal
field theories in one less dimension. We will state it in a “weak” form which, relates a
classical supergravity theory to a strongly coupled CFT with many degrees of freedom. A
“stronger” version of the AdS/CFT correspondence relates superstring theory or M-theory
compactified in AdS ×X with a CFT at general coupling and number of degrees of free-
dom. Here X is a compact geometry. As will be outlined below, the large number of
degrees of freedom in the CFT corresponds to a small string coupling and a corresponding
suppression of quantum fluctuations in the bulk. Furthermore, strong coupling in the CFT
corresponds to a small string length and therefore leads to a suppression of stringy effects
bulk theory. Therefore the “weak” version of the AdS/CFT correspondence follows from
the “strong” version by applying a saddle point approximation in the presence of a large
number of degrees of freedom and at strong coupling. Concretely, the “weak” AdS/CFT
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correspondence relates the generating functional W [φ0] for connected n-point functions of
the CFT operators O with sources φ0

e−WCFT [φ0] = ZCFT [φ0] =

〈
exp

(∫
ddxφ0(x)O(x)

)〉
CFT

, (1.5)

to an asymptotically AdS gravitational action Igrav[φ]. That is, it states that Igrav[φ] is
related to W [φ0]CFT by

WCFT [φ0] = Igrav[φ]
∣∣∣
limz→0 φ(z,x)z∆−d=φ0(x)

. (1.6)

Here, ∆ is the dimension of the CFT operator O and z is the extra holographic direction,
such that the asymptotic boundary of AdS is located at z = 0. In words, the AdS/CFT
correspondence identifies the CFT generating functional in eq. (1.5) with a classical on-
shell action on asymptotic Anti-de Sitter subject to the boundary condition that the higher
dimensional bulk fields φ have boundary values given by φ0. Note that the correspondence
stated in eq. (1.6) is a weak version of the AdS/CFT correspondence, which requires a
CFT with many degrees of freedom and with strong coupling, which corresponds to a
weak string coupling and small string length in the dual string theory, allowing for a
saddle point approximation of the log of the string partition function into the classical
supergravity action. The prototypical example of the AdS/CFT correspondence relates
N = 4 Super Yang-Mills theory with gauge group SU(N) and coupling constant gYM in
four spacetime dimensions to type IIB superstring theory with string length ls and string
coupling constant gs in AdS5 × S5 with radius of curvature L. The parameters of these
two theories are related by g2

YM = 2πgs and 2g2
YMN = L4/l4s . In this realization of the

AdS/CFT correspondence, it is straightforward to see that the large number of degrees of
freedom of the CFT4 (N →∞) with fixed L/ls directly leads to the suppression of quantum
effects and allows for the saddle point approximation of the string partition function by
a classical string action. Furthermore, at strong t’Hooft coupling λ = g2

YMN , the stringy
effects are also suppressed and one is left with the classical supergravity action on the right
hand side of eq. (1.6).

1.2.2 (Holographic) entanglement entropy

The AdS/CFT correspondence relates many important quantities in between the two the-
ories. A central concept studied on both sides of the holographic duality is that of entan-
glement entropy [39, 40, 41, 42, 43]. Entanglement entropy is a measure of entanglement
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of a subset of degrees of freedom in a state. It corresponds to the von Neumann entropy
of the reduced density matrix associated with that subset of degrees of freedom.

The von Neumann entropy of a state with density matrix ρ is given by

SvN = −Tr (ρ log ρ) , (1.7)

and it quantifies how mixed a state is. For example, for a pure state ρ = |Ψ〉〈Ψ|, the von
Neumann entropy vanishes, while for a maximally mixed state ρ = I/|H|, the von Neumann
entropy is maximized, and is SvN = log |H|. Here, |H| is the dimension of the Hilbert space
H in which the state ρ is defined. More generally, any mixed state is given by the density
matrix ρ =

∑
n pn|Ψn〉〈Ψn| with |Ψn〉 ∈ H and

∑
n pn = 1, and the corresponding von

Neumann entropy is

SvN = −
∑
n

pn log pn . (1.8)

For a given bipartition of the Hilbert space H = HA⊗HAc , the reduced density matrix
of the subsystem A is found by tracing out the degrees of freedom of its complement

ρA = TrAcρ , (1.9)

and the entanglement entropy of the subregion A is then

SA = −TrA (ρA log ρA) . (1.10)

A simple way to see that entanglement entropy is a measure of entanglement is to calculate
it for a product state |Ψ〉 = |ΨA〉⊗|ΨAc〉, in which there is no correlation betweenA andAc.
That is, 〈OAOAc〉 = 〈OA〉〈OAc〉 for any two operators supported in A and Ac respectively,
i.e., OA = OA ⊗ IAc and OAc = IA ⊗ OAc , where IA is the identity operator in HA and
similarly IAc is the identity operator in HAc . For any product state, the subregion density
matrix is pure and the entanglement entropy vanishes

ρA = |ΨA〉〈ΨA| , SA = 0 . (1.11)

Entanglement entropy satisfies a number of interesting properties [44]. For example,
for a pure state |Ψ〉 ∈ H, the entanglement entropy of a subregion and its complement is
the same

SA = SAc . (1.12)

Entanglement entropy also satisfies the subadditivity relation

SA∪B ≤ SA + SB , (1.13)
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and the strong subadditivity condition

SA + SB ≥ SA∪B + SA∩B . (1.14)

The von Neumann entropy, and similarly the entanglement entropy, can be found by taking
the appropriate limit of the Renyi entropies

Sn =
1

1− n
log (Tr (ρn)) , SvN = lim

n→1
Sn . (1.15)

This is particularly useful in QFT where the Renyi entropies can be defined in terms of
path integrals using the replica method. First, the density matrix of a subregion A of a
Cauchy slice defined at t = 0 can be written as a path integral

(ρA)Φ+Φ−
=

∫
DΦe−SQFT[Φ]δ

(
ΦA

∣∣∣
t=0−

= Φ−

)
δ
(

ΦA

∣∣∣
t=0+

= Φ+

)
, (1.16)

where we have split the fields into those in region A and those outside, i.e., Φ = {ΦA,ΦAc}.
The geometry B over which the path integral is to be evaluated depends on the state we
want to prepare. For example, to prepare the density matrix in the ground state of the
QFT in a Cauchy slice Σ, one can do a Euclidean path integral on Σ× R from tE = −∞
to tE =∞, with boundary conditions set at tE = 0 in the subregion A. Another common
example is the thermal density matrix, which would be prepared by integrating over the
thermal cylinder with period β = 1/T in the Euclidean time direction and once again with
boundary conditions at tE = 0 in the subregion A. See figure 1.1.

Powers of the density matrix can be calculated by sewing boundary conditions along
the subregion A. For example(

ρ2
A
)

Φ+Φ−
=

∫
DΦx (ρA)Φ+Φx

(ρA)ΦxΦ−

=

∫
DΦ(1)DΦ(2)e−SQFT[Φ(1)]−SQFT[Φ(2)]

× δ
(

Φ
(1)
A

∣∣∣
t=0−

= Φ−

)
δ
(

Φ
(1)
A

∣∣∣
t=0+

= Φ
(2)
A

∣∣∣
t=0−

)
δ
(

Φ
(2)
A

∣∣∣
t=0+

= Φ+

)
.

(1.17)

The replica method consists of considering this doubled integral as an integral over
a replica manifold, which consists of two copies of the original manifold glued along the
subregion A. The trace of an n-th power of the density matrix then consists of a closed
path integral over a replica manifold Bn which consists of n copies of B glued periodically
along the copies of the subregion A. That is,

Tr ρA = Z[B] , Tr (ρnA) = Z[Bn] . (1.18)
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Figure 1.1: Path integrals preparing different states and density matrices. The boundary
conditions are at the regions in red. Top left: Euclidean path integral from tE = −∞ to
tE = 0 prepares the ground state |0〉. Top right: Euclidean path integral from tE = 0 to
tE = β = 1/T prepares the thermal density matrix ρβ = e−βH/Z. Bottom left: gluing the
ground state and its CPT conjugate along Ac gives the reduced density matrix TrAc |0〉〈0|.
Bottom right: gluing the thermal strip along Ac gives the reduced density matrix TrAcρβ.
The gluing is done by tracing over boundary conditions along the dashed area, representing
Ac, and leaving the boundary conditions on the two copies of A in red as operator indices.

Crucially, since going around ∂A one full rotation corresponds to jumping to a different
copy of the original manifold, it takes a rotation of 2πn around ∂A to get to the same point
in the replica manifold Bn. That is, there is a conical defect at ∂A for n 6= 1. Furthermore,
note that due to the cyclic symmetry of the trace, the replica manifold comes equipped
with a Zn symmetry, which corresponds to cyclically permuting the different copies of B.

The holographic counterpart to entanglement entropy is given by the Hubeny-Rangamani-
Ryu-Takayanagi prescription [41, 42, 45]

SEE(R) =
A(ER)

4G
, (1.19)

where ER is the HRT surface. The HRT surface is the bulk co-dimension-two extremal
surface anchored at ∂R and homologous to R, with smallest area. That is, for a given
region R of the asymptotic boundary, we consider co-dimension two surfaces in the bulk
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anchored at ∂R on the asymptotic boundary that are smoothly retractable onto R and
find those that extremize the area functional. In the event that there are several candidate
HRT surfaces, the one with smallest area is the HRT surface.

Using the AdS/CFT correspondence, the Renyi entropies can be written as a difference
of on-shell gravitational actions

Sn =
1

1− n
log

(
Tr (ρnA)

(TrρA)n

)
=

1

1− n
log

(
Z[Bn]

Z[B]n

)
=

1

1− n
(logZ[Bn]− n logZ[B])

≈ 1

n− 1
(I[Mn]− n I[M]) ,

(1.20)

whereM is an asymptotic AdS manifold with ∂M = B, and similarlyMn is a bulk man-
ifold with ∂Mn = Bn. The bulk manifolds M and Mn must satisfy Einstein’s equations,
and in particular the candidate manifoldsM′

n that inherit the Zn replica symmetry of Bn
have codimension two surfaces en anchored at ∂A, which are fixed point surfaces of the Zn
symmetry. The surface en has an intuitive interpretation when considering the quotient
space M̂n =Mn/Zn which is found by taking the quotient over the replica symmetry. In
the quotient space M̂n, the surface en has a conical defect which corresponds to a cosmic
brane with tension

Tn =
1

4G

n− 1

n
. (1.21)

This brane backreacts into the geometry and gives the right singularity, which would
correspond to the conical defect of Mn after the quotient by the replica symmetry. The
on-shell action of the replica manifold is n times the on-shell action of the quotient manifold

I[Mn] = n I[M̂n] . (1.22)

While Renyi entropies in eq. (1.20) require an integration over the full bulk manifolds
M and Mn, it is convenient to consider the modular entropies

S̃n =
1

n2
∂n

(
n− 1

n
Sn

)
, (1.23)

which also satisfy limn→1 S̃n = SvN . Using the modular entropies, we are instead interested
in calculating ∂nI[M̂n], which turns out to simply be proportional to the area of the cosmic
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brane

∂nI[M̂n] =
A(en)

4n2G
. (1.24)

Further, using the property in eq. (1.22), we can find

S̃n = ∂nI[M̂n] =
A(en)

4n2G
. (1.25)

In the limit n → 1, the cosmic brane has zero tension, the background geometry M̂n =
M and the cosmic brane is simply the extremal area surface as proposed in the HRT
prescription. In the event that there are several candidate extremal surfaces, the choice
of the minimal area candidate is justified by the saddle point approximation logZ[Bn] ≈
−I[Mn], which picks out the saddle with smallest on-shell action, and correspondingly the
dominant saddle corresponds to the geometry for which the cosmic brane en has smallest
area. In the limit n→ 1 this corresponds to picking the extremal surface limn→1 en = ER
that has smallest area, which agrees with the HRT prescription.

1.2.3 Generalized entropy and quantum extremal surfaces

The HRT prescription is a leading saddle-point approximation in large number of effective
degrees of freedom ceff for the entanglement entropy of the subregion A. It corresponds to
the leading 1/ceff computation for the entanglement entropy which can be done with the
bulk classical gravity dual. Generally one would expect subleading corrections in 1/ceff
that correspond to loop corrections to the entanglement entropy [43, 46, 47]

SA = ceffS
saddle
A + S1−loop

A +O(c−1
eff ) . (1.26)

In the bulk perspective, truncating the 1/ceff expansion corresponds to taking the classical
limit of the quantum gravity dual to the boundary QFT. It was argued in [46, 47] that the
1-loop correction to the entanglement entropy corresponds to the regulated contribution
arising from the entanglement entropy of bulk modes given a bipartition with separating
surface anchored at ∂A at the boundary

SA =
A(EA)

4G
+ SbulkΣA

+O(G) , (1.27)

where Σ = ΣA ∪ Σc
A is a bipartition of the Cauchy slice Σ separated by the surface EA

analogue to the HRT surface. This can be argued as follows. The 1/ceff expansion in the
CFT corresponds to an expansion in powers of the Newton constant G in the bulk quantum
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gravity theory. To obtain the leading order corrections to the entanglement entropy, it is
therefore sufficient to work perturbatively in G, so that we can work with quantum fields in
a rigid background. The entanglement entropy of A is then calculated by the entanglement
entropy of the bulk fields on a subregion ΣA of a Cauchy slice Σ that is bipartitioned by an
extremal surface EA. Because of the short range entanglement, one might expect a large
contribution proportional to the area of the separating surface EA and then the subleading
correction would correspond to the regulated entanglement entropy of the bulk quantum
fields in ΣA, leading to eq. (1.27). The surface in eq. (1.27) is a quantum extremal surface
(QES) that extremizes the generalized entropy

SgenA =
A(EA)

4G
+ SbulkΣA

. (1.28)

Just like in the HRT prescription, if more than one candidate QES exists, it is the one
with smallest generalized entropy that dominates.

At first one might expect the QES to be perturbatively close to the HRT surface since
the entanglement entropy in eq. (1.19) and the generalized entropy in eq. (1.28) differ
by quantum corrections which are suppressed by a factor of G. However, an important
insight that led to progress in understanding the black hole information paradox, and
more generally brought insights into our understanding of quantum gravity, is that there
are situations in which certain parameters (like the time of the evaporation) can be taken
large enough that the two contributions become comparable, and the QES can be located
far away from the HRT surface [10, 11]. This is indeed the case for the black hole + bath
models we will be discussing in chapters 2 and 3 after the Page time.

1.3 Summary

In the few past years, new models of black hole evaporation [1, 10, 11] have given fresh
insight into one of the longest-standing puzzles in quantum gravity, the black hole informa-
tion paradox [13, 34, 35, 36, 48, 49, 37]. The black hole information paradox is essentially
the problem that in Hawking’s famous calculation, black hole evaporation appears non-
unitary, in conflict with the standard rules of quantum mechanics. A black hole may be
formed in the collapse of a pure quantum state, however, the evaporation process appears
to leave only thermal Hawking radiation in a mixed state. That is, quantum information
seems to be destroyed by this process. The newly constructed models, however, have con-
vincingly demonstrated for the first time the entropy decreases after the Page time and
unitarity is maintained in quantum gravity. Although the models are semiclassical, they
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exhibit novel saddle points, first observed in [10, 11], which take into account large correc-
tions from quantum fields and produce a Page curve consistent with unitary evaporation.
This result represents the first major progress toward resolving the famous paradox in
many years.

The model of Almheiri, Engelhardt, Marolf and Maxfield [11] examines black holes
in two-dimensional Jackiw-Teitelboim (JT) gravity theory coupled to conformal matter.
Later, Almheiri, Mahajan, Maldacena and Zhao [1] made an apparently small but impor-
tant modification: instead of only assuming conformal symmetry for the bulk matter, they
also assume that the matter theory is holographic. We will use the initials of the original
paper (AEMM) to denote the original model, and the initials of both papers combined
(AEM4Z) to denote the model with holographic matter.

We now give a brief description of the setup for both models. One begins with a
two-sided equilibrium black hole, which is a solution of JT gravity coupled to a CFT in
two-dimensional anti-de Sitter (AdS2) spacetime and which has a holographic description
in terms of a thermofield double state of two entangled quantum mechanical systems [50].
We denote the latter as QML and QMR – see the top illustrations in figure 1.2. At some
finite time, we couple the right boundary system QMR to a heat bath, which consists of
a copy of the same two-dimensional CFT prepared in a thermal state on a half-line. This
corresponds to allowing the black hole to evaporate by changing the asymptotic boundary
conditions with a ‘joining quench’ to a nongravitational region containing the same CFT.
That is, at time zero, the asymptotic boundary on one side is joined to a semi-infinite
interval [0,∞). The conformal matter in the latter space acts as an auxiliary bath system,
which absorbs the Hawking radiation emitted from the evaporating black hole. Conversely,
for a bath with non-zero temperature, there is thermal radiation from the bath falling into
the black hole. The balance between the temperatures of the black hole and the bath
determine whether the black hole evaporates and cools to the bath’s temperature, or it
grows and heats up from a hotter bath.

The two-dimensional AEMM model of [11] doesn’t specify the type of CFT in AdS2 and
the bath, and reproduces many expected features of semiclassical black hole evaporation.
In particular, the model reproduces the information paradox for the Hawking radiation,
i.e., the entropy of the Hawking radiation absorbed by the bath appears to grow without
bound. However, the entropy of the black hole, i.e., of QMR,1 undergoes a Page transition.
That is, the QMR entropy initially rises to track the increasing entropy of the bath, but
then there is a sharp transition to a phase where it decreases again. This rise and fall of

1Of course, the entanglement entropy of QML remains fixed at the Bekenstein-Hawking entropy of the
initial eternal black hole.
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the black hole entropy are characteristic of the behaviour exhibited by the classic Page
curve [30, 31]. This novel transition occurs in this holographic model (and in the model
described by [10]) as a result of the existence of a new class of QESs just inside the event
horizon of the evaporating black hole. These surfaces are in fact the minimal solutions at
late times, and thus delineate the true boundary of the entanglement wedge of the dual
QMR theory.

This AEMM model [11] was then extended with an extra layer of holography by [1].
In the AEM4Z variant, the matter theory in the bulk and bath is chosen to be itself a
holographic CFT (coupled to JT gravity in the bulk). This theory is itself the boundary
theory of a dual AdS3 bulk – see the third illustration in figure 1.2. The JT gravity theory
resides on a Planck brane suspended in an asymptotically AdS3 bulk. The latter can be
thought of as a Randall-Sundrum brane [51, 52], which cuts off the asymptotic AdS3 geom-
etry at a finite radius, but it is also engineered as a Dvali-Gabadadze-Porrati brane [53],
in that the brane carries an intrinsic gravity action (confined to one lower dimension),
i.e., the JT action. Since the CFT is defined on manifolds with boundary (a boundary
conformal field theory, or BCFT), the bulk also contains a second class of branes on which
the AdS space ends: end-of-the-world (ETW) branes [54]. The dynamics of this model
can be solved analytically, including the gravitational backreaction and the von Neumann
entropy of the Hawking radiation. One can study the entropy of the black hole or its
complementary subsystem (containing the Hawking radiation) as a function of time, using
the Engelhardt-Wall prescription [55] (see also [56]) for calculating von Neumann entropy
– a generalization of the Hubeny-Ryu-Rangamani-Takayanagi (HRT) prescription [57, 58]
to incorporate quantum corrections. As was outlined in section 1.2, the important distinc-
tion between the HRT prescription and the Engelhardt-Wall prescription is that the former
computes entropy using codimension-two surfaces with stationary areas, whereas the latter
asks us to instead find minimal values of the generalized entropy defined in eq. (1.28)

Sgen =
A

4GN~
+ Sbulk . (1.29)

That is, to leading order in GN~, this quantity is simply the area A,2 but the functional
receives a quantum correction Sbulk given by the entropy of quantum fields of the spatial
region outside the surface. The surface that extremizes Sgen is referred to as the quantum
extremal surface (QES). In the AEM4Z model, the calculation of the generalized entropy
is purely geometric using holography in the AdS3 bulk. That is, assuming the bath system
is described by a holographic CFT2, Sbulk can be found using the HRT prescription in the

2Note that in the following we examine two-dimensional JT gravity where the Bekenstein-Hawking
contribution is replaced by φ/(4GN~), where φ denotes the value of the dilaton evaluated on the QES.
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AdS3 dual, while the Bekenstein-Hawking term becomes an additional boundary contribu-
tion (from the JT gravity) for HRT surfaces ending in the gravitational region, i.e., on the
Planck brane – see [59, 60] for further discussion.

Recovering a unitary Page curve for old black holes is a major step towards resolving the
information paradox. It indicates that the semiclassical gravity path integral knows more
about unitarity than previously believed. This result is surprising from the perspective
of the two-dimensional theory. In particular, the above phase transition indicates that at
late times, the standard calculation of the von Neumann entropy of the Hawking radiation
is incorrect because of gravitational effects. Instead, one must modify the usual prescrip-
tion for computing the entropy with the so-called ‘island formula’ [1], which accounts for
the contributions of quantum extremal islands (QEIs). The QEIs are gravitational re-
gions that may contribute to reducing the (entanglement) entropy of a non-gravitational
region by creating new stationary points for the generalized entropy, i.e., the sum of the
gravitational and matter entropies. In particular, for a QEI, a change in area from per-
turbing the boundary of a QEI is exactly compensated for with an equal and opposite
change in the entropy of the quantum fields inside the island. The HRT prescription in
the three-dimensional bulk theory implies that the correct generalized entropy in the two-
dimensional theory should be computed by including these islands, whenever they exist, to
the entangling region, if doing so results in a smaller entropy. In the present context, the
phase transition where the QEIs appear corresponds to the time when the bath encodes
(part of) the black hole interior, a manifestation of the ER = EPR principle [61]. See
[2, 3, 15, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96] for recent explorations on the island
formula in different black hole geometries and [14, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117] for more associated studies on
information paradox and Page curve from various perspectives.

The AEMM and AEM4Z models are clearly rich with new physics, and with fascinating
implications for quantum gravity. Chapter 2 is based on work done on the evaporating
AEM4Z model [2], where we begin to investigate how the black hole interior is encoded in
the bath. The approach is straightforward: we start by considering the entire bath (plus
QML) as our entangled subsystem. We then systematically excise various subregions of the
bath from our entangling region, each time studying the corresponding entanglement wedge
in the three-dimensional dual. We perform the excisions such that the system always sits
at the transition where the entanglement wedge of the remaining bath in combination with
QMLbegins to include the interior of the black hole. By identifying the Page transition
for these various ‘hole-y’ subregions of the bath, we can find which regions of the bath are
important for encoding the black hole interior. In this simple case, we find that the late
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Figure 1.2: In the AEM4Z model, the holographic principle is invoked twice, resulting
in three different pictures of the same physical system. In the top picture, there are
two quantum mechanics systems (QML and QMR) as well as a field theory (CFT2) state
prepared on the half-line. The middle picture includes the 2D holographic geometry (JT
gravity) dual to the entangled state of QML and QMR. The last picture contains the
doubly-holographic description, with a bulk AdS3 dual to the matter in the middle picture.
The figure to the left illustrates the three holographic layers of the evaporating model, in
which the QMR system is coupled to a zero temperature bath. To the right, we illustrate
the equilibrating model in which the bath is prepared in a thermal state. In the doubly-
holographic description, the thermofield double state of the bath plus its purifier, is replaced
by an AdS3 black hole.

radiation contains somewhat redundant information to reconstruct the black hole interior,
and the early time radiation is more important; a similar effect was observed recently
in [94, 97]. We also study the limiting case where we excise a large number of subintervals
in the bath. By repeating this process ad infinitum, the remaining bath has a fractal
structure. In this way, we implement the überholography of [118], and we can determine
the support of the black hole interior encoding in the bath.

In chapter 3, we study the dynamics of coupling the initial equilibrium black hole to
a bath BCFT that is initially in a finite non-zero temperature state instead, and is based
on [3]. Similar situations were studied in [62, 70], but we do not make the assumption
that the black hole and bath are initially at the same temperature. We study the resulting
dynamics numerically and analytically. As in [62], we find that the quantum extremal
surfaces can lie outside the black hole horizon, and correspondingly the QEIs can include
part of the exterior of the black hole. For thermal baths with a temperature around
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the same temperature as the initial black hole, the late time QES is already outside the
horizon around the Page time. On the other hand, with arbitrary bath temperatures,
the late time QES are initially inside of the event horizon and eventually cross the event
horizon, remaining outside for the rest of the equilibration process. Similar to our analysis
in chapter 2, we compute the Page curve for the dynamic black hole coupled with a thermal
bath at arbitrary temperatures or equivalently, that of the complementary subsystem to
the black hole, i.e., the QML together with (parts of) the bath and its purification. Taking
the bath to be at finite temperature changes the flow of quantum information in important
ways. The bath has its own purification and thus must be accounted for in the computation
of the generalized entropy. We study the role of the purification in altering the flow of
quantum information as the black hole and bath exchange radiation.

Outline. In section 2.1, we review the AEM4Z model. In particular, we show that there
are three phases that the entanglement entropy evolves through after the quench. We study
the entanglement properties of the holographic model in section 2.2, removing increasingly
large entangling segments from the bath. We explain how the information encoding the
interior of the black hole is encoded in the CFT via an increasingly refined boundary-bath
operator algebra. In section 2.3, we conclude with a discussion of our calculations and
future directions.

In section 3.1, we review the AEM4Z model and set up the model for a black hole in
contact with an auxiliary bath at finite temperature, finding the generalized entanglement
entropy of various different intervals during the equilibration process. The equilibrium case,
i.e., the black hole temperature immediately after the quench matches that of the bath,
is analyzed in section 3.2, and we find the constraints for finite bath intervals, together
with QML, to recover the black hole interior. Interestingly, the purification of the bath is
essential for the reconstruction of the black hole interior. The case of general temperatures
is studied in section 3.3, and the results smoothly interpolate between the evaporating case
of chapter 2 and the equilibrium case in section 3.2.
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Chapter 2

Evaporation model

In this chapter, we review the AEM4Z model [1, 11] for black hole evaporation and describe
the salient quantitative results for the quantum extremal surfaces and generalized entropies.
We also examine numerical solutions in certain instances to compare with our analytical
approximations.

The process described in section 1.3 involves a quantum quench where the QMR system
is connected to the bath, as well as the subsequent evaporation of the black hole on the
Planck brane. In the three-dimensional bulk description, the quench involves connecting
the corresponding end-of-the-world (ETW) branes and letting them fall into the AdS3

geometry. Similarly, the black hole evaporation is described by the dynamics of the joint
between the Planck brane and the asymptotic AdS3 boundary.

In principle, the problem of finding quantum extremal surfaces for the extremely dy-
namical bulk geometry described above seems an intimidating one. However, this difficulty
is mitigated by several simplifying features in the AEM4Z model.1 First, the theory in the
first holographic description (panel (b) in figure 1.2) is a two-dimensional boundary CFT
(BCFT). Hence in the dual description, after an analytic continuation, the entire evolution
can be conformally mapped to the vacuum state in the upper half-plane (UHP), i.e., with
a simple boundary running along the real axis. Given this configuration and turning to the
second holographic description (panel (c) in figure 1.2), we exploit the fact that holographic
BCFTs have relatively simple expressions for the entanglement entropy, e.g., see eq. (2.20).
Lifting this result back to the two-dimensional description (b), the remainder of the anal-

1Certainly, one of the simplifying features is that the evaporating black hole is constructed in the two-
dimensional JT model, which means any candidate QES is simply a point and its extremality is easily
tested by taking ordinary derivatives, e.g., see eqs. (2.32).
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ysis involves undoing the previous conformal transformations. That is, we are essentially
following the analysis of [11], but the key difference is that we have a specific formula
for the entanglement entropy determined by the holographic BCFT. This also allows us
to consider more complicated situations, e.g., multiple intervals, in the two-dimensional
description in a straightforward way.

When, as in [11], we consider the entanglement entropy of QMR, or alternatively its
purification, the bath plus QML, we find the entropy evolves through three phases, which
are sketched in figure 2.1 – see also the spacetime diagram of the two-dimensional boundary
in figure 2.2. These three phases are as follows:

a) Quench Phase: This is a short period after the bath and QMR systems are joined, in
which the entanglement entropy rapidly rises. The three-dimensional description involves
the HRT surface having two separate components. The first is anchored to the bifurcation
surface of the initial eternal black hole on the Planck brane and falls straight down into the
AdS3 bulk to terminate on the ETW brane (which is stationary at this point). Similarly,
the second connects QMR to the ETW brane where the new connection was made and
where it quickly falls into the bulk. Hence the rapid rise in the entanglement entropy is
entirely due to the stretching of this second component of the HRT surface.

b) Scrambling Phase: The transition to this phase occurs on a thermal time scale (see
eq. (2.47)). The entanglement entropy shows some transient behaviour at the beginning
of this phase, e.g., depending on the precise choice of parameters, the entropy may ini-
tially decrease, as shown in figure 2.2. However, after roughly the scrambling time (see
eq. (2.54)), the entanglement entropy begins to grow linearly as the bath steadily absorbs
more and more Hawking radiation from the black hole (or from QMR). The gradual in-
crease in entropy is consistent with the heuristics from efficient scrambling systems where
only a small but increasing amount of the radiation can be decoded before the Page transi-
tion [119]. During this phase, the corresponding HRT surface consists of a single geodesic
that connects QMR to a point very close to the bifurcation surface of the initial black hole
(see figure 2.2). In particular, it connects boundary points on opposite sides of the shock
wave propagating into the Planck brane.

c) Late-Time Phase: In this phase, the entanglement entropy decreases, as required
by the late time behaviour of the Page curve. Of course, the bath continues to absorb
Hawking radiation and so this decrease indicates there must be correlations between the
Hawking quanta emitted at early and late times. In this phase, the corresponding HRT
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Figure 2.1: A cartoon illustration of the three phases for the entanglement entropy of QMR

or QML+bath, after the quench where QMR is connected to the bath. The darker colors
indicate the true generalized entropy, while the lighter colors indicate the general shape of
each of the branches slightly beyond the regime where it provides the minimal value for
the generalized entropy. Below the plot is a sketch of the shape of the extremal surfaces
in AdS3 which contribute to the generalized entropy in each phase.

surface again consists of a single component, but now the geodesic connects QMR to the
new QES behind the event horizon of the evaporating black hole – see figure 2.2. Hence
these geodesics are distinguished from the previous class since the two boundary points
which they connect both lie to the future of the shock wave.

2.1 Setup and Page curve

The AEM4Z model consists of an AdS2 black hole in JT gravity, dual to a Hartle-Hawking
state of two copies of a one-dimensional quantum mechanics theory [1, 11]. At Lorentzian
time t = 0, we perform a quantum quench on the CFT, joining it to a field theory vacuum
state defined on the half-line σ > 0. In the bulk, Hawking radiation can now escape to
the bath and land on the asymptotic null infinity I + of the flat space bath region, and
the black hole thus evaporates. Additionally, the quench results in two shockwaves, one
propagating into the black hole and one into the bath, corresponding to the propagation of
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Figure 2.2: In the AEM4Z model, the AdS2 black hole is coupled to bath along the boundary
σ = 0 at time τ = 0 = t. This results in the shock indicated by the yellow solid line.
The evolution of quantum extremal surfaces is indicated by the solid blue curve. The
first phase transition occurs when the QES jumps from the green point at x± = (πT0)−1

to the other green point, and the second (Page) phase transition happens at the jump
between the blue blocks. In this final phase, the QES tracks close to the new horizon. The
regime of applicability of this semi-classical model breaks down at very late times, with
u & k−1 log T1

k
. After times of this order, quantum effects of the near extremal black hole

cannot be neglected and therefore the final moments of the evaporation are not captured
by the present analysis.
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a large amount of energy arising from the joining quench. The energy of these shockwaves
ES should be thought of as one of the UV scales for the model. The spacetime diagram of
the coupled system is shown in figure 2.2.

The two-dimensional gravity solution is locally AdS2, described by the Poincaré metric

ds2
AdS = − 4L2

AdS

(x+ − x−)2
dx+dx− (x± = t± s) . (2.1)

Note that the Poincaré depth coordinate is denoted s, so that the (unregulated) asymptotic
boundary is at s = 0. Further, we will generally set the AdS curvature scale LAdS = 1 in
the following. Meanwhile, the bath is represented by a flat Minkowski half-space:

ds2
bath = −dy+dy− (y± = u∓ σ) . (2.2)

where σ denotes the spatial coordinate.2 These two spaces are to be glued along their
respective boundaries, i.e., σ = 0 in the bath region and s ∼ ε ≈ 0 in the AdS2 space,
where ε is an IR cutoff in the AdS2 bulk. After this quench, energy can flow freely through
the boundary from one space to the other. The x± coordinates can be extended to cover
the bath, and the y± coordinates can be extended to cover a Rindler patch of the AdS.

To prepare the corresponding bulk quantum state, we Wick rotate to Euclidean sig-
nature. The Euclidean coordinates and Lorentzian coordinates are related by x− →
−x, x+ → x̄. This state can be mapped to the vacuum of the CFT in the upper half
plane (UHP) Im{z} ≥ 0 by a local Weyl rescaling

ds2
AdS −→ Ω(x+, x−)2ds2

AdS =
dzdz̄

ε2
,

ds2
bath −→ Ω′(y+, y−)2ds2

bath =
dzdz̄

ε2
.

(2.3)

Explicitly,

Ω =
x+ − x−

2ε

√
z′(x)z̄′(x̄) , Ω′ =

1

ε

√
z′(y)z̄′(ȳ) . (2.4)

Before the quench, the reparameterization function f(u) relating the x and y coordinates
(i.e., x = f(y)) is given by the solution of a black hole with temperature T0 in JT gravity,
i.e.,

f(u) =
1

πT0

tanh (πT0u) (u < 0), (2.5)

2Our unconventional choice in defining y± ensures that moving further into the bath corresponds to
moving towards larger positive σ. That is, σ is positive in the bath, while s is positive in AdS.
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where we identify the physical time on the boundary with the coordinate t via the inverse
function u = f−1(t). The quench occurs at u = 0. The quench introduces a localized
positive energy shock followed by a flux of energy:3

〈Tx−x−〉 = ES δ(x
−)− c

24π
{y−, x−}Θ(x−) . (2.6)

After the quench, consistency of the change in black hole energy with this flow of energy
between the AdS and bath systems demands that f satisfies the following equation

{f(u), u} = −2(πT1)2e−ku , (2.7)

where T1 is the temperature of the black hole after the initial shock of energy ES falls in,
so that ES ≡ φrπ

4GN
(T 2

1 − T 2
0 ). The solution was found in [11] to be

f(u) =
1

πT1

I0

[
2πT1

k

]
K0

[
2πT1

k
e−ku/2

]
− I0

[
2πT1

k
e−ku/2

]
K0

[
2πT1

k

]
I1

[
2πT1

k

]
K0

[
2πT1

k
e−ku/2

]
+ I0

[
2πT1

k
e−ku/2

]
K1

[
2πT1

k

] . (2.8)

where k � T1 is a constant that determines the relative strength of backreaction compared
to the entropy:

c

12
= k

φ̄r
4GN

. (2.9)

After the quench, the horizon shifts, corresponding to the change in temperature. The
new horizon corresponds to x+ = t∞, where

t∞ = f(u =∞) =
1

πT1

I0

[
2πT1

k

]
I1

[
2πT1

k

] =
1

πT1

+
k

4 (πT1)2 +O
(
k2
)
. (2.10)

After taking the limit of very large ES, the map to the UHP is achieved by the piecewise-
Möbius map [11]

z =

{(
12π
c
ES
)−2 i

f(y)
for y > 0,

−iy for y < 0,
(2.11)

or equivalently in terms of x coordinates,

z =

{(
12π
c
ES
)−2 i

x
for x > 0 ,

if−1(−x) for x < 0 .
(2.12)

3The Schwarzian is defined as {f(u), u} = 2f ′f ′′′−3f ′′2

2f ′2 .
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We are looking for the quantum corrections to the entanglement wedge of QMR. This
means we need to evaluate the generalized entropy (1.29), which in JT gravity means the
function

Sgen(x
+, x−) =

φ

4GN

+ Sbulk , (2.13)

where

φ = φ0 +
φr(x

+, x−)

ε
, (2.14)

is the value of the dilaton. The large constant contribution from φ0 is related to the
divergences associated to the short range entanglement across the end points of an interval.
The spacetime-dependent φr takes the value φ̄r at the boundary where AdS and the bath
are joined.

