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Abstract

Regression analysis for failure time data is often directed at studying the relation-

ship between a time-dependent biomarker and failure. The Cox regression model and the

associated partial likelihood on which inference is based is well-suited for this kind of inves-

tigation since the values of time-dependent biomarkers are only required at the observed

failure times in the sample. It is common, however, for markers values to be obtained

only at periodic clinic visits when biospecimens are acquired for testing. The convention

is then to take these values as the working value of the biomarker until the next visit,

failure, or censoring. In such settings the assumed biomarker value is typically out-of-date

and therefore misrepresents the true value. Joint modeling can be shown to address this

misspecification, where the marker process can mitigate the bias from a naive analysis

using the last observation carried forward approach.

In Chapter 2 of this thesis an expectation-maximization algorithm is developed for fit-

ting a joint (i.e. multistate) model for an intermittently-observed binary time-dependent

biomarker and failure time. This is implemented and assessed empirically through simu-

lation studies and applied to a dataset from a cancer clinical trial studying the relation

between a biomarker and the occurrence of a composite endpoint defined as the time of a

skeletal complication or death.

Chapter 3 involves a careful study of the asymptotic bias of regression coefficients from

a Cox regression model using the conventional approach of carrying biomarker values for-

ward in time from the time of clinic visits until the next measurement occasion, failure or

censoring. Using counting process notation and large sample theory related to misspeci-

fied models we gain insights into the determinants of the limiting bias. We consider a true

underlying Cox model in which the current marker value and a baseline covariate act mul-

tiplicatively on a baseline hazard so the bias in the effect of the biomarker and the baseline

covariate can be examined. The determinants of the limiting bias include the proportion

of time spent in the two marker states, the relation between the baseline covariates and

the intensities governing transitions between the marker states, and the frequency of the
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measurements. We also define a marker-dependent visit process as one in which the visit

intensity depends on the latent marker value. The strength of this association is found to

affect the magnitude of the asymptotic bias as well.

An expanded joint model is described in Chapter 4 which incorporates the marker

process, failure process, visit process and right-censoring process. This general framework

accommodates marker-dependent censoring and marker-dependent visit intensities and so

is quite general. It offers a basis for joint modeling of all four processes in order to mit-

igate the biases from either the conventional last observation carried forward approach,

or the simpler joint model of Chapter 2. Note that visit and failure times are observed

exactly but are subject to right censoring, so the baseline intensities of these events can

be well-estimated. The transitions between marker states are unobserved however so these

intensities must be modelled parsimoniously. The focus of the investigation is primarily

to study the ability to obtain good estimation of the failure process intensity under a

marker-dependent visit process and so this is the setting of the simulation studies. We fit

the model to data from a study of the relation between an inflammatory blood marker,

the erythrocyte sedimation rate, a baseline genetic marker and the time to joint damage

involving patients from the University of Toronto Psoriatic Arthritis Clinic.

A summary is given in Chapter 5 along with some discussion of topics for future re-

search.
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Chapter 1

Joint Modeling of Dependent Visit and Life

History Data

1.1 Introduction

Multistate models provide a convenient and powerful framework for modeling life his-

tory processes (Cook and Lawless, 2018). For example, Andersen (1988) used mutltistate

models to analyze the mortality and incidence of nephropathy for patients with diabetes.

Gentleman et al. (1994) proposed a multistate approach to model the onset of AIDs for

HIV infected patients that have incomplete information about their life history. Klein

et al. (2000) and Keiding et al. (2001) discussed a set of models to analyze bone marrow

transplantation. Some typical multistate models include progressive disease model for sur-

vival analysis (Gil et al., 2007), illness death models (Meira-Machado et al., 2006), and

competing risk models (Andersen et al., 2002).

Jewell and Kalbfleisch (1996) termed markers as internal time-dependent covariates

which could reflect the state of an indvidual. In longitudinal studies, marker values are

assessed at repeated measurements over time. A large number of methods have been

proposed to analyze longitudinal data. The three primary classes of methods are mixed

effects models, marginal models, and transition models (Zeger and Liang, 1992). For mixed

effects models, the individual trajectories are modeled based on the assumption that the
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repeated measurements of marker values share a common random effect. Harville (1977)

proposed to use the maximum likelihood of linear mixed effect model to iteratively estimate

the variance components. Laird and Ware (1982) extended the linear mixed effects model

with a two-stage expectation-maximization (EM) algorithm. Models are also developed to

get a robust inference under the misspecification of random effects (Verbeke and Lesaffre,

1996, 1997). Marginal models for estimating the average response of the population based

on generalized estimating equation (GEE) methods are also appealing (Zeger and Liang,

1986; Zeger et al., 1988). In GEE, estimation of parameters remain consistent if the working

correlation matrix is not correctly specified. In transition models, the mean response is

modeled given covariates and past responses (Heagerty, 2002). These models have a similar

general formulation as many auto-regressive models used in time series as well as models

commonly used for discrete state stochastic processes.

Often interest lies in markers only as covariates in models for life history processes. For

example, interest may lie in the impact of blood pressure control on risk of cardiovascular

events (McEvoy et al., 2016), or poor blood glucose control on the risk of complications in

diabetes (Al-Kateb et al., 2008). In this case joint modelling of multistate and longitudinal

data are appealing as they accommodate the fact that the marker processes are only under

intermittent observation. For continuous markers, Rizopoulos et al. (2008) developed a

shared random effect models with a random effect in a linear mixed model which is also

a factor in the hazard model for a survival time. This classical joint modelling framework

has been extended to deal with different life history processes. Elashoff et al. (2008), for

example, considered joint modelling with competing risk data, Dantan et al. (2011) studied

a joint model with latent states for the longitudinal process and an illness-death model, and

Ferrer et al. (2016) linked a linear mixed effect model for longitudinal data to proportional

hazards functions for multistate processes via a shared random effect.

This thesis is concerned with regression analysis of failure time data. A major focus

is on the analysis of data when markers are measured intermittently at clinic visits, and

used as covariates in Cox regression models. The convention in such settings is to carry

forward the most recently recorded marker value and use it until a new updated value is
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available but this can lead to biased estimators of covariate effects. de Bruijne et al. (2001)

proposed to incorporate weights that were functions of time since the recording of the

covariate value to reduce this bias by down-weighting contributions when there is a longer

time from the marker measurement to the time of interest. Smoothing techniques and

imputation techniques have also been explored (Raboud et al., 1993; Tsiatis et al., 1995;

Andersen and Liestøl, 2003). Joint modeling is also a feasible way of mitigating these

biases, subject to the modeling assumptions being correct (Rizopoulos, 2012). Cook and

Lawless (2018, 2019) classify intermittent observation schemes according to whether the

visit process leading to the measurement of the marker process is conditionally independent

and hence ignorable in a likelihood analysis, or not. The likelihood in this context is the full

likelihood which here would involve modeling the marker jointly with the failure process.

One aim of this thesis is to compute the asymptotic bias of naive estimators obtained

from carrying forward the marker value from the time they were last measured until the

next measurement occasion or the minimum of the failure and censoring times. This

builds on the work of Jiang et al. (2020) who considered a simple setting of a single binary

marker under a completely independent visit process. We explore the limiting behavior of

additional fixed covariate effects, and also explore the setting in which the (latent) marker

values influence the visit intensity-based models.

Interest in joint modeling typically lies in weakly parametric or semiparametric pro-

portional hazards models. We therefore develop an expectation-maximization algorithm

(Dempster et al., 1979) to facilitate fitting models with piecewise constant baseline hazards

for the failure process and outline an extension to the semiparametric setting. Interest lies

in extending these methods to accommodate marker-dependent visit processes, which will

require conceptualization of joint model for the marker, visit and failure process.
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1.2 Model Formulation for the Disease Process

1.2.1 An Overview of Multistate Models

We consider a multistate process with K states. Let S = {1, . . . , K} denote the state space.

We let Z(t) = k if state k is occupied at time t, k = 1, . . . , K and assume Z(0) = 1 with

probability 1. We then let {Z(t), t > 0} be the multistate process, and Z(t) = {Z(s), 0 ≤

s < t} be the history of the process. Let λkl(t | Z(t)) be the complete transition intensity

of the form

lim
∆t→0

P (Z(t+ ∆t−) = l |Z(t−) = k,Z(t))

∆t
= λkl(t | Z(t)) (1.1)

for all k 6= l (Cook and Lawless, 2018). If we let Yk(t) = I(Z(t−) = k) indicate the process

is in state k at t− and hence at risk of a transition out of state k, this can also be written

as

lim
∆t→0

P (Z(t+ ∆t−) = l | Z(t))

∆t
= Yk(t)λkl(t | Z(t)) .

Likelihood Construction with Administrative Right Censoring Times

Let CA be a fixed administrative censoring time where we assume without loss of generality

that CA = 1 so that individuals are to be observed over the interval [0, 1]. We partition

the interval into R pieces according to the cut-points 0 = u0 < u1 < . . . < uR = 1. To

introduce counting process notation we first define Nkl(t) to be the number of transitions

from state k to l over (0, t]. We then let ∆Nkl(ur) = ∆Nkl(u
−
r ) − ∆Nkl(u

−
r−1) to be

the number of k → l transitions over [ur−1, ur), r = 1, . . . , R. We further construct a

vector ∆Nk(ur) = (∆Nkl(ur), l 6= k, l = 1, . . . , K)′ to denote whether a transition out of

state k happens over the interval, where any non-zero elements indicate which state was

entered. Let ∆N(ur) = (∆N ′k(ur), k = 1, . . . , K)′ be a full vector of all counting process

increments (i.e. for all pairs of states). Let Nk·(t) =
∑K

l=1,l 6=kNkl(t) count the number of

transitions departing state k over [0, t] and we let ∆Nk·(t) = Nk·(t+ ∆t−)−Nk·(t
−). Note

that ∆Nk·(t) = 0 when no transition is made from state k over [t, t + ∆t). We also let

Z(ur) = {Z(us), s = 0, 1, . . . , r} to be the history of a multistate process at time ur in the
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partition. The likelihood of the multistate process is then given by

lim
R→∞

R∏
r=1

P (∆N(ur) | Z(ur−1)) = lim
R→∞

R∏
r=1

{
K∏
k=1

P (∆Nk(ur) | Z(ur−1))Yk(ur−1)

}
(1.2)

where Yk(s) = I(Z(s−) = k), k = 1, . . . , K. Given a sample path {∆N(u1), . . . ,∆N(uR)},
the limit can be taken as R → ∞, so that each sub-interval only contains at most one

transition. Next note that by (1.1) P (∆Nk(ur)|Z(ur−1))Yk(ur−1) is

»

–

K∏
l=1,l 6=k

[λkl(ur|Z(ur−1))∆ur + o(∆ur))
∆Nkl(ur)]

´

1− λk·(ur|Z(ur−1))∆ur + o(∆ur)
¯1−∆Nk·(ur)

fi

fl

Yk(ur−1)

where λk·(ur|Z(ur−1)) =
∑K

l=1,l 6=k λkl(ur|Z(ur−1)). As a result, (1.2) can be rewritten as

lim
R→∞

K∏
k=1

{„ K∏
l=1,l 6=k

R∏
r=1

(λkl(ur | Z(ur−1))∆ur + o(∆ur))
∆Nkl(ur)

×
´

1− λk·(ur | Z(ur−1))∆ur + o(∆ur)
¯1−∆Nk·(ur)

Yk(ur−1)}
(1.3)

Dividing equation (1.3) by
∏K

k=1

∏K
l=1,l 6=k

∏R
r=1(∆ur)

Yk(ur−1)∆Nkl(ur) and taking the limit as

R→∞ gives the likelihood

L =
K∏
k=1

[
K∏

l=1,l 6=k

„ ∏
tj∈Dkl

λkl(tj | Z(t−j )) exp(−
∫ 1

0

Yk(u
−)λkl(u | Z(u−)))



where Dkl is the set of transition times from k to l over [0, 1], and tj represents an element

of Dkl.

