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Abstract

In this thesis, we investigate a variation of quantum information processing tasks, blind
data compression, and we analyze an approximation of a structure of a set of quantum
states closely related to the task, which is called the Koashi-Imoto (KI) decomposition.

While various quantum information processing tasks have been extensively investigated
in the framework of quantum Shannon theory, a problem called blind quantum data com-
pression is considered as one of the most general forms of quantum data compression. It
is known that its optimal compression rate within an asymptotically vanishing error is
given by using the KI decomposition. However, it is also argued that allowing even an
extremely small approximation causes a significant change in the compression rate. The
sensitivity of the compression rate to approximations originates from the sensitivity of the
KI decomposition. In this thesis, taking advantage of the sensitivity, we construct a novel
protocol for blind quantum data compression that may perform remarkably well under the
existence of finite approximations. Furthermore, to acquire insights into the instability of
the KI decomposition and to analyze an approximation of the KI decomposition with finite
approximations allowed, we investigate a structure of quantum channels that may lead to
further understanding of an approximate structure of quantum states that is essential for
more sophisticated error analysis of blind compression.

Our results shed light on an instability of the rate of blind quantum data compres-
sion against approximations. Our compression protocol makes the data transmission with
approximations much more efficient. Furthermore, our results on the approximation of
the KI decomposition provides us with insights into an approximate KI decomposition
of quantum states that is essential to conduct more rigorous and general analysis of blind
data compression, as well as contributes to foundation of quantum mechanics from the per-
spective of what restrictions are imposed to quantum operations when they cause a small
disturbance. We believe that our work paves the way to further investigation of blind
quantum data compression with finite approximations, and our results make substantial
progress towards the general analysis of approximate KI decomposition, which is essential
not only for the study of blind quantum data compression but also for investigation of
other quantum phenomena characterized by the KI decomposition.
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Chapter 1

Introduction

Quantum information science has been trying to utilize fundamental properties of quan-
tum mechanics in order to achieve advantages over our classical information technologies.
Among various quantum information processing tasks, a data compression problem called
blind quantum data compression has been widely investigated owing to their general and
practical setup. In Ref. [1], the authors obtained the optimal compression rate of the
quantum blind compression by using a structure of quantum states. However, while the
compression rate achieved in Ref. [1] is optimal with asymptotically vanishing error, re-
cently, it has been discussed that the error analysis in the paper is still loose [2,3]. Indeed,
even a diminutive approximation causes a large change in the compression rate due to the
fact that the structure of states is extremely unstable against approximations [2]. In this
thesis, taking advantage of the sensitivity, we construct a novel protocol for blind quantum
data compression that may perform significantly better than the one Ref. [1] proposed
when approximations are allowed. Furthermore, aiming to have insights into the insta-
bility of the structure to analyze blind compression with errors or approximations more
generally, we investigate a structure of quantum channels, which should be closely related
to an approximate structure of quantum states demanded for more accurate error analysis
of blind compression.

In quantum mechanics, when we attempt to identify a given quantum state, the de-
scription of the state may change as a result of measurements. To study this restriction
of quantum states, researchers have been studied conditions under which such disturbance
does not occur. Various investigations have been previously conducted, and they revealed
properties and structures of operations and states so as to achieve the read-out of infor-
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mation from quantum states without a disturbance. In particular, Ref. [4] disclosed that
a set of quantum states has its own structure, called the Koashi-Imoto (KI) decomposi-
tion, with which we can identify its classical parts, non-redundant quantum parts, and
redundant parts. The KI decomposition can be used to characterize various quantum me-
chanical properties such as quantum information processing tasks [1,5,6], quantum Markov
chains [7–9], and the recoverability of quantum operations [10, 11].

In particular, it has been revealed that the KI decomposition can be applied to efficient
transmission of quantum data [1], which is called blind quantum data compression. This
problem serves as a part of quantum Shannon theory, where we exploit quantum-mechanical
phenomena to send quantum or classical information through quantum information chan-
nels. These information processing problems were initially motivated by classical Shannon
theory. See, for example, Refs. [12–15] for problems considered in classical Shannon theory.
Various previous research has extensively investigated its quantum variety, for example,
quantum data compression [1–3, 16–34], quantum channel capacity [35–44], quantum state
merging [45, 46], quantum state redistribution [47–49], and other more involved tasks in-
cluding those leading to protocol family [50–58]. Blind quantum data compression, which is
a data compression problem in which the sender does not know the description of quantum
states aimed to transmit, has been getting attraction [1–3], and this problem is considered
as the most general form of the quantum data compression. In Ref. [1], its optimal com-
pression rate was given by utilizing KI decomposition; however, in Refs. [2,3], it was argued
that the error analysis conducted in Ref. [1] is loose because KI decomposition is quite sen-
sitive to approximations. In particular, Ref. [2] introduced a compression protocol for blind
compression of classical data whose rate is considerably small with finite approximations
allowed. Nevertheless, the compression of general quantum states with approximations has
not been formally discussed before.

In this thesis, we investigate blind quantum data compression protocol with finite ap-
proximations. Focusing on the instability of the optimal compression rate against approx-
imations, we propose a novel data compression protocol for this problem. Our protocol
exhibits a substantial reduction of the compression rate compared with the rate obtained
in Ref. [1], which is optimal under asymptotically vanishing errors. Moreover, using our
protocol, we investigated blind compression of classical states. We conducted numerical
experiments and showed the performance of the protocol for classical ensembles. To further
investigate blind compression protocol with approximations, an approximated version of
the KI decomposition is essential. To investigate an approximation of KI decomposition, we
consider a structure of quantum channels. As noted in the previous research [2], analysis of
an approximation of KI decomposition is intractable because the decomposition is sensitive
to approximations. Indeed, even an extremely small approximation to a single state leads
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to completely different KI decomposition. In Ref. [4], along with the KI decomposition of
quantum states, a structure of quantum channels that preserves a set of quantum states is
also considered. Extending discussions in Ref. [4], we prove that a quantum channel has
an approximate block structure when it approximately preserves a set of quantum states.
The extent of approximation depends on the extent of preservability of the given quantum
channel, and when the channel perfectly preserves the set of states, the channel has an
exact block structure. Our analysis provides an insight into how KI decomposition can be
approximated, which may lead to strict and general error analysis of blind quantum data
compression.

The rest of this thesis is organized as follows. In Chapter 2, we review backgrounds of
our research and overview basic concepts required to understand our results. In Chapter 3,
we analyze a variation of quantum data compression tasks, blind quantum data compres-
sion, with finite approximations. In Chapter 4, to obtain an insight into an approximate
structure of quantum ensembles, we investigate a structure of quantum channels that al-
most preserves a quantum ensemble. Finally, in Chapter 5, we summarize and discuss our
results and show further directions and interests of our research.
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Chapter 2

Backgrounds

In this chapter, we briefly review backgrounds and preliminaries for the thesis. In Sec. 2.1,
we show our notation for basic mathematical concepts. In Sec. 2.2, we review mathematical
concepts of quantum systems and operators defined on a quantum system. We also intro-
duce several kinds of decomposition of operators. In Sec. 2.3, we review the definition of
quantum channels and useful representations of quantum channels. In Sec. 2.4, we review
norms on a space of operators and entropic quantities. In Sec. 2.5, we briefly overview a
structure of quantum ensemble, which is known as Koashi-Imoto decomposition. Finally,
in Sec. 2.6, we show the basic setup of quantum data compression and classify several
classes of quantum data compression problems.

2.1 Basic Mathematical Notation

In this section, we briefly introduce our notation for basic concepts.

We let R denote the set of real numbers and C denote the set of complex numbers. For
a finite nonempty set Σ, CΣ is a vector space over C with dimension |Σ| that is formed by
the set of functions from Σ to C.

For a given complex number x ∈ C, Re(x) denotes the real part of x, and Im(x) denotes
the imaginary part of x. The complex conjugate of a complex number x is denoted by x.

For real numbers x, y ∈ R, max{x, y} represents the larger value of x and y; min{x, y}
represents the smaller value of x and y.
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2.2 Quantum Systems and Operators

In this section, we review the basic concepts of quantum systems and operators on a
quantum system.

2.2.1 Quantum Systems

Throughout this thesis, we consider quantum systems, which are governed by the law of
quantum mechanics. A quantum system is represented by a complex Hilbert space, that is,
a complex complete Euclidean inner-product space. For a quantum system A, we let HA

denote the corresponding complex Hilbert space. For convenience, we also say that HA is
a quantum system. In this thesis, we only consider a finite-dimensional quantum system;
that is, we only need to deal with a finite-dimensional complex Euclidean inner-product
space. Hereafter, we call a finite-dimensional quantum system just a quantum system for
brevity. Then, for a quantum system H, we let DH denote the dimension of the system.
An arbitrary quantum system H can be written as

H = CΣ (2.1)

for an alphabet, i.e., a finite nonempty set, Σ with |Σ| = DH. When Σ = {1, 2, . . . , n} for
some positive integer n, we also write

H = Cn. (2.2)

In this thesis, we adopt the Dirac notation; that is, we let |x〉 (“ket x”) denote a vector
in a quantum system H. The dual of |x〉 ∈ H is denoted by 〈x| (“bra x”). When a given
quantum system H can be written as H = CΣ for some alphabet Σ, a vector |x〉 ∈ H can
be expressed as a tuple labeled by Σ; that is, |x〉 = (xa)a∈Σ with complex numbers xa ∈ C
for all a ∈ Σ.

Now, we define the inner-product on quantum systems.

Definition 2.1 (Inner-Product). Let H = CΣ be a quantum system. Then, we define the
inner-product 〈·, ·〉 : H×H → C on the system H as

〈|x〉 , |y〉〉 :=
∑
a∈Σ

xaya (2.3)

for all vectors |x〉 , |y〉 ∈ H. In this thesis, we write

〈x|y〉 := 〈|x〉 , |y〉〉 (2.4)

to represent the inner-product.
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The inner-product 〈·, ·〉 defined in Definition 2.1 satisfies the following properties, which
qualify a function of vectors to be a inner-product of the vector space over C.

1. For all vectors |x〉, |y〉, and |z〉, and for all complex numbers α and β, we have

〈|x〉 , α |y〉+ β |z〉〉 = α 〈x|y〉+ β 〈x|z〉 . (2.5)

2. For all vectors |x〉 and |y〉, we have

〈x|y〉 = 〈y|x〉. (2.6)

3. For all vectors |x〉, we have
〈x|x〉 = 0. (2.7)

Furthermore, 〈x|x〉 = 0 if and only if |x〉 = 0.

Now, we define a concept of basis of a quantum system H.

Definition 2.2 (Basis). Let H be a quantum system. Then, a set of vectors {|i〉 ∈ H :
1 5 i 5 DH} is said to be a basis of H if the following conditions are satisfied.

1. The vectors in {|i〉 ∈ H : 1 5 i 5 DH} are linearly independent; that is, if it holds
that

DH∑
i=1

ci |i〉 = 0 (2.8)

for some set of complex numbers {ci ∈ C : 1 5 i 5 DH}, we have

c1 = c2 = · · · = cDH = 0. (2.9)

2. The set {|i〉 ∈ H : 1 5 i 5 DH} spans the space; that is, for any vector |x〉 ∈ H,
there exists a set of complex numbers {ci ∈ C : 1 5 i 5 DH} such that

|x〉 =

DH∑
i=1

ci |i〉 . (2.10)
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In this thesis, we usually consider an orthonormal basis, which is a basis with orthonor-
mality. When a basis {|i〉 ∈ H : 1 5 i 5 DH} is orthonormal; that is, if the vectors in the
set satisfies

〈i|j〉 =

{
1 i = j

0 i 6= j
, (2.11)

the basis is called an orthonormal basis. Hereafter, the term “basis” will be referred to as
“orthonormal basis”.

To represent a composition of multiple quantum systems, we use the tensor product of
the corresponding Hilbert spaces, which is called a composite system.

Definition 2.3 (Composite Systems). Let A and B be quantum systems with Hilbert
spaces HA and HB. The composite system AB of A and B is the quantum system corre-
sponding to the Hilbert space HA ⊗HB.

2.2.2 Operators on Quantum Systems

For quantum systems HA and HB, let L(HA,HB) denote the set of linear operators from
HA to HB. Taking alphabets ΣA and ΣB such that HA = CΣA and HB = CΣB , for an
arbitrary linear operator X ∈ L(HA,HB), we can consider a matrix representation of X:

X =
∑

a∈ΣA,b∈ΣB

Xba |b〉 〈a| (2.12)

with
Xba := 〈b|X|a〉 := 〈|b〉 , X |a〉〉 , (2.13)

where {|a〉 ∈ HA : a ∈ ΣA} and {|b〉 ∈ HB : b ∈ ΣB} forms orthonormal bases of HA and
HB respectively. We write L(H) := L(H,H) when the input space and the output space
are both H. Operators in a space L(H) is called square operators.

A linear operator can be regarded as a linear function of vectors. As an example of
linear operators, we give the identity operator, which works as an identity function.

Definition 2.4 (Identity Operator). Let HA be a quantum system. The identity operator
IHA
∈ L(HA) is defined as the unique operator such that

IHA
|u〉 = |u〉 (2.14)

for all |u〉 ∈ HA. In this thesis, we may write IA instead of IHA
.
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Here, we define the kernel and the image of linear operators.

Definition 2.5 (Kernel and Image). Let HA and HB be quantum systems, and let X ∈
L(HA,HB) be a linear operator. Then, the kernel of X is a subspace of HA defined as

ker(X) := {|u〉 ∈ HA : X |u〉 = 0}. (2.15)

In addition, the image of X is a subspace of HB defined as

im(X) := {X |u〉 : |u〉 ∈ HA}. (2.16)

When a linear operator is given, we can consider a conjugated linear operator to the
given operator, which is called the adjoint operator.

Definition 2.6 (Adjoint Operator). Let HA and HB be quantum systems, and let X ∈
L(HA,HB) be a linear operator. The adjoint operator X† ∈ L(HB,HA) of X is a linear
operator that satisfies

〈|v〉 , X |u〉〉 = 〈X† |v〉 , |u〉〉 (2.17)

for all |u〉 ∈ HA and |v〉 ∈ HB.

Remark 2.7. Since quantum systems are finite here, for a given linear operator X ∈
L(HA,HB), its adjoint operator X† is uniquely determined. Indeed, taking alphabets
ΣA and ΣB such that HA = CΣA and HB = CΣB , for fixed bases {|a〉 ∈ HA : a ∈ ΣA} and
{|b〉 ∈ HB : ΣB}, the adjoint operator X† of

X =
∑
a,b

xba |b〉 〈a| (2.18)

is given by

X† =
∑
a,b

xba |a〉 〈b| , (2.19)

where x represents the complex conjugate of a complex number x ∈ C.

Here, we introduce the trace function, which is a useful function to a linear operator to
a real number.

Definition 2.8 (Trace). Let H be a quantum system. The trace function Tr : L(H)→ C
is the unique linear function satisfying

Tr(|v〉 〈u|) = 〈v|u〉 (2.20)

for all |u〉 , |v〉 ∈ H.
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Remark 2.9. Suppose that H = CΣ for some alphabet Σ. When we fix an orthonormal
basis {|i〉 ∈ H : i ∈ Σ}, the trace of a linear operator X ∈ L(H) can be written as

Tr(X) =
∑
x∈Σ

Xii =
∑
x∈Σ

〈i|X|i〉 . (2.21)

Note that the trace function does not depend on the choice of basis.

Using the trace function, we can introduce an inner product on L(HA,HB) as

〈X, Y 〉 := Tr(X†Y ) (2.22)

for all X, Y ∈ L(HA,HB).

When two square operators are given, we can consider the commutator of two operators.

Definition 2.10 (Commutator). Let H be a quantum system, and let X, Y ∈ L(H) be
linear operators. The commutator of X and Y is defined as

[X, Y ] := XY − Y X. (2.23)

When [X, Y ] = 0, X and Y are said to be commuting.

Remark 2.11. Since we consider a finite quantum system H here, two linear operators
X, Y ∈ L(H) are commuting if and only if these two operators are simultaneously diag-
onalizable; i.e., X and Y are commuting if and only if there exists an orthonormal basis
{|i〉 ∈ H : 1 5 i 5 DH} of H and sets of complex numbers {xi : 1 5 i 5 DH} and
{yi : 1 5 i 5 DH} such that

X =

DH∑
i=1

xi |i〉 〈i| , (2.24)

Y =

DH∑
i=1

yi |i〉 〈i| . (2.25)

In the following, we introduce several classes of linear operators. The first one is normal
operators. A normal operator is defined as a square operator that is commuting with its
adjoint operator.

