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Abstract

The Fifth-Generation (5G) networks facilitate the evolution of communication systems
and accelerate a revolution in the Information Technology (IT) field. In the 5G era, wireless
networks are anticipated to provide connectivity for billions of Mobile User Devices (MUDs)
around the world and to support a variety of innovative use cases, such as autonomous
driving, ubiquitous Internet of Things (IoT), and Internet of Vehicles (IoV). The novel
use cases, however, usually incorporate compute-intensive applications, which generate
enormous computing service demands with diverse and stringent service requirements.
In particular, autonomous driving calls for prompt data processing for the safety-related
applications, IoT nodes deployed in remote areas need energy-efficient computing given
limited on-board energy, and vehicles require low-latency computing for IoV applications
in a highly dynamic network.

To support the emerging computing service demands, Mobile Edge Computing (MEC),
as a cutting-edge technology in 5G, utilizes computing resources on network edge to provide
computing services for MUDs within a radio access network. The primary benefits of MEC
can be elaborated from two perspectives. From the perspective of MUDs, MEC enables
low-latency and energy-efficient computing by allowing MUDs to offload their computation
tasks to proximal edge servers, which are installed in access points such as cellular base
stations, Road-Side Units (RSUs), and Unmanned Aerial Vehicles (UAVs). On the other
hand, from the perspective of network operators, MEC allows a large amount of computing
data to be processed on network edge, thereby alleviating backhaul congestion. MEC is a
promising technology to support computing demands for the novel 5G applications within
the RAN. The interesting issue is to maximize the computation capability of network
edge to meet the diverse service requirements arising from the applications in dynamic
network environments. However, the main technical challenges are: 1) how an edge server
schedules its limited computing resources to optimize the Quality-of-Experience (QoE)
in autonomous driving; 2) how the computation loads are balanced between the edge
server and IoT nodes in computation loads to enable energy-efficient computing service
provisioning; and 3) how multiple edge servers coordinate their computing resources to
enable seamless and reliable computing services for high-mobility vehicles in ToV.

In this thesis, we develop efficient computing resource management strategies for MEC,
including computation offloading and task scheduling, to address the above three technical
challenges. First, we study computation task scheduling to support real-time applications,
such as localization and obstacle avoidance, for autonomous driving. In our considered
scenario, autonomous vehicles periodically sense the environment, offload sensor data to
an edge server for processing, and receive computing results from the edge server. Due to
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mobility and computing latency, a vehicle travels a certain distance between the instant
of offloading its sensor data and the instant of receiving the computing result. Our objec-
tive is to design a scheduling scheme for the edge server to minimize the above traveled
distance of vehicles. The idea is to determine the processing order according to the in-
dividual vehicle mobility and computation capability of the edge server. We formulate a
Restless Multi-Armed Bandit (RMAB) problem, design a Whittle index-based stochastic
scheduling scheme, and determine the index using a Deep Reinforcement Learning (DRL)
method. The proposed scheduling scheme can avoid the time-consuming policy exploration
common in DRL scheduling approaches and makes effectual decisions with low complex-
ity. Extensive simulation results demonstrate that, with the proposed index-based scheme,
the edge server can deliver computing results to the vehicles promptly while adapting to
time-variant vehicle mobility. Second, we study energy-efficient computation offloading
and task scheduling for an edge server while provisioning computing services for IoT nodes
in remote areas. In the considered scenario, a UAV is equipped with computing resources
and plays the role of an aerial edge server to collect and process the computation tasks
offloaded by ground MUDs. Given the service requirements of MUDs, we aim to maxi-
mize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit
power, and computation task scheduling. The resulting optimization problem corresponds
to nonconvex fractional programming, and the Dinkelbach algorithm and the Successive
Convex Approximation (SCA) technique are adopted to solve it. Furthermore, we decom-
pose the problem into multiple subproblems for distributed and parallel problem solving.
To cope with the case when the knowledge of user mobility is limited, we apply a spa-
tial distribution estimation technique to predict the location of ground users so that the
proposed approach can still be valid. Simulation results demonstrate the effectiveness of
the proposed approach to maximize the energy efficiency of the UAV. Third, we study
collaboration among multiple edge servers in computation offloading and task scheduling
to support computing services in IoV. In the considered scenario, vehicles traverse the
coverage of edge servers and offload their tasks to their proximal edge servers. We de-
velop a collaborative edge computing framework to reduce computing service latency and
alleviate computing service interruption due to the high mobility of vehicles: 1) a Task
Partition and Scheduling Algorithm (TPSA) is proposed to schedule the execution order
of the tasks offloaded to the edge servers given a computation offloading strategy; and 2)
an artificial intelligence-based collaborative computing approach is developed to determine
the task offloading, computing, and result delivery policy for vehicles. Specifically, the
offloading and computing problem is formulated as a Markov decision process. A DRL
technique, i.e., deep deterministic policy gradient, is adopted to find the optimal solution
in a complex urban transportation network. With the developed framework, the service
cost, which includes computing service latency and service failure penalty, can be mini-



mized via the optimal computation task scheduling and edge server selection. Simulation
results show that the proposed Al-based collaborative computing approach can adapt to a
highly dynamic environment with outstanding performance.

In summary, we investigate computing resource management to optimize QoE of MUDs
in the coverage of an edge server, to improve energy efficiency for an aerial edge server
while provisioning computing services, and to coordinate computing resources among edge
servers for supporting MUDs with high mobility. The proposed approaches and theoretical
results contribute to computing resource management for MEC in 5G and beyond.
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Chapter 1

Introduction

As mobile applications continue to develop, wireless networks are evolving rapidly, resulting
in the convergence of novel technologies and new network architectures. Prior to Fifth-
Generation (5G), wireless networks were designed to support communication services, such
as voice and multimedia services. The increase in data rate and the number of Mobile User
Devices (MUDs) promote the development of compute-intensive mobile applications, while
bringing extensive computing demands to wireless networks. Before 5G, the computing
tasks generated by MUDs can be either processed locally or offloaded to a cloud server
located on the Internet. However, emerging applications in 5G and beyond, such as In-
ternet of Things (IoT) and Artificial Intelligence (AI), further motivate the diversification
of mobile applications, and the corresponding computing demands are becoming pervasive
in wireless networks [1,2]. Conventional computing solutions, i.e., cloud computing or
computing on HMDs locally, cannot offer sufficient computation capability to support the
ever-growing computing demands, which poses new challenges that lie beyond communica-
tion capacity improvement in 5G and beyond. To address the challenge, a new computing
paradigm, Mobile Edge Computing (MEC) has been proposed. In this chapter, we provide
an overview of MEC, discuss the role of MEC in 5G and beyond, and elaborate on how
the MEC technology satisfies the increasing computing service demands. We then present
three key research problems investigated in this thesis.

1.1 Overview of Mobile Edge Computing

A tremendous technological development in mobile applications results in escalating de-
mands for the computing resource in wireless networks. Because local MUDs have limited



computing and energy resources, they would suffer from high latency and energy consump-
tion when processing computing demands on local devices. As a result, networks continue
to improve mobile computation capability in order to meet increasing computing demands.
For the last decade, Mobile Cloud Computing (MCC) has provided centralized computing
solutions to MUDs by deploying cloud servers over the Internet. At this stage, wireless
networks are aimed at supporting data services to MUDs for computation offloading and
providing access to computing resources at the cloud server, collaborating with backbone
IP networks and cellular core networks [3]. As computing demands in network continu-
ously increase, the limitations of MCC have emerged. First, the novel mobile applications
or use cases mandate stringent computing requirements. For example, Virtual Reality
(VR) streaming requires ultra-low latency on video processing to satisfy motion-to-photon
latency (< 20ms) requirement. Ideally, a Round Trip Time (RTT) on the order of 2 ms
between the computing server and MUDs is recommended to satisfy the requirement [4],
while the RTT of MCC is around 50 ms [5]. Second, the computing tasks generated by
mobile applications become complicated and compute-intensive, which further increases
computation loads on the cloud server. As a result of the high reliance on cloud com-
puting, extensive computing data would enter core networks and further aggravate traffic
congestion in backbone networks. Therefore, it is necessary to innovate the paradigm of
computing for mobile applications to cope with the above challenges.

To address the challenges posed by MCC, a new computing paradigm, i.e., MEC, has
been proposed as a key technology for 5G [6,7]. MEC enhances the computation capa-
bility on network edge by deploying the computing resources, i.e., storage and processing
capacity, to edge nodes at the Radio Access Network (RAN). An edge node, equipped with
computation capability, can serve as a computing server, i.e., the edge server, to process
the computing tasks generated by MUDs or other network entities at the RAN within its
communication range. The main purpose of introducing MEC is to move the computing
resources to network edge closer to MUDs. As such, MEC inherits the benefits of MCC
in terms of computation offloading to provide fast and energy-efficient computing services
for resource-constrained MUDs. Moreover, compared with MCC, MEC offers much lower
latency on computation offloading by processing computing tasks near MUDs, usually in
one hop, thereby enabling low-latency and real-time computing services [8]. In addition,
MEC processes the computing data on network edge without entering the core network,
thereby alleviating congestion on the backbone and further optimizing network traffic flow.

The ultra-dense deployment of edge nodes in 5G endows the concept of MEC with sig-
nificant value, which is not limited to low-latency computing services. First, as the number
of edge nodes increases, MEC is a low cost and flexible approach to enhance the computing
capability in the network, compared with establishing additional data centers and Virtual



Machines (VMs) in MCC. With the development of aerial communications, such as Un-
manned Aerial Vehicles (UAVs) assisted networks, MEC enables ubiquitous computing
services for MUDs, in particular for MUDs in remote areas. In addition, taking the ad-
vantage of the proximity to MUDs, edge servers can perform specific types of computation
functions based on network context information, such as locations, and implement specific
computing resource management policies corresponding to network characteristics of the
MUDs, such as traffic patterns and computation loads. By optimizing computing ser-
vice deployment, MEC can effectively improve the performance of computing services and
hence the Quality of Experience (QoE) among MUDs. For example, in vehicular networks,
edge servers on Roadside Units (RSUs) can manage their computing resources according
to real-time vehicle traffic flow and deploy computing functions for vehicle-related services.
Besides the above advantages, MEC is also featured by security and privacy protection
and reliability due to the distributed computing architecture [9].

Across academia and industry, MEC has been gaining significant attention due to
its advantages. Since MEC is standardized by European Telecommunications Standards
Institute (ETSI) in 2014 [6], the implementation of MEC has been accelerated. Telecom-
munication companies, such as Huawei, Ericsson, Microsoft, etc., have focused on MEC’s
commercialization and established MEC products for diverse applications, including IoT
applications [10,11]. In the research community, the 3rd Generation Partnership Project
(3GPP) has conducted extensive studies on enabling MEC in 5G [12] and has included
MEC as a crucial element in 5G architecture [13]. Overall, MEC is a crucial component
in the 5G architecture which prompts wireless networks to achieve digital and intelligent
transformation. In this thesis, we will focus on resource management in MEC to support
emerging services in 5G and beyond.

1.2 MEC in 5G and Beyond

5G networks aim to support three major service scenarios: Enhanced Mobile Broad-
band (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), and Massive
Machine-Type Communications (mMTC). These service scenarios raise diverse service
requirements. Although the service scenarios of next-generation networks beyond 5G
have not been determined yet, as a preliminary consensus, the service scenarios in sixth-
generation networks would be the combinations of eMBB, URLLC, and mMTC [14,15]. To
support these service scenarios, MEC can be a promising solution which facilitates flexible
and powerful computation capability in the network with a low-cost manner. In this thesis,
we focus on three use cases emerging in 5G: autonomous driving, [oT in remote areas, and
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Figure 1.1: An overview of MEC-empowered networks.
vehicles, to demonstrate the necessity of MEC in future networks.

¢ MEC for autonomous driving: In autonomous driving, autonomous vehicles are
equipped with advanced sensors, such as cameras, lidar, radar, etc., which contin-
uously generate sensor data for safety-related applications, such as localization and
obstacle avoidance [16]. The amount of sensor data to be processed can be huge,
up to 10TB and 20TB per hour per vehicle [17]. Meanwhile, to process the sensor
data, machine learning techniques are usually adopted, such as the Yolo algorithm in
object detection [18]. Executing such compute-intensive tasks can be too demanding
for in-vehicle processing, particularly for real-time applications. Therefore, MEC can
be adopted to process the sensor data generated by autonomous vehicles with low
latency, thereby supporting real-time autonomous driving applications. In addition,
by MEC, an edge server can aggregate sensor data provided by multiple autonomous
vehicles and compute perception results synthetically. In this way, perception ac-
curacy and decision-making efficiency can be further improved by data fusion. The
computing scenario is shown as Case 1 in Fig. 1.1.

e MEC for IoT in remote areas: In the 5G era, billions of IoT nodes are envisioned
to be deployed worldwide for diverse sensing tasks. A substantial portion of the IoT
nodes operate in remote or challenging areas, such as forests, deserts, mountains, or
underwater locations [19], and have computing applications to be performed, such
as long pipeline infrastructures control [20] and underwater infrastructures monitor-
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ing [21]. Such IoT nodes located in remote areas usually have limited onboard energy
and cannot reach terrestrial network infrastructure. Thanks to the development of
ubiquitous communications in 5G, UAVs can be equipped with computation capa-
bilities to form an on-premises computing platform for the IoT nodes. By offloading
computation loads to a UAV-mounted cloudlet, IoT nodes can reduce their energy
consumption, thus extending their onboard battery life. The computing scenario is
shown as Case 2 in Fig. 1.1. In this case, MEC provides an energy-efficient and
flexible computing solution for the IoT nodes.

e MEC for Internet of Vehicle (IoV): Conventional Vehicular Ad Hoc Networks
(VANETS) focus on vehicle-to-vehicle or vehicle-to-RSU communications to share
safety-related information. As the vehicular networks continue to evolve, onboard
applications are not limited to safety message exchange and have become more ad-
vanced and diversified, such as traffic control and optimization [22], onboard enter-
tainments [23], argument reality services [24], etc. Supporting the diverse oV appli-
cations calls for high computation capability in vehicular networks. In MEC, edge
servers can be deployed at RSUs or other access points adjacent to roads to provide
low-latency computing services to vehicles. Edge servers can update location-based
information (e.g., real-time traffic reports, high-definition maps) provided to vehi-
cles based on road conditions and vehicle traffic flow, thus providing highly flexible
computing services. Additionally, edge servers can support onboard entertainments,
such as video streaming and gaming, by offering sufficient computing resources to
vehicles. The computing scenario is shown as Case 3 in Fig. 1.1.

The applications of MEC in 5G and beyond are not limited to the above three use cases. For
example, MEC is envisioned to support video processing for mobile VR video streaming,
which requires ultra-low latency on video processing and delivery [25]. Moreover, with the
widespread adoption of Al-empowered mobile applications, it is foreseeable that MEC will
be a critical technology to cope with the AI applications that pervade the entire network
in the future [26].

1.3 Computing Service Provisioning on Network Edge

MEC aims to support computing services for MUDs while satisfying their service require-
ments, such as low latency or low energy consumption, which calls for appropriate strate-
gies on resource management. Resource management strategies in MEC consists of three
fundamental parts: computation offloading, task scheduling, and mobility management.



Resource allocation policies in these three parts are highly coupled and jointly determine
computing service performance. The details of the three parts can be summarized as
follows:

e Computation offloading: MUDs offload their computation loads to edge servers
via wireless links to obtain computing resources. There are three major decisions in
computation offloading. The first decision is to determine the portion of computa-
tion loads to be offloaded. A computing task generated by an MUD can be divided
into several sub-tasks with different computation loads, i.e., task partitions, and the
subtasks can be offloaded to various edge servers or computed locally. An optimal
task partition ratio can improve the effectiveness of computation offloading, in which
the computation loads are assigned to different network entities based on their com-
putation capability and communication link quality. Second, if an MUD lies within
a coverage area reachable to multiple edge servers, a proper edge server should be
selected to execute the offloaded computation loads. Last, communication resources
should be properly allocated for computation offloading to enable prompt computa-
tion offloading. The corresponding decision variables include transmit power, spec-
trum bandwidth for computation offloading, and computing resources.

e Task scheduling: After an edge server receives computing tasks ofloaded by MUDs,
the server needs to determine the execution order of the tasks. The tasks scheduled
to be executed earlier will have a relatively shorter computing latency, while the tasks
scheduled to be executed later would experience a longer computing latency. In addi-
tion to computing latency, the scheduling policy also affects the energy consumption
of edge servers. For Dynamic Frequency and Voltage Scaling (DFVS) based CPU
architecture, the energy consumption for computing can increase cubically with com-
putation loads [9]. Different scheduling policies would result in different computing
intensities over time, thereby affecting computing energy efficiency.

e Mobility management: Different from MCC, the service coverage of an edge server
is limited, depending on the communication coverage of the corresponding edge node.
Thus, an edge server needs to determine when and where to migrate the computa-
tion loads offloaded by MUDs if the MUDs travel out of the communication coverage
of an edge server. In addition, mobility is also an intrinsic trait of MEC for some
applications, such as localization of vehicles [9]. The location and movement trajec-
tory of MUDs provide additional information to edge servers for offering intelligent
computing services to the MUDs. For example, in argument reality (AR) assisted
museum tours, different videos can be delivered to MUDs according to their locations



to achieve an immersive experience; in autonomous vehicles, the speed and location
of vehicles are useful information to edge servers to perceive road conditions and exe-
cute safety-related applications. Therefore, how to manage the computing resources
to support such real-time applications according to the movement of MUDs would
be a significant technical issue in MEC.

In this thesis, we will focus on resource management in the context of above three parts.
We will identify the challenges in computation offloading, task scheduling, and mobility
management, in different use cases, i.e., autonomous driving, IoT in remote areas, and
[oV, and address the challenges by proposing effectual edge computing strategies.

1.4 Research Motivations and Contributions

1.4.1 Challenges of MEC in 5G and Beyond

Although MEC technology provides a possible solution to low-latency and energy-efficient
computing in wireless networks, implementing MEC in the network still faces the following
challenges:

1) High mobility of MUDs: The challenges brought by mobility are two-fold. First,
communication connectivity between edge servers and MUDs with high mobility,
such as vehicles, is intermittent, while completing computing tasks may take some
time, especially when the tasks have longer computing sessions, such as VR video
streaming. Without proper mobility management strategies, it is difficult to deliver
the computing results back to MUDs if the MUDs travel out of the communication
coverage of the edge server to which the computation loads are offloaded. The inter-
ruption in computing would result in service discontinuity and degrades computing
service quality. However, developing an effective mobility management strategy can
be a challenge due to high network dynamics. For example, user’s viewpoint move-
ment would result in different videos to be processed and delivered from edge servers,
thereby introducing computing demand dynamics. Second, as aforementioned, in
some location-based applications, the movement of MUDs could be an important
factor in resource management for MEC. However, it is challenging to devise an opti-
mal resource allocation strategy with low overhead for a large number of MUDs with
heterogeneous and dynamic mobility patterns. Additionally, measuring the impact
of MUD movement on QoE in location-based applications, such as localization in
autonomous driving, is another challenge to be addressed in resource management.
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2)

Complex decision making: In MEC, computation offloading, task scheduling, and
mobility management are highly coupled with each other. Specifically, an edge server
can schedule computing tasks only if the tasks are offloaded from MUDs; additionally,
the computing latency at the edge server affects the offloading decisions of MUDs
and the frequency of service migrations. The three types of policies, i.e., compu-
tation offloading, task scheduling, and mobility management, determine computing
service performance jointly, thus increasing the difficulty in finding the optimal re-
source management strategy for MEC. Furthermore, when UAVs are utilized as an
edge server for terrestrial MUDs, the dimensions of decision variables can be further
enlarged. The settings of UAVs, such as flying trajectory, speed, and accelerations,
would affect the transmit power and data rate of MUDs in computation offloading
and should be jointly optimized in the resource management strategies, which further
complicating MEC implementation in wireless networks.

Network Constraints: While edge servers are much more resourceful than MUDs,
resources on edge servers are still limited when there are a lager number of connected
MUDs. First, the computing units at an edge server are limited, while computing
service demand is time-varying. An optimal computing task scheduling policy is
required to support real-time computing services and maximize the QoE of all con-
nected MUDs, while the heterogeneity of the computing tasks, such as computation
loads and properties of associated MUDs, makes the optimization process non-trivial.
Second, computing is energy-consuming. In particular, different from the terrestrial
edge servers, it can be difficult for a UAV-mounted cloudlet to provide enduring
computing services due to its limited onboard energy. With the energy constraints
in both the UAV-mounted cloudlet and MUDs, how to design an energy-efficient
resource management strategy is another challenge.

1.4.2 Approaches and Contributions

1)

In this thesis, we aim to develop efficient computing resource management strategies to
address the challenges in MEC, in which both computation offloading and task scheduling
policies are designed to increase computation capability and boost computing service per-
formance at network edge. We focus on three research issues to address the aforementioned
challenges.

We investigate how an edge server schedules its computing resource to optimize the
QoE of MUDs by taking their mobility dynamics into account. To be specific, we



study computing task scheduling to support real-time applications for autonomous
driving. In the considered scenario, autonomous vehicles sense the driving environ-
ment periodically and offload the sensor data to an edge server. Due to the mobility
of vehicles and non-negligible computing latency, vehicles cannot possess computing
results that accurately match the current driving conditions. We calculate the mis-
match by evaluating the vehicle traveled distance since the last data ofioading before
receiving the latest result delivery from the edge server. Our objective is to minimize
the above traveled distance of vehicles by scheduling the computing resource at the
edge server. To achieve the objective, we formulate the scheduling problem into a
Restless Multi-Armed Bandit (RMAB) problem and propose a Whittle index-based
stochastic scheduling scheme. To cope with the dynamics of vehicular mobility, we
develop a novel Deep Reinforcement Learning (DRL) method to determine the in-
dexes for vehicles. The proposed learning-based scheme can support task scheduling
for a large number of MUDs with low computing and communication overheads.
Simulations show that the proposed task scheduling scheme enables the edge server
to deliver computing results promptly while adapting to the time-variant vehicular
mobility in real time.

We investigate how an edge server provides computing services in an energy-efficient
manner, given energy and computing constraints. A UAV plays the role of an edge
server to collect and preforming computing tasks offloaded by IoT nodes in remote
areas. We aim to maximize the energy efficiency of the UAV-mounted cloudlet by
jointly optimizing UAV trajectory planning, computation offloading and task schedul-
ing, given the energy and computing constraints at MUDs and the UAV. The corre-
sponding optimization problem is non-convex fractional programming. We first adopt
the Dinkelbach algorithm and the successive convex approximation (SCA) technique
to transform the problem into a solvable form. To cope with the complexity of the
problem, we further decompose the optimization problem into multiple subproblems
to be solved in a distributed and parallel manner. With problem decomposition, both
MUDs and the UAV can achieve optimal resource allocation results cooperatively
with less local information sharing, such as the trajectory of the UAV. Furthermore,
we extend the proposed computing resource management strategy to accommodate
the scenario in which the knowledge of the mobility of MUDs is limited. A spa-
tial distribution estimation technique is adopted to predict the location of ground
users so that our proposed method can also be implemented given device comput-
ing demand distribution. Simulation results demonstrate that the proposed resource
management strategy can maximize the computation capability of the UAV-mounted
cloudlet with lower energy consumption.