We solve the quantum extremal surfaces, i.e., the codimension-two surfaces (points)
that minimize the generalized entropy. Before the quench, the dilaton profile is given by
the simple static solution

φ = 2φ̄r
1− (πT0)2 x+x−

x+ − x−
= 2φ̄rπT0 coth

(
πT0(y+ − y−)

)
, (2.15)

where we used the reparameterization function for the static black hole with temperature
T0 in eq. (2.5). After the quantum quench, the AdS2 geometry is modified due to the
backreaction. Since 2D gravity is topological, this corresponds to a modification of the
boundary. Alternatively, we can consider the AdS2 geometry as fixed and account for
the backreaction by having the dilaton profile change. After the shock x− > 0, the new
solution is

φ = 2φ̄r
1− (πT0)2 x+x− + k

2
I(x+, x−)

x+ − x−
, (2.16)

where

I =

∫ x−

0

(x+ − t)(x− − t){u, t}dt (2.17)

is the contribution due to the presence of stress-energy exchange through the bound-
ary [120, 121].

In the original iteration of the AEM4Z model [11], no assumptions are made about the
bulk BCFT. The calculation of the entanglement entropy can then be carried out using
replica techniques [122, 123, 124]. In terms of the conformal cross-ratio

η ≡ (z1 − z̄1)(z0 − z̄0)

(z1 − z̄0)(z0 − z̄1)
, (2.18)
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the entanglement entropy of an interval with endpoints z0 and z1 in a two-dimensional
BCFT with boundary at z − z̄ = 0 is

SUHP =
c

6
log

(
|z0 − z1|2

δ2
η

)
+ logF(η). (2.19)

Here, δ is a UV cutoff and F(η) is a function which depends on the theory living on the
boundary defect. In the limit η → 1, we are in the OPE limit, whence F(1) = 1; in
the opposite limit η → 0, we instead have F(0) = g2, where log g is the Affleck-Ludwig
boundary entropy [125].

For our purposes, however, we wish to work with the holographic model described
in [1]. In this case, the matter theory is a holographic BCFT. Thus, we can imagine the
JT gravity theory plus bath system as living on the boundary of a new, asymptotically-
AdS3 bulk. Because of the boundary defects, there is a dynamical ETW brane hanging
into the space [126, 127]. After the quench, the ETW brane detaches from the asymptotic
boundary (where the JT gravity and bath are connected) and falls into the bulk.

A particularly convenient aspect of the holographic model is that the entanglement
entropy is now determined simply using the Hubeny-Rangamani-Ryu-Takayanagi prescrip-
tion [57, 43]. In this setup, this simply means evaluating the length of the minimal geodesic
homologous to the entangling region. In this case, the HRT surfaces are allowed to end on
the ETW brane.

In this case, the entanglement entropy of one interval reduces to

SUHP =


c
6

log
(
|z1−z0|2

δ2

)
for η > η∗

c
6

log
(
|z1−z̄1|

δ
· |z0−z̄0|

δ

)
+ 2 log g for η < η∗

(2.20)

where η∗ = (1 + g12/c)
−1

is the value of the cross-ratio at which the transition between
families of HRT surfaces occurs.4 Without loss of generality for our purposes, we take
g = 1 from now on, so that η∗ = 1/2. We will discuss the role of g in more detail in
section 2.3.

Figure 2.3 illustrates the two families of bulk geodesics in the two different branches
contained in eq. (2.20) (with log g = 0). The η ≥ 1

2
branch corresponds to a single

geodesic stretching between the two endpoints, while the η ≤ 1
2

branch corresponds to two
geodesics (one from each endpoint) terminating on the ETW brane. This formula matches

4The transition value η∗ for the conformal cross ratio is precisely that for which the entropy given by
the two channels in eq. (2.20) are equal.
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Figure 2.3: The entanglement entropy for an interval in a holographic BCFT on the upper
half-plane has two branches. The dominant branch is determined by the cross ratio η
defined in eq. (2.18). The ETW brane is anchored at Im(z) = 0. The case illustrated
here corresponds to a tensionless ETW brane in the bulk, or alternatively log g = 0 in the
BCFT. As shown for this case, the ETW brane lies at right angle to the AdS3 boundary.
For other choices of log g, the ETW brane will be tensionful and intersect the UHP at some
other angle.

with CFT calculations in the large c limit; the phase transition between the two branches
follows from the universality of the four-point function on the full plane in a holographic
theory [128, 129].

Employing this holographic formula (2.20) for the entropy of an interval on the upper
half-plane, we can find the bulk entropy we need by taking the conformal transformation
to the physical coordinate system. Because of the conformal invariance, this reduces to
the answer on the upper half-plane, except for the transformation of the cutoff at each
endpoint:

Sbulk = SΩ−2g = SUHP −
c

6

∑
xi∈∂

log Ω(xi) (2.21)

where the sum runs over all the endpoints of the intervals.

Note that all of the entanglement entropies that we calculate in the following are for-
mally UV divergent, because of the UV cutoff δ appearing in eq. (2.20). However, in any of
our analyses, we are also comparing different branches with the same number of endpoints
in the bath and so these δ contributions do not play a role. Hence in any expressions that
are explicitly shown in equations or plotted in the figures, we simply subtract c

6
log(LAdS/δ)

for each of the endpoints. Of course, in the holographic description, these UV divergences
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Parameter LAdS k T1 T0 c ε φ0 φ̄r

Value 1 1
4096

1
π

63
64π

4096 1
4096

0 1
40962

Table 2.1: Baseline parameters for this work. Unless otherwise specified, all of our figures
are generated using these values for the parameters. These parameters were chosen to
remain consistent throughout all our numerical analysis, but the results are robust. Varying
any of the parameters produces qualitatively similar results to those shown here.

appear because of the infinite length appearing when the HRT geodesics extend to the
AdS3 boundary. A similarly large length appears when these bulk geodesics terminate on
the Planck brane. In this case, the divergences are absorbed by the gravitational contri-
bution in the generalized entropy (2.13). In particular, these divergences are associated
with renormalizing the coupling to the topological Einstein term in the JT action, i.e.,
φ0/4GN [1, 11].5

We now review the results in [2, 11] and find the quantum extremal surfaces. Finding
these surfaces requires computing the generalized entropy for an interval with one point in
the AdS2 and another point on the boundary. We assume the simple holographic results
for bulk entropy, where we found a small change in the behavior of the quantum extremal
surface before the shock relative to the results of [11]. Unless otherwise specified, we will
use the parameters in table 2.1 as our baseline parameters in all of our numerics.

Before the shock, the possible contributions to generalized entropy are also divided into
two different phases according to the position of endpoints. After the shock, the cross-ratio
is fixed to be 1 at leading order in E−2

S , as in [11].

Finding the phase transitions

Consider a bulk region defined by the interval between two points, x±QES and x±1 . (More
correctly, consider the domain of dependence of this interval.) As a warm-up, we take x0

to lie in the bulk and x1 to be near the boundary. In this case we can relabel the point x1

in terms of the proper time u along the boundary,

t = f(u) =
x+

1 + x−1
2

, z =
x+

1 − x−1
2

= εf ′(u) . (2.22)

5For details on how this occurs in general dimensions, refer to the appendix of [130].
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Phase Range of η Position relative to shock

Quench [0, 1
2
) Straddling (x−QES ≤ 0)

Scrambling [1
2
, 1) Straddling (x−QES ≤ 0)

Late-Time ≈ 1 Above (x−QES ≥ 0)

Table 2.2: A summary of the range of parameters determining the phase of the von Neu-
mann entropy. In Lorentzian coordinates, η = x+

1 (x+
QES − x−QES)/[x

+
QES(x

+
1 − x−QES)].

From the above holographic formula for entanglement entropy with two points, we can fix
the choice of bulk entropy by taking account of the cross-ratio decided by the position of
AdS2 point, giving

Sbulk =


c
6

log
(
|z1−z̄1|·|zQES−z̄QES|

Ω1ΩQESδ2

)
for η ∈ [0, 1

2
)

c
6

log
(
|z1−zQES|·|z̄1−z̄QES|

Ω1ΩQESδ2

)
for η ∈ [1

2
, 1]

(2.23)

The first formula (where η < 1
2
) is only applicable when the bulk endpoint lies before the

shock with x−QES < 0. In this formula, the entropy factorizes into contributions from the
two endpoints. (For an idea of what the η < 1

2
region looks like, consult figure 2.4.)

The second formula (where η ≥ 1
2
) holds both before and after the shock. However,

because the map from the upper half plane to the physical coordinates depends on whether
the interval straddles the shock or lies to its future, the formulas for the bulk entropy will
still depend on this distinction.

In total, we end up with the following bulk von Neumann entropy formulas for the
three phases defined in table 2.2:

Sbulk, quench =
c

6
log

(
24πES
εc

ut√
f ′(u)

)
, (2.24)

Sbulk, scrambling =
c

6
log

(
24πES
εc

ux−QES

(
t− x+

QES

)
(x+

QES − x−QES)
√
f ′(u)

)
, (2.25)

Sbulk, late-time =
c

6
log

[
2
(
u− y−QES

) (
x+

QES − t
)

ε
(
x+

QES − x−QES

) √
f ′(y−QES)

f ′(u)

]
. (2.26)

With these ingredients in place, we can find the generalized entropy in each of the three
phases,

Sgen =
φ

4GN

+ Sbulk , (2.27)
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(a) Quench Phase.
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(b) A new extremum (point S) emerges,
but is non-minimal.
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(c) Transition to Scrambling Phase.
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(d) Instant before Page transition.

Figure 2.4: Motion of QES and other (non-minimal) extrema in the Quench and Scrambling
Phases. The sub-figures show contour plots of generalized entropy as a function of xQES

in the region bounded by the initial black hole horizon (solid black lines), a past null ray
(dotted black line) emanating from the point x1 on the AdS-bath boundary, and the shock
(magenta lines); dark blue and bright yellow shading indicate low and high generalized
entropies respectively. The blue curve marks points for which η = 1/2. Three extrema
of generalized entropy are shown: the bifurcation point (Q), a saddle point (S), and a
maximum point (m). The QES (opaque point) in the Quench and Scrambling Phases is
given respectively by Q and S. In order to make various qualitative features visible in this
figure, we have chosen parameters differing from the baselines listed in table 2.1; here,
ε = 1

16
, c = 16, k = 1

16
, T0 = 2

3π
, T1 = 1

π
, φ0 = 0, and φr = 1

256
.
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Figure 2.5: The time evolution of quantum extremal surfaces. The arrow indicates the
direction of the flow. The blue line is the physical solution we considered in our analysis.
It starts at the bifurcation point and ends at a point away from shock. The green one is
another branch of the solution with larger entropy. Here, we choose a large k to make the
deviation from the horizon more obvious when plotted.

and find the quantum extremal surfaces which are stationary points of this equation, using

∂+Sgen = 0 , ∂−Sgen = 0. (2.28)

where we abbreviate ∂± to mean ∂x±QES
to simplify the notation.

Quantum extremal surfaces at early times

It is easy to minimize the generalized entropy in the quench phase, because the bulk
von Neumann entropy in this phase is independent of xQES. The problem reduces to finding
the saddle point of the dilaton, which is of course the bifurcation surface of the original
(temperature T0) black hole at

x±QES = ± 1

πT0

. (2.29)
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Even though the quantum extremal surface is fixed to the bifurcation surface, the gener-
alized entropy still evolves with time, and is given by

Sgen, quench =
φ̄r

4GN

(
2πT0 + 2k log

(
24ES
εc

ut√
f ′(u)

))
(η ≤ 1

2
). (2.30)

This solution is relevant only when

t ≤ 1

3πT0

. (2.31)

Now we consider the scrambling phase. The quantum extremal surfaces in this phase
are found by solving the equations

0 =
4GN

φ̄r
∂+Sgen =

2((πT0x
−
QES)

2 − 1)

(x+
QES − x−QES)2

+ 2k
x−QES − t

(t− x+
QES)(x

+
QES − x−QES)

, (2.32)

0 =
4GN

φ̄r
∂−Sgen =

2(1− (πT0x
+
QES)

2)

(x+
QES − x−QES)2

+
2kx+

QES

x−QES(x
+
QES − x−QES)

. (2.33)

An exact solution6 for x±QES can easily be found. Using these exact solutions, we plot the
generalized entropy in this phase in figure 2.6. An approximate solution (using a small-k
expansion) is

x+
QES(t) =

1

πT0

− k

π2T 2
0

+
k2 (3πT0t− 1)

2π3T 3
0 (πT0t− 1)

+O(k3) <
1

πT0

, (2.34)

x−QES(t) = − 1

πT0

− k (πT0t+ 1)

π2T 2
0 (πT0t− 1)

+
k2 (πT0t+ 1)

2π3T 3
0 (πT0t− 1)

+O(k3) , (2.35)

The small k expansion is a good approximation for this early-time regime and we need
to consider more and more orders of k when we move to later time region. From the k
expansion, we can also derive the leading contributions to generalized entropy for uT1 =
O(1) as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2kπT1u+ 2k log

(
24πES
εc

u

2πT0

)
+ 2k log

(
T0

(
2e−2πT1u − 1

)
+ T1

2T1

)]
+O(k2) ,

(2.36)

6The above equations actually have several branches of solutions. Here we only take the solutions
satisfying the constraints. Even still there is another solution, shown in figure 2.5 in green, which satisfies
the constraints but with larger generalized entropy. This occurs because of the factor of log x−QES in the

entropy of the scrambling phase; the solution lies close to the shock located at x−QES = 0.
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keeping the first two orders in k. The first line is the dominant term in this approximation,

because the second line is order O
(
k log

(
T1−T0

T1

))
. The above approximation captures the

behavior of generalized entropy at early time in the scrambling phase. We also note the
contribution from dilaton is almost constant up to a linear increase of order k2:

φ

φ̄r
≈ 2πT0 +

k2 (πT0t+ 1)

πT0 (1− πT0t)
+O

(
k3
)
, (2.37)

which is negligible at early times (πT0t� 1).

For later times, closer to the Page time, we need to push the above approximation to
next order. The next order correction to the dilaton takes the form

φ

φ̄r
≈ 2πT0 +

k2

πT0

2T1

T1 − T0

+O
(
k3
)
. (2.38)

which is not negligible when T1 − T0 is order k. Similarly, the bulk terms are corrected at
order kn/(T1 − T0)n−1. For example, we can find the linearized generalized entropy as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2kπT1u+ 2k log

(
24πES
εc

u

2πT0

T1 − T0

2T1

)
+

1

2
k2

(
−πT1u

2 +
5

π (T0 − T1)
+ u

)]
+O(k2) .

(2.39)
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Figure 2.6: The generalized entropy from full solutions. The green curve is derived
from (2.25) with exact solutions of (2.32). The red one represents the generalized en-
tropy with endpoint at bifurcation point. The green point in the left plot indicates the
point uQS where Sgen,scrambling = Sgen,quench.

This approximation highlights that the growth of generalized entropy as a function
of proper time u in the regime 1/πT1 � u < k−1 is approximately linear, as shown in
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figure 2.6. This linear growth is dominated by the second term, which comes from the bulk
entropy term in eq. (2.13). However, at later times, the terms that we dropped at small k
become important. Fortunately, it is easy to find that the evolution in the x+ direction at
late time is very small. We can therefore make use of the approximation

x+
QES(t) ≈ x+

QES(t∞) > t∞ , t ≈ t∞ . (2.40)

and various terms in the generalized entropy will be close to a constant decided by its value
at t∞. For example,

log

(
1

x+
QES − x−QES

)
≈ − log

(
2

πT0

+
2k

(πT0)2(πT0t∞ − 1)

)
. (2.41)

In order to get a simple expression for the generalized entropy, we define the following
constant

κ =
2(1− πT0x

+
QES)(πT0x

−
QES + 1)

x+
QES − x−QES

+ 2k log

(
πT1x

−
QES(t− x+

QES)

x+
QES − x−QES

) ∣∣∣∣
t→t∞

, (2.42)

and rewrite the entropy for very late u as

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2k log

(
24πES
εc

u

πT1

√
f ′(u)

)
+ κ

]
, (2.43)

The evolution of generalized entropy is dominated by the derivative term, which can be
approximated by

log
1√
f ′(u)

≈ 2πT1

k

(
1− e−ku/2

)
− 1

2
log (4πT1t∞) +

ku

4
+O(keku) . (2.44)

For the late-time region ku < 1, the above term leads to a linearly increasing entropy

Sgen, scrambling ≈
φ̄r

4GN

[
2π(T0 + T1ku) + 2k log

(
24πES
εc

u

2πT1

)
− πT1

2
k2u2 +

k2

2
u+ κ

]
, (2.45)

as show in figure 2.6. Physically, we can understand this linear increase of entropy as the
increase of entanglement between the Hawking quanta and their partners left behind the
event horizon. For very late times u > k−1, one can see from the above formula in eq. (2.43)
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Figure 2.7: The numerical solutions x+
QES, y

−
QES from eqs. (2.48) is presented by the dotted

lines. Note that the left plot is a log plot. The solid line is the linear approximation
from (2.52).

that the linear dependence on time u breaks down and the entropy is dominated by the
logarithmic term.

Having located the candidates for the quantum extremal surfaces in each phase using
eq. (2.24), the next step is to compare their generalized entropies and pick the minimal
solution. Using the approximations described above, we can find the transition occurs at

log tQS ≈ log

(
x−QES(tQS − x+

QES)

x+
QES − x−QES

)
+

k (πT0tQS + 1)

2πT0 (1− πT0tQS)
+ . . . , (2.46)

which gives the approximate solution

tQS ≡ f(uQS) ≈
1

3πT0

− 4k

9π2T 2
0

+
7k2

27π3T 3
0

+ . . . . (2.47)

Quantum extremal surfaces at later times

If the bulk endpoint is located in the region after the shock (i.e., if x+
QES ≥ 0), then the

bulk entropy is in its late-time phase. The position of the QES is found by solving the
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following two equations

0 =
4GN

φ̄r
∂+Sgen =

2(πT1x
−
QES)

2 − 2− k
∫ x−QES

0 (x−QES − t)2{u, t} dt
(x+

QES − x−QES)2
(2.48a)

+ 2k

(
1

x+
QES − t

− 1

x+
QES − x−QES

)
,

0 =
4GN

φ̄r
∂−Sgen =

2− 2(πT1x
+
QES)

2 + k
∫ x−QES

0 (x+
QES − t)2{u, t} dt

(x+
QES − x−QES)2

(2.48b)

+ 2k

(
1

x+
QES − x−QES

− 1

(u− y−QES)f ′(y
−
QES)

+
f ′′(y−QES)

2(f ′(y−QES))2

)
.

The integral terms in eqs. (2.48) are due to the stress-energy exchange through the bound-
ary between the bath and the AdS2 bulk, and make it hard to find the analytic solutions for
these equations. Therefore, we first turn to numerics. Numerical solutions for the position
of the QES are presented in figure 2.7, and the corresponding generalized entropy is shown
in figure 2.8.

From the numerical plot, it is interesting to find that around the Page time, the two
branches both display linear behavior. For the solution before the Page time, the linearity
can be seen in the small k expansion in (2.36). The post-Page time analysis is performed in
the original paper [11] by carefully dealing with the integral terms with the Schwarzian. The
key idea is we can use the approximation for f(u) around small k for fixed ku, specifically

log

(
t∞ − f(u)

2t∞

)
∼ −4πT1

k

(
1− e−

k
2
u
)

+O
(
ke

k
2
u
)
. (2.49)

Keeping only the leading terms in the QES equations (∂±Sgen = 0), we arrive at these
simple equations

0 ≈ 4πT1
e−

k
2
y−QES

t∞ − x−QES

− 2k

x+
QES − t

, (2.50)

0 ≈ 4πT1(t∞ − x+
QES)e

− k
2
y−QES +

k

2
(t∞ − x−QES) , (2.51)

and solving at the same order,

x+
QES =

4

3
t∞ −

1

3
t+O(k(t∞ − t)) , (2.52)

y−QES = u− uHP +
k

2

(
uHP −

1

2πT1

)
(uHP − u) +O(k2) , (2.53)
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Figure 2.8: The dotted pink line shows the numerical results for generalized entropy with
endpoint after the shock. The Page time and the first transition at the early time are
both indicated by the green point in this plot. The solid red line is derived from the linear
approximation, i.e., eq. (2.60). The difference between analytical and numerical results is
approximately constant, due to the constant error from the approximation of the dilaton
term.

where we define the delay of y− in time direction as

uHP =
1

2πT1

log

(
8πT1

3k

)
, (2.54)

which is (to leading order) the Hayden-Preskill scrambling time [119], as explained in [11].
Note that the quantum extremal surface after the shock (x+

QES, y
−
QES) lies close to but behind

the new horizon located at x+ = t∞.

The above linear solution captures the leading-order behavior of the QES and the
generalized entropy. In figure 2.7, we compare this analytic approximation to the numerical
solution. We can find an approximation for the generalized entropy7

Sbulk ≈
c

6

(
log

(
8uHP

3ε

)
− πT1uHP +

k

4
uHP

)
+O(k2) , (2.55)

7Compared to [11], here we added the contributions from bulk terms and also two sub-leading corrections
for dilaton which are ignored in [11].
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φ ≈ 2φ̄r

(
1− (πT1)2 x+

QESx
−
QES + k

2
I
(
x+

QES, x
−
QES

)
t∞ − x−QES

)(
1−

x+
QES − t∞
t∞ − x−QES

)
+O(k2 log k) ,

(2.56)

I
(
t∞, x

−) ≈ 2

k

(
(πT1t∞)2 − 1

)
+
t∞ − x−

2

(
log

(
t∞ − x−

t∞

)
− 1

)
. (2.57)

For times much smaller than k−1 we can further simplify these expressions by taking the
limit

log

(
t∞ − f(u)

t∞ − f(y−)

)
∼ 4πT1

k

(
e−

k
2
u − e−

k
2
y−
)

+O
(
ke

k
2
u
)
≈ 2πT1(y− − u) ,

log

(
f ′(y−)

f ′(u)

t∞ − f(u)

t∞ − f(y−)

)
≈ log

(
e
k
2

(u−y−)
)

=
k

2
(u− y−) .

(2.58)

Using these approximations, we find the entropy from the dilaton contribution decreases
linearly

φ ≈ φ̄r

(
2πT1 − kπT1(u− uHP)− k

2
log 2e

)
, (2.59)

and we find the generalized entropy decreases linearly with time

Slinear ≈
φ̄r

4GN

[
2πT1 − kπT1(u− uHP) + k log

(
8ku2

HP

3
√

2eε2πT1

)
+O(k2 log(k))

]
, (2.60)

where the first two terms are derived from the dilaton term which lead to the linear decrease
of the entropy around the Page time, and the extra constant terms are contributions from
the bulk entropy.

The linear formula given above matches the numerical results shown in figure 2.8. As
shown in this figure, when the time is larger than the Page time uPage, the endpoint of
QES jumps from the point before the shock to that after the shock.

From the approximations in eqs. (2.60) and (2.39), we can find the approximate Page
time

uPage ≈
2

3

T1 − T0

T1k
+
uHP

3
+

k

6πT1

5

(T1 − T0)π

+
2

3πT1

log

(√
8kπT1

3
√

2e

uHP

u0
P

c

6πES

T0

T1 − T0

)
+O(T1 − T0) ,

(2.61)

38



3200 3400 3600 3800 4000

30

32

34

36

38

40

Figure 2.9: The Page time for fixed temperatures T0 and T1, as a function of k−1. The
dots are derived from numerical results without any approximation and the solid line is
the approximate Page time defined in (2.61).

where we have defined8

u0
P =

2

3

T1 − T0

T1k
+
uHP

3
(2.62)

as the leading-order approximation to uPage. A comparison with numerical results is given
in figure 2.9.

2.2 Structure of information

As was shown in section 2.1, the evaporating model we are considering exhibits two phase
transitions. Each phase corresponds to a different location for the quantum extremal
surface inside the new horizon. An important consequence of these transitions is that the
entanglement wedge of QML+bath contains a bigger region of the bulk geometry after
each phase transition. In particular, there is an area inside the black hole that is contained
in the entanglement wedge after the transitions, but not before. This is illustrated in
figure 2.10. By entanglement wedge reconstruction [10, 131, 132, 133, 134, 135, 136], this
implies that after some time, QML plus the bath contain information about the interior

8Here we have kept the k
T1−T0

term, which may be order one for some choices for parameters.
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Figure 2.10: Entanglement wedges for the three phases of evolution. The quench phase is
in red, the scrambling phase in green and the late-time phase in blue.

of the black hole.9 In this section, we investigate how much of the bath is essential to
keep in order to still reconstruct the black hole interior. For concreteness we will focus
on the Page transition in which the quantum extremal surface jumps across the infalling
shock, because this transition allows much more of the interior to be reconstructed; but
a qualitatively similar story occurs for the first transition, in which the extremal surface
jumps from the bifurcation point to a point perturbatively close to it.

Before the evaporation begins, the black hole interior cannot be reconstructed from
only the QML or the QMR system since it is not contained in the entanglement wedge of
either. On the other hand, the combination of the QML and QMR is enough to reconstruct
the entire bulk geometry. This implies that the information required to reconstruct the
interior of the black hole is shared between the two sides of the black hole. One can also
ask what is the entanglement wedge of QMR (or QML)+bath before evaporation begins,
but the answer is trivial because there is no entanglement between the two: it is the
entanglement wedge of QMR (QML) plus the empty set. After the Page time, enough
evaporation has taken place and the quantum extremal surface of QMR is located after
the shock perturbatively close to the apparent horizon. The entanglement wedge of QMR

is smaller than it was before evaporation began: QMR has lost part of the information
required to reconstruct some of the bulk geometry it was originally encoding before the
evaporation. On the other hand, the entanglement wedge of the complement, the QML

plus the bath, gained information encoding part of the interior of the black hole. This
reflects the fact that some of the initial entanglement between QML and QMR has been

9 In the present example the black hole interior is relatively calm and undisturbed. However, entan-
glement wedge reconstruction [131, 132, 133, 134, 135, 136] indicates that the bath + QML system would
know about disturbances falling into the black hole. This would hold at least for small amounts of mat-
ter falling in, as long as the entanglement structure is perturbatively stable. However, we note that the
perturbative stability of the entanglement structure of this setup has not yet been rigorously studied.
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transferred to the bath by the Hawking radiation so that QML+bath can reconstruct a
portion of the black hole interior. In this section, we set out to study the structure of
where the information necessary to reconstruct the black hole interior is encoded during
the evaporation process.

2.2.1 Early-time protocol: forgetting the late-time radiation

Our first modification of the AEM4Z model as described in section 2.1 is to move the
endpoint y±1 of the bulk interval into the bath region. This corresponds to omitting the
late-time Hawking radiation from the entanglement wedge of QML+bath. In this regime,
we will have y±1 > 0.

We parameterize the distance from a bath point to the AdS boundary by specifying the
coordinate distance σ1 from the boundary to the bath, i.e., we set y±1 = u ∓ σ1. Similar
to eq. (2.24), we can identify three phases of the von Neumann entropy of the interval in
the bulk, which we label the same way: the quench phase, the scrambling phase, and the
late-time phase. The most important difference is in the Lorentzian cross-ratio, where we
must now account for the fact that the endpoints are not fixed on the boundary

η =
f(y+

1 )(x+
QES − x+

QES))

x+
QES(f(y+

1 )− x−QES)
(2.63)

The phase boundary between the quench and scrambling phases still lies at η = 1
2
. The

entropy functions in each phase now read

Sbulk, quench =
c

6
log

(
24πES
εc

y−1 f(y+
1 )√

f ′(y+
1 )

)
, (2.64)

Sbulk, scrambling =
c

6
log

(
24πES
εc

y−1 x
−
QES

(
f(y+

1 )− x+
QES

)
(x+

QES − x−QES)
√
f ′(y+

1 )

)
, (2.65)

Sbulk, late-time =
c

6
log

[
2
(
y−1 − y−QES

) (
x+

QES − f(y+
1 )
)

ε
(
x+

QES − x−QES

) √
f ′(y−QES)

f ′(y+
1 )

]
. (2.66)

The location of the corresponding quantum extremal surface x±QES is found by minimizing
the generalized entropy (∂±Sgen = 0). Before we move to finding the solutions, let’s first
comment on the effect of taking the point x1 into the bath region, i.e.,

y±1 = u∓ σ1 . (2.67)
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It is obvious this operation has nontrivial effect on the location of the quantum extremal
surface and bulk entropy because the entropy in the three cases all depend on both y±1 .
However, the effect from y−1 only appears in Sgen as a term like{

c
6

log
(
y−1
)

for x−QES < 0 < t < x+
QES ,

c
6

log
(
y−1 − y−QES

)
for 0 < x−QES < t < x+

QES .
(2.68)

If the above contribution is negligible, it is easy to claim that the effect from moving the
endpoint to the bath corresponds to a reparameterization, changing u to u−y0. At leading
order, this is what happens, as we will now explain.

As before, the bulk entropy in the quench phase is independent of the location of the
quantum extremal surface. Again the dilaton term is minimized at the bifurcation point
x± = ± 1

πT0
, so this is the location of the quantum extremal surface in the quench phase.

The generalized entropy in this quench (η ≤ 1
2
) phase reads

Sgen, quench =
φ̄r

4GN

(
2πT0 + 2k log

(
24πES
εc

y−1 f(y+
1 )√

f ′(y+
1 )

))
. (2.69)

which reduces to the AdS-boundary case when we take the limit y± ∼ u or σ1 → 0, as
expected. The cross-ratio region η ≤ 1

2
that defines the quench phase is equivalent to

f(y+
1 ) ≤ 1

3πT0

, y+
1 = u− σ1 ≤ f−1(

1

3πT0

) . (2.70)

The location of the quantum extremal surface in the scrambling phase and with σ1 > 0 is
delayed with respect to the σ1 = 0 solution, because the solutions to the extrema equations
(0 = ∂±Sgen), which read

0 =
(πT0x

−
QES)

2 − 1

x+
QES − x−QES

+ k
x−QES − f(y+

1 )

f(y+
1 )− x+

QES

, (2.71)

0 =
1− (πT0x

+
QES)

2

x+
QES − x−QES

+ k
x+

QES

x−QES

(2.72)

only depend on f(y+
1 ). The location is similar to eq. (2.34) after making the replacement

u→ y+
1 , t→ f(y+

1 ), i.e.,
x±QES = x±QES(f(y+

1 )) . (2.73)
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Although the location of the quantum extremal surface is simply delayed by σ1, the gen-
eralized entropy still has the non-trivial term from log y−1 as we claimed before:

Sgen, scrambling ≈
φ̄r

4GN

[
2πT0 + 2k log

(
24πES
εc

u+ σ1

πT1

√
f ′(u− σ1)

)
+ κ

]
, (2.74)

where κ is defined in eq. (2.42) and we have assumed η ≥ 1
2

and u� 1. This extra term is
still sub-leading, with the full generalized entropy dominated by the linear growth at early
times u� 1

k
.

Similar to the σ1 = 0 case, the transition between the quench and scrambling phases
happens at the point where

Sgen, scrambling = Sgen, quench ←→ y+
QS = uQS . (2.75)

where the equivalence is exact because of the cancellation of log y− in
Sgen,scrambling − Sgen,quench. Just like the σ1 = 0 case considered in section 1.2, the
quantum extremal surface is at the bifurcation point until uAB and then jumps to x± (y+)
in eq. (2.34). This marks the transition between the quench phase and the scrambling
phase.

In the late time phase, the quantum extremal surface is located after the shock, and
the extremum equations 0 = ∂±Sgen can be expanded into first order in k to read

0 ≈ 2πT1
e−

k
2
y−QES

t∞ − x−QES

− k

x+
QES − f(y+

1 )
, (2.76)

0 ≈ 4πT1(t∞ − x+
QES)e

− k
2
y−QES +

k

2
(t∞ − x−QES) . (2.77)

This leads to the linear solution

x+
QES =

4

3
t∞ −

1

3
f(y+

1 ) +O(k(t∞ − f(y+
1 ))) , (2.78)

y−QES = y+
1 − uHP +

k

2

(
uHP −

1

2πT1

)(
uHP − y+

1

)
+O(k2) . (2.79)

The generalized entropy in the late time phase is given by eq. (2.39)

Slinear ≈
φ̄r

4GN

[
2πT1 − kπT1(u− σ1 − uHP) + k log

(
8k(uHP + 2σ1)2

√
2e3ε2(πT1)

)
+O(k2 log(k))

]
.

(2.80)
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Figure 2.11: Left: The numerical results for uPage on the dependence on σ1 and the com-
parison with analytical result defined in (2.81). Right: uPage − σ1

With the new approximations (2.80), we can also define the Page time for this late-
radiation-excised bath with fixed δ as

uPage(σ) ≈ 2

3

T1 − T0

T1k
+
uHP

3
+ σ +

2

3πT1

log

(√
8kπT1

3
√

2e

(uHP + 2σ)

(u0
P + 2σ)

c

6πES

T0

T1 − T0

)
+

k

6πT1

5

(T1 − T0)π
+O(T1 − T0) ,

(2.81)

with the crossing condition Slinear = Sgen, scrambling. It is clear that it is just the uPage + σ
with corrections from one log term which is decreasing with the increase of σ. As a final
check, in figure 2.11 we compare the numerical results for the Page time with the analytical
approximation.

Time evolution of σPage

Armed with the approximate solution (2.81), we can fix a time slice u after the Page time
and ask how far into the bath we need to move to arrive at the Page transition. To fix the
notation, we will say that this happens at

y+
Page ≡ u− σPage , (2.82)

We can thus consider the evolution of the distance of the second endpoint to AdS boundary
σPage such that

u− σPage − uPage =
2

3πT1

(
log

(
uHP + 2σPage

uHP

)
− log

(
uPage + 2σPage

uPage

))
, (2.83)

44



σ

y+

u

uPage

σ QS
=

u − u Pag
e

uHP uPage

y−

2
3πT1

log
uPage

uHP

σPage

Figure 2.12: The red line indicates the evolution of σPage. It starts from the boundary
point at u = uPage and evolves with time u. For very late times, it approaches another null

surface with shift 2
3πT1

log
(
uPage

uHP

)
.

which is derived from the approximation of y+
Page and uPage. It is still hard to solve the above

equation for σPage. However, let’s first comment on its speed with respect to u, i.e.,

∂uσPage =

(
1 +

4

3πT1

uPage − uHP

(uHP + 2σPage)(uPage + 2σPage)

)−1

< 1 , (2.84)

which approaches 1 when σPage →∞. In order to get insight on the simple form of σPage, we
consider three different regions for σPage using the separation of scales: 1

πT1
� uHP � uPage.

First of all, if we start from a small σPage, it is easy to find for σ < uHP

σPage(σ) '
(

1 +
4

3πT1

uPage − uHP

uPageuHP

)−1

(u− uPage) , (2.85)
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where the coefficient is a little bit smaller than one. Then we can move to the middle
region with the approximate solution for uHP < σ < uPage:

σPage '
(

1− 4

3πT1uPage

)−1(
u− uPage −

2

3πT1

log
uHP + 2(u− uPage)

uHP

)
. (2.86)

Note that although the coefficient looks larger than 1, it is easy to check that with the
logarithmic correction, the velocity in this region still satisfies ∂uσPage < 1.

Finally we arrive at the region with σPage > uPage, one can still find a linear result when
uPage < σ:

σPage ' u− uPage −
2

3πT1

log

(
uPage

uHP

)
+

uPage − uHP

3πT1(u− uPage)
. (2.87)

So we can find that the evolution of σPage is time-like. However in this regime it quickly
approaches a null line as the last term decays as u − uPage grows. We note that the third
term above represents a (small) finite shift of the asymptotic line above the simple leading
approximation y+

QES ' u − uPage. We show a sketch of the evolution of y+
QES in figure 2.12,

summarizing our results here.

In closing here, we comment that a similar but even simpler conclusion applies to the
transition between the quench and scrambling phases. Recall that this transition occurs
at u = uQS defined in eq. (2.47). Then on later time slices, we push σ1 into the bath and
define σQS in analogy with y+

QES, i.e., σQS is the value of σ on a constant u slice where
the transition between the quench and scrambling branches occurs. From eq. (2.75), it is
straightforward to show that σQS exactly satisfies the simple relation

σQS = u− uQS . (2.88)

Importance of the early radiation

So far we have seen how much of the later radiation can be discarded while still being able
to reconstruct the interior of the black hole with the remaining radiation + QML. This was
done by starting at some time slice after the Page time and removing an interval of the bath
starting from the AdS-bath juncture until the generalized entropy of the late-time branch
matches the entropy of the scrambling branch. That is, we found the point x+

1 = f(y+
1 ) in

the bath such that
SQES′−1 = SQES−1 , (2.89)

where x+
QES′ is at the extrema of the generalized entropy with one endpoint before the shock,

and x+
QES is at the extrema of the generalized entropy with both endpoints after the shock.
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Figure 2.13: The smallest connected bath interval B0 that, together with the QML, still has
enough information to reconstruct the black hole interior is the one in which the generalized
entropy in the two channels depicted are equal.