Definition 2.12 (Normal Operators). Let H be a quantum system. Then, a linear oper-
ator N ∈ L(H) is said to be a normal operator if

[N,N †] = NN † −N †N = 0. (2.26)
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As a special class of normal operators, we can consider Hermitian operators. A Hermi-
tian operator is defined as a square operator whose adjoint operator is equal to itself.

Definition 2.13 (Hermitian Operators). Let H be a quantum system. Then, an linear
operator O ∈ L(H) is said to be a Hermitian operator if

O† = O. (2.27)

By definition, it naturally holds that a Hermitian operator is a normal operator. In
fact, for a Hermitian operator O ∈ L(H) it holds that 〈u|O|u〉 is a real number for all
|u〉 ∈ H. Taking this fact into account, we move to a next class of linear operators, positive
operators.

Definition 2.14 (Positive Operators). Let H be a quantum system. Then, an linear
operator P ∈ L(H) is said to be a positive (semi-definite) operator if

〈u|P |u〉 = 0. (2.28)

for all |u〉 ∈ H. In particular, if P satisfies that

〈u|P |u〉 > 0. (2.29)

for all |u〉 ∈ H, P is said to be a positive definite operator.

By definition, we can see that a positive operator is trivially a Hermitian operator.
Indeed, the meaning of the term positive is clear, compared with the property of Hermitian
operators.

Now, we focus on special positive operators. The first one is projection operators. A
projection operator works as a projection onto a subspace of a given quantum system.

Definition 2.15 (Projection Operators). LetH be a quantum system. A positive operator
P ∈ L(H) is said to be the projection operator if it holds that P 2 = P .

Let G is a subsystem of H; that is, G is a Hilbert space included in H. Then, the pro-
jection operator PG corresponding to G is uniquely determined as the projection operator
PG ∈ L(H) such that im(PG) = G.

Then, the next subclass of positive operators is density operators, which stipulate a
state of a given quantum system.

10



Definition 2.16 (Density Operators). Let H be a quantum system. Then, a positive
operator on the system is said to be a density operator if it holds that

Tr(ρ) = 1. (2.30)

The set of density operators on the system H is denoted by D(H).

In this thesis, we call a density operator belonging to D(H) a quantum state on a system
H. When a quantum state ρ ∈ D(H) can be written as ρ = |ψ〉 〈ψ| with some |ψ〉, we call ρ
a pure state. In this thesis, we also refer to a normalized vector |ψ〉 ∈ H as a pure state. In
addition, when a basis of a given quantum system is fixed, a state with a diagonal matrix
representation is called a classical state in the basis. In fact, when a system H = CΣ

and an orthonormal basis of the system is given, we can construct a classical state from a
probability distribution over Σ; for an orthonormal basis {|a〉 : a ∈ Σ} and a probability
distribution {pa : a ∈ Σ}, a quantum state

ρ :=
∑
a∈Σ

pa |a〉 〈a| (2.31)

is classical. For example, considering an operator

ρ :=
IH
DH

(2.32)

on a system H, we can see that this is a quantum state; in particular, this is a classical
state. Note that this state corresponds to the uniform distribution over {i : 1 5 i 5 DH}.
The state defined as Eq. (2.32) is called a flat state.

Here, let us move to another special class of linear operators that are not normal.
Isometry operators, or more simply, isometries, are introduced as follows.

Definition 2.17 (Isometries). Let HA and HB be quantum systems. A linear operator
U ∈ L(HA,HB) is said to be an isometry if it holds that

U †U = IA. (2.33)

The set of isometries from HA to HB is denoted by U(HA,HB). When HA = HB = H, an
isometry U ∈ U(HA,HB) is called a unitary operator, and we write U(HA,HB) = U(H).

Isometry/unitary operators are considered as reversible operations for quantum states.
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2.2.3 Decomposition of Linear Operators

Here, we overview several useful forms of linear operators. First, we review the spectral
decomposition of normal operators.

Theorem 2.18 (Spectral Decomposition). Let H be a quantum system, and let X ∈ L(H)
be a normal operator. Then, there exists a set of complex numbers {λi(X) ∈ C : 1 5 i 5
DH} and an orthonormal basis {|i〉 ∈ H : 1 5 i 5 DH} of H such that

X =

DH∑
i=1

λi(X) |i〉 〈i| . (2.34)

The decomposition (2.34) is called a spectral decomposition of X. For each i, λi(X) is
called an eigenvalue of X, and |i〉 is called the eigenvector with the eigenvalue λi(X).

Using the spectral decomposition, we give the definition of the support of a normal
operator.

Definition 2.19 (Support). Let H be a quantum system, and let X ∈ L(H) be a normal
operator. The support of X, denoted by supp(X), is defined as a subspace ofH spanned by
the eivenvectors of X with nonzero eigenvalues. For a normal operator X with a spectral
decomposition

X =

DH∑
i=1

λi(X) |i〉 〈i| , (2.35)

the support of X is
supp(X) = span({|i〉 : λi(X) 6= 0}), (2.36)

where span(·) denotes the space spanned by a given set of vectors.

When a given operator is Hermitian or positive, we can say something more about the
eigenvalues of the operator.

Lemma 2.20. Let H be a quantum system, and let O ∈ L(H) be a Hermitian operator.
Consider a spectral decomposition

O =

DH∑
i=1

λi(O) |i〉 〈i| . (2.37)

Then, all the eigenvalues {λi(O) ∈ C : 1 5 i 5 DH} are real numbers. Moreover, if O
is a positive semi-definite operator, the eigenvalues are all non-negative; if O is a positive
definite operator, the eigenvalues are all positive.
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According to the Lemma 2.20, when O ∈ L(H) is a Hermitian operator, we can consider
the following decomposition

O :=
∑

i:λi(O)>0

λi(O) |i〉 〈i| −
∑

i:λi(O)50

|λi(O)| |i〉 〈i| (2.38)

since the eigenvalues λi(O) are real. Then, both of the first term and the second term are
positive operators on H, and they are orthogonal. Letting O+ denote the first term and
O− denote the second term, we have

O = O+ −O−. (2.39)

Theorem 2.21 (Jordan-Haan Decomposition). Let H be a quantum system, and let O ∈
L(H) be a Hermitian operator. Then, the Jordan-Haan decomposition of O is defined as
the unique decomposition of O into two positive operators:

O = O+ −O−, (2.40)

where

O+ :=
∑

i:λi(O)>0

λi(O) |i〉 〈i| (2.41)

O− :=
∑

i:λi(O)50

|λi(O)| |i〉 〈i| . (2.42)

The expressions considered above are only for normal operators or Hermitian operators.
Here, we give a useful decomposition for general linear operators, which is called the
singular value decomposition.

Theorem 2.22 (Singular Value Decomposition). Let H1 and H2 be quantum systems. Let
X ∈ L(H1,H2) be a linear operator. Then, there exists an orthonormal basis {|ui〉 ∈ H1 :
1 5 i 5 DH1} of H1, an orthonormal basis {|vi〉 ∈ H2 : 1 5 i 5 DH2} of H2, a positive
integer 1 5 r 5 min{DH1 , DH2}, and a set of positive real numbers {si(X) : 1 5 i 5 r}
such that

X =
r∑
i=1

si(X) |vi〉 〈ui| . (2.43)

The decomposition (2.43) is called a singular value decomposition of X. The positive real
numbers si(X) are called the singular values of X. In this thesis, we take a singular value
decomposition such that s1(X) = s2(X) = · · · = sr(X).
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Remark 2.23 (Matrix Representation of Singular Value Decomposition). LetHA = Cn and
HB = Cm quantum systems for some positive integers n and m. Suppose that a singular
value decomposition of X is given as

X =
r∑
i=1

si(X) |vi〉 〈ui| (2.44)

for some orthogonal bases {|ui〉 ∈ HA : 1 5 i 5 n} and {|vi〉 ∈ HB : 1 5 i 5 n}. Let us fix
an orthonormal basis {|i〉 ∈ Cr : 1 5 i 5 r} of Cr. Then, the singular value decomposition
in this matrix representation is given by

X = WSV †, (2.45)

where

W :=
r∑
i=1

|vi〉 〈i| , (2.46)

V :=
r∑
i=1

|ui〉 〈i| , (2.47)

S :=
r∑
i=1

si(X) |i〉 〈i| . (2.48)

Here, W ∈ U(Cr,HB) and V ∈ U(Cr,HA) are isometries, and S ∈ L(Cr) is a positive
definite operator that is diagonal in the given basis.

Finally, we introduce a polar decomposition of a square operator.

Theorem 2.24 (Polar Decomposition). Let H be a quantum system, and let X ∈ L(H) be
a square operator. Then, there exist a unitary operator U ∈ U(H) and a positive operator
P ∈ L(H) such that

X = UP. (2.49)

Considering the discussion in Remark 2.23, when we have a singular value decomposi-
tion X = WSV †, we can construct a polar decomposition by taking

U = WV †, (2.50)

P = V SV †. (2.51)
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2.3 Quantum Channels

In this section, we briefly overview the definition and basic properties of quantum channels.
Intuitively, a quantum channel is an operation that converts a given quantum state into
some quantum state. More formally, a quantum channel is a linear function of linear
operators that maps a density operator to a density operator.

First, we review the definition of linear maps.

Definition 2.25 (Linear Maps). Let HA and HB be quantum systems. Then, a map
N : L(HA)→ L(HB) is said to be a linear map if it holds that

N (αX + βY ) = αN (X) + βN (Y ) (2.52)

for all X, Y ∈ L(HA) and α, β ∈ C. The set of linear maps from L(HA) to L(HB) is
denoted by L(HA,HB). When HA = HB = H, we write L(H) := L(HA,HB) for brevity.

As an special example of linear maps, we can consider the identity map, which does
nothing to an input.

Definition 2.26 (Identity Map). Let HA be a quantum system. The identity map 1HA
∈

L(HA) is defined as the unique linear map satisfying

1HA
(X) = X (2.53)

for all X ∈ L(H). We also write 1A := 1HA
for convenience.

When we are given a state on some composite system, we can consider a composite map
on the system.

Definition 2.27 (Composite Maps). Let H1, H2, H′1, and H′2 be quantum systems. Let
N1 ∈ L(H1,H′1) and N2 ∈ L(H2,H′2) be linear maps. Then, the composite map N1⊗N2 ∈
L(H1 ⊗H2,H′1 ⊗H′2) is defined as the unique linear map satisfying

(N1 ⊗N2)(X1 ⊗X2) = N1(X1)⊗N2(X2) (2.54)

for all X1 ∈ L(H1) and X2 ∈ L(H2).

Extending the trace function (Definition 2.8), we give the definition of the partial trace,
which is defined as a composite map of the trace and the identity map. The partial trace
takes the trace over a subsystem of a given composite system.
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Definition 2.28 (Partial Trace). Let HA and HE be quantum systems. The partial trace
TrE : L(HA ⊗HE)→ L(HA) is defined as the composite map

TrE := 1A ⊗ Tr, (2.55)

where Tr is the trace on the system HE.

Here, We review two important subclasses of linear maps, which are essential to consider
quantum channels. The first one is completely positive maps.

Definition 2.29 (Completely Positive Maps). Let HA and HB be quantum systems, and
let N ∈ L(HA,HB) be a linear map. Then, N is said to be completely positive if (N ⊗
1E)(P ) is positive for all quantum systems HE and all positive operators P on HA ⊗HE.

The second one is trace-preserving maps.

Definition 2.30 (Trace-Preserving Maps). Let HA and HB be quantum systems, and let
N ∈ L(HA,HB) be a linear map. Then, N is said to be trace-preserving if it holds that

Tr(N (X)) = Tr(X) (2.56)

for all X ∈ L(HA).

Now, we give the formal definition of quantum channels.

Definition 2.31 (Quantum Channels). Let HA and HB be quantum systems. A linear
map N ∈ L(HA,HB) is said to be a quantum channel if it satisfies the following conditions:

1. The map N is linear;

2. The map N is completely positive;

3. The map N is trace-preserving.

In other words, a quantum channel is a completely positive and trace-preserving (CPTP)
linear map. The set of quantum channels from L(HA) to L(HB) is denoted by C(HA,HB).
When HA = HB = H, we write C(H) := C(HA,HB) for brevity.

There are several ways to explicitly characterize a quantum channel. Here, we review
two representations of quantum channels, which are known as Stinespring representation
and Kraus representation.
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Proposition 2.32 (Stinespring Representations). Let HA and HB be finite-dimensional
quantum systems. Let N ∈ C(HA,HB) be a quantum channel. Then, there exists a
quantum system HE, some reference state ωE := |ω〉 〈ω|E ∈ D(HE), and an isometry

U ∈ U(HA ⊗H(ω)
E ,HB ⊗HE) such that

N (X) = TrE(U(X ⊗ ωE)U †) (2.57)

for all X ∈ L(HA), where H(ω)
E is the subspace of HE spanned by {|ω〉E}. In this thesis,

we call the isometry U a Stinespring isometry of the channel N .

Proposition 2.33 (Kraus Representations). Let HA and HB be quantum systems. Let
N ∈ C(HA,HB) be a quantum channel. Then, there exists an alphabet Σ and a collection
of linear operators {Ea ∈ L(HA,HB) : a ∈ Σ} such that

N (X) =
∑
a∈Σ

EaXE
†
a, (2.58)∑

a∈Σ

E†aEa = IA. (2.59)

In this thesis, we call each operator Ea a Kraus operator for the channel N .

When we are given a Kraus representation of a quantum channel N ∈ C(HA,HB), we
can construct a Stinespring representation and vice versa. Suppose that we have a Kraus
representation

{Ea ∈ L(HA,HB) : a ∈ Σ} (2.60)

of a quantum channel N ∈ C(HA,HB). Then, for a fixed basis {|a〉 ∈ CΣ : a ∈ Σ}, we can
construct a Stinespring representation

U =
∑
a∈Σ

Ea ⊗ |a〉 〈ω|E ∈ U(HA ⊗H(ω)
E ,HB ⊗HE). (2.61)

On the other hand, suppose that we have a Stinespring representation U ∈ U(HA ⊗
H(ω)
E ,HB ⊗HE) with some reference state ωE. Then, for a fixed basis {|a〉 : a ∈ Σ} of HE,

we have a decomposition of U,

U =
∑
a∈Σ

Ea ⊗ |a〉 〈ω|E , (2.62)

such that Ea ∈ L(HA,HB) for all a ∈ Σ. Then,

{Ea ∈ L(HA,HB) : a ∈ Σ} (2.63)
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forms a Kraus representation of N .

Finally, we show an example of quantum channels.

Example 2.1 (Dephasing Channels). Let H be a quantum system. Fix an orthonormal
basis {|i〉 ∈ H : 1 5 i 5 DH} of the system H. Then, the dephasing channel ∆ ∈ C(H)
with respect to this basis is defined as

∆(X) :=

DH∑
i=1

Xii |i〉 〈i| (2.64)

for all X ∈ L(H) with matrix representation

X =

DH∑
i,j=1

Xij |i〉 〈j| . (2.65)

A dephasing channel is considered as an operation that erases all the off diagonal
elements of an input with respect to a given basis. The dephasing channel defined in
Eq. (2.64) is indeed a quantum channel; its Kraus representation can be given as {|i〉 〈i| :
1 5 i 5 DH}.

2.4 Norms and Quantum Entropy

In this section, we introduce norms of linear operators and quantum entropic quantities
of quantum states.

2.4.1 Norms of Linear Operators

First, to introduce concepts of size and distance to linear operators, we consider norm of
linear operators.

Definition 2.34 (Norm). Let HA and HB be quantum systems. A norm on a space
L(HA,HB) is a function ‖ · ‖ : L(HA,HB)→ R satisfying the following three conditions.

1. For all X ∈ L(HA,HB), it holds that ‖X‖ = 0. We have ‖X‖ = 0 if and only if
X = 0.
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2. For all X ∈ L(HA,HB) and α ∈ C, it holds that ‖αX‖ = |α|‖X‖.

3. For all X, Y ∈ L(HA,HB), it holds that ‖X + Y ‖ 5 ‖X‖+ ‖Y ‖.

In this thesis, in particular, we use the Schatten p-norms.

Definition 2.35 (Schatten p-norms). Let HA and HB are quantum systems, and let p = 1
be a positive real number. Then, the Schatten p-norm ‖ · ‖p on a space L(HA,HB) is
defined as

‖X‖p :=
(

Tr
(

(X†X)
p
2

)) 1
p

(2.66)

for all X ∈ L(HA,HB).