3) We investigate how edge servers cope with the high mobility of MUDs to provide
seamless computing services by jointly design computation offloading, task schedul-
ing, and mobility management policies. We propose a computing collaboration frame-
work to provide reliable low-latency computing for IoV applications. In the frame-
work, multiple edge servers are selected, based on the mobility of the vehicles, to
process the offloaded tasks cooperatively. In addition, the proper edge servers are
proactively chosen to deliver the computing results back to the vehicles to avoid
service interruption. Under this framework, we propose a novel task offloading and
computing approach that reduces the overall computing service latency and improves
service reliability. In the first step, we propose a task partition and scheduling algo-
rithm (TPSA) that schedules the computing tasks offloaded to the edge servers. The
algorithm achieves a near-optimal task scheduling solution for the non-convex integer
problem with low time complexity. Furthermore, we adopt a DRL approach to deter-
mine the computation offloading policy, which selects the edge servers to receive tasks
offloaded by vehicles, compute the tasks, and deliver the results of the tasks back
to vehicles. The proposed model-free approach yields an optimal offloading policy
while adapting network dynamics in a complex urban transportation network. With
the proposed DRL-assisted computation offloading and task scheduling algorithm,
the service cost, which includes the computing latency and service failure penalty,
can be minimized through intelligent collaboration among edge servers. The simu-
lation results demonstrate the effectiveness of the proposed collaborative computing
approach in reducing service costs under highly dynamic environments.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: In Chapter 2, we provide a comprehen-
sive review on the state-of-the-art computing resource management strategies for MEC.
In Chapter 3, we design an adaptive computing task scheduling scheme to support real-
time computing services for autonomous driving with MEC. In Chapter 4, we develop an
energy-efficient computing solution for a UAV-mounted cloudlet given network constraints.
The proposed optimization approach jointly optimizes the UAV trajectory, computation
offloading, and task scheduling in a scalable manner. In Chapter 5, we investigate com-
puting resource coordination among multiple edge servers to cope with the high mobility
of MUDs and propose an Al-based collaborative computing solution in MEC. Finally, we
conclude the thesis and discuss future research works in Chapter 6.
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Chapter 2

Background and Literature Review

This chapter presents the background of MEC and survey state-of-the-art computing re-
source management strategies for MEC in three aspects: computation offloading, task
scheduling, and mobility management.

2.1 Mobile Edge Computing

As the number of MUDs is growing exponentially in the network, the centralized cloud
computing architecture gradually shows its disadvantages on providing on-demand com-
puting services due to the severe communication and computing latency. Meanwhile, the
enormous and frequent data exchanges between MUDs and remote cloud servers could
cause backhaul and core network congestion, thus degrading computing service perfor-
mance. To push the traffic towards the network edge, the concept of MEC was presented
in [6]. MEC defines a new platform to provide Information Technology (IT) and computing
service within the radio access network near MUDs. Taking the advantage of ultra-dense
edge node deployment, a vast amount of computing resources on network edge can be
utilized to reduce transmission and computing time. The main advantages of MEC are
summarized as follows:

1) Low Latency: The computing service delay consists of the two main components:
communication delay and computing delay. Compared to MCC, MEC can provide
low latency computing services for users in multi-fold. First, the MEC server is lo-
cated close to the user device (typically within 1km), while the distance between the
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device and the MCC data center is from tens of kilometers to that cross continents [9].
MEC has the advantage to analyze and process the offloaded data with short prop-
agation delay in communication. Furthermore, MEC isolates the offloading process
from the core network, and the one-hop communication between the edge server and
MUDs can greatly cut the communication latency. Last, although the remote cloud
has ample computing resources, resources have to be shared among a great number
of users, such that the computing delay of MCC may higher than the delay of MEC
when the computation loads are high in the cloud server.

2) Mobile Energy Saving: Although most MUDs have a certain computation capability
to process computing tasks locally, the on-board energy of MUDs is too strained to
execute compute-intensive applications. MEC provides a promising approach to save
on-board energy of MUDs by allowing computation offloading for them.

3) Context Awareness: Edge servers can leverage the proximity to MUDs to gather
real-time information and features of users, such as locations and MUD behaviors.
The information is able to help edge servers to make smart and user-centric decisions
for computation offloading and deliver context-aware mobile computing services.

Moreover, the advantages of MEC also include low computing service deployment costs [6].
Therefore, MEC is suitable to support emerging mobile applications which require real-time
and location-aware computing. The comparison between MCC and MEC is summarized
in Table 2.1 [9] [28]. Note that fog computing has an overlapping concept with MEC.
Both aim to push the computing processes closer to the user end. However, in terms of
the computing system structure, fog computing is a centralized computing paradigm that
processes the offloaded tasks at the local area network level. In contrast, the computing
server is physically close to MUDs in MEC. The intelligence, communication capability,
and processing power are pushed to the radio access network distributively [28]. We only
focus on MEC in this thesis.

2.2 Resource Management for MEC

Low-latency and energy-efficient computing requires effective resource management in
MEC. In this section, we present comprehensive reviews on resource management from
three aspects: computation offloading, task scheduling, and mobility management. Due
to the coupling between computation offloading and scheduling, both communication and
computing resources should be jointly considered.
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Table 2.1: Comparisons of MCC and MEC systems

MCC MEC
Sever Large-scale da.ta centers with a large number Small data center with moderated resource
hardware of highly-capable servers
Server Installed at Co-located with wireless gateways, WiFi routers,
location dedicated buildings LTE base stations, and other access points
Distance to MUDs Long (may across continents) Short (tens to hundreds of meters)
Backhaul
ackhau Frequent use Infrequent use
usage
Deployment Centralized Decentralized
N k
etwor > 100 ms [27] 10 - 20 ms
latency
Computational Sufficient Limited
power
Delay-tolerant and compute-intensive Latency-critical and compute-intensive
Applications applications, e.g., online social networking, applications, e.g., augmented reality,
and mobile health and self-driving.

2.2.1 Computation Offloading

In computation offloading, the first major research issue is to determine the portion of
computation loads to be offloaded to edge servers. There are two types of computation
offloading: binary offloading and partial ofloading [29]. On the one hand, in binary offload-
ing, the whole computing task of an MUD should be handled by one agent, i.e. the task
is either run on a local device or offloaded to an edge server. A binary offloading decision
should be made to identify whether MUDs should offload their computation loads. This
usually results in a mixed-integer optimization problem. In [30], Mao et al. utilize an on-
line Lyapunov-based method to determine binary offloading decisions for multiple MUDs
given the constrained onboard energy of MUDs and the limited computing resources of
edge servers. Wang et al. solve the corresponding binary offloading problem iteratively
and obtain a near-optimal solution in [31]. On the other hand, for some computing tasks,
the dependencies among subtasks are weak, which allows the tasks to be subdivided. A
computing task generated by a MUD can be divided into several sub-tasks that can be
executed by different network entities, i.e., local MUDs, edge servers, and the cloud server.
As the development of microservices architecture [32], such task partition becomes widely
adopted in edge and cloud computing, which facilitates partial ofloading to MEC. In par-
tial offloading, a partition ratio between the offloaded bits and the local computing bits is
aimed to be optimized, with the objective of minimizing computing latency by paralleliz-
ing computing between the edge server and MUDs. In [33], Kuang et al. propose partial
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offloading scheduling and power allocation algorithms to jointly minimize the overall com-
puting delay according to the characteristics of the computation loads. The offloading
ratio optimization is also investigated in [34-36] considering different computing service
requirements.

The second major research issue in computation offloading is to decide which edge
servers to offload. In heterogeneous wireless networks, the computation offloading prob-
lem can be difficult due to the overlapped communication coverage among edge servers.
In [37], a computation offloading method for a heterogeneous wireless network is proposed
for MCC, in which the heterogeneity of edge nodes mainly provides the diversity of com-
munication links in computation offloading. In MEC, since edge nodes are endowed with
computation capability, both communication and computing resources on edge servers
should be analyzed to determine the association between MUDs and edge servers. In [38],
Cheng et al. investigate MUD-edge server associations to jointly minimize the computing
delay, user energy consumption, and the server computing cost under a space-air-ground
integrated network. A model-free approach is proposed in the work to find an optimal
offloading solution in a complex network environment. In [39], Liu et al. consider the
communication link quality and server computation capability when selecting edge servers
for MUDs. In [40,41], Rodrigues et al. investigate transmit power control and service mi-
gration policy to balance the computation load among edge servers and reduce the overall
computing delay accordingly. Moreover, the mobility of MUDs affects the time duration
of association between MUDs and edge servers. In [42], Saleem et al. investigates how to
dynamically changing the MUD-server association for a MUD according to its movement
trajectory. In [43], Sun et al. adopt an online learning algorithm, i.e., multi-armed bandit,
to determine the computing and communication association among vehicles according to
the moving trajectory of vehicles.

Furthermore, in computation offloading, communication resources should be allocated
accordingly to enable prompt and energy-efficient computing. Since the input data size of
computing services is usually large than the conventional services, computation offloading
would result in non-negligible offloading latency. The latency is jointly determined by trans-
mit power, bandwidth, and channel fading, In [44], Peng et al. develop a learning-based
approach to allocate communication bandwidth and computing units to facilitate the com-
putation offloading of autonomous vehicles. In [45], Liu et al. investigate millimeter-wave
cellular networks in conjunction with MEC to maximize the throughput in VR video deliv-
ery thereby improving QoE of VR users. As communication resource allocation depends on
MUD-server associations and offloaded computation loads, a comprehensive computation
offloading policy should evaluate all three of these aspects, i.e., task partition or binary of-
floading decisions, the association between MUDs and edge servers and resource allocation
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for offloading computing tasks.

2.2.2 Task Scheduling

The edge server needs to schedule the execution order of the computing tasks after com-
puting tasks have been offloaded. The tasks scheduled to be executed first would have
a shorter processing time; otherwise, they would experience queuing delay for acquiring
computing resources at the edge server. The works [38,39,46] apply a first-in-first-out com-
puting strategy to accommodate the computing tasks from multiple MUDs with limited
computing units on the edge server. Meanwhile, altering the order of task execution would
help to substantially improve the QoE of MUDs across the network.

Firstly, computing task execution is energy-consuming. The energy consumption may
increase cubically as computing intensity increases, and, therefore, the unbalanced compu-
tation loads result in inefficient energy consumption. In [47,48], the works aim to balance
the computation loads executed over time to reduce computing consumption in a UAV-
mounted cloudlet. Furthermore, considering energy harvesting devices, the works [49-51]
schedule computing tasks to avoid energy outages based on the status of energy buffers in
MUDs.

Secondly, MUDs with different characteristics may have different sensitivity on com-
puting service performance, such as computing delay and energy consumption. Therefore,
the computing tasks can be scheduled according to the characteristics of MUDs, thereby
improving the QoE of MUDs for the whole system. Considering different computation
loads in computing tasks offloaded by MUDs; in [33,52-54], task scheduling, i.e., ordering
the task execution sequences, is evaluated to maximize QoE of all MUDs. In those works,
the task scheduling problem is formulated into a mixed-integer programming problem,
and heuristic algorithms are proposed to obtain near-optimal solutions efficiently. In [55],
an edge server schedules the offloaded computing tasks according to the deadline of the
tasks offloaded by MUDs and the location of the MUDs, and the work proposes heuristic
algorithms to schedule computing tasks with different network scenarios.

2.2.3 Mobility Management

The above state-of-the-art works mainly focus on the computing resource management for
an edge server with a fixed association between MUDs and edge servers. However, for
MUDs with high mobility, such as vehicles, the associations are time-varying due to the
limited communication coverage of an edge server, which necessitates the collaboration of
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multiple edge servers to execute the computing tasks for an MUD. Collaboration can be
categorized into two types. First, a task can be partitioned into multiple subtasks and
distributed to different edge servers, which reduces computing time by parallelizing task
processing, thereby preventing service interruptions. Second, by using VM migration, the
tasks can be migrated to other edge servers according to the moving trajectory of the
MUDs, i.e., service migration.

In the aspect of collaboration among edge servers, the works [56,57] study cooperative
computing among multiple cloud service providers. They considered the resources in cloud
service providers as a resource pool, and the common objective of the works is to maximize
the global computing service capacity. The works [58, 59] investigate the cooperation
among edge servers. In [60], Laredo et al. consider computing resource sharing among
edge servers to minimize the energy consumption for the whole system, in which load
balancing is the primary motivation to formulate the cooperation of computing. Moreover,
to address the mobility, the works [61] and [62] consider that MUDs, i.e., vehicles, divide
and offload the computing tasks to multiple servers according to the predicted traveling
traces. Vehicle-to-vehicle communication is used to disseminate the computing result if the
edge server cannot connect with the vehicle at the end of a computing session. Overall, the
cooperation among edge servers significantly improves the computing service experience.
However, the communication cost is also raised due to the communication overhead during
the collaboration among servers. The trade-off between the extra communication cost and
computing performance improvement should be considered in the cooperative computing
policy design.

Furthermore, service migration aims to deal with the interruption of services caused by
vehicles” departures from a server’s communication range. According to a MUD’s moving
trajectory, ongoing computing services may be moved to another edge server that will
associate with the MUD in the future. Migration decisions are made according to a variety
of factors from the environment, including the communication link quality, computation
capability, and user mobility. The works [63,64] first propose service migration schemes
among federated cloud data centers, i.e., Follow Me Cloud (FMC), which also can be
extended to the MEC system. In these works, the ongoing service can be migrated to
another selected server as the corresponding MUD moves out. Based on the random
walk model, the Markov Decision Process (MDP) for determining the migration policy is
developed in [65]. Compared to FMC, the MDP method can provide a proactive decision on
whether a service should be migrated according to the mobility of MUDs. Similar proactive
service migration strategies are also investigated in [66] and [67]. Overall, computing
service migration provides a practical policy for implementing MEC in a highly dynamic
environment. However, it increases the complexity of resource management. An effective
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migration policy needs to consider the channel condition, server computation capability,
MUD locations, migration overhead dynamically, etc. [9]. One possible approach is to
generate a proactive service migration policy using Al technology, which may achieve good
performance by learning the users’ mobility and channel condition.

2.3 Summary and Discussions

In this chapter, we have surveyed the existing literature for resource management for MEC
from three aspects: computation offloading, task scheduling, and mobility management.
Through this literature review, we identify the limitations of current studies and develop
efficient resource management strategies in MEC.

Firstly, for the real-time safety-related computing applications in autonomous driving,
vehicles may require frequent computation offloading and timely delivery of computing
results [68,69]. In such a scenario, a customized computing scheduling scheme is important
yet has not been investigated. There is a need for deeper analysis on how mobility and
computing scheduling impacts the performance of autonomous driving.

Secondly, most existing resource management strategies only consider resource alloca-
tion in MEC with fixed edge infrastructures. To provide on-demand services for remote
[oTs, this thesis studies edge computing supported by a UAV-mounted cloudlet, which in-
troduces dynamic channel conditions and mechanical operation constraints. Moreover, the
coupling of policies among UAV trajectory, computation offloading, and task scheduling
make the problem complex and hard to solve in a scalable manner.

Thirdly, in terms of mobility management, both service migration and cooperation
strategies have their limitations when avoiding service discontinuity. For service migration,
frequent VM migration results in service interruptions and increases computing time. For
service cooperation, a high offloading overhead would occur if the computing tasks are
divided at too many sub-tasks and executed into different edge servers. The limitations
motivate us to develop an effective approach to achieving service reliability improvement
while adapting MUD movement with low overhead.
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Chapter 3

Computation Task Scheduling for
Autonomous Driving

In this chapter, we investigate computing task scheduling to support real-time applications
in autonomous driving. Taking into account the characteristics of the real-time applica-
tions, we introduce a novel performance metric to evaluate the QoE of computing services
considering vehicle mobility, i.e., Age-of-Computing-Results (AoR). A lower AoR means
that the vehicle receives accurate and timely computing results based upon its location.
We first propose an index-based task scheduling scheme to optimize the QoE of MUDs,
i.e., minimize the average AoR of all vehicles, given limited computing resources at an edge
server. Furthermore, to address the dynamics of vehicle mobility, we develop a DRL algo-
rithm that helps the index-based task scheduling scheme to make effective and adaptive
scheduling decisions with low complexity. Specifically, Section 3.1 introduces the back-
ground and motivation of the work, in which the contribution of the work is addressed.
Section 3.2 describes the system model of the considered scenarios. Section 3.3 introduces
the proposed index-based scheduling scheme for the synchronous computation offloading
scenario. The learning approach that matches the index policy is presented in Section 3.4.
Section 3.5 introduces the scheduling scheme for the asynchronous scenario. Simulation
results are presented in Section 3.6.

3.1 Background and Motivation

Safety is one of the main focuses in autonomous driving related industries. Various tech-
niques have been adopted to improve safety, e.g., embedding advanced sensors in vehicles
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and developing precise perception using the sensor data. Such safety measures usually yield
a large amount of sensor data to be processed with low latency [70-72], which could be too
demanding for local in-vehicle processing given the usually limited onboard computation
capability. To facilitate the safety measures, MEC has emerged as an approach to provide
additional computing power with low processing delay [73]. In such an approach, vehicles
can offload their sensor data to a proximal edge server, such as a base station or a roadside
unit, for fast data processing.

Despite the potential of MEC in enabling low-latency computation offloading for au-
tonomous driving, many challenges exist for MEC to support real-time safety-related com-
puting services. In most safety applications, such as localization and obstacle avoidance,
vehicles may need to offload sensor data to the edge server and require computing re-
sults [68,69]. Because of the mobility and computing delay, a vehicle would have traveled
some distance between the instant of offloading sensor data to the edge server and the
instant of receiving the computing result from the edge server. Evidently, it is important
to reduce the above traveled distance as much as possible, considering that the computing
result may involve the vehicle’s position at the instant of sensor data collection. Other-
wise, the computing result may no longer be accurate for real-time applications. Consider
a vehicle traveling at 50 km /h as an example. If the vehicle receives the computing result 2
seconds after sensor data offloading, the gap in the distance between the real-time location
and the location at the instant of offloading would be 28 m. This gap is larger than the
reaction distance at 50 km/h, which is 21 m [74]. The challenge in reducing the traveled
distance is that the edge server may have limited computation units, which must be shared
among all vehicles in its proximity. As a result, the delay from the sensor data offloading
to the result delivery may increase with the number of vehicles, and so does the traveled
distance. Without proper scheduling, the delay can become excessive [75].

There are extensive existing works on computing resource scheduling in MEC [52,
54]. Generally, the main objective of the proposed schemes is to minimize the computing
latency. However, most of the works focus on myopic computing service scheduling, which
considers the existing computation load at the edge server but not future computing service
demands. As vehicles may collect sensor data and request computing service from time
to time, developing a long-term proactive scheduling scheme is important. An effectual
scheduling scheme should provide timely and frequent result delivery for vehicles so that
the computing results can reflect their real-time status, e.g., position, as much as possible.

Another important requirement for effectual scheduling is the capability to adapt to
the dynamics of vehicular mobility. Different vehicles may travel at different speeds, which
can result in different service delay tolerance for real-time applications. Consider obstacle
avoidance as an example. The edge server should schedule high-speed vehicles with high
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priority to minimize their traveled distance, and low-speed vehicles may have low priority.
In addition, the speed of a vehicle may change over time, which may further complicate
long-term scheduling as such change is not known in advance. There are existing works
on resource allocation in MEC considering the mobility dynamics, e.g., the offloading
bandwidth assignment in [44,76], computing resource allocation in [43,77], and cooperative
computing in [62]. However, mobility has a more significant impact on the performance in
our considered problem since the traveled distance, which we aim to minimize, is dependent
on vehicle mobility.

In this chapter, we design a computing resource scheduling scheme at the edge server
for real-time applications in autonomous driving, considering the vehicle mobility dynam-
ics. Vehicles periodically offload sensor data, referred to as observations, to the edge server
for processing, while the edge server determines the processing order considering its com-
putation capability and the unknown vehicle mobility dynamics. We define the AoR of
a vehicle as its traveled distance since the last data offloading before receiving the lat-
est result delivery from an edge server. Our objective is to minimize the expected AoR
of vehicles to deliver computing results timely. We formulate the long-term scheduling
problem as a RMAB problem and propose a Whittle index-based scheduling scheme. Two
offloading scenarios are investigated in the thesis: synchronous, in which all computing
requests arrive simultaneously, and asynchronous, in which the computing requests arrive
arbitrarily.

The main contributions of this work are as follows:

1) We design a novel computing resource scheduling scheme for the edge server to sup-
port autonomous driving, targeting at minimizing the AoR while considering the
vehicle mobility dynamics. The scheduling scheme can support a large number of
computing tasks with low complexity.

2) We obtain the Whittle index of the formulated RMAB problem in closed form and
prove the indexability of the scheduling problem. The index can reveal the value
of scheduling each computing request and guide the computing policies in both the
synchronous and the asynchronous scenarios.

3) We exploit the DRL method to estimate the unknown mobility dynamics of vehicles
in the future according to their mobility dynamics in the past. The learning process
does not rely on the scheduling decisions and can be pre-trained either at the edge
server or the vehicles.
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Figure 3.1: Edge-assisted autonomous driving model.

3.2 System Model

In this section, we present the system model of the considered problem.

3.2.1 Network Model

Consider a vehicular network for autonomous driving shown in Fig. 3.1(a). Vehicles sense
the surrounding environment periodically (e.g., for localization, obstacle detection, and
object tracking), using sensors such as light detection and ranging and cameras. The
sensor data is referred to as observations, which can be offloaded to the closest edge node
(e.g., roadside unit or base station) for processing. The sensing process occurs periodically
for each vehicle, and each period is referred to as a sensing cycle. The processing of an
observation offloaded to an edge node in a sensing cycle is referred to as a computing task.
In the sequel, we focus on a particular edge server.

An edge server is located in the edge node and may have one or more processors.
The server determines the execution order and processes the received computing tasks
periodically at each processor, and each period is referred to as a computing cycle. We
assume that each processor handles a specific type of computing tasks, which has the
same processing time. For brevity, we focus on the scheduling of computing tasks in one
processor, as the extension to multiple processors is straightforward.

The time length of a computing cycle is 7', which is divided into K computing slots.
The length of a slot is the processing time for a computing task, denoted by w. The length
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of a computing cycle depends on vehicles” AoR requirements and their sensing frequency.
A shorter computing cycle can lead to a lower AoR since the likelihood of scheduling a
vehicle in a certain period can be increased; however, too short computing cycle raises
the vehicles’ sensing frequency, which may result in redundant task offloading and high
communication resource consumption. The objective of scheduling scheme on the edge
server is to allocate computing tasks to the slots in each computing cycle. The edge node
is connected to a cloud server through a backhaul link. As a controller, the cloud server
determines computing cycle length 7" and coordinates the computing resources among all
edge nodes.

If a task from a particular vehicle and a particular sensing cycle is not scheduled until
the next task of the vehicle is generated and to be offloaded to the edge server, it becomes
outdated and discarded, and the server schedules the newly sensed task corresponding
to a subsequent and up-to-date observation from the same vehicle. After processing the
computing task, the edge server delivers the computing result back to the corresponding
vehicle. Therefore, the computing schedule also affects the order of result delivery. Since
we consider real-time applications and the cycle length is in seconds, the probability that
the vehicle travels out of the communication range of the edge server is neglected. For the
case that the vehicle travels out of the communication range during a computing cycle,
multiple edge nodes can cooperatively deliver the result back to the vehicle, which has
been discussed in our previous work [78]. We ignore the transmission delay on result
delivery since the downlink transmission time is neglectable compared to the computing
time [44,79).