This allows us to remove part of the bath close to AdS that is not essential for black hole
interior reconstruction. We can now ask the question of how much of the early-radiation
regime of the bath we can remove while still keeping information about the black hole
interior. That is, we consider a bath interval B0 = [σ1 = y+

QES(u), σ2] on a constant time
slice u, and ask how close can we move σ2 to the initial endpoint while still being able to
reconstruct the black hole interior. Unsurprisingly, we must place σ2 near the shockwave
falling into the bath, since more distant points are out of causal contact with the quench
point. However, we will also find that σ2 must be positioned slightly to the right of the
shock, i.e., we need to keep all of the early radiation.

As above, consider an interval of the bath B0 = [σ1 = y+
QES(u), σ2], and then in terms

of the null coordinates, the endpoints are positioned at y±1 = u ∓ σPage and y±2 = u ∓ σ2.
Now we ask for the smallest of σ2 such that

Sgen
QES′′ + S1−2 = Sgen

QES−1 + S2 (2.90)

where xQES′′ is at the bifurcation point and xQES is at the extrema of the late time generalized
entropy. This is illustrated in figure 2.13

We begin by assuming that y2 is close to spacelike infinity of the bath, so that y−2 > 0,
y+

2 < 0, and see how much closer to AdS we can bring it without losing the information
required to reconstruct the interior of the black hole. After the coordinate transforma-
tion (2.12) and the Weyl rescaling required to bring to the evaporating black hole model,
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we find the generalized entropy for these two channels is

Sgen
QES′′ + S1−2 =

c

6
log

(
24πES
cε2

−y+
2 x

+
1 (y−2 − y−1 )√
f ′(y+

1 )

)
+
φ(xQES′′)

4GN

, (2.91)

Sgen
QES−1 + S2 =

c

6
log

(
2

ε2
(y−1 − y−QES)(x

+
QES − x+

1 )(y−2 − y+
2 )
√
f ′(y−QES)

(x+
QES − x−QES)

√
f ′(y+

1 )

)
+
φ(xQES)

4GN

.

(2.92)

The value of the dilaton at the bifurcation xQES′′ is

φ(xQES′′) = φ0 + 2πT0φ̄r . (2.93)

The dilaton at the extremal point xQES is given by eq. (2.59) to first order in k. The
position x0 of the extremal surface in eq. (2.52) to leading order in k is

x+
QES ≈ t∞ , y−QES ≈ y+

1 − uHP . (2.94)

Using the leading order in eq. (2.49) and its derivative

f ′(u)

t∞ − f(u)
≈ 2πT1 , (2.95)

we find ∆Sgen = Sgen
QES′′ + S1−2 − Sgen

QES−1 − S2 is

4GN

φ̄r
∆Sgen =

(
2π(T0 − T1) + kπT1(3y+

1 + uHP ) +
k

2
log 2e

)
+ 2k log

(
6πES
c

−y+
2 x

+
1 (y−2 − y−1 )

(y−1 − y+
1 + uHP )(y−2 − y+

2 )

)
+O(k2) ,

(2.96)

where we have used φ̄r
4GN

= c
12k

.

The very large negative cπ
6k

(T0 − T1) term is offset by the cπ
4k
T1y

+
1 term because we are

choosing y+
1 = uPage(σPage)− σPage where uPage can be read off eq. (2.81). Plugging the value

of y±1 and y±2 , we find

4GN

φ̄r
∆Sgen = 2k log

(
8

3
√
πT1t∞

T0

T1 − T0

(σ2 − uPage)(σ2 − σPage)

(2σPage + u0
P )(2σ2)

)
+O(k2) , (2.97)

where we have used uPage = uPage(σPage) to simplify the equation and once again u0
P in

eq. (2.62) is the leading order approximation to uPage. The (T1 − T0)(u0
P + 2σPage) term in
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the denominator is small, and the only term that can offset this to bring the argument of
the logarithm close to one is y+

2 = σ2 − uPage. But this requires us to anchor the end of
the bath interval a distance ∼ (T1−T0)u/T1 to the right of the shock. The takeaway from
this calculation is that we can remove most of the bath behind the shock. This should be
expected because these intervals do not capture any of the radiation of the evaporating
black hole, so they should not be essential for interior reconstruction.

We can now consider what happens when the point x2 crosses the shock, and see if we
can remove any more of the bath interval. This would amount to removing some of the
early radiation after the evaporation began. In terms of the calculation, the difference now

is that x+
2 > 0 and therefore z̄ =

(
12π
c
ES
)−2 i

x+ so that the expressions for the generalized
entropies of the two channels in eqs. (2.91) and (2.92) are now

Sgen
QES′′ + S1−2 =

c

6
log

(
2

ε2
(x+

1 − x+
2 )(y−2 − y−1 )√

f ′(y+
1 )f ′(y+

2 )

)
+
φ(xQES′′)

4GN

,

Sgen
QES−1 + S2 =

c

6
log

(
24πES
cε2

y−2 x
+
2 (y−1 − y−QES)(x

+
QES − x+

1 )
√
f ′(y−QES)

(x+
QES − x−QES)

√
f ′(y+

1 )f ′(y+
2 )

)
+
φ(xQES)

4GN

.

(2.98)
Using the position of the extremal surface in eq. (2.52), the approximation in eq. (2.49)
and plugging the positions of the endpoints y1 and y2 the difference in the entropies of the
two channels ∆Sgen is

4GN

φ̄r
∆Sgen = 2k log

((
c

12πES

)2
8πT1

3
√
πT1t∞

T0

T1 − T0

(x+
1 − x+

2 )(σ2 − σPage)

(uPage + σ2)x+
2 (2σPage + u0

P )

)
+O(k2) .

(2.99)

The term in the denominator
(

12πES
c

)2
(T1 − T0)(u0

P + 2σPage) ∼ E4
Sk/c

2T 3
1 is very large

and needs to be canceled by the separation y+
2 of the point y2 from the shock. Taking the

ansatz y+
2 = d η with

η =

(
c

12πES

)2
8πT1

3(u0
P + 2σPage)

√
πT1t∞

T0

T1 − T0

.

(
cT1

6ES

)4
πT1

k
� 1 , (2.100)

we find that y−2 = 2uPage−d η and x+
2 = y+

2 +O((y+
2 )3) = dη+O(η3). Solving for ∆Sgen = 0

then gives

d = x+
1

uPage − σPage

2uPage

− x+
1

uPage − σPage

2uPage

uPage(x
+
1 + 2uPage) + σPage(x

+
1 − 2uPage)

4u2
Page

η +O(η2) .

(2.101)
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Figure 2.14: Smallest connected intervals that, together with QML, are able to reconstruct
a part of the black hole interior. The left endpoint σPage follows the path illustrated in
figure 2.12, while the right endpoint is anchored very close to the shockwave, as described
by eq. (2.102).

Hence we find that the right endpoint must indeed anchored very close to the shock wave
(at y+

shock = 0). That is,

y+
2 = x1

uPage − σPage

2uPage

η ∼
(
cT1

6ES

)4
πT1

k
� t∞ . (2.102)

Figure 2.14 shows the smallest connected intervals that are able to reconstruct a portion
of the black hole interior.

2.2.2 Late-time protocol: forgetting the early-time radiation

In section 2.2.1, we asked the question of how much of the bath is required to reconstruct
the interior of the black hole in combination with QMLwhile focusing on the Hawking
radiation emitted at early times. A different approach is to ask how much of the early-
time radiation can we ignore but still keep the ability to reconstruct the interior of the
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Figure 2.15: The time evolution of y+
2 with dependence on ∆u = u− uPage. The red line is

derived from the direct numerical calculation, while the blue line represents eq. (2.106).

black hole. Concretely, we can anchor σ1 = 0 for times later than uPage and see how
small σ2 can be while still keeping the recoverability of the black hole interior. The two
competing channels are the same as the ones in the early-time protocol, and are illustrated
in figure 2.13. The difference is that the left endpoint of the bath interval is now anchored
at the AdS-bath junction, i.e., σ1 = 0, and the right endpoint is no longer anchored at the
shock, i.e., σ2 < σshock.

As in eq. (2.90), we need to consider the equivalence condition,

Sgen
QES′′ + S1−2 − Sgen

QES−1 − S2 = 0 (2.103)

with the new endpoints, which is equivalent to

2k log

(
12πES
c

f(y+
2 )y−2(

t− f(y+
2 )
)
σ2

)

= 2πT0 −
φ(x±QES)

φ̄r
+ 2k log

(
(x+

QES − x−QES)

(y−1 − y−QES)(x
+
QES − x+

1 )
√
f ′(y−QES)

)
,

(2.104)

where the dilaton is derived in eq. (2.59) and the bulk entropy on the right hand side is
as in eq. (2.55). The above equation can not be solved analytically in general, and so we
examine different regimes of ∆u ≡ u− uPage.

When ∆u is smaller than the Hayden-Preskill scrambling time uHP, the distance of the
right endpoint of the bath interval to the shock y+

2 is still very small. This is shown in the
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plateau region in the beginning of figure 2.16. For y+
2 � t∞, we can use10

x+
2 = f(y+

2 ) ≈ t∞ tanh

(
y+

2

t∞

)
,

log

(
f(y+

2 )y−2(
t− f(y+

2 )
)
σ2

)
≈ log

y+
2

t∞
+ log 2 +

y+
2

2u
+
y+

2

t∞
≈ log

y+
2

t∞
+ log 2 .

(2.105)

Solving for ∆S = 0 then leads to the solution

y+
2 (u) ≈ ct∞

223/4πESuHP

exp

[
1

4
+
π(T0 − T1)

k
+
πT1

2
(3u+ uHP)

+
k

8

(
− 1

πT1

+ (3− 2πT1uHP)(u− uHP)

)]
,

(2.106)

for u . uHP. As expected, we find an exponential increase of y+
2 (u) for early times. The

comparison with numerical results are shown in figure 2.15.

We now move on to later times, when ∆u is of the order of the Page time, but still
less than O(k−1 log k). The above approximation of eq. (2.105) will break down. For times
with ∆u comparable to the Page time we find numerically that the separation increases
linearly with ∆u, as can be seen in figure 2.16. We now proceed to show this linear behavior
analytically. Using the results of section 2.1 in eqs.(2.59) and (2.55), the only new terms
we need to consider are

log

(
f(y+

2 )y−2(
t− f(y+

2 )
)
σ2

)
≈ log

(
u+ σ2

2σ2

)
+

4πT1

k

(
1− e−

k
2

(u−σ2)
)
,

log
(√

f ′(u)
)
≈ log 2 +

k

8πT1

− ku

4
− 2πT1

k
(1− e−

ku
2 ) ,

(2.107)

where we have taken the approximation f(y−+) ≈ t∞ for u− σ � t∞, which is satisfied in

the region with linear behavior. We also note that the log
(
u+σ2

2σ2

)
is a small contribution

because of the log function and σ also increases with u. Furthermore, if we take the small
ku expansion again and keep the liner terms, this approximation leads us to the following
solution

σ2 (u) =
T1 − T0

2T1k
+

1

4
(u− uHP) +

1

2πT1

log

(
16ESπuHP(u+ σ̄2)

(2e)1/4cσ̄2

)
− k

8
u2

HP +O(k) ,

(2.108)

10 This approximation only works for small y+
2 . In previous sections, we dealt with times u of the order

of the Page time or larger, and then (2.49) is a much better approximation.
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Figure 2.16: The time evolution of y+
2 with dependence on ∆u = u − uPage. Left: The

numerical results from the full linear generalized entropy. The horizontal line indicates
the y+

2 = uPage. Right: Black curve shows the results with exponential dilaton term. The
horizontal line represents the limit of y+

2 defined in (2.112).

where σ̄2 = T1−T0

2T1k
+ 1

4
(u− uHP) is the leading order term of σ2(u).11 It is straightforward

to add higher k corrections to this approximation, but we only need the first order terms
to show that σ2 depends almost linearly in u for ∆u of the order of the Page time and up
to O(k−1). Thus, in this regime, we find a linear evolution for the distance of the endpoint
of the bath interval to the shock:

y+
2 (u) = u− σ2(u) ' 3

4
(u− uPage) , (2.109)

where the slope is fixed to be 3
4

at leading order, and we have ignored the correction of
order O(k).12 The linear behavior is illustrated in figure 2.17.

For very late times of O(k−1), the small ku approximation in e.g., eq. (2.60) breaks
down. This is due to the breakdown of the dilaton approximation in eq. (2.59). The correct
expression for times of O(k−1) is

φ ≈ φ̄r

(
2πT1e

− k
2
y−QES − k

2
log 2e

)
. (2.110)

Correspondingly, the linear decrease of generalized entropy is replaced by a much slower
exponential decrease. Using the improved dilaton contribution in eq. (2.110), as well as

11The u dependence inside the log is very small, since for ∆u much larger than uPage we have log (u+σ2)
σ ≈

log 5.
12The approximation is in ∂uy

+
2 (u) ≈ 1

4e
− k2 (y−

QES
−y+2 )

∂uy
−
QES + 1

2e
− k2 (u−y+2 ), reducing to 3

4 when u is
order uPage and to 0 for ku� 1.
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Figure 2.17: The dotted line in the right figure illustrates the evolution of y±2 with respect
of time u. The left figure is the linear region with the approximation of y+

2 described by
eq. (2.109).

the approximation in eq. (2.107), we can solve eq. (2.104) numerically and plot the results
in figure 2.16. Focusing on the large u limit, we can give an approximation for the surface
y+

2 at very late time with u� k−1

y+
2 ≈

2

k
log

(
16πT1

4πT1(2T1 − T0) + 4k log
(

16ESπuHP

c

)
− k(1 + 4πT1uHP − log 8)− 2πT1k2u

)
.

(2.111)
This surface is becoming null for very large u. In an approximation that holds up to late
times of order u ∼ O(k−1 log T1

k
),13 the asymptotic behaviour is

y+
2 '

2

k
log

(
4T1

2T1 − T0

)
+O(1) . (2.112)

We observe that the order-one correction above is also a constant. However, u-dependent
terms appear on the right-hand side at order k.

13Note that we can not simply take u to infinity to derive this leading order behaviour because the
semi-classical model will break down in the late-late-time regime with u � k log T1

k . Here we assume

u ∼ y−QES approaches the very late-time limit. However, this formula (2.112) does not hold for u→∞.
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Before closing here, let us also comment on the late-time protocol applied to the quench-
scrambling phase transition. The calculation to find the behavior of the right endpoint with
u > uQS is similar to the one for the Page transition carried earlier in this section. However,
the result is that as we increase the time up to the Page time, the distance of the right

point to the shock y+
2 (u) starts from a very small value i.e., σshock − σ2 ∼

(
cT1

6ES

)2

t∞ � t∞

and then decreases exponentially for uQS < u < uPage. That is, the left boundary very
quickly approaches the null curve defined by the shock, i.e., σ2 ' u. This contrasting
behavior originates from the increase of bulk entropy in scrambling phase, i.e., the linear
term in eqs. (2.36) and (2.39).

2.2.3 Redundancy of the encoding

In examining the holographic entanglement and the corresponding entanglement wedge
for QML+bath in section 2.2.1, we found that the information needed to reconstruct the
interior of the black hole is encoded in a region in the bath extending from y+

QES ' u−uPage

to σshock = u on a given time slice u in the bath.14 However, as may be expected for
holography [137, 138, 139], we will see that this encoding is redundant, here and in the
next subsection. In this subsection, we examine the question of removing a smaller interval
from the shortest connected bath interval that can still recover the black hole interior.15

While in the following two subsections we will be working with the early-time protocol in
mind for concreteness, the results in this subsection are qualitatively similar if we started
from the shortest connected intervals in the late-time protocol of section 2.2.2, and in fact
the main conclusion of subsection 2.2.3 in eqs. (2.122) and (2.127) is quantitatively the
same.

Let us denote the bath interval described above as B0 =
[
y+

QES, σshock

]
. Now we ask how

large a hole H1 can we remove from B0 while still preserving recoverability of the black hole
interior? The desired configuration of HRT surfaces is sketched in the top left illustration
of figure 2.18. We are now left with two disjoint intervals in the bath B1,1 = [σ1 = y+

QES, σ2]
and B1,2 = [σ3, σ4 = σshock], which combined with QML are still able to reconstruct the
black hole interior. To determine the allowed size and position of the hole, i.e., to determine
the allowed values of σ2 and σ3, we must compare the contributions of the different HRT
surfaces. For example, the desired configuration (in the top left of figure 2.18) is given by

SQES−1,2−3,4 = SQES−1 + S2−3 + S4 , (2.113)

14Recall that y± ≡ u∓ σ, so that increasing positive σ corresponds to moving further into the bath.
15If one is favorably inclined to puns, one might call this process “lyft”ing, since we are on our way to

überholography.
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Figure 2.18: Excising the largest possible hole H1 from the smallest possible interval B0 =
B1,1 ∪H1 ∪B1,2 of the bath such that recoverability of the black hole interior is preserved.
Minimizing of B0 i.e., setting σ1 = y+

QES, allows us to equate the difference in generalized
entropies of the first line with the differences in von Neumann entropies in the second line;
maximization of H1 is determined by the equality of latter branches.

where we have indicated the contributions of the separate components of the HRT surface
on the right. For example, S4 is the contribution of the geodesic connecting y4 to the ETW
brane, while SQES−1 corresponds to the generalized entropy which includes the length of the
geodesic connecting σ1 to the QES and also the dilaton contribution at the latter point.
Now the competing configuration that limits the size of the hole is shown in the top right
illustration of figure 2.18, and the corresponding holographic entropy is given by

SQES′,1−2,3−4 = SQES′ + S1−2 + S3−4 . (2.114)

In this case, QES′ indicates that the quantum extremal surface is distinct from that ap-
pearing in eq. (2.113). In fact, in this configuration, QES′ corresponds to the bifurcation
surface of the original black hole on the Planck brane.

A priori it may seem that comparing the entropies in eqs. (2.113) and (2.114) will
require some numerical analysis. However the present comparison is simplified because we
have chosen σ1 = y+

QES. This point marks the precise transition between two competing
sets of HRT surfaces, as illustrated in figure 2.13. Hence at this precise point, we have

SQES−1 + S4 = SQES′ + S1−4 . (2.115)

Substituting this expression into eq. (2.113) and taking the difference then yields

SQES−1,2−3,4 − SQES′,1−2,3−4 = S1−4 + S2−3 − S1−2 − S3−4 , (2.116)

as illustrated by the bottom illustration of figure 2.18. Note that the latter (2.116) is
controlled entirely by the positions of the points in the bath, which are fixed, i.e., the
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transition between the two branches in the top of figure 2.18 is completely independent of
the physics on the Planck brane, i.e., of QES and QES′.16

Hence in eq. (2.116), we are simply comparing the lengths of the corresponding HRT
surfaces. This comparison can be made in terms of the z coordinates, where the transition
occurs at

|z2 − z3|2

|z4 − z3|2
|z4 − z1|2

|z2 − z1|2
= 1 , (2.117)

or in the y± coordinates, where

y−3 − y−2
y−4 − y−3

f(y+
2 )− f(y+

3 )

f(y+
3 )− f(y+

4 )

y−4 − y−1
y−2 − y−1

f(y+
1 )− f(y+

4 )

f(y+
1 )− f(y+

2 )
= 1 . (2.118)

Now, of course, the width of our hole H1, i.e., |σ3−σ2|, depends on how it is positioned
within the original interval B0 =

[
y+

QES, σshock

]
. As an example, in figure 2.19, we consider

B0 with y+
QES = 0, i.e., u = uPage,

17 and explore the maximum width of the interval that
can be removed as a function of the center of the interval. In the figure, we see that the
optimal choice, i.e., the largest hole, is when we position the hole at the center of B0. In
the figure, we see that in this optimal configuration, we can remove approximately 10%
of the region B0. The width of the hole shrinks rapidly as σc approaches either y+

QES or
σshock – see further comments below. We can interpret this shrinking as indicating that the
information in both the early Hawking radiation (near the shock) and the later radiation
(near y+

QES) are very important in reconstructing the black hole interior.

The resulting plot in the left panel of figure 2.19 is almost symmetric about the mid-
point. The small asymmetry (shown in the right panel) is due to the nonlinearities of
the mapping f(y+

i ). Interestingly, this asymmetry is eliminated if we use the small k ap-
proximation:18 f(u) ' 1

πT∞
tanh (πT∞u) where T∞ = 1

πt∞
= I1

[
2πT1

k

]
/I0

[
2πT1

k

]
. With this

approximation, the identity tanh(x) − tanh(y) = sech(x) sech(y) sinh(x − y) can be used
to simplify eq. (2.118) as

y−3 − y−2
y−4 − y−3

sinh(y+
2 − y+

3 )

sinh(y+
3 − y+

4 )

y−4 − y−1
y−2 − y−1

sinh(y+
1 − y+

4 )

sinh(y+
1 − y+

2 )
= 1 . (2.119)

16However, if instead, σ1 was placed closer to the end of the bath (i.e., closer to QMR), then eq. (2.115)
would no longer hold and comparing eqs. (2.113) and (2.114) would no longer be as simple.

17Note that there is no real loss of generality with this choice. Moving to a later time slice simply shifts
the parameters to u′ = uPage +∆u, y+

QES

′ ' ∆u and σ′shock = uPage +∆u, which corresponds to just shifting

y−1,2 by a constant while leaving y+
1,2 unchanged. However, we observe that eq. (2.118) is invariant under

a constant shifts in y− and so our analysis here would be unchanged.
18For the parameters in table 2.1, the difference between the full f(u) and this approximation is less

that an fraction of a percent, i.e., |f(u)− fapprox(u)|/|f(u)| . 0.0015%.
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Figure 2.19: To the left, maximum width w of the hole H1 removed from the bath region
B0 as a function of the center of the interval σc. To the right, asymmetry in the maximum
width about σc = σshock/2. Here we consider the time slice u = uPage so that B0 = [y+

QES =
0, σshock = uPage].

Further, for the example shown in figure 2.19,19 we then substitute y±1 = uPage, y
±
2 =

uPage ∓ (σc − w/2), y±3 = uPage ∓ (σc + w/2) and (y+
4 , y

−
4 ) = (0, 2uPage), which yields

w

uPage − σc − w/2
sinhw

sinh(uPage − σc − w/2)

uPage

σc − w/2
sinhuPage

sinh(σc − w/2)
= 1 . (2.120)

Clearly, the resulting expression is invariant under σc → uPage − σc, i.e., the corresponding
plot is exactly symmetric about the midpoint σc = uPage/2. Hence in this approximation,
the importance of the information in both the early and later Hawking radiation is equally
weighted for the reconstruction of the black hole interior.

In closing this section, we note that the initial and final slopes of the curve in the left
panel of figure 2.19 are universal for holographic CFTs. This is because the question of
how large a hole can be exciseded near the endpoint of an interval without triggering a
phase transition is one which probes the UV entanglement structure. To see this, let us,
without loss of generality, take in the RHS of eq. (2.116) the endpoints, σ2 and σ3, of the
hole to be very close to the endpoint σ1 = y+

QES. Maximizing the size of the hole to the
verge of triggering the transition between the two branches amounts to setting the RHS
of eq. (2.116) to zero. In the limit of the hole tending towards the point σ1, we have
S1−4 = S3−4; moreover, the dependence of S3−4 on point σ3 is extremely weak relative
to the dependence of S1−2 and S2−3 on the location and size of the hole. Thus, we find
that S1−2 ∼ S2−3 for maximally-sized holes close to σ1. Since these latter entropies probe
short distances, this relation gives the same constraint on points σ1,2,3 as in the vacuum

19Again, the general result corresponds to shifting all the points to the left by ∆u = u− uPage.
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case, i.e., |σ1 − σ2| ∼ |σ2 − σ3|. This corresponds to slopes of ±2/3 at the endpoints of
figure 2.19, i.e., near σ1, we have w ' 2

3
(σc − σ1) while near σ4, w ' 2

3
(σ4 − σc). These

results might be contrasted with the largest holes that can be removed from B0 in these
limits, i.e., w < 2(σc − σ1) and w < 2(σ4 − σc). This comparison gives a quantitative
measure that the w is indeed shrinking rapidly near the endpoints of B0, as commented
above.

Überholography

Having considered removing a single hole from the bath region B0 =
[
y+

QES, σshock

]
, it is

natural to generalize our analysis to arbitrarily many holes. Specifically, one may ask:
what is the smallest total length of disconnected regions in B0 needed, in conjunction with
QML, to reconstruct the interior of the black hole? In fact, by an iterative process where, at
each step, a hole is punched into each connected region in this bath region, this total length
can be reduced arbitrarily close to zero. This procedure was designated ‘überholography’,
where a bulk region is encoded in a subset of the boundary with lower (fractal) dimension
than the dimension of the boundary [118].

We illustrate this process in figure 2.20a. We begin, as in section 2.2.1, with the smallest
interval B0 on a constant time slice of the bath such that the black hole interior can be
recovered from QML and B0. For concreteness, we have positioned the first endpoint
min(B0) = σPage at the AdS-bath boundary in figure 2.20 — we find qualitatively similar
results when this endpoint is chosen inside the bath. In the first round of the iterative
process, we punch a maximally-sized hole H1 into the initial interval B0 while preserving
recoverability of the black hole interior, as discussed in section 2.2.3. What remains is
the union B1 = B0 \ H1 = B1,1 ∪ B1,2 of two intervals B1,1, B1,2. Before proceeding to
the inductive step, we emphasize again that the task of maximizing H1 can be reduced
into a simple problem that involves comparing channels of the Von Neumann entropy of
the disconnected region B1, as written in eq. (2.116) and illustrated in the first equality
of figure 2.18. A similar reduction can be made in all further iterative steps of the hole-
punching procedure, so that we need only consider Von Neumann entropy channels of the
surviving region Bn in the bath.20

Due to the maximization of the hole H1, the two channels shown in the last line of
figure 2.18 give the same entropy. For the inductive step, it is simplest to consider the
second channel shown. Since, in this channel, the entanglement wedges for B1,1 and B1,2

20Indeed, the problem would be identical to the vacuum case considered in [118] save for the conformal
transformation taking z to x, y coordinates.
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(a) Interval of the bath needed to reconstruct black hole interior, iteratively hole-punched.
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(b) Parameter α, defined in eq. (2.121),
which, in the infinite iteration limit, gives
the fractal dimension of the bath region
needed to recover the black hole interior.
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Figure 2.20: Iterative process of punching maximally-sized holes into the interval of the
bath needed (together with QML) to reconstruct the black hole interior. Here, the original
interval of the bath under consideration stretches from the AdS-bath boundary to the
shock on the time slice corresponding to the Page time on the boundary.
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are disconnected, we may separately consider punching maximally-sized holes in B1,1 and
B1,2. Thus, the process described in the previous paragraph can be repeated, now with
B1,1 or B1,2 taking the place of B0. Indeed, this procedure may be performed iteratively:
given a disconnected region Bn = Bn,1 ∪ · · · ∪ Bn,2n composed of intervals Bn,m, we may
punch a maximally-sized hole Hn+1,m into each Bn,m while maintaining recoverability of
the the black hole interior; the result is a smaller region Bn+1 = Bn \Hn+1, where Hn+1 =
Hn+1,1 ∪ · · · ∪Hn+1,2n .

At each step, we may define the quantities

rn =
|Bn|
|Bn−1|

, αn =
log 2

log 2
rn

(2.121)

describing the rate at which the total length |Bn| of the region in the bath shrinks over
iterations. In figure 2.20b, we plot αn, showing that it approaches the constant value

α∞ = αPP ≡
log 2

log(
√

2 + 1)
≈ 0.786 (2.122)

obtained for the CFT vacuum in [118]. Thus, we find that the region B∞ of the bath
needed, with QML, to recover the black hole interior exhibits uberholography — it has
zero total length. Moreover, as we shall show momentarily, α∞ gives the fractal dimension
d(B∞) of B∞. Hence, we see that B∞ has the same fractal dimension α∞ = αPP as for
uberholography in the vacuum case. The universality of αPP may be explained by the
fact that the UV entanglement excised by uberholography is determined predominantly
by the vacuum entanglement structure. Explicitly, for our case, despite the conformal
transformation from eq. (2.117) to eq. (2.118), for small interval sizes, eq. (2.118) still
reads as though it were comparing vacuum entropy channels:

|y2 − y3|2|y1 − y4|2

|y3 − y4|2|y1 − y2|2
+O (f ′′ · (distance between points)) =1. (2.123)

It is straight-forward to show that α∞ gives the dimension of B∞ by making use of
the fact that the ratio maxm |Bn,m|

minm |Bn,m| of maximal and minimal lengths of the consituents of

Bn approaches a constant in the infinite iteration limit n→∞, as verified in figure 2.20c.
Recall that the (Minkowski) dimension of the set B∞ is defined to be

d(B∞) ≡ lim
ε→0

logN(ε)

log(1/ε)
, (2.124)
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where N(ε) is the minimal number of ε-diameter balls (in this case, ε-length intervals)
needed to cover B∞. For any small ε, it is possible to find the first iteration n = n+(ε)
such that maxm |Bn,m| ≤ ε and also the last iteration n = n−(ε) such that ε ≤ minm |Bn,m|.
Since maxm |Bn,m| and minm |Bn,m| differ only by a constant factor in the n→∞ limit, it
follows that

n± ∼ log(ε)

log(rn±/2)
(2.125)

where rn/2 gives the factor by which the average length of single intervals shrinks over the
nth iteration. By monotonicity in N(ε), we also have

2n
− ≤ N

(
min
m
|Bn−,m|

)
≤ N(ε) ≤ N

(
max
m
|Bn+,m|

)
≤ 2n

+

. (2.126)

Using eqs. (2.125) and (2.126), we have from eq. (2.124) and the definition (2.122) of α∞,

d(B∞) = α∞ (2.127)

as claimed. Eqs. (2.122) and (2.127) are the main results of this subsection. Lastly, we
emphasize once again that despite the fact that we have started from the shortest connected
intervals of the early-time protocol, the results are the same if we start from the shortest
connected intervals of the late-time protocol of section 2.2.2.

More redundancy and efficiency of the encoding

With the late time protocol introduced in section 2.2.2, we found that we can reconstruct
the black hole interior with the bath interval B̃1 = [σ1 = 0, σ2 = σTurn(u)], where σTurn is
the minimum value of σ2 defined by eq. (2.109), i.e.,

σTurn = (1− γ)u+ γ uPage , γ =
3

4
(2.128)

where γ receives corrections at order k which only become relevant at times of order k−1,
and which slowly change the slope to zero at very late times of order k−1 log T1

k
. Therefore

σTurn defines a time-like boundary for the endpoints of these minimal intervals, as shown
in figure 2.17. Assuming the information flows at the speed of light,21 this result points to
a redundancy of the encoding of the black hole interior. That is, the black hole interior
is encoded in the Hawking radiation emitted over many finite time intervals, but at times

21As indicated by the evolution of y+
QES in section 2.2.1.
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much later than the Page time uPage. In general, if we begin to collect the radiation at an
arbitrary time uinitial > uPage and we can reconstruct the black hole interior with radiation
collected (at σ1 = 0) in the time interval [uinitial, ufinal] with

ufinal =
uinitial

γ
+ uPage . (2.129)

This time ufinal is determined by the intersection of the null ray entering the bath at uinitial

with the curve σTurn, such that all of the information flowing into the bath in the above
time interval is captured in the interval [0, σTurn(uinitial)] on this final time slice.

As a concrete example, we can discard all of the Hawking radiation emitted before
uPage, but we are still able to reconstruct the black hole interior by collecting the radiation
emitted in u ∈ [uPage, uPage,1] where uPage,1 − uPage = uPage/γ. Further, this process can be
repeated again, i.e., we discard the radiation before uPage,1 but the black hole interior is
recovered if we collect the subsequent radiation up to a time uPage,2. Repeating the process
repeatedly, one finds that

uPage,n − uPage,n−1 =
uPage

γn
. (2.130)

Since γ < 1, these intervals are becoming longer and longer. This suggests that while the
information about the black hole interior is still encoded in the radiation collected at later
times, the density of this information becomes less dense at much later times. That is, the
encoding of the information is becoming less efficient at later times – see further comments
in section 2.3.

These results depend on the simple linear growth of σTurn in eq. (2.128). However,
we also showed above that this behaviour breaks down at late times, with this boundary
approaching a null curve (2.112) at very late times – see figure 2.17. This means that the
size of the successive intervals, i.e., uPage,n − uPage,n−1, would grow even more quickly than
the geometric behaviour shown in eq. (2.130). With the final asymptotic expansion of σTurn

following a null curve, we would conclude that for times beyond

umax '
2

k
log

(
4T1

2T1 − T0

)
, (2.131)

we could never collect enough information to reconstruct the black hole interior. This
conclusion should be tempered by the fact that our semi-classical understanding of the
AEM4Z model will break down at times of order u & k−1 log T1

k
. Combining eq. (2.131)

with the expressions for uPage,n following from eq. (2.128),22 suggests a finite redundancy

22Explicitly, one finds that uPage,n = 1−γn+1

γn (1−γ) uPage.
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of the encoding of the black hole interior in the Hawking radiation with

nmax '
log (2uPage/k)

log γ
. (2.132)

More precisely, the black hole information is encoded in a finite number of distinct time
intervals roughly given by eq. (2.132).

Of course, there is nothing special about these intervals [uPage,n+1, uPage,n]. As indicated
in eq. (2.129), we can reconstruct the black hole interior with radiation collected in general
time intervals [uinitial, ufinal], beginning at any arbitrary uinitial > uPage. Further, on the time
slice u = ufinal, we could remove intermediate segments between σ1 = 0 and σ2 = ufinal−uinitial

as in section 2.2.3 or even implement the überholography process as in section 2.2.3. Of
course, this indicates that the reconstruction of the black hole interior does not require
all of the radiation in the time interval [uinitial, ufinal]. Rather, the überholography process
suggests collecting the radiation on some fractal subset of this time interval. All of these
considerations certainly point to a remarkable redundancy in time for the encoding in the
Hawking information of information about the black hole interior. It would be interesting
to understand if and how this pattern of redundancies is manifest in other models of black
hole evaporation.

2.3 Discussion

In this chapter, we examined the flow of information in black hole evaporation as described
by the AEM4Z model [1, 11]. This model involves two systems: JT gravity coupled to a
two-dimensional holographic CFT, and an infinite bath, comprised of the same holographic
CFT on a half-line. The former is prepared as an eternal black hole, which is dual to a
thermofield-double state entangling QML and QMR, while the bath is prepared in its
vacuum state. These two systems are connected by a quantum quench, and the subsequent
evolution of the entanglement entropy of QML+bath subsystem exhibits three phases: the
quench phase, in which the QES on the Planck brane is fixed at the bifurcation surface
of the initial black hole; the scrambling phase, in which the QES moves slowly away from
this bifurcation surface; and the late-time phase, in which QES is just behind the event
horizon of the evaporating black hole.

In the example of the eternal AdS2 black hole with reflecting boundary conditions at
the asymptotic boundary, the QES for QML (or QMR) alone will be the bifurcation surface.
Hence the information in this subsystem can be used to reconstruct the exterior region on
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the left (or right) side of the black hole. That is, the entanglement wedge for QML is
the entire region outside of the left event horizon, as shown in the left plot in figure 2.10.
Considering the information flow after the quench, since the position of the QES for the
QML+bath subsystem is fixed in the initial quench phase, the Hawking radiation is carrying
negligible information into the bath. That is, any information about the black hole interior
would only be at order one in the large c expansion of the holographic CFT.23

The onset of the scrambling phase marks the time when the Hawking radiation begins
to contain information about the interior. In the scrambling phase, the information flow
is detected by the QES, and is order c, but Hawking radiation absorbed by the bath
only carries enough information for QML+bath to reconstruct a small additional region
behind the horizon of the left side (and to the past of the shockwave), as illustrated in the
middle plot in figure 2.10. However, once the black hole has passed the Page transition
and entered into the late-time phase, the QES jumps to be behind the right event horizon
(and to the future of the shockwave), and so the bath has acquired enough information for
QML+bath to reconstruct a much larger portion of the black hole interior (see the right
plot in figure 2.10).

Let us comment on the HRT surfaces and the encoding of the black hole interior in
the late-time phase (see figure 2.1). We note that in this regime, the black hole interior
provides a classic example of the quantum error correcting encoding that is characteristic of
holography [138, 137]. We are considering three subsystems of the boundary, QML, QMR

and the bath. In this configuration the information about the black hole interior cannot be
recovered from any one of these subsystems; however, combining any two of them allows us
to reconstruct the interior information. In our discussion, the focus was on the combination
QML+bath, but a quick examination of the HRT surfaces in figure 2.1 shows that it is also
included in the entanglement wedges of either QML+QMR or QMR+bath.