In fact, using a singular value decomposition of X ∈ L(HA,HB)

X =
r∑
i=1

si(X) |vi〉 〈ui| , (2.67)

it holds that

‖X‖p =

(
r∑
i=1

si(X)p

) 1
p

. (2.68)

By taking a limit, we can also consider the Schatten ∞-norm.

Definition 2.36 (Schatten ∞-norm). Let HA and HB are quantum systems. Then, the
Schatten ∞-norm ‖ · ‖p on a space L(HA,HB) is defined as a limit of p-norm:

‖X‖∞ := lim
p→∞
‖X‖p = s1(X) (2.69)

for all X ∈ L(HA,HB).

We mainly use the Schatten 1-, 2-, and ∞-norms. The Schatten 1-norm is also called
the trace norm, and we have

‖X‖1 =
r∑
i=1

si(X). (2.70)

The trace norm has a property called monotonicity, which is also referred to as data
processing inequality of the trace distance.
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Lemma 2.37. Let HA and HB are quantum systems, let X ∈ L(HA) be a linear operator,
and let N ∈ C(HA,HB) be a quantum channel. Then, it holds that

‖N (X)‖1 5 ‖X‖1. (2.71)

This Lemma ensures that the application of a quantum channel to a linear operator
does not increase the trace norm of the operator.

The Schatten 2-norm is also called the Frobenius norm, and we have

‖X‖2 =
√
〈X,X〉 =

√√√√ r∑
i=1

si(X)2. (2.72)

Indeed, for a matrix representation

X =
∑
a∈ΣA
b∈ΣB

Xba |b〉 〈a| (2.73)

of X ∈ L(CΣA ,CΣB), we have

‖X‖2 =

√√√√∑
a∈ΣA
b∈ΣB

|Xba|2. (2.74)

Here, we give the basic properties of the Schatten norms. For more detailes, see textbooks
such as Refs. [59–61].

Proposition 2.38. Let HA, HB, HC, and HD be quantum systems. Let p, q ∈ [1,∞].

1. For all 1 5 p 5 q 5∞ and for all X ∈ L(HA,HB), it holds that

‖X‖p = ‖X‖q. (2.75)

2. For all X ∈ L(HB,HC), U ∈ U(HC ,HD), and V ∈ U(AA,HB), it holds that

‖UXV ‖p = ‖X‖p. (2.76)

3. Suppose that it holds that
1

p
+

1

q
= 1. (2.77)

Then, for all X, Y ∈ L(HA,HB), it holds that

| 〈X, Y 〉 | 5 ‖X‖p‖Y ‖q. (2.78)
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4. For all X ∈ L(HC ,HD), Y ∈ L(HB,HC), and X ∈ L(HA,HB), it holds that

‖XY Z‖p 5 ‖X‖∞‖Y ‖p‖Z‖∞. (2.79)

5. For all X ∈ L(HB,HC) and Y ∈ L(HA,HB), it holds that

‖XY ‖p 5 ‖X‖p‖Y ‖p. (2.80)

6. For all X ∈ L(HA,HB), it holds that

‖X†‖p = ‖X‖p. (2.81)

2.4.2 Operator Functions and Quantum Entropy

Here, we review the quantum entropy. To define the quantum entropy, an extension of a
complex-valued function called operator function is needed.

Definition 2.39 (Operator Functions). Let f : C→ C be a function. Then, the extension
of the function f to a space of normal operators is given by

f(X) :=
∑
a∈Σ

f(λa(X)) |a〉 〈a| (2.82)

for all quantum systems H = CΣ and all normal operator X ∈ L(H) with the spectral
decomposition

X :=
∑
a∈Σ

λa(X) |a〉 〈a| . (2.83)

Using the extension of log2, we can define the quantum entropy, which is a quantum
variant of the Shannon entropy.

Definition 2.40 (Quantum Entropy). Let HA be a quantum system, and let ρ ∈ D(HA)
be a state on the system. Then, the entropy of the state ρ is defined as

H(A)ρ := H(ρ) := −Tr[ρ log2 ρ]. (2.84)

Indeed, letting

ρ =

DA∑
i=1

ρi |i〉 〈i| (2.85)
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be a spectral decomposition of ρ, the quantum entropy is given as

H(ρ) = −
DA∑
i=1

ρi log2(ρi). (2.86)

When a given quantum system is a composite system HA ⊗ HB, we can consider the
quantum entropy with respect to each subsystem. For example, if the state of the system
is ρ ∈ D(HA ⊗HB), the quantum entropy with respect to the system A is

H(A)ρ := −Tr(ρA log2 ρA), (2.87)

where ρA := TrA(ρ).

Here, we introduce the binary entropy function, which can be interpreted as a special
example of the quantum entropy.

Definition 2.41 (Binary Entropy Function). The binary entropy function h2 : [0, 1]→ R
is a real-valued function defined as

h2(x) := −x log2 x− (1− x) log2(1− x) (2.88)

for x ∈ [0, 1]. Here, we regard 0 log2 0 = 0.

Considering the definition of the quantum entropy, for a given x ∈ [0, 1], the binary
entropy h2(x) can be regarded as the entropy of a classical state

ρ := x |0〉 〈0|+ (1− x) |1〉 〈1| . (2.89)

Using the definition of the quantum entropy, we can define other entropic quantities.
First, we review the quantum conditional entropy, which is a quantum variant of the
conditional entropy.

Definition 2.42 (Quantum Conditional Entropy). Let HA and HB be quantum systems,
and let ρ ∈ D(HA ⊗HB) be a state on the composite system. Then, the quantum condi-
tional entropy H(A|B)ρ conditioned on B is defined as

H(A|B)ρ := H(AB)ρ − H(B)ρ. (2.90)

Furthermore, we can consider quantum mutual information in a similar manner.
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Definition 2.43 (Quantum Mutual Information). Let HA and HB be quantum systems,
and let ρ ∈ D(HA ⊗HB) be a state on the composite system. Then, the quantum mutual
information is defined as

I(A : B) := I(HA : HB) := H(A)ρ + H(B)ρ − H(AB)ρ. (2.91)

By definition, we can also write the quantum mutual information I(A : B)ρ as

I(A : B)ρ = H(A)ρ − H(A|B)ρ

= H(B)ρ − H(B|A)ρ.
(2.92)

Finally, we introduce quantum conditional mutual information defined as follows.

Definition 2.44 (Quantum Conditional Mutual Information). Let HA, HA′ , HB, HB′ ,
and HC be quantum systems, and let ρ ∈ D(HA ⊗HB ⊗HC) be a state on the composite
system. Then, the quantum conditional mutual information I(A : B|C)ρ conditioned on
C is defined as

I(A : B|C) := I(HA : HB|HC) := I(AC : B)− I(C : B). (2.93)

Now, we state several useful properties of quantum entropic quantities [59–61].

Proposition 2.45. Let HA, HB and HC be quantum systems. Then, the following state-
ments hold.

1. For all states ρ ∈ D(HA), the quantum entropy is bounded as

0 5 H(A)ρ 5 log2DA. (2.94)

2. For all states ρ ∈ D(HA ⊗HB), the quantum mutual information is bounded as

0 5 I(A : B)ρ 5 2 log2[min{DA, DB}]. (2.95)

In particular, if system A is classical; that is, if ρ can be written as

ρ =

DA∑
i=1

pi |i〉 〈i|A ⊗ ρ
(i)
B , (2.96)

it holds that
0 5 I(A : B)ρ 5 log2[min{DA, DB}] (2.97)
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3. For all states ρ ∈ D(HA⊗HB⊗HC), the quantum mutual information is bounded as

0 5 I(A : B|C)ρ 5 2 log2[min{DA, DB}]. (2.98)

In particular, if a system A is classical; that is, if ρ can be written as

ρ =

DA∑
i=1

pi |i〉 〈i|A ⊗ ρ
(i)
BC , (2.99)

it holds that
0 5 I(A : B)ρ 5 log2DA. (2.100)

4. For all states ρ ∈ D(HA ⊗HB) and for all quantum channels N ∈ C(HA,HA′) and
M∈ C(HB,HB′), it holds that

I(A′ : B′)N⊗M(ρ) 5 I(A : B)ρ. (2.101)

5. For all states ρ ∈ D(HA⊗HB ⊗HC) and for all quantum channels N ∈ C(HA,HA′)
and M∈ C(HB,HB′), it holds that

I(A′ : B′|C)N⊗M(ρ) 5 I(A : B|C)ρ. (2.102)

These entropic quantities have appeared as optimal rates or costs of various quantum
information processing tasks. The optimality shown in previous research can be considered
as operational interpretations of these quantities. For example, the quantum entropy is
operationally interpreted as the optimal rate of the quantum data compression of pure-state
quantum ensembles [16]. In addition, the conditional quantum entropy is regarded as the
optimal rate of the state merging [45], and the conditional quantum mutual information is
related to the optimal rate of quantum state redistribution [47].

2.5 Structure of Quantum Ensembles

Here, we review the definition of quantum ensembles and overview a structure of quantum
ensembles.

Definition 2.46 (Quantum Ensembles). Let H be a quantum system, and let Σ be an
alphabet. A quantum ensemble Φ is a set of pairs of a positive real number and a quantum
state

Φ := {(pa, ρa) ∈ R×D(H) : a ∈ Σ}, (2.103)
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where {pa : a ∈ Σ} forms a probability distribution; that is,

0 5 pa 5 1 (2.104)

for all a ∈ Σ and ∑
a∈Σ

pa = 1. (2.105)

We also write
Φ = {pa, ρa}a∈Σ. (2.106)

In addition, the average state ρΦ of a quantum ensemble Φ = {pa, ρa}a∈Σ is defined as

ρΦ :=
∑
a∈Σ

paρa. (2.107)

Here, we define a special class of quantum ensembles, which is called classical ensembles.

Definition 2.47 (Classical Ensembles). Let Φ = {pa, ρa}a∈Σ be a quantum ensemble. The
ensemble Φ is said to be classical ensemble if ρa are commuting to each other for all a ∈ Σ.

Remark 2.48. When Φ = {pa, ρa}a∈Σ is a classical ensemble, ρa are simultaneously diag-
onalizable for all a ∈ Σ; that is, there exists an orthonormal basis of H such that for all
a ∈ Σ, the basis gives a spectral decomposition of ρa. Therefore, a classical ensemble is a
quantum ensemble composed of classical states for some orthonormal basis.

For a quantum ensemble {pa, ρa}a∈Σ, if ρa is pure for all a ∈ Σ, the ensemble is called a
pure-state ensemble. When a pure-state ensemble {pa, ρa}a∈Σ is given, taking vectors |ψa〉
such that ρa = |ψa〉 〈ψa|, we also write {pa, |ψa〉}a∈Σ.

Suppose that we have a quantum ensemble Φ = {pa, ρa}a∈Σ. Reference [4] gave a struc-
ture of a given quantum ensemble, which is called the Koashi-Imoto (KI) decomposition
or the KI structure. Intuitively, when we have a quantum ensemble, we can decompose
each state in the ensemble into the following three parts: classical parts, non-redundant
quantum parts, and redundant parts. Here, we show the formal statement as a theorem.

Theorem 2.49 (KI Decomposition [4]). Let H be a quantum system. Let Φ = {pa, ρa}a∈Σ

be an ensemble on the system; that is, for all a ∈ Σ, ρa ∈ D(H). Then, there exists a unique
decomposition of the quantum system

H :=
⊕
l∈Ξ

H(l)
Q ⊗H

(l)
R (2.108)
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and the corresponding isometry

ΓΦ ∈ U

(
H,
⊕
l

H(l)
Q ⊗H

(l)
R

)
(2.109)

satisfying the following conditions:

1. For all a ∈ Σ,

ΓΦρaΓ
†
φ =

⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗ ρ(l)

R . (2.110)

Here q(a,l) : l ∈ Ξ forms a probability distribution over labels l ∈ Ξ for all a ∈ Σ,
ρ

(a,l)
Q ∈ D(Hl

Q) is a density operator on system Hl
Q, depending on both a ∈ Σ and

l ∈ Ξ, and ρ
(l)
R ∈ D(Hl

R) is a density operator on system Hl
R, which is independent

of a ∈ Σ.

2. For all l ∈ Ξ, if a projection operator P : H(l)
Q → H

(l)
Q satisfies

Pq(a,l)ρ
(a,l)
Q = q(a,l)ρ

(a,l)
Q P (2.111)

for all a ∈ Σ, then P = IH(l)
Q

or P = 0.

3. For all l, l′ ∈ Ξ such that l 6= l′, there exists no isometry V ∈ U(H(l)
Q ,H

(l′)
Q ) such that

V q(a,l)ρ
(a,l)
Q = αq(a,l′)ρ

(a,l′)
Q V (2.112)

with some positive real number α for all a ∈ Σ.

The first statement in Theorem 2.49 shows the form of the KI decomposition. The
second and third statements ensure that the decomposition (2.110) is maximal; that is, we
cannot further refine the structure. Indeed, the second one states that we cannot further
decompose each block of the KI decomposition; the third one means that we cannot relate
a block of the decomposition to another block. In the decomposition shown in Eq. (2.110),
we can observe that all the quantum states in the given ensemble Φ can be decomposed in
a block-diagonal structure. Note that ρ

(l)
R ∈ D(H(l)

R ) does not depend on a ∈ Σ; thus it is
called redundant because it does not contain the information of the label a ∈ Σ. Hereafter,
when we specify the KI decomposition of a given ensemble Φ = {pa, ρa}a∈Σ, we may omit
ΓΦ and write

ρa =
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗ ρ(l)

R (2.113)
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for brevity.

Once the KI decomposition of a given ensemble is obtained, we can define two quantum
channels that correspond to the operation taking off the ensemble’s redundant parts and
the operation putting on the redundant parts respectively.

Theorem 2.50. Let H be a quantum system. Let Φ = {pa, ρa}a∈Σ be an ensemble on the
system; that is, for all a ∈ Σ, ρa ∈ D(H). Consider the KI decomposition of Φ:

H :=
⊕
l∈Ξ

H(l)
Q ⊗H

(l)
R (2.114)

such that
ρa =

⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗ ρ(l)

R . (2.115)

Then, there exist quantum channels Koff and Kon such that

Koff(ρa) =
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q , (2.116)

Kon

(⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q

)
= ρa (2.117)

for all a ∈ Σ.

Proof. We can give these two quantum channels explicitly by using Kraus representations.
First, Koff is given by Kraus operators

A
(l)
jl

:= IH(l)
Q
⊗ 〈jl| , (2.118)

where {|jl〉 : jl} is a orthonormal basis of H(l)
Q for all l ∈ Ξ. Kraus operators A

(l)
jl

apply to

the lth block, and {A(l)
jl

: jl} forms the partial trace over H(l)
R . Indeed, we have that

∑
l∈Ξ

∑
jl

A
(l)
jl
ρa(A

(l)
jl

)† =
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗

(∑
jl

〈jl|ρ(l)
R |jl〉

)
=
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗ Tr(ρ

(l)
R )

=
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ,

(2.119)
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for all a ∈ Σ. In addition, {A(l)
jl

: l ∈ Ξ, jl} forms a valid Kraus representation because it
holds that ∑

l∈Ξ

∑
jl

(A
(l)
jl

)†A
(l)
jl

=
∑
l∈Ξ

∑
jl

IH(l)
Q
⊗ |jl〉 〈jl|

=
∑
l∈Ξ

IH(l)
Q
⊗

(∑
jl

|jl〉 〈jl|

)
=
∑
l∈Ξ

IH(l)
Q
⊗ IH(l)

R

= IH.

(2.120)

Therefore, we can construct Koff by a Kraus representation

{A(l)
jl

: l ∈ Ξ, jl}. (2.121)

Next, Kon is given by Kraus operators

A
(l)
kl

:= IH(l)
Q
⊗√rkl |kl〉 , (2.122)

where {|kl〉 : kl} is an orthonormal basis of H(l)
Q for all l ∈ Ξ corresponding to a spectral

decomposition

ρ
(l)
R :=

∑
kl

rkl |kl〉 〈kl| (2.123)

with eigenvalues rkl = 0. Kraus operators A
(l)
kl

apply to the lth block, and {A(l)
kl

: kl} forms

the construction of ρ
(l)
R on system H(l)

R . Indeed, we have that

∑
l∈Ξ

∑
kl

A
(l)
kl

(⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q

)
(A

(l)
kl

)† =
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗

(∑
kl

rkl |kl〉 〈kl|

)
=
⊕
l∈Ξ

q(a,l)ρ
(a,l)
Q ⊗ ρ(l)

R

= ρa

(2.124)

for all a ∈ Σ. In addition, {A(l)
kl

: l ∈ Ξ, kl} forms a valid Kraus representation because it
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holds that ∑
l∈Ξ

∑
kl

(A
(l)
kl

)†A
(l)
kl

=
∑
l∈Ξ

∑
kl

IH(l)
Q
⊗ rkl 〈kl|kl〉

=
∑
l∈Ξ

IH(l)
Q
⊗

(∑
kl

rkl

)
=
∑
l∈Ξ

IH(l)
Q
⊗ 1

= IH(l)
Q
.