1.2.2 Markov Models

A K-state stochastic process is Markov if given the full history up to time t−, the proba-

bilistic structure of the future only depends on the state at t−, but not the history prior

to that point (Resnick, 2013). The transition intensity (1.1) then reduces to

λkl(t | Z(t)) = Yk(t)λkl(t) . (1.4)
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Let P (s, t) denote a K ×K transition probability matrix with entries

Pkl(s, t) = P (Z(t) = l |Z(s) = k)

satisfying Pkl(s, t) ≥ 0, and
∑K

l=1, l 6=k Pkl(s, t) = 1 for l = 1, . . . , K.

Let dQ(t) be a K × K matrix with off-diagonal (k, l) entry given by λkl(t)dt and

−
∑

l 6=k λkl(t)dt in the diagonal entries, k = 1, . . . , K. If I be a K × K identity matrix,

then the K × K transition probability matrix is obtained from the K × K transition

intensity matrix dQ(t) by product integration as

P (s, t) =
∏
(s,t]

{I + dQ(u)} ,

For time-homogeneous Markov models λkl(t) = λkl and the transition probability matrix

can be calculated as

P (s, t) = exp(dQ∗ · (t− s)) ,

via matrix exponentiation (Cox and Miller, 1965) where dQ∗ = dQ/dt .

1.2.3 Semi-Markov Models

The transition intensity to state l from state k for a semi-Markov model is of the form

λkl(t | Z(t)) = Yk(t)hkl(B(t)) (1.5)

where B(t) = t−tr is the time an individual has spent in state k since the most recent entry

to it at tr. Such models are appealing and suitable when the trend in the risk of transition

out of a particular state is best characterized by the time since state entry. For the disease

process of interest which involve progressive damage or deterioration the Markov time scale

is most suitable and we focus on these models in this thesis.

We next consider some natural models for visit processes.
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1.3 A Recurrent Event Models for a Visit Process

0 1 2

Figure 1.1: A multistate representation of a counting process for visits over time

Visits may be scheduled at particular points in time in some controlled studies, but

the schedules are often imperfectly adhered to due to missed visits. Moreover in many

observational cohorts, registries, or studies involving electronic medical records, the times

of the visits may be considered as governed by a point process. We consider a multistate

presentation of a random visit process; here the states represent the cumulative number of

assessments after the baseline assessment; see Figure 1.1. We discuss visit process models

initially in the absence of random right-censoring and presume visits can occur over the

interval [0, 1].

Let 0 = ai0 < ai1 < · · · < air denote the subject-specific visit times over [0, t] for an

individual i in a sample of size n, i = 1, . . . , n. Let A(t) denote the number of visits over

(0, t], and let A(1) denote the total number of visits over (0, 1], the period of interest for

observation. We let ∆A(t) = A(t + ∆t−) − A(t−) be the number of visits over [t, t + ∆t)

and dA(t) = lim
∆t→0

∆A(t) = 1 if there is a visit at time t with dA(t) = 0 otherwise. Let

A(t) = {A(s), 0 ≤ s < t} denote the history of the visit process and consider the visit

intensity

lim
∆t→0

P (A(t+ ∆t−) = k + 1 |A(t−) = k,A(t))

∆t
= ρ(t | A(t)) , t > 0 . (1.6)
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This visit process intensity is based on the implicit assumption that the only history rel-

evant for the visit process intensity is the history of the visits, and hence that the visit

process is completely independent of the disease process. This assumption is relaxed in

the investigation of Chapter 3 and 4.

A simple and convenient model for an independent visit process is a Poisson process in

which ρ(t | A(t)) = ρ(t). In such processes, the inter-arrival time between two consecutive

visits is also conveniently modeled. A stochastic counting process {A(s), 0 < s} is a Poisson

process with rate ρ(t) if

1. A(0) = 0,

2. It features independent increments whereby A(t2) − A(t1) and A(s2) − A(s1) are

independent if 0 ≤ s1 < s2 ≤ t1 < t2 ,

3. A(t+ s)− A(s) ∼ Poisson(µ(s, s+ t)) if µ(s, s+ t) =
∫ s+t
s

ρ(u)du

where µ(s, s+t) is the integrated rate function over interval [s, s+t]. Note that the Poisson

process is time homogeneous when ρ(t) = ρ is a constant, and time non-homogeneous

otherwise. Let Wk = Ak − Ak−1 for k = 1, . . . , K denote the waiting time of the visit

process. For a time homogeneous Poisson process with rate ρ, it can be shown that the

waiting time W1, . . . ,WK are independent and identically distributed exponential random

variables with the same hazard ρ (Cook and Lawless, 2007).

To allow for the extra variation of a standard Poisson process, one could consider a

mixed Poisson model. In this model, we introduce a random effect U , with G(u;φ) denoting

the cumulative distribution function and G(u;φ) = 1−G(u;φ) denoting the corresponding

survivor function. We assume E(U) = 1 and V ar(U) = φ. Conditional on the random

effect u, the cumulative number of visits over (0, 1] is Poisson with mean u · µ(t), where

µ(t) =
∫ t

0
ρ(s)ds. The number of visits for each individual then arises from a mixed Poisson

process with conditional rate (given U = u) uρ(t):

A(t) |u ∼ PP(rate = uρ(t)) (1.7)
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Note that if U is gamma distributed, the result is a negative binomial process (Lawless,

1987), with intensity

ρ(t | A(t)) =
1 + φA(t−)

1 + φµ(t)
ρ(t).

Here, P (A(1) = 0; ρ, φ) corresponds to the probability that an individual does not have

any visit until the administrative censoring time, where

P (A(1) = 0; ρ, φ) = Eu{e−uρ} =

∫ ∞
0

e−uρ
uφ
−1−1 e−u/φ

Γ(φ−1)φφ−1 du

=
1

Γ(φ−1)φφ−1

∫ ∞
0

uφ
−1−1e−u/

φ
1+ρφdu =

´ 1

1 + ρφ

¯φ−1

. (1.8)

More generally

P (A(1) = r; ρ, φ) =
Γ(φ−1 + r)

Γ(φ−1)r!

(φµ(1))r

[1 + φµ(1)]φ−1+r
, r = 0, 1, . . .

Many joint models are constructed based on shared or correlated random effects so it would

be natural to consider linking the multistate process to the visit process in this manner.

We do not adopt this approach however as these models have some undesirable properties:

they will not accommodate Poisson visit processes and they require introduction of random

effects into the multistate process.

If we consider H(t) = {A(s), Z(s), 0 ≤ s < t}, the joint history of the visit and

multistate process, we can write the intensity of a joint multistate-visit process model as

lim
∆t→0

P (Z(t+ ∆t−) = l |H(t))

∆t
= Yk(t)λkl(t |H(t)), (1.9)

l 6= k and l, k = 1, . . . , K, with

lim
∆t→0

P (∆A(t) = 1 |H(t))

∆t
= Y (t)ρ(t |H(t)) (1.10)

where Y (t) indicates they are still at risk of a visit (here we assume Y (t) = 1 over [0, 1]).

These intensities govern the joint multistate and visit processes, but the visit process
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intensity in (1.10) is not always convenient to work with in isolation since Z(t) is not

observed under the intermittent visit process. A joint model for the multistate and visit

processes is possible to specify, however and we explore their use in this thesis.

1.4 Motivating Studies

1.4.1 A Bone Marker Study

In the bone marker study, our interest lies in evaluating the effect of treatment with bispho-

sphonate on reducing the incidence of skeletal complications for prostate cancer patients

(Saad et al., 2004). In cancer patients, the disruption of bone resorption could weaken

the skeleton and therefore these patients may have a higher risk of skeletal complications

such as pathological and vertebral fractures. The researchers recorded the level of bone

resorption marker Ntx and the level of bone formation marker BALP in prostate cancer

patients as these two markers are found to be related with the occurrence of the skeletal

complications in the disease process (Demers et al., 1995).

This study consists of three randomized, double-blinded, phase III clinical trials (Saad

et al., 2004), where patients were randomly assigned into either the placebo treatment group

or the bisphosphonate (zoledronate in the study) treatment group. Patients are followed

for up to 24 months, and throughout the period, they get treatment every three to four

weeks. The measurements of bone marker (Ntx and BALP) are taken 1) at randomization

time; 2) after one month of treatment; 3) once every three months in the time of study.

A sample pathway for the NTX and BALP profile of two placebo treated patients (left

panel) and two bisphosphonate treated patients (right panel) can be seen in Figure 1.2. In

Chapter 2, we consider different methods which deals with evaluating the effect of marker

value on failure time model while accommodating the intermittent observation.

1.4.2 Development of Joint Damage in Psoriatic Arthritis

The University of Toronto Psoriatic Arthritis (PsA) Cohort has registered close to 2000

patients with PsA over the past 40 years (Gladman and Chandran, 2011). Psoriatic arthri-
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Figure 1.2: A diagram depicting the profile of two prostate cancer patients with placebo
treatment (left panel) and two prostate cancer patients with zoledronate treatment (right
panel). The X-axis indicates the time of skeletal event (E), death (D), and end of follow-
up (C). The Y-axis indicates an osteoclast (Ntx) and osteoblast (BALP) marker for bone
disease; Figure from Cook (2014)
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tis is an immunological disease which could lead to destruction of joints. It mainly affects

people who are diagnosed with psoriasis - featured by red patches of skin. In the study, we

consider disease progression in terms of the number and severity of damaged joints. The

time-dependent covariate of interest is an indicator of elevated marker of inflammation

called the erythrocyte sedimentation rate and we consider a baseline covariate indicat-

ing the presence of a human leukocyte antigen (HLA) marker HLA-B27 which has been

reported as a risk factor for PsA. Our interest lies in characterizing the effect of these

covariates on time to joint damage.