Due to the mobility and computing latency, the traveled distance during offloading
and edge computing is nonzero for any vehicle and any task. An example of computing
scheduling and result delivery is shown in Fig. 3.1(b), where o represents the offloading
time of a task.! A vehicle offloads the computing tasks once the task is scheduled in the
corresponding cycle. The speed of the vehicle remains constant within each sensing cycle
but may vary in different cycles. Because of the changing speed of the vehicle, its traveled
distance in two cycles can be different. This is true even if the vehicle is assigned to the
same slot in two different cycles. As shown in the figure, the traveled distances of the
vehicle in cycle n and n + 1 are different although the vehicle is assigned to the third
slot of both the computing cycles. In the sequel, we focus on minimizing the expected
traveled distance from the position implied by the newest received computing results, i.e.,
minimizing AoR.

T As all tasks handled by the same processor is of the same type, we assume that the offloading time is
constant and the same for all vehicles.
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Figure 3.2: An illustration of the scheduling scenarios, where t(i) represents the computing
task from vehicle i.

3.2.2 Computing Scheduling Scenarios

Based on the task arrival pattern of vehicles in each computing cycle, two computing
scheduling scenarios are analyzed in this work:

e Synchronous offloading: In this scenario, all vehicles have the same sensing cycle.
Vehicles offload their sensor data to the edge server at the beginning of a computing
cycle if the vehicles are scheduled in the corresponding sensing cycle. In addition,
the computing cycle at the edge server is also the same in length as the sensing cycle.
This is illustrated in Fig. 3.2(a). The edge server decides the processing order of the
tasks received at the beginning of the cycle.

e Asynchronous offloading: In this scenario, vehicles offload their observations to
the edge server at arbitrary instants. This is illustrated in Fig. 3.2(b). The time
duration from the beginning of the computing cycle to the offloading time of vehicle
¢ is denoted by O;. For simplicity, we assume that a computing cycle at the edge
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Figure 3.3: The evolution of AoR of vehicle ¢ in five computing cycles, where red arrows
represent the task offloading completion instant of a vehicle, and green arrows represent
result delivery instant.

server is the same in length as the sensing cycle in this scenario as well. However, the
proposed scheme can be readily extended even if the assumption does not hold. Since
the sensing and computing cycles are not aligned, a vehicle may have two tasks from
adjacent sensing cycles scheduled in the same computing cycle, one to be offloaded in
the previous computing cycle and the other to be offloaded in the current computing
cycle.

In the remainder of the chapter, we mainly focus on the synchronous offloading. In Section
3.5, we extend the scheduling scheme to the scenario of asynchronous offloading.

3.2.3 Age of Computing Results

The evolution of AoR of a vehicle in the synchronous offloading scenario is shown in Fig. 3.3.
The real-time AoR for vehicle i in cycle n and computing slot & is denoted by R;(n, k).
Let d;,, denote the traveled distance of the vehicle in cycle n. As the example shown in
Fig. 3.3, vehicle ¢ is scheduled in the cycles 1, 2, and 5. In these scheduled cycles, when
the task computing is completed, the AoR drops to the level of the dashed lines, which
represent the traveled distance from the starting of this cycle. Otherwise, if the task is
not scheduled in the corresponding cycle, the AoR accumulates due to adding the traveled
distance within this cycle.

The real-time AoR at the beginning of the n-th cycle, R;(n,0), can be written as
Ri(n,0) = ajp + din1 + D(0), (3.1)
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where d;,_; is the traveled distance in the previous cycle n — 1, D(o) is the traveled
distance in the offloading time, and the non-negative variable a, ,, is a carryover component
contributed to AoR. It can be written as

O o Ain + di,n—h 1f 1€ {Vn\gn}7 (3 2)
T o, if i €S, ’

where V), denotes the set of the vehicles that offloaded their observations in computing
cycle n. The sets S, and {V,\S,} denote the set of vehicles that are scheduled and not
scheduled in cycle n, respectively. Equation (3.2) shows that if the computing is scheduled
in the n-th cycle, the carryover component will be reset as zero; otherwise, the carryover
component accumulates due to adding the vehicle traveled distance in the previous cycle.
In the example shown in Fig. 3.3, a;2 and a; 3 are zeros since the tasks are scheduled and
processed in cycles 1 and 2, respectively. However, the AoR starts accumulating since
cycle 3. Thus, a4 = d;2, and a;5 = d; 2 + d; 3. Furthermore, the number of time slots
from the task finishing instant to the end of the cycle is denoted as x;,, where z;,, = 0 if
i € {Vu\S.} and z;,, > 0 otherwise.

The time average AoR of vehicle ¢ in this process can be represented by the area under
age R;(n, k) in the age evolution graph, as shown in Fig. 3.3, normalized by the overall time
length. The area under age R;(n, k) in cycle n is denoted by Q;,, and can be represented
as follows:

1
Qim = (a'i,n + di,n—l)(T — xi’nw) + §dz,nT + D(O’)T (33)

The Expected Age-of-Computing-Results (EAoR) for all vehicles in the communication
range of the edge server is:

N
. 1 1
B = i 7y 2 1y 2 Qi (34)

i€Vn
1 X
3 S T4

where Er denotes the value of EAoR, and A;, represents the constant term of the AoR
for vehicle 7 in cycle n, where

1
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Neglecting the constant component in (3.4), the objective function for minimizing EAoR
can be represented as follows:

N
. 1 1
mink, [ﬁ ;1 A gv (@ip + dip-1)(T — %nw)] ; (3.5)
s.t.|S,| < K, Vn,

0<z, < K,x;, € L,Vi,n,

where 7 and II represent the optimal policy and the feasible policy set, respectively. Since
the length of a computing cycle is much shorter than the time for a vehicle leaving the
service coverage of an edge server, we apply the long-term policy for vehicle : € V,,. To solve
the scheduling problem, we first determine which tasks should be scheduled in the cycle
when K < |V,|, i.e., finding S,,, based on the maximum AoR by setting the computing slot
at the very end of the corresponding computing cycle (z;, = 0). The problem is a long-
term optimization problem since the age of a vehicle will accumulate if the tasks are not
scheduled properly. After the tasks to be processed in the cycle are selected, we determine
when to process the selected tasks, i.e., finding x;,, which only affects the instantaneous
age in the corresponding cycle.

3.3 Restless Multi-armed Bandit Formulation and In-

dex Policy

To solve the optimization problem in (3.5), a myopic policy is to schedule the vehicle with
the highest AoR in each computing cycle. As proved in [80], in a symmetric network, in
which all vehicles always have the same mobility, such policy follows a round-robin pattern
and attains the minimum AoR. However, the optimality of the myopic policy would be lost
if vehicles have diversified and time-variant mobility. Therefore, considering the mobility
dynamics, we reformulate the AoR minimization problem into an RMAB problem. We
then propose an index-based scheduling scheme, which assigns an index to each vehicle to
be scheduled for measuring the value to activate an arm at a particular state. A Whittle’s
index policy, which is an optimal policy to a relaxation of the RMAB problem [81,82], is
utilized to schedule the processing order for the synchronous offloading scenario.
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3.3.1 Restless Multi-armed Bandit Formulation

Different from classic Multi-Armed Bandit (MAB), RMAB considers a generalized bandit
process, in which the states of arms can evolve over time even when the arms are not
activated. Moreover, instead of selecting only one arm in a decision step in MAB, RMAB
can activate multiple arms in a step. In our case, a cycle is a decision step and can schedule
K tasks in each decision step. To determine which tasks to schedule in a computing cycle,
i.e., the set S, we assume z;,, = 0 at first, in which the maximum EAoR is minimized in
this step.

The state of a vehicle consists of two parts: the current carryover component, i.e., a;,
and the past vehicle mobility profile. We use the traveled distance of the vehicle for each
cycle in past W cycles, i.e., 0;n = {din-w,....,din—1},Vi € |V,|, as the past mobility
profile to predict vehicle future mobility. Denote d;, 1 as the vehicle traveled distance in
past W —1 cycles, i.e., 5;,} ={din-wi1,-..,din—1}. Let a binary variable u, ,, indicate the
action of the RMAB problem for vehicle 7 in cycle n. If the task is scheduled in the cycle,
i.e., 1 € S, the arm ¢ is activated, and u;,, = 1. Otherwise, the arm 7 is not activated, and
Uiy = 0.

According to the evolution of the carryover component a;,, in (3.4), when action u;,, =
1, the state transition probability of vehicle ¢ can be obtained as follows:

P<ai,n+1 =0, {5;717 di,n}|ai,n7 5i,n) = p(di,n|5i,n>7 (3-6)

where p(d; ,|0;,) is the probability that the vehicle travels d;,, distance in cycle n, given
past mobility profile d;,,. On the other hand, when action wu;, = 0, the state transition
probability of vehicle ¢ can be obtained as follows

P(tint1= i + dip1, {51_71, i} i, 0in) =D(di 0] 0in)- (3.7)

The Whittle index policy introduces a service charge whenever an arm makes active action.
Let C(0;,,) represent the service charge for vehicle ¢ given the mobility profile d;,,. The
objective of introducing the service charge is to make the passive and active actions equal
in a long-term cost [81]. Although there is no instantaneous cost when the arm is passive
in a step, it would result in an accumulation of age and a service charge in the future.
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3.3.2 Indexability and Index Policy

In the Whittle index policy, a service charge is the Lagrange multiplier of the RMAB
constraint. The original RMAB problem is relaxed and decoupled into subproblems for
individual arms such that the service charge for each arm can be evaluated separately. The
subproblem for each arm is referred to as decoupled model, and the service charge obtained
by the decoupled model only depends on the characteristic of the arm itself [81]. Although
problem decomposition would relax the original RMAB problem, a near-optimal solution
can be obtained by such decoupled model [80,81]. However, the service charge cannot be
regarded as the Whittle index unless the considered RMAB problem is indexable.

Denote the set of all policies that schedule vehicle 7 by I1(7). To determine whether the
task should be scheduled, we minimize the upper bound performance of the AoR achieved
by the selection. Decoupling the objective function (3.5) for vehicle i, the new objective
function for minimizing the AoR for this individual vehicle is given by

min E,; [J] 3.8
7(i)€eII(s) ® (3.8)
| X
st. Ji = ™~ n§:1<ai,n + din1)T + C(6in)in,

To simplify the notation, we neglect the vehicle index ¢ when we evaluate the problem of
the decouple model in (3.8).

Let J,(an, d,) be the value function representing the minimum EAoR for problem (3.8)
when the state is (a,, d,,), which can be formulated to the following dynamic programming;:

un€{0,1}

To(tn, 0n) = (an + dp_1)T + min {C(én)un + 3 o, {67 dn})p(dn|5n)}.
” (3.9)

According to [83], the value function of the optimal policy in a finite-horizon average cost
minimization problem can be represented as

J*(an, 6,) = h(an, 0,) + AT N 4 o(N)

= (@0 +dy)T+ min {C((Sn)un + ; p(dn|52)

% [Iani1, {6, % dn}) + AT(N — 1) 4 o(N)] } (3.10)

28



where ) is the optimal average cost normalized by the number of computing slots, h(a,, d,)
is the differential cost function representing the cost incurred when the state transits from
(@n, 6,) to (0,0,41) for the first time, and o(NV) is the cost caused by not completing the
execution at the end of the time horizon. All states communicate with one another, which
implies that h(0,6,) = 0,Vn. Thus, we have differential cost function h(a,, d,) as follows:

un€40,1

H(an, 62) = (an + dut)T = XT + min {C(én)un + 5 pdnlda) a1, {6, dn})}.
" (3.11)

By solving the Bellman equation (3.11), the optimal service charge C(a, d) for vehicle i can
be obtained, given Proposition 1 below.

Proposition 1. The service charge C(a,d) for a vehicle in state (a,6,) is

Cla,6,)= {2@ +d,_i +E [i(a — Dpi)1(Doyr < a)[5)] }T, (3.12)

t=0

t . . . . . .
where Dypyy = > _odnis, and function 1(z) indicates whether © is true or not, i.e., x is

true if 1(x) =1, and x is false if 1(z) = 0.

Proof. To obtain the service charge, similar to the approach in [80], we assume a threshold
policy at first. The threshold is denoted by A. The arm is passive when the carryover
component 0 < a,, < A and active when a,, > A.

According to the threshold policy, v, = 1 when a,, > A. The following condition has
to be satisfied:

C(6n) > > hlan + dn-1,{0,"; dn})p(dn|6,), when a, > A. (3.13)

dn

Let j* be a positive number. The differential cost in state (A+ j*,4,) for the case a,, > A
can be simplified as

h(A+3%,6,) =C(60) + A+ +dp1 — NT. (3.14)

The equation shows that h(A + j*,0,) monotonically increases with ;.

On the other hand, u,, = 0 when 0 < a,, < A. Assume that the vehicle speed precision
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level is high, and existing a state (A, d,) has a service charge as follows:

C(A,6,) =) h(A+du_y, {6, "1d,})p(dal6,). (3.15)

Let j~ be a negative number that greater than —A. Then, the differential cost in state
(A+j,0,) for the case 0 < a, < A is

WA+ G7,00) = (A+ 7 +duy = NT + Y WA+ 5+ dyr 6,5 dn})p(dn]6n). (3.16)
dn

Similarly, equation (3.16) shows that h(A+ 77, d,) monotonically increases with j~. Given
the threshold policy, the term of h(A + 5~ + d,_1,{0,';d,}) can be determined according
to the value of the term of (A + j~ + d,_1). The differential cost in (3.16) in could be
further derived to (3.17), where B, = thzq dp iz

WA+ 7,00) = (A4 +dpy = NT+P(dyr < —57162) D [(,4 4t dyy +dy— NT

dn
(3.17)
+ Z WA+ + dnoy + dn, {6,%; dn; dnga })p(dna {6, dn})}p(dnm)
A1
+ P(duey > —5716) Y [C({(s;l; D)+ (A4 +doy +d,— A)T} p(dn]5,).

dn

In a similar manner, we then evaluate the differential cost for the next states recursively,
which could be summarized as (3.18).

h(A +j_7 571):2(‘4 +.]_ + dn—l - )\)T+E[dn|5n]T + (A +j_ - /\)TZP(Bn-i-t S _j_|5n)
t=—1

(3.18)

"‘MZ Byt (Bryy < —j7)[0,)T + E[Z C(Onp+2)1(Bnrt > =57, Buyr1 < —57)|00)

t=—1 t=0

+ ) CH{0, "5 dn})p(dn]6,) P(dn—y > —j7[6,), where b,y = {5, "5 dns . .1 dpsi—1 }-
dn

Next, to simplify the complex form in (3.18), the term of h(A+d, 1, {5, ' d,})p(d.|d,)
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in (3.15) is expanded according to the threshold policy, we have

C(6)=(A+dy_y — NT+E[da|0,]T + > C({6," 5 dn})

X p(dnl0) [P(dn1> 57 )+ Pldn 1 <—57)). (3.19)

Then, we recursively apply (3.19) to represent service charge C'(d,). Finally, we obtain the
relation in (3.20).

C(0n) = (A+ 5~ +duoy = VT +E[do[6,]T + E[Y _ C(bnri42)1(Buss > =, (3.20)
t=0

Buii1 € = )8+ Y CU{8,  dn})p(dnln) P(dny > =57 [6,)

+(A- )‘)T[Z P(Bpyt < —j7[0n)] +E[Z(dn+t+2 + dnt141)1(Bnr < —357)[60] T

t=—1 t=—1

Combining (3.18) and (3.20) together, the differential cost on state (A+j~,d,) is obtained
as follows:

WA+, 62) =(A+duy = NT +27 + C(6,) +E[Y  Buril(Bure < —j7)|0,]T

t=—1

+j_TP<Bn+t S _]_|5n) (321)
Utilizing the property of h(0,d,) = 0 and letting j~ = —A in (3.21), the service charge
C(d,) is:

t=—1

According to equation (3.22), we further obtain the service charge for state {4, '; d, }, where

[e.e]

C({6, " dn}) = (A+A=dp)T + E[D> (A= Bppip1+dn_1) X 1(Buyrsr — duy < A)[6,]T.
t=—1

(3.23)
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Substituting (3.23) into (3.19) yields:

C(A,6,) = 2A+ dp1)T +E[) (A= Buyes1+dn1) X 1(Buiry1 — dnoy < A)|6,]T
t=—1
= 24+ d\ )T +E[) (A= Dpt)1(Ds < A)|5,]T. (3.24)
t=0

From (3.14) and (3.21), we see that the differential cost h(a,d,) increases with carryover
component a. Therefore, the solution of the Bellmen equation (3.11) follows a thresh-
old policy. To evaluate the service charge of state (a,d), we substitute A to a, and the
corresponding service charge is presented in equation (3.24). O

The purpose of the service charge is to measure the value of activating an arm. A high
service charge indicates that the cost of making passive action on the arm is high. If the
RMAB problem is indexable, the service charge can be regarded as the Whittle index, and
the Whittle index policy is to schedule the tasks with K highest service charges in a cycle.
We denote set P(C) as the set of state (a,d) for which the arm is passive according to
the service charge C'(a,d). If the problem is indexable, the following condition should be
satisfied:

Definition 1. If an arm is indezable, set P(C) of the corresponding single-armed bandit
process increases monotonically from the empty set () to the whole state space as charge C
increases from —oo to 400 [81,84].

The condition on indexability indicates that the optimal action of an arm can never
switch from passive action to active action with an increase of C' [84]. The RMAB problem
is indexable only if all arms are indexable. According to the above definition, we prove the
indexability of the considered RMAB problem.

Theorem 1. In computing cycle n, vehicle i is indexable, and the Whittle index of vehicle
1 18 1dentical with the service charge of vehicle v, where

Ci(aimv 51771) = {2ai1n + divn—l + E[Z(az,n - Di,n-‘rt) X 1(Di,n+t S ai,n)|5i,n} }T (325)
t=0

Proof. Since both a;, and d,,, are non-negative, there is no such state to make the service
charge as a negative number. Therefore, P(C) is an empty set when C; = —oo. Moreover,
when 9, ,, is fixed, C; increases monotonically with a;,. An arm in state (a;,,0;,) will
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not switch from passive to active action with the increase of C;. If C; is +o00, a;, can
only be +oo since d;,, < 4+00. In such a case, P(C) is the whole state set. Therefore,
the RMAB problem is indexable, and the Whittle index for the arm is the corresponding
service charge. O]

As shown in the Whittle index, as carryover component a; ,, and traveled distance in the
past cycle d,,_; increase, the value for activating the arm also increases, which is similar
compared to the myopic policy. Furthermore, given the same a,,, and d;,_1, a vehicle with
high mobility in the subsequent cycles may have a lower index compared to the one with
low mobility. This is because, if the vehicle with high mobility is scheduled, the age of
the result would increase fast in the future, and the delivered computing results would be
outdated quickly. Given the limited computing resource, the edge server will select the one
that is most efficient to reduce the overall AoR in the long term.

According to the closed-form Whittle index in (3.25), we can schedule tasks in each
cycle according to the Whittle index policy. The index implies the value of scheduling a
vehicle. From a long-term perspective, scheduling the vehicle with a higher index value
leads to a lower AoR of the network. Recall the model for the synchronous offloading
scenario.  The edge server can collect the Whittle indexes of vehicles and schedule K
vehicles with the highest index values at the beginning of each computing cycle. After
selecting tasks, we allocate the computing slot for those tasks. As mentioned above, the
slot allocation when set S, is given only affects the instantaneous AoR within a cycle. To
obtain z; ,, we formulate the following optimization problem:

min ZW” + dip1) (T — z; pw). (3.26)

in»’evn .
(@it }zevn

As (a;, + d;n—1) is constant, the optimal solution of the linear programming (3.26) is to
allocate the slot with the highest x;,, to the vehicle with the highest carryover component
@;n + d;n—1. The policy in this step is sorting those tasks according to (a;, + di,—1) in a
decreasing order and scheduling them in sequence.

Although we have obtained the closed-form of the Whittle index and found the Whittle
index policy for the synchronous scenario, the future vehicle mobility is unknown. Next,
we develop a DRL-assisted method to learn the vehicle mobility in the future from the
vehicle mobility profile in the past in Section 3.4.
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3.4 DRL-assisted Scheduling

We denote the term related to the future mobility information in the Whittle index by
V(@in, 9in), where

V(az ny z Z a/zn - 1 n+t)]—(Di,n+t S ai,n)yai,n]- (327)
t=0

We refer to V(a; n, 0;,) as the value function for state (am, din). Given the same carryover
component a;,, the value function for state (a;, {5} 3 din}) can be obtained by

V(ai,’rw {61_7117 dz n} Z azn - z n+t + dz,n) X ]—(Di,n-l—t zn = az n)l{(sz 71; dz n}} .
t=1
(3.28)

We then observe that the value function V(a;,,d;,) can be represented in an alternative
way as

V(a'i,na 51,71) = ]E[(ai,n - dz,n)l(dz,n S ai,n) + V<ai,n - di,na {5_1 dz n})|5n} . (329)

,m)

Given a known traveled distance d;,, equation (3.29) is a Bellman equation and can be
solved by dynamic programming. Equation (3.29) also shows that V(0,6;,) = 0. To
adapt the real-time vehicle mobility, we use a DRL method to approximate V' (a;, ;)
iteratively, which gets the vehicle mobility from the environment, i.e., the transportation
network, and updates the value function based on the current estimation.

Different from other reinforcement learning methods like Deep Q Network (DQN), the
considered learning process only focuses on the state transition and the value function
approximation. The state for the DRL-learning problem is s;, = (@;n,d;n). The reward
for each decision step is:

Tin = (ai,n - dz,n)l(dz,n < ai,n)u

which can be observed from the vehicle mobility in the environment. Instead of observing
the vehicle state of the next decision step in traditional reinforcement learning methods,
the next state is known if d;,, is obtained. According to (3.29), the next state s;, is:

S;,n = (ai,n - di,na {61_71; dz n})

Furthermore, since the state space of the considered problem is large, we adopt deep neural

34



: Al controller : ( A) Centralized Control A

: Experience Replay I gg l Edge
5 —j Server
: { Reward :

: st

State Next State

L | ate State
Parameter Vehicles
E e e
: J

mReplace

Evaluation network Target network

.

( B) Decentralized Control )
@ Edge
Server

: | whittle Whittle
i Inde Index
B + Vehicles
. . O~=() Cr=()
Loss Function :
L) = [P(s5,:0) -, +7(s.,:00) I

Figure 3.4: Deep reinforcement learning structure.

networks to learn the value function V(a;p,d;,). Inspired by DQN, we use two neural
networks, i.e., the evaluation network and the target network, to learn the value function.
As shown in Fig. 3.4, the evaluation network is trained in an online manner according to
a loss function, which is shown as follows:

Li(0) = [V (31,03 0) = (rin + V(s7,0:0))l3, (3.30)

where V(s; 6) represents the estimated value function obtained by weights 6 in the evalu-
ation network, and V(s; ') represents the estimated value function obtained by weights ¢’
in the target network. The weights in the target network are periodically replaced by the
weights in the evaluation network.