(2.125)

Therefore, we can construct Kon by a Kraus representation

{A(l)
kl

: l ∈ Ξ, kl}. (2.126)

Thus, the operation Koff can be considered as an operation taking off the redundant
parts of a given quantum ensemble by tracing out subsystems corresponding to the redun-
dant parts. The operation Kon is regarded as an operation attaching back the redundant
parts of a given quantum ensemble by constructing quantum states on subsystems cor-
responding to the redundant parts. Using Koff and Kon, we can reversibly remove the
redundant parts from the ensemble. In this thesis, we refer to Koff and Kon as the KI
operations.

2.6 Quantum Data Compression

In this section, we explain basic concepts of quantum data compression. First, we show
a general setup for quantum data compression. The aim of the task of quantum data
compression is to send a given state as efficiently as possible using noiseless quantum
channels, i.e., the identity maps.

The sender receives a quantum state from the referee, i.e., the source of quantum
data. Then, the sender compresses the given state and transmits the compressed state to
the receiver through noiseless quantum channels. After receiving the state, the receiver
decompresses the state to recover the original state. Figure 2.1 shows a schematic diagram
of the quantum data compression task.

More formally, let H be a quantum system and let {pa, ρa}a∈Σ be a quantum ensemble
on this system. The referee independently draws a state from the ensemble according to the
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Figure 2.1: The schematic diagram showing the basic setup of quantum data compression
tasks. The sender encodes a target state (red-colored in the figure) picked from a given
ensemble and send it to the receiver via noiseless quantum channels. The receiver decodes
the transmitted state to recover the original state (blue-colored in the figure).
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probability distribution n times. Thus, states drawn at different rounds are independent
and identically distributed (i.i.d.). The resulting state is denoted by ρan := ρa1⊗ρa2⊗· · · ρan
where ai is the label of the state drawn in the ith round. The referee gives the state ρan
to the sender. The sender applies an encoding channel to compress the state and send
it to the receiver via the identity maps. The receiver decompresses the state by applying
a decoding channel. Here, we require that the receiver’s recovered state should be close
to the original state from the referee. The ratio between the size of the compressed state
and the number n of drawn states is called the rate of the data compression, or simply,
the compression rate. We aim to minimize the compression rate by constructing a good
protocol.

Historically, there are multiple setups for quantum data compression. Mainly, the
following points have been extensively discussed:

1. Whether the given ensemble consists of pure states or mixed states;

2. Whether the referee tells the sender the label of the drawn state;

3. What is the definition of ”closeness” between the recovered state and the original
state.

As for the second point, the former, where the sender knows the label, is called visible
compression, and the latter, where the sender does not know the label, is called blind
compression. By definition, a compression protocol for the blind compression can naturally
be exploited as a protocol for the visible compression.

For the last point, i.e., the definition of the closeness, two types of error criteria have
been considered. The first one is global error criterion, for which the whole states should
be close. The other one is called local error criterion, for which the two states should be
close letter-wisely. Here, when the global error criterion is satisfied, the local error criterion
is automatically implied. On the other hand, the global error criterion does not generally
hold even if the local error criterion is assumed.

We briefly review major previous results on quantum data compression. While data
compression problems had been broadly studied classically, quantum data compression was
firstly discussed in Refs. [16–18]. In these references, as the first step for understandings of
quantum data compression problems, the authors adopted blind compression of pure-state
ensembles under global error criterion. It was shown that the optimal compression rate is
the quantum entropy of the average state of the given pure-state ensemble; that is, letting
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{pa, |ψa〉}a∈Σ denote a given ensemble, the optimal rate R∗ is given as

R∗ := H

(∑
a∈Σ

pa |ψa〉 〈ψa|

)
. (2.127)

In particular, a compression protocol proposed in Ref. [16] is currently called Schumacher
compression. More details about Schumacher compression are reviewed in various text-
books such as Refs. [59–61].

After blind compression of pure states, the visible compression began to be considered.
In Refs. [24,25], a lower bound of the compression rate of the visible and blind compression
under the global error criterion was given. Indeed, for a given quantum ensemble Φ =
{pa, ρa}a∈Σ, the optimal rate is lower-bounded by the Holevo information

I(Φ) := H

(∑
a∈Σ

paρa

)
−
∑
a∈Σ

pa H(ρa). (2.128)

Observe that for a pure-state ensemble, the Holevo information is equal to the entropy
of the average state since the entropy of a pure state is zero. Therefore, it is deduced
that the optimal rate of the visible compression is also the entropy of the average state.
Surprisingly, for compression of a pure-state ensemble under the global error criterion,
whether the compression is visible or blind does not make any difference.

Then, what is interesting next is the compression of general mixed-state ensemble. His-
torically, the optimal rate of the visible compression is called effective information; that of
blind compression is called passive information. Letting Ie(Φ) denote the effective infor-
mation of a quantum ensemble Φ and Ip(Φ) denote the passive information of a quantum
ensemble Φ, we have the following relation:

I(Φ) 5 Ie(Φ) 5 Ip(Φ) (2.129)

since the visible compression can be regarded as a subclass of blind compression. The
quantity Id := Ip− Ie is called information defect, and it characterizes a difference between
the visible and blind compression tasks. In Ref. [24,25], a lower bound of the information
defect was given, and Refs. [26, 27] showed examples for which the information defect is
strictly positive. Moreover, the optimal rate of the visible compression was derived in
Ref. [28], and the optimal rate is given by the entropy of an extension of a given state.
In Ref. [29], the authors gave another representation of the optimal rate of the visible
compression. On the other hand, in Ref. [1], the optimal rate of blind compression was
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studied. The main difficulty of blind compression is that the sender does not know the
label of a given state. The authors proposed a protocol in which the sender only sends the
essential parts of a given ensemble, and the compression rate achieved by the protocol is
given by the KI decomposition [4]. In fact, the rate of blind compression derived in Ref. [1]
is optimal under both the global and local error criteria.

Here, let us note that we mainly discuss quantum data compression without any as-
sistance; however, data compression tasks with various assistance, e.g., entanglement and
shared randomness, have also been widely investigated [30–34].

In this thesis, we investigate blind compression of mixed-state ensembles under lo-
cal error criterion. It has been observed that the optimal rate of blind compression is
quite sensitive to approximations even though an allowed approximation is diminutive [2].
Considering the instability of the optimal rate against approximations, we analyze blind
compression problem with finite local approximations.
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Chapter 3

Blind Quantum Data Compression

In this chapter, we discuss a quantum information processing task, namely, blind quan-
tum data compression. We first review the basic setup of blind quantum data compression
in Sec. 3.1. Then, we review previous important results in Sec. 3.2. We show and discuss
our results on blind quantum data compression with finite local approximations allowed
in Sec. 3.3. We construct a novel protocol that performs well compared with the previous
one that works with asymptotically vanishing errors. We also show numerical experiments
for blind compression of 2-state classical ensembles. We summarize and discuss our results
in Sec. 3.4.

3.1 Setup of Blind Quantum Data Compression

In this section, we provide the basic setup of blind quantum data compression.

Blind data compression is a quantum information processing task between two parties,
the sender and the receiver, in which fundamental quantum properties emerge. In the
procedure, the sender aims to asymptotically send quantum data without knowing its
actual description to the receiver as efficiently as possible.

We provide a more formal description of the setup below. Suppose that {px, ρx}x∈Σ is a
quantum ensemble corresponding to quantum data the sender want to send. For each x ∈
Σ, the state ρx ∈ D(HA) is a density operator defined on a quantum system A with a Hilbert
space HA, and {px : x ∈ Σ} is the probability distribution. The referee, or the source of the
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Figure 3.1: The schematic diagram showing the setup of blind quantum data compression.
In this task, the sender is given a target state (red-colored in the figure) from the referee
without its description. Then, the sender encodes the state and send it to the receiver
via noiseless quantum channels. The receiver decodes the transmitted state to recover the
original state (blue-colored in the figure).
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data, draws a state from the ensemble n times independently, so that the resulting n-fold
state is independent and identically distributed (i.i.d.). Let ρxk denote a quantum state
drawn in the kth round, and write the n-fold state as ρxn := ρx1⊗ρx2⊗· · ·⊗ρxn . Then, the
referee gives the state ρxn to the sender. After receiving the state ρxn from the referee, the
sender encodes the state by an encoding channel En ∈ C(H⊗nA ,HMn) to compress the state
into En(ρxn) on a quantum system Mn. When the assistance of entanglement is allowed, the
sender encodes the given state and a half of a given entangled state together. Here, we note
that the sender does not know the label xn of the given state while the sender knows the
description of the ensemble. Therefore, the compression scheme cannot be state-specific
and must only depend on the ensemble. The sender transmits the compressed state En to
the receiver through a noiseless quantum channel. The receiver decompresses the state by
a decoding channel Dn ∈ C(HMn ,H⊗nB ) so that the resulting state Dn ◦En(ρxn) on a system
Bn := B1 · · ·Bn is close to the initial state ρxn . The sequential operation Dn ◦ En given by
the encoding and decoding channels is called a protocol.

The rate of the communication is given by the number of qubits needed for the sender
to send the state En(ρn) to the receiver; that is, letting Rn denote the rate, we have

Rn :=
log2 |Mn|

n
. (3.1)

There are two kinds of scenarios for what types of error we allow: the global error
criterion and the local error criterion. Under the global error criterion, the error ε > 0 of
the protocol must satisfy that

‖Dn ◦ En(ρxn)− ρxn‖1 5 ε; (3.2)

on the other hand, under the local error criterion, the error ε must satisfy that∥∥TrB1···Bk−1,Bk+1···Bn(Dn ◦ En(ρxn))− ρxk
∥∥

1
< ε (3.3)

for all integers 1 5 k 5 n. Thus, the global error criterion ensures that the whole of
resulting state is close to the original state; the local error criterion guarantees that the
resulting state is letter-wisely close to the originals state. Note that the global error
criterion trivially implies that the local error criterion.

We call a pair (En,Dn) with an encoding channel En and a decoding channel Dn an
(n,Rn, ε) code if the protocol Dn ◦ En yields the rate Rn within error ε.

Then, we say that the rate R is achievable if for any ε > 0 and δ > 0, there exists
sufficiently large n such that we have an (n,R+ δ, ε) code. Similarly, we say that the rate
R is achievable within error ε if for any δ > 0, there exists sufficiently large n such that we
can construct an (n,R + δ, ε) code.
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3.2 Previous Results on Blind Data Compression

In this section, we briefly review the previous results on blind data compression.

3.2.1 Asymptotic Optimal Rate of Blind Data Compression

In Ref. [19], an achievable rate of blind state compression was investigated. Indeed, for a
given ensemble {px, ρx}x∈Σ, it was proved that the quantum entropy of the average state

H

(∑
x∈Σ

pxρx

)
(3.4)

is an achievable rate. It had been open whether this rate is optimal or not before Ref. [1]
conducted a more detailed analysis.

In Ref. [1], the authors exploited the Koashi-Imoto(KI) decomposition [4] of a given
ensemble {px, ρx}x:

ρx =
⊕
l∈Ξ

q(x,l)ρ
(x,l)
Q ⊗ ρ(l)

R , (3.5)

which is introduced in Theorem 2.49. Then, by Theorem 2.50, we can define quantum
channels Koff and Kon satisfying the following:

Koff(ρx) =
⊕
l∈Ξ

q(x,l)ρ
(x,l)
Q , (3.6)

Kon

(⊕
l∈Ξ

q(x,l)ρ
(x,l)
Q

)
= ρx (3.7)

for all x ∈ Σ. An operation Koff represents a quantum operation taking the redundant
parts of a given ensemble; Kon represents a quantum operations putting the redundant
parts back to the reduced states. With these quantum channels, we can observe that the
sender does not necessarily send the redundant parts of a target ensemble if the sender
and the receiver agree on the ensemble in the scenario of blind data compression. If they
both knows the description of the ensemble, they also agree on Koff and Kon; that is, they
can freely take off and put on the redundant parts. In addition, Ref. [1] also proved that
Eq. (3.4) is optimal even under local error criterion. To summarize, we have the following
theorem.
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Theorem 3.1. Let {px, ρx} be a quantum ensemble with KI decomposition

ρx =
⊕
l∈Ξ

q(x,l)ρ
(x,l)
Q ⊗ ρ(l)

R . (3.8)

Then, the optimal rate R∗ of blind data compression within asymptotically vanishing errors
for this ensemble is

R∗ = H

(∑
x∈Σ

px
⊕
l∈Ξ

q(x,l)ρ
(x,l)
Q

)
. (3.9)

To show the optimality of the rate, the authors of Ref. [1] introduces two error functions
of compression protocol Λn:

f(Λn) := 1−
∑
xn∈Σn

F(pxn , ρxn), (3.10)

g(Λn) := h2(∆) + ∆ log2(DA − 1), (3.11)

with

∆ := 1−
DA∑
i=1

λi(ρ) 〈i|Λn(|i〉 〈i|)|i〉 , (3.12)

where ρ is the average state of the given ensemble with the spectral decomposition

ρ =

DA∑
i=1

λi(ρ) |i〉 〈i| . (3.13)

Indeed, it was shown that when the protocol Λn is given, the compression rate R is

R = R∗ − g(Λn). (3.14)

The authors proved the optimality by showing that when f(Λn) goes to zero, g(Λn) also
converges to zero; that is, for an infinitesimal error, R∗ is the smallest compression rate
that can be achievable.

Recently, Ref. [3] further investigated the optimality of the compression rate under the
global error criterion. The authors introduced an error function that represents how an
error allowed in the protocol affects the compression rate. Even though the sensitivity of
the compression rate against error has not been revealed completely, properties of the error
function shown in Ref. [3] might lead to insightful discussions for this problem.
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3.2.2 Blind Compression of Classical Ensembles under Local Er-
ror Criterion

In this subsection, we review blind compression of classical ensembles with local errors. In
Ref. [2], the authors formalized blind compression of classical ensembles with the assistance
of entanglement. Taking advantage of the classicality and using properties of quantum
entropic quantities (see Proposition 2.45 in Chapter 2), they proved a new lower bound of
the compression rate under the local error criterion.

Theorem 3.2 (Lower Bound of Rate of Blind Compression with Entanglement Assis-
tance). Let H be a quantum system, and let {px, ρx}x∈Σ be a classical ensemble on the
system H. Letting R be a rate of blind compression with entanglement assistance under
the local error criterion, it holds that

R = min
F :H→H⊗H′

(
I(H : H′|HX)F(ρ)

)
+ I(HX : H)ρ − ε log2 |Σ| − 1, (3.15)

where H′ is a copy of the system H, HX is a quantum system corresponding to the alphabet
Σ; that is, HX := CΣ, and a map F satisfies

1

2
‖TrH(F(ρx))− ρx‖1 5 ε (3.16)

for all x ∈ Σ.

Using this bound, the authors found an example of classical ensemble that cannot be
well compressed; that is, the lower bound of the rate is close to log2DH, which is the tight
upper bound of the rate.

Theorem 3.3. Let H be a quantum system, and let {px, ρx}x=1,2 be a classical ensemble
on the system H where p1 = p2 = 1/2 and

ρ1 :=

DH∑
i=1

1

DH
|i〉 〈i| , (3.17)

ρ2 :=

DH∑
i=1

2i

DH(DH + 1)
|i〉 〈i| , (3.18)

where {|i〉 ∈ H : 1 5 i 5 DH} forms an orthonormal basis of H. Then, the compression
rate for this ensemble is at least (log2DH)− 7.
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On the other hand, a compression protocol for blind compression of classical ensembles
without any assistance that may lead to a small compression rate was also proposed in
Ref. [2]. The protocol works for all two-state classical ensembles.

