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Abstract

We present an extensive study focused on partial network partitioning. Partial network
partitions disrupt the communication between some but not all nodes in a cluster. First, we
conduct a comprehensive study of system failures caused by this fault in 13 popular systems.
Our study reveals that the studied failures are catastrophic (e.g., lead to data loss), easily
manifest, and are mainly due to design flaws. Our analysis identifies vulnerabilities in
core systems mechanisms including scheduling, membership management, and ZooKeeper-
based configuration management.

Second, we dissect the design of nine popular systems and identify four principled
approaches for tolerating partial partitions. Unfortunately, our analysis shows that imple-
mented fault tolerance techniques are inadequate for modern systems; they either patch
a particular mechanism or lead to a complete cluster shutdown, even when alternative
network paths exist.

Finally, our findings motivate us to build Nifty, a transparent communication layer that
masks partial network partitions. Nifty builds an overlay between nodes to detour packets
around partial partitions. Nifty provides an approach for applications to optimize their
operation during a partial partition. We demonstrate the benefit of this approach through
integrating Nifty with VoltDB and HDFS.
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Chapter 1

Introduction

Modern networks are complex. They use heterogeneous hardware and software [143],
deploy diverse middleboxes (e.g., NAT, load balancers, and firewalls) [18, 102, 109], and
span multiple data centers [18, 109]. Despite the high redundancy built into modern
networks, catastrophic failures are common [143, 102, 101, 144]. Nevertheless, modern
cloud systems are expected to be highly available [81, 132] and to preserve stored data
despite failures of nodes, networks, or even entire data centers [83, 149, 89].

We focus our investigation on a peculiar type of network fault: partial network par-
titions, which disrupts the communication between some, but not all, nodes in a cluster.
Figure 1.1 illustrates how a partial network partition divides a cluster into three groups of
nodes, such that two groups (Group 1 and Group 2) are disconnected, but Group 3 can
communicate with Groups 1 and 2.

In our previous work [74] we identified this fault and presented examples of how it leads
to system failures. Other than our previous preliminary effort, we did not find any in-depth
analysis of partial network partition failures and of their fault tolerance techniques. Never-
theless, we found 54 reports of failures caused by partial network partitioning faults1 in the
publicly accessible issue tracking systems of 13 production-quality systems (Chapter 3),
numerous blog posts and discussions of this fault on developers’ forums (Chapter 2.2), and
eight popular systems with fault tolerance techniques specifically designed to tolerate this
type of fault (Chapter 4).

Our goal in this work is threefold. First, we aim to study failures caused by partial
network partitioning to understand their impact and failure characteristics and, foremost,
to identify opportunities to improve systems’ resiliency to this type of fault. Second, we

1A fault is the initial root cause. If not properly handled, it may lead to a user-visible system failure.
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Group 1 Group 2

Group 3

Partial
Partition

Figure 1.1: Partial partition. Groups 1 and 2 are disconnected, while Group 3 can reach
both sides of the partition.

aim to dissect the fault tolerance techniques implemented in popular production systems
and identify their shortcomings. Third, we aim to design a generic fault tolerance technique
for partial network partitioning. This is the first work to characterize these failures and
explore fault tolerance techniques for partial partitioning faults.

It is important to understand that partial partitions are fundamentally different from
complete partitions [74]. Complete partitions split a cluster into two completely discon-
nected sides and are well studied with known theoretical bounds (CAP theorem [100]) and
numerous practical solutions [131, 114, 141, 121]. On the contrary, a cluster experiencing a
partial partition is still connected but not all-to-all connected. Consequently, the theoret-
ical bounds of complete partitions do not apply to partial partitions, and fault tolerance
techniques for complete partitions are not effective in handling partial partitions (Chapter
8).

An analysis of partial network partitioning failures. We conduct an in-depth study
of 54 partial network partitioning failures from 13 cloud systems (Chapter 3). We select
a diverse set of systems, including database systems (MongoDB and HBase), file systems
(HDFS and MooseFS), an object storage system (Ceph), messaging systems (RabbitMQ,
Kafka, and ActiveMQ), a data-processing system (MapReduce), a search engine (Elastic-
search), an in-memory data grid (Hazelcast), and resource managers (Mesos and DKron).
For each considered failure, we carefully study the failure report, logs, discussions between
users and developers, source code, and code patches.

Failure Impact. Overall, we find that partial network partitioning faults cause silent
failures with catastrophic effects (e.g., data loss and corruption) that affect core system
mechanisms (e.g., leader election and replication).
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Ease of manifestation. Unfortunately, these failures can easily occur. The majority of
the failures are deterministic and require less than four events (e.g., read or write request)
for the failure to occur. Even worse, all the studied failures can be triggered by partially
partitioning a single node. The majority of failures do not require client access or can be
triggered by clients only accessing one side of the partition.

Insights. We identify three approaches to improve system resilience: better testing,
focused design reviews, and building a generic fault tolerance communication layer. Our
analysis of each failure’s manifestation sequence, access patterns, and timing constraints
shows that almost all the failures could have been revealed through simple tests and by only
using five nodes. Second, the majority of failures are due to design flaws. We posit that
design reviews focused on network partitioning could identify these vulnerabilities. Third,
building a generic communication layer to mask partial partitions is feasible, simplifies
system design, and improves system resiliency.

Finally, we identify that a common deployment approach of Zookeeper introduces a
failure vulnerability (Chapter 4). Our analysis shows that system designers need to design
additional mechanisms to handle partial partitions when using Zookeeper or other external
coordination services.

Dissecting modern fault tolerance techniques. We dissect the implementation of nine
popular systems (VoltDB, MapReduce, HBase, MongoDB, Elasticsearch, Mesos, LogCabin,
RabbitMQ, and HazelCast) and study the fault tolerance techniques they employ specifi-
cally to tolerate partial partitions (Chapter 4). For each system, we study the source code,
analyze the fault tolerance technique’s design, extract the design principles, and identify
the technique’s shortcomings. We identify four principled approaches for tolerating partial
partitions: identifying the surviving clique, checking neighbors’ views, verifying failures
announced by other nodes, and neutralizing partially partitioned nodes.

Our analysis reveals that the studied fault tolerance techniques are inadequate. They
either patch a specific system mechanism, which leaves the rest of the system vulnerable
to failures, or unnecessarily shut down the entire cluster or pause up to half of the cluster
nodes (Chapter 4).

Designing a generic fault tolerance technique. Our findings motivate us to build
network partitioning fault-tolerance layer (Nifty), a simple, generic, and transparent com-
munication layer that can mask partial network partitions (Chapter 5). Nifty’s approach is
simple; it monitors the connectivity in a cluster through all-to-all heart beating, and when
it detects a partial partition, it detours the traffic around the partition through interme-
diate nodes. Nifty overcomes all the shortcomings present in the studied fault tolerance
techniques.
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The main insight of Nifty is that tolerating partial partitioning does not require elab-
orate techniques such as the ones adopted by current systems (Chapter 4). Many modern
systems already incorporate membership and connectivity monitoring mechanisms based
on all-to-all heart beating [58, 66, 13]. Nifty shows that extending these mechanisms with
a simple rerouting capability can effectively mask partial partitions.

Nifty reroutes packet between end hosts to mask partial partitions. This approach
increases the load on the intermediate nodes and can create a performance bottleneck. To
reduce the load on intermediate nodes, system designers may optimize the data or process
placement or employ a flow-control mechanism. Nifty provides an API that exposes the
network state to the system running atop of it and facilitates building system-specific
optimizations.

To demonstrate Nifty’s effectiveness, we deploy it with seven systems: HDFS, Kafka,
RabbitMQ, ActiveMQ, MongoDB, VoltDB, and Redis PubSub. We choose these systems
because they are data intensive and popular systems. Furthermore, RabbitMQ and VoltDB
implement generic techniques to tolerate partial partitions. Our prototype evaluation with
synthetic and real-world benchmarks shows that Nifty effectively masks partial partitions
while adding negligible overhead.

To demonstrate the utility of the Nifty API, we integrate Nifty with VoltDB and HDFS
and explore a number of optimizations. Our evaluation shows that system-specific opti-
mizations can significantly reduce the traffic rerouting overhead during partial partitions.

4



Chapter 2

Causes of Partial Network Partitions

2.1 Definitions

A partial network partition is a network fault that prevents at least one node (e.g., a node
in Group 1 in Figure 1.1) from communicating with another node (Group 2) in the system,
while a third node (Group 3) can communicate with both affected nodes. Nodes in a
partially partitioned cluster are still connected but are not all-to-all connected (i.e., they
do not form a complete graph [148]). A partial partition divides a cluster into three groups:
two sides and one bridge group. We identify a node as a bridge node if it can reach at
least one node on each side of a partition. A partial partition has two sides, all the nodes
on one side of the partition cannot reach all the nodes on the other side of the partition.
We note that a cluster may suffer from multiple concurrent partial partitions.

We define a single-node partial partition as a partial partition that has a single node
on one side of the partition, while the rest of the cluster nodes are bridge nodes or are on
the other side of the partition. For instance, a single-node partial partition can be caused
by a firewall misconfiguration that prevents a node from communicating with some other
nodes.

2.2 Causes of Partial Network Partitioning Fault

Recent reports indicate that network partitioning faults are common and happen at various
scales. Connectivity loss between data centers [143] leads to network partitions in geo-
replicated systems. Wide area network partitions happen as frequently as once every four

5



days [144]. Switch failures can cause a network partition in a data center [101]. Switch
failures caused 40 network partitions in two years at Google [102] and 70% of the downtime
at Microsoft [101]. On a single node, NIC [12] or software failures can partition a node
that may host multiple VMs. Finally, network partitions caused by correlated failures are
common [109, 101, 144] and are often caused by system-wide maintenance tasks [102, 101].