Patients are required to have at least one radiological assessment to enter the study,

and then they are followed intermittently for roughly every two years to get an X-ray for

the severity of joint damage. These patients initially provided serum samples when they

entered the study, which is used for genetic testing to determine the HLA-B27 status, and

then they are followed up yearly for assessing biomarker levels.

1.5 Outline of the Thesis

This thesis is broadly concerned with studying the bias arising from misspecified Cox

regression models when the model contains a time-dependent covariate that is only observed

at intermittent inspection times and the model is misspecified because the marker value of

the time-varying covariate from the last observation is carried forward. The general theory

is provided but in the investigations of the asymptotic and finite sample bias we focus on

the special case of a binary time-dependent covariate and a single fixed covariate. We then

discuss methods for mitigating this bias through joint modeling.

In Chapter 2, a joint marker-failure time model is considered with a binary time-

dependent marker and a fixed covariate vector. Piecewise constant transition intensities

are considered as governing movement between states of a reversible illness-death model.

Following the presentation of the complete data likelihood which is appropriate when the

marker is under continuous observation with a process subject to right-censoring, we de-

veloped an expectation-maximization algorithm to accommodate the setting where the
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marker process is under a conditionally independent intermittent observation scheme. Re-

marks on the semiparametric implementation of this algorithm are given in the appendix

but this analysis can be approximated by the piecewise constant formulation by increasing

the number of pieces in the failure time transition intensities. Simulation studies are then

conducted to illustrate the method can give estimates with good properties, which is ex-

pected, as they are maximum likelihood estimators. We also consider an application to a

study of patients with skeletal metastases at risk of skeletal complications because of these

metastases, and relate the treatment and bone marker status to the risk of the composite

event skeletal-event free survival.

In Chapter 3, we describe how to determine the asymptotic bias of naive Cox model es-

timators when the marker is under intermittent observation but the conventional approach

to analysis is adopted and the marker values are carried forward from the most recent

assessment time, from the time of assessment to the next assessment, censoring, or failure.

We do so by considering a joint model for the marker, failure and censoring times, along

with a visit process. Integrating the visit process into the joint model framework enables

the evaluation of a marker-independent visit process as well as a marker-dependent visit

process wherein the propensity for a visit is dependent on the current marker value. Using

this framework we evaluate the bias of both the effect of the marker and the effect of the

fixed covariate under the settings of independent and marker-dependent right-censoring.

We consider the case where the marker transition intensities are possibly associated with

the fixed baseline covariate for generality. Despite the fact that time-dependent markers

are ubiquitous in health research and that markers often change to reflect exacerbations of

symptoms or the severity of disease activity which may prompt individuals to seek medical

care, to our knowledge this is the first work to investigate the nature of this bias.

In Chapter 4 the challenge of fitting the joint model for the marker, failure time, and

dependent visit process is addressed. We do this by constructing the full likelihood and

estimating the parameter governing transitions between the marker states, into the failure

state, and the visit process under the assumption of independent censoring. A small

simulation study is conducted and reported on to demonstrate that the joint model can be
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fitted and provide estimates which have good finite sample properties which demonstrate

that the joint model mitigates the bias from the conventional carry-forward approach to

the marker values and the assumption that the visit intensity is independent of the disease

process. We illustrate the joint model by fitting it to a dataset of patients with psoriatic

arthritis where interest lies in assessing the effect of an inflammatory marker on progression

of joint damage.

Concluding remarks and topics of future research are given in Chapter 5.
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Chapter 2

A Joint Marker-Failure Time Analysis with

Intermittent Assessments

2.1 Introduction

Measurements on markers are typically taken when individuals are seen at intermittent

clinic visits. Examples can be taken from many health research settings. For example indi-

viduals participating in the Canadian Longitudinal Study of Aging (Raina et al., 2009) are

seen every three years and at these follow-up visits they provide blood and urine samples

which can be used to measure blood glucose, cholesterol levels, and metabolites which may

in turn be used to predict onset or progression of disease, or death. In studies of patients

with diabetes, blood samples are taken to measure HbA1C, a marker of blood sugar control,

which is used to model the risk of diabetic complications including diabetic nephropathy or

retinopathy (Mitchell et al., 2020). In studies of rheumatoid arthritis, markers of inflam-

mation such as C-reactive protein (CRP) are measured in the blood samples taken at clinic

visits and these too are used to model risk of joint damage (Haroon et al., 2020). In each

of these examples the markers vary in continuous time but measurements are only taken

at periodic clinic visits and the values of measurements are used for the marker covariate

until it is measured next under a last-observation carried forward strategy. This is then

used to assess the association between the marker and events of interest. Here we focus on
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failure time models for the event of interest based on the proportional hazards assumption.

The above strategy is naive in the sense that the most recently recorded value of the

marker does not represent the actual value of the marker at the time of any future failures;

it therefore is akin to a covariate measurement error problem where the magnitude of the

error in the marker (the difference between the most recently recorded value of the marker

and the true current value) will tend to increase over time since last measurement, if there

are systematic trends in the marker as a function of disease duration; the volatility of the

marker process is also a key factor. Given the widespread practice of carrying the marker

value forward and using the most recently recorded value as a covariate in a failure time

model, we study the properties of estimators when intermittently observed markers are

handled according to this strategy in the next chapter.

Time(t)

X
1(t

) o
r 

X
1o (t

)

0 a0 a1 a2 a3 a4

0

1

TRUE VALUE
LOCF

Figure 2.1: A schematic indicating the true value of a binary time-dependent marker,
visit times, and the assumed value under last observation carried forward; shaded regions
represent periods of time where the marker is misclassified. ai represents the visit time on
x-axis.

Figure 2.1 contains a timeline for a hypothetical individual with visits at a0, a1, a2, a3

and a4. The true marker value X1(t) is denoted by a solid line whereas the marker value

computed based on last-observation carried forward (LOCF) is denoted by X◦1 (t) and a

dashed line. Note that LOCF changes at visit times, while true value changes at non-visit
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times. The shaded regions represent the periods of time where X1(t) 6= X◦1 (t) and hence

the marker value is misclassified by LOCF.

Here we develop an expectation-maximization algorithm for suitably dealing with the

intermittent observation process under specified model assumptions. This involves a para-

metric component for modeling the dynamics of the marker process under intermittent

observation, and a weakly parametric proportional hazards regression model for the failure

time given the marker process. We present it first with a piecewise-constant baseline haz-

ard function and discuss extensions accommodating a truly semiparametric model in Ap-

pendix A. The semiparametric implementation of the expectation-maximization algorithm

can be arbitrarily well approximated in the piecewise-constant formulation by increasing

the number of pieces for the failure time baseline hazard so we focus on piecewise-constant

primarily. We investigate the performance of the EM algorithm by simulation and illus-

trate it via application to data from a study of patients with skeletal metastases in which

the goal is to evaluate the effect of bone markers on the risk of the composite endpoint of

skeletal complication or death. We end with a discussion of topics of future research along

these lines including problems involving marker processes with more than two categories,

higher dimensional discrete marker processes, and interval-censored failure times.

In Section 2.2 a joint model is described for the marker and failure process along with

the likelihood constructions one would use if individual processes were only subject to right

censoring. In Section 2.3 a random visit process is introduced to generate the clinic visit

times at which marker states are recorded. Section 2.4 then develops an EM algorithm

for the case of a piecewise-constant hazard, and simulation results of the EM algorithm

are given in Section 2.5. An application on bone marker study is discussed in Section 2.6

and concluding remarks are presented in Section 2.7. Appendix A covers details on EM

on a semi-parametric Cox regression model are outlined and Appendix B shows steps on

computation of the transition probability matrix.
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2.2 A Joint Marker-Failure Time Model

2.2.1 The Model for the Marker Process

We consider a binary marker process which arises frequently in medical applications when

physicians classify a marker level as normal or abnormal. When viewed jointly with the

failure process we can consider a three state model described in Figure 2.2.

0

MARKER
NORMAL

2

FAILED

1

MARKER
ELEVATED

Figure 2.2: A three state process for joint modeling of a binary marker and a failure time

Let {Z(s), 0 < s} denote the multistate process for individual i with the failure time

Ti, the time individual i enters the absorbing state 2; states 0 and 1 are transient states.

We let Ci denote an independent random censoring time.

For the marker process, we let dNij(s) = 1 if a j → 1 − j transition occurs at time s

and dNij(s) = 0 otherwise, j = 0, 1. Let Yij(s) = I(Zi(s
−) = j) and Ȳij(s) = Yi(s)Yij(s),

j = 0, 1, where Yi(s) = I(s ≤ Ci) indicates individual i is under observation at time s.

Suppose Xi2 is a p×1 vector of fixed covariates, we then let

lim
∆t↓0

P (∆Nij(t) = 1 | Zi(t−) = j,Xi2)

∆t
= λj(t | Xi2) = λj(t) exp(X ′i2γj) , (2.1)

be a Markov transition rate where γj is a p × 1 vector of regression coefficients. These

transition rates thus accommodate an association between the marker process and the p×1
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vector of fixed covariates Xi2 directly through γ = (γ′0, γ
′
1)′. We also let Λj(t) =

∫ t
0
λj(s) ds

be the cumulative baseline intensity and dΛj(u) = λj(u) du, j = 0, 1.

If the marker process was under complete observation other than being subject to

termination (by T ) and right censoring (by C), the partial log likelihood for the parameters

governing the j → 1−j marker transitions based on a sample of n independent individuals

would be

`j =
n∑
i=1

∫ ∞
0

Ȳij(s) {dNij(s) log dΛj(s | Xi2)− dΛj(s | Xi2)} , j = 0, 1 , (2.2)

(Cook and Lawless, 2018). We consider a piecewise constant transition rate from state j to

state 1−j with Kj−1 finite cut-points at 0 = bj0 < bj1 < · · · < bj,Kj−1 < bjKj =∞ defining

intervals Bjk = [bj,k−1, bjk), k = 1, . . . , Kj, j = 0, 1. We let the baseline rate be given by

dΛj(s) = eαjk if s ∈ Bjk and write a vector of Kj estimating functions Ujk =
∑n

i=1 Uijk

with kth element for αjk given by

Ujk =
∂`j
∂αjk

=
n∑
i=1

∫ ∞
0

Ȳij(s) [dNij(s)− eαjk+X′i2γj ] I(s ∈ Bjk) , k = 1, . . . , Kj

=
n∑
i=1

[Nijk − eαjk+X′i2γj Sijk] (2.3)

where

Nijk =

∫ ∞
0

Ȳij(s) I(s ∈ Bjk) dNij(s)

is the total number of j → 1− j transitions for individual i in interval Bjk and

Sijk =

∫ ∞
0

Ȳij(s) I(s ∈ Bjk) ds

is the total time at risk for a j → 1− j transition in interval Bjk for individual i.