Theorem 3.4. Let H be a quantum system, and let 0 < ε < 1/2 and 0 < δ < 1 be
positive real numbers. Then, for a positive number n, there exists an (n,R, ε+ δ)-protocol
for two-state classical ensembles such that

R 5 2 log2 log2

DH
δ

+ 2 log2

1

ε
+ 3. (3.19)

3.3 Our Results: Data Compression Protocol with Fi-

nite Approximation under Local Error Criterion

In this section, we show our results on the quantum blind compression with finite local
approximations; in particular, we show our novel protocol and present some examples
for which the protocol leads to large reduction of the compression rate compared to the
previous results with asymptotically vanishing errors. Moreover, as the first step of general
understandings of blind compression with finite approximations, we focus on quantum
ensembles consisting of two classical states. Through numerical experiments, we reveal the
performance of our protocol for classical ensembles.

3.3.1 Procedure of Our Protocol

Here, we consider blind data compression under the local error criterion; that is, we only
require the resulting state to be close to the original state letter-wisely. In addition, we
allow finite approximations to the resulting state under this error criterion.

First, notice that the compression scheme shown in Sec. 3.2 can be summarized as
follows.

1. After receiving a state ρxn from the referee, the sender applies Koff to remove the
redundant parts of the state and obtain K⊗noff (ρxn).

2. The sender encodes the state K⊗noff (ρxn) using an encoding channel En to obtain En ◦
K⊗noff (ρxn).
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3. The sender sends the state En ◦ K⊗noff (ρxn) via a noiseless quantum channel to the
receiver.

4. The receiver decodes the transmitted state using a decoding channel Dn and obtains
Dn ◦ En ◦ K⊗noff (ρxn).

5. The receiver put the redundant parts back using the quantum channel Kon; the
resulting state is K⊗non ◦ Dn ◦ En ◦ K⊗noff (ρxn).

Our main idea here is that when we allow a finite approximation to the resulting state,
we may use quantum channels Λ

(n)
s and Λ

(n)
r , potentially acting jointly on the entire block,

for smoothing of a given state instead of Koff and Kon. Then, if the resulting state Λ
(n)
s ◦

Dn ◦En ◦Λ
(n)
r (ρxn) is close to the given state ρxn within a given finite error, we may achieve

a smaller rate with the smoothing scheme Λ
(n)
s and Λ

(n)
r than the optimal rate with a

vanishing error attained by Koff and Kon. Even for letter-wise smoothing, one may wonder
if we can use the KI operations from a different quantum ensemble for smoothing instead
of using the KI operaations Koff and Kon for the given ensemble. In the following, we prove
that this scheme indeed performs well.

More formally, suppose that we have a quantum ensemble {px, ρx}x∈Σ and that we
allow the resulting state to be letter-wise different from the original state up to ε > 0. We
consider all possible approximate ensembles {px, ρ̃x}x∈Σ, whose states should be close to the
states in the original ensemble. Each such approximate ensemble defines KI operations K̃off

and K̃on. Now the question is, if we apply the KI operations of an approximate ensemble to
the original ensemble, how much error do we incur and what rate can be achieved? Hence,
in the following, we consider using the KI operations K̃off and K̃on of {px, ρ̃x}x∈Σ, which is

obtained as in Theorem 2.50, as a smoothing scheme Λ
(n)
s and Λ

(n)
r for {px, ρx}x∈Σ.

We now present our protocol for blind data compression more formally.

1. The sender and receiver first agree on an approximate ensemble {px, ρ̃x}x∈Σ of the
original given ensemble {px, ρx}x∈Σ such that for all x ∈ Σ,

‖K̃on ◦ K̃off(ρx)− ρx‖1 5 ε, (3.20)

and

H

(∑
x

pxK̃off(ρx)

)
5 H

(∑
x

pxKoff(ρx)

)
. (3.21)

2. The referee gives a state ρxn generated by n independent and identically distributed
(i.i.d.) draws from {px, ρx}x∈Σ to the sender.
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3. The sender applies K̃off to the given en state, which yields K̃⊗noff (ρxn).

4. The sender applies an encoding operation En to obtain En ◦ K̃⊗noff (ρxn).

5. The sender transmits the encoded state En ◦ K̃⊗noff (ρxn) to the receiver via a noiseless
quantum channel.

6. Upon receiving the state, the receiver applies the decoding channel Dn corresponding
to En, which yields Dn ◦ En ◦ K̃⊗noff (ρxn).

7. Finally, the receiver applies K̃on to obtain K̃⊗non ◦ Dn ◦ En ◦ K̃⊗noff (ρxn), which must be
close to the original state within the local error ε.

At the fourth step of the protocol, we virtually consider blind compression of ensemble
{px, K̃off(ρx)}x∈Σ. Hence, the compression rate achieved by this protocol is

R = H

(∑
x∈Σ

pxK̃off(ρx)

)
(3.22)

within local error ε.

Then, we are interested in when the condition (3.20) is satisfied. Here, we give a
sufficient condition for Eq. (3.20); we prove that K̃off and K̃on satisfy the local error criterion
for {px, ρx}x∈Σ if {px, ρ̃x}x∈Σ is close enough to the original ensemble.

Proposition 3.5. Let {px, ρx}x∈Σ be a quantum ensemble. Let {px, ρ̃x}x∈Σ be a quantum
ensemble such that

‖ρx − ρ̃x‖1 5
ε

2
(3.23)

for all x. Then, it holds that

‖K̃on ◦ K̃off(ρx)− ρx‖1 5 ε. (3.24)

Proof. It holds that

‖K̃on ◦ K̃off(ρx)− ρx‖1 5 ‖K̃on ◦ K̃off(ρx)− K̃on ◦ K̃off(ρ̃x)‖1 + ‖ρ̃x − ρx‖1 (3.25)

5 2‖ρ̃x − ρx‖1 (3.26)

5 ε. (3.27)
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Here, we would like to remark that once we have the protocol presented above, we also
have a possibly better protocol. In fact, letting Λoff and Λon denote the KI operations
for {px, K̃off(ρx)}x∈Σ, by applying Λ⊗noff to K̃⊗noff (ρxn), we can remove the redundant parts of
{px, K̃off(ρx)}x∈Σ, leading to a slightly better rate

R = H

(∑
x∈Σ

pxΛoff ◦ K̃off(ρx)

)
. (3.28)

3.3.2 Reduction of rates with a finite error

Here, we present two main examples for our protocol. The first one helps us understand
the procedure and performance of our protocol in an intuitive way; the second one shows a
large reduction of the compression rate compared to the case where finite approximations
are not allowed.

First, we consider a four-dimensional two-state ensemble to intuitively understand the
protocol.

Example 3.1. Let ε > 0 be a fixed positive number sufficiently smaller than 1/2. Consider
the following two density operators.

ρ1 :=
1

4


2 1− 2ε 0 0

1− 2ε 2 0 0
0 0 0 0
0 0 0 0

 , (3.29)

ρ2 :=
1

4


ε 0 0 0
0 ε 0 0
0 0 2− ε 1
0 0 1 2− ε

 . (3.30)

Then, we consider an ensemble {px, ρx}x=1,2 where

p1 = p2 =
1

2
. (3.31)
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Here, we construct an approximate ensemble {px, ρ̃x}x=1,2 as

ρ̃1 :=
1

4


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 , (3.32)

ρ̃2 :=
1

4


0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

 . (3.33)

Observe that ρ̃1 and ρ̃2 can be written as

ρ̃1 := |0〉 〈0| ⊗ 1

4

(
2 1
1 2

)
, (3.34)

ρ̃2 := |1〉 〈1| ⊗ 1

4

(
2 1
1 2

)
(3.35)

Therefore,

ω :=
1

4

(
2 1
1 2

)
(3.36)

can be regarded as a redundant part of the approximate ensemble. Then, we can define
the KI operations corresponding to this redundant part as follows.

K̃off(·) := TrB(·), (3.37)

K̃on(·) := ((|0〉 〈0| · |0〉 〈0|) + (|1〉 〈1| · |1〉 〈1|))⊗ ω. (3.38)

Then, with these operations, we have

K̃off(ρ1) =

(
1 0
0 0

)
= |0〉 〈0| , (3.39)

K̃off(ρ2) =
1

2

(
ε 0
0 2− ε

)
=
ε

2
|0〉 〈0|+

(
1− ε

2

)
|1〉 〈1| . (3.40)
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In addition, it holds that

K̃on ◦ K̃off(ρ1) =
1

4


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 = |0〉 〈0| ⊗ ω = ρ̃1, (3.41)

K̃on ◦ K̃off(ρ2) =
1

8


2ε ε 0 0
ε 2ε 0 0
0 0 4− 2ε 2− ε
0 0 2− ε 4− 2ε

 =
( ε

2
|0〉 〈0|+

(
1− ε

2

)
|1〉 〈1|

)
⊗ ω.

(3.42)

Then, we have that

‖K̃on ◦ K̃off(ρ1)− ρ1‖1 =

∥∥∥∥∥∥∥∥
1

2


0 ε 0 0
ε 0 0 0
0 0 0 0
0 0 0 0


∥∥∥∥∥∥∥∥

1

= ε, (3.43)

‖K̃on ◦ K̃off(ρ2)− ρ2‖1 =

∥∥∥∥∥∥∥∥
1

8


0 ε 0 0
ε 0 0 0
0 0 0 −ε
0 0 −ε 0


∥∥∥∥∥∥∥∥

1

=
ε

2
5 ε. (3.44)

Therefore, the KI operations K̃off and K̃on satisfy the local error criterion a finite error ε.

We now see that this example exhibits a reduction of the rate compared with the
compression rate under asymptotically vanishing errors. Let R0 denote the optimal rate
for {px, ρx}x∈Σ; let R denote the rate for {px, ρx}x∈Σ obtained by K̃off and K̃on. Then, we
have

R0 = H

(
1

2
ρ1 +

1

2
ρ2

)
≈ log2 4 = 2, (3.45)

R = H

(
1

2
K̃off(ρ1) +

1

2
K̃off(ρ2)

)
≈ log2 2 = 1. (3.46)

Then, after this approximation, the compression rate becomes almost the half of the original
rate.

Next, we show an example for which a finite approximation dramatically changes a KI
structure of a given ensemble. In fact, for this example, we can see a large reduction of
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the compression rate compared with the compression rate under asymptotically vanishing
errors.

Example 3.2. Let ωa ∈ D(Ha) and ωb ∈ D(Hb) be density operators. Define 2N -
dimensional density operators

σ1 :=
1

4N


2 ε 0 · · · ε
ε 2 ε · · · 0
...

. . . . . . . . .
...

0 · · · ε 2 ε
ε 0 · · · ε 2

 (3.47)

σ2 :=
1

4N



1 + 2ε
. . .

1 + 2ε
3− 2ε

. . .

3− 2ε


. (3.48)

Here, the off diagonal elements of σ2 are all zero, and we omit these elements in the matrix
form (3.48). With these density operators, let us define a quantum ensemble {px, ρx}x=1,2

with

p1 = p2 =
1

2
, (3.49)

ρ1 :=
1

3
ωa ⊕

1

3
σ1 ⊕

1

3
ωb, (3.50)

ρ2 :=
1

6
ωa ⊕

1

3
σ2 ⊕

1

2
ωb, (3.51)

where ωa and ωb are some density operators. Here, we can notice that ρ1 and ρ2 already have
redundant parts ωa and ωb. Now, we introduce an approximate ensemble of {px, ρ̃x}x=1,2

with

ρ̃1 :=
1

3
ωa ⊕

1

3
σ̃1 ⊕

1

3
ωb, (3.52)

ρ̃2 :=
1

6
ωa ⊕

1

3
σ̃2 ⊕

1

2
ωb, (3.53)
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where

σ̃1 :=
1

2N


1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
0 0 · · · 0 1

 , (3.54)

σ̃2 :=
1

4N



1
. . .

1
3

. . .

3


. (3.55)

We note that ρ̃1 and ρ̃2 can be written as

ρ̃1 =
1

2
ω̃a ⊕

1

2
ω̃b, (3.56)

ρ̃2 =
1

4
ω̃a ⊕

3

4
ω̃b, (3.57)

where

ω̃a :=
2

3

(
ωa ⊕

1

2N
I

)
, (3.58)

ω̃b :=
2

3

(
1

2N
I ⊕ ωb

)
. (3.59)

Then, considering the KI operations K̃off and K̃on corresponding to this structure, we have

K̃off(ρ1) =
1

2

(
1 0
0 1

)
, (3.60)

K̃off(ρ2) =
1

12

(
3 + 2ε 0

0 9− 2ε

)
, (3.61)

and

K̃on ◦ K̃off(ρ1) =
1

2
ω̃a ⊕

1

2
ω̃b = ρ̃1 (3.62)

K̃on ◦ K̃off(ρ2) =

(
1

4
+
ε

6

)
ω̃a ⊕

(
3

4
− ε

6

)
ω̃b. (3.63)
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Therefore, it holds that ∥∥∥K̃on ◦ K̃off(ρ1)− ρ1

∥∥∥
1
5 ε, (3.64)∥∥∥K̃on ◦ K̃off(ρ2)− ρ2

∥∥∥
1

=
4ε

9
5 ε, (3.65)

(3.66)

implying that this pair of KI operations yields a compression protocol within a finite error
ε.

Letting R0 denote the optimal rate for {px, ρx}x without any approximations and R
denote the rate for {px, ρx}x obtained by K̃off and K̃on, we have

R0 = H

(
1

2
Koff(ρ1) +

1

2
Koff(ρ2)

)
& log2N, (3.67)

R = H

(
1

2
K̃off(ρ1) +

1

2
K̃off(ρ2)

)
5 log2 2 = 1, (3.68)

which shows the reduction of the compression rate to a constant rate, which is independent
of the size of the system.

Thus, as these examples show, our compression protocol performs well compared to the
case where finite approximations are not allowed when we have an approximate ensemble of
a given quantum ensemble, which has large redundant parts in terms of the KI decomposi-
tion. In the first example, we can generate a redundant part ω defined in Eq. (3.36), and in
the secomd example, we can generate large redundant parts ω̃a and ω̃b shown in Eqs. (3.58)
and (3.59). Then, by not sending these redundant parts, we can achieve small compression
rates. Remarkably, in Example 3.2, we can see that even a small approximation leads to a
constant compression rate independent of the dimension of the system.

Despite these examples showing large reductions in rates of blind compression, we would
like to remark that we do not necessarily find a good approximation. For example, if an
allowed error is much smaller than ε in Examples 3.1 and 3.2, we cannot apply the same
approximation anymore. To further advance the study of blind quantum compression with
finite approximations, a general investigation of conditions under which we can successfully
find a good approximate ensemble of a given ensemble is needed. It is also interesting to
study a more general compression protocol for blind quantum compression with finite
approximations.
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3.3.3 Approximation of Classical Ensembles

In this section, we discuss an approximate blind compression of classical ensembles, aim-
ing to obtain an insight into blind compression of general quantum ensembles with finite
approximations. Classical ensembles are a special subclass of quantum ensembles; hence,
analyses of classical ensembles may lead us to a discovery also applicable to the general
case. Here, to see properties of blind compression of classical ensembles concisely, we
consider two-state classical ensembles, which consist of two classical states.

To consider a classical ensemble, we need to fix a basis of a given quantum system. We
show that when we approximate a classical ensemble with respect to the same given basis,
we only have to consider an approximation of diagonal elements.

Proposition 3.6. Let H be a quantum system. Let ρ, σ ∈ D(H) be quantum states on the
system. Suppose that ρ and σ forms a classical ensemble; that is, we can write

ρ =

DH∑
i=1

ρi |i〉 〈i| , (3.69)

σ =

DH∑
i=1

σi |i〉 〈i| (3.70)

for some orthonormal basis {|i〉 ∈ H : 1 5 i 5 DH} of H and some probability distributions
{ρi : 1 5 i 5 DH} and {σi : 1 5 i 5 DH}. Suppose that ρ and σ can be approximated as∥∥∥∥∥ρ−⊕

l∈Ξ

q(ρ,l)ω
(ρ,l)
Q ⊗ ω(l)

R

∥∥∥∥∥
1

5 ε, (3.71)∥∥∥∥∥σ −⊕
l∈Ξ

q(σ,l)ω
(σ,l)
Q ⊗ ω(l)

R

∥∥∥∥∥
1

5 ε (3.72)

in the same basis {|i〉 ∈ H : 1 5 i 5 DH}. Then, we can find an approximation such that

all ω
(ρ,l)
Q , ω

(σ,l)
Q , and ω

(l)
R are diagonal.