The algorithm of the proposed DRL-assisted index policy is shown in Algorithm 1. At
the beginning of each computing cycle, the Whittle indexes of all vehicles are calculated
using (3.25). The edge server gathers the indexes and schedules the K vehicles with the
highest index values according to the Whittle index policy, which is presented in Line 5 of
Algorithm 1. To improve the learning efficiency, in experience replay, we select the state-
reward tuples in the memory by weighted sampling in Line 8. Via a positive parameter
7, the state with non-zero a;, has a higher probability to be selected. As shown in Line
13, a soft parameter replacement scheme for the target network is adopted, where 7 is a
number less than one. Furthermore, we add an Long Short-Term Memory (LSTM) layer in
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the neural network to analyze the time correlation of the vehicle traveling mobility profile
in the state. As illustrated in Fig. 3.4, there are two options to implement the proposed
policy:

e Centralized control: An Al controller is deployed at the edge server. Vehicles report
their current state, and the edge server stores all the state-reward tuples obtained in
this decision step in the memory. The neural network is trained by the aggregated
mobility profiles reported by the vehicles. In this case, the edge server can learn the
mobility feature of a group of vehicles.

e Decentralized control: At each vehicle, an Al controller is deployed to learn the
vehicle driving behavior. Since the Whittle index can be generated independently
by each vehicle, vehicles only need to update their Whittle indexes to the server for
scheduling. Compared to reporting the state in each cycle in the centralized control,
the communication overhead is much lower via the decentralized control.

Either option can be selected, depending on the characteristics of the communication and
transportation network scenarios. For example, in an urban area, the centralized method
would be preferred since the geometric features in traffic profiles can be learned by the
edge server. On the other hand, in areas with smooth traffic flow or limited communication
resources, the decentralized control would be preferred to reduce communication overhead.

3.5 Scheduling Scheme for Asynchronous Offloading

In this section, the index-based scheduling scheme is extended from a synchronous scenario
to an asynchronous scenario, in which vehicles sense and offload their observation to the
edge server at arbitrary instants. As mentioned in the system model, all vehicles have the
same sensing cycle, while the proposed scheme can be extended to adapt the case with
different sensing cycle lengths.

Compared to the synchronous scenario, in which a vehicle only has one task to be
scheduled in a computing cycle, up to two tasks offloaded by a vehicle can be scheduled in
a computing cycle in the asynchronous scenario. For the edge server, vehicle ¢ with offset
O; divides a computing cycle into two parts. In the set of the first several computing slots,
denoted by 7' = {1,...,[O;/w]}, the edge server can schedule a task that is generated
in the previous computing cycle by vehicle ¢ but not scheduled yet. Such task is denoted
by task n). In the set of the rest of computing slots in the cycle, denoted by 7> =
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Algorithm 1 Learning-assisted Whittle index policy
1: Initialize the weights of the evaluation and target networks (6 and ¢’), respectively.
2: Initialize the experience replay buffer.
3: for each cycle n do
% Schedule tasks with the Whittle index policy.
4: Obtain the initial Whittle index for vehicle ¢ using (3.25) corresponding to the
estimated value function, i.e., V(am, Sim)-
5: Edge server gathers the Whittle indexes from all vehicles and schedules the K
vehicles with the highest index values.
% Train the deep neural network.
6: Observe the traveled distance of vehicles, i.e., {d;, Vi}.
7 Store state-reward tuple (s;,, S} rin) in the experience replay buffer. Delete the
oldest transition set if the buffer is full.

8: Sample a mini-batch of N samples using a weighted sampling, where the weight for
a state with carryover component a is w = 1(a > 0) + 7, and n > 0.

9: for state sy with a = 0 in the mini-batch do

10: V(s0:0') = 0.

11: end for

12: Update the weights in the evaluation network by minimizing the loss function (3.30).

13: Update the target network: 6/ = 7(1 — 7)6 + 76"

14: end for

{[O;/w] +1,..., K}, the edge server can schedule a task that is generated by vehicle i in
the current computing cycle. Such task is denoted by task n(?). Therefore, three indexes
can be calculated for this vehicle: The first index is the service charge for scheduling task
n in T, which is denoted by C},. The value of C}, inherits the index of the task in
the previous cycle. The second and third indexes are for scheduling task n® in T;2. If
task n(Y is not scheduled, carryover component a;, will increase as given in (3.2). The
corresponding index for scheduling task n® is denoted by C2,. Otherwise, if task n(!)
is scheduled, carryover component a;,, will be reset as zero. The corresponding index for
scheduling task n® is denoted by C7,..

Extending from the Whittle index policy for the synchronous scenario, we propose
the Scheduling Scheme for Asynchronous Offloading (SSA) algorithm, which is shown in
Algorithm 2. Instead of evaluating the Whittle index for all vehicles at the beginning of a
cycle in the synchronous scenario, the index values are compared in each of computing slots
in the asynchronous scenario. The idea behind Algorithm 2 is similar to the Whittle index
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policy, in which the server schedules the vehicle with the highest Whittle index for each
computing slot. At the beginning of the algorithm, the initial Whittle indexes of tasks n(!)
and n(® are obtained via Algorithm 1 without considering asynchronous offloading. We
use two indicator vectors I; (1) and I, (2) to represent whether vehicle 7 is scheduled in part
7! and part 7.2 of the computlng Cycle respectively. If the vehicle is scheduled in part

7;1, i,n = 0; otherwise, IZ-(7 ) = 1. Similarly, if the vehicle is scheduled in part 7.2, I; 2) =0;

otherwise, Iz-(i) = 1. In Lines 6 to 13, the vehicle with the highest index is scheduled for

each slot iteratively. As shown in Lines 8 and 9 in Algorithm 2, we define variables FSL)

(1) (2)

and F @t represent the initial index for n™™ and n® of vehicle i in a computing cycle.

To av01d scheduling a task twice in different computing cycles, the values of F ) and Fz(i)
will be -1 if the corresponding task is scheduled. Furthermore, the index for task n® will
change if the computing policy for task n® changes. The approximated Whittle index for
the vehicle in slot £ is defined as follows:

Cip = FO1(k € T + F21(k € T2).

The vehicle with the highest approximated index is selected to be scheduled in the slot as
presented in Line 9. Lines 10 to 12 update the indicator according to the policy made by
Line 9. Since the task allocated to a slot with a small number has a short queuing time, the
algorithm allocates the tasks to slots 1 to K in a cycle consecutively, and the computing
slot with a small number has priority in selecting a task. Since the changed policy made in
the first part of a computing cycle, i.e., T;!, for vehicle i results in a different approximated
index in the second part of the computing cycle, i.e., T2, the indicators may change as the
policy changes. The SSA algorithm iteratively updates the computing policy until the
indicator vectors no longer change or the iteration number reaches é,,q.

The time complexity of the algorithm primarily depends on the number of iterations
of the outer loop in Algorithm 2, which checks the convergence of the indicator vectors.
In each iteration, the time complexity is the same as the selective sorting algorithm if the
time complexity on solving the Whittle indexes using equation (3.25) is neglected. Since a
vehicle has two indexes during a computing cycle, the time complexity of comparing index
values at all vehicles is 2KV, |. Furthermore, since the indicators may change when the
policy changes, the convergence of the algorithm may not be guaranteed. The algorithm
will be terminated after e,,,, iterations if the algorithm cannot converge. Thus, the time
complexity of Algorithm 2 is O(2K |V, |ema:) in the worst case.
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Algorithm 2 Scheduling scheme for asynchronous offloading (SSA)
W _ 2 andl”_o Vi.

zn 1>
Set the indicator vectors J L _ 7@ and J; (2 = I Vz

Obtain the initial Whittle 1ndexes Clos C’fn, and C’f’n,
Initialize counter e = 1.
Initialize assignment vector W = 0
for k={1,...,K} do
F = C}nJm — (1= I, vi.
F = (€2, + 03,00~ S — (L= 2, i
For slot k, i* = argmaXZC’i,k
If Cyp < 0: Wy = 0.
Else if 1(k € T}}) == 1: J.) =0, Wj, = i*.
Else if 1(k € T}}) == 0: J2), =0, Wj, = i*.
: end for

if J ==10), 72 == 1), Vi then

Clap = [C2, T30 + C3, (L= JEDITE = (L= T3
A551gnment is completed

else
](1 Jz(n)V[z(?n) - Jzn7
e=e+ 1.
If e < eax: Return to Line 5
Else: Return to Line 15

. end if

Initialize indicator vectors I

using Algorithm 1.

— =
—= O

—_ = =
B W

—_ = =

Vi.
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3.6 Simulation Results

In this section, we present the numerical results of Whittle index policy that is found by
the proposed scheduling scheme and compare the performance with two other benchmarks:
highest-AoR-first and round-robin scheduling policies. The highest-AoR-first policy is a
myopic policy that always schedules the task with the highest AoR first, and the round-
robin computing policy schedules vehicles in a circular order. We also compare the per-
formance of the proposed scheme with a SSA-only scheme. In the SSA-only scheme, we
schedule the vehicles by the proposed scheduling scheme shown in Algorithm 2. Differ-
ent from the proposed scheme, the SSA-only scheme uses vehicles’” AoR to guide the task
scheduling rather than the Whittle index. We simulate our computing scheduling scheme
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Table 3.1: Vehicle speed distribution in a computing cycle (km/h)
Group 1 | Group 2 | Group 3 | Group 4 | Group 5
po & | &l & p] & p] €
P1|20] 20 | 40| 20 | 60| 20 | 80 | 40 | 60 | 40
P2|{20| 0 |40 O |60 O {8 | O |[60] O

and the learning approach based on a real-world vehicle mobility dataset.? The centralized

learning model is considered in the simulation.

3.6.1 Numerical Results

In this subsection, we generate vehicle mobility profiles and simulate the proposed index-
based scheduling scheme. In this numerical example, the edge server schedules the vehicles’
tasks according to the vehicle mobility profiles. We consider a total of 150 vehicles traveling
under the service coverage of the edge server. According to the different speed distributions,

2The data came from the Didi Gaia Data Opening Plan: https://gaia.didichuxing.com.
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Figure 3.6: EAoR versus the number of computing slots in a cycle with mobility profile
P2.

they are divided into five groups with the same number of 30 vehicles in a group. We
consider two mobility profiles, i.e. P1 and P2, which is summarized in Table 3.1. The speed
of vehicles in P1 follows normal distributions, where p and ¢ represent mean and standard
deviation, respectively. In terms of profile P2, all vehicles travel at constant speeds. For
both mobility profiles, we evaluate the performance of EAoR for both synchronous and
asynchronous scenarios, where the offset of vehicles in the asynchronous scenario is selected
randomly from the interval [0,7). The length of a computing cycle T is 2 seconds. The
policies are used in 500 cycles to obtain the average AoR for all vehicles. We demonstrate
the performance of the computing policies versus the number of slots in each cycle, i.e.,
K. The term sync in the legend represents the synchronous offloading scenario, and async
represents the asynchronous offloading scenario.

The performance of EAoR with mobility profile P1 is shown in Fig. 3.5 with the num-
ber of slots in a cycle, i.e., K, changing from 20 to 150. In both the synchronous and
asynchronous scenarios, our proposed scheme has the lowest AoR among all scheduling
policies. In the asynchronous scenario, when K is 80, the proposed scheme can reduce the
EAoR by up to 40% and 30% compared to the round-robin and highest-AoR-first policies,
respectively. In the synchronous scenario, vehicles in the Whittle index policy experience
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Figure 3.7: A snap shot of the simulation region.

a higher AoR compared to the asynchronous scenario, and the performance gaps between
the proposed scheme and the other two policies are smaller. This is because all requests
are arrived at the same time in the synchronous scenario. Some tasks are inevitably being
allocated to the computing slots at the end of the computing cycle, which will increase
the AoR significantly. Although the same could also happen using the highest-AoR-first
policy, when the computing slots are insufficient, the tasks with the highest AoR are likely
about to outdated. Processing the outdated tasks rather than the newly arrived tasks re-
sults in a high EAoR when K is small. Therefore, the AoR of the highest-AoR-first policy
with the asynchronous offloading is not reduced significantly compared to that with the
synchronous offloading, especially when computing slots are insufficient.

The performance of EAoR with mobility profile P2 is shown in Fig. 3.6, in which all
vehicles travel at constant speed. In such a case, the major advantage of the Whittle index
policy, which schedules the tasks according to the mobility dynamics, has less influence on
the scheduling performance. Therefore, the Whittle index policy is close in performance
with the other two policies in the synchronous scenario. Moreover, as proved in [80],
when all vehicles have the same speed at the same time, the highest-AoR-first policy is
equivalent to the round-robin policy and provides the optimal scheduling solution. Since
vehicles have similar mobility profiles, the three policies would all achieve near-optimal
performance. On the other hand, for the asynchronous scenario, the Whittle-index policy
has better performance since it always schedules the tasks considering the age.
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Figure 3.8: The number of vehicles in the simulation time window.

Table 3.2: Neural network structure in DRL

Layers Number of neurons Activation function
LSTM 40 relu

Fully connected 1 120 (50% dropout) relu

Fully connected 2 60 relu

Fully connected 3 30 relu

Fully connected 4 15 elu

Fully connected 5 1 elu

3.6.2 Simulation with a Real Dataset

In this subsection, we simulate the proposed index-based scheduling scheme and the learn-
ing approach based on the taxi driving trace data collected by Didi Gaia Data Opening
Plan in Xi’an, China. We investigate the vehicle trajectories from 16:30 to 18:20 on Oct.
1st, 2016 in a 2km x 2km area as shown in Fig. 3.7. The attributes of a set of data in-
clude timestamp, vehicle ID, and vehicle location (longitude and latitude). The length of
a computing cycle is 2 seconds. Thus, there are 3300 computing cycles in the simulation.
We select the vehicles which travel in the 2km x 2km area consistently in the prediction
window W, where W is 80 in our simulation. Under such condition, there are 126376
sets of data to be analyzed, and the number of vehicles counted in each computing cycle
is shown in Fig. 3.8.  The settings of the DRL algorithm are summarized as follows:
The learning rate is 0.001, the soft replacement parameter 7 is 0.8, the memory can store
800 state-reward tuples, and the batch size is 48. The structure of the neural network is
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Figure 3.9: EAoR when the number of computing slots in each cycle, i.e., K, is 10.

Table 3.3: Average algorithm running time (in second)

Number of slots Highest-AoR-first Round-robin SSA-only Whittle Index

K =10 0.0009 0.0003 0.0321 0.1176
K =120 0.0022 0.0005 0.0626 0.1550

presented in Table 3.1. We apply a moving average to measure the EAoR value for the
vehicles in an online manner, where the window size is 200 cycles.

The EAoR performances in the simulation time window are shown in Figs. 3.9 and 3.10,
where the number of computing slots in a cycle is 10 and 20, respectively. For both
scenarios, the proposed scheme reduces the AoR significantly. Although the computing
resource is limited, the proposed scheme maintains the AoR around 20m and 10m when K
is 10 and 20, respectively. Moreover, compared to the SSA-only scheme which schedules
the tasks without considering future mobility, our proposed scheme can adapt to the time-
variant vehicle mobility in real time and further reduce the EAoR. As the number of slots
increases, the performance gap between the proposed scheme and SSA-only scheme also
increases since the influence of future mobility on AoR performance is significant when
computing slots are insufficient.

The average running time of the proposed and benchmark schemes is presented in
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Figure 3.10: EAoR when the number of computing slots in each cycle, i.e., K, is 20.

Table 3.4: Efficiency on performance improvement compared with the round-robin scheme
(x10%)

Number of slots Highest-AoR-first SSA-only Whittle Index

K =10 -6.11 0.92 0.27
K =20 -5.03 0.41 0.12

Table 3.3. The simulation is performed on a machine with Intel i7-9750H CPU. Since
the proposed index-based scheduling scheme obtains the Whittle indexes from the neural
network and attains scheduling policy iteratively, the running time is the highest compared
to other benchmarks. However, the time consumption for running the proposed scheme is
still on the millisecond level and can be acceptable to real-time applications. Moreover, the
time consumed on the neural network dominates the overall running time of the proposed
scheme, which can be seen from the time difference between SSA-only and the proposed
scheme. Such running time can be further decreased with the advancement of GPUs.
We further evaluate and compare the efficiency on performance improvement among the
scheduling schemes in Table 3.4. The efficiency is defined as the ratio of EAoR deduction
and running time increment. As the round-robin scheme has the shortest running time, we
use its performance as the baseline to evaluate the efficiency of other scheduling schemes.
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The efficiency is calculated by the following equation:
EPI _ Average EAoR, — Average EAoR

S

round—robin ’ (331>

Running time,; — Runing tIMe, . nd—robin

where nEFT is the efficiency on performance improvement for scheduling scheme s, and
Average EAoR, and Running time, are the average EAoR and running time achieved by
scheduling scheme s, respectively. The highest-AoR-first scheme has worse performance
than the round-robin scheme and, thus, has a negative value of efficiency. Moreover, the
SSA-only scheme has the highest efficiency compared to other schemes since it eliminates
the time-consuming learning process involved in calculating the Whittle index. Therefore,
when the accuracy of computing results is not a critical requirement in a system, the SSA-
only scheme can be used to achieve a lower AoR with higher efficiency, compared with the
proposed learning-based scheduling scheme. When the user has a strict requirement for
result accuracy, the proposed learning scheme can be used to obtain an accurate Whittle
index and reduce AoR.

3.7 Summary

In this chapter, we have proposed a proactive index-based scheduling scheme based on
predicted future vehicle mobility dynamics for the edge server to process real-time com-
puting tasks offloaded by autonomous vehicles. We have adopted a novel DRL approach to
estimate the mobility of the vehicles in the future and assist the evaluation of scheduling
indexes. As a result, the proposed scheduling scheme can adapt to real-time vehicle mo-
bility and support safety-related computing services with low computing complexity and
communication overhead.
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Chapter 4

Energy-Efficient Resource
Management for UAV-assisted MEC

In this chapter, we investigate energy-efficient computation offloading and task scheduling
for computing service provisioning at an edge server. A UAV-mounted cloudlet plays the
role as an edge server to collect and execute computing tasks offloaded from IoT nodes in
a scenario of IoT in remote areas. The aim of this work is to optimize UAV trajectory,
computation offloading, and task scheduling in order to maximize the energy efficiency of
the UAV given both the UAV and IoT node resource constraints. Optimization approaches
are developed to achieve an optimal resource management strategy for the corresponding
non-convex fractional problem. Specifically, Section 4.1 introduces the background and
motivation of the work, in which the contribution of the work is addressed. The system
model is provided in Section 4.2. Problem formulation and the corresponding approach
are presented in Sections 4.3 and 4.4, respectively. The extended implementation of the
proposed approach is provided in Section 4.5. Extensive simulation results are provided in
Section 4.6.

4.1 Background and Motivation

Driven by the visions of IoT and 5G communications, MEC is considered as an emerging
paradigm that leverages the computing resource and storage space deployed at network
edges to perform latency-critical and compute-intensive tasks for mobile users [9]. The
computing tasks generated by mobile users can be offloaded to the nearby edge server, such
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as macro/small cell base station and Wi-Fi access point, to reduce computing delay and
computing energy cost at mobile devices. Moreover, by pushing the traffic, computation,
and network functions to the network edges, mobile users can enjoy low task offloading
time with less backhaul usage [85].

Specifically, in IoT era, MEC is considered as a key enabling technology to support
the computing services for billions of IoT nodes to be deployed [86,87]. Since the most
of ToT nodes are power-constrained and have limited computation capability, they can
offload their computing tasks to network edges to extend their battery life and improve
the computing efficiency. However, many loT nodes are operating in unattended or chal-
lenging areas, such as forests, deserts, mountains, or underwater locations [19], to execute
some compute-intensive applications, including long pipeline infrastructures monitoring
and control [20], underwater infrastructures monitoring [21], and military operations [88].
In these scenarios, the terrestrial communication infrastructures are distributed sparsely
and cannot provide reliable communications for the nodes. Therefore, in this work, we
utilize UAVSs to provide ubiquitous communication and computing supports for IoT nodes.
Equipped with computing resources, UAV-mounted cloudlet can collect and process the
computing tasks of ground IoT nodes that cannot connect to the terrestrial edges. As
UAVs are fully controllable and operate at a high altitude, they can be dispatched to the
designated places for providing efficient on-demand communication and computing services
to IoT nodes in a rapid and flexible manner [89-92].

Despite the advantages of UAV-assisted MEC, there are several challenges in network
deployment and operation. Firstly, the onboard energy of a UAV is usually limited. To
improve the user experience on the computing service, UAVs should maximize their en-
ergy efficiency by optimizing their computing ability in the limited service time. Secondly,
planning an energy-aware UAV trajectory is another challenge in UAV-assisted networks.
The UAV is required to move to collect the offloaded data from sparsely distributed users
for the best channel quality, while a significant portion of UAV energy consumption stems
from mechanical actions during flying. Thirdly, the computation load allocation cannot
be neglected even though the computing energy in UAV-mounted cloudlet is relatively
small compared to its mechanical energy. In the state-of-art MEC server architecture, the
DFVS technique is adopted. The computing energy for a unit time is growing cubically
as the allocated computation load increases [9]. Without proper allocation, the computing
energy consumption could blow up, or the offloaded tasks cannot be finished in time. More
importantly, UAV trajectory design, computation load allocation, and communication re-
source management are coupled in the MEC system [93,94], which makes the system even
more complex. To the best of our knowledge, the joint optimization of UAV trajectory,
computation load allocation, and communication resource management considering energy
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efficiency has not been investigated in the UAV-assisted MEC system.

To address the above challenges, we consider an energy constrained UAV-assisted MEC
system in this chapter. IoT nodes as ground users can access and partially offload their
computing tasks to the UAV-mounted cloudlet according to their service requirements.
The UAV flies according to a designed trajectory to collect the offloading data, process
computing tasks, and send computing results back to the nodes. For each data collection
and task execution cycle, we optimize the energy efficiency of the UAV, which is defined
as the ratio of the overall offloaded computing data to UAV energy consumption in the
cycle, by jointly optimizing the UAV trajectory and resource allocation in communication
and computing aspects. The main contributions of the work are summarized as follows.

1) We develop a model for energy-efficient UAV trajectory design and resource allocation
in the MEC system. The model incorporates computing service improvement and
energy consumption minimization in a UAV-mounted cloudlet. The communication
and computing resources are allocated subject to the user communication energy

budget, computation capability, and the mechanical operation constraints of the
UAV.

2) We exploit the Successive Convex Approximation (SCA) technique and Dinkelbach
algorithm to transform the non-convex fractional programming problem into a solv-
able form. In order to improve scalability, we further decompose the optimization
problem by the Alternating Direction Method of Multipliers (ADMM) technique.
UAV and ground users solve the optimization problem cooperatively in a distributed
manner. By our approach, both users and UAV can obtain the optimal resource
allocation results iteratively without sharing local information.

3) We further consider the scenario with limited knowledge of node mobility. A spatial
distribution estimation technique, Gaussian kernel density estimation, is applied to
predict the location of ground users. Based on the predicted location information, our
proposed strategy can determine an energy-efficient UAV trajectory when the user
mobility and offloading requests are ambiguous at the beginning of each optimization
cycle.

4.2 System Model

In this section, we present the system model of the considered problem.
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Figure 4.1: UAV-assisted MEC system model.

4.2.1 Network Model

The UAV-assisted MEC system is shown in Fig. 4.2.1, in which a single UAV-mounted
cloudlet is deployed to offer edge computing service for ground users in area A. The UAV
periodically collects and processes the computing tasks offloaded from ground users. Each
user processes the rest of the computing tasks locally if the task cannot be fully collected
by the UAV. Define the computing cycle as a duration of T" seconds. Each cycle contains
K discrete time slots with equal length. Denote the set of time slots in the cycle by K.
Thus, the time length for a slot is 7'/ K, which is denoted by A.