While we did not find failure reports that detail partial partitioning faults, we found
numerous discussions of their impact on production systems. Partial partitions were the
cause of service outages at Cloudflare [15], Google [26], Lyft [40], and Amazon AWS [19].
A misbehaving switch caused the failure at Cloudflare. The switch data plane did not pro-
cesses all packets, while the control plane protocols remained operational. This disrupted
the communication between some nodes in the cluster and eventually caused a 6-hour out-
age of Cloudflare. AWS [19] also blame a misbehaving switch for a partial partitioning
failure that affected applications that span multiple availability zones. A partial partition
also affected Google Compute Engine (GCE) services. When a new VM is added, GCE
uses two mechanisms to update the other VMs: one to update VMs in the same zone as
the new VM, and another to update VMs in other zones. When the processes responsible
for updating the VMs in other zones failed [26], the newly added VM became unreachable
from VMs from outside its zone. This created a partial partition since old VMs in the
same zone as the new VM could reach all VMs since they are updated through a separate
mechanism. Lyft reported cases of partial network partitions while running Kafka at scale
at AWS [19]. Finally, an early version of Google’s B4 control plane use a primary master
with a standby backup. A partial partition disconnected the primary master from the
standby master while both can reach the switches and the system gateway. This led to
having two active masters in the infrastructure [109].

Furthermore, we found 54 failure reports detailing system failures due to partial network
partitions, and numerous articles and online discussions discussing the fault [124, 122, 127,
49]. Some of these reports and discussions mention the root cause of the partial partition.
Partial partitions are caused by a connectivity loss between two data centers [143] while
both are reachable by a third center, the failure of additional links between racks [56, 52],
network misconfiguration [31], firewall misconfiguration [31], network upgrades [16], and
flaky links between switches [65].
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Chapter 3

Analysis of Partial
Network-Partitioning Failures

We conduct an in-depth study of partial network partitioning failures reported in 13 pop-
ular systems (Table 3.1). We aim to understand the impact and characteristics of these
failures and to identify opportunities for improving system resilience.

3.1 Methodology

We choose 13 diverse and widely used systems (Table 3.1), including two databases, a data
analysis framework, two file systems, three messaging systems, a storage system, a search
engine, an in-memory data grid, and two resource managers.

We selected the 54 failures in our study from publicly accessible issue-tracking systems.
First, we used the search tools in the issue-tracking systems to find tickets related to par-
tial network partitioning. Users did not classify network partitioning failures based on
the partition type, so we had to search for all network partitioning failures and manually
identified partial partitioning failures. We used the following keywords: “network parti-
tion,” “partial network partition,” “partial partition,” “network failure,” “switch failure,”
“isolation,” “split-brain,” and “asymmetric partition.” Second, we considered tickets that
were dated 2011 or later. Third, we excluded tickets marked as “Minor.” For each ticket,
we studied the failure description, system logs, developers’ and users’ comments, and code
patches. For tickets that lacked enough details (e.g., missing output logs or did not have
details about the affected mechanism), we manually reproduced them using NEAT [74].
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Table 3.1: List of studied systems and the number of studied failures. The shaded rows
are systems that implemented a fault tolerance technique specifically for partial network
partitioning.

System Category
Failures

Total Catastrophic
Elasticsearch [23] Search engine 17 17
MongoDB [45] Database 9 5
RabbitMQ [58] Messaging 5 3
MapReduce [4] Data processing 4 2
HBase [5] Database 3 2
Mesos [6] Resource manager 2 1
Hazelcast [27] In-memory data structures 2 2
Kafka [37] Messaging 3 3
HDFS [4] File system 3 1
Ceph [13] Storage system 2 2
MooseFS [46] File system 2 2
ActiveMQ [2] Messaging 1 1
DKron [22] Resource manager 1 1
Total - 54 42

Finally, during our evaluation, we found and reported bugs in Kafka and Elasticsearch.
We included these failures in our study.

We differentiate failures by their manifestation sequences. In a few cases, the same
faulty mechanism leads to two different failure paths. We count these as separate failures,
even if they are reported in a single ticket. Similarly, although the exact failure is sometimes
reported in multiple tickets, we count it once in our study.

3.2 Limitations

As with any characterization study, our findings may not be generalizable. Here, we list
four potential sources of bias and describe our best efforts to address them.

1. Representativeness of the studied systems. Although we study 13 diverse systems
(Table 3.1), our results may not be generalizable to systems we did not study. The
selected systems follow diverse designs from strongly consistent (MongoDB, HBase,
and Ceph) to eventually consistent (Elasticsearch) designs and from systems persist-
ing data on disks and replicating data in-memory across nodes to caching systems.
They follow a primary-backup or peer-to-peer architecture and use synchronous or
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asynchronous replication. The selected systems are widely used: Kafka, ActiveMQ,
and RabbitMQ are the most popular open-source messaging systems; MapReduce,
HDFS, and HBase are the core of the Hadoop platform; Elasticsearch is a popular
search system; and MongoDB is a popular database.

2. Limited number of tickets. We study all 54 tickets that we found following our
methodology. Statistical inference indicates that 30 samples can sufficiently represent
the entire population [107]. More rigorously, if we assume the tickets we found
represent a random sample of partial network partition failures in the wild, the
central limit theorem predicts that our analysis of 54 tickets has a 13% margin of
error at a 95% confidence level. To increase confidence in our findings, we only
report findings that apply to at least two-thirds of the studied failures. A third of
our findings apply to all failures.

3. Priority bias. We include only high-impact tickets and avoid tickets marked by the
developers as low-priority. This sampling methodology may bias the results.

4. Observer error. To reduce the chance for observer errors, two team members study
every failure report using the same classification methodology. Then, we discuss the
failure in a group meeting before reaching a verdict.

3.3 Findings

This section presents a summary of our findings. Our study indicates that partial network
partitioning leads to catastrophic failures that are easy to manifest. Luckily, our study
identified that code reviews and targeted testing can improve systems fault tolerance. We
refer the reader to our previous paper for a detailed discussion of our findings [71].

Failure Impact. Overall, we find that 76.4% of the studied failures lead to catastrophic
effects. A failure is said to be catastrophic if it leads to a system crash or violates the
system’s guarantees such as data loss or corruption, system unavailability, and stale or
dirty reads. The majority of non-catastrophic failures lead to reducing a system availability
such as intermittent disruption of system operation [8].

Data loss and system unavailability are the two most common effects of partial parti-
tions and are the result of 42.5% of failures. For instance, in HBase, region servers store
their logs on HDFS. When a log reaches a certain size, the region server creates a new
log and informs the master of the new log location. If a partial partition isolates a region
server from the master while both can reach HDFS, the master assumes that the region
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server has failed and assigns its logs to a new region server. If at this time the old region
server creates a new log, the master will not know about it, and the entries in the new log
will be lost [57].

The majority of failures (81.5%) are silent, meaning the user is not informed about
their occurrence. Some systems return a warning to the user when an operation fails due to
partial network partitioning, but these warnings are ambiguous with no clear mechanisms
for resolution. For example, in Elasticsearch, if a client sends a request to a replica that
is partially isolated from the other replicas, the replica will return “a rejected execution”
exception [53]. This confusing warning does not inform the user of the problem’s actual
cause nor the steps needed to resolve it. This is unsettling because a lack of error or
warning notification delays failure detection.

Ease of manifestation. Unfortunately, the studied failures can easily occur:

• All the studied failures, except one, are deterministic or have known time constraints,
such as the period before considering a node to have failed.

• The majority of failures (66.6%) require three or fewer events (other than the partial
partition) to manifest. An event is a user request, a hardware or software fault,
or a start of a background operation (e.g., leader election and data rebalancing).
This is alarming because in real deployments, many users interact with the system,
increasing the probability of failure.

• Most failures (59.3%) do not require client access or require only that clients access
one side of the partition. To reduce the network partition’s impact, some systems
limit client access to one side of the partition [28, 60, 106]. This finding shows that
this fault tolerance technique is not sufficient.

• All the studied failures can be triggered by a single-node partial partition. Arguably,
single-node partial partitions (Section 2.1) are more likely than partitioning more
than one node. These partitions could happen due to a single ToR switch malfunction
or by misconfiguring a single firewall.

We further study which nodes need to be isolated for a failure to manifest. Of the
failures, 33.3% manifest by partitioning any node in the system—regardless of its
role. Among the failures that require partitioning a specific node, partitioning the
leader replica is most common (44.4%). In real deployments, partitioning a leader is
likely because almost every node in the cluster is a leader for some shard.

Failure Characteristics Our study revealed two surprisings characteristics of these fail-
ures. First, the majority of the fixed bugs (59.3%) are due design flaws. We consider a
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code patch to be fixing a design flaw if it significantly changes the implemented protocol
or logic, such as changing the mechanism to select a master in Elasticsearch. Second,
partial partition fault affects a wide range of system mechanisms including leader election,
configuration change, replication protocol, request routing, scheduling, and data migra-
tion. Leader election, configuration change, and replication protocols are the most affected
mechanism (affected by 72.6% of failures).

Finally, These failures can be easily reproduced with small clusters of five or fewer
nodes, and 75.9% require only three nodes. Furthermore, all the failures except one can
be reproduced using a fault-injection framework that can inject partial partitioning faults
such as NEAT [74].