Proof. Let us take some l ∈ Ξ, and consider q(ρ,l)ω
(ρ,l)
Q ⊗ ω

(l)
R and

⊕
l∈Ξ q

(σ,l)ω
(σ,l)
Q ⊗ ω

(l)
R .

Let ρ(l) and σ(l) be the corresponding block of ρ and σ respectively. Taking the dephasing
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channel ∆ with respect to the basis {|i〉 ∈ H : 1 5 i 5 DH}, we have∥∥∥∥∥ρ(l) −
⊕
l∈Ξ

q(ρ,l)∆(ω
(ρ,l)
Q )⊗∆(ω

(l)
R )

∥∥∥∥∥
1

=

∥∥∥∥∥∆(ρ(l))−∆

(⊕
l∈Ξ

q(ρ,l)ω
(ρ,l)
Q ⊗ ω(l)

R

)∥∥∥∥∥
1

5

∥∥∥∥∥ρ(l) −
⊕
l∈Ξ

q(ρ,l)ω
(ρ,l)
Q ⊗ ω(l)

R

∥∥∥∥∥
1

.

(3.73)

Similarly, it holds that∥∥∥∥∥σ(l) −
⊕
l∈Ξ

q(σ,l)∆(ω
(σ,l)
Q )⊗∆(ω

(l)
R )

∥∥∥∥∥
1

5

∥∥∥∥∥σ(l) −
⊕
l∈Ξ

q(σ,l)ω
(σ,l)
Q ⊗ ω(l)

R

∥∥∥∥∥
1

. (3.74)

Therefore, diagonal states
⊕

l∈Ξ q
(ρ,l)∆(ω

(ρ,l)
Q ) ⊗ ∆(ω

(l)
R ) and

⊕
l∈Ξ q

(σ,l)∆(ω
(σ,l)
Q ) ⊗ ∆(ω

(l)
R )

are also approximations of ρ and σ.

Therefore, when a basis is fixed, an approximation of a given classical state is the same
with an approximation of a probability distribution corresponding to the classical state.
To consider an approximation of a probability distribution, binning is a useful method,
where we divide probabilities in the distribution into several groups (bins) and replace
each probability with the average value of the bin the probability belongs to.

Definition 3.7 (Binning). Let {pa : a ∈ Σ} be a probability distribution. Consider a
division of an alphabet Σ

Σ =
m⋃
k=1

Σk (3.75)

where Σk is an alphabet, that is, a nonempty and finite set, for all k, and it holds that

Σk ∩ Σl = ∅ (3.76)

when k 6= l. Therefore, the union in Eq. (3.75) is indeed a disjoint union. Then, for each k,
Σk is called a bin, and an integer m is the number of bins. For each bin Σk, we can consider
a set of probabilities {pa : a ∈ Σk}. Let p(k) is the average value of the set {pa : a ∈ Σk}.
Then, we can construct a new probability distribution {p′a : a ∈ Σ} by replacing pa with
p′a = p(k) when a ∈ Σk. This method generating a probability distribution {p′a : a ∈ Σ}
from a given distribution {pa : a ∈ Σk} is called binning.
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When probabilities in a bin {pa : a ∈ Σk} are all close to each other, the binning serves
as an approximation method of probability distributions; that is, it is also regarded as a
good approximation method of classical states.

Now, we consider applying the binning method to the compression of classical ensem-
bles. As we saw in Sec. 3.2, in Ref. [2], a protocol to approximately compress a two-state
classical ensemble was proposed. We observe that this method exploits binning to approx-
imate the diagonal elements of given states. Here, instead of thinking general two-state
classical ensembles, we discuss a special two-state classical ensemble where one of the two
states is the flat state, motivated by the incompressibility shown in Theorem 3.3. We
propose two methods to approximate a given ensemble, and numerically compare the per-
formance of the two methods.

Suppose that H be a quantum system, and consider two classical states {ρ, σ} where ρ
is the flat state. Take an orthonormal basis {|i〉 ∈ H : 1 5 i 5 DH} of H such that we can
write

ρ =

DH∑
i=1

1

DH
|i〉 〈i| , (3.77)

σ =

DH∑
i=1

pi |i〉 〈i| , (3.78)

where {pi : 1 5 i 5 DH} forms a probability distribution with p1 = p2 = · · · = pDH . We
consider an approximation of {pi : 1 5 i 5 DH} within an allowed error ε > 0, that is, a
probability distribution {p′i : 1 5 i 5 DH} such that

DH∑
i=1

|pi − p′i| 5 ε. (3.79)

To construct an approximation leading to large redundant parts, we propose the following
two method, namely, the arithmetic mean method and the geometric mean method.

• Arithmetic Mean Method

1. First, for given ε > 0, find the largest positive integer k1 such that

|p1 − pk1 | 5
ε

DH
. (3.80)

Define a set of positive integers I1 := {1, . . . , k1}.
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2. For i > 1, find the largest positive integer ki such that∣∣pki−1+1 − pki
∣∣ 5 ε

DH
. (3.81)

Define a set of positive integers Ii := {ki−1 + 1, . . . , ki}.
3. Repeat Step 2 until we find a positive integer L such that kL = DH.

4. For j ∈ Ii with some 1 5 i 5 L, replace pj as

pj 7→ p
(A)
j :=

1

|Ii|
∑
m∈Ii

pm, (3.82)

and define

σ(A) :=

DH∑
i=1

p
(A)
i |i〉 〈i| (3.83)

• Geometric Mean Method

1. First, for given ε > 0, find the largest positive integer k1 such that

pk1
p1

=
1

1 + ε
. (3.84)

Define a set of positive integers I1 := {1, . . . , k1}.
2. For i > 1, find the largest positive integer ki such that

pki
pki−1+1

=
1

1 + ε
. (3.85)

Define a set of positive integers Ii := {ki−1 + 1, . . . , ki}.
3. Repeat Step 2 until we find a positive integer L such that kL = DH.

4. For j ∈ Ii with some 1 5 i 5 l, replace pj as

pj 7→ p
(G)
j :=

1

|Ii|
∑
m∈Ii

pm, (3.86)

and define

σ(G) :=

DH∑
i=1

p
(G)
i |i〉 〈i| . (3.87)
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First, we show that these approximation methods are valid; that is, the resulting states
σ(A) and σ(G) are close enough to the original state σ.

Proposition 3.8. For a positive real number ε > 0, let σ(A) and σ(G) be the approximated
states of a given diagonal state σ by Arithmetic Mean Method and Geometric Mean Method
respectively. Then, it holds that

‖σ(A) − σ‖1 5 ε, (3.88)

‖σ(G) − σ‖1 5 ε. (3.89)

Proof. It holds that

‖σ − σ(A)‖1 =

DH∑
i=1

|pi − p(A)
i |

=
L∑
i=1

∑
j∈Ii

|pj − p(A)
j |

5
L∑
i=1

∑
j∈Ii

|pki−1+1 − pki |

5
L∑
i=1

∑
j∈Ii

ε

DH

= ε.

(3.90)

The first inequality follows because the difference |pj − p
(A)
j | is upper-bounded by the

difference between the largest value and the smallest value of the set {pi : i ∈ Ij}, which is
given by |pki−1+1 − pki |. The second inequality follows from Eq. (3.81).

On the other hand, it holds that

‖σ − σ(G)‖1 =

DH∑
i=1

|pi − p(G)
i |

=
L∑
i=1

∑
j∈Ii

|pj − p(G)
j |

=
L∑
i=1

∑
j∈Ii

p
(G)
j

∣∣∣∣∣ pjp(G)
j

− 1

∣∣∣∣∣ .
(3.91)
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Here, by Eq. (3.85), we have
1

1 + ε
5

pj

p
(G)
j

5 1 + ε, (3.92)

which implies that

− ε 5 −ε
1 + ε

5
pj

p
(G)
j

− 1 5 ε, (3.93)

Combining Eqs. (3.91) and (3.93), we have that

‖σ − σ(G)‖1 =
L∑
i=1

∑
j∈Ii

p
(G)
j

∣∣∣∣∣ pjp(G)
j

− 1

∣∣∣∣∣
5

L∑
i=1

∑
j∈Ii

p
(G)
j ε

= ε.

(3.94)

Therefore, {ρ, σ′} with σ′ = σ(A) orσ(G) is considered as an approximation of {ρ, σ}.
Consider a quantum ensemble formed by {ρ, σ′} and quantum channels Koff and Kon with
respect to this ensemble. Since

Koff(ρ) =
L∑
i=1

|Ii|
DH
|i〉 〈i| , (3.95)

Koff(σ) =
L∑
i=1

(∑
m∈Ii

pm

)
|i〉 〈i| , (3.96)

the rate R of our protocol for this ensemble is

R = H (pρKoff(ρ) + pσKoff(σ)) 5 log2 L. (3.97)

Now, we compare the performance of the two approximation methods. It is of interest
to determine which of the two binning methods performs better. In fact, the protocol
shown in Ref. [2] exploits geometric mean, and one may wonder whether arithmetic mean
yields better results. While analytical discussion is complicated, we conduct numerical
experiments to see tendency of performance of these approximation methods.
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1. First, we evaluate the performance of the two approximation methods with various
values of allowed error ε. In the calculation, we fix the space to H = C1024; that is,
DH = 1024 = 210. We generate 1000 random diagonal states σ on this space. In
more detail, we randomly generate a real number in the range [0, 1] according to the
uniform distribution 1024 times to obtain a vector on R1024. Then, we normalize the
obtained vector to obtain a probability distribution, and we regard this probability
distribution as a classical state. For each state, we create the approximate states σ(A)

and σ(G) by using the arithmetic mean method and the geometric mean method.

Then, considering σ(A) and σ(G), we compare the rates of the two methods. We
also compare differences between original states and resulting states. As shown in
Figures 3.2 and 3.3, the arithmetic mean method performs better than the geometric
mean method on average. In particular, the results show the tendency that the
difference between the two methods becomes large as the allowed error increases.

Furthermore, we estimate the curves in the graph. Observing the graph shown in
Figure 3.2, we adopt the following function

f(x) = log2DH − a
(

1− e−b
√
x
)

(3.98)

with parameters a and b as a fitting function. This function explains the tendency
that the rate approaches log2DH as the error becomes small, and it also expresses
the sudden decrease around the error 1/DH. However, we do not believe that this
function explains the full dependency of the rate on the error, because of the sensitive
behaviour of the rate against errors when errors are roughly larger than 1/

√
DH. For

more general and deep understandings of the dependency, we need further investiga-
tions of the compression protocols.

The results shown in Figure 3.4 and Table 3.1 indicate that the fitting function
defined in Eq. (3.98) is the correct function characterizing the compression rate as a
function of the error while we have not theoretically and analytically demonstrated
it. Since the compression rate is strictly upper-bounded by log2DH when we do not
allow any approximation, the second term a

(
1− e−b

√
x
)

of Eq. (3.98) is considered
to represent the degree of reduction caused by an approximation. Although we need
further investigations to fully characterize the performance of these approximation
methods, our results roughly disclosed the tendency.

2. Next, we investigate the dependence of the performance of the two approximation
methods on the dimension of the space. Here, we adopt the error ε = 1/

√
DH

considering the discussion in Ref. [2] stating that this size of error f(Λn) ≈ 1/
√
DH
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(see Eq. (3.10)) leads to instability of the error function g(Λn) (see Eq. (3.11)). We
generate 1000 random diagonal states σ on this space in the same way as in the first
experiment. For each state, we create the approximated states σ(A) and σ(G) by using
the arithmetic mean method and the geometric mean method.

Then, considering σ(A) and σ(G), we compare the rates of the two methods. We
also compare differences between original states and resulting states. As shown in
Figures 3.5 and 3.6, the arithmetic mean method performs better than the geometric
mean method on average.

To investigate the dependence of the difference between the two methods on the
dimension, we also plotted the difference in Figure 3.7. As seen in the graph, the
difference becomes large as the dimension gets large, and it linearly depends on the
logarithm of dimension.

Moreover, we estimate the curves in the graph. Observing the graph shown in Fig-
ure 3.2, we adopt the following function

f(x) = a log2 x+ b (3.99)

with parameters a and b as a fitting function. The results shown in Figure 3.8
and Table 3.2 imply that the fitting function defined in Eq. (3.99) is appropriate
for characterizing the compression rate as a function of the dimension. Since the
compression rate is strictly upper-bounded by log2DH when we do not allow any
approximation, the coefficient a represents the degree of reduction caused by an
approximation.
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Figure 3.2: Graph of the compression
rate as a function of finite allowed er-
ror. The term “rate” refers to the up-
per bound shown in Eq. (3.97). The yel-
low and green points represent the com-
pression rate of each randomly generated
probability distribution obtained by the
arithmetic and geometric mean methods
respectively. The blue and red points
represent the averages of the yellow and
green points respectively.

Figure 3.3: Graph of the actual error as
a function of finite allowed error. Here,
“actual error” means the distance be-
tween the initial state and the resulting
state in terms of the trace norm. The yel-
low and green points represent the com-
pression rate of each randomly generated
probability distribution obtained by the
arithmetic and geometric mean methods
respectively. The blue and red points
represent the averages of the yellow and
green points respectively.
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Arithmetical Geometrical

a 7.856 6.264
b 4.079 4.036

Table 3.1: The results of the fitting of the graph of the compression rate shown in Figure 3.4.
In the table, a and b are defined in Eq. (3.98).

Figure 3.4: Graph of the compression rate as a function of finite allowed error and the
corresponding fitting curves. The blue and red points represent the averages of the results
of the arithmetic and geometric mean methods. The indigo curve is the fitting function
corresponding to the blue points; the brown curve is the fitting function corresponding to
the red points.
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Figure 3.5: Graph of the compression
rate as a function of the dimension of sys-
tem. The term “rate” refers to the up-
per bound shown in Eq. (3.97). The yel-
low and green points represent the com-
pression rate of each randomly generated
probability distribution obtained by the
arithmetical and geometric mean meth-
ods respectively. The blue and red points
represent the averages of the yellow and
green points respectively.

Figure 3.6: Graph of the actual error as
a function of the dimension of system.
Here, “actual error” means the distance
between the initial state and the result-
ing state in terms of the trace norm. The
yellow and green points represent the
compression rate of each randomly gen-
erated probability distribution obtained
by the arithmetical and geometric mean
methods respectively. The blue and red
points represent the averages of the yel-
low and green points respectively.
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Figure 3.7: Graph of (the compression rate by the arithmetic mean method) − (the com-
pression rate by the geometric mean method) as a function of the dimension of system.
The horizontal axis is expressed in log scale.
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Arithmetical Geometrical

a 0.5258 0.6406
b 0.6486 0.3608

Table 3.2: The results of the fitting of the graph of the compression rate shown in Figure 3.8.
In the table, a and b are defined in Eq. (3.99).

Figure 3.8: Graph of the compression rate as a function of the dimension of system and the
corresponding fitting curves. The blue and red points represent the averages of the results
of the arithmetic and geometric mean methods. The indigo curve is the fitting function
corresponding to the blue points; the brown curve is the fitting function corresponding to
the red points.
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3.4 Summary and Discussions

In this chapter, we investigated blind compression of quantum ensembles under finite local
approximations. In previous research, the optimal rate of blind compression was obtained
through the KI decomposition. The main idea was that the sender does not have to send
the redundant parts of a given quantum ensemble to effectively transmit a state drawn
from the ensemble, even if the sender does not know the label of the given state.

Reviewing the previous research, we focused on the instability of the KI decomposition
against approximations. Taking advantage of the sensitivity of KI decomposition, we con-
structed a compression protocol that shows a substantial reduction of the compression rate
with a finite approximation allowed. We explicitly showed a reduction of the compression
rate by several examples. Moreover, we investigated blind compression of classical en-
sembles to analyze general properties of our compression protocol. Slightly modifying our
protocol, we proposed two compression methods for two-state classical ensembles including
the flat state, namely, the arithmetic mean method and the geometric mean method. We
numerically investigated these compression methods of two-state classical ensembles and
discovered that the arithmetic mean method performs better than the geometric mean
method.