At the beginning of each cycle, ground users with computing tasks in area A send
offloading requests to the UAV-mounted cloudlet. Denote the set of those ground users
by Z, where Z = {1,..., N}. Assume the ground users in Z can connect to the UAV for
all time slots in the cycle. In this work, the UAV and the users cooperatively determine
the offloading and resource allocation strategy for this cycle, including the UAV moving
trajectory, the transmit power of ground users, and computation load allocation for UAV-
mounted cloudlet. Assume that the computation loads on solving the optimization problem
are negligible compared to the computation loads of the offloaded tasks. During the cycle,
UAV flies over the ground users and offers the computing service according to the designed
trajectory and resource allocation strategy. By the end of the cycle, UAV returns to a
predetermined final position.
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4.2.2 Communication Model

The quality of communication links between the UAV and ground users is dependent on
their location. To represent their locations, we construct a 3D Cartesian coordinate system.
For ToT node i, the horizontal coordinate at time k is denoted by q;x = [¢f}, ;). Assume
that nodes know their trajectory for the upcoming cycle, i.e., {q;s, Vk}. For the UAV,
the horizontal coordinate at time k is denoted by Qi = [QF,Q}]. The UAV moves at a
fixed altitude H. The UAV trajectory plan, as an optimization variable, consists of UAV
positions in the whole cycle, i.e., Q = [Qq;...; Qk|. The average UAV velocity in slot k

is given by
Qr— Qi

vi(Q) A

The average acceleration in slot & is given by

ar(Q) = Q) _AV“(Q),W;. (4.2)

k. (4.1)

The magnitudes of velocity and acceleration are constrained by the maximum speed and
acceleration magnitude, which are denoted by v and anax, respectively.

It is assumed that the doppler frequency shift in the communication can be compensated
at the receiver. The channel quality depends on the distance between the UAV and users.
Due to the high probability of Line-of-Sight (LoS) links in UAV communication [95], we
assume that the channel gain follows a free-space path loss model. The channel gain for
user ¢ in slot k is denoted by h; 5, where

9o
b, . , 43

where ||-||2 is the notation representing the L2 norm. The parameter gy denotes the received
power at the reference distance (e.g., d = 1 m) between the transmitter and the receiver.
We consider two channel access schemes: i) orthogonal access, in which the bandwidth is
divided into N sub-channels each occupied by one user; and ii) non-orthogonal access, in
which the frequency bandwidth is shared among users. Denote the channel bandwidth for
the uplink by B. The amount of data that can be offloaded by user ¢ in slot k is

BA di,k i (Qr) P

g |1+

Rik(6ik, Qr) = N log | W], (4.4)
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under the orthogonal access model, and,

i chik(Qr) P ]

R; 1(65,Qr)=BAlog |1 +
£(08,Qu) gl 2B+ 0,1k (Qi) P

(4.5)

under the non-orthogonal channel model. The parameter P and o2 denote the maximum
transmit power of ground users and the power spectral density of channel noise, respec-
tively. The variable 0;; € [0,1] represents the portion of the maximum power that is
allocated to user ¢ within time slot k, which is a part of the offloading strategy. The sym-
bol 8, denotes the vector of 4, for all ¢ € 7 in slot k. The noise power in the transmission
is represented by ng, where ng = ¢2B/N for the orthogonal channel access model, and
ny = 0B for the non-orthogonal channel access model. In non-orthogonal model, users
share the same channel to offload their tasks. The communication power allocated for a
user will interfere the data rate of other users.

4.2.3 Computation Model

Due to the limited battery and the computation capability of the UAV, only a part of
tasks can be offloaded and executed in the UAV-mounted cloudlet. Full granularity in task
partition is considered, where the task-input data can be arbitrarily divided for local and
remote executions [66,79,96]. Accordingly, a portion of the computing tasks are offloaded to
the cloudlet while the rest are executed by the ground users locally. Users upload the input
data for their ofloaded tasks, and the UAV processes the corresponding computation loads
of those tasks. Assume that the computation load can be executed once the input data is
received, and the computing data amount is equal to the input data amount of tasks [96].
A task partition technique is considered, where the partition of the computation input
bits are utilized to measure the division between the offloaded computation load and local
computation load. The overall input data size for computing tasks of user i is denoted by
I;. We set the threshold I; as the minimum input data amount required to be offloaded
to the cloudlet for user i, where I; < I;. The threshold represents the part of computing
tasks having to be conducted in the cloudlet. Thus, the overall offloaded bits of user 7 is
constrained as follows:

I <) Rig(6, Qu) < I, Vi (4.6)

kek

Under the scenario that the threshold is satisfied, if user’s tasks cannot be fully offloaded,
the rest of the tasks are processed by IoT nodes locally.

After users upload the input data, the UAV will save the received data to a buffer with
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enough capacity for further processing. The UAV processes the received data according to
the workload allocation results. Let the variable W, denote the amount of data, which
is from user ¢’s offloaded task, to be processed in slot k. The UAV can only compute the
task which is offloaded and received, and all offloaded tasks should be executed by the end
of the cycle. Therefore, the following computing constraints are given:

k

k
D Rii(8r, Q) 2 > Wiy, Vk (4.72)
t=1

t=1

K

K
Z RLt((sk? Qk) = Z VVi,t- (4-7b)
t=1

t=1

In addition, for the local computing, the CPU-cycle frequency of the IoT node ¢ is fixed
as fM. For the UAV-mounted cloudlet, we consider the CPU featured by DFVS technique.
The CPU-cycle frequency can step-up or step-down according to the computing workload
and is bounded by the maximum CPU-cycle frequency fY . As given in [9,66], the CPU-
cycle frequency for the cloudlet can be calculated by

_ ZZ Xz‘VVz‘,k

< fU )
A < Jomazs Yk, (4.8)

fil (W) -
where fU(Wy}) represents the CPU-cycle frequency in time slot &, and y; denotes the
number of computation cycles needed to execute 1 bit of data.

4.2.4 Energy Consumption Model

We elaborate on the energy consumption of the UAV-mounted cloudlet and ground users
in this subsection. Specifically, the energy consumed by the ground user includes the com-
munication energy for offloading computing loads and the computing energy for processing
residual computing loads. In addition, the UAV-mounted cloudlets consume propulsion
energy for collecting the computing loads offloaded by users and computing energy for
process the loads. Although downlink transmission from the UAV to users exists in our
system, this part of energy consumption is negligible for two reasons: 1) The communica-
tion energy is too small compared to the UAV propulsion and computing energy. 2) The
output computing results usually have much less data amount compared to the input data
amount [97].
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Energy Consumption at Nodes

The main energy consumption of nodes is the energy cost from communication and local
computing. Firstly, the communication energy for user i offloading tasks in slot k can be
formulated as

Sik(6ix) = 0 PA. (4.9)

The overall offloading communication energy of user 4 is bounded by E, i.e.,

> Sik(bin) < El Vi (4.10)
k

Therefore, the energy consumption of a user on communication can be reduced if the UAV
is closer. On the other hand, for the computing energy consumption, we consider that the
lower bound of offloaded bits I; guarantees the local computing energy under the user’s
computing energy requirement, i.e.,

EM = kxi(L = L) (fM)? < B, (4.11)
where EM is the maximum computing energy that could be reached by threshold I, and
EA}M is the parameter representing the constraint of the computing energy consumption.
The computing energy model is adopted from [9,98]. Parameters f* and s represent the
fixed CPU-cycle frequency of user ¢ and a constant related to the hardware architecture,
respectively.

Energy Consumption at UAV-mounted Cloudlet

The main energy consumption at the UAV-mounted cloudlet consists of the energy cost
from mechanical operation and computing. We adopt the refined UAV propulsion energy
consumption model for fixed-wing UAV following [95] *. The propulsion energy consump-
tion in slot k relates to the instantaneous UAV acceleration and velocity, which is given

by ,

Y2
M@k g

where g denotes the gravitational acceleration. 7, and 7, are fixed parameters related to
the time duration of a time slot, the aircraft’s weight, wing area, air density, etc. The value

E(Q) = nlve(Q)II3 +

We deploy the fixed-wing UAV in the proposed system as an example. The proposed approach also
can be adapted to the system with a quad-rotor UAV, where only the mechanical energy consumption
model is different.
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of parameters is given in [95,96]. The computing energy for executing tasks from user 7 in
time slot & is expressed as

EGY (W) = sxiWir (fF (Wi)2. (4.13)

4.3 Problem Formulation

In this work, the main objective is to maximize the energy efficiency of the UAV-mounted
cloudlet subject to user offloading constraints, UAV computation capabilities, and the
mechanical constraints of the UAV. The energy efficiency of the UAV is defined as the
ratio between the overall offloaded data and the energy consumption of the UAV in a
cycle. The energy efficiency maximization problem is formulated as follows.

> it 2ok Rik(0r, Q)

max n= — I (4.14a)

»W.Q Yoneic 2oier Biit (W) + 2 e EF(Q)

s.t. [Ve(Q)ll2 < vinaa, VE, (4.14b)
lax(Q)l2 < ama, Yk, (4.14c)
Qr = Qy, vk (Q) = vo, (4.144)
0<dir <1, (4.14e)

(4.6), (4.7a), (4.7b), (4.8), (4.10).

The term Q represents the designated final position of the UAV, and v represents the
initial velocity at the beginning of the cycle. The constraints can be categorized into three
types: 1) user Quality of Service (QoS) constraints, including (4.6), (4.10), and (4.14e); 2)
UAV computing ability constraints, including (4.7a), (4.7b), and (4.8); 3) UAV mechanical
constraints, including (4.14b), (4.14c), and (4.14d). The optimization problem is a non-
linear fractional programming. In addition, due to the interference among users in the
non-orthogonal channel and the propulsion energy consumption for the fixed-wing UAV,
both functions R, ;(8y, Qx) and EF(Q) are non-convex. Therefore, solving optimization
problem (4.14) is challenging. To search the global optimizer of a non-convex problem is
often slow and may not be feasible. In the following section, we will propose an approach
to find a local optima efficiently.
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4.4 Proposed Optimization Approach

In this section, an optimization approach is introduced to find a solution of problem (4.14).
Firstly, an inner convex approximation method is applied to approximate the non-convex
functions R; 1.(81, Q) and E} (Q) by solvable convex functions. The SCA-based algorithm
is adopted to achieve the local optimizer of the original problem. After the approximated
convex functions are built, the fraction programming, which is in the inner loop of the
SCA-based algorithm, is handled by the Dinkelbach algorithm. Moreover, in order to im-
prove scalability, the problem is further decomposed into several sub-problems via ADMM
technique, in which the power allocation is solved by users in a distributed manner, while
the computation load allocation and UAV trajectory planning are determined by UAV
itself. The details are presented in following subsections.

4.4.1 Successive Convex Approximation

Problem (4.14) is a non-convex problem due to R;(dx, Q) and EF(Q). To construct
an approximation that is solvable, we first introduce several auxiliary variables, {§; x, wg,

lik, A, Ri,b EZF .} For the orthogonal channel access scheme, the new optimization problem
is shown as follows:

. R,
P > > S
v Zkelc ZiEI Ei,l;: (Wk) + Zkelc Ek
_ BA
Cilin < 01k P, Vi, k (4.15¢)
_ . 2 2
UIQk = ginllz + H)no L, Vi, k (4.15d)
g0
E{ > 71 [|vi( Q)13 + 12 A, Vk (4.15¢)
wi < [vi(Q)|3, VE (4.15¢f)
2
wpdy > 1+ M,w@ (4.15g)
g
L<Y Rip < IV, (4.15h)
kex

(4.6), (4.7a), (4.7b), (4.8), (4.10), (4.14b) — (4.14e).
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Set V represents the union set of the primary and auxiliary optimization variables, where
V={6,W,Q, ¢ w,1,A R E"}. Forthe non-orthogonal channel model, constraint (4.15b)
is replaced by the following constraint:

Rip < BA[log(1+ Y &) —log(1+ Y &), Vi k. (4.16)

ieT JeT/{i}
Lemma 2. Problem (4.15) is an equivalent form of problem (4.14).
Proof. See Appendix A. n

Problem (4.15) includes four non-convex constraints, which are (4.15¢), (4.15f), (4.15g),
and (4.16). We approximate those non-convex constraints by their first order Taylor ex-
pansions and adopt the successive convex optimization technique to solve the problem.
New auxiliary variables, {&f ., 1}, wp., A, Vi, 2f .}, are introduced to represent the corre-
sponding estimated optimizers at the previous iteration of optimization, i.e., iteration t¢.
The SCA-based algorithm iterates until the estimated solution reaches to a local optimizer.
Constraint (4.15c) can be approximated as follows:

&g 4 i & — U i — U2 < @i + 1, (4.17)
where « ) L)
Tip = GipP — §ik z‘,kaz,k ik)
Constraint (4.15f) can be approximated as follows:
wi < [IVRIZ + 2(v) " (vi(Q) — Vi) (4.18)
Constraint (4.15g) can be approximated as follows:
2a
o = A+ Ay — 1,2, 258, <y (4.19)

where
(wh + AL) (wr + Ag)

5 .

Constraint (4.16) can be approximated as follows:

t
Cik — €k

In2(1+ e;k)}’ (4.20)

5 BA
R; < T[log(l + &+ eir) —log(l+ €§,k> -
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where €; ), = Z].Ez/{i} ik

Lemma 3. Non-convex constraints (4.15¢), (4.15f), (4.15g), and (4.16) can be approxi-
mated by the convex forms in (4.17)-(4.20). The solution of the approximated problem is a
local mazimizer of problem (4.14), which provides the lower bound of the mazimum energy
efficiency that can be achieved.

Proof. See Appendix B. ]

Based on Lemma 2 and Lemma 3, the SCA-based algorithm is summarized by Algo-
rithm 3. The term 77(V; A") represents the energy efficiency 7()) in (4.15) with the given
value in auxiliary variable set A’. Note that the approximated problem inside the loop
(Steps 3 and 4 in Algorithm 1) is a fractional programming problem and still non-convex.
We will provide the optimal solution of the approximated problem in the remainder of the
section. The convergence of SCA has been proven in [99], and the algorithm will stop after
finite iterations if the local optimizer exists.

Algorithm 3 SCA-based Algorithm for Solving Problem (4.15)

1: Initialize the auxiliary variables A? = {&Z oy WY, l?k, A9 ng, Ef,’co} and loop index ¢t = 0.

2: repeat

3: Solve the approximated problem (4.21) for given A*, and denote the optimal solution
for auxiliary variables by At

max i(V; A" (4.21)

s.t. (4.6), (4.7a), (4.7b), (4.8), (4.10), (4.14b) — (4.14e),
(4.15d), (4.15¢), (4.15h), (4.17) — (4.18),

(4.15b), in the case of orthogonal channel,

(

4.20), in the case of non-orthogonal channel.

4: Update t =1t + 1.
5. until The difference of the solutions between two adjacent iterations, i.e., [|AT —Af||,
is below a threshold 6,.
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4.4.2 Dinkelbach Algorithm

Problem (4.21) is a fraction programming problem. We can adopt the Dinkelbach algorithm
to achieve the optimal solution. The objective function (4.21) can be rewritten as the
following parametric programming form:

F'(a) = m&X{ZZRzk —Q[ZZES;U(W;C) —i—ZEﬂW € ]:t}, (4.22)

kel i€l kel i€l ke

where F* represents the feasible set of problem (4.21) at the ¢-th iteration in Algorithm 1.
The function F*(«) is a monotonic decreasing function of a. Let the term a* denote the
solution of F*(a*) = 0. Due to the monotone decreasing property of F'(«a), F'(a*) = 0 if
and only if o* is equal to the optimal result of problem (4.21), i.e., o* = 7(V*; A") [100].
The algorithm for solving problem (4.21) is shown in Algorithm 4.

Algorithm 4 Dinkelbach Algorithm for Solving Problem (4.21)

1: Initialize o® =0 if t =0, o = a* in loop t — 1 if t > 0, and the loop index m = 0.

2: repeat

3 Solve problem (4.22) for given o™, and denote the solution for the problem by V.
4:  Update the Dinkelbach auxiliary variable o™t = 7(V7; AY).

5: m=m + 1.

6: until F*(a™T!) < 6s.

Due to the nature of the SCA-based algorithm and Dinkelbach algorithm, we can further
cut the iteration times based on the following Lemma.

Lemma 4. Denote the optimal Dinkelbach parameter o for two consecutive SCA iterations
by o*(t — 1) and a*(t). We have o*(t — 1) < a*(t), and F'(a*(t — 1)) > F'(a*(t)) = 0.

Proof. Denote the optimization results and the corresponding Dinkelbach parameter at
iteration t —1 by V*(t — 1) and a*(t—1), respectively. From Dinkelbach algorithm, we have
a*(t—1) =7 (V*(t—1); A1) < 5*(V*). Asshown in Lemma 3, the approximated function
provides the global lower bound of the original optimization function, and the results have
to be inside the feasible set of the approximate optimization function for the next iteration.
Thus, 7*(V*(t — 1); A1) <n(V*(t — 1); AY) < p*(V*(t); AY). Therefore, o*(t — 1) < a*(t).
Moreover, due to the monotonically decreasing nature of F(«), F*(a*(t—1)) > F*(a*(t)) =
0. O
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Given Lemma 4, the initial point in iteration ¢, i.e., a®(¢), in Algorithm 4 can be set
at o*(t — 1) rather than 0 so that the computing efficiency of the optimization algorithm
can be further improved.

4.4.3 Sub-problem Decomposition by ADMM

By now, the UAV computing energy efficiency maximization problem has been transformed
into a solvable form. However, solving problem (4.22) is time-consuming due to multiple
Second Order Cone (SOC) constraints and requires the local information exchange between
the UAV and users. Therefore, we propose a distributed solution, in which users maximize
their offloaded computing tasks in parallel while the UAV aims to minimize its energy
consumption. The original problem is decomposed into several sub-problems without losing
optimality, and the UAV and users solve the optimization problem cooperatively. Local
information, such as the mobility of users and the propulsion energy consumption function
of the UAV, is not required to be shared among users and the UAV.

We adopt ADMM technique to decompose problem (4.22) [101]. The optimization
solution is achieved in an iterative manner. Firstly, we introduce an auxiliary variable, G,
which is solved by users:

. . T
Qi1 .- Qvi Win ... Wya

G= : ‘. : : ‘. :
Ql,K QN,K Wl,K WN,K

where Qlk denotes the UAV location in time slot k expected by user i. Each user solves a
part of the matrix G; :[Qi,l, Wixs...; QLK, W, k], and updates it to the UAV. Then, the
UAV generates its trajectory, Q, and overall computation load allocation according to the
uploaded matrix G. Denote the overall amount of computation load processed in slot k at
UAV by Vi, where V = [Vi;...; Vik]. The results determined by the UAV are summarized
by matrix H, where H = [I(yx1)Q; V]. I(nx1) is a vector where all N entries are 1. By
the end of the ADMM algorithm, the expected UAV trajectories should be unified and
follow the flying constraints. The computation load should be allocated under the UAV
computation capability. Thus, in the final optimal solution, the following constraint should
be satisfied:

P'G =H, (4.23)
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where
P_ P(ijv) 0(N><1):|
Ovxy X
The vector x represents the computation intensity for users’ tasks, where x = [x1;...;xn]-
The sub-matrices I(nxn) and O¢yyxy) denote N-by-N identity matrix and zero matrix,
respectively.

In addition, for the non-orthogonal channel model, we introduce another auxiliary vari-
able, e; 1, which denotes the summation of §;;, in all other users except user ¢. This variable
is used to decouple the correlated ;; in (4.16) to facilitate the independent optimization
process at each user. At the end of the optimization, e;j should be equal to ) JjeT/{i} k-
For simplicity of presentation, we transform this constraint as follows:

1 _
y (€ik &) = &, (4.24)
where &, is the mean of {&,...,&vs}. Then, the augmented Lagrangian function is

formulated as follows:

TWVa) ==Y Rut+ald Y EZVW)+ > Ef]

ke i€l kel i€eZ ke
+Tr{UT (PG — H)} + 21 |P7G — H]1}

o 3 S {nial e + ) — &
kek i€l
P21

+2[N

(€in +&ik) — &]2}, (4.25)
where ||-||F is the notation representing the Frobenius norm. Set Va represents variables
{V,G,H, Uy, U,}. Variables U; € RVTD*K and U, € RV*X are Lagrangian multipliers
for the two auxiliary constraints, (4.23) and (4.24), respectively. The parameter w indicates
the channel model. @ = 1 denotes the case of the non-orthogonal channel access scheme,
and w = 0 denotes the case of the orthogonal channel access scheme. Two parameters, p;
and py, are penalty parameters.

Problem (4.22) can be separated into two sub-problems. The sub-problem solved in
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user ¢ is organized as follows:

min =) R+ Te{ (U7 P]G; }+ L|PTG - I %

kek
Udialeir)  po €ir— el

i, s P2 ) 7, 9@—1 2

—|—w{—N + 9 (—N + ik )
U;J;&k P2 0?;1 znk_l_gz‘k 2
: : ’ 4.26
F Y R =] (4.26a)
JET/{i}
Z —q; 2 H2
st (”Q k—q ,k:||2 + )no < i, Vi, k (4.26b)
90

(4.7a), (4.7b), (4.10), (4.14¢), (4.15R), (4.17),
(4.15b), if @ = 0,
(4.20), if w = 1,

and the sub-problem solved in the UAV is organized as follows:

. ’%VB - n P n
min af E A—§+§ E}] —Tr{(Ul)TH}—i-ElHIP’TG —H||% (4.27a)
> ke kek
< 4.27b
A f ax? ( 7 )

(4.14b), (4.14c), (4.15¢), (4.19), (4.18).

The term (z)"~! represents the variable x obtained in iteration n — 1. The Lagrangian
multipliers U; and U,y are updated at each iteration as follows:

Uy =Urt + p(PTG™ — H)" (4.28a)
Ug,ik ngllc + p291 k> (428b)

where 07 is
0 = N(GZk + &) — & (4.29)

0; r represents the difference between the user expected interference and the real interfer-
ence. The value of penalty parameters p; and py influence the convergence rate of the
proposed distributed optimization approach. The relation between the penalty parame-
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ters and convergence rate for the ADMM algorithm has been investigated in [102, 103].
At iteration n, problem (4.26) is solved by each user individually. The optimization
variable set V) includes {(51-,;“Wi,k,Qi,k,&,k,l,R, eir} for all k € K. To decompose the
auxiliary constraint (4.23) for each user i, we introduce sub-matrices P;, H;, and Uy,
which are defined as follows: The parameter matrix P; is the sub-matrix sliced from P,
where P; = diag{1, x;}. The matrix J; is obtained by the information from the UAV,
where Ji = [Q™; V"/N + x;W." — >~ ,c7 x; W7 /N]. The sub-matrix Uy ; is sliced from the
dual variable, where Uy ; = [Uy(i,:); U (IV + 1,:)]. The detailed decomposition process is
omitted due to the space limit. Subsequently, problem (4.27) is solved by the UAV. The
optimization variable set V, includes {Q,w, A, EF .

Lemma 5. If the initial value of {e°,£&°,UY,UY} is shared and unified among all users
and the UAV, only information from the UAV required for computing the sub-problem on
the user side at each iteration is {J*~', 0"}

Proof. If the initial value is unified among the UAV and users, the dual variables are not
required to be shared and can be computed locally by the UAV and users. For computing
the dual variable U, ; at n, the following knowledge is required: the updated global value
J?~1, the historical value for the local information G, and the historical value of the
dual variable U’f;l. Therefore, if UY; is identical to all users and the UAV, U, can
be synchronized according to the historical value and the value from the global variable.
Similarly, U, can be updated by users if the initial value is known. O

Given the condition in Lemma 4, the distributed algorithm is given in Algorithm 5. In
each optimization iteration, user side computes and share matrix G to the UAV, and UAV
computes and shares the matrix J to users. Meanwhile, when @ = 1, excepting contributing
matrix G;, user ¢ needs the information e;; and &; from other users j € Z/{i} to evaluate
the interference.