However, the above discussion is not complete. Eventually, on a time scale much larger
than those considered here, the bath on its own will make a Page transition. Initially,
the bath is in the analog of the quench phase with the HRT surface sketched in the left
panel of figure 2.21. It then makes a transition to a late-time phase with the HRT surfaces
sketched in the right panel, where a quantum extremal island [1] has formed. Here we
implicitly assume a large intrinsic gravitational entropy for the JT model, i.e., we are
assuming that S0 = φ0/(4GN) � 1 in eq. (2.13).24 This contribution to the generalized
entropy adds a heavy penalty for HRT surfaces that end on the Planck brane, and so it

23In the analysis of [11] for a general CFT, the QES already begins to move away from the bifurcation
surface during the quench phase. Of course, there is also a smooth cross-over between the quench and
scrambling phases in their model.

24A standard assumption is that φ0 � φr/ε in the spacetime regions of interest [120] – see eq. (2.13).
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Figure 2.21: Quench (left) and late-time (right) phases for the entropy of the bath.

would delay the onset of the late-time phase and the appearance of the quantum extremal
island. Note that the transitions in the main text (for the entropy to QML+bath), one
is always comparing branches where a single HRT geodesic ends on the Planck brane and
so S0 did not play a role. Further, one can argue that if S0 & ∆S (the change in the
black hole entropy generated by the shock wave, i.e., in going from T0 to T1), then the
branch corresponding to the scrambling phase never dominates and so the Page transition
corresponds to going directly from the quench branch to the late-time branch. Of course, in
the latter phase with the quantum extremal island, the bath by itself now encodes sufficient
information to reconstruct a portion of the black hole interior. The fact that this other
Page transition takes place much later suggests that early-time scrambling is important for
the reconstruction of the black hole interior, as suggested in [10]. It would be interesting
to repeat the detailed analysis that we have performed in this chapter considering just the
bath on its own.

As the QML+bath system continues to evolve beyond the Page time, the wedge region
grows relatively slowly as the bath continues to absorb more Hawking radiation. That is,
the information carried by the radiation coming after the Page transition is less important
for the reconstruction of the black hole interior. Eventually, one expects the entanglement
wedge of the QML+bath subsystem to extend to the right boundary of the AdS2 geometry
at t∞ (where the dilaton vanishes), but we can not trust the model to these very late times.
However, a more appropriate comment might be to say that the information is less densely
encoded in the late-time radiation – see further comments below.

In this late-time phase, we found in section 2.2.1 that the information needed to recon-
struct the black hole interior propagates at nearly the speed of light into the bath. That
is, (a large portion of) the black hole interior could be reconstructed using the Hawking
radiation captured on the time slice u = uPage between σ1 = 0 and σ2 = uPage, together
with QML. However, on a later time u > uPage, we could reproduce essentially the same
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reconstruction using the Hawking radiation captured between σ1 = y+
QES ' u − uPage and

σ2 = σshock = u instead.25 Of course, this is consistent with the information being carried
into the bath by massless right-moving quasi-particles in the two-dimensional CFT [129].
Similar behaviour was also recently observed in [97]. Of course, as shown in eq. (2.87)
(see also figure 2.12), there are corrections to y+

QES in the small k expansion. However,
the corrected (timelike) boundary still rapidly approaches a (slightly) shifted null ray. In
section 2.2.1, we also showed that the early Hawking radiation is extremely important in
the above reconstruction protocol. That is, the right boundary σ2 of the bath region must

be extremely close to the shockwave, i.e., σshock − σ2 ∼
(
cT1

6ES

)4
πT1

k
� t∞ as in eq. (2.102).

The importance of the early and late time Hawking radiation in this protocol was
examined more closely in section 2.2.3, where we considered removing an intermediate
interval from the bath region – see figure 2.13. As shown in figure 2.19, the size of the
intermediate interval is maximal when it is at the center and quickly decreases as this
interval approaches either the shockwave or the boundary y+

QES. This is indicative of a
clear separation of the radiation into early and late pieces. Of course, the process of
systematically removing intermediate intervals from the bath region can be continued,
cutting out smaller and smaller subregions, as discussed in section 2.2.3. Repeating this
process ad infinitum, following [118], we produce a fractal structure which, in combination
with QML, contains enough information to reconstruct the interior of the black hole. It is
interesting that the (Minkowski) dimension characterizing this fractal matches that found
for the CFT vacuum in [118]. This match arises because the very small intervals only
probe the correlations of the CFT deep in the UV, and these must match in both settings.

In section 2.2.2, we considered a different reconstruction procedure that focused on
the later radiation by anchoring the bath interval at σ1 = 0. We found that the minimal
size σ2 = σTurn for which the information in QML+bath still allowed us to reconstruct a
large portion of the black hole interior follows a time-like boundary, as shown in figure 2.17.
Using eq. (2.128), we found a redundancy with the information about the black hole interior
being encoded in the Hawking radiation emitted in the time intervals [uPage,n+1, uPage,n] after
the Page time uPage.

Of course, this redundancy is consistent with the Hayden-Preskill thought experi-
ment [119]. The latter indicates that if a few qubits are dropped into an old black hole, the
information can be recovered after the scrambling time by combining (essentially) the same
number of qubits from the subsequent radiation with (all of) the early Hawking radiation.

25Of course, it is reasonable to expect that no information about the black hole interior is encoded in
the bath beyond the position of the shockwave, since this portion of the bath is not in causal contact with
the quench point.
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However, the radiated qubits need not be those radiated immediately after the scrambling
time, but rather can be collected from the subsequent radiation at any time – see also
[140, 141]. From this perspective, the initial eternal black hole at temperature T0 plays
the role of the old black hole and early radiation, i.e., QMR is the old black hole while
QML plays the role of the early radiation. The black hole is ‘rejuvenated’ by dropping in
the shock wave and the information can be recovered after uPage, which then plays the role
of the scrambling time in this discussion. However, as noted above, the information need
not be collected immediately after the Page time but in any sufficiently large interval after
uPage. This analogy might be made more precise by regarding the shock wave as a ‘heavy
diary’, as discussed in [10] – see also [142].

Of course, as indicated by eq. (2.130), or more generally by eq. (2.129), the length of the
time interval needed to collect sufficient information grows at later times. We suggested
that this indicates the encoding is becoming less dense or less efficient at later times.
However, the temperature of the black hole is (slowly) falling, and so one might wonder if
the reduction in the flux of Hawking radiation accounts for this effect. However, the flux
flowing into the bath (at σ1 = 0) is given by Ty+y+(u) ∼ T 2

1 e
−ku, as shown in eq. (2.7).

Hence this reduction only becomes noticeable on time scales of order u ∼ 1/k. A simple
calculation shows that an interval [0, σ2] needed to capture a fixed amount of Hawking
radiation, as counted by energy or number of quanta (i.e., E/Teff), barely exhibits any
growth at early times, i.e., in the regime where eq. (2.130) is valid.26 Hence the reduction
of Hawking radiation over time does not explain the growth of σTurn, and the natural
explanation is once again that the redundant encoding of information simply becomes
less efficient over time. However, we should note that the different time intervals are not
reconstructing precisely the same interior region. Rather the latter also grows with time,
and so this way partially account for the growth in σTurn.

We also note that the reduction of the Hawking flux, i.e., Ty+y+(u) ∼ T 2
1 e
−ku, is a

central factor in the nonlinear behaviour in the growth of σTurn found at time scales of
order u ∼ 1/k, as shown in figure 2.17. More directly in our calculations, the reduction
in the corresponding gravitational entropy (2.110) on the QES produces this effect. As
a result, σTurn(u) approaches a null ray, as shown in eq. (2.112), in this nonlinear regime.
We then infer that the information in the Hawking radiation is too depleted beyond umax

– see eq. (2.131) – to collect enough quanta to reconstruct the black hole interior. Of
course, our semi-classical understanding of the AEM4Z model breaks down at times of order
u & k−1 log T1

k
, and so nonperturbative effects may still allow for such a reconstruction.

In wrapping up this discussion, we reiterate that there is a remarkable redundancy in the

26Our conclusion assumes (T1 − T0)/T1 � 1 and uses uPage ∼ (T1 − T0)/(k T1) from eq. (2.61).
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encoding of the black hole interior in the Hawking radiation. In section 2.2.3, we explicitly
showed that the interior information was still available after numerous subintervals were
gouged out of the initial parcel of radiation emitted between the quench and uPage, to the
point where it was reduced to a fractal structure. The reconstruction was also possible with
the radiation collected (at σ1 = 0) in the interval [uinitial, ufinal], beginning at any arbitrary
uinitial > uPage and with ufinal given by eq. (2.129). Again, the überholography approach
could again be applied to perforate any such interval with holes. It would, of course, be
interesting to understand if this pattern of redundancies appears in other models of black
hole evaporation.

In closing, we observe that our analysis in section 2.2 focused on the Page transition
between the scrambling and late-time transitions. However, this discussion can easily be
extended to the first transition between the quench and scrambling phases, corresponding
to the onset of scrambling, and the results are more or less the same. One important
difference is that the trajectory for the σQS analog of σPage in section 2.2.1 is null for all
times, unlike the trajectory of σPage which asymptotes towards a null path as is shown
in figure 2.12. As was noted towards the end of section 2.2.2, the position of the σTurn

in the quench-to scrambling phase transition shows different behaviour from the σTurn of
the Page transition. In particular, as we increase the time from uQS up to the Page time
uPage, the distance of the right point to the shock y+

2 (u) starts from a very small value i.e.,

σshock − σ2 ∼
(
cT1

6ES

)2

t∞ � t∞ and then decreases exponentially. It was noted that the

contrasting behavior originates from the increase of bulk entropy in the scrambling phase,
i.e., the linear term in eqs. (2.36) and (2.39).

Furthermore, in our discussion, for simplicity we set the boundary entropy to zero, i.e.,
log g = 0 in eq. (2.20). This choice does not affect the Page transition in any way, as we
have said. The reason is that neither of the two competing geodesics terminates on the
end-of-the-world brane in this case. However, the first (quench-to-scrambling) transition
will be shifted if we choose log g 6= 0. On the scrambling phase branch, bulk geodesic
connects a boundary point in the bath to the QES on the Planck brane. However, in the
quench phase, the HRT surfaces are comprised of two geodesics terminating on the ETW
brane. Therefore, the corresponding generalized entropy would be increased by a term
4 log g. If we consider figure 2.6, then the transition time would move to an even earlier
time (assuming that log g > 0).
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Chapter 3

Equilibration model

As explained in section 1.3, the AEM4Z model [1] has three holographic descriptions – see
figure 1.2. The boundary perspective describes the system as two quantum mechanical
systems QML + QMR in a thermofield double (TFD) state that is connected to a bath
via a quantum quench. In the present analysis, the bath consists of two copies of a two-
dimensional holographic CFT on a half-line, which is initially prepared in an independent
TFD state, with a temperature Tb. After the quench, the system evolves towards a new
equilibrium between the quantum mechanical and bath systems, during which three differ-
ent phases are distinguished by the position of the quantum extremal surface. The TFD
in QML + QMR is dual to a two-dimensional black hole in JT gravity, and this gravita-
tional region also supports the same holographic CFT matter as appears in the bath. The
third description replaces the holographic CFT with a three-dimensional AdS bulk and in
particular, the TFD is replaced by a AdS3 black hole geometry. From this bulk perspec-
tive, the joining quench [143, 144] connecting the systems has a holographic description
as an end-of-the-world brane pinching off the AdS2/bath boundary and falling into AdS3

spacetime.1

The three phases of the equilibration process are illustrated in figure 3.1. The QES

1We would like to point out that the roles of the end-of-the-world branes and Planck brane are quite
different. The latter supports the JT gravity (as well as the holographic CFT) and plays a crucial role in
the appearance of the island phase. The interested reader is referred to references [59, 60] for a detailed
discussion of the explicit construction from the viewpoint of bulk spacetime, including the renormalization
on the brane theory. The end-of-the-world branes appear in the AdS3 bulk construction since the two-
dimensional dual theory is a boundary CFT living on the upper-half-plane (viewed in the appropriate
conformal frame) [126, 145]. The details of the bulk dynamics of these branes through the joining quench
is described in [143, 144].
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Figure 3.1: A cartoon illustration of the three phases for the entanglement entropy of QMR

or of QML, (a semi-infinite interval in) the thermal bath, and the (entire) bath purifier,
after the quench where QMR is connected to the bath. The darker colors indicate the
true generalized entropy, while the lighter colors indicate the general shape of each of the
branches slightly beyond the regime where it provides the minimal value for the generalized
entropy. Below the plot is a sketch of the shape of the extremal HRT surfaces in AdS3

which contribute to the generalized entropy in each phase.

remains at the bifurcation surface during the quench phase. At the transition to the scram-
bling phase, the QES shifts outwards by a very small distance. The generalized entropy in
these two phases increases, consistent with the original information loss calculations. How-
ever, at the Page transition, the QES is instead located at a new minimum outside of the
infalling shock. The generalized entropy at the Page transition then begins to asymptote
towards the expected entropy of a black hole in equilibrium with the bath, completing a
correct Page curve of the equilibration process. In the example shown in figure 3.1, the
temperature of the bath is less than that of the black hole so the entropy decreases in the
late time phase, similarly to the evaporating black hole. Note that a bath with temperature
greater than that of the black hole instead heats up the black hole, giving a Page curve as
in figure 3.10.

The central quantity necessary for studying the Page curve and the behaviour of the
extremal surface throughout the equilibration process is the generalized entanglement en-
tropy Sgen. Similar to previous work in the evaporating AdS2 black hole in JT gravity [11],
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we break the process of calculating the generalized entropy into three steps:2

� Calculating the von Neumann entropy of the CFT matter SvN

� Calculating the backreaction of the quench onto the dilaton φ

� Extremizing the resulting Sgen = φ
4GN

+ SvN

Conveniently, these steps are very similar to the evaporating model in chapter 2, the only
change coming from the details of the time reparametrization function in eq. (3.29) and
the extra conformal transformation in eq. (3.18) required to map the vacuum on upper
half plane to our quenched system. We now proceed to carry out each one of these steps
in the rest of this chapter.

3.1 Setup at finite temperature

3.1.1 Entropy of holographic CFT2

To calculate the von Neumann entropy of the CFT matter, we proceed in a similar way
to chapter 2 and map the corresponding quantum state to the vacuum of the CFT on the
upper half plane by a local Weyl rescaling and a coordinate transformation. The details
of the required coordinate transformation will be explained in section 3.1.3, but for now,
we simply specify that we will be working in Poincaré coordinates for the AdS2 spacetime

ds2
AdS = − 4L2

AdS

(x+ − x−)2
dx+dx− , (x± = t± s) , (3.1)

and in flat coordinates for the bath

ds2
bath = −L

2
AdSdy

+dy−

ε2
, (y± = u∓ σ) . (3.2)

The two spaces are glued together at one-dimensional boundary with σ = −ε, s = εf ′,

guu =
L2

AdS

ε2
where ε corresponds to the UV cutoff in the dual boundary theory, and f is the

2Note that we have adapted the notation in eq. (1.29) to our specific system, in which the area of the
HRT surface is given by the value of the dilaton. Further, we specify that the quantum corrections Sout

are given by the von-Neumann entropy SvN of the CFT matter on either side of the bipartition.
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coordinate reparametrization function x = f(y), given below in eq. (3.29).3 As before, we
simply set LAdS = 1 for the rest of the chapter.

The CFT matter state can then be mapped to the CFT vacuum via the local Weyl
rescaling

ds2
AdS → Ω(x+, x−)2ds2

AdS = dzdz̄ ,

ds2
bath → Ω′(y+, y−)2ds2

bath = dzdz̄ ,
(3.3)

where

Ω =
x+ − x−

2

√
z′(x)z̄′(x̄) , Ω′ = ε

√
z′(y)z̄′(ȳ) , (3.4)

where we have introduced the Euclidean coordinates x = −x−, x̄ = x+ and similarly for y
and ȳ. The coordinate transformations relating the x, y and z coordinates in eqs. (3.18),
(3.21) and (3.29) are all derived in section 3.1.3. In the rest of this subsection, we focus
on deriving the von Neumann entropy of the CFT matter in the z coordinates.

To begin, one can consider the von Neumann entropy of a finite interval with one
end-point being the boundary of the BCFT and the other (z, z̄) residing in the interior.
Equivalently, this is the entropy for the semi-infinite interval beginning at (z, z̄) and ex-
tending to infinity. This can be calculated using twist operator one-point functions in the
upper half plane, but by the method of images, the latter resembles a two-point function
of a CFT on the entire plane. Correspondingly, the von Neumann entropy resembles that
of an interval with length −i(z − z̄):

S1pt =
c

6
log[−i(z − z̄)] + log g (3.5)

where log g is the Affleck-Ludwig boundary entropy [125].

The entanglement entropy of an interval in a two-dimensional CFT in the presence of
a conformal boundary at z − z̄ = 0 is [122, 123, 146, 124]

S2pt =
c

6
log
(
|z1 − z2|2η

)
+ logG(η) , (3.6)

where η = (z1−z̄1)(z2−z̄2)
(z1−z̄2)(z2−z̄1)

is the conformally invariant cross ratio and G(η) is an undetermined

function that depends on the theory and boundary conditions. The G(η) function has two
limits that can be determined by either a bulk OPE or an operator-boundary expansion:

3In section 3.2.3, we also introduce analogous coordinates ỹ± = ũ± σ̃ for the purification of the bath.
These are related to x± in eq. (3.73), which is then the analog of eq. (3.13).
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G(η → 1) = 1 from the OPE limit, and G(η → 0) = g2 from the operator-boundary
expansion.

Once again, we adopt the holographic framework describing boundary conformal field
theory (BCFT) [126, 127]. In this setup, the JT gravity plus bath system lives on the
boundary of an AdS3 geometry. From this bulk perspective, the boundary defect at the mo-
ment of quenching anchors an end-of-the-world (ETW) brane hanging into the holographic
direction. After the quench, the ETW brane detaches from the asymptotic boundary and
falls off into the bulk. For this system, the entanglement entropy is determined using the
Ryu-Takayanagi prescription [43], i.e., for a two-dimensional CFT on the asymptotic AdS
boundary, the entanglement entropy is simply given by evaluating the bulk length of the
corresponding geodesics connecting the end-points on the boundary, with the added possi-
bility of having geodesics ending at the ETW brane. In the z coordinates, this corresponds
to evaluating the length of the geodesics connecting the end-points in a flat asymptotic
boundary of AdS3 with the possibility of having geodesics ending at a flat ETW brane in-
tersecting the asymptotic boundary at z − z̄ = 0 at an angle determined by the boundary
entropy log g. In this case, eq. (3.6) reduces to the following simple form

S2pt =

{
c
3

log (|z1 − z2|) if η > η∗
c
6

log (|z1 − z̄1||z2 − z̄2|) + 2 log g if η < η∗
, (3.7)

where η∗ = 1
1+g12/c is the value of the conformal cross ratio at which the transition between

HRT surfaces occur. Let us note that with the simple choice g = 1 (i.e., log g = 0 and a
tensionless ETW brane), the latter simplifies to η∗ = 1/2. Equivalently, the G(η) function
for a holographic BCFT is given by

G(η) = θ(η − η∗) η−c/6 + θ(η∗ − η)
g2

(1− η)c/6
. (3.8)

It is straightforward to verify that G(η → 1) = 1 and G(η → 0) = g2. For simplicity, we
take the case of zero boundary entropy g = 1 (and η∗ = 1/2) in the following. As was
noted in chapter 2, for a general g, the quench to scrambling phase transition gets shifted,
while the Page transition remains unaffected.

The von Neumann entropies in eqs. (3.5) and (3.7) correspond to intervals of the vacuum
of the BCFT. To find the von Neumann entropies of the CFT matter in our black hole
equilibration model, we simply have to include the effect of the local Weyl transformation
in eq. (3.3). Under a Weyl transformation gµν → Ω−2gµν , the transformation of twist
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operators induces the following transformation on entropy:

SΩ−2g =Sg −
c

6

∑
endpoints

log Ω(endpoint). (3.9)

The above transformation may be interpreted as resulting from the rescaling of UV cutoffs
with respect to which the entropy is defined.

3.1.2 Jackiw-Teitelboim gravity

The brane perspective of the AEM4Z model – see figure 1.2b – describes the system as
a black hole in two-dimensional JT theory coupled to holographic conformal matter that
is connected to a bath with a joining quench, and allowed to evaporate. We refer the
reader to chapter 2 for a more detailed discussion of this description. In this subsection,
we summarize the essential parts of our analysis.

The dynamics of the black hole and CFT matter are governed by the action

I =
1

16πGN

[∫
M
d2x
√
−g φ

(
R +

2

L2
AdS

)
+ 2

∫
∂M

φbK

]
+ Itop + ICFT , (3.10)

where

Itop =
φ0

16πGN

[∫
M
d2x
√
−g R + 2

∫
∂M

K

]
(3.11)

is a topological term, which provides a large constant contribution S0 = φ0

4GN
to the entropy

of the black hole. The last term in eq. (3.10) is the action of the holographic CFT matter
to which JT gravity is coupled.

The dilaton equation of motion imposes the geometry to be locally AdS2 with radius
LAdS, as described by the metric in eq. (3.1). The metric equations of motion give the
coupling of the dilaton to the CFT stress tensor

2∂x+∂x−φ+
4φ

(x+ − x−)2
= 16πGN〈Tx+x−〉 ,

−∂x
+ ((x+ − x−)2∂x+φ)

(x+ − x−)2
= 8πGN〈Tx+x+〉 ,

−∂x
− ((x+ − x−)2∂x−φ)

(x+ − x−)2
= 8πGN〈Tx−x−〉 .

(3.12)
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Before the quench, the CFT matter is in the vacuum of the generator of t translations
(see eq. (3.1)) i.e., 〈Tx+x+〉 = 〈Tx−x−〉 = 〈Tx+x−〉 = 0,4 however, this can also be seen as a
TFD state for the generator of u translations (see eq. (3.2)). Here we have continued the
y coordinates into a Rindler patch of AdS2 with

x± =
1

πT0

tanh
(
πT0y

±) . (3.13)

The dilaton profile is given by

φ = 2φ̄r
1− (πT0)2 x+x−

x+ − x−
= 2φ̄rπT0 coth

(
πT0

(
y+ − y−

))
. (3.14)

After the quench, the dilaton receives a contribution from the back-reaction of the matter
stress tensor

φ = φ̄r
2− 2 (πT1)2 x+x− + kI0

x+ − x−
, (3.15)

where

I0 = −24π

c

∫ x−

0

dt (x+ − t)(x− − t) 〈Tx−x−(t)〉 , (3.16)

accounts for the matter back-reaction and k = cGN

3φ̄r
controls the strength of the back-

reaction, which we take to be very small. The dilaton profile in eqs. (3.14) and (3.15) give
the leading contribution to the generalized entanglement entropy. The details of the dilaton
profile after the quench in eq. (3.15) and the resulting generalized entropy are calculated
in section 3.1.3.

3.1.3 Coupling to a thermal bath

The setup which we wish to consider is very similar to the one studied in chapter 2: a
two-sided AdS2 black hole prepared at some temperature T0 coupled by a joining quench
to a bath consisting of a CFT on a half-line. Again, the key difference will be that our bath
will be at some finite temperature Tb, rather than zero temperature as in chapter 2. The
corresponding Penrose diagram is shown in figure 3.2. Up until an initial time, we imagine

4In principle, we should have one non-zero component 〈Tx+x−〉 = c
12π(x+−x−)2 due to the trace anomaly.

But this extra term can be absorbed by shifting the value of the dilaton field as φ̃ = φ− cGN

3 – see discussion
in [59, 60]. So we simply ignore the trace anomaly in the following.
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ỹ± = ũ ± σ̃

t∞

x± = ± 1
πT0

Ⅰ Ⅱ

Ⅲ Ⅳ

y −
= ∞

y +−
y −

=
0

y+
= ∞

u = 0

x+

x−

QES

New horizon

Shock waveQES

Gravitational Region Bath Region Purifying Region

Bifurcation 

surface

QML QMR

Figure 3.2: The Penrose diagram for the AdS2 black hole coupled with a thermal bath and
its purification in flat spacetime at time u = 0. The (thick) pink lines are the shock waves
propagating into the gravitating and bath regions, which are generated by this joining
quench. The bifurcation surface of the initial equilibrium black hole is indicated by the red
dot. The new horizon is indicated by the black dashed line, i.e.,y+ = ∞. Note that only
the blue and red shaded regions are covered by the y±, ỹ± coordinates, respectively. The
evolution of quantum extremal surface in three phases is presented by the corresponding
colored curves, as indicated in figure 3.1.
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two decoupled systems. Firstly, we have the AdS2 black hole solution5 of JT gravity with
the metric and dilaton profile in eqs. (3.1) and (3.14), respectively. This gravitating region
also supports the same two-dimensional CFT as appears in the bath region. The right side
of this black hole will have a boundary given by an IR cutoff introduced by the JT boundary
particle. Additionally, we have a separate bath system supporting an identical CFT2 (but

in a different state), prepared on a half-line σ = y−−y+

2
> −ε on the flat spacetime (3.2).

The boundaries in the two systems initially impose reflecting boundary conditions. But,
at some initial time u = t = 0, we perform a joining quench. This is done by identifying
σ = −ε in the bath with the AdS2 IR cutoff surface, allowing CFT matter to flow freely
across the now transparent division between the AdS2 and bath systems. The details of
this gluing are specified by the trajectory t = f(u) – that is, we identify the time parameter
of the AdS2 boundary with the time coordinate of the bath. Further demanding that the
induced metrics along the AdS2 and bath boundaries match to leading order in ε, we have

x± = f(y±) (3.17)

along the gluing. For convenience, we shall further extend the above equality to hold
everywhere, so that we may alternatively describe patches of AdS2 and the bath using
either x± or y± coordinates. Later in this section, we will determine the trajectory t = f(u)
of the JT boundary particle by tracking the exchange of energy between the AdS2 and bath
systems.

While we have described the physical evolution of the system above, it is practically
useful also to consider a Euclidean preparation of the CFT state at u = t = 0. Thus, we
imagine preparing the CFT in a Hartle-Hawking state on the JT black hole with a path
integral over Euclidean AdS2 (with an appropriate dilaton profile). Similarly, we prepare
the CFT in the bath (and the purifying copy) in a thermofield state with a path integral on
Euclidean half-spaces. (The details will be elaborated below.) Both systems have reflecting
boundary conditions, except in an infinitesimal neighborhood of iu = it = 0, where the two
spacetimes are joined. The size of this neighborhood provides a regulator for the shock en-
ergy ES produced by the joining quench — recall that removing the vacuum entanglement
along an entangling surface (in this case, the point at the AdS-bath boundary) produces
an infinite amount of energy. This construction produces the CFT state at u = t = 0,
from which analytic continuation provides the correct Lorentzian evolution according to the
joined Hamiltonian. We note that this joined evolution, obtained by analytic continuation,
does not match the physical decoupled evolution of the AdS and bath systems to the past

5Note that an appropriate choice of coordinates, e.g., those spanning the trajectory of the JT boundary
particle, furnishes a pure AdS2 with Rindler horizons — we are treating the AdS2 spacetime as a black
hole in the usual sense for JT gravity [121, 147, 120].
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of the point of the joining quench. In particular, we expect the time-reversal symmetry of
the Euclidean path integral to carry over to Lorentzian time upon analytic continuation;
in contrast, the physical Lorentzian evolution is manifestly not time-reversal symmetric
due to the change in boundary conditions at the quench. However, results obtained by
analytic continuation will be adequate for our purposes as we are primarily interested in
the Lorentzian physics beyond the past light-cone of the quench point where the AdS2 and
bath boundaries are joined.

Our point of departure from chapter 2 lies with the generalization to thermal baths
prepared at finite temperature. To put the bath at a finite temperature Tb, we take the
Euclidean y coordinates for the bath and identify y ∼ y+ i

Tb
.6 We still take the bath to be

the half-space y+ȳ
2
≤ ε. As expected for a thermal state, this results in a non-zero stress

tensor expectation value in y coordinates. Although the x coordinates of AdS2 are stitched
to the y coordinates of the bath (i.e., x = f(y)), it will nonetheless be convenient in the
following to introduce a conformal transformation after which the stress tensor becomes
trivial. This can be achieved by transforming the thermal half-cylinder, with coordinates
y, to the left half-plane,7 with coordinates Y , via

Y =
1

πTb

tanh(πTby). (3.18)

This is simply the composition of an exponential map y′ = e2πTby taking the thermal half-
cylinder to a unit disk, and a Mobius map Y = 1

πTb

y′−1
y′+1

pushing a point on the boundary
of the disk to ∞.

It will be useful, e.g., to make use of the entropy formula (3.9), to write down another
map that maps the joint system of AdS, with Poincare coordinates x, and the bath, with
Euclidean coordinates y or equivalently the coordinates Y found above, to the upper half

6Note that this identification makes Tb the temperature associated with the unit time-like vector in

the geometry dydȳ, as opposed to the physical geometry
L2

AdSdydȳ
ε2 . In the doubly holographic language

of Figure 1.2c, the former is the CFT metric of the asymptotic boundary of AdS3 while the latter is the
induced metric on a cutoff surface which becomes the asymptotic boundary in the ε→ 0 limit. Similarly,

in (3.13), T0 describes a temperature with respect to the parametric time u = y++y−

2 of the boundary
particle, which does not correspond to a unit vector in the AdS2 geometry (3.1).

7 Strictly speaking, we should take the bath to be the half-space y+ȳ
2 ≤ ε and (3.18) would map this

region to the plane minus a large disk in the right half-plane. Similarly, Euclidean preparation of the
AdS2 system, in the x, x̄ coordinates analytically continued from (3.13), does not occur on a full Euclidean
Poincaré AdS2, but rather on a large disk-like subregion. Note that the stress tensor still vanishes in these
subregions of the dY dȲ and 2dxdx̄

x+x̄ geometries, since a flat disk (or its complement) is related to a flat

half-plane by a Mobius transformation. (The rescaling of dxdx̄ by the Poincaré Weyl factor 2
x+x̄ does not

introduce an extra anomalous contribution to the stress tensor.)
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plane, with coordinates z, z̄. Just prior to coupling the AdS and bath systems, the AdS
system is in the Hartle-Hawking state with vanishing stress tensor in x coordinates. Mean-
while, by construction, the stress tensor of the bath vanishes in the Y coordinates. Finally,
the stress tensor in the half-plane with coordinates z must also vanish. By demanding that
the conformal anomalies of the map from x and Y to z vanish respectively in AdS and
the bath, together with boundary conditions, fixes this map. Following [11], we choose
boundary conditions such that the AdS2 space is mapped to the region (0, iz0) and the
bath to (iz0, i∞). The map is piecewise-Mobius:

z =

{
−iz2

0

x−iz0 x > 0 ,

z0 − iY x < 0 .
(3.19)

The discontinuity at z = z0 produces the shock wave contributions to the stress tensor
components 〈Txx〉 = ES δ(x) and 〈Tx̄x̄〉 = ES δ(x̄), with

ES '
c

12π(−iz0)
. (3.20)

In the limit ES →∞ (i.e., −iz0 → 0), the map (3.19) becomes

z =

{
(12π
c
ES)−2 i

x
x > 0 ,

−iY x < 0 .
(3.21)

The next step is to determine f by demanding the conservation of energy between the
AdS and bath systems [147, 11]:

∂uE(u) = f ′(u)2(Tx−x− − Tx+x+). (3.22)

From the conformal anomaly associated with the Weyl transformation (3.21), i.e.,

〈Txx〉 =

(
dz

dx

)2

〈Tzz〉 −
c

24π
{z, x} , (3.23)

we can find that the stress tensor in the AdS region satisfies8

〈Tx±x±(x±)〉AdS =ES δ(x
±)− c

24π
{Y ±, x±}Θ

(
∓x±

)
=ES δ(x

±)− c

24π
Θ
(
∓x±

) [
{y±, x±} − 2

(
πTb

f ′(y±)

)2
]
,

(3.24)

8This result does not apply in the causal past of the junction point. Further, note that the Schwarzian

is defined by {f(y), y} ≡ f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

.
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where we have used the Schwarzian composition rule

{Y, x} ={y, x}+

(
dy

dx

)2

{Y, y}. (3.25)

For completeness, from eq. (3.21), we also write the stress tensor in the bath region:

〈Ty±y±(y±)〉bath =ES δ(y
±)− c

24π

[
Θ
(
±y±

)
{x±, y±} −Θ

(
∓y±

)
2(πTb)2

]
. (3.26)

As mentioned below eq. (3.19), the δ-function contributions in eqs. (3.24) and (3.26) may
be interpreted as the positive-energy shockwaves produced by the quench. The Schwarzian
terms have a similar simple interpretation: Tx−x− ∼ − c

24π
{y−, x−} < 0 describes a negative

energy flux from the bath experienced by the black hole, while Ty+y+ ∼ − c
24π
{x+, y+} > 0

describes a positive energy flux from the black hole experienced by the bath. Considering
for simplicity the Tb = 0 case, note that the quanta described by these fluxes are the
result of vacuum fluctuations in their native geometries. In particular, on the initial time
slice, these quanta register as vanishing stress-energy, which is to be expected in the Hartle-
Hawking vacuum of AdS2 and the flat half-space vacuum. It is only when these quanta cross
over the AdS2-bath interface that they register as non-vanishing stress energy. Finally, in
the case of nonvanishing bath temperature Tb > 0, the last terms in eqs. (3.24) and (3.26)
can be interpreted as the contribution to the stress-energy of the bath’s thermal radiation.

To determine the f function, we next note that the ADM energy of the AdS2 JT system

E(u) =− φ̄r
8πGN

{f(u), u}. (3.27)

can also be expressed in terms of the Schwarzian of f . We have, from solving eq. (3.22),
the Schwarzian equation

{f(u), u} = −2π2
[
T 2

b + (T 2
1 − T 2

b )e−ku
]
, with k ≡ cGN

3φ̄r
� 1 , (3.28)

where once again T1 is the temperature of the black hole after the initial shock of energy
ES falls in, so that ES ≡ φrπ

4GN
(T 2

1 − T 2
0 ).

From the initial conditions f(0) = 0, f ′(0) = 1, f ′′(0) = 0, we can solve this differential
equation to obtain the map between y and x:9

f(u, Tb) =
2

ka

Iν(a)Kν(ae
−ku/2)−Kν(a) Iν(ae

−ku/2)

I ′ν(a)Kν(ae−ku/2)−K ′ν(a) Iν(ae−ku/2)
(3.29)

9We note that the same differential equation appears in the analysis of [70], although differences arise
since their work involves different boundary conditions for f(u).
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where

a =
2π

k

√
T 2

1 − T 2
b and ν =

2πTb

k
. (3.30)

The above function is also well-defined and always real for complex a, i.e., T1 < Tb.

Given the map (3.21) and the function f , we may compute the von Neumann entropy
of various intervals in the AdS-bath system by applying the transformation rule (3.9) to
the formulas (3.5) or (3.6) for entropy of intervals in a half-plane.

First, we divide the spacetime of interest into four regions according to

x± ∈


I post-shock in AdS , x+ ≥ x− ≥ 0 ,

II post-shock in bath , x− ≥ x+ ≥ 0 ,

III pre-shock in AdS , x+ ≥ 0 ≥ x− ,

IV pre-shock in bath , x− ≥ 0 ≥ x+ .

(3.31)

Applying the entropy transformation rule (3.9) to eq. (3.5) with these Weyl factors and
the form (3.21) of the map, we obtain the following formulas for the von Neumann entropy
computed with a single twist operator at x±:

S1pt(x
±) = log g +

c

6
log



24ES
cTb

x+ sinh(πTby
−)
√
f ′(y−)

x+−x− , x± ∈ I ,
12ES
cεTb

x+ sinh(πTby
−)√

f ′(y+)
, x± ∈ II ,

2 , x± ∈ III ,
sinh[πTb(y−−y+)]

πεTb
, x± ∈ IV .