As a future direction, it would be interesting to analyze the protocol more generally.
As noted in the previous sections, our protocol does not necessarily show a large reduc-
tion of the compression rate for any input. For example, if an allowed approximation is
sufficiently small, our protocol might become equal to the optimal compression rate with
a vanishing error, obtained in Ref. [1]. The difficulty of the analysis lies in the absence of
an approximation of the KI decomposition. While finite approximations can significantly
lower the compression rate as we showed in this chapter because of the instability of the
KI decomposition, the instability also makes the general analysis intractable. As the first
step of the general analysis, it would be interesting to investigate compression protocols on
general two-state quantum ensembles. We numerically studied compression protocols for
two-state classical ensembles in this chapter, which may give hints for further research of
general approximate protocols. For a two-state ensemble, we may consider that one of the
two states is diagonal by choosing an appropriate basis. Fixing the basis would be helpful
to study a new approximate compression protocol and the dependency of the compression
protocol on allowed errors.

Thus, we shed light on practical quantum data compression with the allowance of
approximations through our research. Then, it would be interesting to study protocols
with finite approximations that work more generally for further understandings of blind
quantum data compression.
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Chapter 4

Structure of Quantum Operations
Approximately Preserving Quantum
Ensemble

In this chapter, we discuss an approximate structure of quantum ensembles. In Ref. [4],
the authors not only investigated the structure of a given quantum ensemble, called the KI
decomposition, they also analyzed a structure of quantum operations that preserves the
quantum ensemble, that is, operations with fixed points including the states belonging to
the ensemble. As we saw in Chapter. 3, the KI structure plays a fundamental role in blind
data compression, and an approximation of the KI structure would advance the analysis
of blind data compression. It has been argued, however, that the approximation of the KI
structure is generally intractable to analyze because of the algorithmic construction of the
KI decomposition [4]. In this chapter, instead of analyzing the approximate KI structure,
we investigate an approximate structure of quantum operations. We prove that a quantum
channel can be approximated by a block diagonal structure that is determined by a given
quantum ensemble if it approximately preserves the ensemble. We first briefly overview
previous results in Sec. 4.1. We then show our results in Sec. 4.2. We summarize and
discuss our results in Sec. 4.3.
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4.1 Brief Overview of Structure of Quantum Opera-

tions that Preserve a Quantum Ensemble

In this section, we briefly review the approximate structure of a quantum ensemble. First,
recalling Theorem 2.49 in Chapter 2, for a given ensemble {px, ρx}x∈Σ, we have the unique
KI decomposition

ρx :=
⊕
l∈Ξ

q(x,l)ρ
(x.l)
Q ⊗ ρ(l)

R . (4.1)

In Ref. [4], they also gives a structure of quantum operations that preserve the quantum
states in the ensemble. Suppose that TU ∈ C(HA) is a quantum channel with a Stinespring

representation U ∈ U(HA ⊗H(ω)
E ,HA ⊗HE); that is,

TU(·) = TrE(U(· ⊗ ωE)U †) (4.2)

where E is an environment system, ωE := |ω〉 〈ω|E ∈ D(HE) is a reference state on E,

and H(ω)
E is the subspace of HE spanned by {|ω〉E}. Then, suppose that this operation

preserves the ensemble; that is, for all x ∈ Σ, it holds that

TU(ρx) = ρx. (4.3)

Then, the problem here is what structure the channel TU has. Intuitively, considering
the KI structure of the quantum ensemble, one may suppose that U does nothing to the
ensemble’s non-redundant classical/quantum parts. Indeed, the following theorem captures
this intuition.

Theorem 4.1. Let {px, ρx}x∈Σ be a quantum ensemble with the KI decomposition

ρx :=
⊕
l∈Ξ

q(x,l)ρ
(x.l)
Q ⊗ ρ(l)

R (4.4)

for all x ∈ Σ. Let TU ∈ C(HA) be a quantum channel satisfying

TU(ρx) = ρx (4.5)

for all x ∈ Σ. Then, the isometry U ∈ U(HA ⊗H(ω)
E ,HA ⊗HE) corresponding to TU can

be decomposed into the following form:

U =
⊕
l∈Σ

I
(l)
Q ⊗ U

(l) (4.6)

with some isometries U (l) ∈ U(H(l)
R ⊗H

(ω)
E ,H(l)

R ⊗HE).
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Thus, when a quantum channel preserves a given ensemble, an isometry corresponding
to its Stinespring representation should have a block structure corresponding to the KI
structure of the ensemble. The theorem is based on properties of quantum channels stated
in the following theorems, on which we mainly focus in this thesis. The first theorem states
that a quantum channel can be decomposed into two parts if it preserves two given states.

Theorem 4.2. Let H be a quantum system. Let ρ ∈ D(H) and ρ′ ∈ D(H) be density
operators in this quantum system. Consider the decomposition of quantum system

H = H1 ⊕H2, (4.7)

where H1 is the Hilbert space spanned by the eigenvectors corresponding to the positive
eigenvalues of ρ− ρ′. Suppose that we have a quantum channel TU with Stinespring repre-
sentation U satisfying

TU(ρ) = ρ, (4.8)

TU(ρ′) = ρ′. (4.9)

Then, U can be decomposed into a block diagonal form; that is,

U = P1UP1 ⊕ P2UP2, (4.10)

where Pi is the projection onto the Hilbert space Hi for i = 1, 2.

The second theorem asserts that when we have some block structure of a quantum
channel, we can further decompose the channel if a state preserved by the channel has off
diagonal elements with respect to the given block structure.

Theorem 4.3. Let H be a Hilbert space with decomposition H = H1⊕H2. Let ρ ∈ D(H)
be a density operator on H with P2ρP1 6= 0, where Pi is the projection onto Hi for i = 1, 2.
Let G1 be the support of P2ρP1 and G2 be the image of P2ρP1, and define G⊥i := Hi−Gi for
i = 1, 2. Suppose that a pair of unitary operators U1 and U2 satisfies

TU1⊕U2(ρ) = ρ. (4.11)

Then, there exists Vi and V ⊥i such that

Ui = Vi ⊕ V ⊥i (4.12)

for i = 1, 2.
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This theorem is used to refine a block diagonal structure obtained in Theorem 4.2.
While Theorem 4.2 gives a block diagonal structure of the Stinespring representation of a
quantum channel preserving a quantum ensemble, it is not guaranteed that the structure of
the channel completely corresponds to the KI decomposition of the ensemble in the sense of
Theorem 4.1. Theorem 4.3 ensures that when a resulting structure of the quantum channel
does not correspond to the KI decomposition of the ensemble; that is, when some states
in the ensemble off block diagonal elements with respect to the structure of the channel,
we can refine the structure of the channel so that we can resolve the off block diagonal
elements. Thus, as we can see in these theorems, when a set of quantum states are given,
a quantum channel preserving the set will have a block diagonal structure.

4.2 Our results: Approximate Structure of Quantum

Operation Almost Preserving Quantum Ensemble

Here, we show our main results. We consider a variation of Theorem 4.2 and Theorem 4.3,
that is, an approximate structure of an isometry corresponding to a channel approximately
preserving a given set of states. Before moving to our main theorems corresponding to
Theorem 4.2 and Theorem 4.3, we show several useful lemmas.

The first lemma gives an upper bound of the norm of a linear operator restricted to some
subspace. When we have the norm of the product of the operator and a linear operator on
the subsystem, we can upper-bound the target norm by using the norm we have.

Lemma 4.4. Let HA and HB be quantum systems. Let X ∈ L(HA,HB) be a linear
operator and Y ∈ L(HB) be a normal operator. Let PY be the projection onto the subspace
with non-zero eigenvalues of Y . Then, it holds that

‖XPY ‖2 5
‖XY ‖2

smin(Y )
, (4.13)

where smin(Y ) is the smallest singular value of Y .
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Proof. Take the basis with which we can write

Y =



λ1

λ2

. . .

λk
0

. . .

0


(4.14)

where λ1, λ2, . . . , λk are the nonzero eigenvalues of Y . We omit the off diagonal elements,
all of which are zero. Hereafter, when we explicitly write a matrix, we may omit elements
equal to zero. In this basis, write X as

X =

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

 (4.15)

where m := DHA
and n := DHB

. Then, it holds that

XY =


λ1x11 λ2x12 · · · λkx1k 0 · · · 0
λ1x21 λ2x22 · · · λkx2k 0 · · · 0

...
...

. . .
...

...
. . .

...
λ1xn1 λ2xn2 · · · λkxnk 0 · · · 0

 (4.16)

Now, we have that

‖XY ‖2
2 =

∑
i=1,...,n
j=1,...,k

|xij|2|λj|2 = smin(Y )2
∑

i=1,...,n
j=1,...,k

|xij|2 = smin(Y )2‖XPY ‖2
2, (4.17)

which implies that

‖XPY ‖2 5
‖XY ‖2

smin(Y )
. (4.18)

Remark 4.5. We cannot eliminate the 1/smin(Y ) term in Eq. (4.18). Let P be a projection
operator and suppose that Y := αP for some nonzero complex number α ∈ C. Then, it
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holds that

‖XPY ‖2 =

∥∥∥∥XY

α

∥∥∥∥
2

=
1

|α|
‖XY ‖2

=
1

smin(Y )
‖XY ‖2,

(4.19)

which implies that the equality in Eq. (4.13) is achieved.

The next lemma gives a fundamental property of a quantum channel that approximately
preserves a Hermitian operator. When a quantum channel approximately preserves a
Hermitian operator, a Stinespring representation of the channel can be approximately
decomposed into two subsystems corresponding to the Jordan-Haan decomposition of the
Hermitian operator.

Lemma 4.6. Let H be a quantum system. Let O ∈ L(H) be a Hermitian operator with at
least one positive eigenvalue. Consider the following decomposition of O into two positive
operators:

O = O+ −O− (4.20)

where O+ is the positive operator corresponding to the positive eigenvalues of O. (That is,
O− is the positive operator corresponding to the non-positive eigenvalues of O.) Let P+ be
the projector onto the space spanned by the eigenstates of O+ and P− be the projector onto
the space spanned by the eigenstates of O−. Suppose that a quantum channel TU with the
Stinespring representation U almost preserves O; that is, for a fixed positive number ε, it
holds that

‖TU(O)−O‖1 5 ε. (4.21)

Then, it holds that

‖[P+ ⊗ 1E, U ](P+ ⊗ ωE)‖2 5
√

ε

smin(O+)
. (4.22)

Proof. First, by the linearity of TU , it holds that

Tr[P+TU(O)] = Tr[P+TU(O+)]− Tr[P+TU(O−)]

= Tr[TU(O+)]− Tr[P−TU(O+)]− Tr[P+TU(O−)]

= Tr[O+]− Tr[P−TU(O+)]− Tr[P+TU(O−)]

(4.23)
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The third equality holds because IH = P+ + P−, and the last equality holds because TU is
trace-preserving. Now, it holds that

Tr[P−TU(O+)] + Tr[P+TU(O−)] = |Tr[P−TU(O+)] + Tr[P+TU(O−)]|
= |Tr[P+TU(O)]− Tr[O+]|
= |Tr[P+(TU(O)−O)]|
5 ‖P+‖∞‖TU(O)−O‖1

5 ε.

(4.24)

The first inequality follows from Proposition 2.38. Since inequalities Tr[P−TU(O+)] = 0
and Tr[P+TU(O−)] = 0 hold, we have

Tr[P−TU(O+)] 5 ε. (4.25)

Now, observe that

Tr[P−TU(O+)] = Tr[(P− ⊗ IE)U(O+ ⊗ ωE)U †]

= ‖(P− ⊗ IE)U(
√
O+ ⊗ ωE)‖2

2,
(4.26)

which implies that
‖(P− ⊗ IE)U(

√
O+ ⊗ ωE)‖2 5

√
ε. (4.27)

By using Lemma 4.4, we have

‖(P− ⊗ IE)U(P+ ⊗ ωE)‖2 5
‖(P− ⊗ IE)U(

√
O+ ⊗ ωE)‖2

smin(
√
O+)

5
√

ε

smin(O+)
. (4.28)

Therefore, noticing that P− = IH − P+, we have

‖[P+ ⊗ 1E, U ](P+ ⊗ ωE)‖2 5
√

ε

smin(O+)
. (4.29)

We now prove the third lemma, which shows a property of quantum channels that
almost preserve a state on a given quantum system consisting of two orthogonal systems.
The lemma states that if a Stinespring representation of the channel has an approximate
block diagonal structure with respect to one of the two orthogonal systems, it must be also
approximately block diagonal with respect to the other system.
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Lemma 4.7. Let H1 and H2 be quantum systems. Define a quantum system H := H1⊕H2.
Let ρ be a density operator and suppose that supp(ρ) = H. Suppose that a quantum channel
TU with the Stinespring representation U almost preserves ρ; that is, for a fixed positive
number ε, it holds that

‖TU(ρ)− ρ‖1 5 ε. (4.30)

Suppose also that
‖[P1 ⊗ IE, U ](P1 ⊗ ωE)‖2 5 δ. (4.31)

Then, it holds that

‖[P2 ⊗ IE, U ](P2 ⊗ ωE)‖2 5

√
ε+ 2δ + δ2

smin(P2ρP2)
. (4.32)

Proof. First, observe that Eq. (4.31) implies that

‖(P2 ⊗ IE)U(P1 ⊗ ωE)‖2 5 δ (4.33)

because P1 + P2 = IH. Now, it holds that

|Tr[P1TU(P2ρP2)]| = |Tr[TU(P2ρP2)− P2TU(P2ρP2)]|
= |Tr[P2ρ− P2TU(P2ρP2)]|
= |Tr[P2(ρ− TU(ρ))] + Tr[P2TU(P1ρP1 + P1ρP2 + P2ρP1)]|
5 |Tr[P2(ρ− TU(ρ))]|
+ |Tr[P2TU(P1ρP1)]|+ |Tr[P2TU(P1ρP2)]|+ |Tr[P2TU(P2ρP1)]|.

(4.34)

Then, as for the first term of Eq. (4.34), by Proposition 2.38, we have that

|Tr[P2(ρ− TU(ρ))]| 5 ‖P2‖∞‖ρ− TU(ρ)‖1 5 ε. (4.35)

In addition, we can upper-bound the second term of Eq. (4.34).

|Tr[P2TU(P1ρP1)]| = |Tr[(P2 ⊗ IE)U(P1 ⊗ ωE)(ρ⊗ ωE)(P1 ⊗ ωE)U †(P2 ⊗ IE)]|
= ‖(P2 ⊗ IE)U(P1 ⊗ ωE)(

√
ρ⊗ ωE)‖2

2

5 ‖(P2 ⊗ IE)U(P1 ⊗ ωE)‖2
2‖
√
ρ⊗ ωE‖2

2

5 δ2.

(4.36)

Moreover, we can upper-bound the third term of Eq. (4.34) in the following way.

|Tr[P2TU(P1ρP2)]| = |Tr[(P2 ⊗ IE)U(P1 ⊗ ωE)(ρ⊗ ωE)(P2 ⊗ ωE)U †]|
= ‖(P2 ⊗ IE)U(P1 ⊗ ωE)‖2‖U(P2 ⊗ ωE)(ρ⊗ ωE)‖2

5 δ‖(P2 ⊗ ωE)(ρ⊗ ωE)‖2

5 δ.

(4.37)
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Using similar argument, we have

Tr[P2TU(P2ρP1)]| 5 δ. (4.38)

Therefore, we have

‖(P1 ⊗ IE)U(
√
P2ρP2 ⊗ ωE)‖2

2 = |Tr[P1TU(P2ρP2)]|
5 ε+ 2δ + δ2.

(4.39)

Using Lemma 4.4, we have

‖(P1 ⊗ IE)U(P2 ⊗ ωE)‖2 5
‖(P1 ⊗ IE)U(

√
P2ρP2 ⊗ ωE)‖2

smin(
√
P2ρP2)

5

√
ε+ 2δ + δ2

smin(P2ρP2)
. (4.40)

Using these three lemmas, we can prove our main theorems. First, we show our first
theorem, which shows that a quantum channel has an approximate block diagonal structure
determined by the given states when it preserves two quantum states approximately. The
statement of the following theorem is considered as an approximate version of Theorem 4.2;
hence, we successfully approximate the structure shown in Eq. (4.22).

Theorem 4.8. Let H be a quantum system. Let ρ and ρ′ be quantum states, and suppose
that supp(ρ+ρ′) = H. Define O := ρ−ρ′, and consider the decomposition of O = O+−O−,
where O+ is the positive operator corresponding to the positive eigenvalues of O. Let P+

be the projector onto the space spanned by the eigenstates of O+ and P+ be the projector
onto the space spanned by the eigenstates of O−. In addition, define a quantum state

σ :=
ρ+ ρ′

2
(4.41)

Suppose that a quantum channel TU almost preserves the two given states; that is,

‖TU(ρ)− ρ‖1 5 ε, (4.42)

‖TU(ρ′)− ρ′‖1 5 ε′. (4.43)

Then, it holds that

‖U − (P+ ⊗ IE)U(P+ ⊗ ωE)⊕ (P− ⊗ IE)U(P− ⊗ ωE)‖2

5

√
ε+ ε′

smin(O+)
+

1√
smin(P−σP−)

√√√√(1

2
+

1

smin(O+)

)
(ε+ ε′) + 2

√
ε+ ε′

smin(O+)
.