By the problem decomposition, at the user side, each user only aims to maximize its own
offloading data given the UAV trajectory computed by the UAV-mounted cloudlet and the
interference environment in the previous iteration. At the UAV-mounted cloudlet side, the
UAV aims to minimize energy consumption under the users’ expected UAV trajectories
to collect enough workload. The trade-off between the received offloaded tasks and the
energy consumption is controlled by the parameter o which is updated out of the ADMM
algorithm loop. Meanwhile, the corresponding variables and constraints are split into two
groups. This introduces three main advantages. Firstly, local variables and parameters,
such as user location and user offloading constraints, are not required to be uploaded to
the UAV. Similarly, UAV’s mechanical parameters and settings are not required to be
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Algorithm 5 ADMM Algorithm for Solving Problem (4.22)
1: Initialize variables {e°, &%, 6°, H G°} and dual variables {UY U9}. Loop index n = 0.
2: repeat
3: For each user i:
If @ = 0: Wait until receive updated J;' .
If @ = 1: Wait until receive updated {J'~* 6" '}.
Calculate the dual variable U7, = Uy + p1 (PTG — I77Y).
Calculate the dual variable U, for all i € Z by (4.28b).
Solve problem (4.26).
If w = 0: Send G} to the cloudlet.
10: If w=1: Send {G}, e}, £} to the cloudlet.
11: For the UAV-mounted cloudlet:
12: Gather information from users to form matrix G".
13: Solve problem (4.27), and update H".
14: Update dual variable U} by (4.28a)
15: If w = 1: Update variables 07, Vi, k by (4.29), and send the variables to users.
16: n=mn+ 1.
17: until |F"(V, G, \/7 Ul, UQ) - F”’l(V, G, V, -le7 U2>| < 83.

shared to users for offloading optimization. Secondly, less configuration is required when
the UAV is replaced. Thirdly, the main computation load in solving the problem is from
the SOC programming. The SOC constraints are now decomposed and solved by users in
parallel such that the computing efficiency can be improved. For ADMM algorithm, in the
orthogonal channel model, there are two main distributed blocks: the user side and the
UAV side. The convergence of ADMM is guaranteed when the number of blocks is no more
than two. In the non-orthogonal channel model, since each user is required to compute
the interference variable e, parallelly, convergence is not always guaranteed. Proximal
Jacobian ADMM can be adopted to ensure the convergence, in which the proximal term
¥ is further combined in the primal problem of the current algorithm [103].

%sz_xz

4.4.4 Convergence and Complexity Analysis

The convergence for the three loops in Algorithms 3 to 5 is guaranteed. For the SCA-based
algorithm, if the problem is feasible and the initial values of the approximate variables are
in the feasible set of the original optimization problem (4.14), the algorithm convergence
is ensured [99]. Moreover, the Dinkelbach algorithm can achieve the optimal a* with a
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super-linear rate.

The computation complexity of the problem is dominated by the SOC programming
[93,104]. Suppose that Algorithm 5 runs L; x Lo iterations, where the SCA algorithm
loop repeats L; times, and the loop for the Dinkelbach algorithm repeats L, times. The
problem before decomposition, i.e., problem (4.22), has KN SOC constraints in 4 di-
mensions, K SOC constraints in 7 dimensions, and KN SOC constraints in 2 dimen-
sions, where 6 KN + 4K variables participates in those constraints. The overall com-
plexity can be LngO(\/QKN+K(6KN + 4K)(20KN + 49K + (6 KN + 4K)2)). Af-
ter ADMM decomposition, for the sub-problem on the user side, there are K SOC con-
straints in 4 dimensions and K SOC constraints in 2 dimensions. Thus, the computa-
tion complexity is Ly LO(1/65)0 (V2K (5K)(20K + (5K)?)) for each user. On the UAV
side, the sub-problem contains K SOC constraints in 7 dimensions. The complexity is

L1L,0(1/65)O (VK (2K) (49K + (2K)?)).

4.5 Proactive Trajectory Design Based on Spatial Dis-
tribution Estimation

So far, we have introduced the trajectory design and resource allocation for the scenario
that all computation load information and user location are known. However, some [oT
nodes are mobile [105], and knowing their future positions during the upcoming compu-
tation cycle can be difficult. Moreover, users needs to send the offloading requests at the
beginning of the cycle. It means that the user may buffer the computing task until a
new cycle begins, which introduces extra delay for waiting to send the request. Thus, the
maximum queue delay may reach to T seconds. To deal with the above issues, in this
subsection, we introduce an approach to estimate the spatial distribution of user locations
in a cycle. The mobility of users is predicted by an unsupervised learning tool, kernel
density estimation method [106], and the computation load of each user is considered in
a stochastic model correspondingly. The UAV trajectory is optimized via the estimated
knowledge about ground users. Thus, UAV can collect the offloaded tasks of users without
requesting in advance.

To estimate the location of users, each user need to report its current location period-
ically. The sampled location of user ¢ is represented by ¢;. We use the sampled location
to estimate the spatial distribution of users for the cycle, where the probability density
function for the user at (z,y) is denoted as f(x,y).

In order to compute f(z,y), consider a small region R which is a rectangle area with
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side length of h, and h,, i.e., Parzen window. To count the number of users falling within
the region, we define the following function to indicate if user 7 is in the area:

1if max{lg=2l le=uly <1
Yy

Clg,q/; R) = { (4.30)

0, otherwise,

where (x,y) is the central point of the area. Thus, for a large N, the general expression
for non-parametric density estimation is [106]

fla,y) = Nh » > C(qf.ql; R). (4.31)

Y ez
To establish continuous estimation function, a smooth Gaussian kernel is applied, where

(ql —T)2 (g5 Y—y)2

ooty ] (4.32)

f(x,y) N\/h—hyZQW

The term f(z,y) is the distribution of Gaussian kernel estimation. In (4.32), h, and hy,
represent the bandwidth of the Gaussian kernel rather than the side length of the Parzen
window. To improve the estimation quality, the proper bandwidth, h, and h,, needs to be
selected to minimize the error between the estimated density and the true density. In this
work, the maximum likelihood cross-validation method [106] is adopted to determine the

bandwidth h, and h,. The optimal bandwidth is

* * 1 £ T
(15, ) = argmax{ < > log f-i(af a})}, (4.33)

i€T
where f_ i(qF,q?) is the estimated distribution in which user i is left out of the estimation.

In order to apply the estimated distribution into our proposed approach, we divide the
working area of the UAV A into G x G sub-areas. For each sub-area A;, there is a virtual
user located at the center of the area. The virtual user carries all the computing tasks in
the sub-area. It is assumed that the distribution of the task input data size and user spatial
location are independent. The expected length of input bits for the tasks generated by a

user by E[X]. Thus, the expected length of computing bits generated inside the sub-area
Ai is

E[] = E[X]E[N)] = E[X] /( _ fa sy (4.34)

66



(a) (c)

Figure 4.2: (a) Sampled mobile users location. (b) Estimated spatial distribution. (c)
Corresponding UAV trajectory.

where E[NV;] denotes the expected number of users in the sub-area 4;. Our proposed
approach can now be adopted to solve the problem: In the new problem, there are G?
virtual users participating in the computing task offloading, and virtual user i has E[[;]
computation load to be done in a cycle. The location of user ¢ is fixed at the center of
the sub-area. For the orthogonal channel model, the virtual user i shares a portion of
E[N;]/N of the channel bandwidth. As G increases, the performance of the estimation will
be improved correspondingly. An example of the estimation is shown in Fig. 4.2, where
the size of operation area A is set as 500mx 500m. As shown in Fig. 4.2(a), a hundred
users are located in the area with a certain pattern. The estimated distribution results are
shown in Fig. 4.2(b), where the optimal bandwidth is [270;318]. The corresponding UAV
trajectory is shown in Fig. 4.2(c).

Table 4.1: Parameter settings for the computing scenario with three IoT nodes

Parameter Value Parameter  Value
B 3 MHz K 10728
o? -80 dBm/Hz o0 0.0037
Xi 1550.7 Yo 500.206
A 1.5s H 100 m
max 50 m/s? P 100 mW
Urnaz 35 m/s K 50
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Figure 4.3: Optimal UAV trajectories with different parameter settings: (a) the three-
node scenario; (b) the four-node scenario with user mobility, where the solid straight lines
represent user trajectories, and the arrows represent user moving directions.

4.6 Numerical Results

In this section, we evaluate the performance of our proposed optimization approach. The
parameter settings are given in Table 4.1. The channel gain parameter g, is -70 dB. Let
the term p represent the percentage of computing tasks that have to be offloaded to the
cloudlet, i.e., p = (I;/1;) * 100%. We consider that users have homogeneous offloading
requirements in the simulation, i.e., Ef and p are identical for all user. The term “NO”
represents the non-orthogonal channel access scheme, and the term “O” represents the

68



Table 4.2: Parameter settings for the computing scenarios in Fig. 4.5
Index p E! [Index p  EI |Index Radius E}

1 90% 0.5J 4 60% 0.5J 7 200m 0517
2 90% 0.8J 5 60% 0.81J 8 200m 0.81J
3 20% 1.1J 6 60% 1.1J 9 200m 1.1J

orthogonal channel access scheme. We also consider the circular trajectory scheme as the
benchmark, where the UAV moves around a circle within a cycle, with the circle center
located at (0.5,0.5) km, and the radius is predefined. T'wo network scenarios are considered:
a three-node scenario and a four-node scenario. In the three-node scenario, there are three
users located at (0,1) km, (1,1) km, and (1,0) km, as shown in Fig. 4.3(a). At the beginning
of the cycle, the UAV moves from the location (0,0) at an initial speed (-10,0) m/s. By
the end of the cycle, the UAV returns to the final designated position at (0.5,0) km. In the
four-node scenario, there are four users located at the randomly generated locations. The
users travel at constant speeds which are random selected from [-3,-3] m/s to [3,3] m/s, as
shown in Fig. 4.3(b). The UAV moves from the location (200,200) m at an initial speed
(-10,0) m/s and returns to the initial position at the end of the cycle.

The UAV trajectory results obtained by the proposed approach are shown in Fig. 4.3.
In the three-node case shown in Fig. 4.3(a), the UAV takes most of the time moving towards
and stays around the location of user 2 due to high computing task loads of the user. With a
higher minimum offloading requirement p, the UAV moves closer to users in order to collect
more offloading tasks. Similarly, with a lower maximum communication energy requirement
ET, the UAV also moves closer to users to reduce the user’s offloading communication
energy consumption. Moreover, since the non-orthogonal access method has a higher
channel capacity, under the same condition, the trajectory of the non-orthogonal case is
shrunk to preserve the mechanical energy consumption compared to the orthogonal channel
case. Similar results can be obtained in the four-node case, as shown in Fig. 4.3(b).

The comparisons of the energy efficiency with different settings are shown in Fig. 4.4.
In Figs. 4.4(a) and 4.4(b), the x-axis represents the iteration number of the SCA-based
algorithm loop. As shown in Fig. 4.4(a), the energy efficiency converges at t = 30 in the
three-node scenario, while the number of iterations till convergence is increased in the four-
node scenario. Moreover, for both scenarios, with loose user offloading requirements, the
energy efficiency is improved due to the expanded optimization feasible set. In contrast,
with tight user offloading requirements, the energy efficiency is decreased significantly due
to high energy consumption for the UAV to move closer to the users.

For the three-node case, the ratio between the offloaded data amount and the overall
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Figure 4.4: Energy efficiency versus main loop iteration number with different trajectory
designs: (a) the three-node scenario; (b) the four-node scenario with user mobility.

computing data amount is shown in Fig. 4.5. The parameter settings for the indexes are
given in Table 4.2, where the results by the proposed approach are shown in 1-6, and the
results by the circular trajectory are shown in 7-9. For all scenarios, the proposed approach
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task data among generated by users with different parameter settings.

can achieve the minimum offloading requirement, while the circular trajectory scheme can-
not guarantee to achieve the requirement. Moreover, when the maximum communication
energy requirement E! is increased, the UAV can collect more data even though its tra-
jectory is far away from users compared to the case with a low ET. The UAV also collects
the extra offloaded tasks, which is beyond the users’ requirement, to improve its energy
efficiency.

., and the energy effi-
ciency in the three-node case is shown in Fig. 4.6(a). As E increases, the energy efficiency
of the UAV is increased at first and hits the ceiling in a high E]. At that point, E! is
not the factor that limits the energy efficiency performance since all user’s computing data
is collected as shown in Fig. 4.6(c). When the energy efficiency reaches the maximum
value, the UAV will find a path that has minimum energy consumption given that all
tasks are offloaded. Furthermore, our proposed approach can improve the energy efficiency
significantly compared to the circular trajectory.

The trade-off between the maximum offloading energy, i.e., EX

The magnitudes of the UAV acceleration and velocity in the three-node case are shown
in Fig. 4.7(a) and Fig. 4.7(b), respectively. The final velocity is constrained to be equal to
the initial velocity. Note that the optimal velocity cannot be zero due to the characteristic
of fixed-wing UAV. With the lower maximum energy requirement, both magnitudes of
acceleration and velocity are increased, such that the UAV can move closer to users. With
the higher energy requirement, the fluctuation on velocity and acceleration decreases to
reduce the propulsion energy consumption of the UAV.

The ratio of the actual allocated transmit power to the maximum power, ¢, , for the
three users in a cycle is shown in Fig. 4.8(a). Note that the overall offloading commu-
nication energy is limited. For the user with high offloading demands, i.e., user 2, the
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ratio is maximized when the UAV moves adjacent to it, while the ratio is minimized when
the UAV moves away from it. The user tends to preserve the communication energy and
starts the offloading only when the data rate is high. However, for user 3, the transmit
power is still allocated when the UAV is far away from the location of the user for two
reasons: Firstly, the maximum communication energy of the user allows user uploading
the data even though the user transmission efficiency is low. Secondly, the UAV-mounted
cloudlet prefers collecting the data in advance such that it can balance the computation
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Figure 4.7: (a) The acceleration of the UAV in the cycle. (b) The speed of the UAV in the
cycle.

load to reduce the computing energy cost. The computation load allocation of the cloudlet
in the three-node case is shown in Fig. 4.8(b). Since the energy consumption is cubically
increased as the computation load in a unit time increased (based on (4.8) and (4.13)), the
computation load is preferred to be balanced among time slots. However, the computation
load can only be executed after the corresponding tasks are offloaded into the cloudlet.
Therefore, in the case with limited maximum communication energy, the allocated compu-
tation load is increased only when the new offloaded tasks are received. In contrast, with
the loose maximum communication energy constraint, the workload fluctuation is reduced
significantly to minimize the computing energy consumption.

Since the considered problem is non-convex and the proposed approach would achieve
local optimums, optimization results depend on the initial value settings. We compare
energy efficiency achieved by the proposed approach with different initial values of UAV
speeds in Fig. 4.9. Specifically, in initial speed profiles 1 to 3, the initial UAV speeds v{ are
[—5>< 1(2><K/2)7 2.5% l(ng/g)], [5 X 1(2><K/2)7 —2.5X% 1(2><K/2)]7 and [IOX l(ng/g), —9X l(ng/g)],
respectively, where 1(axk/92) is a (2 x K/2) matrix with all elements in the value of 1. As
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EF = 0.5 J under orthogonal channel scenario. (b) The workload allocation with different
settings.

shown in Fig. 4.9, the performance is different with various initial value settings. For speed
profile 2, the proposed approach is trapped into local optimums when E = 0.7 and 0.8.
One method to eliminate the effects from initial value settings in non-convex optimization
is using the simulated annealing method [107], which runs the optimization approach with
different initial values several times and selects the resource management policy with the
best performance.

4.7 Summary

In this chapter, an optimization approach has been proposed to maximize the energy ef-
ficiency of a UAV-assisted MEC system, where the UAV trajectory design and resource
allocation have been jointly considered. The non-convex and non-linear energy efficiency
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maximization problem has been solved in a distributed manner. Moreover, the node mobil-

ity estimation has been adopted to design a proactive UAV trajectory when the knowledge
of user trajectory is limited.
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Chapter 5

Collaborative Edge Computing in
Vehicular Networks

In Chapters 3 and 4, we have investigated the computation offloading and task scheduling
under an edge server. In this chapter, we investigate computing resource management for
multiple edge servers to support seamless computing services for MUDs with high mobil-
ity. Vehicles traverse the communication coverage of edge servers and offload computing
tasks to these servers. We aim to avoid service discontinuity due to mobility through
collaboration among edge servers. The proposed collaborative computing includes two as-
pects: computing task scheduling algorithm, which schedules computing tasks offloaded by
vehicles given a computation offloading policy, and Al-based collaborative computing ap-
proach, which determines the optimal computation offloading policy based on the dynamic
network environment. Specifically, Section 5.1 introduces the background and motivation
of the work, in which the contribution of the work is addressed. Section 5.2 describes the
system model. Section 5.3 formulates the service delay minimization problem. In Sec-
tion 5.4, we present the task partition and scheduling scheme, followed by an Al-based
collaborative computing approach in Section 5.5. Section 5.6 presents simulation results.

5.1 Background and Motivation

Vehicular communication networks have drawn significant attention from both academia
and industry in the past decade. Conventional vehicular networks aim to improve the driv-
ing experience and enable safety applications via data exchange in Vehicle-to-Everything
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(V2X) communications. In the era of 5G, the concept of vehicular networks has been
extended to IoV, in which intelligent and interactive applications are enabled by commu-
nication and computing technologies [78,108]. A myriad of onboard applications can be
implemented in the context of IoV, such as assisted /autonomous driving and platooning,
urban traffic management, and onboard infotainment services [44, 109].

Although IoV technologies are promising, realizing the IoV applications still faces chal-
lenges. One of the obstacles is the limited onboard computation capability at vehicles.
For example, a self-driving car with ten high-resolution cameras may generate 2 gigapixels
per second of data, while 250 trillion computation operations per second are required to
process the data promptly [110]. Processing such compute-intensive applications on vehic-
ular terminals is energy-inefficient and time-consuming. To overcome the limitation, MEC
is an emerging paradigm that provides fast and energy-efficient computing services for
vehicle users [58,61,111]. Via Vehicle-to-Infrastructure (V2I) communications, resource-
constrained vehicle users are allowed to offload their compute-intensive tasks to highly
capable edge servers co-located with RSUs for processing. Meanwhile, compared to the
conventional mobile cloud computing, the network delay caused by task offloading can be
significantly reduced in MEC due to the proximity of the edge server to vehicles [112].
Consequently, some applications that require high computation capability, such as path
navigation, video stream analytics, and object detection, can be implemented in vehicular
networks with edge servers [113].

Despite the advantage brought by MEC-enabled vehicular networks, new challenges
have emerged in task offloading and computing. One critical problem in MEC is to decide
which edge servers should their computing tasks be offloaded to. In vehicular networks,
the highly dynamic communication topology leads to unreliable communication links [114].
Due to the non-negligible computing time and the limited communication range of vehicles,
a vehicle may travel out of the coverage area of an edge server during a service session,
resulting in a service disruption. To support reliable computing services for high-mobility
users, a service migration scheme has been introduced in [63]. Under this scope, when
a user moves out of the communication area of the edge that the computing task was
offloaded, the computing process will be interrupted, and the corresponding VM will be
migrated to a new edge according to the radio association. In the urban area, where
highly dense infrastructure are deployed, frequent service interruption would happen due
to the dynamically changing radio association, which can significantly increase the overall
computing service latency.

Alternatively, computing service reliability can be achieved by cooperation among edge
servers. Different from service migration, which achieves service reliability by migrating
the computing service according to the vehicle’s trajectory, service cooperation improves
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the service reliability by accelerating task processing time. The computing task can be
divided and computed by multiple servers in parallel or fully offloaded to a server with
high computation capability at the cost of communication overhead [52,115]. In this
regard, the computing task can be forwarded to the edge server which is out of the user’s
communication range. Compared to service migration, in which edge servers only execute
the task offloaded by the vehicles under their communication coverage, service cooperation
allows edge servers processing the tasks offloaded by the vehicles out of their coverage
for reducing the overall computing time. Nevertheless, multi-hop communications could
result in significant transmission delay and waste communication spectrum resources in
the task offloading process. The tradeoff between the communication overhead and the
computation capability increases the complexity of the server assignment problem. In
addition, although computing service latency can be reduced by cooperative computing, it
is hard to guarantee service reliability for the vehicles with high mobility. The uncertainty
of vehicle moving trajectories poses significant challenges in computing result delivery.

Motivated by the issues in the existing service migration and computing cooperation
schemes, we present a computing collaboration framework to provide reliable low-latency
computing in an MEC-enabled vehicular network. Once an edge server receives the com-
puting tasks offloaded by a vehicle, it may partially or fully distribute the computing
workload to another edge server to reduce computing latency. Furthermore, by selecting
proper edge servers to deliver the computing results, vehicle users are able to obtain com-
puting results without service disruption caused by mobility. Under this framework, we
propose a novel task offloading and computing approach that reduces the overall comput-
ing service latency and improves service reliability. To achieve this objective, we firstly
formulate a task partition and scheduling optimization problem, which allows all received
tasks in the network to be executed with minimized latency given the offloading strategy.
A heuristic task partition and scheduling approach is developed to obtain a near-optimal
solution of the non-convex integer problem. In addition, we formulate the radio and com-
puting association problem into a MDP. By characterizing stochastic state transitions in
the network, MDP is able to provide proactive offloading policy for vehicles. An Al ap-
proach, DRL, is adopted to cope with the curse of dimensionality in MDP and unknown
network state transitions caused by vehicle mobility. Specifically, a Convolutional Neural
Network (CNN) based DRL is developed to handle the high-dimensional state space, and
the Deep Deterministic Policy Gradient (DDPG) algorithm is adopted to handle the high-
dimensional action space in the proposed problem. The major contributions of this work
are:

1) We develop an efficient collaborative computing framework for MEC-enabled vehicu-
lar networks to provide low-latency and reliable computing services. To overcome the
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Figure 5.1: Collaboration computing framework.

complexity brought by the dynamic network topology, we propose a location-aware

task offloading and computing strategy to guide MEC server collaboration.

2) We devise a task partition and scheduling scheme to divide the computing workload
among edge servers and coordinate the execution order for tasks offloaded to the
servers. Given the offloading strategy, our scheme can minimize the computing time

by finding a near-optimal task scheduling solution with low time-complexity.

3) We further propose an Al-based collaborative computing approach, which utilizes a
model-free method to find the optimal offloading strategy and MEC server assign-
ment in a 2-dimensional transportation system. A CNN based DDPG technique is
developed to capture the correlation of the state and action among different zones
and accelerate the learning speed.

5.2 System Model

In this section, we present the system model of the considered problem.

5.2.1 Collaborative Edge Computing Framework

An MEC-enabled vehicular network is illustrated in Fig. 5.1. A row of RSUs, equipped
with computing resources, provide seamless communication and computing service coverage
for vehicles on the road. An RSU can also communicate with other RSUs within its
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communication range via wireless links. The set of RSUs is denoted by R, where the index
of RSUs is denoted by » € R. We assume that a global controller has full knowledge of the
transportation network and makes offloading and computing decisions for all the vehicles
in a centralized manner. In our model, a computing session for a task includes three steps:

1) Offloading: When a computing task is generated at a vehicle, the vehicle selects an
RSU, which is under its communication range, and offloads the computing data of the
task to the RSU immediately. In the example shown in Fig. 5.1, RSU 7 is selected
to offload the computation load. Such RSU is referred to as the receiver RSU for the
task.