(3.32)

Note that in the pre-shock cases, we recover the expected entropy formulas in AdS and a
thermal half-line. In particular, if we take y−−y+

2
→ σIR for some IR cutoff σIR, we get the

entropy of the whole thermal half-line:

S 1
2

-line = log g +
c

6

[
2πTbσIR + log

(
1

2πεTb

)]
. (3.33)

Of course, these three terms are interpreted as: the boundary entropy, the thermal entropy
of the CFT at temperature Tb, and the log divergent contribution associated with the
endpoint of the interval.
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We obtain entropy formulas derived from two-point function by transforming eq. (3.6):

S2pt

(
x±1 ∈ II, x±2

)
= logG(η) +

c

6
log



2
πεTb

sinh[πTb(y−2 −y
−
1 )](x+

1 −x
+
2 )

x+
2 −x

−
2

√
f ′(y−2 )

f ′(y+
1 )
, x±2 ∈ I ,

1
πε2Tb

− sinh[πTb(y−1 −y
−
2 )](x+

1 −x
+
2 )√

f ′(y+
1 )f ′(y+

2 )
, x±2 ∈ II ,

24ES
cεTb

sinh(πTby
−
1 )x+

1 x
−
2 (x+

1 −x
+
2 )

x+
2 (x+

1 −x
−
2 )
√
f ′(y+

1 )
, x±2 ∈ III ,

12πES
cε2

−x+
1 Y

+
2 (Y −2 −Y

−
1 )η√

f ′(y+
1 )

× cosh(πTby
−
1 ) cosh(πTby

+
2 ) cosh(πTby

−
2 ) ,

x±2 ∈ IV ,

(3.34)

where the cross-ratio is determined by

η(x±1 ∈ II, x±2 ) =


Y −1 (Y −2 −Y

+
2 )

Y −2 (Y −1 −Y
+
2 )
, x±2 ∈ IV ,

x+
1 (x+

2 −x
−
2 )

x+
2 (x+

1 −x
−
2 )
, x±2 ∈ III ,

1 , x±2 ∈ I, II .

(3.35)

(3.36)

Note that this agrees with eq. (3.30) of [11] in the limit when Tb → 0 and the x±1 endpoint is
taken to the AdS-bath boundary. With the holographic formula (3.8) for G, the pre-shock
cases of (3.34) with x±1 ∈ II become10

S2pt =


S1pt(x

±
1 ) + S1pt(x

±
2 ) , if η ≤ η∗

c
6

log

(
24ES
cεTb

(x+
2 −x

+
1 )x−2 sinh(πTby

−
1 )

(x+
2 −x

−
2 )
√
f ′(y+

1 )

)
, if η > η∗, x±2 ∈ III ,

c
6

log

(
12ES
cπε2T 2

b

x+
1 sinh(πTby

+
2 ) sinh[πTb(y−1 −y

−
2 )]√

f ′(y+
1 )

)
, if η > η∗, x±2 ∈ IV .

(3.37)

3.2 Thermal equilibrium

From eq. (3.28), we see that the main effect of a finite temperature Tb > 0 for the bath is
that the black hole does not evaporate completely, but rather equilibriates with the bath.

10The x2 dependence of the bulk entropy is identical to that found for a bath with vanishing temperature,
e.g., see eqs. (2.64) and (2.65). This immediately implies that the position of the quantum extremal surfaces
in the quench and scrambling phases are the same as for the Tb = 0 case.
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That is, it tends towards a stationary black hole with temperature Tb, for which

{f(y), y} =− 2π2T 2
b . (3.38)

Indeed, when T1 = Tb, the black hole does not change at all and instead, after consuming
the shock, the black hole remains a stationary black hole at temperature T1 = Tb. In this
case, f takes same form as for the eternal black hole solution

f(y) =
1

πT1

tanh(πT1y) . (3.39)

Note that, from eq. (3.18), we then have x = Y which agrees with the intuition that the
radiation emitted by the bath mimics the radiation that would have been reflected from
the AdS boundary in the Hartle-Hawking state had the bath not been attached. In this
section we focus on the special case in which the black hole and the bath are in thermal
equilibrium T1 = Tb after the quenching.

For the equilibrium case, the formulas (3.32), (3.34), and (3.37) become simple. More
explicitly, the one-point function (3.32) reduces to

S1pt(x
±) = log g +

c

6
log



24πES
c

x+x−

x+−x− , x± ∈ I ,
12πES
cε

x+x−√
[1−(πT1x+)2][1−(πT1x−)2]

, x± ∈ II ,

2 , x± ∈ III ,
x−−x+

ε
√

[1−(πT1x+)2][1−(πT1x−)2]
, x± ∈ IV .

(3.40)

According to the position of endpoints x1, x2, the entanglement entropy based on two-point
function reads

S2pt (x1, x2) =


S1pt(x

±
1 ) + S1pt(x

±
2 ) , if η ≤ η∗

c
6

log

{
24πES
cε

x−1 x
−
2 (x+

1 −x
+
2 )

(x+
2 −x

−
2 )
√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2]

}
, if η > η∗, x±2 ∈ III,

c
6

log

{
12πES
cε2

x+
1 x

+
2 (x−1 −x

−
2 )√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2][1−(πT1x

+
2 )2][1−(πT1x

−
2 )2]

}
, if η > η∗, x±2 ∈ IV,

(3.41)
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for x±1 ∈ I and also

S2pt = logG(η) +
c

6
log



2
ε

(x+
1 −x

+
2 )(x−2 −x

−
1 )

(x+
2 −x

−
2 )
√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2]

, x±2 ∈ I ,

1
ε2

−(x+
1 −x

+
2 )(x−1 −x

−
2 )√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2][1−(πT1x

+
2 )2][1−(πT1x

−
2 )2]

, x±2 ∈ II ,

24πES
cε

x+
1 x
−
1 x
−
2 (x+

1 −x
+
2 )

x+
2 (x+

1 −x
−
2 )
√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2]

, x±2 ∈ III ,

12πES
cε2

−x+
1 x

+
2 (x−2 −x

−
1 )η√

[1−(πT1x
+
1 )2][1−(πT1x

−
1 )2][1−(πT1x

+
2 )2][1−(πT1x

−
2 )2]

, x±2 ∈ IV ,

(3.42)
when x1 ∈ II. As noted below eq. (3.32), the before-shock single-twist entropy formulas are
the standard ones in AdS and the thermal half-line, which are invariant under translations
in time u = y++y−

2
. For the thermal case at hand, the two-twist formulas, with both twists

inserted to the future of the shock, are also time-translation invariant. This can be made
manifest by writing those cases of (3.42) in y± coordinates:

S2pt

(
x±1 ∈ II

)
=
c

6
log


2 sinh[πT1(y+

2 −y
+
1 )] sinh[πT1(y−1 −y

−
2 )]

πT1ε sinh[πT1(y+
2 −y

−
2 )]

, x±2 ∈ I ,

sinh[πT1(y+
2 −y

+
1 )] sinh[πT1(y−1 −y

−
2 )]

(πT1ε)2 , x±2 ∈ II .
(3.43)

Moreover, the above is also invariant under ‘time-reversal’ u1 − u2 ↔ −(u1 − u2). These
properties will be helpful in finding the late-time QES. Indeed, eq. (3.43) is the same
entropy formula as for an eternally-coupled black hole and bath system, as studied in [62].
For simplicity, we shall take g = 1 and η∗ = 1/2 in the following sections.

In the following sections, we apply the RT formula to the calculation of entropy for
various subregions in the full system consisting of QML, QMR, the thermal bath, and an
auxiliary system purifying the bath. We begin in Section 3.2.1 by considering the entropy
of QML, the bath system, and the purifier, recovering the Page curve, discussed previously
in Section 3.1 and illustrated in figure 3.1 — the corresponding bulk RT surfaces are also
shown in figure 3.3a. Next, in Section 3.2.2, we trace out the majority of the bath, as shown
in figure 3.3b, finding that only a finite bath interval of some minimal length is required
to recover the black hole interior. Finally, in Section 3.2.3, we evaluate the importance of
the bath’s purifier. In particular, we find that if the purifier is completely traced out, as
shown figure 3.3c, the black hole interior can no longer be recovered, regardless of the size
of the bath interval that one can access; at the very least, a finite interval of the purifier is
required, as shown in figures 3.3d and 3.4.
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Figure 3.3: Competing channels computing the generalized entropy of various subsystems
(solid red) and the corresponding bulk RT surfaces (dashed red) and entanglement wedges
(light red). In each case, the R-channel where the black hole interior is recoverable or
reconstructible is shown on the left. On the right, we show the N-channel where the
interior is non-recoverable or non-reconstructible. The corresponding generalized entropies
for these channels are denoted SR and SN, respectively. In the top row (a), we consider
the generalized entropy of QML, the thermal bath, and the bath’s purifier. In row (b), we
keep only a finite interval [σ1, σ2] of the bath. In row (c), we further trace out the purifier.
Finally, in row (d), we include a finite interval [0, σ̃3] of the purifier. Note that in this last
case, we can also vary ũ3, the time slice of the purifier interval, and we find the minimal
σ̃3 depends on ũ3 — see section 3.2.3.
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3.2.1 Semi-infinite interval of the bath

First, we consider the evolution of (generalized) entropy for the subsystem consisting of
QML, a semi-infinite interval of the bath with endpoint x±1 after the shock, and the purifier
of the bath. The corresponding HRT surfaces and the time evolution are illustrated in
figure 3.1, and we shall find three phases for the generalized entropy, corresponding to
different portions of a Page curve. Note that, tracing out the purifier would also produce
an infinite thermal entropy for the semi-infinite bath interval, i.e., the infinite entanglement
entropy between the semi-infinite interval and the purifier.

Initially, in the quench phase, the QES in the gravitating region simply sits at the
bifurcation surface of the original eternal black hole geometry,

x±QES = ± 1

πT0

. (3.44)

The corresponding generalized entropy is obtained by summing the Bekenstein-Hawking
entropy

SBH(T0) =
c(φ0 + 2πT0φr)

12kφr
(3.45)

and the von Neumann entropy (3.41) evaluated holographically with endpoints x±1 and
x±QES, which picks out the η < η∗ = 1/2 channel:

Sgen =SBH(T0) + S1pt(AdS) + S1pt(x
±
1 ) , (3.46)

with S1pt(AdS) and S1pt(x
±
1 ) given by eq. (3.32). Note that, in the η < η∗ channel, the

von Neumann entropy (3.41) (and more generally eq. (3.37)) has no dependence on x±2 ;
this justifies a posteriori choosing the QES to simply be the classical one at the bifurcation
point. This was also the case in the zero-temperature bath case in chapter 2.

Transitioning to the scrambling phase, the QES jumps from the bifurcation point to
another saddle of generalized entropy, which is still located before the shock but now with
η > η∗ = 1/2. Since the x±2 dependence of eq. (3.41) (and more generally eq. (3.37)) in
this channel is also identical to the zero temperature case in chapter 2, we obtain the same
QES:

x+
QES =

1

πT0

[
1− k

πT0

+O

(
k2

T 2
0

)]
(3.47)

x−QES =
1

πT0

[
−1 +

k

πT0

1 + πT0x
+
1

1− πT0x
+
1

+O

(
k2

T 2
0

)]
. (3.48)
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Evaluating eq. (3.41) for this QES, one finds

Sgen − SBH(T0) ∼ c

6
log

{
12ES
cεT0

x−1 (1− πT0x
+
1 )√

[1− (πT1x
+
1 )2][1− (πT1x

−
1 )2]

}
. (3.49)

Comparing eq. (3.49) with the η < η∗ channel of eq. (3.41), we find that the quench-to-
scrambling transition occurs at the same point as in the zero-temperature bath case:

x+
1 ∼

1

3πT0

. (3.50)

Note that this is essentially the instant at which the bifurcation point (3.44) reaches η =

η∗ = 1/2. At later times, eq. (3.49) exhibits a growth linear in the physical time u =
y+
1 +y−1

2
:

Sgen − SBH(T0) ∼ c

6

{
log

[
3ES(T1 − T0)

cεπT0T 2
1

]
+ 2πT1u

}
(3.51)

with

x±1 =
1

πT1

[
1 +O

(
k

T1

)]
. (3.52)

We note that this growth has a rate double that of the zero-temperature bath case. Phys-
ically, this can be explained by the fact that, in addition to absorbing radiation from the
AdS black hole, the semi-infinite interval of the bath is also sending radiation into the
black hole which itself (and the purifier of the bath) purifies.

Finally, there is a transition to the late-time phase, with the QES jumping to a saddle
point after the shock in AdS. As noted around eq. (3.43), the relevant post-shock two-point
entropy formula is the same as if the black hole and bath were eternally coupled. Since
the after-shock AdS geometry is also the same as for an eternal black hole, the late-time
generalized entropy is identical to the eternally coupled case studied in [62]. This matching
with the eternally-coupled case suggests that, by the Page time, the black hole and bath
have reached equilibrium.

As in the eternally-coupled case, time translation invariance (in u) simplifies the deter-

mination of the QES. In particular, the QES must be on the same time-slice as
y+
1 +y−1

2
= u1:

uQES =u1. (3.53)

Hence, it remains only to determine the spatial location of the QES. Substituting eq. (3.53)
into the entropy formula (3.43) with y±1 = u∓ σ1 gives

Sgen =
c

12k

[
φ0

φr
− 2πT1 coth(2πT1σQES)

]
+
c

6
log

[
2 sinh2[πT1(σ1 − σQES)]

πT1ε sinh(−2πT1σQES)

]
, (3.54)
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in agreement with eq. (19) in [62]. By setting the σQES-derivative of eq. (3.54) to zero, we
find

−σQES = σ1 +
1

2πT1

log

(
2πT1

k

)
+

1

T1

O

(
k

T1

)
, (3.55)

reproducing eq. (21) in [62]. Hence the QES sits outside of the black hole horizon.

As an aside, time translation invariance permits a natural measure of proper distance
between the QES and the horizon along a constant time slice. Using eq. (3.55), we have
in units of LAdS: ∫ 1

πT1

tanh(−πT1σQES)

πT1

ds

s
=
ke−2πT1σ1

πT1

+O

[(
k

T1

)2
]
, (3.56)

from which we see that the QES is an order k/T1 proper distance outside the horizon.11

Using the location of the QES given by eqs. (3.53) and (3.55), we can evaluate the
generalized entropy of the late time phase. Again, by similarity to the eternally coupled
case, this is a constant:

Sgen (T1, σ1) ∼ SBH(T1) +
c

6

[
log

(
1

πT1ε

)
+ 2πT1σ1

]
, (3.57)

Interestingly, the above von Neumann part of the generalized entropy matches the en-
tropy obtained from placing a twist operator at a large separation σ1 from the boundary
of a thermal half-line (see eq. (3.33)) plus S1pt(AdS). Comparing with the generalized
entropy given by eq. (3.51) for the scrambling phase, we see that the transition between
the scrambling and late time phases occurs when y+

1 reaches a Page time of

y+
Page ≈

1

2k

(
1− T0

T1

)
− 1

2πT1

log

[
3ES(T1 − T0)

cT0T1

]
. (3.58)

For later use, we note that more exact formulas may be obtained in the late time
phase in the simple case where x±1 is placed on the boundary of AdS2, i.e., we consider
the entanglement wedge of QML plus the entire bath and its purifier. As in chapter 2, we
can ignore the correction from the position of the cut-off surface and set x+

1 = x−1 = t =

11By measuring the distance (3.56) between the QES and the horizon along a constant Killing time slice,
we have implicitly extended the after-shock geometry to before the shock. The bifurcation surface of the
final stationary black hole does not actually exist in the physical spacetime.
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f(u) = 1
πT1

tanh (πT1u). With this simplification, one can exactly solve, in x± coordinates,
the equations

k
(
x+ − x−

)2
(

1

x+ − x+
1

− 1

x+ − x−

)
= 1−

(
πT1x

−) 2 ,

k
(
x+ − x−

)2
(

1

x+ − x−
− 1

x−1 − x−

)
=
(
πT1x

+
)

2 − 1 ,

(3.59)

obtained from minimization of the late-time generalized entropy. These admit two trivial
solutions x±QES = ± 1

πT1
and two non-trivial ones. Because of the constraints x+

QES > x−QES > 0,
the only relevant solution for the position of QES reads

x+
QES(t) =

√
k2 + π2T 2

1 ((πT1t)
2 − 1) + k ((πT1t)

2 + 1)

π2T 2
1 (π2T 2

1 t
2 + 2kt− 1)

,

x−QES(t) =

√
k2 + π2T 2

1 ((πT1t)
2 − 1) + k ((πT1t)

2 + 1)

π2T 2
1 (−π2T 2

1 t
2 + 2kt+ 1)

.

(3.60)

As a consistency check, we can use the time map t = 1
πT1

tanh(πT1u) and find our solution
(3.60) for QES satisfies eq. (3.53):

1

2

(
y+

QES + y−QES

)
≡ 1

2πT1

arctanh
(
πT1x

+
QES

)
+

1

2πT1

arctanh
(
πT1x

−
QES

)
= u . (3.61)

Noting that the above solution of QES is not always physical, we need to impose the
restrictions on parameters k, t as

π2T 2
1 t

2 + 2kt− 1 > 0 ,√
k2 + π2T 2

1

(
(πT1t)

2 − 1
)

+ k
(
(πT1t)

2 + 1
)
> 0 ,

(3.62)

which implies t is very close to t∞, i.e., late time phase.12 Moreover, it is straightforward
to show x±QES(t∞) = t∞ = 1

πT1
and the simple monotonic behavior due to the fact

dx+
QES(t)

dt
=

2k

π2T 2
1 t
(
t
√
k2 + π2T 2

1 + 2
)

+
√
k2 + π2T 2

1 + k(1− t2π2T 2
1 )

> 0 , (3.63)

12This is why the small k expansion does not work for x−QES at late time phase because we have another
much smaller value (1 − πT1t) except for k. For example, 1 − tanh(πT1u)|πT1u=10 ≈ 4 × 10−35 does not
depend on k and is much smaller than k at late time phase.
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from which we verify that the QES is located outside the horizon, as described around
eq. (3.56). (Note that any apparent spatial motion of the QES is purely an artifact of the
choice of coordinates here – due to time translation invariance in u, the QES is spatially
stationary in σ = y−−y+

2
, as indicated in eq. (3.55).) So this is the first difference with the

case under zero temperature bath where the QES is located inside the horizon. With the
exact solution, one can obtain the generalized entropy

Sgen,late(T1) =
φ̄

2GN

(√
k2 + π2T 2

1 − k log

[
ε

(
k +

√
k2 + π2T 2

1

)])
, (3.64)

where the first term is the thermal entropy of a one-sided black hole with temperature
T1 and the second term describes the von Neumann entropy of bulk matter with the
same temperature. It is obvious that the above generalized entropy is exactly constant,
indicating this is a thermal equilibrium state.

3.2.2 Finite interval of the bath

In this section, we consider the question of whether the interior of the black hole can be
recovered by a finite-sized interval in the bath, together with QML and the bath’s purifier.
We shall write the endpoints of the finite bath interval as y±1 = u ∓ σ1 and y±2 = u ∓ σ2

where σ1, σ2 ≥ −ε.
To begin, we consider the case where we have access to the entire purifier for the thermal

bath — this is illustrated in Figure 3.3a. (In Section 3.2.3, we shall see that the purifier
is crucial for recovering the black hole interior.) To stand a chance of recovering the black
hole interior, we take y+

1 ≥ y+
Page, with y+

Page given in eq. (3.58). We also take y±2 to be in
the bath to the future of the shock, as we will see that this is sufficient to recover the black
hole interior.

The two competing channels of generalized entropy in the holographic limit, corre-
sponding to recoverability and non-recoverability of the black hole interior, are13

SR =Sgen
QES−1 + S2−IR, SN =Sgen

QES′′ + S1−2 + S 1
2

-line, (3.65)

where Sgen
i , Si denote generalized and von Neumann entropies calculated with a single

twist operator at x±i , while Sgen
i−j , Si−j denote generalized and von Neumann entropies

13There is in fact another channel where the black hole interior is recoverable, Sgen
QES−1 + S2 + S 1

2 -line,

but comparison of this with SN in eq. (3.65) reduces to a problem where the purifier of the bath has been
traced out — we deal with this case later in this section.
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of the interval with endpoints x±i , x
±
j . Further, subscripts QES, QES′′ and IR denote

the late-time QES associated to y±1 , the (original) bifurcation point, and the IR point at

σ = y−−y+

2
= σIR, respectively. Recall that the entropy S 1

2
-line of the thermal half-line is

given in eq. (3.33). The entropy S2−IR, like S 1
2

-line, is IR divergent as σIR → ∞; below,
these divergences cancel in the differences of the entropies in the distinct channels.

To determine whether the black hole interior is recoverable, we ask whether SR < SN,
or equivalently,

0 > SR − SN

≈ c

6

{
π(T1 − T0)

k
+ 2πT1σ1

+ log

[
3ES
cπT 2

1

x+
2 (1− πT1x

−
2 )
√

[1− (πT1x
+
1 )2][1− (πT1x

−
1 )2]

(x−2 − x−1 )(x+
1 − x+

2 )

]}
,

(3.66)

where we have used eq. (3.57) to approximate Sgen
QES−1, eq. (3.46) for the one-point general-

ized entropy at the bifurcation point, and eq. (3.33) for the entropy of the thermal half-line.
The remaining entropies were obtained from the appropriate cases in eqs. (3.42) and (3.41).
(Recall we are taking here y±2 to the future of the shock.) Since we have y±1 , y

−
2 � 1

πT1
, we

may use the following approximations,

x±1 ≈
1

πT1

(
1− 2e−2πT1y

±
1

)
, x−2 ≈

1

πT1

(
1− 2e−2πT1y

−
2

)
. (3.67)

In this limit of large y±1 , y
−
2 � 1

πT1
, the RHS of eq. (3.66) becomes

SR − SN ≈
c

6

{
π(T1 − T0)

k
− 4πT1σ2 + log

[
6ES
cT1

1

(e−2πT1σ1 − e−2πT1σ2)2

]}
. (3.68)

Hence, the recoverability of the black hole interior is equivalent to σ2 − σ1 > ∆turn, where

∆turn ≈
1

4πT1

[
π(T1 − T0)

k
+ log

(
6ES
cT1

)]
. (3.69)

Comparing terms in eqs. (3.58) and (3.69) leading order in k, note that ∆turn ≈ y+
Page/2.

3.2.3 Importance of the bath’s purifier

As hinted earlier, the purifier of the bath is crucial to the reconstruction of the black hole
interior. Let us briefly attempt a similar calculation to the above, now additionally tracing
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out this purifier. The generalized entropy for QML and an interval of the bath from y±1 to
y±2 then has the competing channels – see figure 3.3

SR =Sgen
QES−1 + S2, SN =Sgen

QES′′ + S1−2, (3.70)

as illustrated in Figure 3.3c. Recall that the R-channel corresponds to the channel in
which the interior of the black hole is recoverable, while in the N-channel the interior is
non-recoverable. Now, we take y±2 to the past of the shock, since we shall momentarily

show that, even as the interval is extended by taking σ2 =
y−2 −y

+
2

2
arbitrarily large, the

N-channel with entropy SN will nonetheless remain favorable.14 Using the formulas (3.57)
for Sgen

QES−1, (3.46) for Sgen
QES′′ , (3.32) for S2, and (3.34) for S1−2, we have

SR − SN ≈
c

6

{
π(T1 − T0)

k
+ 2πT1σ1

+ log

[
c

24π2T1ES

(x+
2 − x−2 )

√
[1− (πT1x

+
1 )2][1− (πT1x

−
1 )2]

x+
1 x

+
2 (x−2 − x−1 )

]}
.

(3.71)

Using again the y±1 , y
−
2 � 1

πT1
approximations (3.67), we find

SR − SN ≈
c

6

{
π(T1 − T0)

k
+ 2πT1σ1 + log

(
cT1

12πES

)

+ log

[
x+

2 − x−2
T1x

+
1 x

+
2 (e−2πT1σ1 − e−2πT1σ2)

]}
. (3.72)

On the RHS, the first three terms sum to a large positive number (note that the third term,
though negative, scales like the logarithm of the first term). Moreover, the logarithm of
the last term is bounded from below by log π. It follows that SR > SN. We thus conclude
that when the purifier of the bath is traced out, no matter how large an interval of the
bath one has access to, the N-channel is favorable and the black hole interior cannot be
recovered.

14If one attempts a similar exercise with y±2 after the shock, then naively one finds with our entropy
formulas that when this endpoint is placed at O(c/ES) away from the shock, it is possible for Sgen

rec <
Sgen

non-rec. However, this is an artifact of the fact that our setup is incapable of probing distances of such
small scales. Since extending the interval of the bath can only increase the entanglement wedge, the
argument presented in the main text precludes the possibility of the black hole interior being recovered
from shorter intervals which stop to the future of the shock.
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Figure 3.4: The bath and purifier subsystems. The central panel shows a Penrose diagram
of various coordinate patches of the bath and purifier subsystems. The left panel shows two
examples, sharing the same y−2 , of an interval [σ1, σ2] of the bath system after the Page time:
the shorter blue interval is just barely above the critical length ∆turn needed to recover
the black hole interior; the green interval is much longer. Red wavy lines show thermal
radiation leaving the bath prior to y− = y−2 . The right panel shows the corresponding
intervals [0, σ̃3] needed in conjunction with the bath intervals (plus QML) to recover the
black hole interior. The phase boundaries of σ̃3 for recoverability is shown in light blue
and green. The dashed wavy lines show the thermal quanta of the purifier that are most
entangled with the radiation marked in the left panel.
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A natural follow-up question is whether the black hole interior can be recovered when
one can only access a finite portion of the bath’s purifier at various times. We shall take the
joint system of the bath and its purifier to be in a thermofield double state. Furthermore,
we introduce a new set of coordinates ỹ± = ũ± σ̃ for the purifier of the bath, where ũ and
σ̃ are analogous to the u and σ coordinates of the bath. These coordinates for the purifier
are related to the coordinates we have been using thus far by

Y ± =− 1

πT1

coth(πT1ỹ
±). (3.73)

Note that while πT1Y
± ∈ (−1, 1) provides a coordinate chart that includes the bath, the

coordinate chart of (πT1Y
±)−1 ∈ (−1, 1) includes the purifier of the bath. Moreover, we

have

πT1ỹ =− πT1y +
iπ

2
, dỹ+dỹ− =dy+dy− (3.74)

so that there is no additional Weyl transformation that must be applied to our entropy
formulas when endpoints are moved from the bath to its purifier. (Specifically, in eqs.
(3.40), (3.42), and (3.41), end-points in the purifier of the bath should be treated as
though they were simply in the bath and to the past of the shock.) The coverage of the
Y, y, ỹ coordinates in the bath and purifier subsystems are summarized in the middle panel
of Figure 3.4.

We may then repeat the analysis of Section 3.2.2, now pushing the IR endpoint to a
point ỹ±3 in the bath’s purifier. That is, we consider whether the black hole interior can be
recovered from QML, an interval of the bath with endpoints y±1 = u∓ σ1 and y±2 = u∓ σ2,
and an interval of the bath’s purifier stretching from an endpoint ỹ±3 = ũ3 ± σ̃3 to the
boundary σ̃ = 0 — see figure 3.4. In general, we shall find that the size of the purifier
interval required to recover the black hole interior will depend on the time ũ3 at which the
interval is selected.

From Sections 3.2.1 and 3.2.2, we see that, to have a chance of recovering the black
hole interior, we should take y+

1 > y+
Page and σ2 − σ1 > ∆turn with y+

Page and ∆turn given in

eqs. (3.58) and (3.69). For simplicity, we take y±2 to the future of the shock. The relevant
generalized entropies for the R- and N-channels are,

SR =Sgen
QES−1 + S2−3 , SN =Sgen

QES′′ + S1−2 + S3 , (3.75)

as illustrated in Figure 3.3d. Relating to the problem treated in Section 3.2.2, where ỹ±3 is
pushed to the IR, in comparing SR and SN, we have the extra contribution

SR − SN − [SR − SN]σ̃3→+∞ =
c

6
log

[
2πT1x

+
3 (−x−2 + x−3 )

(1− πT1x
−
2 )(x+

3 − x−3 )

]
. (3.76)
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From eq. (3.68), we see that

[SR − SN]σ̃3→+∞ ≈−
2πcT1

3
(σ2 − σ1 −∆turn). (3.77)

Applying the approximation (3.67) for x−2 , we find that the condition SR ≤ SN for the
recoverability of the black hole interior translates to

πT1 − (x−3 )−1 .
πT1

[
1− 2e−4πT1(σ2−σ1−∆turn)

]
− (x+

3 )−1

e2πT1(u−σ2+2σ1+2∆turn)
. (3.78)

The RHS, giving the maximal separation of (x−3 )−1 from past null infinity line (x−)−1 = πT1

of the bath’s purifier, is largest when (x+
3 )−1 sits on the future null infinity line (x+)−1 =

−πT1. Here,

πT1 − (x−3 )−1
∣∣
(x+

3 )−1=−πT1
.

2πT1

[
1− e−4πT1(σ2−σ1−∆turn)

]
e2πT1(u−σ2+2σ1+2∆turn)

. (3.79)

We see that even this is exponentially suppressed (note u − σ2 + 2σ1 + 2∆turn ≥ 2∆turn

with ∆turn given in eq. (3.69)). In contrast, with appropriate σ2 − σ1 > ∆turn, (x+
3 )−1 can

be pushed far from the future null infinity value −πT1; the largest separation is achieved
when (x−3 )−1 sits on past null infinity:

πT1 + (x+
3 )−1

∣∣
(x−3 )−1=πT1

.2πT1

[
1− e−4πT1(σ2−σ1−∆turn)

]
. (3.80)

It is also instructive to consider the condition (3.78) in terms of the spatial interval
length σ̃3 taken in the purifier. As we elaborate below, due to the step-like nature of the
tanh function in f , the constraint (3.78) becomes a piece-wise linear constraint on σ̃3 as a
function of ũ3 with interpolation between the pieces on scales of order πT−1

1 .

Let us consider first the case σ2 − σ1 −∆turn � (4πT1)−1. Then, both eqs. (3.79) and
(3.80) are small so that we are in the regime

πT1 − (x−3 )−1 ≈2πT1e
2πT1ỹ

−
3 ,

(
ỹ−3 � −

1

2πT1

)
, (3.81)

πT1 + (x+
3 )−1 ≈2πT1e

−2πT1ỹ
+
3 ,

(
ỹ+

3 �
1

2πT1

)
. (3.82)

Note that the bounds given by the RHS’s of eqs. (3.79) and (3.80) are complementary
in the following sense: if πT1 − (x−3 )−1 is much smaller than the RHS of eq. (3.79), then
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eq. (3.78) reduces to the constraint that πT1 + (x+
3 )−1 is less than approximately the RHS

of eq. (3.80); on the other hand, if πT1 + (x+
3 )−1 is much smaller than the RHS of eq.

(3.80), then eq. (3.78) reduces to πT1 − x−3 being smaller than approximately the RHS of
eq. (3.79). Considering eqs. (3.81) and (3.82), the interpolation between these two cases
occurs on scales of order (πT1)−1 in ỹ±3 . We thus find a piecewise null phase boundary for
ỹ±3 :

σ̃3 & −
1

2πT1

log[4πT1(σ2 − σ1 −∆turn)] +

{
−ũ3 if ũ3 . −y−2

2

ũ3 + y−2 if ũ3 & −y−2
2

, (3.83)

with interpolation between the pieces occurring on scales of order (πT1)−1 in ũ3. We see
that as σ2 − σ1 approaches the minimum interval length ∆turn of the bath required for
recovery of the black hole interior, σ̃3 diverges logarithmically.

Next, we consider the case where σ2 − σ1 − ∆turn � (4πT1)−1. Now, the RHS of eq.
(3.80) need not be small, opening the possibility for a new regime where

πT1 − (x+
3 )−1 ≈2πT1e

2πT1ỹ
+
3

(
ỹ+

3 � −
1

2πT1

)
(3.84)

but

−ỹ+
3 . σ2 − σ1 −∆turn (3.85)

so that the bound (3.80) is not yet saturated. Inserting eq. (3.84) into eq. (3.78), we
obtain the phase boundary in an intermediate regime between eqs. (3.79) and (3.80). This
phase boundary, at the conclusion of this intermediate regime, i.e., when eq. (3.85) is
saturated, ends deep in the region where eq. (3.84) holds. Finally, plugging eq. (3.84) into
eq. (3.80), we obtain a phase boundary in the complement of eq. (3.85). Altogether, we
find

σ̃3 &


−ũ3 − 2(σ2 − σ1 −∆turn) if ũ3 +

y−2
2
< −(σ2 − σ1 −∆turn)

y−2
2
− (σ2 − σ1 −∆turn) if

∣∣∣ũ3 +
y−2
2

∣∣∣ < σ2 − σ1 −∆turn

ũ3 + y−2 − 2(σ2 − σ1 −∆turn) if ũ3 +
y−2
2
> σ2 − σ1 −∆turn

, (3.86)

with interpolation on the thermal scale.15 We see that the intermediate case gives the
smallest possible region of the purifier needed for reconstruction of the black hole interior.

15Eq. (3.86) can be condensed into

2σ̃3 & |ỹ+
3 |+ |y

−
2 + ỹ−3 |+ y−2 − 4 (σ2 − σ2 −∆turn) , (3.87)

which is similar to the general Tb result in eq. (3.211) with δσ2 → σ2− σ1−∆turn and Tb = Teff = T1. As
noted around eq. (3.211), the assumptions leading to the general result are more constraining.
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For the blue and green bath intervals illustrated in the left panel of figure 3.4, the
approximate phase boundary (3.86) is highlighted respectively in light blue and light green
in the right panel of figure 3.4 and examples of minimal-length purifier intervals are shown
in opaque blue and green. The blue case illustrates the phase boundary given by eq. (3.86)
for a bath interval just large enough for eq. (3.86) to be valid (as opposed to eq. (3.83))
— in this limit, the intermediate piece of eq. (3.86) vanishes. The green case, on the
other hand, has a much larger bath interval. As illustrated in Figure 3.4, eq. (3.86) has
the interpretation of giving the interval of the purifier needed to capture quanta entangled
with out-going thermal bath radiation emitted between times y− = 0 and y− = y−2 . When
the bath interval length σ2 − σ1 is barely a few thermal lengths greater than the critical
value ∆turn (blue case), nearly all of these quanta must be accessible in the purifier. For
much longer bath intervals (green case), fewer purifier quanta are necessary. We shall
comment further on this in Section 3.4.

3.3 Non equilibrium Tb

In the previous section, we analyzed the two-dimensional black hole coupled to a bath
system with temperature Tb = T1, which together formed a system in thermal equilibrium
as soon as the Page time was reached. Compared to the results from the evaporating black
hole with zero temperature in chapter 2, we found qualitatively different behavior in the
evolution of the generalized entropy – and, of course, the role of purification of the bath.
In this section, we consider coupling the black hole with temperature T1 after the shock
is absorbed into a thermal bath with a general temperature Tb. The black hole and bath
evolve to reach an equilibrium where the black hole temperature matches Tb. However, the
black hole will decrease or increase in size (and entropy) depending on whether Tb < T1 or
Tb > T1. The evolution of the (effective) black hole temperature is shown in figure 3.5 for
several cases.

As was explained in section 3.1.3, the Schwarzian equation (3.28) can be solved for
arbitrary bath temperature to find the time-map function f(u) in eq. (3.29) which reduces
to the Tb = 0 result of chapter 2 by taking ν = 0.16 Taking the limit ku → ∞, one can

16We note that for numerical purposes, the following form of the time-map function

f(u, Tb) =
2

k

Iν(a)Kν(ae−
ku
2 )−Kν(a) Iν(ae−

ku
2 )

Iν(ae−
ku
2 ) (aKν−1(a) + νKν(a)) +Kν(ae−

ku
2 ) (aIν−1(a)− νIν(a))

, (3.88)

is easier to deal with than the expression in eq. (3.29). Note that similar expressions appear in [70].
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Figure 3.5: The time dependence of effective temperature of black hole, which simply
parametrizes the dynamical behavior of black hole.

also define the end of the proper time

t∞ =
2

k

Iν(a)

aIν−1(a)− νIν(a)
=

2

ka

Iν(a)

I ′ν(a)
, (3.89)

which is also the final position of the QES, i.e., x±QES|u→∞ = t∞. We now stress some
important facts about the above map function from coordinate time t to proper (physical)
time u. First, the function f(u, Tb) is well defined and real for Tb ≤ T1 and also Tb ≥ T1.
Secondly, it is also invariant under the following rescaling

T1 → αT1 , Tb → αTb , k → αk , u→ u

α
,

φ̄r
GN

→ φ̄r
α2GN

. (3.90)

In other words, the independent dimensionless parameters in the model are

T1LAdS ,
Tb

T1

, ku ,
k

T1

, (3.91)

besides of φr
GN

. We simply take the radius of AdS as the standard scale by choosing LAdS = 1
and all other parameters can be considered to be normalized by T1. From an energetic
point of view, it is clear that Tb = T1 is a critical temperature for the thermal bath, where
the black hole will neither lose nor absorb energy. From the energy flow equation (3.27)
and Schwarzian equation (3.28), we can define an effective temperature

Teff(u;Tb) =
√
T 2

b + (T 2
1 − T 2

b ) e−ku , (3.92)
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which parametrizes the ADM mass of the dynamical black hole at time u by

E(u) =
φ̄rπ

4GN

T 2
eff(u) . (3.93)

Recalling the energy flux (3.24) on the physical boundary x− ≈ t, i.e.,

〈Tx−x−〉 = ES δ(t) +
cπ

12

1

(f ′(u))2

(
T 2

b − T 2
eff(u)

)
, (3.94)

we can explain the above three terms as the contributions from the shock wave, thermal
radiation from the coupled bath system at temperature Tb, and Hawking radiation escaped
from the dynamical black hole. As expected, we can also understand the effective temper-
ature as the measure for the temperature of Hawking radiation at time u. For later use, we
also show the numerical plot for the time evolution of effective temperature with various
Tb in figure 3.5.