3.4 Design Pitfalls

Our study revealed that the majority of failures are due to design flaws. For each design
failure we study the code patches and the system design to understand the design flaw. We
identified flaws in the following five common designs of core distributed system techniques.
Revisiting the design of these techniques to tolerate partial network partitioning is a high
impact research frontier that requires further investigation.

Leader election is the most vulnerable mechanism to partial partitions. The following
are the most frequent flaws we found in the studied tickets.

• Two leaders. Partial network partitioning fault leads to having two active leaders
in MongoDB [64] and RabbitMQ [63]. Having more than one leader results in data
loss, dirty read, and stale read. This failure typically manifests when two nodes on
different sides of the partition start the leader election process. If the bridge node
votes for the two candidates, each candidate will get enough votes to become a leader.
A common solution to avoid this double voting problem is to divide time into terms
or epochs and each node has a single vote in a term [131, 130].

• No leader in the system. Some leader election policies may leave a cluster without
a leader under partial network partitions. For instance, in an earlier version of
ElasticSearch, a live node with the smallest id is the cluster leader. If a node can not
reach the leader, it will ask the node with the second smallest id to become a leader.
The node with the second smallest id will refuse to become a leader if it can reach
the current leader. If a partial partition puts the current leader on one side of the
partition and the node with the second smallest id is a bridge node, no node will be
elected as a leader and the cluster pauses until the partition heals [55].
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• Leader election thrashing. Partial partition faults may lead to continuous leader elec-
tion thrashing if the two sides of the partition keep launching the leader election
process. For instance, leader election in MongoDB is based on a majority vote, with
an arbiter node included to break ties. Consider a shard that has two replicas (A
and B), with A being the leader. If a partial partition disrupts the communication
between A and B while both can reach an arbiter, B will detect that A is unreachable
and calls for a leader election. Because there is only one candidate in the system,
the arbiter votes for it, and B becomes the leader. The arbiter will inform A of the
new leader, and A steps down. A will detect that the leader (B) is unreachable, call
for a leader election, become a leader, and then B steps down. This leader-election
thrashing continues until the network partition heals [8]. The system is unavailable
during leader election, so this failure significantly reduces system availability. Cloud-
Flare reported a service outage due to a similar flaw in the leader election mechanism
in etcd [15].

Leader election using a coordination service. A common approach for electing a
leader in modern systems (e.g., Mesos, Kafka, ActiveMQ, HBase, and Neo4j) is to use a
coordination service such ZooKeeper [7] to monitor the nodes and choose a new leader
when a leader fails. As this is a common usages of ZooKeeper, the ZooKeeper user guide
has a ”recipe” [68] for how to use ZooKeeper for leader election that is broadly followed.
Unfortunately, this recipe is vulnerable to partial network partitions.

To elect a leader using ZooKeeper, each node creates a ”sequence ephemeral” file in
a specific shared directory at ZooKeeper. The file has a unique sequence number that is
generated by ZooKeeper. The node with the smallest sequence number is the leader. If
ZooKeeper misses heartbeats from a node, it deletes all the ephemeral files that are created
by the unreachable node, and notifies the other nodes in the clusters. Consequently, if a
leader fails, ZooKeeper deletes its sequence ephemeral file and informs the other nodes of
this change. Then each node in the cluster will check the shared directory to see if its file
has the smallest sequence number. The node with the smallest sequence number becomes
the new leader.

If a partial partition isolates the leader from the rest of the cluster while all nodes are
reachable from ZooKeeper, the nodes will typically pause their operations because they
cannot reach the leader. Because ZooKeeper can reach the current leader, it will not delete
its ephemeral file and no new leader will be elected. The cluster remains unavailable until
the partial partition heals. This failure manifested in ActiveMQ [1] and Kafka [38].

Scheduling. Resource management and scheduling systems use heartbeating to monitor
a cluster’s health. If a scheduler missed heartbeats from a worker node, it will suspect that
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the node has failed and will reschedule all the tasks that were running on the failed node
on other nodes in the cluster.

This fault tolerance technique is vulnerable to partial partitions. If a partial partition
isolates the scheduler from one of the nodes, while the affected node can reach the rest of the
cluster, the scheduler will reschedule the tasks running on the affected node on other cluster
nodes. This leads to double, potentially concurrent, execution. Double execution can
corrupt shared state (e.g., data on HDFS) or confuse clients. For instance, in MapReduce,
a partial partition leads to a double execution and data corruption of shared data [41].
Mesos [42], and ElasticSearch [21] suffered from a similar failure.

Membership management. Modern systems use membership lists to keep track of nodes
in the cluster. Other systems allow for a block/allow list to report slow or unresponsive
nodes to avoid performance straggling. If a node detects that another node has failed or
might be slow, it will notify the metadata service. The metadata service will update the
membership list or the blocklist to avoid using that node in future operations. Our study
shows that under partial partitions, these techniques could lead to big availability and
performance issues.

MapReduce uses blocklisting to identify slow or unresponsive nodes. If a reducer cannot
reach a mapper node, it will report it to the master node. The master will not assign new
tasks to the node running that mapper. If a partial partition isolates a reducer from
many mappers while all nodes are still reachable by the master, the affected reducer will
report and unnecessarily block list many nodes, which leads to a significant drop in cluster
performance [65].

RabbitMQ supports message replication for higher availability. RabbitMQ maintains
a membership log that lists the current nodes in the cluster. If nodes have conflicting
views on which nodes are part of the cluster, the RabbitMQ cluster crashes. For instance,
in a cluster with three nodes (A, B, and C), when a partial partition disconnects B and
C, B assumes that C crashed and removes it from the membership log, and C assumes
that B crashed and removes it from the membership log. This inconsistency in the cluster
membership leads to a complete cluster crash [44].

Discovery service. Modern systems often use a metadata or discovery service to direct
clients to a node hosting a queue in a messaging system, or to a leader replica in a storage
system. If a partial partition isolates a client from some nodes in the cluster while the
discovery service can reach all nodes and clients, a discovery service may point the client
to a node that the client can not reach due to a partial partition. This problem often
leads to system unavailability to some clients. For instance, in Kafka, a client asks the
bootstrap service for a list of cluster nodes. If the client cannot reach a topic leader, while
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the bootstrap service indicates that the leader is alive, messages to that leader will be lost
[36]. ElasticSearch had a similar failure [54].

In HDFS, consider a case when a partial network partition separates a client from, say,
rack 0, while the NameNode can reach that rack. If the NameNode allocates replicas for a
new data chunk on rack 0, then a client write operation will fail, and the client will ask for
a different DataNode to place its replica. The NameNode, following its rack-aware data
placement, will likely suggest another node from the same rack. The process repeats five
times before the client gives up [30].

3.5 Insights

Surprisingly, partial network partitioning faults trigger silent failures that have catastrophic
effects in production-quality systems. It is unsettling to realise how easy it is for these
failures to manifest once a partial partitioning fault happens. Isolating a single node, with
three or less events, with client access to one side of the partition, deterministically causes
over two thirds of the failures.

Fortunately, we identify three approaches for improving system resilience to partial
partitions. First, because these faults are deterministic and can be reproduced on a five-
node cluster, improved testing can reveal the majority of the studied failures. Our analysis
finds timing, client access, and partition characteristics that significantly reduce the number
of sufficient test cases. Second, the fact that the majority of failures are due to design flaws,
indicates that system designers overlook partial network partitioning failures in the design
phase. We posit that design reviews focused on network partitioning could identify these
vulnerabilities. Since a large number of failures are triggered without client access, our
analysis highlights that system designers should consider the impacts of partial partitioning
faults on all operations, including background operations.

Third, partial network partitions have two characteristics that imply that a generic
fault tolerance technique is possible. These faults can be detected by exchanging informa-
tion between the nodes, and by definition, there are alternative paths in the network to
reconnect the system. We leverage these two characteristics in building Nifty (Chapter 5).

Finally, we point out design flaws in core system mechanisms including leader election,
scheduling, discovery service, and membership management (Section 3.4). Most of the
studied failures are caused by the underlying assumption that, if a node can reach a service,
all nodes can reach that service, and if a node cannot reach a service then the service is
down. Our analysis shows the danger of such assumptions; this leads to a confusing state,
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wherein some of the system’s parts start executing a fault tolerance mechanism, while
others presume the whole system is healthy and carry on normal operations. The mix of
these two operation modes is poorly understood and tested.
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Chapter 4

Dissecting Modern Fault Tolerance
Techniques

We studied the code patches related to the tickets included in our study. Seven of the
systems in Table 3.1 (MongoDB, Elasticsearch, RabbitMQ, HBase, MapReduce, Hazelcast,
and Mesos) changed the system design to incorporate a fault tolerance technique specific
to partial network partitioning faults. The rest of the systems either patched the code with
an implementation-specific workaround or did not fix the reported bugs yet.

Furthermore, we found that two additional systems, VoltDB [66, 139] and LogCabin [39]
(the original implementation of the Raft [131] consensus protocol), implement fault toler-
ance techniques for partial partitions. For these systems, we did not find failure reports
related to partial partitioning faults in their issue tracking systems, but VoltDB announced
that their recent versions tolerates partial partitions [32]. We experimented with LogCabin
to understand the impact partial partitions have on strongly consistent systems and found
that LogCabin incorporates a technique to tolerate partial partitions. We included VoltDB
and LogCabin in our study.