2) Computing: After the computing task is fully offloaded, the receiver RSU can process
the whole computing task or select another RSU to share the computation load. The
RSU, which is selected to process the task collaboratively with the receiver RSU, is
referred to as the helper RSU for the task.

3) Delivering: A vehicle may travel out of the communication range of its receiver RSU.
Therefore, the controller may select an RSU, which could connect with the vehicle
at the end of service session, to gather and transmit computing results. The RSU is
referred to as the deliver RSU. To reduce the overhead, we limit the deliver RSU to
be either the receiver RSU or the helper RSU of the task. In the example shown in
Fig. 5.1, RSU r + 1 behaves as both the helper RSU and the deliver RSU for the
computing task offloaded by the vehicle.

To reduce the decision space in task offloading and scheduling, instead of providing
the offloading and computing policy to individual vehicles, we consider location-based
offloading and computing policy. We divide each road into several zones with equal length,
where the set of zones is denoted by Z. The index of the zones is denoted by z = (a,b) € Z.
The terms a and b represent the index of the roads and the index of the segments on the
road, respectively, where a € {1,..., A}, and b € {1,..., B}. As the vehicle drives through
the road, it traverses the zones consecutively. We assume that all vehicles in the same
zone follow the same offloading and computing policy.! For simplicity, we evaluate the
aggregated tasks for vehicles in each zone at a time slot, and refer to the tasks offloaded
by zone z as task z in the remainder of the chapter. We suppose that the vehicle will not
travel out of a zone during the time duration of a time slot, and vehicles can complete the
offloading process of a task generated in a zone before it travels out of the zone. Denote

!The accuracy of vehicle locations will be improved when the length of the zone is reduced. In consid-
eration of the length of a car, the length of a zone is larger than 5 m.
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Figure 5.2: An example of the task offloading and computing process.

the set of vehicles in zone 2z and time slot ¢ € T as V, ;. The offloading decision for vehicles

in zone z and time slot ¢ is represented by a vector ar,; € Zlfl, where Z@l a1 = 1. The
element o, ,; is 1 if RSU 7 is selected as the receiver RSU for the vehicles in zone z and
time slot ¢, and 0 otherwise. Similarly, the collaborative computing decision for vehicles in
zone z and time slot ¢ is represented by a vector 3, , € Z‘f, where 21@1 B.rt = 1. The
element 3, ,, is 1 if RSU r is selected as the helper RSU for the vehicles in zone z and time
slot ¢, and 0 otherwise. In addition, the decision on result delivery is denoted by a binary
variable 7, ,;, where 7, ,, is 0 if the computing results are delivered by RSU r for task z
in time slot ¢, and v, ,+ is 1 if the computing results are delivered by RSU r.

5.2.2 Cost Model

The system cost includes two parts: the service delay and the penalty caused by service
failure.
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Service Delay

We adopt the task partition technique during task processing. Once a receiver RSU receives
the offloaded task from vehicles in a zone, it immediately divides the task and offloads a part
of the workload to the helper RSU of the corresponding zone. We denote the computing
delay of task z corresponding to the receiver or helper RSU r in time slot ¢ as Tgr,t. As
shown in Fig. 5.2, the computing delay includes task offloading delay, queuing delay, and
processing delay. Since the amount of output data is usually much smaller compared to

the amount of input data, we neglect the transmission delay in result delivery [79,97].

Firstly, task offloading comprises two steps: offloading tasks from vehicles to their
receiver RSU and offloading the partial workload from the receiver RSU to the helper
RSU. According to the propagation model in 3GPP standards [116], the path loss between
a transmitter and a receiver with distance d (km) can be computed as:

L(d) = 40(1 — 4 x 107*D"")log,o d — 181log,, D" (5.1)
+ 211og, f + 80 (dB),

where the parameter f is the carrier frequency in MHz, and the parameter D"® represents
the antenna height in meter. We do not consider the shadowing effect of the channel.
Denote the distance between the center point of zone z and the location of RSU r as D, ,,
and the distance between RSU r and 7’ as D, ,.. The data rate for vehicles in zone z
offloading task to RSU r is

P\/lo—L(Dz,r)/l() >

2
0y

r., = B*log, (1 + (5.2)

where the parameter o2 denotes the power of the Gaussian noise in the V2I channel,
PV represents the vehicle transmit power, and B% represents the bandwidth reserved for
vehicles in a zone. As the receiver RSU for task z, a signal-to-noise ratio threshold should
be satisfied, where

PV10-L(D=r)/10

= > . ,469,Vt, 2,7, (5.3)

where §° is the signal-to-noise ratio threshold for data offloading. Assume that vehicles in
a zone are scheduled to offload the tasks successively, and the channel condition is fixed in
the duration of any computing task offloading. The transmission delay for offloading the
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computing data in zone z to the receiver RSU is:
o, W,
TZT,‘t _ Z z,rt z,t’ (54)
TZ T
reR ’

where W, , represents the overall computing data generated by vehicles in zone z, i.e., task
z, and time slot £. In addition, the data rate between RSU r and RSU »/ for forwarding
the computing data ofloaded from a zone is

. (5.5)

PR{g-E(D,,,1)/10
)

Tyt = BR log, <1 +

where the parameter o2 represents the power of the Gaussian noise in the RSU to RSU
channel, P® represents the RSU transmit power, and BY represents the bandwidth reserved
for forwarding data offloaded from a zone. In data forwarding, the signal-to-noise constraint
is also required to be satisfied, where

PR 10—L(D7.’7./)/10

2
r

Z Bz,r’,téov vt7 Z,T, 7’/. (56)

g

For computing task z in time slot ¢, the portion of workload to be processed by the receiver
RSU and the helper RSU is denoted by z,, and 1 — ., respectively. Thus, the delay for
forwarding the data to the deliver RSU is:

Zzazrtﬁzr’t ]-_‘th) Zt (57)

reRr'erR

Furthermore, after the task is offloaded to edge servers, the queuing delay may be
experienced. Let set Z™ denote the zones which have tasks offloaded to RSU r, i.e.,
{zlazoy = 1} U {z|B.,r = 1}, and let i(z) represent the index of zone z in set Z™'. We
denote N, ; as the number of tasks offloaded in time slot ¢ and assigned to the RSU r,
where N,; = > a4 + B.ri. Then, a matrix, I € ZN”XN”

the processing order of tasks offloaded to RSU r in time slot ¢, where 1! i ))J = 1 if the task
offloaded from zone z is scheduled as the j-th task to be processed among the other tasks
offloaded in the same time slot. As shown in Fig. 5.2, the queuing delay of a task depends
on the computing time of the task scheduled priorly. For the first task to be processed
among the tasks offloaded in time slot ¢, the queuing delay stems from the computing time
for the tasks offloaded in previous time slots. Thus, the queuing delay of task z in RSU r

, can be defined to imply

83



can be formulated as follows:

Q T, lffri) 1,
ot DD [Z({th i J IT(;M, otherwise.

z

(5.8)

The term T ¢ represents the latency for finishing the tasks offloaded in previous time slots
{1,...,t 1}, where

T _max{ZJf(j oo i TS i1 — 6,0, (5.9)

where € is the length of a time slot.

We consider that data transmission and task processing run in parallel. After the task
is offloaded and other tasks scheduled priorly are completed, the task can be processed by
the dedicated server. The delay for processing task z offloaded to RSU 7 in time slot ¢ can

be formulated as
P - XWz,t[az,r,txz,t + 62,1”,15(1 - xz,t)]
z,rt T Cr )

where C, denotes the computation capability (CPU-cycle frequency) of RSU r, and x
denotes the number of computation cycles needed to execute 1 bit of data.

(5.10)

Given the offloading delay, queuing delay, and processing delay, the computing delay
for task z on RSU r can be formulated as follows:
Tzcrt _maX{Tgt—i_ﬁz,rthRtuTzrt}—i_ z,rt: (511>

Denote the overall service delay for the task offloaded from zone z in time slot ¢ as T35V,
As shown in Fig. 5.2, the overall service delay depends on the longest computing time
between the receiver RSU and the helper RSU. Thus, we have

TZSirVice = max{z azﬂ’t z rt? Z Bz r,t z,r,t}' (512)

Service Failure Penalty

The mobility of vehicles brings uncertainty in result downloading. Service failure may occur
if a vehicle is out of the coverage of its deliver RSU during the service session. Denote
the zone that vehicle v is located when its computing result is delivered as m,, i.e., the
location of vehicle v € V,; in time slot t+T§‘§”ice. Also, we denote the signal-to-noise ratio
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threshold for result delivering as 6. We introduce a variable 1., to indicate whether the
computing service for task z offloaded in time slot t is successful or not, where

1, if PE10"LPmur)/10 > 52, 6D oy e ),
:{ p S (5.13)

0, otherwise.

5.3 Problem Formulation

Our objective is to minimize the weighted sum of the overall computing service delay for
vehicle users and service failure penalty. The corresponding objective function can be
formulated as follows:

T-1
1 .
. 1 - {Tservwelz )\WZ 1-1, } 5 14
{Q%TB,X, Tl_I)go T ; ZZ 2t tt+ 7t( ,t) ( a)
{1(m8) vr )} =0 z€

st. (5.3), (5.6), (5.14b)
D ere =1) Bara =13 Yere =1 (5.14¢)
reR reR reR
NT',t N’r,t
DL =1y n =1 (5.14d)
=1 j=1
0@ sl (5.14e)
ooy €L (5.14f)
I(r,t) e Zﬁr,tX]\/vr,t7 (514g)

where \ represents per-unit penalty, for the case when the computation offloading service
fails.

The optimization variables include three aspects: edge server selection, i.e., {a, 3,7},
task partition, i.e., x, and task scheduling, i.e., {I(’”t),Vr, t}. It can be seen that Prob-
lem (5.14) is a mixed-integer nonlinear optimization problem. Solving the above problem
directly by conventional optimization methods is challenging. Furthermore, the decision
dimension of the problem is too large to apply model-free techniques directly. Taking the
variable of task execution order as an example, i.e., I there are N, x N,; number of
decisions to be determined for a server in a time slot. The number of combinations of

85



scheduling decisions is at least (|Z]/|R|)! x |R| x |T|, in which tasks are evenly assigned
to servers and each task is processed by only one server. Thus, to reduce the decision di-
mension of the problem, we divide Problem (5.14) into two sub-problems: i) task partition
and scheduling problem, and ii) edge server selection problem. In the task partition and
scheduling problem, we aim to obtain the optimal task partition ratio and the execution
order to minimize the computing latency given the offloading policy {ea, B}. After that, we
re-formulate the edge server selection problem as an MDP and utilize the DRL technique
to obtain the optimal offloading and computing policy.

5.4 Task Partition and Scheduling

Multiple tasks offloaded from different zones can be received by an edge server in a time
slot. The computing tasks can be processed only if the tasks scheduled priorly are executed.
As a result, the overall computing time may vary depending on the task execution order
in edge servers. In addition, the workload of a task can be divided and offloaded to two
edge servers, i.e., receiver and helper RSUs. Workload allocation for a task also affects
the overall service time. Therefore, we study task partition and scheduling to minimize
the service latency given the offloading policy {a, 8}. Based on Problem (5.14), the delay
minimization problem can be formulated as follows:

: Tservice 515
L ; y (5.15a)
s.t. (5.14d), (5.14e), (5.14g). (5.15b)

Problem (5.15) is a mixed-integer programming, which involves a continuous variable x
and an integer matrix variable {I"? Vr, ¢}. Moreover, even if x is known, the remaining
integer problem is a variation of the traveling salesman problem, which is an NP-hard
problem. To reduce the time-complexity in problem-solving, we exploit the properties of
task partition and scheduling and develop a heuristic algorithm to obtain an approximate
result efficiently. To simplify the notations, we eliminate the time index ¢ in the remainder
of the section since we consider the scheduling scheme for the tasks offloaded in one time
slot. We further denote r(z) and h(z) as the index of receiver and helper RSUs for task z,
respectively.

Lemma 6. If no task is queued after task z for both the receiver RSU and the helper
RSU, the optimal partition ratio for the task x% is min{max{0,2.},1}, where &, can be
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determined by Eq. (5.16).

7ma‘X{TQ szT}+XWZ/C z
z,7(z) h(z) TZT} Z XWz

@
XWz/Cr(z)+XWz/Ch(z) ’ Zf TZ h(Z) maX{ Cvr(z)
_ Q 7T 1 1
Ty = XRT(Z (T h(z) Tz )<Cr(z) + Ch(z)) (516)
T fmax{Tz r(z)’T }+XWZ/Ch(z)+Wz/Rr(z) h(z)
XWZ/CT‘( )+XWZ/Ch(z +WZ/R’I‘(Z ),h(z)

Q
Tz,h(z)

z,r(z)?

, otherwise.

Proof. Without considering the tasks queued later, the service time of task z can be min-
imized by solving the following problem:

minmaX{TZ () L h(z)} s.t. (5.14e). (5.17)

Given that 0 < =, < 1, the optimal task partition strategy exists when T° or(z) = Tzch(z)
The optimal task partition ratio is ¥ = #,. In addition, % = max{0,Z.} = 0 when the
helper RSU can fully process task z in a shorter service time comparing to the queuing time

in the receiver RSU, i.e., max{T% (2 ,TT} > max{T" Sh(z) T+ % )(‘I;V; )}—l— é:i/z Otherwise,
¥ = min{l,z,} = 1, when the receiver RSU can process task z by itself in a shorter

service time comparing to the queuing time in the helper RSU, i.e., maX{T o L <

Q xW-
TZ:h(Z) o Cr(z) : L]

Lemma 6 shows the optimal partition ratio from the individual task perspective. How-
ever, multiple tasks could be offloaded from different zones to an RSU, where the role of
the RSU could be different for those tasks. The task partition strategy for a single task
could affect the computing latency for the task queued later. Therefore, we will investigate
the optimality of the task partition scheme in Lemma 6 in terms of minimizing the overall
service time for all tasks z € Z.

Lemma 7. Assume that the following conditions are met:

o The computation capability C, is identical for all edge servers.
e The receiver RSU and helper RSU are different for each task, i.e., r(z) # h(z).

o For the helper RSUs for all tasks, the queuing time is not shorter than the offloading

time, i.e., Tth(z) > TZT( )+ TR ), Yz, 7.

Then, given the execution order of tasks, the optimal solution of Problem (5.15) follows the
results shown in Lemma 6, i.e., x5 = min{max{0,z,}, 1}, Vz.
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Figure 5.3: Al-based collaborative computing approach.

Proof. See Appendix C. n

We have proved that, given the task execution order, the partition ratio in Lemma 1 is
the optimal solution for Problem (5.15) under certain assumptions. Next, we will explore
the optimal scheduling order given the workload allocation policy.

Lemma 8. Consider only one available RSU in the system, i.e., r(z) = h(z). Under the
assumption in which the offloading time is proportional to the size of the task, the optimal
task execution order is to schedule the task with the shortest service time first.

Proof. See Appendix D. O

According to the properties provided in Lemmas 6-8, we design a heuristic algorithm to
schedule the task execution order and allocate workload among RSUs. The full algorithm,
i.e., Task Partition and Scheduling Algorithm (TPSA), is presented in Algorithm 6. In the
algorithm, we allocate the task that has the shortest service time first. For each task, we
divide the workload between the receiver RSU and helper RSU according to the optimal
partition ratio in Lemma 6. In the worst case, in which all zones have tasks to offload in
a time slot, the algorithm requires |Z|(| 2| + 1)/2 iterations to compute the task partition
and scheduling results, which can still provide fast responses in the dynamic environment.

5.5 Al-Based Collaborative Computing Approach

To deal with the server selection problem, we utilize a DRL technique to conduct the
complex decision-making problem in a dynamic environment. To implement the DRL
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Algorithm 6 Task Partition and Scheduling Algorithm (TPSA)
1: At time slot ¢, initialize set S = {z|W,+ # 0}.
2: Initialize 1), = TT%O, 1Y =0, and j, = 1,Vr.
3: while |S| # 0 do
Initialize ), = 0,Vz € S.
5 for Task z =1:|S| do
6: Update 7(2) = {r|a,,. = 1} and h(z) = {r|B.,. = 1}.
7 Update partition ratio z, = min{max{0,,}, 1}, where & is obtained by (5.16).
8
9

>

Update 1, ,(z) = Up(z) + TS
Update v, y(z) = Un(z) + Tz(,Jh(Z)’

10: If 2, = 1, then Q. = . ().

11: If T, = 0, then Qz = 'L&Z,T(z).

12: If0 <z, <1,then Q, = (Vsr(z) + Voniz)/2:

13: end for

14: Find z* = argmin, (.. )

15: Update QﬂT(z*) = wz*,r(z*) and ¢h(z*) = wz*,h(z*)-

16 Update order matrix I;Ef;)(’:*) =1,and I j(jh{j) =1

17 Update j,+) = Jr(z+) + 1, and Juix) = Jner) + 1.
18: S =38\{z}.

19: end while

20: Ti2%, = v, — €, V.

method, we first re-formulate the problem into an MDP. An MDP can be defined by a
tuple (S,A,T,C), where S represents the set of system states; A represents the set of
actions; T = {p(s¢+1]|st, a¢)} is the set of transition probabilities; and C is the set of real-
value cost functions. The term C(s,a) represents the cost when the system is at state
s € S and an action a € A is taken. A policy 7 represents a mapping from S to A. In
our problem, the state space, action space, and cost model in an MDP are summarized as
follows:

1) State space: In time slot ¢, the network state, s;, includes the computing data amount
in zones, i.e., {W,,,Vz}, the average vehicle speed, i.e., {v,, Vz}, and the delay for
edge servers to finish the tasks offloaded in previous time slots {1,...,t — 1}, i.e.,
{T vr}.

rt )

2) Action space: For zone z and time slot ¢, the action taken by the network includes
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three elements: the index of receiver RSU, helper RSU, and deliver RSU, which can
be represented by {al,,a?,, a2}, receptively.

3) Cost model: Given the state-action pair, the overall service time can be available
by the TPSA algorithm. Thus, according to the objective function (5.14), the cost
function can be formulated as

Clspar) =Y {T;f;”icm,t FAWL,(1 — 12,,5)}. (5.18)

zEZ

Then, to obtain the expected long-term discounted cost, the value function V' of state
518

Vi(s,1) = E[i V(50 a)|s0 = s, 7r]7 (5.19)

where the parameter v is a discount factor. By minimizing the value function of each
state, we can obtain the optimal offloading and computing policy 7*; that is,

7*(s) = argmin, Zp(s’|s, a)[C(s,a) + V(s 7). (5.20)

Due to the limited knowledge on transition probability between the states and the sizeable
state-action space in the network, the traditional dynamic programming method is not
able to compute the optimal policy efficiently. Therefore, we adopt DRL to solve the
proposed server selection problem. There are three common DRL algorithms: DQN; Actor-
Critic (AC), and DDPG. DQN is a powerful tool to obtain the optimal policy with a high
dimension in the state space. Besides an online neural network (evaluation network) to
learn the Q value, a frozen network (target network) and the experience replay technique
are applied to stabilize the learning process. However, the method shows the inefficiency
on the network with a high dimension in the action space, while in our problem, the large
number of zones leads the high dimension in both state and action spaces. On the other
hand, both AC and DDPG tackle the problem with a high action dimension by the policy
gradient technique. Two networks, i.e., actor and critic networks, are adopted, in which
the critic evaluates the QQ value, and the actor updates policy parameters in the direction
suggested by the critic. Moreover, DDPG combines the characteristics of DQN on top of
the AC algorithm to learning the Q value and the deterministic policy by the experience
relay and the frozen network, thereby helping reach the fast convergence [117]. In this
chapter, we exploit the DDPG algorithm to obtain the optimal collaborative computing
policy in vehicular networks.
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The illustration of our Al-based collaborative computing approach is shown in Fig. 5.3.
The system states are observed from the MEC-enabled vehicular network. After state s;
is obtained, the optimal server selection policy can be computed by the DDPG algorithm.
According to the server selection results, the corresponding task partition and scheduling
policy can be obtained by the proposed TPSA algorithm. Then, the cost of the correspond-
ing state-action pair and the next system state can be observed from the environment. The
state transition set (s;, as, 74, S¢+1) is stored in the replay memory for training the neural
networks. In DDPG, four neural networks are employed. Two of the four networks are
evaluation networks, where the weights are updated when the neural network is trained,
and the other two networks are target networks, where the weights are replaced periodi-
cally from the evaluation network. For both evaluation and target networks, two neural
networks, i.e., actor and critic networks, are adopted to evaluate the optimal policy and
Q value, respectively. The weights in evaluation and target critic networks are denoted by
69 and 69, and the weights in evaluation and target actor networks are denoted by 6# and
6" | respectively.

In each training step, a batch of experience tuples are extracted from the experience
replay memory, where the number of tuples in a mini-batch is denoted by N. The critics
in both evaluation and target networks approximate the value function and compute the
loss function L, where

L(69) = B[ (4 - Q(s0, [69))°]. (5.21)

The term Q(sy, a;|0%) represents the Q function approximated by the evaluation network.
The value of y; is obtained from the value function approximated by the target network,
where

Yo = C(st,ae) + 7Q(5er1, 1/ (s141]0)|09). (5.22)

The term /(54,1 |0*) represents the action taken at s, given by the target actor network.
By minimizing the loss function (5.21), the weights in the evaluation critic, i.e., 8%, can
be updated. On the other hand, to update the weights of the evaluation actor network,
the policy gradient can be represented as

1
Vo, J ~ NZ VaQ(s, a|9Q)|ZiZt(, )vguu(sw%:st. (5.23)
t Hse

From (5.23), it can be seen that actor weights are updated in each training step according
to the direction suggested by the critic.

Although the DDPG algorithm is able to tackle the problem with a high dimension
of state and action spaces, it is inefficient to apply the DDPG algorithm directly in our
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Figure 5.4: The structure of actor and critic neural network.

problem due to the 2-dimensional transportation network and the multiple dimensions of
the input. A huge number of neurons in a network will be deployed if the conventional
neural network with fully connected layers is adopted. To improve the algorithm efficiency,
we utilize CNN in both actor and critic networks to exploit the correlation of states and
actions among different zones. The structure of actor and critic networks is shown in
Fig. 5.4. Before fully connected layers, convolution layers and pooling layers are applied to
learn the relevant features of the inputs among zones. Due to the weight sharing feature of
CNN filters, the number of training parameters can be significantly reduced compared to
the network with fully connected layers [118]. After several convolution and pooling layers,
the output of the CNN combines the state of edge servers and forwards to fully connected
layers.

The proposed Al-based collaborative computing approach is provided in Algorithm 7,
where 7 is a small number less than 1. In our algorithm, to learn the environment efficiently,
the system will continuously train the parameter by N, times after N, time step, where
N, > N;.

92



Algorithm 7 Al-based Collaborative Computing Approach

1: Initialize critic network Q(so, ao|0%) and actor network p(sg|6*) with weights 69 and
or

2: Initialize target network with weights 9" = 69 and 6* = 6~

3: Initialize the experience replay buffer.

4: Initialize a random vector N as the noise for action exploration.

5. for episode = 1:G do

6: Initialize environment, and observe the initial state sg.

7 for timeslott=1:7T do

8: Select action a; = u(s|0*) + N.