In order to estimate γj in (2.1), we also have the p× 1 vector of estimating functions

Uj,Kj+1 =
∂`j
∂γj

=
n∑
i=1

Kj∑
k=1

∫ ∞
0

Ȳij(u) I(u ∈ Bjk)
”

dNij(u)− eαjk+X′i2γj
ı

Xi2 . (2.4)
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Note that from (2.3) solving Ujk = 0 gives the profile estimator

exp(α̃jk(γj)) =

∑n
i=1Nijk∑n

i=1 Sijk e
X′i2γj

, j = 0, 1,

and substituting the above for exp(αjk) in (2.4) gives the p× 1 profile score function

Uj(γj) =
n∑
i=1

Kj∑
k=1

∫ ∞
0

Ȳij(u) I(u ∈ Bjk)
{
dNij(u)−

∑n
i=1 Nijk∑n

i=1 Sijk e
X′i2γj

eX
′
i2γj

}
Xi2

=
n∑
i=1

Kj∑
k=1

∫ ∞
0

Ȳij(u) I(u ∈ Bjk)
{
Xi2 −

∑n
i=1 Xi2 Sijk e

X′i2γj∑n
i=1 Sijk e

X′i2γj

}
dNij(u)

=
n∑
i=1

Kj∑
k=1

Nijk

{
Xi2 −

R
(1)
jk (γj)

R
(0)
jk (γj)

}
,

with

R
(r)
jk (γj) =

n∑
i=1

X
(r)
i2 Sijk e

X′i2γj , r = 0, 1, 2 , j = 0, 1,

where X(0) = 1, X(1) = X and X(2) = X X ′. This can be solved for γj to obtain pγj with

which we estimate αjk as

pαjk = log(
n∑
i=1

Nijk/
n∑
i=1

Sijke
X′i2pγj)

2.2.2 The Failure Time Model

For the failure time process we wish to study the effect of the marker and the fixed co-

variates and we let Xi1(t) = I(Zi(t
−) = 1) and define Xi(t) = (Xi1(t), X ′i2)′ to be the time

dependent covariate vector comprised of the marker Xi1(t) and the fixed covariate Xi2. We

continue to consider the case in which the marker is under continuous observation, and

here we construct the likelihood for the failure process parameters. The intensity for the

failure time Ti is

lim
∆t↓0

P (t ≤ Ti < t+ ∆t | t ≤ Ti, Xi(t))

∆t
= λ2(t | Xi(t)) (2.5)
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which is taken to have the multiplicative form

λ2(t | Xi(t)) = λ2(t) exp(X ′i(t)β) = λ2(t) exp(Xi1(t)β1 +X ′i2β2) ,

where β = (β1, β
′
2)′. Note that here we use subscript 2 to denote that the intensity is

characterizing the risk of transition into state 2.

Let Ci denote an independent right-censoring time for individual i and Vi = min(Ti, Ci)

with δi = I(Vi = Ti). Here we consider a baseline hazard of a piecewise-constant form and

let 0 = b20 < b21 < · · · < b2,K2−1 < b2K2 =∞ be the finite K2 − 1 cut-points for the failure

time hazard where the subscript “2” again reflects the fact that this is an intensity for

entry into state 2. We let B2k = [b2,k−1, b2k) denote the kth interval and set

λ2(t) = λ2k = eα2k if t ∈ B2k , k = 1, . . . , K2 .

Note that we can write

λ2(t) =

K2∏
k=1

λ
I(t∈B2k)
2k =

K2∏
k=1

exp pα2k I(t ∈ B2k)q = exp

˜

K2∑
k=1

α2k I(t ∈ B2k)

¸

, (2.6)

or

λ2(t) =

K2∑
k=1

eα2k I(t ∈ B2k) . (2.7)

Let Y †i (t) = I(t ≤ Ti) and Ȳi(t) = Yi(t)Y
†
i (t). The partial log likelihood for the failure

process can be written in the notation of counting process as

`2 =
n∑
i=1

∫ ∞
0

{
Ȳi(u) dNi2(u) log dΛ2(u | Xi(u))− Ȳi(u) dΛ2(u | Xi(u))

}
=

n∑
i=1

∫ ∞
0

Ȳi(u)
{
dNi2(u) rlog dΛ2(u) +X ′i(u) βs− dΛ2(u) eX

′
i(u)β

}
, (2.8)

where dNi2(s) = I(Ti = s) indicates failure at time s, s > 0.

21



Since dΛ2(u)/du =
∏K2

k=1 e
α2k I(u∈B2k) by (2.6) and dΛ2(u)/du =∑K2

k=1 e
α2k I(u ∈ B2k) by (2.7), we have

`2 =
n∑
i=1

∫ ∞
0

Ȳi(u)

{
dNi2(u)

«

K2∑
k=1

α2k I(u ∈ B2k) +X ′i(u)β

ff

−
K2∑
k=1

eα2k I(u ∈ B2k) e
X′i(u)β du

}

=
n∑
i=1

K2∑
k=1

∫ ∞
0

Ȳi(u)

{
dNi2(u)

“

α2k +X ′i(u)β
‰

I(u ∈ B2k)− eα2k+X′i(u)β I(u ∈ B2k) du

}
.

(2.9)

The estimating function for α2k is of the form

U2k =
∂`2

∂α2k

=
n∑
i=1

∫ ∞
0

Ȳi(u)
”

dNi2(u)− eα2k+X′i(u)β du
ı

I(u ∈ B2k)

=
n∑
i=1

∫ ∞
0

dN̄i2(u) I(u ∈ B2k)− eα2k+Xi2β2
“

Si0k + Si1k eβ1
‰

=
n∑
i=1

{
δi I(u ∈ B2k)− eα2k+Xi2β2

“

Si0k + Si1k eβ1
‰}

. (2.10)

where Sijk =
∫∞

0
Ȳi(s) I(s ∈ B2k) I(Zi(s) = j) ds.

Likewise, differentiating (2.9) with respect to β gives the (p+ 1)× 1 score equation

U2,K2+1 =
n∑
i=1

K2∑
k=1

∫ ∞
0

Ȳi(u)
”

dNi2(u) I(u ∈ B2k)Xi(u)− eα2k+X′i(u)βXi(u) I(u ∈ B2k)
ı

=
n∑
i=1

K2∑
k=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k)
”

dNi2(u)− eα2k+X′i(u)β
ı

Xi(u) . (2.11)

Setting U2k in (2.10) equal to zero gives

exp(α̃2k(β)) =

∑n
i=1

∫∞
0
Ȳi(u) I(u ∈ B2k) dNi2(u)∑n

i=1

∫∞
0
Ȳi(u) I(u ∈ B2k) eX

′
i(u)β du

(2.12)

Substituting (2.12) into (2.11) gives the profile score function for β:

U2(β) =
n∑
i=1

K2∑
k=1

∫
Ȳi(u) I(u ∈ B2k)

«

Xi(u)− R
(1)
2k (β)

R
(0)
2k (β)

ff

dNi2(u) (2.13)
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where

R
(r)
2k (β) =

n∑
i=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k)X
(r)
k (u) exp(X ′i(u)β) du , r = 0, 1.

If we consider the entry of (2.13) related to β1 we have

U21(β) =
n∑
i=1

K2∑
k=1

∫
Ȳi(u) I(u ∈ B2k)

«

Xi1(u)− R
(1)
2k1(β)

R
(0)
2k (β)

ff

dNi2(u) (2.14)

where

R
(1)
2k1(β) =

n∑
i=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k)Xi1(u) eX
′
i(u)β du =

n∑
i=1

Si1k eβ1eX
′
i2β2

and

R
(0)
2k (β) =

n∑
i=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k) e
X′i(u)β du =

n∑
i=1

[Si0k + Si1keβ1 ] eX
′
i2β2 .

If we consider the entry related to β2 we have the p×1 equation

U22(β) =
n∑
i=1

K2∑
k=1

∫
Ȳi(u) I(u ∈ B2k)

«

Xi2 −
R

(0)
2k2(β)

R
(0)
2k (β)

ff

dNi2(u) (2.15)

where R
(1)
2k2(β) =

∑n
i=1Xi2 [Si0k + Si1k eβ1 ] eX

′
i2β2 . Solving (2.14) and (2.15) for β̂1 and β̂2

respectively enables estimation of α2k as

pα2k = log
´

∑n
i=1

∫∞
0

Ȳi(u)I(u ∈ B2k) dNi2(u)∑n
i=1

∫∞
0

Ȳi(u)I(u ∈ B2k) exp(X ′i(u)β̂)du

¯

These score equations were constructed for the setting where the marker process is under

complete observation over [0,min(T,C)], but it will typically only be under intermittent

observation. We turn to this problem in the next section, beginning with the description

of a random visit process.
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2.3 Data Under A Random Marker Visit Process

We now consider the case where the marker process {Xi1(s), 0 < s} is under intermittent

observation, where the observation times may correspond to, for example, clinic visits.

We let Air denote the random time of the rth visit for individual i with air being its

realized value. The number of visits realized over [ 0, Vi) is random and we let Ri denote

the number made for individual i with ri being the realization with the times 0 = ai0 <

ai1 < . . . < aiRi < Vi = min(Ti, Ci). More generally, let Ai(s) =
∑∞

j=1 Ȳi(s) I(aij ≤ s)

denote the number of visits over (0, s] for individual i, ∆Ai(s) = Ai(s + ∆s−) − Ai(s−),

and dAi(s) = lim
∆s→0

∆Ai(s) indicate if there is a visit at time s with dAi(s) = 0 otherwise.

We let {Ai(s), 0 < s} be the counting process for visits and let

sHi(s) = {Ȳi(u), dAi(u), dNi(u), 0 < u < s, Zi(0)}

denote the history of the joint process including the censoring, visit and multistate process.

| | | | | | |● ● ●

ai0 = 0 ai1 ai2 ai3 ai4 aiRi Ci

Figure 2.3: Timeline of visits and right-censoring time for a hypothetical individual

We define

lim
∆t↓0

P (∆Ai(t) = 1 | Ȳi(t) = 1, sHi(t))

∆t
= λai (t | sHi(t)) (2.16)

as the visit process intensity (Cook and Lawless, 2019).

Observations for the marker process are only made at visits, and we let

X◦i1(s) = Xi1(aiAi(s−))

denote the most recently observed value that is conventionally used at time s in stan-

dard failure time analysis, and X◦i (aij) = (X◦i1(aij), X
′
i2)′ be the corresponding complete
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vector. The observed marker process history for individual i is denoted by X ◦i1(s) =

{(aij, Xi1(aij)), j = 0, 1, . . . , Ai(s
−)}, where aij is the time of jth assessment. We let

H̄◦i (t) = {Ȳi(u), dAi(u), dN̄i2(u), 0 < u < t, X◦i (aij), j = 0, 1, . . . , Ai(t
−)}

denote the history of the observed data process which can equivalently be written as

H̄◦i (t) = {Ȳi(u), dAi(u), dNi2(u), X◦i (u), 0 < u < t}.