For each of the nine systems, we study the source code, and extract and analyze the
design principles of their fault tolerance technique. We identify four approaches for toler-
ating partial partitions: detecting a surviving clique of nodes, checking neighbors’ views,
verifying failure reports received from other nodes, and neutralizing one side of the partial
partition. Unfortunately, these techniques have severe shortcomings that may lead to a
complete system shutdown or to the unavailability of a major part of the system. In this
chapter, we detail these techniques and discuss their shortcomings.
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4.1 Identifying the Surviving Clique

Main idea. Upon a partial network partition, the system identifies the maximum clique
of nodes [90], which is the largest subset of nodes that are completely connected. All nodes
that are not part of the maximum clique are shut down. VoltDB and Hazelcast follow this
approach.

VoltDB Implementation. VoltDB [66, 139] is a popular ACID, sharded, and replicated
relational database. VoltDB follows a peer-to-peer approach to implement this technique.
Every node in the system periodically sends a heartbeat to all nodes. If a node loses
connectivity to any node, it suspects that a partial network partition occurred and starts
the recovery procedure. The recovery procedure has two phases. In the first phase, the
node that detects the failure broadcasts a list of nodes it can reach. When a node in the
cluster receives this message, it broadcasts its list of reachable nodes to all nodes in the
cluster. In phase two, every node independently combines the information from the other
nodes into a graph representing the cluster connectivity. Each node analyzes this graph
to detect the maximum completely connected clique of nodes. Every node that finds that
it is not part of this “surviving” clique shuts itself down. Figure 4.1 shows an example in
which a partial partition disrupts the communication between nodes 2, 3, and 4 on one
side and nodes 5 and 6 on another. Nodes 5 and 6 are not part of the clique and will shut
down.

After identifying the surviving clique, the system verifies that it did not lose any data
by verifying that the surviving clique has at least one replica of every data shard. If the
clique is missing one shard, such as when all the replicas of a shard are shut down, the
entire system shuts down.

Shortcomings. This fault tolerance approach has two severe shortcomings. First, it
unnecessarily shuts down up to half of the cluster nodes, reducing the system’s performance
and fault tolerance. Second, this approach causes a complete cluster shutdown if the
surviving clique is missing a single data shard. To understand how likely a cluster is
to shut down, we conduct a probabilistic analysis (Appendix A). Figure 4.2 shows the
probability of a complete cluster shutdown while varying the cluster size and the number
of nodes that shut down (i.e., nodes that are not part of the surviving clique – the x-axis
in Figure 4.2). Each shard has three replicas. Our analysis shows that isolating only 10%
of the nodes leads to more than a 50% probability of shutting down the entire cluster, and
isolating only 20% of the nodes leads to a staggering 90% chance of a complete cluster
shutdown.

Hazelcast Implementation. Hazelcast [27] offers in-memory sharded and replicated
data structures. Every node in the system periodically sends a heartbeat to all nodes.

17



2

1

6

5

3

4

Surviving 

Clique

Par al 

Par  on

Figure 4.1: VoltDB’s surviving clique. Gray nodes shut down as they are not in the clique.

Hazelcast uses a master node to track the cluster membership, i.e., which nodes are part
of the cluster. The master periodical sends a membership list to all nodes. A node will
ignore membership updates coming from nodes that are not in the membership list.

Hazelcast escalates partial partitions to complete cluster partitions, such that the clus-
ter is split into completely disconnected sub-clusters. When a partial partition occurs the
master node collects connectivity information from all nodes. Nodes that are not reachable
by the master are removed from the cluster membership list. The master then constructs
a graph representing the cluster connectivity, runs the Bron–Kerbosch algorithm [82] to
identify the largest fully connected sub-graph that includes the master node, removes all
nodes that are not part of this sub-graph from the membership list, and broadcasts an
updated membership list. For nodes that are removed from the membership list, Hazel-
cast supports two policies: pause or form a new cluster. Having two clusters serving the
same application can lead to data inconsistency. When a partial partition heals, Hazel-
cast merges conflicting versions of the data using automated data consolidation policies
(e.g., version with latest access time wins and discarding entries from the smaller cluster).
Unfortunately, these policies can lose data or keep an inconsistent version of the data [74].

Shortcomings. This fault tolerance approach offers two undesirable alternatives. The
cluster may unnecessarily pause a large number of nodes reducing the system’s performance
and fault tolerance. Note that Hazelcast selects the largest subgraph that includes the
master which may not include the majority of nodes. Alternatively, Hazelcast may form
multiple clusters leading to data loss or inconsistency.
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Figure 4.2: The probability of a VoltDB cluster shutdown. Different lines represent different
cluster sizes. The x-axis shows the number of nodes that are not in the clique.

4.2 Checking Neighbors’ Views

Main idea. When one node (e.g., node S) loses its connection to another node D, it
verifies whether the connection is lost due to a partial partition. To this end, S asks all
nodes in the cluster whether they can reach D. If a node reports that it can reach D, this
indicates that the cluster is suffering a partial network partition.

If S detects a partial network partition, S either disconnects from all nodes that can
reach D, which effectively makes the partition a complete partition, or pauses its operation.
RabbitMQ and Elasticsearch follow this approach.

4.2.1 RabbitMQ

RabbitMQ [58] is a popular messaging system that replicates message queues for reliability.
In RabbitMQ, if a node detects that its communication with another node (e.g., node D)
is affected by a partial partition, it applies one of the following policies depending on its
configuration.

1. Escalate to a complete partition. The node will drop its connection with any node
that can reach node D. The goal of this policy is to create a complete partition in
which both sides work independently. This configuration leads to data inconsistency
and requires running a data consolidation mechanism after the partition heals.
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Figure 4.3: A scenario for RabbitMQ’s pause policy. Every non-bridge node pauses (gray
nodes) as it detects that it cannot reach one node on the other side.

2. Pause: To avoid data inconsistency, once a node discovers the partial partition, it
pauses its activities. It resumes its activities only when the partition heals. The
result of this policy is that a subset of nodes will continue to operate. This subset
will be completely connected and will run without sacrificing data consistency.

3. Pause if anchor nodes are unreachable: RabbitMQ’s configuration can specify a
subset of nodes to act as anchor nodes. If a node cannot reach any of the anchor
nodes, it pauses. This may lead to creating multiple complete partitions if the anchor
nodes become partially partitioned. This may lead to pausing all nodes if all the
anchor nodes are isolated.

After a partition heals, RabbitMQ employs two data consolidation techniques: admin-
istrator intervention, in which the administrator decides which side of the partition should
become the authoritative version of the data, and auto-heal, in which the system makes
this determination based on the number of clients connected to each side. Both techniques
may lead to data loss or inconsistency [74].

Shortcomings. RabbitMQ’s policies have serious shortcomings. Changing a partial par-
tition to a complete partition (policies 1 and 3) may lead to multiple inconsistent copies of
the data, whereas the pause policy (policy 2) may pause the entire system or the majority
of the nodes. For instance, in Figure 4.3, if every node except node 1 detects that it cannot
reach a node on the other side of the partition, it pauses, leading to a complete cluster
pause.
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Figure 4.4: The median number of paused nodes in a cluster of 15 nodes. In all runs, one
node is unaffected by the partition. The notation (i, j) shows the number of nodes on each
side of the partition.

In the case of the pause policy (policy 2), to determine how many nodes pause under
different partial partition scenarios, we conduct an experiment in which we deploy a 15-
node RabbitMQ cluster, introduce a partial partition, and observe how many nodes pause.
In all experiments, we inject a partition such that one node remains unaffected and able to
reach all nodes. Figure 4.4 shows the median number of paused nodes under various parti-
tion configurations. We run each configuration 30 times. Surprisingly, in all configurations
almost all the cluster nodes pause because each node detects that it cannot reach at least
one node on the other side of the partition. Even isolating a single node (configuration
(1,13) in Figure 4.4) leads to pausing 12 nodes. We experimented with additional config-
urations with a larger number of bridge nodes and noticed a similar behaviour (Appendix
B). Our investigation reveals that nodes declare another node unreachable after missing
its heartbeats for a timeout period. In RabbitMQ, the default timeout period is 1 minute,
which gives enough time for many nodes to detect the partition and pause. Using a shorter
timeout periods causes some nodes to declare prematurely that other nodes have failed,
even without a partial partition.

4.2.2 Elasticsearch

Elasticsearch [23] is a popular search engine. Its master election protocol uses a fault
tolerance technique based on checking neighbors’ views. In Elasticsearch, the node with
the lowest ID is the master. If a node (e.g., S) cannot reach the master, it contacts all
nodes to check whether they can reach the master. If any node reports that it can reach
the master, S pauses its operations. If none of the nodes can reach the master, the node
with the lowest ID becomes the new master.
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Figure 4.5: Elasticsearch unavailability scenario. The master pauses because it cannot
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Shortcomings. First, this approach can affect cluster availability quite severely, as all
nodes that cannot reach the master pause. In the worst case, it can cause a complete
cluster unavailability. For instance, in Figure 4.5, none of the nodes can reach the master
except node 2, which refuses to become the new master because it can reach a node with
a lower ID (node 1). Consequently, all the nodes in the cluster pause. Furthermore,
because the master cannot reach a majority of nodes, it also pauses, which leads to system
unavailability [55]. Second, Elasticsearch uses this approach only to fortify the master
election protocol, which leaves the rest of the system vulnerable to partial partitions.
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Surviving Clique Checking w/ Neighbors Failure Verification Neutralizing Nodes
Nifty

VoltDB Hazelcast Elasticsearch RabbitMQ MongoDB/LogCabin MapReduce/HBase Mesos
Reduced Availability ×D ×P ×P ×P ×P ×D ×P

Complete Unavailability × × ×1

Complete Partition × ×2

Double Execution ×
Data Unavailability × ×3

Scope (System/Mechanism) S S M S M M M S

Table 4.1: Summary of shortcomings. (D) indicates that the nodes shut down. (P) indicates that the nodes pause until the partition heals. In the
worst case, RabbitMQ pauses all nodes except one. We consider this a complete cluster loss (1). Under different RabbitMQ policies, (2) and (3) can
occur. (S) indicates a system-wide technique, whereas (M) is a mechanism-specific technique.
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4.3 Failure Verification

Main idea. If a node (e.g., S) receives a notification from another node that a third
node (D) has failed, node S first verifies that it cannot reach D before taking any fault
tolerance steps. This approach is used in the leader election protocols of MongoDB [45],
and LogCabin [39]. It was also used in an earlier version of Elasticsearch.