For Tb < T1, the black hole loses energy via the absorption of Hawking radiation by the
bath and evaporates to a smaller black hole with lower temperature Tb, which is similar to
the model with Tb = 0 as described in chapter 2. Conversely, a black hole coupled with a
higher temperature bath Tb > T1 absorbs radiation from the bath and approaches another
equilibrium state with temperature Tb when ku � 1. In both cases, for ku → ∞, the
system thermalizes and shows similar qualitative features to the equilibrium case Tb = T1.
In summary, we have the three different dynamical behaviors in the two-dimensional gravity
setup: an evaporating black hole when Tb < T1; a growing black hole when Tb > T1; and
equilibrium when Tb = T1. Note that these outcomes are independent of the temperature
of the original black hole, i.e., T0.

However, diving into the details of the QES and the flow of information, we will see
there are different critical temperatures determining the position of the QES relative to the
final event horizon, as will be explained in section 3.3.1. For this analysis, we approximate
the equations for the generalized entropy and find the approximate solutions for the QES.
Making a small k expansion with fixed ku, one can find the following approximation for
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f(u):17

f(u)

t∞
≈ tanh

(
2π

k

(
T1 − Teff − Tb log

(
T1 + Tb

Tb + Teff

)
+
ku

2
Tb

))
, (3.96)

which reduces to the equilibrium case with f(u) = 1
πT1

tanh (πT1u) after taking Tb = T1.
Hence the above simplified form approximates the map-function f(u) even for Tb ≥ T1.
From the asymptotic expansion in eq. (3.95), one can also obtain the approximation for
the upper bound of physical time

t∞ ≈
1

πT1

+
k

4π2T 4
1

(
T 2

1 − T 2
b

)
+O(k2) . (3.97)

Let us remark that one can further derive several simpler and useful approximations

log

(
t∞ − f(u)

2t∞

)
∼ −4π

k

(
T1 − Teff − Tb log

(
T1 + Tb

Tb + Teff

)
+
ku

2
Tb

)
,

f ′(u) ∼ 2πTeff (t∞ − f(u)) ,

{u, f(u)} = − 1

(f ′(u))2
{f(u), u} ∼ 1

2(t∞ − f(u))2
,

(3.98)

which will be used many times in the following analysis. It is also easy to find that all
the above approximations reduce to the same forms used in chapter 2 after taking Tb = 0.
The above approximations are still complicated due to the appearance of Teff(u, Tb), but
we can further simplify the above results if we focus on times at the order of the Page
time by taking the early-time limit ku � 1 (linear region).18 In the linear regime, the
effective temperature Teff ∼ T1 and we find the following linear approximations

log

(
t∞ − f(u)

2t∞

)
∼ −2πT1u+O

(
ku2
)

log

(
1

f ′(u)

)
∼ 2πT1u− log (4πT1t∞) ,

(3.99)

17In order to do this analytically, we use the series expansions of Bessel functions [148]

Kν(νz) ∼
ν→∞

√
π

2ν

(
e−νη

(1 + z2)1/4
+O(

1

eηνν
)

)
, Iν(νz) ∼

ν→∞

√
1

2πν

(
eνη

(1 + z2)1/4
+O(

eην

ν
)

)
with η =

√
1 + z2 + log

z

1 +
√

1 + z2
.

(3.95)

18Later, we will find that most of our most analytic approximations (at leading order) in the linear
region present linear behaviors in time. One can consider some transition point ku ∼ 1

# as the endpoint
for the linear region.
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where the leading-order contributions are not sensitive to the temperature of the bath Tb

because the black hole does not evaporate very much in this phase. We are also interested
in the late-time region with eku � 1 where we need the following approximations19

log

(
t∞ − f(u)

2t∞

)
∼ 4π

k

(
Tb − T1 + Tb log

(
T1 + Tb

2Tb

)
− ku

2
Tb +

T 2
1 − T 2

b

4Tb

e−ku
)
,

log

(
1

f ′(u)

)
∼ 1

k

(
2πTbku− 4π

(
Tb − T1 + Tb log

(
T1 + Tb

2Tb

)))
− log (4πTbt∞) .

(3.100)

Finally, we note that the coefficient of the linear term changes to 2πTb, which is expected
because the temperature of the black hole at late time (eku � 1) is close to Tb. In addi-
tion to these analytic approximations, we also performed numerical calculations for all the
results as the double-check for these approximations in the following analysis. For conve-
nient comparisons with the results at Tb = 0, all numerical plots are done by choosing the
numerical parameters listed in table 2.1, which are the same as those chosen in chapter 2.

3.3.1 QES and Page curve

In the following section, we first consider the generalized entropy of the subsystem QMR,
which is the same with that of subsystem consisting of QML, the thermal half-line and
another half-line containing the purification. That is, we would like to find the position
of the QES, i.e., x±QES, in the late-time phase when we anchor the endpoint x±1 on the
boundary between AdS and flat spacetime. The generalized entropy reads

Sgen,late(Tb) =
φ̄r

4GN

[
2

1− (πT1)2x+
QESx

−
QES + k

2
I
(
x+

QES, x
−
QES;x

−
QES

)
x+

QES − x−QES

+2k log

(
2

ε

sinh
(
πTb

(
y−1 − y−QES

))
πTb

(x+
QES − x+

1 )

(x+
QES − x−QES)

√
f ′(y−QES)

f ′(y+
1 )

)]
,

(3.101)

with the integral term defined as

I(x+, x−;x) =

∫ x

0

(
x+ − t

) (
x− − t

)(
{u, t} − 2

(
πTb

f ′(u)

)2
)
dt ,

with {u, t} − 2

(
πTb

f ′(u)

)2

=

(
1

f ′(u)

)2

2π2
(
T 2

1 − T 2
b

)
e−ku .

(3.102)

19Note that the ku→∞ and the Tb → 0 limits of eq. (3.95) do not commute.
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In order to minimize the generalized entropy, we need to solve the differential equations
∂±Sgen = 0. Explicitly, we have

0 = 2
(
πT1x

−
QES

)2 − 2− kI
(
x−QES, x

−
QES;x

−
QES

)
+ 2k

(
x+

QES − x−QES

)2
(

1

x+
QES − x+

1

− 1

x+
QES − x−QES

)
,

0 = 2− 2
(
πT1x

+
QES

)2
+ kI

(
x+

QES, x
+
QES;x

−
QES

)
+ 2k

(
x+

QES − x−QES

)2

(
πTb

tanh
(
πTb(y−QES − y−1 )

) 1

f ′
(
y−QES

) +
1

x+
QES − x−QES

+
1

2

f ′′(y−QES)(
f ′(y−QES)

)2

)
.

(3.103)

To solve these equations, we will need the approximation for the time-map function f(u)
in eq. (3.96) (and it’s subsequent limits in eqs. (3.98), (3.99) and (3.100)), but we still need
to carefully deal with the integral term that originates from the backreaction of the dilaton
in the JT gravity. From the late time limit of eq. (3.103) we find

I∞ ≡ I(t∞, t∞; t∞) =
2

k

(
(πT1t∞)2 − 1

)
, (3.104)

which is the leading-order contribution to the integral at late times because the position
of QES should be located near t∞, i.e., x+

QES ∼ t∞ ∼ t ∼ x−QES. As before, we start from
considering the generalized entropy of the subsystem consisting of QML and the whole bath
(with its purification) by taking x1 on the conformal boundary of AdS

x+
1 ≈ t ≈ x−1

(
i.e.,y+

1 ≈ u ≈ y−1
)
, (3.105)

where we ignored the correction at the order O(εf ′(u)).20

Turn on the temperature of bath

From the intuition derived from studying the Tb = 0 case in chapter 2, we expect the
position of the QES after the Page time to satisfy

0 < x+
QES − t∞ < t∞ − t� t∞ − x−QES � t∞ . (3.106)

20Recall the point on AdS boundary at proper time u is defined by t = f(u) =
x+
1 +x−1

2 , s =
x+
1 −x

−
1

2 ≈
εf ′(u).

103



We will therefore solve the extremal equations (3.103) by expanding around t∞. With the
help of the approximations in eqs. (3.98), we can approximate the integral

I
(
x−QES, x

−
QES;x

−
QES

)
∼ I∞ − (t∞ − x−QES)∂−I

(
x−QES, x

−
QES;x

−
QES

)
∼ 2

k

(
(πT1t∞)2 − 1

)
+ (t∞ − x−QES) log

(
t∞ − x−QES

t∞

)(
1− T 2

b

T 2
eff(vQES)

)
.

(3.107)

where for ∂−I
(
x−QES, x

−
QES;x

−
QES

)
≡ dI(x−QES,x

−
QES;x−QES)

dx−QES

, we used the approximation

∫ x−QES

0

2
(
x−QES − t

)(
{u, t} − 2

(
πTb

f ′(u)

)2
)
dt ≈

∫ x−QES

0

(
t∞ − t+ x−QES − t∞

)
(t∞ − t)2

(
1− T 2

b

T 2
eff(u)

)
dt .

(3.108)

However, it is not easy to perform the above integral of t due to the appearance of time u.
Instead, we apply the mean value theorem and find

∂−I
(
x−QES, x

−
QES;x

−
QES

)
≈
∫ x−QES

0

1

(t∞ − t)

(
1− T 2

b

T 2
eff(u)

)
dt

≈ −
(

1− T 2
b

T 2
eff(vQES)

)
log

(
t∞ − x−QES

t∞

)
,

(3.109)

where vQES ∈
[
0, y−QES

]
is referred to as the middle value for the t integral from 0 to x−QES.

Similarly, we can obtain the other integral I
(
x+

QES, x
+
QES;x

−
QES

)
by∫ x−QES

0

(
(t∞ − x+

QES)
2 − 2(t∞ − x+

QES)(t∞ − t) + (t∞ − t)2
)(
{u, t} − 2

(
πTb

f ′(u)

)2
)
dt ,

∼ (t∞ − x+
QES) log

(
t∞ − x−QES

t∞

)(
1− T 2

b

T 2
eff(vQES)

)
+ I∞ −

1

2
(t∞ − x−QES)

(
1− T 2

b

T 2
eff(y−QES)

)
,

(3.110)

where we have ignored the first integral at the order O((x+
QES − t∞)2), used the mean

value theorem for the second integral again with the same middle value vQES as before
and considered the third integral as a function of x−QES with its Taylor expansion around
x−QES ∼ t∞ as∫ x−QES

0

(t∞ − t)2

(
{u, t} − 2

(
πTb

f ′(u)

)2
)
dt ∼ I∞ −

1

2
(t∞ − x−QES)

(
1− T 2

b

T 2
eff(y−QES)

)
.

(3.111)
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Although we cannot decide the middle value for any y−QES, it is easy to find Teff(vQES) ∼ T1

at the linear region with ku� 1.

Combining our assumptions (3.106) and the approximations of the integrals in
eqs. (3.107) and (3.110), we can approximate the equations for QES by much simpler
forms

4πT1

t∞ − x−QES

(
πT1t∞ +

k

4πT1

log

(
t∞ − x−QES

t∞

)(
1− T 2

b

T 2
eff(vQES)

))
≈ 2k

x+
QES − t

,

4πT1

(
x+

QES − t∞
)(

πT1t∞ +
k

4πT1

log

(
t∞ − x−QES

t∞

)(
1− T 2

b

T 2
eff(vQES)

))
≈ k

2

(
t∞ − x−QES

)
Γeff(y−QES) ,

(3.112)

where we have defined

Γeff(y−QES) ≡
(

1− Tb

Teff(y−QES)

)2

, (3.113)

and only keep the leading-order contributions. The non-negative coefficient Γeff approaches
zero as the black hole reaches thermal equilibrium with the bath. For later use, we also
present the numerical plot for Γeff for various temperature in figure 3.8.

With the above equations, it is straightforward to find the solutions, i.e., the location
of QES

x+
QES ≈ t∞ +

Γeff

4− Γeff

(t∞ − t) ,

x−QES ≈ t∞ −
8πT1

k(4− Γeff)
(t∞ − t)

(
πT1t∞ +

k

4πT1

log

(
t∞ − x−QES

t∞

)(
1− T 2

b

T 2
eff(vQES)

))
.

(3.114)

Assuming the time delay u − y−QES is not large (i.e., k(u − y−QES) � 1), one can use the
approximation

log

(
t∞ − f(y−QES)

t∞ − f(u)

)
≈ −4π

k

(
Teff(u)− Teff(y−QES)− Tb log

(
Tb + Teff(u)

Tb + Teff(y−QES)

)
− k

2
(u− y−QES)

)
∼ 2πTeff(y−QES)(u− y−QES) ∼ 2πTeff(u)(u− y−QES) ,

(3.115)
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and further simplify the position of the QES to

y−QES ≈ u− uHP

uHP =
1

2πTeff(u)
log

[
8πT1

k(4− Γeff(u))

(
1 +

k

4πT1

log

(
t∞ − t
t∞

)(
1− T 2

b

T 2
eff(vQES)

))]
,

(3.116)

where the second term can be understood as the Hadyen-Preskill time. It is noted that
the time scale uHP is not constant in general because the black hole is also dynamical. For
Tb = 0, the solutions reduce to

y−QES(Tb = 0) ≈ u− 1

2πT1e
− k

2
u

log

(
8πT1e

− k
2
u

3k

)
, (3.117)

which is in agreement with the results of chapter 2.21 Similarly to the zero temperature
bath case, the QES moves towards the horizon at x+ = t∞. However, we want to stress
the importance of the role of the non-zero factor Γeff that captures the speedup of the
equilibration process because the thermal bath also emits radiation to the AdS region
when Tb 6= 0.

Furthermore, we can also compare our new solutions with the explicit and linear solution
found in chapter 2. Focusing on the Page transition within the linear region, we can further
simplify the results for the position of QES and explicitly obtain

x+
QES ≈ t∞ +

Γ0

4− Γ0

(t∞ − t) , Γ0 =

(
1− Tb

T1

)2

,

y−QES ≈ u− 1

2πT1

log

(
8πT1

k(4− Γ0)

)
, ku� 1 (linear region) ,

(3.118)

where we can rewrite the time delay

uHP(ku� 1) =
1

2πT1

log

(
8πT1

k (4− (1− Tb/T1)2)

)
, (3.119)

as the Hadyen-Preskill time in linear region. It is also easy to check that the above results
are reduced to the linear results presented in chapter 2 by setting Tb = 0, i.e., Γeff = 1.

21Here we explicitly write the right side as a function of time u which should be understood as the

leading-order contribution. To be more precise, we can also use e
k
2 y
−
QES rather than e

k
2 u.
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After finding the position of the QES, we are able to consider the evolution of the
generalized entropy (3.101). The generalized entropy is dominated by the classical area
term from the dilaton

φ ≈ 2φ̄r

(
1− (πT1)2x+

QESx
−
QES + k

2
I
(
t∞, x

−
QES;x

−
QES

)
t∞ − x−QES

)(
1−

x+
QES − t∞
t∞ − x−QES

)
∼ 2φ̄r
t∞ − x−QES

[
1−

(
πT1t∞

)2 − (πT1)2t∞
(
x+

QES − t∞
)
− (πT1)2t∞(x−QES − t∞)

+
k

2

(
I∞ +

(t∞ − x−QES)

2

(
1− T 2

b

T 2
eff(vQES)

)
log

(
t∞ − x−QES

t∞

))]
∼ φ̄r

(
2(πT1)2t∞ +

k

2

(
1− T 2

b

T 2
eff(vQES)

)
log

(
t∞ − x−QES

t∞

)
−
kΓeff(y−QES)

4

)
,

(3.120)

which is approximated by the value of dilaton on the horizon at x+
QES = t∞. Recall that

Γeff(y−QES) is given in eq. (3.113). Comparing the area term (without divergences associated
with short range entanglement)

SφQES
=

φ

4GN

∼ c

12k

(
2πT1 +

k

2

(
1− T 2

b

T 2
eff(vQES)

)
log

(
t∞ − x−QES

t∞

))
, (3.121)

with the time delay in position of QES, i.e., eq. (3.116), we can rewrite the time shift as

uHP ≈
1

2πTeff(u)
log

(
SφQES

c

)
+O(1) ≈ 1

2πTeff(u)
log

(
S(u)− S0

c

)
, (3.122)

where we have restored the extremal entropy S0 ≡ φ0

4GN
(see (3.10)) in the complete entropy

S(u) of our dynamical black hole. Here we can explain the entropy S(u) as the density
of state at time u and take S0 as the ground state entropy associated with the value
φ0. As discussed in [11], the time delay uHP appearing in y−QES can be understood as the
Hayden-Preskill time.

Page transition

The subleading term of the generalized entropy is the bulk entropy

4GN

φ̄r
Sbulk =

(
2k log

(
2

ε

sinh
(
πTb

(
u− y−QES

))
πTb

(x+
QES − t)

(x+
QES − x−QES)

√
f ′(y−QES)

f ′(u)

))

∼ 2k

(
log

(
8

(4− Γeff)ε

sinh (πTbuHP)

πTb

)
− πTeffuHP +

kuHP

4T 2
eff

(T 2
1 − T 2

b )e−ku
)
,

(3.123)
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Figure 3.6: The Page curve of generalized entropy around Page transition from scrambling
phase to late-time phase for different bath temperatures. The solid lines represent the an-
alytical results at the scrambling phase and the dashed lines indicate the numerical results
for the late-time phase which are also approximated by solutions (3.114) and their approx-
imate generalized entropy (3.124). Note that the black dashed line shows the generalized
entropy at equilibrium case, which is the constant given in eq. (3.64).
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which remains constant in the linear region with ku� 1. As expected, it also reproduces
the results in chapter 2 after fixing Tb = 0. In order to derive the Page time, we can also
explicitly write generalized entropy at late time phase in the linear region

Sgen,late(ku� 1) ≈ φ̄r
4GN

[
2πT1 − kπT1

(
1− T 2

b

T 2
1

)
(u− uHP)

+2k log

(
8

(4− Γ0)ε

sinh (πTbuHP)

πTb

)
− 2kπTeffuHP +O(k2 log k)

]
,

(3.124)

which displays linear decrease (increase) of the generalized entropy after the Page transition
for Tb < T1 (Tb > T1). Given the fact that the time delay uHP is a constant when
Tb = T1, it is obvious that the entropy Sgen,late also reduces to a constant when Tb = T1

(see eq. (3.116)), which is the same as the result derived in eq. (3.64) for the equilibrium
case. Shortly before the Page time, we can obtain the generalized entropy in the scrambling
phase with 1� πT1u and ku� 1 by

Sgen,scrambling ≈
φ̄r

4GN

(
2πT0 + 2k log

(
24πEs
εc

sinhπ(Tbu)

πTb

1√
f ′(u)

)
+ κ

)

≈ φ̄r
4GN

(
2πT0 + 2kπ(Tb + T1)u+ 2k log

(
12Es
εcTb

)
+
k2u

2

(
1− T 2

b

T 2
1

)
(1− uπT1) + κ

)
.

(3.125)

where we put all other contributions in SBulk into κ which approaches a constant when
t = f(u) → t∞.22 The leading-order terms of the generalized entropy in the scrambling
phase (3.125) are a constant related to the entropy of the original black hole and two
linearly increasing terms, i.e., 2kπ(T1 +Tb), due to the entanglement of radiation escaping
from the non-zero temperature bath and black hole, respectively. Because the temperature
of black hole is approaching Tb, we will show later that the linear increase is replaced by a
2kπ(Tb +Tb) term.23 As a result, the generalized entropy at the scrambling phase increases
indefinitely while that of the late time phase asymptotes to the entropy of a black hole
with temperature Tb, we expect there is a phase transition (Page transition) between them

22The analysis for the scrambling phase is similar to that in chapter 2. See the section 2.1 for more
details.

23Technically, this is due to the approximations for log 1√
f ′(u)

for different time regions, see (3.99) and

(3.100).
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when Sgen,scrambling = Sgen,linear. This transition occurs at the Page time

uPage(Tb) ≈ 2

4− Γ0

T1 − T0

kT1

+
1− T 2

b

T 2
1

4− Γ0

uHP +O(1) , (3.126)

which decreases with the increase of Tb for Tb < T1, reaches a minimum at Tb = T1 and
then increases for larger Tb. In contrast, the generalized entropy at the Page time

Sgen(uPage) ≈
φ̄r

4GN

2π

(
T0 +

2(T1 − T0)

3− Tb

T1

+ · · ·

)
, (3.127)

increases with the increase of Tb. These linear behaviors are explicitly shown in the figure
3.6. As a comparison, we represent the Page transition at linear region with Tb ≥ T1.

Lastly, we add that the expressions for the Page time in eq. (3.126) and the Page entropy
in eq. (3.127) diverge for Tb → 3T1. This is an artifact of approximating the coefficient Γeff

defined in eq. (3.113) by Γ0 =
(

1− Tb

T1

)2

. However, if we include the subleading terms in

Γeff , we find that both of these quantities remain finite. We return to discuss this point in
section 3.3.1.

Approach to Equilibrium

For the equilibrium situation studied in [62], the QES sat outside of the horizon, resulting
in part of the quantum extremal island being located outside the black hole. The same
behaviour was found in section 3.2 – see eq. (3.55) – where the bath temperature matches
that of the black hole after it has absorbed the shockwave. Therefore in the present case
where the two temperatures do not match, we still expect that as the black hole approaches
its final equilibrium, i.e., in the late time phase with Teff ≈ Tb, the QES will move outside
of horizon at some critical temperature.24

Ultimately, we wish to track the position of the QES for a black hole as a function of
boundary time u starting with a temperature T1 and the bath at some fixed temperature
Tb. However, the analysis is simplified by asking how with fixed u and T1, the position
of the QES moves as we vary the bath temperature Tb. With this approach, we can find
different phases according to the position of QES as a function of the boundary time u

� Inside horizon Tc1(u) < Tb < Tc2(u) ,

24Similar behaviour was found in [70].
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Figure 3.7: The numerical results from solving QES equations for the deviation of QES
from horizon, i.e.,

(
x+

QES − t∞
)
, at a fixed time slice u = 40 (after Page transition) with

different bath temperatures Tb. For Tb very close to T1, the extremal surface lies outside
of the event horizon, in agreement with the analysis of section 3.3.1

.

� On the horizon Tb = Tc1(u) or Tb = Tc2(u) ,

� Outside horizon Tb < Tc1(u) or Tb > Tc2(u) ,

where the critical temperatures Tc1(u) and Tc2(u) will be derived in the following – see
eq. (3.133).

If we extend the position (3.114) of the QES to the equilibrium case with Γeff = 0,
we find the QES is located on the horizon at x+ = t∞, which is not what we found
in section 3.2. Recalling the simplified solutions for QES (3.112), it is obvious that the
non-negative term on the right-hand side, i.e.,

k

2

(
t∞ − x−QES

)
Γeff(y−QES) , (3.128)

implies we always have x+
QES ≥ t∞. The solution to this puzzle is simple: all the approxima-

tions used in the previous analysis for the QES are based on the assumptions in eq. (3.106),
which are invalid when Tb is extremely near T1. Technically speaking, it is traced back

to the fact that Γeff =
(

1− Tb

Teff

)2

around this narrow region suppresses the leading-order
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contribution. In order to find the critical temperature for the transition of QES, we need
to track the (some) sub-leading contributions which compete with the leading-order terms
when Γeff ∼ k. Although it is not easy to perform the integral I to next order, we can
determine these corrections by perturbing from the equilibrium case at Tb = T1 because
the critical temperature should satisfy T1 − Tc ∼

√
k. In other words, we can approach

the critical temperature from regular Tb and from T1 = Tb and look for all necessary
corrections.

Instead of directly solving the QES equations for the equilibrium case, we can approx-
imate the two equations (3.59) with x±1 = t by

4πT1(t∞ − x−QES)

(
1 +

x−QES − t∞
t∞

)
≈ 2k

(
t∞ − x−QES

)2
(

1

x+
QES − t

− 1

t∞ − x−QES

)
,

−→ x+
QES − t ∼

k

2πT1

(
t∞ − x−QES

)
,

(3.129)

and

4πT1

(
x+

QES − t∞
)
≈ 2k

(
x+

QES − x−QES

)2
(

1

t∞ − x−
−

x+
QES − t∞

(t∞ − x−QES)2
− 1

t∞ − x−
+

t− t∞
(t∞ − x−QES)2

)
< 0

≈ 2k
(
t− x+

QES

)
+ 4k

x+
QES − t∞
t∞ − x−QES

(t− x+
QES)

−→ x+
QES − t∞ ∼

k

2πT1

(
t− x+

QES

)
−→ x+

QES ∼ t∞ −
k

2
(t∞ − t) ,

(3.130)

where the leading-order contribution
(t∞−x−QES)2

t∞−x−QES

(positive) vanishes and we have to keep

the next order correction t − x+
QES (negative). The fact that the sub-leading term has the

opposite sign to the (almost vanishing) leading term is what positions the QES outside the
horizon, in contrast with the cases when Tb is not perturbatively close to T1. From this
lesson, we also need to keep that correction for Γ ∼ k where the leading order is competing
with the sub-leading order. Adding this correction to (3.112), we need to correct the right
side of the second equation by

k

2

(
t∞ − x−QES

)
Γ(y−QES) −→ k

2

(
t∞ − x−QES

)
Γ(y−QES) + 2k

(
t− x+

QES

)
, (3.131)

and arrive at
2

x+
QES − t

(
x+

QES − t∞
)
≈ 1

2

(
1− Tb

Teff(y−QES)

)2

− k

πT1

, (3.132)
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which now agrees with the results of section 3.2.

Comparing with the results of section 3.2, we can interpret the Γ term as a correction
from equilibrium results, which is reinforced by the fact that Γ approaches zero as the
system thermalizes. We can expect that further corrections we missed should be only at
the order O(Γ × k) ∼ k2. The critical temperatures of Tb for which the QES changes
position with respect to the event horizon are given by

Tc1(u) ≈

(
1−

√
2k

πT1

)
Teff(y−QES) ,

Tc2(u) ≈

(
1 +

√
2k

πT1

)
Teff(y−QES) ,

(3.133)

which define a small region of temperatures where the QES is located outside the horizon.

Lastly, we mention that since Teff approaches Tb as the system thermalizes, even when
Tb is far from T1, the QES will eventually cross the event horizon for late enough times.
This is to be expected since, as we claimed before, for ku→∞, the system behaves as the
equilibrium case studied in section 3.2. Indeed, when

ku & log

(∣∣∣∣1− T 2
1

T 2
b

∣∣∣∣
√
πT1

8k

)
, (3.134)

the QES is located outside the event horizon. By these times, the effective temperature

is very close to the bath temperature Teff ≈ Tb

(
1±

√
2k
πT1

)
, where the sign is determined

by whether Tb is greater or smaller than T1, and the correction parameter Γeff ≈ 2k
πT1

is
perturbatively small. For bath temperatures that are very close to T1,

|Tb − T1|
T1

.

√
2k

πT1

e
T1−T0

2T1 , (3.135)

the QES is already outside of the event horizon by the Page time in eq. (3.126).

Overheated black holes

In the previous subsections, we derived the leading order expressions of the position of QES
and discussed the importance of the subleading corrections when the bath temperature
approaches T1 with Γ ∼ k ∼ 0 because x+

QES − t∞ changes its sign after the transition
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Figure 3.8: The time evolution of function Γeff(u) for various bath temperature.

point at Tc1 and Tc2 . Although we claim our previous approximations apply for arbitrary
temperatures, it is obvious that our solution (3.114) appears singular at Γ = 4 and further
it appears the sign of x+

QES − t∞ changes. It may appear that we have to consider next
order corrections at another “critical temperature”, i.e.,

Tb = 3T1 , with Γ0 =

(
1− Tb

T1

)2

= 4 . (3.136)

However, this is incorrect. The next order corrections cannot help solve this problem. Aside
from x+

QES, the solutions for y−QES, x
−
QES (see eqs. (3.114) and (3.116)) show more problems

because they are not well-defined when Γ ≥ 4. At linear order, the generalized entropy in
the late-time phase of the overheated black holes increases very rapidly, as can be seen by
the coefficient of the linear term (see (3.124))

kπT1

(
T 2

b

T 2
1

− 1

)
. (3.137)

This rate of increase in generalized entropy may appears larger than that in the scrambling
phase where the speed is dominated by linear term (see (3.125))

2kπ(T1 + Tb)u (ku� 1) , or 4kπTbu (eku � 1) , (3.138)

where one contribution of (2kπTbu) comes from the radiation from bath and the other
(2kπT1u and 2kπTbu) from the black hole (for which Teff ∼ T1 at early times and Teff ∼ Tb

114



for late times). One may wonder whether that means we can find a critical temperature Tc
above which a Page transition doesn’t occur because the generalized entropy in late-time
phase increases faster than that from the scrambling phase. The answer is again no.

50 100 150 200
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2.4×106

2.6×106

2.8×106

3.0×106

3.2×106

3.4×106

Figure 3.9: The Page transition with “critical” bath temperature at Tb = 3T1

All of the above questions or puzzles are actually due to the invalidity of the leading-
order contributions in the linear region for overheated black holes. Our complete solutions
are valid for arbitrary temperatures Tb outside of the critical region close to T1 discussed
in the previous section where subleading terms become important. One key ingredient
to consider is that Γeff approaches zero with time, see the figure 3.8. For example, we
always have Γeff(Tb = 3T1) < 4 for u > 0. So there is no such new critical temperature at
Tb = 3T1. Another important fact is the delay of the Page time with an increase of |Tb−T1|.
Compared to the Page time at Tb = T1, the Page time with Tb > #T1 is pushed to a later
time that guarantees we have Γeff (u = uPage) < 4. One might also wonder whether this
time delay is really physical and why we should have a restriction on the initial time for
the solutions at late-phase. Let’s remark this restriction is reminiscent of what we have
seen in the zero bath-temperature case and also the equilibrium case. More explicitly, the
equilibrium case also presents this similar restriction on time u, i.e., the inequality (3.62).
The final ingredient that prevents the late time solutions in eq. (3.114) from becoming
singular is the high bath-temperature itself because it creates a new and large coefficient
T 2

b/T
2
1 that enhances the next-order corrections to the linear region. For example, we can

see those effects from the expansion of Γeff , i.e.,

Γeff(u) =

(
1− Tb

Teff(u)

)2

≈
(

1− Tb

T1

)2

− Tb(T1 − Tb)2(T1 + Tb)

T 4
1

ku+ · · · , (3.139)
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where the second order correction cannot be simply ignored for large Tb/T1. To verify
that there is no divergence, we show the Page transition using numerics for the “critical
temperature” Tb = 3T1 in figure 3.9. We also compare the position of the QES using our
approximation (3.114) with numerical results and they fit well as for the small Tb cases.

Page Curve and Thermalization

4GN

ϕ̄r
Sgen

kuuPage

2πTb

1 2

2πT1

3

2πTb

Tb < T1

Tb = T1

Tb > T1

4πTbku

4 5

2π(Tb + T1)ku

Figure 3.10: The schematic diagram for Page curve of black hole coupled with a thermal
bath at different temperatures. The red, black, and blue solid lines show the Page curve
for a growing black hole with Tb > T1, an external black hole at equilibrium status with
Tb = T1, and an evaporating black hole with Tb < T1, respectively. The corresponding
dashed lines present the generalized entropy at the late-time region, whose behavior is
dominated by the linear term 4πTbku as discussed around (3.138).

So far, we have focused on the evolution of the generalized entropy of the evaporating
black hole up to times comparable with the Page time. As we will now show, we can also
use the position of the QES in eq. (3.114), to find a full Page curve from u = 0 to the late
time regime with eku � 1. The expected behavior of the generalized entropy Sgen,late at
late times is that the subleading corrections slow down the linear decrease (Tb < T1) or
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increase (Tb > T1) of the generalized entropy, which will eventually approach a constant
Sgen,late(Tb) corresponding to the entropy of a black hole with temperature Tb, as derived
in eq. (3.64). However, we cannot simply substitute the solution into the definition of
generalized entropy to derive its time evolution due to the absence of approximation for
the middle value vQES at late times.

Instead of considering the generalized entropy itself, we can take the time derivative of
Sgen,late

(
u, x+

QES, x
−
QES

)
as defined in (3.101)

4GN

φ̄r

dSgen,late

du
= 2k

(
−πTb

cosh
(
πTb(y−QES − u)

)
sinh

(
πTb(y−QES − u)

) − 1

2
∂u (log f ′(u)) +

f ′(u)

t− x+
QES

)
, (3.140)

where we have used the facts

∂Sgen,late

∂x+
QES

= 0 ,
∂Sgen,late

∂x−QES

= 0 , (3.141)

from the definition of QES. The time derivative in eq. (3.140) can be further simplified by
taking the limits

πTb coth
(
πTb(u− y−QES)

)
≈ πTb ,

−1

2
∂u (log f ′(u)) ≈ πTeff(u) + k

Teff
2 − T 2

b

4Teff
2 ,

f ′(u)

t− x+
QES

≈ − f ′(u)

t∞ − t
4− Γeff

4
≈ πTeff(u)

Γeff − 4

2
,

(3.142)

to obtain
dSgen,late

du
≈ − φ̄r

4GN

(
1− T 2

b

Teff
2(u)

)
kπTeff(u) . (3.143)

Taking a linear approximation of eq. (3.143) agrees with the results found in the previous
section – see eq. (3.124). Furthermore, since Teff approaches Tb for late times (eku � 1) the
time derivative obviously decays to zero in this limit, implying the generalized entropy in
the late-time region is indeed approaching a constant. We can then rewrite our generalized
entropy at time u in late time phase in integral form

Sgen,late(u) ≈ Sgen(uPage)−
φ̄r

4GN

∫ u

uPage

(
1− T 2

b

Teff
2(ũ)

)
kπTeff(ũ)dũ , (3.144)

where the start point is the generalized entropy at Page time Sgen(uPage) that has been
derived at (3.127) in the linear region. Fortunately, the above integral is fully analytic and
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can be performed to yield

Sgen,late(u) ≈ Sgen(uPage) +
φ̄r

4GN

(2π Teff(u)− 2π Teff(uPage)) ,

2πTeff (uPage) ≈ 2πT1 − kπT1

(
1− T 2

b

T 2
1

)
uPage .

(3.145)

The dominant term is nothing but the black hole entropy with temperature Teff , i.e.,

Sgen,late(u) ∼ φ(u)

4GN

∼ 2πTeff(u)φ̄r
4GN

, (3.146)

and the extra contributions from the leading order of the bulk entropy are all encoded
in the value at Page time. Finally, combining with the generalized entropy at scrambling
phase

Sgen,scrambling(u� 1) ≈ φ̄r
4GN

(
2πT0 + 2k log

(
24πEs
εc

sinhπ(Tbu)

πTb

1√
f ′(u)

)
+ κ

)
,

(3.147)

we found the expected Page curve by taking eq. (3.145) as the generalized entropy for
the late-time phase. After quench-phase, the generalized entropy is decided by that in the
scrambling phase and then jumps to the late-time phase after Page time. Finally, we remark
that the generalized entropy at scrambling phase Sgen,scrambling represents the fine-graining
entropy because its increase is dominated by the increase of entanglement entropy from
the thermal radiation emitted from the thermal bath and black hole itself. The generalized
entropy at the late-time phase obviously denotes the coarse-graining entropy, i.e., the area
of the dynamical black hole, as shown in (3.146). As a summary, we show a diagram to
present the information about the Page curve derived in the last several subsections in
figure 3.10.