A Conditionally Independent Marker-Driven Visit Process

A conditionally independent marker driven visit process is one for which

lim
∆t↓0

P (∆Ai(t) = 1 | Ȳi(t) = 1, sHi(t))

∆t
= λa(t | sH◦i (t)),

where the dependence on the marker process only lies in the observable X ◦i (t). This visit

process is said to be conditionally independent because when conditioned on the history of

the observed data H̄◦i (aj−1), the states occupied and the values of covariate since assessment

time aj−1 do not affect the time of the next visit (Cook and Lawless, 2018).

A conditionally dependent visit process is accommodated in (2.16) since the intensity

may depend on the marker over (aiAi(t−), t). We assume in this chapter the visit process

is conditionally independent but explore the consequences of conditionally dependent visit

processes in Chapter 3 and ways of addressing them in Chapter 4.

The log likelihoods and score functions of Section 2.2 were given in the setting where

the marker process was under continuous observation. This continuous observation scheme

corresponds to a complete data setting where we can conceptualize when markers are only

available at clinic visits. Recall that in Section 2.2.1 we specified cut-points {bjk, k =

0, 1, . . . , Kj, j = 0, 1, 2} defining regions Bjk, k = 1, . . . , Kj, j = 0, 1, 2, within which

intensities are constant. We may also conceive of intervals Bk0k1k2 = B0k0 ∩ B1k1 ∩ B2k2

within which the entire process is time homogeneous. We revisit this shortly.

For the visit process we let ai0 = 0 < ai1 < · · · < aiRi < Vi denote the Ri assessment
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times for individual i and Air = [ai,r−1, air) denote the intervals between assessments,

r = 1, . . . , Ri, with Ai,Ri+1 = [aiRi , Vi). These assessment times lead to the observations

{(Xi(air), air), r = 1, . . . , Ri} for the marker process, and the observed data from individual

i can be written as

Di = {(Xi(air), air), r = 1, . . . , Ri, Vi, δi} .

We also let ri(s) =
∑ri+1

r=1 r I(s ∈ Air) record the label of the inter-assessment interval

containing time s > 0 for individual i, and let Ai(s) = [ai,ri(s)−1, ai,ri(s)) denote the corre-

sponding interval, where for ri(s) = ri + 1, we let ai,ri+1 = Vi. We next let

Di(u) = {(ai,ri(u)−1, Zi(ai,ri(u)−1)), (airi(u), Zi(airi(u)), Xi2)}

if ri(u) ≤ ri and

Di(u) = {(airi , Zi(airi)), Vi, δi, Xi2}

if ri(u) = ri + 1. This Di(u) term is useful as it identifies data that are pertinent for the

conditional expectation needed for the EM algorithm developed in Section 2.4.

2.4 The EM Algorithm for Cox Regression Model

2.4.1 Complete Data Score Equations

Based on the developments of Section 2.2, the full vector of estimating functions is given

by U = (U ′0, U
′
1, U

′
2) where Uj = (Uj1, . . . , UjKj , U

′
j,Kj+1)′ is given by concatenating (2.3)

and (2.4) for j = 0, 1, and (2.10) and (2.11) for j = 2. Note that U is a q × 1 vector of

estimating function with q = (K0 + p) + (K1 + p) + K2 + (p + 1). Note if we write the

parameters corresponding to the estimating functions as θj = (α′j, γ
′
j)
′ for j = 0, 1 and

θ2 = (α′2, β
′)′ for j = 2, we have

U(θ) = pU ′0(θ0), U ′1(θ1), U ′2(θ2)q
′
.
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Under the complete data observation scheme we set U(θ) = 0, solve for pθ to obtain the

maximum likelihood estimate. Again under continuous observation we know the required

quantities (Nijk, Sijk), k = 1, . . . , Kj, j = 0, 1 and (Ni2k, Sijk), j = 0, 1, k = 1, . . . , K2, but

we next consider the case where the marker is observed intermittently.

2.4.2 Observed Data Scores for the Marker Process

For the expectation of the complete data score for αjk in (2.3) consider the expectation for

individual i,

Ūijk = E(Uijk | Di) = E(Nijk | Di)− eαjk+X′i2γjE(Sijk | Di) , j = 0, 1 (2.17)

Adding contributions of (2.17) from each individual and setting it to 0 solves for the profile

estimator of the marker process,

exp(α̃jk(γj)) =

∑n
i=1 E(Nijk | Di)∑n

i=1 E(Sijk | Di)eXi2γj
(2.18)

Likewise, taking the expectation of the contribution to (2.4) from individual i, the observed

data score for γj is

Ūij,Kj+1 =E(Uij,Kj+1 | Di)

=E


Kj∑
k=1

∫ ∞
0

Ȳij(u)I(u ∈ Bjk){dNij(u)− eαjk+X′i2γj}Xi2 |Di


=

Kj∑
k=1

[E{Nijk | Di}Xi2 − eαjk+X′i2γjE{Sijk | Di}Xi2]

=

Kj∑
k=1

[E{Nijk | Di} − eαjk+X′i2γjE{Sijk | Di}]Xi2 , (2.19)

for j = 0, 1.
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Inserting (2.18) into (2.19) and adding up all individuals gives

Ūj,Kj+1 =
n∑
i=1

{
Kj∑
k=1

[E{Nijk | Di} −
∑n

i=1 E(Nijk | Di)∑n
i†=1 E(Sijk | Di) eXi2γj

eXi2γjE{Sijk | Di}]Xi2 }

(2.20)

Remarks on the computation of E{Nijk | Di} and E{Sijk | Di} are given shortly and in

Appendix A, but briefly we note that E{Nijk | Di} is given by

∫
Bjk

Ȳi(u)
P (Zi(u) = j | Zi(ai,ri(u)−1), Xi2)eαjk+X′i2γj P (Zi(airi(u)) | Zi(u−) = j,Xi2)

P (Zi(airi(u)) | Zi(ai,ri(u)−1), Xi2)
du

(2.21)

Exploiting Software for Poisson Regression: The Marker Process

We consider piecewise constant marker process intensities which have connections with

Poisson processes. In this case, we could write the intensity as

dΛj(s | Xi2) =
”

Kj∏
k=1

eαjkI(s∈Bjk)
ı

eX
′
i2γj = ev

′
ij(s)αj+X

′
i2γj (2.22)

where v′ij(s) = (vij1(s), . . . , vijKj(s))
′, and vijk(s) = I(s ∈ Bjk) is the indicator if time s

falls in the kth interval. If the marker process is under complete observation, then the

log-likelihood based on a sample of n individuals is given by

`j =
n∑
i=1

∫ ∞
0

Ȳij(s){ dNij(s)[v
′
ij(s)αj +X ′i2γj]− ev

′
ij(s)αj+X

′
i2γj } (2.23)

=
n∑
i=1

Kj∑
k=1

{Nijk [αjk +X ′i2γj]− Sijk [ eαjk+X′i2γj ] }

If under intermittent observation, we take the expectation of the log likelihood and get the

expectation of the complete data log likelihood as

E{`j | Di} =
n∑
i=1

Kj∑
k=1

{E{Nijk | Di} [αjk +X ′i2γj]− E{Sijk | Di} [ eαjk+X′i2γj ] } (2.24)
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Aside. Notice that if we have a time homogeneous Poisson process with count

Ni observed over an interval [0, τi) with covariate Wi acting on the rate function

ρi = ρ0e
W ′iΩ

then the log likelihood for a sample of m independent individuals are

` =
m∑
i=1

{Ni(α0 +W ′
iΩ)− exp(α0 +W ′

iΩ)τi }

=
m∑
i=1

{Ni(α0 +W ′
iΩ)− exp(α0 +W ′

iΩ + log τi) }

Such a likelihood can be maximized by a call to any function for Poisson regres-

sion by specification of a log link (the canonical link), covariate vector Wi, and

an offset of log τi.

Based on the remarks in the aside, in our present context, for a given individual, we

construct data frame of the form

> data [ data$ id ==1,]

id ni0k l o g s i 0 k ni1k l o g s i 1 k k x2

1 0.006019806 −1.133993 0.007899272 −7.649370 1 1

1 0.835741069 −1.695045 0.003743915 −1.975938 2 1

1 0.006014236 −7.728171 0.013149845 −1.099934 3 1

where we take marker process with 2 cut-points as an example here (i.e. Kj = 3, j = 0, 1).

For a given individual and each piece k, k = 1, . . . , Kj, we calculate E{Nijk | Di; θ
r } and

E{Sijk | Di; θ
r}, j = 0, 1. For the pseudo data, at the (r+1)st maximization step we

record the value of E{Ni0k | Di; θ
r} as ni0k, and the value of E{Ni1k | Di; θ

r} as ni1k. We

calculate the offset term by taking the natural log of E{Si0k | Di; θ
r} and E{Si1k | Di; θ

r},

and record them in columns logsi0k and logsi1k, respectively. Following the construction

of this data-frame we maximize the expected log likelihood for the parameters of the 0→ 1

transition intensity by a call to the glm() function in R,
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glm( ni0k ˜ of fset ( l o g s i 0 k ) + factor ( k ) + x2 ,

family=poisson ( l ink=log ) , data=data )

A similar call will yield updated estimates for the parameters of the 1 → 0 transition

intensity.

2.4.3 Observed Data Scores for the Failure Process

For the failure process the incomplete data is the “covariate” Xi1(s) so the observed data

score equations obtained from the complete data score equations (2.10) and (2.11) have

a different form from those of the previous section. First based on (2.10), we obtain the

expected score

Ū2k = E{U2k | Di} (2.25)

=
n∑
i=1

{δiI(Vi ∈ B2k)− eα2k+Xi2β2 [E{Si0k | Di}+ E{Si1k | Di}eβ1 ] } ,

Setting (2.25) to zero gives the profile estimator

exp(α̃2k(β)) =

∑n
i=1 Ȳi(u)δiI(Vi ∈ B2k)∑n

i=1 Ȳi(u)[E{Si0k | Di}+ E{Si1k | Di}eβ1 ]eXi2β2
. (2.26)

Plugging (2.26) into the observed data score equation based on (2.11), we have

Ū2,K2+1(β) = E{U2,K2+1 | Di} (2.27)

=E

{
n∑
i=1

K2∑
k=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k)
”

dNi2(u)− eα2k+X′i(u)β
ı

Xi(u) |Di

}

=

n∑
i=1

K2∑
k=1

∫ ∞
0

Ȳi(u) I(u ∈ B2k) dNi2(u)W (u | Di)

whereW (u | Di) =
”

E{Xi(u) | Di} −
∑n
i=1 Ȳi(u)E{Xi(u) eXi1(u)β1 |Di }eXi2β2∑n

i=1 Ȳi(u)[ψi0k+ψi1ke
β1 ]eXi2β2

ı

and ψijk = E{Sijk |

Di}.