In MongoDB and LogCabin, if a leader is on one side of a partial partition but can still
reach the majority of nodes, the nodes on the other side of the partition unnecessarily call
for leader election. Section 3.4 discusses a scenario in which a partial partition leads to
continuous leader election thrashing and to system unavailability [8]. To avoid unnecessary
elections, when a node receives a call for election, it first verifies that the current leader is
unreachable. A node participates in an election only if it cannot reach the current leader,
else it will ignore the failure report.

Shortcomings. This approach has two major shortcomings. First, it leads to the un-
availability of a large number of nodes. Second, it is mechanism specific. Designing a
system-wide fault tolerance mechanism using this approach is tricky because one cannot
ignore every failure notification. For instance, using this approach in an earlier version of
Elasticsearch backfired [25]. During data migration from a primary replica of a shard to
a secondary replica, if a partial partition isolates the primary replica from the secondary
replica while both are reachable from the master node, the primary requests a new sec-
ondary replica. Because the master can reach the secondary replica, it ignores the failure
report. This leads to the unavailability of the affected shard [25]. Broadly applying this
fault tolerance technique is not feasible because designers have to revisit the design of every
system mechanism, consider the consequences of ignoring failure reports, and examine the
interaction of various mechanisms under partial partitions.

4.4 Neutralizing Partitioned Nodes

Main idea. One challenge related to handling partial network partitions is that nodes
may update a shared state that is reachable from both sides of the partition, leading to
data loss and inconsistency. To avoid this problem, this approach attempts to neutralize
one side of the partition. However, the neutralization method is implementation-specific.
HBase, MapReduce, and Mesos use this approach.

HBase Implementation. In HBase, data shards are managed by an HBase node but are
stored on HDFS. If the HBase leader cannot reach one of the HBase nodes, it neutralizes
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that node by renaming the shard’s directory in HDFS. Renaming a shard’s directory effec-
tively prohibits the old HBase node from making further changes to the shard [57]. The
leader then assigns the shards of that node to a new HBase node.

MapReduce Implementation. In MapReduce, a manager node assigns tasks to App-
Master nodes. If the manager cannot reach an AppMaster, it reschedules the tasks as-
signed to that AppMaster to a new AppMaster. With partial network partitions, this
approach may result in two AppMasters working on the same task, which leads to data
corruption [41]. To fix this problem, when an AppMaster completes a task, it writes a
completion record in a shared log on HDFS. Before an AppMaster executes a new task, it
checks the shared log for a completion record. If it finds one, it does not re-execute the
task.

Mesos Implementation. In Mesos, a master node assigns tasks to worker nodes. A
Zookeeper instance selects the master node. The master sends periodic heartbeats to
workers. If a partial partition isolates a worker node from the master, it pauses its oper-
ations. Figure 4.6 shows a worst-case scenario in which the partial partition isolates the
master and its backup from all workers, which leads to a complete cluster unavailability.
Finally, if a master detects that one of the workers is unavailable, it marks the tasks that
were running on the unreachable worker as lost and reschedules them on new workers. This
may lead to the double execution of a task [20].

Shortcomings. First, it is not practical to use this approach for system-wide fault toler-
ance, as this approach is specific to a certain protocol and implementation. The presented
three systems use this approach for different mechanisms. To use this approach broadly,
designers must go through the daunting task of independently designing a fault tolerance
technique for every mechanism in the system and understanding the interaction between
these mechanisms. Second, this approach leaves the nodes on one side of the partition idle,
which reduces system performance and availability.

4.5 Summary

Table 4.1 summarizes the shortcomings of the current fault tolerance techniques, none of
which are adequate for modern cloud systems. All current techniques severely affect system
availability, as they unnecessarily lose a significant number of nodes. Failure verification
and neutralizing partitioned nodes are used to fortify specific mechanisms, rather than pro-
viding system-wide fault tolerance. Using mechanism-specific fault tolerance techniques
requires the independent fortification of all system mechanisms and the analysis of the
interactions between various mechanisms. This approach complicates system design, fault
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analysis, and debugging. An example of a system that uses multiple mechanism-specific
techniques to tolerate partial partitions is Elasticsearch, which uses checking neighbors’
view, failure verification [25], and neutralizing partitioned nodes [67] in different mecha-
nisms. However, Elasticsearch has the highest number of reported failures due to partial
partitions (Table 3.1).

Detecting the surviving clique and checking neighbors’ views can be used to build a
system-wide fault tolerance technique. However, as Table 4.1 shows, these techniques lead
to a complete system shutdown or significant loss of system capacity. This realization
motivated us to build Nifty (Chapter 5), a system-wide fault tolerance technique that
overcomes the aforementioned shortcomings.
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Chapter 5

Nifty Design

To overcome the limitations of current fault tolerance techniques, we design a simple,
transparent network-partitioning fault-tolerant communication layer (Nifty).

Nifty follows a peer-to-peer design in which every node in the cluster runs a Nifty pro-
cess. These processes collaborate in monitoring cluster connectivity. When Nifty detects
a partial partition, it reroutes the traffic around the partition through intermediate nodes
(i.e., bridge nodes). For instance, in Figure 5.1, if two partial partitions isolate node 1 from
node 4, Nifty reroutes packets exchanged between nodes 1 and 4 through nodes 2 and 3.

Although Nifty keeps the cluster connected, it may increase the load on the bridge
nodes, leading to a lower system performance. System designers who use Nifty may op-
timize the data or process placement or employ a flow-control mechanism to reduce the
load on bridge nodes. To facilitate system-specific optimization, Nifty provides an API to
identify bridge nodes and nodes on different sides of the partition, and to help take action
when a partial partition occurs or heals.

Connectivity monitoring. Each Nifty process uses heart beating to monitor its connec-
tivity with all other Nifty processes. Each Nifty process maintains a distance vector that
includes the distance, in number of hops, to every node in the cluster. If a Nifty process
misses five heartbeats from another Nifty process, it assumes that the communication with
that process is broken and updates its distance vector. To detect when the communication
between nodes recovers, Nifty processes continue to send heartbeats to disconnected nodes.

Recovery. Each Nifty process sends its distance vector (piggybacked on heartbeat mes-
sages) to all other nodes. Every Nifty process then uses these vectors to build and maintain
a routing table.
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Figure 5.1: A Nifty routing example. A partial network partition isolates node 1 from nodes
3 and 4, and another partial partition isolates node 4 from nodes 1 and 2. Communication
between 1 and 4 is routed through nodes 2 and 3.

When a Nifty process detects a change in the cluster (e.g., a node becomes unreachable
or reachable), it initiates the route discovery procedure to find new routes. In our pro-
totype, we use the classical Bellman–Ford distance-vector protocol [126, 77]. We use hop
count as the link weight. By hop, we mean a hop between end nodes. Using hop count
naturally favors direct connections, when they exist, over rerouting through intermediate
nodes. Another possible alternative was to use a link state routing. We considered this
options and preferred to go with distance vector routing since it is simpler to implement
without the need for link state flooding, and is enough to tolerate all the network fault
discussed in the tickets.

An entry in the routing table has a destination IP address, hop count, and output MAC
address. If a packet is received with a destination IP address that matches an entry in the
routing table, Nifty will change the destination MAC address of the packet to equal the
output MAC address found in the routing table, then send the packet out.

Route deployment. Nifty uses OpenFlow [51] and Open vSwitch [133] to deploy the
new routes. For instance, to reroute packets sent from node 1 to node 4 through nodes 2
and 3 in Figure 5.1, the Nifty process on node 1 installs rules on its local Open vSwitch to
change the destination MAC address of any packet destined to node 4 to the MAC address
of node 2. Whenever node 2 receives a packet with node 4 IP address as its destination, it
changes the destination MAC address to node 3 MAC address and sends the packet out.
Finally, when node 3 receives a packet with node 4 IP address, it changes the MAC address
to node 4 MAC and sends the packet out.
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Node classification. A system using Nifty can be optimized to reduce the amount of
data forwarded through bridge nodes. The approach to do so is system-specific and may
entail relocating processes in a cluster, dropping client requests, or reducing query result
quality [81].

To facilitate the implementation of these mechanisms, Nifty offers an API that informs
a system running atop Nifty when a partial partition happens and identifies which nodes
are on the same side of the network partition and which nodes serve as bridge nodes.
Section 7 demonstrates how this information can facilitate optimizing process placement
in a VoltDB cluster.