(4.44)
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Proof. From Eqs. (4.42) and (4.43), we have

‖TU(O)−O‖1 5 ε+ ε′, (4.45)

‖TU(σ)− σ‖1 5
ε+ ε′

2
. (4.46)

Then, by Lemma 4.6, we have

‖[P+ ⊗ 1E, U ](P+ ⊗ ωE)‖2 5

√
ε+ ε′

smin(O+)
. (4.47)

Therefore, by Lemma 4.7, we also have

‖[P− ⊗ 1E, U ](P− ⊗ ωE)‖2 5
1√

smin(P2σP2)

√√√√(1

2
+

1

smin(O+)

)
(ε+ ε′) + 2

√
ε+ ε′

smin(O+)
.

(4.48)
Combining these two equations, we have

‖U − (P+ ⊗ IE)U(P+ ⊗ ωE)⊕ (P− ⊗ IE)U(P− ⊗ ωE)‖2

= ‖U(P+ ⊗ ωE) + U(P− ⊗ ωE)− (P+ ⊗ IE)U(P+ ⊗ ωE) + (P− ⊗ IE)U(P− ⊗ ωE)‖2

5 ‖U(P+ ⊗ ωE)− (P+ ⊗ IE)U(P+ ⊗ ωE)‖2 + ‖U(P− ⊗ ωE)− (P− ⊗ IE)U(P− ⊗ ωE)‖2

= ‖[P+ ⊗ 1E, U ](P+ ⊗ ωE)‖2 + ‖[P− ⊗ 1E, U ](P− ⊗ ωE)‖2

5

√
ε+ ε′

smin(O+)
+

1√
smin(P−σP−)

√√√√(1

2
+

1

smin(O+)

)
(ε+ ε′) + 2

√
ε+ ε′

smin(O+)
.

(4.49)

Next, we show our second theorem, which shows that a quantum channel with a block
structure almost preserving a state with off block diagonal elements has a finer approximate
block structure. The following theorem is considered as a tool to refine the structure
obtained through Theorem 4.8, which is essential to achieve a sophisticated approximate
block diagonal structure of quantum channels.

Theorem 4.9. Let H be a quantum system with decomposition H = H1 ⊕H2. Let ρ be
a density operator with supp(ρ) = H and P2ρP1 6= 0, where Pi is the projection onto Hi

for i = 1, 2. Let G1 be the support of P2ρP1 and G2 be the image of P2ρP1, and define
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G⊥i := Hi − Gi for i = 1, 2. Consider a polar decomposition P2ρP1 := WQ, where W
is a unitary operator Q is a positive operator. Note that W †W is the projection onto G1

and that WW † is the projection onto G2. Here, we have W 2 = 0 because P1 and P2 are
orthogonal.

Suppose that a pair of unitary operators U1 and U2 satisfies

‖TU1⊕U2(ρ)− ρ‖1 5 ε. (4.50)

Then, it holds that

‖U1 − (W †W ⊗ IE)U1(W †W ⊗ ωE)⊕ ((P1 −W †W )⊗ IE)U1((P1 −W †W )⊗ ωE)‖2

5 αO
√

2ε+

√
2(1 + α2

O)ε+ 2αO
√

2ε

smin((P1 −W †W )ρ(P1 −W †W ))
,

(4.51)
where

αO :=
1√

smin(O+)
+

1√
smin(O−)

(4.52)

with a Hermitian operator O := P1ρP2 + P2ρP1. Here, O± := P±OP± where P± is the
projection operator onto the space spanned by the eigenstates corresponding to the nonzero
positive/negative eigenvalues of O. It also holds that

‖U2 − (WW † ⊗ IE)U2(WW † ⊗ ωE)⊕ ((P2 −WW †)⊗ IE)U1((P1 −WW †)⊗ ωE)‖2

5 αO
√

2ε+

√
2(1 + α2

O)ε+ 2αO
√

2ε

smin((P2 −WW †)ρ(P2 −WW †))
.

(4.53)

Proof. First, it holds that

‖[(P+ + P−)⊗ IE, U1 ⊕ U2](P+ + P− ⊗ ωE)‖2

5 ‖((P+ + P−)⊗ IE)(U1 ⊕ U2)((P+ + P−)⊗ ωE)− (U1 ⊕ U2)((P+ + P−)⊗ ωE)‖2

5 ‖((P+ + P−)⊗ IE)[(U1 ⊕ U2)((P+ + P−)⊗ ωE)

− (P+ ⊗ IE)(U1 ⊕ U2)(P+ ⊗ ωE)− (P+ ⊗ IE)(U1 ⊕ U2)(P+ ⊗ ωE)]

+ (P+ ⊗ IE)(U1 ⊕ U2)(P+ ⊗ ωE) + (P+ ⊗ IE)(U1 ⊕ U2)(P+ ⊗ ωE)

− (U1 ⊕ U2)((P+ + P−)⊗ ωE)‖2

= ‖((IH − P+ − P−)⊗ IE)[[P+ ⊗ IE, U1 ⊕ U2](P+ ⊗ ωE) + [P− ⊗ IE, U1 ⊕ U2](P− ⊗ ωE)]‖2

5 ‖[P+ ⊗ IE, U1 ⊕ U2](P+ ⊗ ωE) + [P− ⊗ IE, U1 ⊕ U2](P− ⊗ ωE)‖2

5 ‖[P+ ⊗ IE, U1 ⊕ U2](P+ ⊗ ωE)‖2 + ‖[P− ⊗ IE, U1 ⊕ U2](P− ⊗ ωE)‖2.
(4.54)

73



On the other hand, it holds that

‖TU1⊕U2(PiρPj)− PiρPj‖1 = ‖PiTU1⊕U2(ρ)Pj − PiρPj − PiρPj‖
5 ‖Pi‖∞‖TU1⊕U2(ρ)− ρ‖1‖Pj‖∞
= ‖TU1⊕U2(ρ)− ρ‖1

5 ε

(4.55)

for i, j = 1, 2. Therefore, we have

‖TU1⊕U2(O)−O‖1 5 2ε. (4.56)

By Lemma 4.6, it holds that

‖[P+ ⊗ IE, U1 ⊕ U2](P+ ⊗ ωE)‖2 5

√
2ε

smin(O+)
(4.57)

‖[P− ⊗ IE, U1 ⊕ U2](P− ⊗ ωE)‖2 5

√
2ε

smin(O−)
. (4.58)

Then, we have

‖[(P+ + P−)⊗ IE, U1 ⊕ U2]((P+ + P−)⊗ ωE)‖2 5 αO
√

2ε. (4.59)

Since P+ + P− = W †W +WW †, we have that

‖[(W †W +WW †)⊗ IE, U1 ⊕ U2]((W †W +WW †)⊗ ωE)‖2 5 αO
√

2ε, (4.60)

which implies that

‖[(W †W )⊗ IE, U1]((W †W )⊗ ωE)‖2 5 αO
√

2ε (4.61)

‖[(WW †)⊗ IE, U2]((WW †)⊗ ωE)‖2 5 αO
√

2ε. (4.62)

Using Lemma 4.7, we have the inequalities (4.51) and (4.53).

From Theorem 4.8 and Theorem 4.9, we can give an approximate block diagonal struc-
ture of a quantum channel that approximately preserves a given quantum ensemble. The-
orem 4.8 leads to a rough structure, and then Theorem 4.9 allows us to refine the struc-
ture. On the other hand, one may notice that approximate Stinespring operators obtained
through approximations, shown in Eqs. (4.44), (4.51), and (4.53), are not necessarily isome-
tries because for a unitary operator U and a projection operator P , PUP is not necessarily
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a unitary operator. To resolve this problem, we show the following theorem, which states
that when a unitary operator can be approximated by a block diagonal operator, the
unitary can indeed be approximated by a block diagonal unitary operator. The follow-
ing theorem allows us to approximate a quantum channel almost preserving a quantum
ensemble as another quantum channel with a block diagonal structure.

Theorem 4.10. Let H1 and H2 be quantum systems, and let Pi be the projection onto Hi

for i = 1, 2. Suppose that a unitary operator U ∈ U(H1 ⊕H2) satisfies

‖U − P1UP1 ⊕ P2UP2‖2 5 ε (4.63)

for a fixed positive real number 0 < ε < 1. Then, there exists a pair of unitary operators
U1 ∈ U(H1) and U2 ∈ U(H2) such that

‖U − U1 ⊕ U2‖2 5 max

{
ε√

1− ε
, 2ε

}
. (4.64)

Proof. Consider singular value decomposition of P1UP1 and P2UP2

P1UP1 := W1S1V1, (4.65)

P2UP2 := W2S2V2, (4.66)

where Si is a diagonal matrix with the singular values of PiUPi, and Wi and Vi are unitary
matrices for the singular value decomposition, for i = 1, 2. By Eq. (4.63), we have

‖(W1 ⊕W2)†U(V1 ⊕ V2)† − S1 ⊕ S2‖2 5 ε (4.67)

since the 2 norm does not change if we apply unitary operators. Here we define

U ′ := (W1 ⊕W2)†U(V1 ⊕ V2)†, (4.68)

S := S1 ⊕ S2, (4.69)

leading to
‖U ′ − S‖2 5 ε. (4.70)

Note that U ′ is also a unitary matrix by definition and that S is a diagonal matrix. Then,
considering a matrix representation

U ′ =
∑
a,b∈Σ

U ′ab |a〉 〈b| , (4.71)

S =
∑
a∈Σ

Saa |a〉 〈a| (4.72)
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with an alphabet Σ such that H1 ⊕H2 = CΣ, we have∑
a∈Σ

|U ′aa − Saa|2 +
∑
a,b∈Σ
a6=b

|U ′ab|2 5 ε2. (4.73)

There exists δ1 = 0 and δ2 = 0 such that δ1 + δ2 5 ε2 and∑
a∈Σ

|U ′aa − Saa|2 = δ1, (4.74)∑
a,b∈Σ
a6=b

|U ′ab|2 = δ2. (4.75)

Then, it holds that

‖S − IH1⊕H2‖2
2 =

∑
a∈Σ

|Saa − 1|2

=
∑
a∈Σ

|Saa|2 − 2
∑
a

Saa +DH1⊕H2

= δ1 + δ2 − 2
∑
a∈Σ

(1− Re(U ′aa))Saa

5 ε2

(4.76)

because Saa = 0 and 1−Re(U ′aa) = 0 for all a. Then, we first consider the following chain
of inequalities:

‖U −W1V1 ⊕W2V2‖2 = ‖U ′ − IH1⊕H2‖2 (4.77)

5 ‖U ′ − S‖2 + ‖S − IH1⊕H2‖2 (4.78)

5 2ε. (4.79)

On the other hand, we consider the following chain of inequalities:

‖U −W1V1 ⊕W2V2‖2
2 = ‖U ′ − IH1⊕H2‖2

2 (4.80)

=
∑
a∈Σ

|U ′aa − 1|2 +
∑
a,b∈Σ
a6=b

|U ′ab|2 (4.81)

= 2DH1⊕H2 − 2
∑
a∈Σ

Re(U ′aa) (4.82)

= 2
∑
a∈Σ

(1− Re(U ′aa)) . (4.83)
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Now, since ‖S − IH1⊕H2‖2 5 ε, letting Smin denote the smallest (diagonal) element of S,
we have

(Smin − 1)2 5 ‖S − IH1⊕H2‖2
2 5 ε2, (4.84)

which implies that
1− ε 5 Smin 5 1 + ε. (4.85)

Since it holds that

0 5 ‖S − IH1⊕H2‖2
2 5 ε2 − 2

∑
a∈Σ

(1− Re(U ′aa))Saa, (4.86)

it follows that

2Smin

∑
a∈Σ

(1− Re(U ′aa)) 5 2
∑
a∈Σ

(1− Re(U ′aa))Saa 5 ε2, (4.87)

which implies that

2
∑
a∈Σ

(1− Re(U ′aa)) 5
ε2

Smin

5
ε2

1− ε
. (4.88)

Therefore, we have

‖U −W1V1 ⊕W2V2‖2 5
ε√

1− ε
. (4.89)

Combining two inequalities, we have

‖U −W1V1 ⊕W2V2‖2 5 max

{
ε√

1− ε
, 2ε

}
. (4.90)

Therefore, we can take U1 := W1V1 and U2 := W2V2.

Thus, combining Theorems 4.8, 4.9, and 4.10, we have that a Stinespring represen-
tation of a quantum channel can be approximated by an isometry with a block diagonal
structure when the channel approximately preserves some given set of states. Then, by
repeatedly applying these theorems, we can find a fine approximate structure of a given
quantum channel within allowed errors. Finally, we should note that the upper bounds
obtained in Eqs. (4.44), (4.51), and (4.53) depend on the smallest singular values of some
operators. While Remark 4.5 implies that we cannot remove this factor of the smallest
singular values in a straightforward way, further investigating the tightness of the bounds
would be interesting and needed to fully understand the approximate structure.
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4.3 Summary and Discussions

In this chapter, we investigated a structure of quantum channels that almost preserve a
given quantum ensemble. As noted in previous research [2,3], an approximate KI structure
of quantum ensembles is hard to analyze because even an extremely small approximation
causes a significant difference of the KI structure. At the same time, an approximate
variation of KI decomposition is essential for further error analysis of the optimal rate of
blind quantum data compression. To investigate an approximate KI structure, we consider
a structure of quantum channel approximately preserving a quantum ensemble. We first
proved that when a quantum channel approximately preserves two quantum states, the
isometry corresponding to its Stinespring representation has an approximate block diagonal
structure induced by the two states. The extent of approximation is determined by how
well the channel preserves the given two states and the eigenvalues of the operator defined
as the difference of the two states. The bound is tight in the sense that when the given two
states are similar, the approximation becomes worse. Then, we also proved that when a
quantum channel with a block diagonal Stinespring representation almost preserves a state
with off block-diagonal elements, we can approximately refine the block diagonal structure.
Finally, considering the fact that approximated operators appearing in these theorems are
not necessarily isometries, we show a theorem ensuring that Stinespring representations in
our theorems are indeed close to block diagonal isometries.

Although it is still hard to obtain a complete form of the approximate structure, we
think our work makes progress towards analyzing such an approximate KI structure. It
is essential to extend our results to obtain a more general approximate KI structure of
quantum channels, leading to an approximate KI decomposition of quantum ensembles.
We believe this analysis is also vital for a good approximate protocol for blind compression,
which is discussed in Chapter 3.
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Chapter 5

Conclusion

In this thesis, we investigated the quantum blind compression with finite local approx-
imations and an approximate structure of quantum channels.

We constructed a novel compression protocol that works remarkably well with the
allowance of approximations; that is, the protocol showed a substantial reduction of the
compression rate for specific examples. Furthermore, our numerical experiments revealed
that the arithmetic mean method performs well over the geometric mean method for the
compression of classical ensembles with a local approximation. In addition, we successfully
extended the key theorems shown in Ref. [4] to the approximate setup; that is, we proved
that the Stinespring isometry corresponding to a quantum channel that approximately
preserves a quantum ensemble can be approximated by a block diagonal isometry. We also
discussed the tightness of the extent of the approximation with an example.

Thus, our results shed light on the instability of the rate of blind quantum data com-
pression against approximations. Thanks to our new compression protocol, the much more
efficient data transmission is achieved in a realistic setup with the allowance of approx-
imations. Furthermore, our results on the approximation of KI decomposition not only
contributes to understandings of restrictions for quantum operations that cause a small
disturbance, which is vital in terms of fundamental quantum mechanics, but also provides
us with insights into an approximate KI decomposition of quantum states that is essential
to conduct rigorous error analysis of blind data compression and to construct better and
more general protocol with approximations. We have not completely revealed the gen-
eral approximate structure of quantum ensembles due to the difficulties of general analysis
caused by the instability of KI decomposition; nevertheless, our protocol works surprisingly
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better for some examples, and we showed a structure of quantum channels. We believe
that our work is an essential first step of the general investigation of approximate KI de-
composition, which is demanded for the study of blind quantum data compression with
finite approximations and the further error analysis of blind compression.
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