As Xi1(u) is observed intermittently and Xi2 is a fixed covariate, for a vector of covariate

Xi(u) = (Xi1(u), Xi2)′, if Ai = (ai,ri(u)−1, ai,ri(u)) is the inter-visit interval spanning u, the
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conditional expectation is given by

E{Xi(u) | Di} =

¨

˝

P (Zi1(u) = 1 | Di)

Xi2

˛

‚

Similarly, E{Xi(u) eXi1(u)β1+Xi2β2 | Di } has the vector form

¨

˝

E{Xi1(u) eXi1(u)β1+Xi2β2 | Di }

Xi2E{ eXi1(u)β1+Xi2β2 | Di }

˛

‚

which can be written as

¨

˝

eβ1+Xi2β2 P (Zi1(u) = 1 | Di)

Xi2 e
Xi2β2 [P (Zi1(u) = 0 | Di) + eβ1P (Zi1(u) = 1 | Di)]

˛

‚

where in both cases,

P (Zi1(u) = 1 | Di) =
P (Zi(u) = 1 | Z(ai,ri(u)−1), Xi2)P (Z(ai,ri(u)) | Zi(u) = 1), Xi2)

P (Z(ai,ri(u)) | Z(ai,ri(u)−1), Xi2)

(2.28)

Note that we need E{Sijk | Di} which has the form

∫ ∞
0

I(u ∈ Bjk) Ȳi(u)P (Zi(u
−) = j | Di) du (2.29)

=

∫
Bjk

Ȳi(u)
P (Zi(u) = j |Zi(ai,ri(u)−1), Xi2)P (Zi(airi(u)) | Zi(u−) = j,Xi2)

P (Zi(airi(u)) | Zi(ai,ri(u)−1), Xi2)
du .

for j = 0, 1. If bjk < ai` for some ` ≤ ri then the marker state is known at some point after

interval Bjk. In this case

E{Sijk | Di} =

∫ ∞
0

ri+1∑
ri(u)=1

I(u ∈ Bjk) I(u ∈ Ai(u)) Ȳi(u)P (Zi(u) = j | Di(u), ri(u)) du .
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If ri(u) ≤ ri, then P (Zi(u) = j | Di(u), ri(u)) is given by

P (Zi(u) = j | Zi(ai,ri(u)−1), Xi2)P (Zi(airi(u)) | Zi(u−) = j,Xi2)

P (Zi(airi(u)) | Zi(ai,ri(u)−1), Xi2)

and if ri(u) = ri + 1 we have

P (Zi(u) = j | Di(u), ri(u) = ri + 1)

=

∑1
`=0 P (Zi(u) = j | Zi(airi), Xi2)P (Zi(V

−
i ) = ` | Zi(u) = j,Xi2) [λ0(Vi) e

`β1+X′i2β2 ]δi∑1
`=0 P (Zi(V

−
i ) = ` | Zi(airi), Xi2) [λ0(Vi) e`β1+X′i2β2 ]δi

.

Second we need

P (Zi(V
−
i ) = 1 | Di) =

P (Zi(V
−
i ) = 1 | Zi(airi), Xi2)λ2(Vi) e

β1+X′i2β2∑1
j=0 P (Zi(V

−
i ) = j | Zi(airi), Xi2)λ2(Vi) ejβ1+X′i2β2

. (2.30)

Exploiting Software for Poisson Regression: The Failure Process

For the failure process, we could write the transition intensity in the context of Poisson

process as

dΛ2(s | Xi2) = ev
′
i2(s)α2+Xi1(s)β1+Xi2β2 (2.31)

where v′i2(s) = (vi21(s), . . . , vi2K2(s))
′, and vi2k(s) = I(s ∈ B2k) is the indicator if failure

time s falls in the kth interval, k = 1, . . . , K2. If the marker process is under complete

observation, then the log-likelihood based on a sample of n individuals is given by

`2 =

n∑
i=1

∫ ∞
0

Ȳi(u){ dNi2(u)[v′i2(s)α2 +Xi1(s)β1 +Xi2β2 − ev
′
i2(s)α2+Xi1(s)β1+Xi2β2 ] } (2.32)

=

n∑
i=1

K2∑
k=1

{Ni2kα2k +N
(1)
i2kβ1 +Ni2kXi2β2 − S(0)

i2k e
α2k+Xi2β2 − S(1)

i2k e
α2k+β1Xi2β2 }

=
n∑
i=1

K2∑
k=1

1∑
X1=0

{N (X1)
i2k [α2k +X1β1 +Xi2β2]− S(X1)

i2k [ eα2k+X1β1+Xi2β2 ] }

where N
(X1)
i2k is the number of failure times (0 or 1) from individual i in interval k from

state X1 (0 or 1) and S
(X1)
i2k is the total time at risk of failure in state X1 (0 or 1) in interval
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k of the partition for the failure hazard.

We generate a pseudo-dataset for a given individual as

> data i

i k x1 N
(X1)
i2k logS

(X1)
i2k Xi1 X2

1 1 0 0 X12

1 2 0 0 X12

. . . . .

1 K2 0 0 X12

1 1 1 1 X12

1 2 1 1 X12

. . . . .

1 K2 1 1 X12

where similarly to the marker process, if there are K2 cut-points for the failure process, for

a given individual and each piece k, k = 1, . . . , K2, for values of X1, X1 = 0, 1, we calculate

N
(X1)
i2k (θr) and S

(X1)
i2k (θr) respectively. Then at the (r+1)st maximization step, we record

the value N
(X1)
i2k (θr) as N

(X1)
i2k and we calculate the natural log of S

(X1)
i2k (θr) and record in

column logS
(X1)
i2k with the corresponding X1 value. Similar to the marker process, we could

calculate the parameters of the 0 → 2 transition intensity by a call to the glm() function

in R, and fit the model with

glm( ni2k ˜ of fset ( l o g s i 2 k ) + factor ( k ) + xi1 + x2 ,

family=poisson ( l ink=log ) , data=data )

For the case where X1(s) is unknown as markers are only measured periodically at clinic

assessments, note we have E{S(1)
i2k | Di} in the form

E {
∫ ∞

0

I(u ∈ B2k) I(Zi(u) = 1)) | Di} =

∫ ∞
0

I(u ∈ B2k)P (Zi(u) = 1 | Di)du
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Likewise, we have

E{S(0)
i2k | Di} =

∫ ∞
0

I(u ∈ B2k)P (Zi(u) = 0 | Di)du

And if failure does not occur in interval k, then

E{N (X1)
i2k | Di} = 0

Otherwise,

E{N (X1)
i2k | Di} = P (Zi(t

−
i2) = X1 | Di, dN̄i2(ti2) = 1 ) (2.33)

where ti2 is the observed failure time for individual i.

Under intermittent observation, Ni2k is known, but N
(X1)
i2k and S

(X1)
i2k are unknown. The

call of the function is the same as if the dataset is under complete observation, but it is

done in the EM algorithm based on a pseudo-dataset where the conditional expectations

are estimated based on the parameter estimate at the previous iteration.

Defining the Finest Partition

Note these expectations all require computation of the transition probability matrix for

the process {Zi(s), 0 < s < Ci, Xi2, Ci}. This is achieved by product integration via

P (s, t | Xi2) =
∏
(s,t]

{I + dQ(u | Xi2)}

where I is a 3× 3 identity matrix and dQ(s | Xi2) is a transition intensity matrix.

To facilitate the calculations necessary for computation of the conditional expectations

it is helpful to more fully exploit the simplifications that come from the piecewise constant

intensities. Specifically we let Bk represent the partition of the positive real line defined by

the union of all cut-points forming the partitions for 0→ 1, 1→ 0 and 0→ 2 transitions.

Thus if Sj = {bjr, r = 1, . . . , Kj − 1} is the set of non-zero and finite cut-points for 0→ 1
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transition (j = 0), 1→ 0 transition (j = 1), and 0→ 2 transition (j = 2), let

S = S0 ∪ S1 ∪ S2

with elements labeled 0 < b1 < · · · < bK−1 <∞. In order to retain the information about

the piece, a new sub-interval Bk falls in for a particular intensity, we let `jk denote the

sub-interval for the partition for dΛj(·) within which Bk falls. That is

Bj`jk ∩ Bk = Bk

but Bj` ∩ Bk for all other values of `. The full marker-failure time process is then time

homogeneous within each interval Bk, k = 1, . . . , K where BK = [bK−1,∞). Let k(u)

denote the interval Bk containing u, and let dΛ0`0k(·), dΛ1`1k(·) and dΛ2`2k(·) denote the

baseline intensities in Bk. We define the matrix dQk(X2) as

»

—

—

—

–

−(dΛ0`0k(s)eγ0X2 + dΛ2`2k(s)eβ2X2) dΛ0`0k(s)eγ0X2 dΛ2`2k(s)eβ2X2

dΛ1`1k(s)eγ1X2 −(dΛ1`1k(s)eγ1X2 + dΛ2`2k(s)eβ1+β2X2) dΛ2`2k(s)eβ1+β2X2

0 0 0

fi

ffi

ffi

ffi

fl

.

and dQ∗k(X2) = dQk(X2)/ds and note that if k(s) = k(t) (i.e. we are carrying out a com-

putation at times s < t within the same interval where the process is time homogeneous),

we can compute

P (s, t | X2; θ) = exp(dQ∗k(s)(X2)(t− s)) .

More generally,

P (s, t | X2; θ) =

k(t)∏
h=k(s)+1

exp(dQ∗h(X2)(min(t, bk(t)+1)− bk−1)) .

2.4.4 Variance Estimation

We estimate the observed information matrix using the approach of Louis (1982). If Ui is

the contribution to the complete data score from individual i then Ji(θ) = −∂Ui(θ)/∂θ′

is the complete data information matrix. The contribution to the observed information
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matrix from individual i is then

J̄i(θ) = E{Ji(θ)|Di} − E{Ui(θ)U ′i(θ)|Di}+ Ūi(θ)Ū
′
i(θ) . (2.34)

where Ūi(θ) = E{Ui(θ) |Di}. It may be preferable to consider variance estimation based

on estimating function theory as done by Herring and Ibrahim (2001).

If A(θ) = −E{∂Ūi(θ)/∂θ′} and B(θ) = E{Ūi(θ)Ū ′i(θ)} then

?
n(pθ − θ) ∼ N(0,A−1(θ)B(θ)A−1(θ))

as n→∞.