5.1 Implementation

We implemented Nifty in 575 lines of C++ code. A Nifty process runs as a background
process on all cluster nodes. A configuration file lists the IP addresses of all cluster nodes.
Each Nifty node heartbeats all the nodes listed in the configuration file. The heartbeat
message is sent over UDP packets. The default heartbeat period is 200 ms. A node assumes
it cannot reach another node if it misses three heartbeats from that node. We note that
this is relatively aggressive heartbeating. The goal is for Nifty to discover the partial
partition and create alternative routes before he system atop detects the partition with its
own heartbeating mechanism. We found that Raft has the shortest hearbeating periods of
250 ms, hence we choose to heartbeat every 200 ms. Nevertheless, the heartbeat period
is configurable. Nifty uses the Bellman-Ford routing algorithm to find routes between end
nodes. We used the ovs-ofctl program to manipulate Open vSwitch rules.

Nifty API. To facilitate building system specific optimizations, Nifty provides an API.
The API mainly notifies the system when a partial partition happens and exposes the
cluster connectivity graph to the system running atop Nifty. The current prototype offers
a Java wrapper to simplify integrating Nifty with the systems we used in our evaluation.

Listing 5.1 shows the main functions in the NiftyAPI. The API has two groups of
functions. The call back functions are triggered when the network state changes. Systems
use the query APIs to find the network topology.

The user must override the abstract methods atPartialPartition(), atHealthyNetwork()
and atCompletePartition(). Nifty calls these functions when the network state changes.
To identify if a partition is complete or partial, Nifty uses depth-first search to traverse the
connectivity graph. Depth first search fails to reach all the nodes in a complete partition.
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Listing 5.1: The NiftyAPI

// C a l l back f u n c t i o n s
abstract void a t P a r t i a l P a r t i t i o n ( ) ;
abstract void atHealthyNetwork ( ) ;
abstract void atCompletePart i t ion ( ) ;

// Query APIs
Graph getNetworkGraph ( ) ;
boolean i sBridgeNode ( ) ;
NetState getNetworkState ( ) ;
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Chapter 6

Evaluation

Our evaluation answers three questions. How much overhead does Nifty impose when there
are no network partitions? What is a system’s performance with Nifty under a network
partition? What is the utility of Nifty’s classification API?

Testbed. We conduct our experiments using 40 xl170 nodes at the Cloudlab Utah cluster.
Each node has an Intel Xeon E5 10-core CPU, 64 GB of RAM, and a Mellanox ConnectX-4
25 Gbps NIC. To inject a network partition fault, we modify the Open vSwitch rules on
the nodes to drop packets between the affected nodes. In all our experiments, we report
the average for 30 runs. We note that the standard deviation in all our experiments is
lower than 5%.

6.1 Overhead Evaluation

To evaluate Nifty’s overhead, we measure its impact on the performance of a synthetic
benchmark using iperf [34] and seven data-centric systems (i.e., storage, database, and
messaging systems). The iperf experiment uses a 100-node cluster to measure Nifty’s
impact on larger clusters. The systems we selected are:

• HDFS: We deploy HDFS (v3.3.0) on six nodes (one name node and five data nodes)
and with a replication level of three. To avoid disk access, we configure data nodes
to use tmpfs. We use the HDFS standard benchmark (TestDFSIO). The benchmark
reads and writes 1 GB files.

• Kafka: We deploy Kafka (v2.6.0) on five nodes. We distribute the queues (aka,
topics) among nodes to balance the load. Each message is replicated on three nodes.
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We use Kafka’s benchmarking tool to generate load on the system. The experiments
use a set of producers and consumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.

• ActiveMQ: We deploy ActiveMQ Artemis (v2.15.0) on five nodes with each queue
being replicated on two nodes. The experiments use a set of producers and consumers.
Each producer sends messages to a dedicated queue and each queue has one consumer.

• MongoDB: We deploy MongoDB (v4.4.1) on six nodes (one config server and five
mongod nodes) and with a replication level of three. We discuss our results with the
Yahoo benchmark workload B (95% reads and 5% writes) with a uniform distribution
[87]. We use 10 million records. The rest of the Yahoo benchmark workloads show
similar results.

• VoltDB: We deploy VoltDB (v9.0) on nine nodes, with data sharding enabled and a
replication level of three. We use the Yahoo benchmark and the TCP-C benchmark.
Figure 6.2.a shows the throughput-latency curve under Yahoo benchmark workload
B (95% reads and 5% writes) with a uniform distribution. The results using the
TPC-C benchmark and the Yahoo benchmark workloads A and C with uniform and
skewed loads show similar low overhead.

• RabbitMQ: We deploy RabbitMQ (v3.8.2) on three nodes. We use the mirrored mode
in which each queue has a leader replica and two backup replicas. We distribute the
queue masters among brokers to distribute the load. The experiments use a set of
producers and consumers. Each producer sends messages to a dedicated queue and
each consumer reads messages from a dedicated queue.

• Redis PubSub: We deploy Redis (v6.2) on three nodes. One publisher connects to
one node (i.e., root node) and continuously publishes 1 KB messages to one topic.
With Redis PubSub, the root Redis node forwards the published messages to the
other Redis nodes. The subscribers connect to the other two Redis nodes.

Results. We compare the throughput and average latency of each system with and without
Nifty when there is no partial network partition. We evaluate Nifty with a partial partition
in Section 6.2.

Figure 6.1 shows the write throughput of HDFS (Figure 6.1.a) and the throughput-
latency curve for Kafka (Figure 6.1.b), ActiveMQ (Figure 6.1.c), MongoDB (Figure 6.1.d).
Figure 6.2 shows the throughput-latency curve for VoltDB (Figure 6.2.a) and RabbitMQ
(Figure 6.2), and the throughput figure for Redis PubSub (Figure 6.2.c). The results show
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that Nifty does not add noticeable overhead; for all systems, the curves almost completely
overlap. This is because Nifty processes exchange a negligible number of packets. Each
Nifty process sends a single UDP heartbeat packet every 200 ms to other nodes in the
system. Consequently, in the largest deployment of nine nodes, each node sends only 40
packets every second.

Scalability evaluation. Nifty uses all-to-all heart beating to monitor a cluster’s connec-
tivity. Consequently, Nifty’s overhead increases with the cluster size. To measure Nifty’s
scalablity, we evaluate its overhead on a 100 m510 nodes at the CloudLab Utah cluster.
Each node has an ARMv8 (Atlas/A57) 8-core CPU, 64 GB of RAM, and a Mellanox
ConnectX-3 10 Gbps NIC. For this experiment, we limit the throughput of each node to 1
Gbps, as CloudLab can not support a full 10-Gbps connectivity between the 100 nodes we
managed to book. To generate network intensive load, we use iperf [34]. Half of the nodes
run an iperf server, and the other half run an iperf client. Each client communicates with
a single server. Figure 6.3 shows the aggregate throughput of the iperf servers when de-
ployed with and without Nifty. The figure shows that Nifty’s overhead is negligible. When
using 100 nodes, Nifty degrades the aggregate throughput by only 3.5%. Nevertheless, this
monitoring approach will not scale to clusters with thousands of nodes. We are currently
exploring the design of a fault tolerance technique that can scale to larger clusters.

6.2 Handling Partial Partitions

To demonstrate the effectiveness of the proposed approach, we evaluate Nifty’s perfor-
mance with the seven aforementioned systems under a partial partition fault. We note
that RabbitMQ and VoltDB implemented two different techniques for tolerating partial
partitions (Chapter 4).

Partial partition setup. We use the same deployment of the seven aforementioned
systems. Each system is deployed on an odd number of replicas. We introduce a partial
partition that leaves one node as a bridge node and puts an equal number of nodes on
each side of the partition. Client nodes are not affected by the partition. We partition the
cluster this way to create maximum pressure on the bridge node.

Figure 6.1 and Figure 6.2 show the system performance when the cluster suffers from
the partial partition. We notice that all the seven systems are severely effected by the
partial partition. ActiveMQ, MongoDB, and VoltDB suffer a complete cluster pause or
shutdown when deployed without Nifty. HDFS fails almost all write operations. The
VoltDB cluster shuts down because, after detecting the surviving clique, the system misses
at least one shard. This confirms our analysis in Section 4.1.
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RabbitMQ uses the checking neighbor’s views fault tolerance approach. In our de-
ployment, each queue is mirrored on a backup replica. Due to the strong consistency
requirement, we configure RabbitMQ to pause in case of partial partition. We deploy
RabbitMQ on three nodes. Unfortunately, we could not use a larger RabbitMQ cluster
because partial partitions often lead to the pause of the entire RabbitMQ cluster when
Nifty is not used (Figure 4.3). Even with three nodes, partial partitions sometimes lead
to pausing two out of three nodes. We discard those results and only include results in
which one node pauses. Consequently, our results show the best possible performance of
RabbitMQ under partial partitions. Pausing a broker in RabbitMQ leads to more than
50% reduction in throughput (RabbitMQ-P in (Figure 6.2.b)).

In Redis PubSub, if a partial partition isolates a node that receives new messages from
another Redis node, Redis will fail to deliver the message to subscribes connected to the
isolated node , leading to 50% reduction in throughput (Figure 6.2.c).

Kafka uses Zookeeper to monitor cluster nodes. If a partial partition isolates a queue
leader from the majority of replicas while Zookeeper runs on a bridge node, Zookeeper will
not select a new leader and the entire cluster pauses (Finding 1 in Chapter 3). To mitigate
this, we made sure that Zookeeper falls on one side of the partition. In this case, all the
nodes on the other side of the partition that cannot reach Zookeeper are removed from the
cluster. In our experiment, the partial partition causes two nodes to pause, which leads to
almost a 50% reduction in system throughput (Figure 6.1.b).