In this subsection, we focused on the QES and generalized entropy of the subsystem
consisting of QML, the complete thermal bath, and its purification. Similar to the analysis
in section 3.2.1 for T1 = Tb (see section 2.2.1 for the case with zero bath temperature),
we can consider a smaller subsystem by cutting a bath interval [0, σ1], corresponding to
shifting the anchor point x±1 away from AdS2 boundary into the bath with choosing y±1 =
u ∓ σ1. However, it is not easy to perturbatively solve the QES in general because our
order assumption (3.106) may break. Instead, we can begin with assuming another order
condition

0 < x+
QES − t∞ < t∞ − x+

1 � t∞ − x−QES � t∞ . (3.148)
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Naively, the above condition requires that we do not put the anchor point near the shock
wave in order to guarantee x+

1 = f(u − σ1) ≈ t∞. In other words, we can generalize the
approximations in this subsection to the case with x1 near AdS2 boundary. In most places,
we only need to change u, t to u− σ1, x

+
1 . Finally, one can obtain the corresponding QES

as

x+
QES ≈ t∞ +

Γeff

4− Γeff

(
t∞ − x+

1

)
,

x−QES ≈ t∞ −
8πTeff

k(4− Γeff)

(
t∞ − x+

1

)
,

(3.149)

from which we can find the y−QES is shifted in the way of

y−QES ≈ u− σ1 − uHP . (3.150)

Further, it is consistent with our numerical results and also the zero bath temperature case
which is studied in section 2.2.1.

Simpler derivation of QES

In the above, we followed the analysis in chapter 2 to derive the position of QES as
shown in eq. (3.114). However, there is one undetermined middle value vQES appearing in
many expressions due to integral over the dilaton profile (3.14). Comparing the results in
eqs. (3.146) and (3.121), one finds the identify

2πTeff(u) ∼ 2πTeff(y−QES) ∼ 2πT1 +
k

2

(
1− T 2

b

T 2
eff(vQES)

)
log

(
t∞ − x−QES

t∞

)
, (3.151)

where corrections of order k are ignored. With the above approximation, we can simplify
our results, e.g., by using Teff(y−QES) rather than vQES. To confirm our result, we can derive
the position of QES in a more direct way. It is based on the observation in [70, 149] that
the dilaton profile can be expressed without any integrals as

φ(x±) = φr

(
2f ′(y−)

x+ − x−
+
f ′′(y−)

f ′(y−)

)
, (3.152)
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when the components of the stress tensor, 〈Tx+x+〉 and 〈Tx+x−〉 vanish. Correspondingly,
we can rewrite the solution (3.103) from extremizing the generalized entropy as

0 =
1

φr

∂φ(x±QES)

∂x+
QES

+ 2k

(
1

x+
QES − x+

1

− 1

x+
QES − x−QES

)
,

0 =
1

φr

∂φ(x±QES)

∂x−QES

+ 2k

(
πTb

tanh
(
πTb(y−QES − y−1 )

) 1

f ′
(
y−QES

) +
1

x+
QES − x−QES

+
1

2

f ′′(y−QES)(
f ′(y−QES)

)2

)
.

(3.153)

Noting the small k expansion leads to the approximation f ′(y) ≈ 2πTeff(y) (t∞ − f(y)) and
our ordering condition (3.106), it is straightforward to find the derivatives of the dilaton
are approximated by

1

φr

∂φ(x±)

∂x+
QES

≈
4πTeff(y−QES)

t∞ − x−QES

,

1

φr

∂φ(x±)

∂x−QES

≈ −4πTeff(y−QES)
x+

QES − t∞
(t∞ − x−QES)2

+
T ′eff(y−QES)

(t∞ − x−QES)Teff(y−QES)
,

(3.154)

where we note the fact that T ′eff(y) = ∂yTeff(y) = −k T
2
eff−T

2
b

2Teff
. Combining the above expres-

sions with the approximations for the bulk entropy at x±1 = t, one can find the QES is
determined by

4πTeff(y−QES)(x
+
QES − t) ≈ 2k(t∞ − x−QES) ,

4πTeff(y−QES)(x
+
QES − t∞) ≈ k

2
Γeff(y−QES)(t∞ − x−QES) .

(3.155)

which is exactly equivalent to our result in eq. (3.112) after substituting eq. (3.151). Finally,
we can find the position of QES as

x+
QES ≈ t∞ +

Γeff

4− Γeff

(t∞ − t) ,

x−QES ≈ t∞ −
8πTeff

k(4− Γeff)
(t∞ − t) ,

(3.156)

which is the same as eq. (3.114). One can also easily find an approximation for dilaton
profile

φ(x±QES) ≈ φr

(
2f ′(y−QES)

t∞ − x−
− 2πTeff(y−QES)

)
≈ 2πTeff(y−QES)φr , (3.157)

where we ignored the derivative term T ′eff(y−QES) as being order k.
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3.3.2 Information flow

In the previous section, we studied the generalized entropy of QML plus the whole bath and
its purification. (Of course, since the entire system is in a pure state, we could also think
of this more simply as the entropy of QMR.) In this section, we chop parts of the (purified)
bath and discuss which intervals, together with QML, are essential to having the ability to
recover the information in the interior of the black hole. In contrast to the semi-infinite
interval case studied in the previous section where the bulk entropy is described by the
two-point function on the UHP, the generalized entropy instead has one more endpoint,
i.e., x±2 (or y±2 = u ∓ σ2) as the right end-point of the finite bath interval which can be
used with QML to recover the black hole interior. According to the position of x±2 after or
before the shock, we can divide the generalized entropy into two cases.

We begin by examining the case where the end-point x±2 is located after the shock, i.e.,
x+

2 > 0 or y+
2 = u−σ2 > 0. Similarly to the equilibrium case studied in section 3.2, we have

two competing channels. The N-channel (where the black hole interior is non-recoverable)
has the QES at the bifurcation point x±

QES′′ = ± 1
πT0

, and the generalized entropy for this
channel shown in figure 3.3c is given by

4GN

φ̄r
SN(y+

2 ≥ 0) ≡ 4GN

φ̄r

(
Sgen

QES′′ + S1−2

)
= 2πT0 + 2k log 2 + 2k log

(
1

ε2
sinh

(
πTb(y−2 − y−1 )

)
πTb

x+
1 − x+

2√
f ′(y+

1 )f ′(y+
2 )

)
,

(3.158)

where φQES′′ = 2πT0φ̄r. When this channel is preferred, the entanglement wedge of the bath
interval plus QML does not contain the interior of the black hole. The R-channel (where
the interior is recoverable) instead has the QES at the same location as the late-time phase
QES. Correspondingly, the generalized entropy for this R-channel corresponding to figure
3.3c reads

4GN

φ̄r
SR(y+

2 ≥ 0) ≡ 4GN

φ̄r

(
Sgen

QES−1 + S2

)
=
φQES

φ̄r
+ 2k log

(
2

ε

sinh
(
πTb(y−QES − y−1 )

)
πTb

x+
1 − x+

QES

x+
QES − x−QES

√
f ′(y−QES)

f ′(y+
1 )

)

+ 2k log

(
12πEs
cε

sinh
(
πTby

−
2

)
πTb

x+
2√

f ′(y+
2 )

)
.

(3.159)
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Evidently, when the R-channel is preferred, the entanglement wedge of the corresponding
bath region plus the QML system includes the interior of the black hole. To find the
transition where the bath interval (plus QML) is able to reconstruct the black hole interior,
we require i.e.,

4GN

φ̄r
(SN − SR) ≥ 0 , (3.160)

or equivalently

2k log

(
c

6πEsε

(x+
1 − x+

2 ) sinh
(
πTb(y−2 − y−1 )

)
x+

2

√
f ′(y+

1 ) sinh(πTby
−
2 )

)
≥ 4GN

φ̄r
Sgen,late(σ1)− 2πT0 , (3.161)

where we rewrite the left side as the simple part because Sgen,late with σ1 = 0 has been
discussed in the last section. We will focus on analyzing the left-hand side of eq. (3.161)
in the following calculations.

When the right end-point y+
2 ≤ 0 is before the shock, we have two similar competing

channels for the generalized entropy

4GN

φ̄r
SN(y+

2 ≤ 0) ≡ 4GN

φ̄r

(
Sgen

QES′′ + S1−2

)
= 2πT0 + 2k log 2 + 2k log

(
12πEs
cε2

x+
1 sinh

(
πTb(−y+

2 )
)

sinh
(
πTb(y−2 − y−1 )

)
(πTb)2

√
f ′(y+

1 )

)
,

(3.162)

and also

4GN

φ̄r
SR(y+

2 ≤ 0) ≡ 4GN

φ̄r

(
Sgen

QES−1 + S2

)
. (3.163)

with
4GN

φ̄r
S2 = 2k log

(
1

ε

sinh
(
πTb(y−2 − y+

2 )
)

πTb

)
. (3.164)

The condition for the bath interval to have the ability to reconstruct the interior of black
hole when the right end-point is located before the shock is then given by

2k log

(
24πEs
cε

x+
1 sinh

(
πTb(−y+

2 )
)

sinh
(
πTb(y−2 − y−1 )

)√
f ′(y+

1 )πTb sinh
(
πTb(y−2 − y+

2 )
) )

≥ 4GN

φ̄r
Sgen,late(σ1)− 2πT0 .

(3.165)
Lastly, we remark that the N-channel and R-channel show the same divergence 2k log

(
1
ε2

)
,

so the AdS cutoff ε is exactly canceled in the comparison and does not play an important
role in the following calculations.
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Regularization of the shock wave
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Figure 3.11: The yellow lines show the finite bath interval with Tb ≤ Tp at a fixed time
slice u that has the ability to reconstruct the black hole interior by including QML but
not the bath purifier. The blue shadow region presents the expected region where we can
put the endpoint of the finite bath interval, i.e., y2, and make the subsystem recover the
information of black hole. Left: The simple shock wave as a line. Right: The regularized
shock wave as a small region indicated by the pink shadow. The yellow curve presents
the endpoint y+

2 of the minimal bath interval, which approaches a constant ∆y2 derived in
eq. (3.190) with the evolution of time.

Before we discuss the condition for the finite bath-interval plus QML (as shown in the
figure 3.3c) to reconstruct the black hole interior, we can roughly estimate the region for y2

that makes the above equalities hold by looking at the divergence structure of SN−SR with
endpoint y2 at special points. We will encounter an apparent paradox that will require a
careful regularization for the region of the shock wave with the help of parameter Es/c.

Explicitly, we can take the endpoint y2 to the IR cut-off, i.e., the limit σ2 →∞. It not
hard to show that the two competing channels exhibit similar divergences

4GN

φ̄r
SN(y+

2 ≤ 0) −→ 4kπTbσ2 + 4k log

(
1

επTb

)
,

4GN

φ̄r
SR(y+

2 ≤ 0) −→ 4kπTbσ2 + 4k log

(
1

επTb

)
,

(3.166)

for a thermal bath with nonzero Tb. However, with the bath at zero temperature, the
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divergences take a different form in these two channels

4GN

φ̄r
SN(y+

2 ≤ 0) −→ 4k log
(σ2

ε

)
,

4GN

φ̄r
SR(y+

2 ≤ 0) −→ 2k log

(
2σ2

ε

)
+ 2k log

(
`

ε

)
,

(3.167)

where ` is some finite length-scale. This difference in the divergence structure makes
the R-channel preferred when y2 is around the IR cut-off in the bath and guarantees the
purification of the thermal bath is not necessary for the interior reconstruction.

Now let us consider the limit of taking y2 near the shock wave at σshock = u, i.e., y+ = 0.
We have to consider approaching the shock from the region before the shock or after the
shock. Under the limit y+

2 → 0−, one can find

4GN

φ̄r
SN(y+

2 ≤ 0) −→ 2k log

(
−y+

2

πTbε2

)
,

4GN

φ̄r
SR(y+

2 ≤ 0) −→ 2k log

(
sinh (2πTbσ2)

(πTbε)2

)
,

(3.168)

which implies the N-channel is preferred (log(−y+
2 ) → −∞)25 when y+

2 < 0 is located in
the region around the shock. On the other hand, the limit y+

2 → 0+ (or x+
2 → 0+) leads

us to

4GN

φ̄r
SN(y+

2 ≥ 0) −→ 2k log

( ¯̀2

ε2

)
,

4GN

φ̄r
SR(y+

2 ≥ 0) −→ 2k log

(
x+

2

ε

)
+ 2k log

(
1

πTbε

)
,

(3.169)

where ¯̀ is some finite length-scale. For the zero bath temperature case, the divergence
structure is the same.26 By considering these divergences, it is obvious that the R-channel
is preferred when y+

2 is located in the region near the shock but after the shock wave. This
region for y2 which allows the bath interval plus QML to recover the interior of the black
hole is shown in the left diagram in figure 3.11. But there is an obvious paradox because we
can contain a larger part of the bath by moving the right end-point of the interval from the
after-shock region to the pre-shock region. The above analysis implies that adding more
bath interval surprisingly makes one lose the ability to recover the black hole interior.

25Taken at face value, the generalized entropy in the N-channel becomes negative for sufficiently small
|y+

2 |. This is another hint that the shockwave needs to be regularized.
26The 1

πTb
in the last logarithm is replaced by some finite length scale ˜̀ when Tb = 0.
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However, the above paradox appears just because we consider the shock-wave as a line
located at σshock = u. More precisely, the generalized entropy for the R and N-channel
around the shock wave is disconnected. In order to solve this problem, we have to
regularize the region of the shock wave and simultaneously make the generalized entropy
a continuous function. In other words, we need to consider the entropy from one-point
and two-point functions

before-shock y+
2 < 0 after shock y+

2 > 0

S2 log

(
1
ε

sinh(πTb(y−2 −y
+
2 ))

πTb

)
log

(
12πEs
cε

sinh(πTby
−
2 )

πTb

x+
2√

f ′(y+
2 )

)
S12 log

(
12πEs
cε2

x
+
1 sinh

(
πTb(−y+2 )

)
sinh

(
πTb(y

−
2 −y

−
1 )
)

(πTb)2
√
f′(y+1 )

)
log

(
1
ε2

sinh
(
πTb(y

−
2 −y

−
1 )
)

πTb

x
+
1 −x

+
2√

f′(y+1 )f′(y+2 )

)

The identifications

S2,before(y
+
2 → −0) = S2,after(y

+
2 → +0) ,

S12,before(y
+
2 → −0) = S12,after(y

+
2 → +0) ,

(3.170)

fixes the two boundaries of shock-wave region as

1 =
12πEs
c

x+
2

f ′(y+
2 )

, y+
2 → +0

12πEs
c

sinh(−πTby
+
2 )

πTb

= 1 , y+
2 → −0 .

(3.171)

Recalling the property of f(u) such as f ′(0) = 1, x = f(y) ∼ 0 ∼ y, we can take the energy
of shock wave Es as a regulator and regularize the shock wave as a small region defined by

y+
shock ≡

[
− c

12πEs
,

c

12πEs

]
=

[
− k

(T 2
1 − T 2

0 )π2
,

k

(T 2
1 − T 2

0 )π2

]
, (3.172)

which is independent of the temperature of bath as expected.

After identifying this small region as the shock-wave, we can take out this part from the
bath interval and then make the generalized entropy connected when we move the endpoint
y2 from the after-shock region to the pre-shock region. The connectivity guarantees that
we do not have the paradox about the ability of bath interval to recover the information
of the black hole interior anymore. More explicitly, we will discuss this problem in detail
in the next subsections.
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Need for the Purification

The conditions for a finite bath interval plus QML in a zero temperature bath to reconstruct
the interior of the black hole were discussed in chapter 2. Moreover, we found in section
3.2 that the equilibrium case with Tb = T1, even the whole semi-infinite bath interval with
QML does not contain the appropriate information to reconstruct the interior of the black
hole. Rather we had to also include its purification (or at least a portion of the latter). In
the previous section, we have seen the difference in divergence structure between a non-
zero temperature bath and that with zero temperature when y2 approaches the IR cut-off
between the bath and its purification. The smaller divergence of the leading term (3.166)
in a zero-temperature bath guarantees we can use the whole bath interval y2 → ∞ with
QML to reconstruct the interior of the black hole. Obviously, this is expected because
this subsystem as one part of the bipartite pure system will be able to reconstruct its
complementary part, i.e., the black hole interior, after the Page transition. A natural
question is whether all bath intervals with non-zero temperature Tb require a part of the
purification in order to reconstruct the black hole interior. In this subsection, we show
that only the bath interval with a temperature higher than the critical temperature Tp in
eq. (3.179) requires its purification.

To this end, we consider large bath intervals by putting the left end-point after the
shock and the right end-point before the shock and focus on the inequality in eq. (3.165).
The left-hand side of the inequality monotonically increases with y+

1 = u− σ1 (u ≥ uPage)
and the right-hand side decreases, so the weakest condition for that inequality is choosing
σ1 = 0, i.e., anchoring the initial point of bath interval at AdS boundary, which satisfies
our physical expectation. Let’s move on to the condition for y+

2 by considering figure 3.3c
and the corresponding conditions in eq. (3.165), i.e.,

2k log

(
24πEs
cε

x+
1 sinh

(
πTb(−y+

2 )
)

sinh (πTbσ2)√
f ′(y+

1 )πTb sinh (2πTbσ2)

)
≥ 4GN

φ̄r
Sgen,late − 2πT0 , (3.173)

with σ1 = 0. Again, it is straightforward to show

∂σ2

(
sinh

(
πTb(−y+

2 )
)

sinh (πTbσ2)

πTb sinh (2πTbσ2)

)
=

1

2

cosh(πTbu)

cosh2(πTbσ2)
> 0 , (3.174)

which implies the maximum of the left-hand side in above inequality is the value at the
limit σ2 →∞. As expected, the weakest condition for the bath interval plus QML to have
enough information about the black hole interior is if we consider the entirety of the bath

126



with σ1 = 0 and σ2 → ∞. The condition to recover the interior of the black hole is then
given by

Max = 2k log

(
12Es
cεTb

f(u)e−πTbu√
f ′(u)

)
≥ 4GN

φ̄r
Sgen,late − 2πT0 . (3.175)

It is useful to notice that the right-hand side decreases with time u and the left-hand side
increases for Tb < T1 and decreases for Tb > T1.27 As a result, the inequality cannot hold

for Tb > T1 because the maximum of the left-hand side is bounded by 2k log
(

12Est∞
cεTb

)
.

This implies that in the setup where the bath heats up the black hole (Tb > T1), the bath
and QML systems are never able to reconstruct the black hole interior. We now focus
on the evaporating black hole model (Tb < T1) and take the the late-time approximation
(3.100) at eku � 1 for which the LHS gives a constant

2k log

(
12Est∞
cεTb

)
− k log (4πTbt∞) + 4π

(
T1 − Tb − Tb log

(
T1 + Tb

2Tb

))
. (3.176)

Correspondingly, the RHS reaches its minimum at the same late-time limit

4GN

φ̄r
Sgen,late − 2πT0 ≈ 2π (Tb − T0) + 2k log

(
1

πTbε

)
. (3.177)

The inequality from generalized entropy in eq. (3.175) then yields the condition for the
temperature of bath

Tb .
2T1 + T0

3
− 2Tb

3
log

(
T1 + Tb

2Tb

)
+

k

3π
log

(
6Es
cT1

√
T1

Tb

)
. (3.178)

Finally, we can find the critical temperature of bath is

Tp ≈ T1 −
1

2
(T1 − T0) +

k

2π
log

(
6Es
cT1

)
, (3.179)

which defines the lowest bath temperature for which the purification of the bath is needed
to reconstruct the interior of the black hole. It is interesting to note that the critical
temperature is also near T1 due to the ansatz T0 ∼ T1. However, it is different from the
critical temperatures Tc1 and Tc2 in eq. (3.133) because the former depends on T0, the
temperature of original black hole, while Tc1 and Tc2 are independent of T0.

27It is easy to show that from the approximation (3.99) and (3.100) because the dominated term for

k log
(

1
f ′(u)

)
involve from 2kπT1u to 2kπTbu.

127



To summarize, a bath with a temperature Tb < Tp admits finite bath intervals plus QML

to reconstruct the interior of the black hole. When the temperature of the bath increases
beyond Tp, even the whole semi-infinite bath interval plus QML does not have enough
information for interior reconstruction if part of the purification is not included. Finally,
we can also change the left end-point σ1 rather than taking it to the AdS boundary (σ1 → 0)
and do a similar late-time approximation to obtain the constraint on bath temperature.
As expected, we find a stronger condition and get a smaller critical temperature

Tp(σ1) ≈ 1

2
(T1 + T0)− 2kT1σ1 +

k

2π
log

(
6Es
cT1

)
,with kσ1 � 1 , (3.180)

for the reconstruction of information in black hole. We should also note the chopping off
too much of the bath interval by taking the initial point from σ1 = 0 to a finite one also
may make the thermal bath interval plus QML lose essential information to reconstruct
the black hole interior if σ1 is too large. The size of the bath interval we can ignore is also
restricted by

σ1 .
1

4kTb

(
2T1 + T0 − 3Tb − Tb log

(
T1 + Tb

2Tb

))
+

1

4πTb

log

(
6Es
cT1

√
T1

Tb

)
, (3.181)

where we have assumed the bath temperature is not too small.

Finite Bath Interval

In this subsection, we will assume the bath temperature is lower than the critical Tp and
discuss how much bath interval needed in order to reconstruct the black hole interior and
in particular, what is the closest we can bring the right end-point σ2 to the AdS boundary
and still reconstruct the black hole interior. The two competing channels are described in
figure 3.3c. This analysis can be understood as an extension of the late-time protocol of
section 2.2.2 to the thermal bath model. Let’s first assume we only need the bath interval
after the shock to which the radiation of black hole escapes. Taking the time slice at u
after the Page time and putting the left end-point of the bath interval at the AdS boundary
(σ1 = 0), the bath interval we are looking for satisfies eq. (3.161)

2k log

(
c

6πEsε

(t− x+
2 ) sinh (πTbσ2)

x+
2

√
f ′(u) sinh(πTb(u+ σ2))

)
≥ 4GN

φ̄r
Sgen,late − 2πT0 , (3.182)

which imposes a constraint on the size of the bath interval, i.e., the value of σ2(u). As-
suming we can have πT1y

+
2 � 1 (or f(y+

2 ) ≈ t∞) and still stay at the linear-region with
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ku < 1, we can recall the approximation again

2k log

(
sinh (πTbσ2)

sinh(πTb(u+ σ2))

)
≈ −2kπTbu

2k log

(
t− x+

2

x+
2

)
≈ log

(
t∞ − f(y+

2 )

t∞

)
∼ −4kπT1(u− σ2) ,

2k log

(
1√
f ′(u)

)
≈ 2kπT1u− k log (4πT1t∞) ,

4GN

φ̄r
Sgen,late ≈ 2πT1 − kπT1(u− uHP)

(
1− T 2

b

T 2
1

)
+O(k log(· · · )) .

(3.183)

Then the above inequality leads us to

σ2(u) &
T1 − T0

2kT1

+
u

4

(
1 +

Tb

T1

)2

+
uHP

4

(
1− T 2

b

T 2
1

)
, (3.184)

or equivalently

y+
2 (u) ≡ u− σ2 .

u

4

(
3− 2

Tb

T1

− T 2
b

T 2
1

)
− T1 − T0

2kT1

− uHP

4

(
1− T 2

b

T 2
1

)
, (3.185)

which constrains the size of the bath interval able to reconstruct the black hole interior. By
setting Tb = 0, we recover the results reported in chapter 2 (see eq. (2.108) and eq. (2.109)).
It is also clear that the thermal bath with Tb & T1 obviously breaks the inequality, implying
we cannot find a bath interval with only QML able to recover the information in the black
hole. This conclusion is consistent with that found in the previous subsection. However,
we also want to stress the validity of the condition (3.185). One can find the critical value
around the Page time is not physical, i.e.,

y+
2

∣∣
uPage

≈ T1 − T0

2kT1

3− 2Tb

T1
− T 2

b

T 2
1

3 + 2Tb

T1
− T 2

b

T 2
1

− 1

 . 0 . (3.186)

This invalidity implies the condition (3.185) is only valid for time slices after the Page
time with exp (πT1(u− uPage))� 1. To be precise, the reason is we can only find a small
y+

2 � 1
πT1

instead of y+
2 � 1

πT1
as a solution around Page time. However, the value is so

small that it is actually located in the shock-wave region. As a result, it means we cannot
find a bath interval able to reconstruct the black hole interior with only the region after
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the shock wave at the Page time. One can look at eq. (2.106) as an example of this. The
calculation is similar and we do not repeat it here because the value of small y+

2 in that
region is not really physical after the regularization of the shock-wave. After the Page
time, the critical y+

2 will exponentially increase and move quickly to the linear region as
shown in eq. (3.185). The allowed region for the endpoint of y+

2 is shown in the right plot
in figure 3.11.
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Figure 3.12: Left: the final position of the null surface y+
2 , i.e., (3.190) as the endpoint of

bath interval with the ability to reconstruct the information of the interior of black hole.
Right: the bath temperature dependence of the minimal length k∆σturn, i.e., (3.199), that
is necessary for the reconstruction of the interior of black hole.

Taking the lesson from the zero-temperature case, we can expect that the linear growth
of y+

2 is suppressed with the time evolution and finally y+
2 (u) will approach a null surface.

In order to show that explicitly, we should take the late-time (eku � 1) approximation in
eq. (3.100) and use the following approximations

2k log

(
t− x+

2

x+
2

)
≈ log

(
t∞ − f(y+

2 )

t∞

)
∼ −4kπTby

+
2 + 8π(Tb − T1)

(
1− e−ky

+
2 /2
)
,

4GN
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Sgen,late

(
eku � 1

)
≈ 4GN

φ̄r
Sgen,late(Tb) ≈ 2πTb + 2k log

(
1

πTbε

)
,

(3.187)

where we also keep the second-order contribution e−ky
+
2 /2 because the condition eky

+
2 � 1

is not guaranteed. Combining all these approximations, the condition (3.182) becomes

kTby
+
2 +2 (Tb − T1) e−ky

+
2 /2 . −

(
T1 −

T0 + Tb

2
+ Tb log

(
T1 + Tb

2Tb

))
− k

2π
log

(
6Es
cT1

√
Teff

T1

)
.

(3.188)
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When Tb = 0, we get the final null surface for critical y+
2 as

y+
2

(
eku � 1

) ∣∣
Tb=0

≈ 2

k
log

(
4T1

2T1 − T0

)
, (3.189)

which agrees with the result in chapter 2. For non-zero Tb, the analytical solution is written
as

y+
2

(
eku � 1

)
≈
X + 2Tb W

(
e
− X

2Tb (T1−Tb)
kTb

)
kTb

= ∆y2 , (3.190)

where X represents the right side in (3.188) and W (z) is the Lambert W-function or
product logarithm defined by z = W (z)eW (z). As a summary, the time dependence of
y+

2 (u) is shown in the right plot in figure 3.11. It is clear that the constant ∆y2 indicates
how much early radiation is not necessary in the reconstruction of black hole interior.
Lastly, we show the numerical plot for position of the final null surface as a function of
Tb/T1 in figure 3.12. As expected, it decays with the increase of Tb and stops at a point
extremely near T1 because the value at Tb = T1, i.e., −T1−T0

T1
is smaller than zero.

The Role of Purification
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Figure 3.13: The yellow shadow denotes the minimal bath region including a full half-line
as the purification of thermal bath for reconstructing the interior of the black hole. The
yellow lines represent the necessary bath region at a fixed time slice after Page transition.
Left: the equilibrium case with Tb = T1. Right: Non-equilibrium case where k δσ(u)
increases with the time evolution and approaches a constant ∆σturn defined in eq. (3.199).

In the previous subsection, we focused on a finite bath interval with the bath temper-
ature lower than the critical temperature Tp derived in eq. (3.179) because we wanted to
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omit the purification of the bath itself. To reconstruct the black hole interior at higher
bath temperatures, i.e., to observe a Page transition, we need to include (a portion of)
the purification. For simplicity, we take one endpoint of the finite bath interval on AdS
boundary with σ1 = 0 and ask how large the bath interval [0, σ2] needs to be to reconstruct
the black hole interior. Concretely, we consider the purified bath interval with tempera-
ture Tb > 0 and discuss the condition for QML, a finite bath interval [0, σ2] (where partial
Hawking radiation resides) and the full purification to reconstruct the interior of the black
hole.28 Similar to the equilibrium case shown in eq. (3.65), the two competing channels
showing to figure 3.3b are defined as

SR = Sgen
QES−1 + S2−IR , SN = Sgen

QES′′ + S1−2 + S 1
2

-line . (3.191)

where the condition for reconstruction is decided by SN−SR ≥ 0. Most pieces in the above
two equations have been discussed in the last subsection (see eqs. (3.158) and (3.159)) in
detail except for

S 1
2

-line =
c

6
log

(
sinh (2πTbσIR)

πTbε

)
≈ c

6

(
2πTbσIR + log

(
1

2πεTb
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,

S2−IR =
c

6
log

(
12πEs

c (επTb)2

x+
2 sinh (πTby

+
IR) sinh

(
πTb(y−2 − y−IR)

)√
f ′(y+

2 )

)
.

(3.192)

In the limit σIR →∞, we can rewrite that extra term as

S2−IR ≈
c

6

(
2πTbσIR + log

(
1

2πεTb

)
− 2πTby

−
2 + log

(
12πEs
cε

x+
2 sinh

(
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−
2

)
πTb

√
f ′(y+

2 )

))
,

(3.193)
where we pick up a time slice after the Page transition. The first two terms denoting the
thermal entropy of a half-line can compensate the same divergence appearing in S 1

2
-line and

the last term is the same as the one-point function contribution S2 appearing in the case
without purification, i.e., eq. (3.159). Physically, we can explain the third term 2πTby

−
2 as

28The Tb → 0 limit has some subtleties here. The “purification” of the bath with zero temperature is a
pure state coupled to the bath system by direct product. Thus, the purification of the bath does not help
with interior reconstruction because it is a fully unentangled region and the corresponding R-channel is
defined by SR = Sgen

QES−1 + S2 + S 1
2 -line, which cannot be derived from (3.191) by taking the limit Tb → 0.

The reason is that, for Tb = 0, the holographic (3D) spacetime for bath interval and its purification is
defined by two separated regions rather than a smooth and connected spacetime, as in the Tb 6= 0 case,
where the entanglement between two regions glues the spacetime. However, note that the naive Tb → 0
limit would leave one IR divergent term since SN − SR ∼ c

6 log l̄
σIR

.
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the entanglement from the thermal radiation generated by the thermal bath. That extra
term is traced back to the inclusion of the purification and the negative sign reflects the
fact that the bath interval is entangled with its purification. As a result, we can expect
the introduction of purification can help fulfill the condition for reconstruction as we will
show below.

First, let’s work on the simple linear region with ku � 1. Adding the new contribu-
tions (3.192) in eq. (3.182) and taking the linear approximations in eq. (3.183) again, the
condition SN − SR ≥ 0 can be rewritten as a restriction on the length of the finite bath
interval ∆σ = σ2, i.e.,

σ2(u) &
T1 − T0

2k (T1 + Tb)
+

T1

4(T1 + Tb)

(
u

(
1− Tb

T1

)2

+ uHP

(
1− T 2

b

T 2
1

))
+

log
(

6Es
cT1

)
2π(T1 + Tb)

+ · · · ,

(3.194)
where we also have assumed πT1y

+
2 � 1 (or f(y+

2 ) ≈ t∞). Comparing to the finite bath
interval without purification, i.e., eq. (3.184), we see that introducing the purification
decreases the minimal length of the necessary bath interval for reconstructing the interior
of the black hole, and also slows down the speed of its linear increase with time. More
importantly, it also makes the subsystem consisting of QML, a finite bath interval [0, σ2]
(with only a fraction of the Hawking radiation) and the purification have the ability to
recover the information of the black hole even when Tb > Tp. As with the unreliability
of the linear approximations in the overheated case, we should remark that we also need
to consider some corrections for the above approximate σ2(u) if the temperature of the
thermal bath is too high, i.e., Tb & 3T1.

As one might expect, for much larger times, the linear increase of σ2(u) breaks down.
Since the black hole eventually equilibrates with the bath, we expect qualitatively similar
behavior to the equilibrium case of section 3.2, that is, we expect ∆σ = σ2 to approach half
the (equilibrium) Page time as in eq. (3.69). To derive this explicitly, we focus on the time
derivative of the critical length denoted by ∂uσ

∗
2(u) directly. Noting the time evolution

of the generalized entropy at late-time phase (after Page transition) has been shown in
(3.143), we explicitly start from the approximation of SR − SN = 0 by

2k

(
2πTby

−
2 + log

(
c

6πEsε

(f(u)− x+
2 ) sinh (πTbσ2)

x+
2

√
f ′(u) sinh(πTb(u+ σ2))

))
≈ 4GN

φ̄r
Sgen,late − 2πT0 ,

(3.195)
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and obtain the differential equation

4
(
Teff(y+

2 ) + Tb

)
∂uσ

∗
2 ≈ −Teff(u)

(
1− T 2

b

T 2
eff(u)

)
− 2Tb − 2Teff(u) + 4Teff(y+

2 ) +O(k)

≈ Teff(u)

(
1− Tb

Teff(u)

)2

,

(3.196)

where we denoted the solution of SR−SN = 0 as σ∗2(u) and mainly used the approximation
f ′(u) ∼ 2πTeff(u) (t∞ − f(u)) and associated approximations derived in eqs. (3.98). To
double check, we can focus on the linear region with Teff ≈ T1 again and obtain

∂uσ
∗
2(u) ≈ T1

4 (T1 + Tb)

(
1− Tb

T1

)2

, (3.197)

which agrees with eq. (3.194) as expected. On the other hand, it is also obvious that the
time derivative at late time region approaches zero, i.e.,

∂uσ
∗
2

∣∣
eku�1

−→ 0 , (3.198)

because of the simple approximation Teff

(
eku � 1

)
≈ Tb for the effective temperature. In

other words, the evolution towards equilibrium pushes the minimal length ∆σ2 to be a
constant, which exactly matches what was shown in the equilibrium case in eq. (3.69). As
a result, we can find the minimal length ∆σ2 with purification should approach a constant
whereas the lightcone coordinate y+

2 = u−σ2 reaches a constant as indicated in eq. (3.190)
if we do not include the purification. We sketch a plot to illustrate the time dependence
of ∆σ2(u) when the purification is included in figure 3.13. More explicitly, we apply the
late-time approximation with eku � 1 on SN − SR ≥ 0 and derive the constraint

σ2

(
eku � 1

)
&

1

4kTb

(
2T1 − Tb − T0 − 2Tb log

(
T1 + Tb

2Tb

))
+

log
(

6Es
cT1

√
Tb

T1

)
4πTb

≡ ∆σturn .

(3.199)
As expected, it returns to the result shown in eq. (3.69) for the equilibrium case by setting
Tb = T1. As a final remark, we point out that the minimum of the dimensionless length scale

k∆σturn (at leading-order) is realized at the near-equilibrium case with Tb = T1

(
2T1

T0
− 1
)

.

A simple numerical plot is also shown in the right figure 3.12. The interesting feature we
want to highlight is that when the black hole is evaporating, we need more bath interval
to recover the interior of the black hole, while a thermalized black hole requires less bath
interval in which less of the outgoing Hawking radiation is located.
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In the above, we have seen how including the entire purification of the thermal bath
allows for the reconstruction of the black hole interior. The next natural question is how
much of purifier is really necessary for this reconstruction, as was considered in section 3.2.3
for the equilibrium case. In order to investigate that question, we consider a subsystem
with QML, a bath interval [0, σ2] and a finite interval [0, σ̃3] in the purification (on the time
slice ũ3). As shown in figure 3.3d, the generalized entropy for the two competing channels
are defined as

SR = Sgen
QES−1 + S2−3 , SN = Sgen

QES′′ + S1−2 + S3 , (3.200)

where the three endpoints are taken as a point on the AdS boundary with y±1 = u (i.e.,
σ1 = 0), the bath point y±2 = u∓σ2 in the region II and the point with ỹ±3 = ũ3± σ̃3 in the
purification region, respectively. As before, the two terms Sgen

QES−1, S
gen
QES′′ + S1−2 are given

by eqs. (3.159) and (3.158), respectively. We only need to consider two new ingredients,
i.e.,

S3 =
c

6
log

(
sinh (2πTbσ̃3)

πTbε

)
,

S2−3 =
c

6
log

(
12πEs

c (επTb)2

x+
2 cosh

(
πTbỹ

+
3

)
cosh

(
πTb(y−2 + ỹ−3 )

)√
f ′(y+

2 )

)
.