9: Let a a1 4y Bea2, 4, and 7, 43 ; equal to 1.

10: Compute the task partition and scheduling results by Algorithm 1.

11: Observe next state s;1 and cost C/(s, ay).

12: Store transition (s, ag, 7, S¢41) into the experience replay buffer. Delete the

oldest transition set if the buffer is full.

13: if £ mod N, == 0 then

14: for j=1: N, do

15: Sample a mini-batch of N samples.

16: Update y; by (5.22).

17: Update the weights in the evaluation critic network by minimizing the
loss in (5.21).

18: Update the weights in the evaluation actor network using sampled policy
gradient presented in (5.23).

19: Update target networks: 09 = 709 4 (1 — 7)0%9; 0¥ = 70 + (1 — 7)0"".

20: end for

21: end if

22: end for

23: end for

5.6 Performance Evaluation

In this section, we first present the efficiency of the proposed TPSA algorithm in task
partition and scheduling. Then, we evaluate the performance of the proposed Al-based
collaborative computing approach in a vehicular network simulated by VISSIM [119], where
TPSA is applied to schedule computing tasks according to the policy given by the DDPG
algorithm.
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Table 5.1: Network parameters

PY PE o2, 02 A €
27 dBm 37dBm | -93dBm | 50 ls
f X N., N, 60 6P
2800 MHz | 1200 C/bits | 80,25 | 7dB |7 dB

5.6.1 Task Partition and Scheduling Algorithm

We first evaluate the performance of the proposed TPSA algorithm. In the simulation, we
consider that tasks can be offloaded to five edge servers with an identical offloading rate
of 6 Mbits/s. The communication rate among the servers is 8 Mbits/s. We set that the
computation capability of the servers is 8 GC/s, and the number of computation cycles
needed for processing 1 Mbit is 4 GC. The computing data amount of tasks is uniformly
distributed in the range of [1,21] Mbits. For each task, the receiver and helper RSUs
are randomly selected from the five servers. We compare the proposed TPSA algorithm
with brute-force and random schemes. In the brute-force scheme, we utilize an exhaustive
search for finding the optimal scheduling order. In the random scheme, we randomly
assign the scheduling order of the tasks. Note that, for both brute-force and random
schemes, we adopt the optimal task partition ratio in workload allocation. The simulation

results presented in Figs. 5.5(a) and 5.5(b) are averaged over 200 rounds of Monte Carlo
simulations.
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Figure 5.6: The transportation network topology for simulation.

The service delay performance of the proposed algorithm is shown in Fig. 5.5(a). It
can be seen that an increase in the task number leads to increasing overall service time,
and the increasing rate of the random scheme is the highest among the three schemes.
The proposed TPSA algorithm can achieve a performance very close to the brute-force
scheme. Moreover, we compare the runtime between the proposed TPSA and the brute-
force scheme. As shown in Fig. 5.5(b), as the number of the task increases, the runtime
of brute-force scheme increases exponentially, while the proposed TPSA algorithm has
imperceptible runtime to compute the scheduling result that is close to the optimal one.
In summary, the proposed TPSA algorithm can achieve a near-optimal performance for
task partition and scheduling with low computation complexity.

5.6.2 Al-based Collaborative Computing Approach

In this subsection, we evaluate the performance of the proposed Al-based collaborative
computing approach. In the simulation, we consider an 800 m x 800 m transportation
system, where the transportation topology is shown in Fig. 5.6. Nine RSUs with edge
servers are deployed, as shown in the figure. We generate vehicle traffic by VISSIM [119],
where 200 vehicles are traveling in the area. The speed of vehicles depends on the speed
limit on the road and the distance to the vehicle ahead. For each vehicle, the computing
tasks are generated using a Poisson process, and the input data amount of each task is
uniformly distributed in the range of [2,5] Mbits. The length and width of a zone are 40 m
and 10 m (2 driving lanes), respectively. Other network parameter settings are presented
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Table 5.2: Neural network structure in DDPG

Actor Network
Layer Number of neurons Activation function
CONV1 | 5x1x2x10, stride 1 | relu
POOL1 | 2x1 none
Data Concatenation and Batch Normalization Layer
FC1 1400 tanh
FC2 1400 tanh
FC3 bxA x B tanh
Critic Network
Layer Number of neurons Activation function
CONV1 | 5x1x2x40, stride 1 | relu
POOL1 | 2x1 none
CONV2 | 3x1x40x10, stride 1 | relu
POOL2 | 2x1 none
Data Concatenation and Batch Normalization Layer
FC1 640 relu
FC2 512 relu
FC3 128 none
FC4 1 relu

in Table 5.1. We test the system performance within a duration of 20 seconds.

The neural network structures of the DDPG algorithm are presented in Table 5.2. The
initial learning rates of the actor and critic networks are le-5 and le-4, respectively, and the
learning rates are attenuated by 0.991 in every 500 training steps. The experience replay
buffer can adopt 8,000 state-action transitions, and in each training step, the number
of transition tuples selected for training, i.e., the batch size, is 128. We adopt a soft
parameter replacement technique to update the parameters in the target network, where
7 is 0.01. We compare the performance of the proposed Al-based collaborative computing
approach with three approaches. In the Greedy approach, vehicles always offload their
tasks to the RSU with the highest SNR, and the received computing tasks will not be
collaboratively computed with other RSUs. In the Greedy+TPSA approach, a vehicle
offload their tasks to the RSU with the highest SNR, and the RSU randomly selects another
RSU to compute the task collaboratively. The task partition and scheduling policy follows
the TPSA algorithm, and the computing results are delivered by the receiver RSU. In the
Random+TPSA approach, the receiver, helper, and deliver RSUs are selected randomly,
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Figure 5.7: Average weighted computing delay cost versus computing task arrive rate per
vehicle.
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Figure 5.8: Average percentage of service failure versus computing task arrive rate per
vehicle.
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Figure 5.9: Average computing data amount which is successfully computed versus com-
puting task arrive rate per vehicle.

and the TPSA algorithm is applied to determine the task partition ratio and the execution
order.

The overall weighted computing cost with respect to task arrival rates is shown in
Fig. 5.7. Our proposed approach can achieve the lowest computing cost compared to
the other three approaches. The random approach suffers the highest cost compared to
others due to the inefficient server selection in the scheme. Moreover, the greedy+TPSA
approach achieves a lower cost compared to the greedy approach. The reason is that
parallel computing is able to reduce the overall service time, and the proposed TPSA is
able to achieve near-optimal task partition and scheduling results. However, the greedy
approach selects the servers according to the instantaneous cost of the network rather than
the value in the long term. Therefore, the greedy+TPSA approach cannot attain a lower
cost compared to the proposed Al-based approach.

As shown in Eq. (5.18), the service cost consists of the service delay and the failure
penalty. The results of the service failure percentage is shown in Fig. 5.8. Similar to the
service cost, the proposed Al-based approach achieves the lowest failure percentage among
the four approaches. Correspondingly, as shown in Fig. 5.9, the proposed approach can
successfully process the highest amount of data among the four approaches. On the other
hand, the results of the average service delay for 1 Mbits successful computed data are
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Figure 5.10: Average service delay for 1 Mbits successful computed data versus computing
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Figure 5.11: Convergence performance of the proposed algorithm, where the task arrival
rate is 0.1 request/sec.

shown in Fig. 5.10. Compared to the other three approaches, the proposed scheme reduces
the service delay significantly. Furthermore, the delay of the random approach increases
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exponentially since less amount of data can be successfully computed when the task arrival
rate is high.

The convergence performance of the proposed Al-based approach is shown in Fig. 5.11,
where the highlighted line represents the moving average from 50 samples around the
corresponding point. Note that in our algorithm, we explore multiple times in each training
step. It can be seen that our approach converges after 10,000 episodes, or equivalently,
after the network being trained by around 3,000 episodes, i.e., 60,000 training steps.

5.7 Summary

We have introduced a novel collaboration computing framework to reduce computing ser-
vice latency and improve service reliability in MEC-enabled vehicular networks. The pro-
posed framework addresses the challenge of maintaining computing service continuity for
vehicle users with high mobility. As a result, our collaborative computing approach is
able to support proactive decision making for computation offloading through learning the
network dynamics.
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Chapter 6

Conclusions and Future Works

In this chapter, we summarize the main results and contributions of this thesis and present
our future research directions.

6.1 Main Research Contributions

In this thesis, we have investigated computation offloading and task scheduling for MEC in
5G and beyond. In specific, three resource management strategies have been developed for
different computing scenarios in MEC. First, an adaptive computing scheduling scheme has
been proposed to support real-time applications in autonomous vehicles. Then, an energy-
efficient resource management strategy has been proposed for UAV-assisted IoT networks.
Last, a collaborative edge computing strategy has been developed to achieve efficient com-
puting resource management for MUDs with high mobility. The main contributions of this
thesis are summarized as follows.

1) An adaptive index-based task scheduling scheme has been proposed for an edge server.
The proposed scheme identifies the characteristics of vehicles, i.e., mobility, and
schedules the computing resources according to these characteristics to improve the
overall computing service performance. We have designed an index-based scheduling
scheme to determine the order of computing at an edge server and developed a novel
DRL approach to determine the index based on the mobility dynamics of MUDs. The
proposed index-based scheduling scheme can adapt to real-time mobility and provide
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optimal resource scheduling policy with low computing complexity and communica-
tion overhead. The work provides an efficient MEC solution for supporting real-time
applications generated by a number of autonomous vehicles in future networks.

2) An optimal multi-resource management strategy has been proposed to maximize the
energy efficiency of a UAV-mounted cloudlet in MEC system. In the strategy, we
have jointly considered the optimization of UAV trajectory, computation offloading,
and task scheduling. To solve the corresponding complex optimization problem, we
have developed a distributed optimization solution, which allows UAV and [oT nodes
cooperatively solving the complex problem with less local information sharing. The
work contributes valuable insights for computing resource management in an energy-
constrained network scenario, i.e., IoT in remote areas.

3) A novel collaboration computing framework and the corresponding resource man-
agement strategy have been developed to improve computing service reliability and
reduce service latency. With the proposed framework, edge servers can efficiently
avoid computing service discontinuity caused by frequent radio association changes
in the vehicular networks. Based on the framework, we have proposed a Al-based
resource management strategy that enables intelligent and proactive decision-making
for computation offloading and scheduling in vehicular networks. The proposed work
provides a novel mobility management solution for MEC, and the proposed strategy
can be applied to implement MEC in a complex network environment, such as urban
transportation systems.

In summary, this thesis has investigated resource management for MEC in three aspects:
optimizing the QoE for MUDs, improving energy efficiency for edge servers, and collabo-
rating computing resources for MUD mobility adaptivity. All the three of research issues
in this thesis have explored the nature of mobility in an MEC-enabled system, and we
have proposed resource management strategies to deal with mobility dynamics, including
mobility-aware computing resource scheduling, UAV trajectory optimization, and mobility
management in vehicular networks. The proposed approaches and theoretical resources
can provide valuable guidelines for implementing MEC in 5G and beyond.

6.2 Future Research Directions

Motivated by diversifying mobile applications, wireless networks keep developing, resulting
in new computing service requirements to be satisfied by MEC. For future research on MEC,
there are some interesting and promising research directions listed as follows:
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)

Service-oriented computing resource provisioning: Different services would have dif-
ferentiated computing service requirements. For example, safety-related applications
require MEC to support high-reliability computing, while VR video streaming de-
mands high-speed communication and computing. In 5G, network slicing has been
developed to support multiple isolated and independent logical networks for different
services, i.e. slices, on the same physical network infrastructure [120,121]. With
network slicing, network resources are reserved for services to guarantee their ser-
vice level agreements (SLAs). With the development of MEC, the network slicing
architecture is expected to be inherited in sixth-generation networks and will be im-
plemented in RAN] i.e., RAN slicing, to support diversified services on the network
edge. In edge servers, communication, computing, and caching resources are reserved
by multiple slides for service provisioning, and these reserved resources are further
scheduled to individual users in real time. However, RAN slicing faces several chal-
lenges. For example, effective resource reservation strategies for edge servers should
adapt to service demands, thereby avoiding resource over-provisioning or SLA vio-
lation [122], while high network traffic dynamics in RAN make resource reservation
challenging. Moreover, the configurable communication topology in RAN provides a
higher levels of flexibility in network slicing, while it also increases the difficulty of
finding optimal resource management solutions for slices. Therefore, how to enabling
effective service-oriented resource provisioning by MEC calls for further investigation.

MEC for Al services: Al can play an essential role in network management; mean-
while, Al can also be a new type of service to be supported by networks. Examples
of Al services in future networks include language processing, video surveillance, and
autonomous driving [123,124]. Since Al services will need to gather or generate a
vast amount of data, Al service provisioning on network edge, i.e., edge intelligence,
has attracted extensive interest as it moves Al closer to MUDs and alleviates data
traffic load in the core network. Empowered by distributed learning techniques and
MEC technologies, the communication, computing, and storage resources at each
edge server can be leveraged to perform data processing and inference for Al ser-
vices [125]. In contrast with conventional compute-intensive services, the service
performance of Al services, such as accuracy and training convergence rate, strongly
relates to data generated by MUDs, thus resulting in the revolution in computing
service provisioning by MEC. Specifically, data can be considered as a novel resource
in the application layer [26]. Edge servers should allocate communication, comput-
ing, and caching resources to manage data and execute Al services accordingly, which
requires a novel resource management strategy for MEC to support Al services.
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3)

Intelligent network control: In addition to supporting mobile applications, MEC can
be an enabler technology to achieve hybrid and hierarchical network control archi-
tecture. Since edge servers are close to MUDs, local network controllers can interface
with edge servers to collect real-time data in high granularity, such as locations and
transmission buffer states of each MUD. The local controller can compute network
control policies for individual MUDs and aggregate MUD data for further large-scale
network control in the global controller at the cloud server [120,126]. By coordinating
the controllers in edge and cloud servers, intelligent and scalable network manage-
ment can be achieved in future networks, while how to effectively take advantage of
computation capability on the network edge to maximize entire network performance
remains an open issue for future networks.

Synergy between data-driven and model-driven methods in resource management:
AT techniques facilitate data-driven methods for resource management. Via data-
driven methods, network characteristics can be abstracted by exploiting the features
of network data. Thus, data-driven methods can be used to solve complex resource
management problems without having to obtain a closed-form mathematical model.
However, the performance of data-driven methods is questionable whenever the char-
acteristics of the network change and the network environment is not stationary.
Furthermore, the explainability of data-driven methods remains an open question in
academia, especially for deep neural networks. Although learning models are fully
trained, data-driven methods cannot always provide accurate inference results. One
potential solution to address the limitations of data-driven methods is to integrate
model-driven methods with data-driven methods in resource management. Model-
driven methods provide closed-form solutions that are generalized to diverse network
environments and are explainable, which can be combined with data-driven meth-
ods to improve the adaptivity on network environment changing and the accuracy of
inference results. However, how to implement the synergy between data-driven and
model-driven methods in resource management is still an open issue.
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Appendices
Appendix A

Proof of Lemma 2

Firstly, to deal with the non-convex function on the numerator, i.e., R;(d;x, Qx), we
introduce the auxiliary variable Ri,k to indicate the lower bound of the data rate for user 7 in
slot k. Moreover, we introduce two auxiliary variables: the term &, j,, where &; , < 9, ,P/l; 1,
and the term [; ;, where [, , > Ny/h; ;. Thus, the following relation can be established

BA
R < N log(14+ &) < Rix(0ik, Qr), (A1)

where R;, is the epigraph form of R;(d;x, Qi). When (4.15a) is maximized, i.e., the nu-
merator 7}, is maximized, we have Ij, = 1/g7,, & = 6;,.P/1; ., and Ri, = R; 5 (57, Qp)-

Furthermore, to deal with the non-linear function on the denominator, i.e., EF(Q), we
introduce an auxiliary variable EY to indicate the upper bound of the UAV propulsion
energy in slot k. For the non-linear part of the function, we introduce two auxiliary

variables: the term wy, where w? < [|[vx(Q)||2°, and the term A, ;, where A;j > (1/wy)(1+
la(Q)3/¢?). Thus, we have

Elf > [vie(Q)3 + 2 Ak

> @+ a1+ L2V > g (22)

118



Similarly, when (4.15a) is maximized, i.e., the denominator Ef (Q) is minimized, E,f * =
EF(Q*). Therefore, problem (4.15) is equivalent to problem (4.14), and n* = 7*.
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Appendix B

Proof of Lemma 3

Constraint (4.15c) can be transformed into the following equivalent form:

(oo 4 Lig)” = (Eip — Lig)? < 46,4 P, (B.1)

which is difference of convex functions [99]. Then, we approximate the second part of the
equation by the Taylor expansion:

2ct, — 21t 17 [&n— &
R I N TS 2 L Y i,k i,k 1, i,k
G = L) = (G = i)™ [QZf,k - 2§f,lj ligk — Uiy, (B2)

Then, we further reformulate the approximated equation as the constraints shown in (4.17)
with a cone expression. Moreover, constraint (4.15g) is approximated by constraint (4.19)
in a similar way. Constraints (4.15f) and (4.16) are approximated by (4.18) and (4.20)
respectively by first order Taylor expansion to obtain the lower bound on the squared
norm and the subtracted term, respectively.

All the approximated constraints (4.17)-(4.20) are stricter than their original counter-
parts, guaranteeing that the solution of the approximated problem is strictly smaller than
the original optimum. For example, consider the optimal ;; and [;; obtained by solv-
ing the approximated problem, which is denoted by £, and [{;. These two variables are
bounded by constraint (4.17) in the approximated problem. Comparing (4.17) with the
original constraint (4.15¢) and considering the property of the Taylor expansion, we have
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Eelin + Dappror < 0i 1P, where Agppror > 0. Thus,

0i v P
7 log(1+&0) < 5= log(1+ =7 (B:3)
ik
Moreover, due to If, > 1/¢ix, we have
BA 0i P
Tlog(l + lf ) S Ri,k(@,k, Qk) (B4)
ik

Therefore, the approximation on constraint (4.15¢) will leads to R;k < R; (i, Qg). Other
approximated constraints can be proven similarly to show that the proposed approximated
objective function provides the global lower bound for original objective function (4.14).
Moreover, due to the gradient consistency in the first order estimation, the SCA algorithm
will be stopped when a local optimizer is found.
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Appendix C

Proof of Lemma 7

An illustration of task partition is shown in Fig. C.1. Consider that the workload of all
tasks are divided and shared among RSUs following the results in Lemma 6. We focus
on a single task which is numbered as task 1 as shown in the figure. As indicated in the
second and the third assumptions in Lemma 7, the computation load of task 1 is shared
between RSU r(1) and h(1). Tasks 2 and 3 are scheduled after task 1 in RSU r(1) and
h(1), respectively. In addition, Tfh@) > TQZ:T(Q) + T%),h(z)' We then prove that, under the
assumption in Lemma 7, the overall service time will be increased if the partition ratio of
task 1 does not follow the policy presented in Lemma 6.

Consider that, for task 1, the workload assigned to RSU r(1) is decreased by Az. Cor-
respondingly, the computing time of task 1 in server r(1) is reduced by Atg(l) = Az /Cry,
while the computing time of task 1 in server h(1) is increased by At}f(l) = Az/Ch1y. Thus,
the service time of task 1 is increased by AT} = Axz/Ch). Denote the new partition ratio
of task 2, after task partition ratio x; is decreased by Az, as 5. We then list following
cases to analyze the time deduction from the tasks queued after the task 1:

e Case 1: Task 2 regards RSU r(1) as the receiver RSU, i.e., r(1) = r(2), and 2 < 1.
According to Eq. (5.12) and Lemma 6, the optimal service time of task 2 is

(Tz(?h@) — max{Ty, T2C:2r(1)}>0h(2) + xWs

C.1
Cr1) + Ch (G1)

TZServiCe = maX{T2T’ T;?r(l)} *

After task partition ratio x; is decreased by Ax, task 2 can be processed by RSU
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Figure C.1: An illustration of task partition.

r(1) in advance by At;"”). The new optimal service time of task 2 is

service r(1
(TQ ), = HlaX{T2T, TZ(?r(l) - Atl( )}
, T =~ max{ T, T ) — MGGy + X2
Crity + Che) ‘

@ (C.2)

The service time deduction on task 2 can be obtained by subtracting Eq. (C.1) by
Eq. (C.2). We found the reduced service time AT, < Atq(l)Cr(l)/(Cr(l) + Ch(2)),
where equality can be reached when T.F < TQQr(l) — AW,

o Case 2: Task 2 regards RSU r(1) as the receiver RSU, i.e., r(1) = r(2), and &9 = 1.
In this case, the new optimal service time of task 2 is

(T5eviee) = max{Ty T, ) — A} + év([?) (C.3)
Via subtracting Eq. (C.1) by Eq. (C.3), we have
AT, < AFD W=/ Coty = Ty + Tot 1)) Chi2)
Cr1y + Cha)
A C) (C.4)

~ (Cray + Chr)’
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where equality can be achieved when T < TQQr(l) N

e (Case 3: Task 2 regards RSU r(1) as the helper RSU, i.e., r(1) = h(2). In this case,
the new optimal service time of task 2 is
service r(2
(T5evee) = max{T} T, , — AP}
(TZ(?r(l) — A® — max{TJ, T;?T(Q)})Cr(l) +xWs
Criz) + Cray '

(C.5)

Similar as case 1, the reduced service time for task 2 is AT, = Atq(l)Cr(l)/(C’r(l) +
Cr2)-

Considering that the computation capabilities C, are identical for all servers (the first

assumption in Lemma 7), the maximum service time deduction for task 2 is At;(l) /2.
For all tasks queued after task 1 in RSU (1), the overall service time deduction is less
than AtM[1/2 + (1/2)% + (1/2)3 + ...], which is always less than A¢]""). We omit the
proof for the case when the workload assigned in RSU h(1) is decreased by Az due to the
similarity. Therefore, we obtain that, under the assumptions presented in Lemma A, the
overall service time will be increased if the workload allocation does not follow the task
partition ratio presented in Lemma 7.

124



Appendix D

Proof of Lemma 8

Suppose the tasks in edge server r are scheduled by the shortest-task-first rule, and task 2
is queued after the task 1. Then, we have

max{T

1,7

TEY + TF, < max{T3, T3} + Ty (D.1)

,r 1,7

If the order of task 1 and task 2 are switched with each other, the service time of task 2
will be decreased by

D = max{max{T

1,7

T+ TF, T} — max{T2, Ty, ). (D.2)

NS T

On the other hand, the service time of task 1 will be increased by

I =max{T, T} } + T3 — max{T>, T, }. (D.3)

T

From (D.1), we can derive that I > T, 11? .. Then, the overall service time of tasks 1 and 2
will be increased by

[—D>TF —max{max{T, 17, } + T{,. T3 }

+max{T%, T}, }. (D.4)
We then list the three scenarios on Tgrz

o Case 1: Ty, > max{Tl(?T,TlT } 4+ T7,. In this case, I — D > T}, > 0.

T

° CGSE 2 Tl%’ S Tg’/‘ S HlaX{TQ TET}+T11?T In thlS case, ]_D 2 Tgr_maX{Tl(?r’ TE?"}

1,m

According the assumption, where T}, < T3, we then have I — D > 0.
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o Case 3: T < Ty . In this case, I — D > T} — max{T}

1,m

T} =0,

Therefore, we can obtain the conclusion that the service time will be increased if the task
execution order does not follow a shortest-task-first rule under the assumptions.
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