In practice we replace the expected matrices by their empirical counterparts evaluated

at the solution pθ, where pθ is also the solution to the estimating equation E{Ui(θ)} = 0,

and we have

A(pθ) = −n−1

n∑
i=1

∂Ūi(θ)/∂θ
′ |θ=pθ

B(pθ) = −n−1

n∑
i=1

Ūi(θ)Ū
′
i(θ) |θ=pθ

Nonparametric bootstrapping (Efron and Tibshirani, 1994) can also be carried for variance

estimation. In this case the life history paths observed for each individual are numbered

according to the index i labeling individuals, i = 1, . . . , n. We then sample from the

integers 1 to n with replacement n times to create a bootstrap sample which is analysed to

obtain an estimate pθb. This process is repeated B times to create B bootstrap estimates

θ̂(1), .....θ̂(B). We then compute the bootstrap standard error as the square root of the

empirical variance of the estimates.
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2.5 Simulation Studies

2.5.1 Design of Simulation Studies

Let the administrative censoring time be CA = 1. We set P (Z(0) = 0) = 1 where every

individual starts with a normal marker value with probability 1. We assume that the

elevated marker value increases the hazard for failure by 25% and we then solve for λ2 so

that the probability of death at the censoring time to be P (Z(1) = 2 |Z(0)) = 0.4 and 0.6

representing moderate and high mortality rates. We constrain the transition intensities for

the multistate process to be time homogeneous. In figure 2.2, we let λ0 to be the transition

intensity from state 0 to state 1 and let λ1 to be the transition intensity starting from

state 1 back to state 0. We let λ2 to be the intensity of entering the failure state from a

normal marker state. In our simulation studies, we set λ1/λ0 = 2 and λ0/λ2 = 0.75. For

the auxiliary covariate X2, we consider a binary covariate where we let P (X2 = 1) = 0.5.

Let the log hazard ratio of 0 → 1 and 1 → 0 transitions be γ0 = log 1.2 and γ1 = log 0.8

respectively. We set the marker coefficient for the failure time model to be β2 = log 1.5.

For the visit process, we let {A(s), 0 < s} to be a time-homogeneous Poisson pro-

cess so let λa(t | H̄(t)) = ρ(t) = ρ. Let the average number of visits over [ 0, CA = 1)

be E(A(1)) = 8 or 12 respectively. We generate gap time between each visit using an

exponential distribution with rate ρ. We then keep all visit times that are less than C.

Note that we consider both the case with no random censoring and the case with random

censoring.

Let F (t) = P (T > t) = P (Z(t) < 2 |Z(0) = 0) be the marginal survivor function.

When we have independent random censoring we specify the random censoring rate as

P (CR < T |T < CA) which is the proportion of failures over [ 0, CA) that are not observed

due to random censoring; this definition allows us to consider the two mortality rates in a

similar fashion.

Specifically we find the hazard λc for an exponentially distributed censoring time such
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that

P (CR < T |T < CA) =
P (CR < T < CA)

1−F(CA)
=

∫ CA
0

λce
−λcsF(s)ds

1−F(CA)

is equal to 0.2 or 0.4 to represent mild or moderate right censoring.

We consider sample size of n = 500 and carry out nsim = 500 simulations for each

parameter configuration. Analyses are carried out based on a misspecified Cox model

using X◦(s) in lieu of X(s) as well as based on the proposed EM algorithm with piecewise-

constant hazards having p = 3 or 10 pieces.

2.5.2 Simulation Results

Even though the primary interest lies in the regression coefficients of the failure process,

we need to estimate the baseline hazard of the failure process and the transition rates and

covariate effects for the marker process. Table 2.1 contains simulation results with 3 cut-

points at failure process based on 500 individuals per simulation under 500 simulations.

Table 2.2 shows results of 10 cut-points in [0, 1] timeline for the failure process with a mean

of 8 or 12 visits for the Poisson process. According to the simulation results, we see good

performances of the EM algorithm for both the failure process and the marker process.

We find that the empirical biases of the estimators arising from the joint analysis are small

and that the standard errors are smaller for the regression coefficient β1 when assessments

are more frequent (i.e. compare the standard errors for the case when ρ = 12 compared to

ρ = 8 in Tables 2.1 and 2.2). The transition rates and fixed covariate effect for the marker

process are also well-estimated.
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ρ = 8 ρ = 12

Parameter TRUE EBIAS ESE EBIAS ESE
Failure Process

β1 0.2231 -0.0186 0.6484 0.0075 0.2120
β2 0.4055 -0.0166 0.2683 0.0082 0.1334
λ21 0.8768 -0.0116 0.2212 0.0179 0.0691
λ22 0.8768 0.0089 0.2656 0.0120 0.0723
λ23 0.8768 0.0323 0.3153 -0.0015 0.0759

Marker Process

λ01 0.6576 0.0507 0.1671 0.0069 0.0673
λ02 0.6576 0.0328 0.2419 0.0054 0.0841
λ03 0.6576 0.0569 0.2818 0.0081 0.0938
γ0 0.1823 -0.0229 0.3247 -0.0091 0.2074

λ11 1.3152 0.0741 0.7073 0.0082 0.5160
λ12 1.3152 0.0662 0.7816 0.0095 0.3320
λ13 1.3152 0.0382 0.7579 0.0050 0.2960
γ1 -0.2231 0.0047 0.5626 -0.0091 0.2074

Table 2.1: Parameter estimates with EM algorithm based on glm function. Three cut-
points for marker and failure process. Number of individuals per simulation =500, Number
of simulations = 500. P (Z(A) = 2 |Z(0) = 0) = 0.4; ρ = 8 or 12 are the means of the
Poisson visit process.
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ρ = 8 ρ = 12

Parameter TRUE EBIAS ESE EBIAS ESE

Failure Process

β1 0.2231 -0.0213 0.2164 0.0097 0.1796
β2 0.4055 0.0066 0.1142 0.0152 0.1149
λ21 0.8768 0.0110 0.1463 -0.0064 0.1332
λ22 0.8768 -0.0122 0.1408 -0.0049 0.1531
λ23 0.8768 -0.0099 0.1529 0.0018 0.1698
λ24 0.8768 -0.0029 0.1460 -0.0055 0.1673
λ25 0.8768 -0.0053 0.1852 -0.0051 0.1645
λ26 0.8768 -0.0043 0.1660 -0.0037 0.1780
λ27 0.8768 0.0409 0.1928 0.0453 0.2011
λ28 0.8768 -0.0068 0.2198 -0.0227 0.1807
λ29 0.8768 -0.0061 0.2019 0.0156 0.2148
λ210 0.8768 0.0222 0.1819 -0.0251 0.1998

Marker Process

λ01 0.6576 -0.0082 0.0978 0.0178 0.1084
λ02 0.6576 -0.0116 0.1415 0.0030 0.1160
λ03 0.6576 -0.0108 0.1833 0.0099 0.1606
γ0 0.1823 0.0156 0.1681 -0.0096 0.1783

λ11 1.3152 0.0045 0.7401 0.0710 0.5946
λ12 1.3152 0.0658 0.4595 0.0411 0.3936
λ13 1.3152 0.0264 0.5283 0.0081 0.4077
γ1 -0.2231 -0.0510 0.3444 0.0178 0.3731

Table 2.2: Parameter estimates with EM algorithm based on glm function. Three cut-
points for marker and ten for failure. Number of individuals per simulation =500, Number
of simulations = 500. P (Z(A) = 2 |Z(0) = 0) = 0.6; ρ = 8 or 12 are the means of the
Poisson visit process.
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2.6 Application

2.6.1 Application to a Bone Marker Study

The application involves the joint analysis of bone markers and risk of skeletal related

events. To avoid the problem of the competing risk of death, a composite endpoint of

skeletal related event-free survival was used for the failure time. In this study, we used

bone markers N-telopeptide of type I collagen (Ntx), which is a marker of bone destruction

(resorption) as the time-varying covariate. Ntx is measured periodically at clinic visits

and conventional analyses carry forward the most recently recorded values until the next

assessment or the occurrence of the failure or censoring times. We classify individuals

who have higher than 64 nmol/mmol cr of Ntx as in the elevated marker state. The

semiparametric EM algorithm was applied. In this application, we examined the effect

of the time-varying Ntx marker and treatment effect on skeletal-related-events(SRE) or

death. The maximum number of months being followed was 29 months. We set cut-points

for marker process at 9 and 18 months and cut-points for failure process at 4, 8, 12, 16

and 20 months. The standard error is calculated based on the bootstrap method where

we sample n individuals with replacement from the data to create the bootstrap sample of

size n, and we then calculate the bootstrap standard error based on the square root of the

empirical variance.

We estimated the effects of the marker and the treatment effect on the occurrence of

skeletal-related-event (SRE) or death. Table 2.3 shows parameter estimates based on the

EM algorithm and Table 2.4 shows results from the naive Cox regression model when time-

varying covariate value is obtained by last-observations carried forward. Both tables in-

clude estimates, standard errors, hazard ratio and the p-values associated with chi-squared

statistics for all parameters. Based on the results from Table 2.3, it can be concluded that

Ntx marker has a significant effect on the failure time process (HR = 2.50, 95% CI: 1.37,

4.54; p=0.0026) and treatment also has a significant effect on the 1 to 0 marker transition

(HR = 9.62, 95% CI: 1.92, 48.34; p=0.0060). Note that when analyses are directed at

the effects of both time-varying markers Ntx and BALP, an expanded state-space will be
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required to facilitate joint analysis of the markers Ntx with the failure time.

Parameter EST. S.E. H.R. 95%C.I. for H.R. p-value

Failure Process

β1 0.9166 0.3044 2.5008 ( 1.3771,4.5413) 0.0026
β2 0.1733 0.1520 1.1892 ( 0.8828,1.6019) 0.2543
λ21 0.0374 0.0082
λ22 0.0391 0.0072
λ23 0.0416 0.0103
λ24 0.0282 0.0069
λ25 0.0340 0.0099
λ26 0.0223 0.0072

Marker Process

λ01 0.1781 0.0528
λ02 0.0753 0.0370
λ03 0.0946 0.1311
γ0 -0.9275 1.0472 0.3955 (0.0508, 3.0803) 0.3758

λ11 0.0851 0.0235
λ12 0.0108 0.0063
λ13 0.0365 0.0855
γ1 2.2641 0.8236 9.6224 ( 1.9152, 48.3446) 0.0060

Table 2.3: Parameter estimates for the bone marker analysis. The cut-points for the marker
process are at 9 and 18 months, and the cut-points for the failure process are at 4, 8, 12,
16, 20 months.

Parameter EST. S.E. H.R. 95% C.I. for H.R. p-value

Failure Process
β1 0.8970 0.1258 2.4522 (1.9163, 3.1379) <0.001
β2 0.1561 0.1292 1.1689 (0.9074, 1.5058) 0.2270

Table 2.4: Parameter estimates using LOCF based on a Cox regression model.