(3.201)

which can be derived from the counterparts with point y±3 in the region IV by the map
πTbỹ

±
3 = iπ

2
− πTby

±
3 . First of all, it is easy to find that we can retrieve the results in the

last subsection (see eq. (3.192)) where we include the full purification region, by pushing
the third point σ̃3 to the IR cut-off surface with σ̃3 → σIR ∼ +∞ (i.e., approaching the null
surface in the spacetime of bath’s purifier). More explicitly, we can define the difference
due to the finite σ̃3, i.e.,

(SN − SR)− (SN − SR)
∣∣
σ̃3→∞

=
c

6
log

(
sinh (2πTbσ̃3)

2eπTby
−
2 cosh

(
πTb(ỹ+

3 )
)

cosh(πTb(y−2 + ỹ−3 ))

)
,

(3.202)
as ∆SNR-NR. Equipped with the above difference for the two configurations in figures 3.3c
and 3.3d , we can discuss the result of cutting part of the purification in the reconstruc-
tion. Noting that the dependence on σ̃3 only appears on ∆SNR-NR, one can easily find the
derivative of SN − SR satisfies

∂ (SN − SR)

∂σ̃3

=
∂ (∆SNR-NR)

∂σ̃3

=
c

6

(
2 coth(2πTbσ̃3)− tanh

(
πTb(ỹ+

3 )
)

+ tanh
(
πTb(y−2 + ỹ−3 )

))
≥ 0 ,

(3.203)

135



due to the simple facts that coth x ≥ 1 for x ≥ 0 and | tanhx| ≤ 1. The above positive
derivative shows that SN − SR monotonically increases with the increase of σ2, implying
that it is easier to reconstruct the black hole interior by including a larger interval in the
bath. We can then rewrite the condition for this subsystem to reconstruct the black hole
interior as

SN − SR = (SN − SR)
∣∣
σ̃3→∞

+ ∆SNR-NR ≥ 0 , (3.204)

where (SN − SR)
∣∣
σ̃3→∞

is positive if and only if the condition in eq. (3.184) or (3.199) is
satisfied. Because the maximum of ∆SNR-NR is defined as σ̃3 → ∞ and is zero, we always
have ∆SNR-NR < 0 for a finite σ̃3, indicating that we need to include more bath interval than
the critical length σ∗2(u) (derived in eq. (3.184) or (3.199)) in order to make the channel
with a finite portion of the purification recoverable. Recalling the σ2-dependence of eq.
(3.195), we can find the following decomposition

SN − SR ≈
c

6

(
2πTby

−
2 + log

(
c

6πEsε

(f(u)− x+
2 ) sinh (πTbσ2)

x+
2

√
f ′(u) sinh(πTb(u+ σ2))

))
+ ∆SNR-NR + · · · ,

(3.205)
where we ignored the extra terms without dependence on σ2, σ̃3. Then we can simply
take the results in the above subsection to derive the necessary conditions for σ2 and σ̃3.
However, it is more convenient to define the length of the finite bath interval beyond the
critical value as29

δσ2 = σ2 − σ∗2(u) , (3.206)

which helps us to show the effect of including more bath interval and cutting part of the
bath purifier. It is straightforward to rewrite the necessary condition (3.204) to support
the recoverable channel for the linear region (ku� 1) as

2π (T1 + Tb) δσ2 + log

(
sinh (2πTbσ̃3)

2eπTby
−
2 cosh

(
πTb(ỹ+

3 )
)

cosh(πTb(y−2 + ỹ−3 ))

)
≥ 0 , (3.207)

by noting the approximation (3.183) and its result (SN − SR)
∣∣
σ̃3→∞

= c
3
π(T1 + Tb)δσ2.

Noticing the other approximation (3.100) and the simple relation (SN − SR)
∣∣
σ̃3→∞

=
2cπ
3
πTbδσ2 in the late-time region, one can find the condition for reconstructing the in-

terior of black hole reads

4πTbδσ2 + log

(
sinh (2πTbσ̃3)

2eπTby
−
2 cosh

(
πTb(ỹ+

3 )
)

cosh(πTb(y−2 + ỹ−3 ))

)
≥ 0 , (3.208)

29We hide the complicated expressions which are not shown in (3.205) by using σ∗2(u). For the equilibrium
case discussed in section 3.2.3, we considered a more general set-up with δσ2 = σ2 − σ1 −∆turn where the
critical value is just the constant ∆turn.
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whose further reductions depend on the sign of the terms inside cosh functions and are
similar to what have done in section 3.2.3. For example, if we assume all length scales
on the above are larger than 1

πTb
, we can simply find the length of extra bath interval

[σ∗2(u), σ2] is constrained by

δσ2 &

{
Tb

2(T1+Tb)

(
|ỹ+

3 |+ |y−2 + ỹ−3 |+ y−2 − 2σ̃3

)
, if ku� 1

1
4

(
|ỹ+

3 |+ |y−2 + ỹ−3 |+ y−2 − 2σ̃3

)
, if eku � 1

. (3.209)

Then it is easy to find that the RHS of the above equation can be reduced to four cases
where one of them vanishes, implying we need to consider the regime with 2π(T1+Tb)δσ2 �
1, and other three cases at late-time region retrieve the results derived in eq. (3.86). Finally,
we also comment the above linear dependence would like appear for the time region between
the two limits due to the complicate dependence of entropy on σ2. However, if we only
focus on a small perturbation with δσ2/σ

∗
2 � 1, (Teff + Tb)δσ2 � 1, we can calculate the

derivative of (SN − SR)
∣∣
σ̃3→∞

with respect to σ2 and find the following expected result

2(Teff(y+
2 ) + Tb)δσ2 & Tb

(
|ỹ+

3 |+ |y−2 + ỹ−3 |+ y−2 − 2σ̃3

)
, (3.210)

where the two terms on the RHS describe the entropy of radiation located on the small
region [σ∗2, σ2] and emitted from the black hole and the thermal bath, respectively.

Starting from the subsystem with QML, bath interval with the critical bath length σ∗2
and all purification, the above inequalities in eqs. (3.209) and (3.210) tell us how much bath
interval we need to include if we want to exclude part of the purification in σ̃ = [σ̃3, σ̃IR].
Needless to say, we can interpret these inequalities in the opposite way, e.g., 30

2σ̃3 & |ỹ+
3 |+ |y−2 + ỹ−3 |+ y−2 − 2

Teff(y+
2 ) + Tb

Tb

δσ2 . (3.211)

Then we can learn how much bath purifier is necessary for reconstruction for a fixed bath
interval [0, σ2] plus QML. In particular, we specify an interval in the purifier by both its
length σ̃3 and the time slice ũ3 on which it is placed in the spacetime of purification region.
First, we observe from eq. (3.211) if |ũ3| is very large both of the two expressions with
absolute values on the right-hand side would be very large. That is, for very large |ũ3|, we
would need a large interval in the purifier with σ̃3 ∼ |ũ3| to recover the black hole interior.

30Although eqs. (3.86) and (3.211) look very similar, it is important to keep in mind that the assumptions
leading to the two results are different. While for eq. (3.86) we simply needed to assume that all lengths
we are dealing with are larger than the thermal scale, for eq. (3.211) we further needed to restrict to the
cases where δσ2 � σ2.
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Varying over the time slice ũ3, we find that the “optimal purifier” with smallest length is
determined by

σ̃3 ≈
1

2
y−2 −

Teff(y+
2 ) + Tb

2Tb

δσ2 , with
∣∣∣ũ3 +

1

2
y−2

∣∣∣ ≤ Teff(y+
2 ) + Tb

2Tb

δσ2 . (3.212)

We note that this expression simply reduces to the equilibrium case shown in the second
case in eq. (3.86) after taking either the late-time limit or setting Tb = T1. Hence the
present results are analogous to those illustrated for the equilibrium case in figure 3.4.
That is, from eq. (3.212), the optimal purifier lies anywhere on a band of time slices

centered at ũ3 = −y−2 /2 and with width ∆ũ3 =
Teff(y+

2 )+Tb

2Tb
δσ2. In this band, the length of

the purifier interval is given by the expression above. Therefore when δσ2/σ2 is small, the
optimal purifier is simply an interval of length σ̃3 = y−2 /2 on the time slice ũ3 = −y−2 /2.

In this subsection, we have discussed the necessity of the thermal bath’s purification
when the bath temperature is beyond the critical temperature and also the constraint on
the length of the bath interval and its purifier. To complete the explorations on the role of
purification, the last question we ask is what is the minimal length of the bath’s purifier. Of
course, we have shown it is zero when Tb ≤ Tp. For a bath system with higher temperature,
it is natural to expect that the length of the bath’s purifier is minimal when the entire bath
interval is included in the subsystem for reconstruction. Making some more effort, one can
find that that expectation is true by showing ∂σ1 (SN − SR) ≤ 0 and ∂σ2 (SN − SR) ≥ 0. It
means that the best for reconstruction is including all the bath interval with σ ∈ [0, σIR].
In the limit σ2 → σIR ∼ +∞, one can read the entropy two completing channels as

SR = Sgen
QES−1 + S3−IR , SN = Sgen

QES′′ + S1−IR + S3 , (3.213)

where the entropy for the two-point function S1−IR is defined in eq. (3.162) taking σ1 =
0, σ2 = σIR and the last new ingredient S3−IR is derived as

S3−IR =
c

3
log

(
sinh (πTb(σ̃IR − σ̃3))

πTbε

)
. (3.214)

Similar to the calculations for critical temperature, one can find the condition SN − SR is
rewritten as

2k

(
log

(
6Es
c

x+
1 sinh(πTb(−y+

IR)) sinh(πTb(yIR − y−1 ))√
f ′(y+

1 )

)
+ 4πTbσ̃3 − 2πTbσ̃IR

)
& 2π (Teff (u)− T0) ,

(3.215)
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where we can easily see that more purification interval is more helpful for the reconstruction.
Taking σ1 = 0 and late-time limit eku � 1, we can finally find the minimal purifier is
constrained by

σ̃3 &
1

4kTb

(
3Tb − 2T1 − T0 + 2Tb log

(
T1 + Tb

2Tb

))
− 1

4πTb

log

(
6Es
cT1

√
T1

Tb

)
+ · · · ,

(3.216)
which is irrelevant to the choice of ũ3. And note that the RHS is positive when Tb & Tp
as we illustrated around eq. (3.179).

3.4 Discussion

In this chapter, we continued our investigation of the AEM4Z model [1, 11] describing a
joining quench in a doubly holographic framework. The most interesting questions con-
cern the two-dimensional dynamics describing black hole evaporation (or growth). Invoking
holographic duality (twice), the generalized entropy becomes purely geometric and its eval-
uation is tractable in this dynamical setup. In the three-dimensional holographic dual, the
black hole geometry contains a Planck brane where Jackiw-Teitelboim gravity is local-
ized. At finite temperature, there is a new ingredient: a horizon in the three-dimensional
bulk, beyond which the second asymptotic boundary purifies the two-dimensional ther-
mal state in the bath. Despite this difference, we have shown that the Page curve still
exhibits three distinct phases (quench, scrambling, and late-time equilibration), as in the
zero-temperature case. However, there are several new qualitative features in both the
scrambling and late-time phase.

As in the zero temperature case, the quantum extremal surface remains at the bifur-
cation point in the initial quench phase and then jumps out from the original horizon in
the scrambling phase where the generalized entropy shows a(n almost) linear increase with
the physical time. From the first holographic level, the increase in entropy is due to the
two-way exchange of quanta between the bath and black hole, which is why the linear
increase is proportional to T1 +Tb. From the perspective of the doubly holographic model,
the increase in generalized entropy is related to the end-of-the-world brane falling deeper
into the bulk towards the horizon of the three-dimensional black hole.

After the Page time, the system enters the late-time phase in which the black hole
approaches an equilibrium state with the bath. However, the evolution of the black hole is
determined by the temperature of the thermal bath. For a bath with a temperature which
matches that of the post-quench black hole Tb = T1, this equilibration is immediate and
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the generalized entropy is constant throughout this phase. For a lower temperature bath
with Tb < T1, the black hole evaporates and loses some of its mass, similar to the zero
temperature case in chapter 2. Since the black hole not only emits Hawking radiation but
also receives the thermal radiation from the bath, the black hole can also grow when the
bath temperature satisfies Tb > T1. At extremely late times, the system will finally equili-
brate with the bath temperature, and the entanglement entropy approaches its equilibrium
value. Figure 3.10 illustrates these three possible scenarios.

We also found that the position of the late-time extremal surface relative to the event
horizon of the black hole depends on the temperature of the bath. In the evaporating black
hole models (with a bath at zero temperature) of chapter 2, the late-time extremal surface
lies inside the horizon – in fact, it lies inside the horizon throughout the entire evolution
of the black hole. Correspondingly, the information of the region outside of the black
hole could not be reconstructed by QML+ bath. On the other hand, in the equilibrium
configuration studied in [62], the extremal surface is located outside of the event horizon.
The equilibrium case studied in section 3.2 reproduces this behavior with the QES located
outside the event horizon – see eq. (3.55). Hence in these cases, the information just outside
of the event horizon could be reconstructed by QML+ bath after the Page time. Moreover,
at any temperature, the black hole eventually equilibrates with the bath, and the system
is qualitatively similar to the equilibrium case. Indeed, for any temperature, after a time

of ku ≥ log
(∣∣∣1− T 2

1

T 2
b

∣∣∣√πT1

8k

)
, the late-time extremal surface crosses the horizon and stays

outside as the system equilibrates. Furthermore, for black hole temperatures T1 very close

to the bath temperature Tb, i.e., |Tb−T1|
T1

≤
√

2k
πT1

exp
[
T1−T0

2T1

]
, the QES is already outside

of the event horizon at the Page time. One may ask why the behaviour of our black holes
where only one side is in equilibrium with the bath matches that of the eternal two-sided
black holes studied in [62], where there is an equilibrium with a thermal bath on both
sides. However, this is relatively obvious from the holographic perspective since the HRT
surfaces are really probing identical portions of the three-dimensional bulk geometry in the
island phase for both cases.

As noted above, the appearance of QES outside of the horizon was first found in [62] for
an eternal AdS2 black hole coupled with a thermal bath. This same behavior was also seen
in higher dimensional holographic systems [60, 97]. A similar phenomenon is also found
at black holes in asymptotically flat spacetime, e.g., [65, 69]. A dynamical QES crossing
the horizon (similar to our present results) was also found for an evaporating black hole
in JT gravity [70]. As discussed around eq. (3.56), while the QES may extend outside of
the horizon, it is never very far from the horizon. These results may imply that we should
consider some quantum corrections to the event horizon in order to extend the boundary of
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the interior of black hole, e.g., taking the stretched horizon [150] as a surrogate for the event
horizon. Then the QES can be seen to stay outside the classical event horizon but inside
the stretched horizon [65]. However, let us add that in the higher dimensional holographic
systems studied in [59, 60], this effect can be understood in terms of entanglement wedge
nesting [133, 151]

After deriving the Page curve with three phases as shown in figure 3.10, we further
focused on investigating the ability of various subsystems consisting of QML and different
parts of the bath interval to reconstruct the black hole interior – see figure 3.3 for the
competing channels for every case. As we first demonstrated in the equilibrium case of
section 3.2, the reconstruction of black hole interior always requires at least part of the
purification of the bath. Of course, the key difference from the scenario with the evaporat-
ing black hole coupled to a zero temperature bath is that our bath here begins in a mixed
state before the quench whereas in the previous studies the bath begins in a pure state
(i.e., the CFT vacuum). Hence, part of the purification of the bath becomes essential for
interior reconstruction when the bath temperature is higher than the critical temperature
Tp ∼ 1

2
(T1 + T0) . T1, as given in eq. (3.179). This requirement arises for two reasons:

First, the thermal bath radiation in the interval containing the Hawking radiation must
be purified to distill information about the black hole interior. Second, after the quench,
thermal radiation from the bath falls into the black hole entangling the black hole interior
with radiation in the purifier. That is, part of the entanglement initially shared between
the bath and its purifier is transferred to the black hole interior and the purifier. So infor-
mation about the black hole interior is spread to the purification although, of course, none
of the Hawking radiation enters this region.

A simple example where the importance of the purifier was seen was the case where
the black hole and the bath were in equilibrium, i.e., with Tb = T1 > Tp. In this case, the
reconstruction of the black hole interior with QML, a finite bath interval [σ1, σ2] at some
time u, and a restricted portion [0, σ̃3] of the purifier at another time ũ3 was considered
in section 3.2.3. There, the bound (3.86) on the purifier interval size σ̃3 necessary for
reconstruction can be given a physical interpretation in figure 3.4 as the requirement that
[0, σ̃3] captures purifier quanta entangled with out-going thermal bath radiation in 0 <
y− < y−2 , shown in red in the left panel of figure 3.4. Given the thermofield double
preparation of the bath and purifier, the relevant purifier quanta are those marked by
dashed wavy lines in the right panel of figure 3.4. The bound (3.86) then corresponds
to the minimal interval in the purifier which captures these quanta. Namely, if the bath
interval has a length that is only above-critical by a few thermal lengths, then the requisite
purifier interval must capture essentially all of the quanta marked in the right panel of
figure 3.4, e.g., see the blue interval. If the bath interval exceeds the critical length with
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a large margin σ2 − σ1 − ∆turn, then the amount of the marked quanta that must be
captured by the purifier interval is reduced proportionately, e.g., see the green interval.
This discussion, however, leaves open the question of why the 0 < y− < y−2 section of bath
thermal radiation is important to begin with. One might argue that the bath radiation in
y−1 < y− < y−2 obfuscates the Hawking radiation captured by the bath interval [σ1, σ2], so
that purifying this section of bath thermal radiation is beneficial. One may also argue that
0 < y− < y−QES contains thermal bath radiation eaten by the quantum extremal island, so
its purifier would contain information about the island. But, it also seems that the bath
radiation in the in-between range y−QES < y− < y−1 is not pertinent. In particular, if one is
free to discard the purifier quanta for this radiation, then it should be possible to reduce
the interval length of [0, σ̃3] beyond what is allowed by (3.86) in some cases where σ2 − σ1

exceeds ∆turn by many thermal lengths.

One may ask why the previous effects are not always important. That is, why is there
a critical bath temperature Tp below which no portion of the purifier is needed to recover
the black hole interior. Certainly, there are many physical effects that come into play here,
e.g., the redundancy of the encoding of the black hole interior in the Hawking radiation
(see section 2.2.3), but remarkably the critical temperature Tp can be derived with the
following simple intuitive argument:31 Recall that in the usual black hole evaporation
(with Tb = 0), the Page phase arises when the naive entropy of the Hawking radiation
exceeds the Bekenstein-Hawking entropy of the black hole. Of course, we now understand
that this conflict is resolved by the formation of a quantum extremal island, and hence
a portion of the black hole interior is reconstructible in this phase. When the black hole
is coupled to a finite temperature bath, the appearance of the critical temperature Tp
indicates that islands form for lower bath temperatures but not for higher temperatures,
when keeping track of modes in the mixed state of the bath (along with QML). But in turn,
we can understand this as indicating that for Tb < Tp, one reaches an inconsistency where
the naive entropy of the bath (including the Hawking radiation and also QML) exceeds
the entropy of the black hole and the bath purifier. But no such inconsistency arises for
Tb > Tp. Examining this latter perspective in more detail below then allows us to derive
the critical temperature Tp.

That is, we consider the necessity of islands at late times in the evolution of the system.
First, we observe that the (coarse-grained) Bekenstein-Hawking entropy provides a bound

31This argument and the following calculations are similar in spirit to the calculations in Appendix B
of [10]. We thank Geoff Penington for discussing this point with us.
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on the (fine-grained) entropy of QMR, with32

SQMR
. SUV + SBH(Teff) −−−→

u→∞
SUV + SBH(Tb) . (3.217)

Here, SUV denotes a UV-divergent contribution due to the separation between QMR and
the bath, Teff is the effective temperature (3.92) of the JT black hole on the right, and SBH

is the Bekenstein-Hawking entropy (3.45). The argument now proceeds as follows: Purity
of the complete system, including the bath’s purifier, demands

SQML∪ bath = SQMR∪ bath ≤ SQMR
+ Sbath , (3.218)

where bath denotes the bath’s purifier. Here, the inequality follows from the subadditivity
of entanglement entropy. Now let us begin by assuming the absence of any islands, in
which case,

SQML∪ bath ≈ SBH(T0) + Sbath . (3.219)

Note that here, we are implicitly including the entire bath region and so we must regulate
the size of the latter to avoid having an IR divergence in Sbath. Further, combining the
bound (3.217) with the subadditivity inequality in eq. (3.218), we also have

SQMR∪ bath ≤ SQMR
+ Sbath . SUV + SBH(Tb) + Sbath . (3.220)

It remains to approximate the difference Sbath−Sbath. Just after the joining quench, Sbath

can be expressed as the sum of three contributions: Sbath, the UV contribution SUV, and
a shock contribution,33 i.e.,

Sbath(u = 0) = Sbath + SUV + Sshock , where Sshock ≈
c

6
log

ES
c T1

. (3.221)

Now while Sbath remains constant, Sbath changes34 due both to the absorption of Hawking
radiation at temperature Teff and the loss of thermal radiation to the black hole (purified

32Violation of the Bekenstein area bound in the island region is a necessary condition for the appearance
of QEIs [152]. In the following argument, we begin by assuming that it holds and so no QEI forms, even
in the far future.

33To obtain the following expression for Sshock, we may compare, for example, the x± ∈ II and x± ∈ IV
cases of eq. (3.32). Further, we have chosen 1/T1 to be a ‘typical’ length scale for the x+ coordinate. Other
choices differing by O(1) factors from this will not significantly modify the result of this argument.

34Alternatively, one may discard from this argument, all of the ‘bystander’ thermal quanta entangled to
each other in the bath and purifier regions, which have not yet fallen into the black hole. In this case, Sbath

and Sbath both increase, respectively due to the absorption of Hawking radiation and being entangled with
bath radiation lost to the black hole. What is important is that the difference ∂u(Sbath − Sbath) evolves
according to the RHS of (3.222).
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by quanta in Sbath) at temperature Tb. To be precise, we have

∂uSbath ≈
πc

6
(Teff − Tb) . (3.222)

Now combining eqs. (3.221) and (3.222), we find at late times

lim
u→∞

Sbath − Sbath ≈ SUV + Sshock +
πc

6

∫ ∞
0

du (Teff − Tb) (3.223)

≈ SUV +
c

6
log

ES
c T1

+
πc

6k

[
T1 − Tb +O

(
(T1 − Tb)2

T1

)]
Finally, combining eqs. (3.219) and (3.220) together with eq. (3.223), we find that our
assumption of no islands leads to

Tb &
T0 + T1

2
+

k

2π
log

ES
cT1

, (3.224)

where we recognize the RHS as the expression (3.179) for Tp. Thus, Tp corresponds to the
bath temperature above which the inequality (3.218) can be satisfied at late times without
introducing any island. Conversely, to satisfy the entropy bound (3.218) for Tb < Tp, an
island must be introduced at sufficiently late times and as a result, the black hole interior
may be reconstructed from QML and the bath alone, without the bath’s purifier. Alterna-
tively, for Tb > Tp, reconstructing the black hole interior requires additional information
from the purification. This argument provides further intuition for understanding the crit-
ical temperature Tp than perhaps offered by the initial calculations leading up to (3.179)
in section 3.3.2.

Furthermore, for the lower bath temperatures Tb < Tp, we found that with the subsys-
tem comprising only QMLand a finite bath interval, as shown in figure 3.3c, it is possible
to reconstruct the black hole interior in section 3.3.2. The length of the minimal bath in-
terval for reconstruction increases with the physical time and approaches a linear increase
as shown in eqs. (3.184) and (3.190), and as summarized in figure 3.11. After including
the purification in the subsystem as presented in figures 3.3b and 3.3d, we considered the
reconstruction of the black hole interior in section 3.3.2 with a general bath temperature
Tb, i.e., interior reconstruction also becomes possible for Tb > Tp. We first found that
the black hole interior is reconstructible with any bath interval above the shock-wave with
a length larger than ∆turn ∼ T1−T0

4kT1
, given in eq. (3.69) for the equilibrium case. For the

evaporating and thermalized black hole, the interval length required for interior reconstruc-
tion increases with time as shown in (3.196). Since late time behavior should be similar
to the equilibrium case, one finds as expected, the minimal interval length for late times
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asymptotes to a finite constant which is defined as ∆σturn in eq. (3.199). The two above
results are illustrated in figure 3.13.

Recent explorations on QES and Page curves inspire the island formula for the quantum
systems coupled to gravity [1]. Although we do not explicitly apply the island formula in
our analysis, it is clear that the island region emerges in the recoverable channel, as shown
in figure 3.3. Without knowledge of the island formula, we can also derive the same results
and desired Page curve because we can apply the RT formula in the doubly holographic
models. In other words, RT formula knows about the existence of the island. On the other
hand, it is also possible to get the right answer by noting the entropy of a subsystem in
a pure state equals the entropy of its complementary part. For example, we can easily
find that the entropy of QMR after Page transition is defined by SQES−1 with y1 on the
AdS boundary. Taking the pure state as the whole system, we simply know SQES−1 also
defines the generalized entropy of QML, entire bath interval, and its purification (see figure
3.3a ), which implies the Page curve for that subsystem. However, this approach does not
work for mixed states because the entropy of a subsystem in a mixed state generally does
not agree with the entropy of its complementary part. Let’s construct a mixed state as
an example by tracing out the bath’s purification. Then the complementary subsystem of
QMR consists of QML and only the entire bath interval. Correspondingly, the generalized
entropy of this complementary system is defined by the minimal entropy between the two
channels (see figure 3.3c with σ2 → σIR )

SN = Sgen
QES′′ + S 1

2
-line , No Island ,

SR = Sgen
QES−1 + SIR , With Island .

(3.225)

It is obvious that neither of the above two terms equals the entropy of QMR, i.e., Sgen
QES−1.

More importantly, we have shown SN is always preferred when Tb & Tp, which indicates
the entanglement wedge of the corresponding subsystem with QML and any thermal bath
interval does not contain the island region.

As a final remark, let us comment on an important lesson from our results for the
reconstruction of the black hole interior. It is obvious that the emitted Hawking radiation
carries out information about the black hole. Although all the Hawking radiation is only
stored in the finite interval [0, σshock(u)), our studies on the reconstruction for a black hole
coupled to a finite temperature bath indicate that the information describing the black
hole interior is not contained solely within this part of the bath (along with QML). Rather
we see that in this situation, the black hole and Hawking radiation (i.e., [0, σshock(u)), the
bath region) are entangled with a complicated environment comprising QML, the remaining
bath interval and the bath purifier, and hence the information about the black hole interior
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is distributed in a complicated way over the whole system. Of course, as identified above,
the new physical mechanism contributing to the information flow in the present situation is
the incoming radiation falling from the bath onto the black hole, which entangles the black
hole interior with the purifier (and possibly distant regions in the finite temperature bath).
For example, we found that when the bath temperature satisfies Tb > Tp, reconstruction
always needs the purification even if we already have all of the Hawking radiation and QML.
On the other hand, we also found that the QML plus only a smaller bath interval [0, σ2(u)]
with eπT1(u−uPage) � 1 and σ2 < σshock(u) is also sufficient to recover the information of
the black hole interior when Tb < Tp in section 3.3.2 (see the right panel of figure 3.11).
This means that we actually do not require all of the Hawking radiation. The information
inherited in the ignorable (early-time) Hawking radiation located at [σ2, σshock] is shared
by other parts of the system. This reflects the redundancy of the encoding of the black
hole interior in the Hawking radiation discussed in chapter 2.
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Chapter 4

Conclusions and outlook

The study of black holes has sparked exciting progress in our understanding of quan-
tum field theory in curved spacetime and quantum gravity. Over the last few years, new
tractable models of black hole evaporation and equilibration have allowed us to explicitly
compute the Page curve during these processes. In this thesis, we employed the AEM4Z
model to study the structure of information during black hole equilibration and black hole
evaporation. The AEM4Z model consists of a doubly holographic setup in which a ther-
mofield double state QML+QMR is dual to a JT gravity black hole plus holographic CFT
matter. The extra layer of holography allows for a dual description of the CFT matter
in terms of a bulk AdS3 gravity. Crucially, this simplifies the computation of the CFT
corrections to the generalized entropy. Indeed, the CFT entropy in this setup is calculated
via the HRT prescription in the bulk, and becomes a purely geometric calculation.

The QMR system is then coupled to a bath consisting of the holographic CFT on a
half line. The bath CFT can be prepared in the vacuum state as in chapter 2, or at
finite temperature as in chapter 3. In the zero temperature case, the Hawking radiation
emitted by the black hole is absorbed by the bath and the black hole evaporates until at
very late times the Hawking temperature is of the order of the quantum fluctuations and
the semiclassical picture breaks down. For baths with non-zero temperature, the thermal
radiation coming from the bath eventually balances out the Hawking radiation to reach an
equilibrium state with non-zero Hawking temperature.

In this doubly holographic model, the extra layer of holography allows for an easy
computation of the generalized entropy. By comparing the generalized entropy of the
different candidate quantum extremal surfaces, we were able to compute the Page curve
of QMR, or one side of the double sided black hole, and observe three phases in the
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evolution of the generalized entropy: the quench phase, the scrambling phase and the late-
time phase. During the quench phase, the QES remains at the bifurcation point, and the
generalized entropy increases linearly, due to the Hawking quanta crossing the asymptotic
boundary between the AdS2 bulk and the bath. The intermediate phase corresponds to
the scrambling phase, in which the QES jumps perturbatively away from the bifurcation
surface. During this phase, the QML+bath system has enough information to reconstruct
a very small part of the black hole interior. The evolution of the generalized entropy in this
phase depends on the parameters if the problem, but in most cases exhibits a small initial
decrease and then continues to grow until the Page time. After the Page time, the QES is
located far away from the bifurcation surface, past the infalling shockwave caused by the
quenching between black hole and bath. In this phase, a large portion of the black hole
interior is encoded in QML+bath which indicates that most of the information required for
interior reconstruction has been transfered from QMR to the bath via Hawking radiation.
The generalized entropy in this phase asymptotes towards its equilibrium value, starting
off with a linear decrease (increase) for baths with temperature lower (higher) than the
black hole.

Repeating the same calculations with different intervals of the bath, it is also possi-
ble to study which parts of the radiation are essential for interior reconstruction. In the
evaporation model (Tb = 0), we began by showing that the portion of the bath past the
outgoing shockwave is not important for reconstructing the black hole. Further, we also
studied how much of the late-time radiation can be omitted while still being able to recon-
struct in black hole interior, and found the profile of the smallest interval [σPage(u), σshock]
anchored at the shock that would contain enough information to reconstruct the black
hole interior. A similar analysis was performed to find the smallest intervals [0, σturn(u)]
anchored at the asymptotic boundary between the bath and the bulk AdS2. Comparing
the two results, and looking at time slices of the bath that are late enough, the intervals
[0, σturn(u)] and [σPage(u), σshock] don’t overlap, an indication that there is a redundancy in
the encoding of the black hole interior in the Hawking radiation. At later times, there
are multiple disjoint intervals that contain enough information for interior reconstruction.
This redundancy is an important characteristic of quantum error correcting codes and
holography [137, 138, 139].

For finite temperature baths, the CFT was prepared in a thermofield double state, and
the bath purifier plays an important role in the reconstruction for temperatures above a
critical temperature Tp. Below the temperature Tp, the purifier is not needed to reconstruct
the interior of the black hole, while for temperatures above Tp, at least some portion of the
purifier is needed for interior reconstruction. In the equilibrium case (Tb = T1), the QES
after the Page time is static and the results agree with the setup in [62] where the bath
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and the black hole are prepared in equilibrium. Notably, the QES is located outside of the
event horizon, in contrast with the evaporating case of chapter 2. For a finite temperature
bath, the black hole equilibrates with the bath and the results asymptote towards the
equilibrium case. For example, as the temperature Teff (u) of the black hole approaches
Tb, the QES crosses the event horizon at a critical temperature Tc1 (or Tc2) close to Tb
and remains outside of the event horizon for the remainder of the equilibration process.
More generally, we repeated the analysis of which intervals of the bath (and purifier) were
required to reconstruct the interior of the black hole, and the results interpolate between
the zero temperature case and the equilibrium case.

In the analysis of which intervals of the bath (and bath purifier) are needed to recon-
struct the interior of the black hole, the results are in line with the intuition that the
information is carried by massless quasi-particles traveling at the speed of light. This can
be seen for example from the profile of σPage(u) of the earliest time at which the radiation
can be ignored in the early time protocol in section 2.2.1, or the profile of the portion of
the bath purifier needed for interior reconstruction in figure 3.4.

The recent studies of black hole evaporation and equilibration have brought great
progress in our understanding of entanglement and geometry in quantum gravity, and
have provided a partial resolution to the black hole information paradox, but there remain
many open questions that are worth investigating. The evaporation and equilibration mod-
els described in this thesis rely on 2D JT gravity, but it would be worthwhile to search for
other higher dimension generalizations of these models. Some progress in this direction can
be found in [8, 59, 60] where higher dimensional doubly holographic setups were studied
and, similar to the models studied in this thesis, quantum extremal islands naturally arise
from the HRT prescription – see also [67] for an analysis of an evaporation model in three
dimensions.

As was mentioned in the discussion sections, the analysis of the present work focused on
the generalized entropy of the QML + (portions of the) bath system and its corresponding
Page curve. A similar analysis can be done for the Page curve of the Hawking radiation
without the QML system. Interestingly, the HRT prescription in this setup naturally leads
to the island formula proposed more generally in [1]. Further work [14, 98] showed that the
island formula can be derived from the gravitational path integral by considering wormhole
geometry saddle points in the replica calculation. This surprising result indicates that
the semiclassical path integral somehow contains the necessary information about non-
perturbative corrections that would restore unitarity to the naive leading order entropy
calculation.

Remarkably, the wormhole saddles in the gravitational path integral that are crucial to
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recovering the Page curve in these doubly holographic models lead to a non-factorization
of the path integral over disconnected boundaries [14, 15]. This factorization problem
suggests that these gravitational models are necessarily dual to an ensemble of quantum
theories, similar to the conjectured duality between SYK and pure JT gravity. Studies of
the wormhole saddles of the gravitational path integral and their relation with ensemble
theories have seen a resurgence since this remarkable discovery - see for example [79, 84,
153, 154, 155, 156, 157, 158, 159, 160].

Furthermore, while the current models of black hole evaporation and equilibration show
that the information of the black hole interior is encoded in the radiation, so far, under-
standing how this information is encoded in the radiation remains to be understood. In
the semiclassical models that have been studied thus far, the precise details of how the
information escapes the black hole remain a mystery. In the same spirit, these semiclassi-
cal models provide no information about the black hole microstates that account for the
entropy of the corresponding black hole. In the boundary perspective (see figure 1.2), the
single sided black hole corresponds to the thermal state of QMR after tracing out QML, but
the precise bulk interpretation of the states in this ensemble remains to be explored, and
would likely require more than a classical bulk description to be understood - see [161] for a
recent study of boundary states in BCFT and their interpretation as black hole microstates
in the evaporating models.

In closing, we comment on some lessons that can be drawn by studying another im-
portant measure of entanglement that has been widely studied in holography: complexity.
There are several proposals for holographic complexity, but the one we will focus on in the
present discussion is the complexity=volume (CV) conjecture [162, 163]. The CV conjec-
ture states that the complexity of the state in the boundary theory defined on a time slice
S is dual to the volume of the maximal codimension-one bulk surface anchored to S on the
asymptotic boundary,

CV (S) = max
∂B=S

[
V (B)

GN `

]
, (4.1)

where GN is the Newton’s constant of bulk gravity theory and ` is some undetermined
length scale. For boundary subregions, the subregion-CV conjecture [164, 165] proposes
that the complexity of the quantum state defined on a boundary subregion R is given by
the volume of a maximal codimension-one bulk surface extending from R on the asymptotic
boundary to the corresponding Ryu-Takayanagi (RT) surface ΣR in the bulk,

Csub
V (R) = max

∂B=R∪ΣR

[
V (B)

GN `

]
. (4.2)

In the setting of the AEM4Z model, the subregion complexity of the QML+intervals of
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the bath (and purifier) would correspond to the volume of the minimal surface anchored
at the RT surfaces and the intervals. These maximal volume surfaces correspond to the
shaded regions in, e.g., figures 2.1 and 3.1. A quick glance at these figures shows that at
the phase transitions, there is a discontinuity in the complexity of the Hawking radiation.
Indeed, the complexity of QML + bath increases at the transitions between each of the
phases, while the complexity of QMR decreases. This is an indication that the information
of the black hole interior has transfered from QMR to the bath at that point in time.
Moreover, it was shown in [8] that the discontinuity in subregion complexity is precisely
the complexity of the island, or in this case, of the region of the interior of the black
hole which is reconstructable by QML and the bath (and purifier) intervals in question.
Clearly, there are lessons to be learned by carefully studying complexity in the black hole
evaporation and equilibration setups provided by the AEM4Z model.
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