Figure 6.1 and Figure 6.2 show that Nifty effectively masks the partial partition, so
none of the nodes shut down or pause. Figure 6.1.a shows the write operation throughput
for HDFS. With a replication level of three, each file has replicas on both sides of a partial
partition. Consequently, for every 1 GB of data written, up to 2 GB of data are rerouted
through the bridge node. This reduces the system throughput by up to 45%. We note that
having a partial partition result in a performance degradation is better than a complete
system unavailability when HDFS is deployed without Nifty. We present an optimization
for HDFS that alleviates this problem in Section 7. For the rest of the systems, during
the partial partition, almost 50% of client requests and responses are rerouted through the
bridge node. Even so, the system throughput only decreases by 2-6.7% and latency only
increases by 3-7.8%. This shows that Nifty can effectively mask partial partitions and is
able to utilize remaining connections to reduce the performance impact.

Figure 6.4 shows the tail latency for VoltDB and RabbitMQ for the same experiments
presented in Figure 6.2. The figure shows the average throughput and the 99th percentile
of latency while increasing the load on the system. The figure shows that Nifty increases
the 99th percentile latency by up to 6.8% without a partial partition and by 15% under a
partial partition failure.
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Figure 6.1: Nifty’s overhead. The average throughput for HDFS (a) and the average
throughput vs. average latency Kafka, ActiveMQ, and MongoDB. (-P) denotes the results
with a partial partition.
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a partial partition.
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Figure 6.4: Tail latency evaluation. Average throughput vs. 99th percentile of latency.
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Chapter 7

Classification API Utility

While Nifty reroutes packets through bridge nodes to restore a cluster connectivity during
a partial partition, it has the potential to significantly increase the load on bridge nodes
and significantly reduce performance. Our evaluation with HDFS (Figure 6.1a) shows one
scenario in which during a partial partition a system using Nifty experiences close to 50%
drop in throughput. Given that network partitions may last hours [143, 144, 101, 102],
this performance degradation is highly undesirable.

A system using Nifty can be optimized to reduce the amount of data forwarded through
bridge nodes. The approach to do so is system-specific. Nifty offers an API to facilitate
the implementation of these mechanisms 5.1.

To demonstrate the benefit of using Nifty’s API we modified the implementation of two
mechanisms to reduce the amount of data rerouted through the bridge nodes. We modified
the data placement protocol in HDFS, and the processing of multi-shard operations in
VoltDB.

7.1 HDFS

HDFS uses chain replication to replicate write operations. Chain replication arranges
replicas in a chain. Each node passes the write operations to its successor. When selecting
three data nodes for a new data chunk, the name node tries to balance the number of blocks
across nodes and select nodes located on more than one rack. Under partial partition large
volumes of data can be rerouted through the bridge node. In the worst case, with three-way
replication, the same data may traverse bridge nodes twice. Figure 6.1a shows that system
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throughput degrades by up to 45% under partial partitions. During this experiment clients
write 48 GB of data, and the bridge node rerouted 39.2 GB of data. Our probabilistic
analysis shows that with replication level of 3 the total volume of rerouted traffic through
the bridge nodes will be equivalent to 85% of the data writen by the clients.

To improve the system performance under partial partitions we used the Nifty’s API
to implement three optimizations:

• Optimized chain ordering (Opt.-Chain). In the worst case, when the system is con-
figured with a replication level of three, a newly written data blocks may be rerouted
twice through the bridge nodes (Figure 7.1). Our probabilistic analysis shows that
in our experimental setup of seven data nodes with one node being a bridge, there is
a 17% chance to reroute a block twice through the bridge node.

We modified the HDFS data placement algorithm to avoid the situation in which
data is routed twice through bridge nodes (Figure 7.1). After the data placement
mechanism picks three replicas, we modified the code to query Nifty to get the
network topology. We use the network topology to order the replicas in a chain in
such a way to forward data through bridge nodes at most once.
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• Two replicas (2-Replicas). Another approach to avoid rerouting the same data twice
through bridge nodes is to temporally reduce the replication level to 2 during network
partitions. Once the partial partition heals the NameNode can create additional
replicas of the affected data chunks.

• Optimized data placement (One-side). In this alternative we modified the HDFS
data placement algorithm to query Nifty to identify the cluster topology under partial
partitions then for any new data chunk allocate three data nodes on the same side of
the partition or bridge nodes. This effectively eliminates any data rerouting through
the bridge nodes.

We note that these policies affect data written during a partial partition. When the
partition heals, Nifty returns to the original replication factor or placement policy. For the
2-Replicas policy, the system will create an additional replicas after the partition heals.

Results. We deploy HDFS on eight nodes: one name node, and seven data nodes on
the same cluster detailed in Chapter 6. The partial partition is injected to put three data
nodes on each side of the partition and keep one bridge node. Clients run on dedicated
machines and use the TestDFSIO benchmark to write to and read 1 GB files. We use
the default replication factor of three. We show the average of 30 runs. The maximum
standard deviation of these experiments is 4.7%.

Figure 7.2 shows the system throughput while varying the number of clients. We use
the performance of HDFS without a partial partition as a baseline (Baseline in Figure 7.2).
The figure shows that when we the partial partition is injected, Nifty, without using any
optimization, achieves up to 41% of the Baseline throughput. This is mainly because 85%
of the client data is rerouted through the bridge node which creates a system bottleneck.
In the worst case, a client data will be forwarded twice through the bridge node during
the replication step. This scenario accounted for 34% of the forwarded data. The Opt.-
Chain optimization guarantees that each write operation is rerouted at most once through
the bridge node. This optimization reduces the amount of data rerouted through the
bridge node to 68% of the client data and achieves up to 59% of the Baseline throughput.
The 2-replicas optimization further reduces the replication overhead, but also reduces the
durability grantees for data written during a partial partition. This optimization achieves
81% of the Baseline throughput. Figure 7.2 shows that the one-side optimization achieves
a throughput comparable to the Baseline under the partial partition. This is because this
optimization avoids rerouting any client data through the bridge nodes.
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Figure 7.2: HDFS write throughput with different optimizations

7.2 VoltDB

In VoltDB, a single server (aka, multi-data-partition initiator or MPI) processes all multi-
shard operations. The MPI divides a multi-shard query (e.g., a join) to sub-queries, such
that each sub-query targets a single shard. The MPI forwards each sub-query to its shard
leader, gathers the intermediate results, performs final query processing, and sends the
result to the client.

When deploying VoltDB atop Nifty, if the MPI node is on one side of the partition, a
potentially significant volume of intermediate data passes through the bridge node. In our
setup, when the MPI is on one side of the partition, 50% of the intermediate results are
rerouted through the bridge node. This increases operation latency and the load on bridge
nodes.

To improve the performance of multi-shard operations, the MPI process can be migrated
to a bridge node. This effectively eliminates the need to reroute any traffic for multi-shard
queries. We modify VoltDB to use Nifty’s API to identify bridge nodes and migrate the
MPI to a bridge node.

To evaluate this optimization’s effectiveness, we evaluate the effect of the MPI’s location
on system performance. We restrict clients to contacting VoltDB nodes on one side of the
partition and compare the system performance of three MPI placements: on clients side
of the partition (client side in Figure 7.3), on the bridge node (bridge), and on the side
opposite to the clients (opposite side). Bridge placement represents our optimization.

Setup and Workload. We use the same VoltDB configuration and partial partition
setup detailed in the previous sections. Unfortunately, VoltDB has limited support for join
queries, so it cannot run standard benchmarks such as TPC-H [70]. In our experiments, we
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Figure 7.3: The impact of MPI placement on VoltDB’s performance. Figure shows the
average latency (a) and average throughput (b). Standard deviation was less than 2%.

use a simple synthetic benchmark that joins two tables. The benchmark has two sharded
tables of 20 fields each. Each field is 50 bytes, leading to approximately 1 KB rows. To
use multiple shards, clients issue a range query that joins the two tables on the primary
key. The client issues a query with a range that includes four primary keys. Consequently,
the query result size is limited to four rows, with a total size of almost 8 KB. We populate
the database with 20 GB of data before running the experiments. We report the average
and standard deviation for 30 runs.

Results. Figure 7.3 shows the system throughput (a) and the average latency (b) for
the three possible MPI placements. During a partial partition fault, placing the MPI
on a bridge node decreases the latency by up to 11% and improves throughput by 11%
compared to client and opposite side placements. Placing the MPI on a bridge node
reduces the number of hops the join query must make before the MPI accumulates all the
results and sends the query reply. Furthermore, bridge placement achieves throughput and
latency within 4% of VoltDB’s performance when there is no partition (“no partition” in
Figure 7.3).

We measure the amount of data forwarded through the bridge nodes for each one of
those configurations; placing the MPI on the bridge node imposes the least overhead. When
using 128 clients, 72 MB, 5 GB, and 6.5 GB of data are forwarded through the bridge node
when the MPI is placed on the bridge, client side, and opposite side, respectively. The
opposite side reroutes more data than the client side placement, as the client request and
the result are also rerouted through the bridge node.
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Chapter 8

Related Work

To the best of our knowledge, this is the first study to focus on partial network partitioning,
characterize its failures, identify design pitfalls in common distributed systems techniques,
dissect modern fault tolerance techniques, and explore the design of a generic fault tolerance
technique for this type of fault.

Failure studies. A number of previous efforts analyzed failures in distributed systems,
including characterizing specific component failures [101, 144, 145, 78, 97, 110] and char-
acterizing failures in a specific domain such as HPC [94, 120, 136], IaaS clouds [76], data-
mining services [154], hosting services [132, 104], data-intensive systems [135, 103, 118], and
cloud systems [151]. Our work complements these efforts by focusing on failures triggered
by partial network partitions.

Yuan et al. [151] conducted a study on 198 general user-reported failures from six
distributed systems. Yuan et al. [151] reports 24% of the their failures to be catastrophic
failures, while our work shows a much higher percentage in partial network partition failures
(76%). Our work also shows that less than 2% of the failures we found are nondeterministic,
compared to 26% of general failures they found. This clearly shows that partial network
partition failures have more severe effects on the systems than general failures. This also
shows that testers should be able to catch partial network partition failures with well
written tests since almost all of them are deterministic.

In our previous work [74], we studied 136 network partitioning failures focusing on
complete partitions. This previous work identified partial partitions, presented examples
of how they can lead to system failures, and presented NEAT, a testing tool that can inject
complete and partial network partitioning faults. We use NEAT to reproduce some of the
reported failures. This paper presents an in-depth analysis of partial partition failures and
fault tolerance techniques and proposes a novel fault-tolerant communication layer.
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Complete Network Partitions Comparing the characteristics of partial and complete
partitions [74] shows that they have similar catastrophic impact and manifestation and
reproducibility characteristics. Partial partitions seem easier to manifest. While all partial
partition failures are triggered by a single-node partial partition and almost all of the
failures are deterministic, 88% of the complete partitions manifest by isolating a single
node and 80% of them are deterministic. Furthermore, we found twice as many failure
reports reporting complete partitions than partial partitions.

Despite their similarity in causing catastrophic failures and being easy-to-manifest, par-
tial and complete partitions are fundamentally different faults. Unlike complete partitions,
a cluster suffering a partial partition is still connected but not all-to-all connected. Conse-
quently, the CAP theorem bounds [100] do not apply to partial partitions. Furthermore,
fault tolerance techniques for complete partitions cannot handle partial partitions or lead
to pausing up to half of the cluster nodes. For instance, using majority vote to elect a
leader is an effective mechanism to tolerate complete partitions. This approach alone is not
effective in handling partial partitions, as there could be multiple completely connected
subgroups with each connecting a majority of nodes. Chapter 4 shows how using only
majority voting can lead to leader election thrashing and system unavailability.

Overlay Networks. Using the hosts in a cluster of node to create an overlay network
like Nifty does to mask partial partitions is a common idea. RON [75] creates an overlay
network to recover from path outages in the internet. Unlike RON, Nifty focuses on partial
partitions in data center networks, works in the MAC layer, and allows for much faster
convergence times. VTrace [95] helps to diagnose persistent packet loss in cloud overlay
networks, without taking any action to help with the packets loss like Nifty. DHT Systems
like Chord[138] and Symphony[123] use overlay networks to route requests in peer-to-peer
distributed storage systems. BDS [153] uses overlay network routing for optimizing inter-
datacenter data replication. [84] investigates using overlay networks for better performance
in content delivery. Nifty differs from these systems in its purpose, which is to keep a cluster
fully connected in the case of partial partitions.

Leveraging SDN for overlay networks. Software-defined networking capabilities have
been used to engineer traffic and optimize system operations. Google Andromeda [91] uses
SDN for Google Cloud Platform’s network virtualization stack. In a similar fashion [137]
shows how overlay networks can be created in OpenStack using SDN.

Other works have focused on using SDN to create or optimize certain systems. [146,
152] use SDN for performing different network measurements tasks like QoS measurements
or anomaly detection. [113] has used SDN to implementing an in-network stateful firewalls.
[80, 142] show the use of SDN to create load balancers to optimize key-value stores and
distributed Memcached deployments. [112, 119] use SDN for key-value-based routing.
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Nifty is similar in spirit to these systems, as we use Open vSwitch capabilities to implement
an overlay. Our goal however is different: to improve systems fault-tolerance by masking
partial network partitions.
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Chapter 9

Concluding Remarks

Our work sheds light on a peculiar type of infrastructure fault and highlights the need
for further research to understand such faults and explore techniques to improve systems’
resiliency.

This is the first work to focus on partial network partitioning fault and present an
in-depth analysis of system failures triggered by this fault. We identify characteristics that
can facilitate better test design. Our findings highlight that focused design reviews can
identify vulnerabilities early in the design process. We dissect the implementation of eight
popular systems and study their fault tolerance techniques. In doing so, we identify four
main approaches for tolerating partial partitions. Unfortunately, all implemented fault
tolerance techniques have severe shortcomings.

We, therefore, build Nifty to overcome the limitations of modern fault tolerance tech-
niques. Nifty is a simple, transparent communication layer that reroutes packets around
partial partitions. We note that modern systems already incorporate a membership and
connectivity monitoring. We show that extending the current implementations with a
detour mechanism is an effective and low overhead fault tolerance technique to partial
partitions. The source code for Nifty is available at https://github.com/UWASL/NIFTY
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APPENDICES

Appendix A: The Probability of VoltDB Cluster Shut-

down

We consider a VoltDB cluster with N nodes. The cluster stores S shards with a replication
factor of R. When a partial network partition happens, VoltDB identifies the surviving
clique and all the nodes that are not part of the clique shutdown. We denote the number
of nodes that shutdown due to a partial partition as F (Since F is not in the surviving
clique then F < N

2
), leaving the system with (N − F ) surviving nodes.

Assumptions. We assume that:

1. The system selects R nodes to hold the replicas of a given shard using a uniform
random distribution.

2. Shard placement is independent of other shards locations.

3. Each node has enough capacity to store all the shards.

VoltDB will shut down if the surviving clique does not have all the shards. This means
that if the F failed nodes contain all the R replicas of any of the S shards, then VoltDB
shuts down. In other terms, the VoltDB cluster will survive a partial partition if every
shard has at least one replica in the surviving clique.

Step I. Single Shard Probability. Consider the case of a system with a single shard.
The system will survive in all cases in which the surviving clique has at least a single
replica of the shard. To compute the probability a system will survive a partial partition,
we will compute the number of possible replica placements in the cluster, then compute
how many of those placements would fail when losing F nodes. Finally, we will use these
two numbers to compute the probability a system survives a partial partitioning fault.
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Number of possible combinations to place a shard. The system selects R nodes to hold
the replicas for a shard. The selection is without replacement since no two copies of the
shard can be placed on the same node, and the order of the selected nodes is not important.

The number of possible combinations for placing a shard is:

C(N,R) =
N !

(N −R)! ×R!
(1)

If F nodes fail, the number of combinations in which all the replicas of the shard are
on the F failed nodes is (this is again without replacement and ordering is not important)

C(F,R) =
F !

(F −R)! ×R!
(2)

The probability the system shuts down when F nodes fail is

P (single shard shutdown) =
C(N,R)

C(F,R)

=

N !
(N−R)!×R!

F !
(F−R)!×R!

=
F !(N −R)!

N !(F −R)!

(3)

And the probability of a system surviving a partial partition that shuts down F nodes
is

P (single shard surviving) = 1 − F !(N −R)!

N !(F −R)!
(4)

Step II. Multi-shard probability. Assuming that shards are placed independently, the
probability of a system with S shard surviving a partial partition with F nodes shutting
down is:

P (system surviving) =

(
1 − F !(N −R)!

N !(F −R)!

)S

(5)

The probability the system shuts down is

P (system shutdown) = 1 −
(

1 − F !(N −R)!

N !(F −R)!

)S

(6)
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Figure 1: Probability of a VoltDB system shut down.

Example. We used this formula to compute the probability of failure of VoltDB on
different cluster sizes. The number of shards VoltDB allocates to nodes is equal to the
number of cores. Figure 1 shows the probability of VoltDB shutting down for different
cluster sizes, with replication level of 3, and assuming nodes with 32 CPU cores. The
figure shows that isolating only 10% of the nodes leads to over 50% probability of shutting
down the entire cluster, and isolating only 20% of the nodes leads to a staggering 90%
chance for a complete cluster shutdown.

Appendix B: The Impact of Partial Partitions on Rab-

bitMQ

RabbitMQ’s has two main policies for handling partial partitions. The first policy changes
a partial partition to a complete partition which may lead to multiple inconsistent copies
of the data. The second is the pause policy which preserves data consistency but may lead
to pausing the entire system or the majority of its nodes.

To determine how many nodes pause when using the pause policy, we conducted an
experiment in which we deployed a 15-node RabbitMQ cluster, introduced a partial parti-
tion, and observed how many nodes paused. In all experiments, we inject a partition such
that one node remained unaffected and able to reach all nodes. Figures 4.4, 2, and 3 show
the median number of paused nodes under various partition configurations. We ran each
configuration 30 times. Note that the maximum number of nodes that can pause is 14, 12,
and 10 in Figures 4.4, 2, and 3, respectively, because the rest of the nodes are bridge nodes
that can reach all the nodes in the cluster. Surprisingly, under all partial partition scenario
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Figure 2: The median number of paused nodes in a cluster of 15 nodes. In all runs, 3 node
are unaffected by the partition. The notation (i, j) shows the number of nodes on each
side of the partition.
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Figure 3: The median number of paused nodes in a cluster of 15 nodes. In all runs, 5 node
are unaffected by the partition. The notation (i, j) shows the number of nodes on each
side of the partition.

a significant number of the affected nodes are paused. Our investigation of this failure sce-
nario revealed that nodes declare another node unreachable after missing its heartbeats for
a timeout period. In RabbitMQ, the timeout period is 1 minute by default, which gives
enough time for many nodes to detect the partition and pause. We experimented with
significantly shorter timeout periods, but that caused some nodes to prematurely declare
that other nodes had failed, even without a partial partition.
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