42



2.7 Concluding Remarks and Future Work

2.7.1 Concluding Remarks

In this chapter, we described an EM algorithm for fitting a joint model of the marker process

and failure process when the marker process is under intermittent observation. The EM

algorithm allows us to accommodate different numbers of cut-points for the failure time

transition intensities, and as the number of cut-points increases, it better approximates

the semiparametric Cox model for the failure process. We focus on the case when there

is a binary time-dependent covariate and a binary fixed covariate in the simulations, but

this algorithm can be easily extended to deal with any fixed covariate vector. Simulation

studies are conducted and an application on the bone marker study in which we relate

the time-varying bone marker Ntx and the fixed treatment effect to the occurrence of

skeletal-event or death is discussed.

2.7.2 Future Work

The data from the University of Toronto Psoriatic Arthritis Registry yields intermittent

observation of the erythrocyte sedimention rate (ESR), a marker if inflammation in autoim-

mune disease. This will be used as the marker of interest. The failure time in this setting,

however, is typically based on the cumulative number of damaged joints and physician

scientists are interest in how the ESR values are associated with the onset of additional

joint damage. Joints are only radiographed periodically and so this endpoint is also sub-

ject to interval-censoring. Exension of the algorithm will be developed to accommodate

an interval-censored failure time where the assessment times for failure are based on times

of x-rays (and hence are different than the times the blood samples are taken to measure

ESR).

If a marker involves more than two categories that can easily be accommodated. With

four levels, for example, the multistate model may be expanded as in Figure 2.4a The

algorithm for estimation can proceed in a very similar spirit to the way we have described it
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Figure 2.4: Multistate models for more general joint marker-failure time process
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here, but more transition intensities need to be estimated between marker states. Likewise

if there are two binary markers we may define the joint state-space as in Figure 2.4b.

Further extentions could be considered to deal with intermittent observation of the

failure process. In some settings the failure process will be intermittently observed at

different visit times than the times the blood samples, for example, may be taken to assess

marker values. In this case a second visit process may be necessary to model. While this

is challenging we are aided in this by the fact that visit times are observed exactly and the

nature of the information needed at the visits will be known as well.
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Chapter 3

Large Sample Properties Under a Marker-

Dependent Visit Process

This chapter is in two parts. The first part is devoted to studying the asymptotic bias of

estimators for regression coefficients in the Cox model of the time-varying marker and the

fixed covariates when the “last observation carried forward” approach is used to deal with

the intermittently observed binary time-dependent marker. We extend the preliminary

investigation of Jiang et al. (2020) in two directions. First, as in Chapter 2, we introduce

an auxiliary fixed baseline covariate which may, or may not be associated with the dynamic

marker; the incorrect handling of the time-dependent marker will not only introduce a bias

in the coefficient of that marker, but the coefficient of the fixed covariate will also be incon-

sistently estimated. We will explore how the asymptotic bias of the coefficients of both the

time-dependent and fixed variables vary according to several factors including the strength

of association between the two covariates and the frequency of the assessments. Second, we

define a marker-dependent visit process and examine the extent to which the limiting bias

of the regression coefficients depends on the strength of the association between the marker

value itself and the visit intensity in an intensity-based model for the visit process. This

builds on the work of Cook and Lawless (2019) who define a conditionally independent

visit process for a multistate model. The distinction here is that the process of interest in

their work is a failure process where the times are subject only to possibly dependent right
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censoring, and the analysis approach is one in which the marker process is not modeled.

3.1 A Joint Marker-Visit-Failure Time Process

Markers are internal time-dependent covariates which reflect the health of an individual

(Jewell and Kalbfleisch, 1996). Common markers include blood pressure and cholesterol

level in cardiovascular disease, blood glucose in diabetes, and markers of bone destruction

in osteoporosis. In many health research settings the goal is to study the relation between

markers and risk of an event such as cardiac death, diabetic complications, or vertebral

fracture in the previous illustrative examples respectively. We first, in addition to the

binary marker, report on an extension of the investigation by Jiang et al. (2020) by con-

sidering a fixed baseline covariate arising from carrying forward the most recently recorded

value. We then explore the impact of carrying forward the marker value on the coefficient

of the markers and the fixed covariates. The binary time-dependent marker and the fixed

covariate may be associated. We use the theory of misspecified estimation functions to

determine the limiting bias of naive estimators (Struthers and Kalbfleisch, 1986).

In the three-state model of Figure 2.2 we let Xi1(s) = I(Zi(s
−) = 1) as before. We let

0 = ai0 < ai1 < · · · denote the assessment times for individual i and Ai(s) =
∑∞

j=1 I(aij ≤

s) count the number of post-baseline assessments taking place over (0, s]. We let {Ai(s), 0 <

s} denote the corresponding counting process. To distinguish the actual marker value from

the most recently recorded value we let X◦i1(s) = Xi1(aiAi(s−)) denote the marker value

recorded at the most recent visit prior to time s for individual i. In practice, interest may

lie in the regression coefficient β in the Cox failure time model

λ2(t |Xi(t)) = λ2(t) exp(X ′i(t)β) = λ2(t) exp(Xi1(t)β1 +X ′i2β2) , (3.1)

where β1 is the log hazard ratio characterising the effect of the true marker value Xi1(s)

given Xi2. Often, however, one fits the Cox model with X◦i (s) = (X◦i1(s), X ′i2)′, following

the convention of “last observation carried forward” for the time-dependent markers.
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More explicitly we may specify

dΓ(s |X◦i (s)) = dΓ0(s) exp(ψ′X◦i (s)) (3.2)

to be the working model where we use Γ0(s) to denote the baseline cumulative hazard

and ψ for regression coefficients with ψ = (ψ1, ψ
′
2)′. If (3.1) is the correct model then

use of X◦i (s) in place of Xi(s) will yield an estimate ψ̂ which will be consistent for ψ∗

where ψ∗ 6= β. In what follows we explore the determinants of the limiting value to assess

situations where the EM algorithm of Chapter 2 will be most important to use.

For a sample of size m, the working partial likelihood based on the working Cox model

(3.2) is

L ∝
m∏
i=1

{
dΓ(vi |X◦i (vi))

δi exp(−
∫ ∞

0

Ȳi(s)dΓ(s |X◦i (s)))
}
. (3.3)

We obtain the partial likelihood estimating equations for α(s) = dΓ0(s) and ψ as

U1(s) =
∂`

∂α(s)
=

m∑
i=1

Ȳi(s)
{
dNi(s)− dΓ0(s) exp(ψ′X◦i (s))

}
, 0 < s, (3.4a)

U2 =
∂`

∂ψ
=

m∑
i=1

∫ ∞
0

Ȳi(s)
{
dNi(s)− Ȳi(s)dΓ0(s) exp(ψ′X◦i (s))

}
X◦i (s) , (3.4b)

respectively. Let U = (U1(·), U2)′ where here U1(·) represents the estimating function

U1(s) at all times s > 0. For a given dataset this reduces to a non-degenerate estimating

function for dΓ0(·) at each unique failure time in a sample. Here however, we aim to

explore the limiting value of estimators from misspecified models, so we retain the general

dependence on time s > 0 for the function U1(s) in the derivations that follows.

3.2 Asymptotic Distribution of Cox Model Estimators

If the model leading to the construction of (3.3) is incorrect, then the estimator of Ω =

(Γ0(·), ψ′)′ is consistent for Ω∗, the solution to the equation formed by setting the expected

working Cox model score equations equal to zero (Struthers and Kalbfleisch, 1986; White,
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1982). Wei et al. (1989) showed that as m→∞,

?
m(Ω̂− Ω∗) ∼ MVN( 0, A−1(Ω∗)B(Ω∗)[A−1(Ω∗)]′)

where A(Ω∗) = E{−∂U/∂Ω}, and B(Ω∗) = E{UU ′}, and we use the notation E to convey

an expectation taken with respect to the true model.

We next take the expectation of the estimating equations (3.3) and (3.4) with respect

to the true distribution to solve for Ω∗ = (Γ∗0(·), ψ∗′)′. At fixed ψ and for a given s, solving

E{U1(s)} = 0 gives the limiting “profile” quantity

drΓ∗0(s;ψ) =

∑m
i=1 E{Ȳi(s)dNi(s)}∑m

i=1 E{Ȳi(s) exp(ψ′X◦i (s))}
. (3.5)

Note that each individuals data is assumed to arise from the same data generation process

so we can equivalently write

drΓ∗0(s;ψ) =
E{Ȳi(s)dNi(s)}

E{Ȳi(s) exp(ψ′X◦i (s))}
.

If we substitute (3.5) into E{U2} where U2 is given by (3.4b), we obtain U2(ψ) =
m∑
i=1

Ui2(ψ) =

mUi2(ψ) with

Ui2(ψ) =

∫ ∞
0

{
E{Ȳi(s)dNi(s)X

◦
i (s)} − drΓ∗0(s;ψ)E{Ȳi(s)X◦i (s) exp(ψ′X◦i (s))}

}
=

∫ ∞
0

{
r(1)(s)− r(1)(s;ψ)

r(0)(s;ψ)
r(0)(s)

}
ds (3.6)

where

r(k)(s) = E{ Ȳi(s)[X◦i (s)]⊗kdNi(s) } , k = 0, 1, (3.7a)

r(k)(s;ψ) = E{ Ȳi(s)[X◦i (s)]⊗k exp(ψ′X◦i (s)) } , k = 0, 1. (3.7b)

Thus the limiting value of the regression coefficient from a Cox model using X◦i (s) as the

covariate is ψ∗, the solution to the equation U2(ψ) = 0.
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Figure 3.1: A joint model for the multistate and right-censoring processes

In order to evaluate this limiting value, a specific model for the data generating process

must be provided. We consider the four state model depicted in Figure 3.1 to represent the

joint marker-failure-censoring time process. The addition of the censoring state enables us

to consider the impact of dependent censoring which we do briefly in what follows. We also

need to give a possibly covariate and marker-dependent visit process through specification

of the visit intensity. To do this we introduce a more elaborate multistate model shown

in Figure 3.2. Here for convenience of representation we have two failure (death) states

depending on whether failure occurred from the normal or high marker state but this is

simply for presentation purposes - they represent the same absorbing states for any given

row. We also introduce multiple censoring states on a given row that may be entered from

the two marker states, but again this is only for display purposes. The states are organized

so that a pair of rows correspond to a particular cumulative number of visits. The states in

the far left and right columns are absorbing states representing failure or censoring while

the inner two states reflect the marker values. Thus state (j, 1), for example, is occupied

by an individual alive at time s if they have had j visits and have an elevated marker and

are uncensored (i.e. Ai(s) = j, Zi(s) = 1, Yi(s) = 1). A downward transition occur when

a visit occurs, so the row of the figure represents the cumulative number of post-baseline
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visits. Individuals are in the row corresponding to Ai(s) = 0 until the first follow-up visit.

Thus the states are labeled with two integers with the first being the cumulative number

of visits; the second reflects the state of the 3-state process or censoring. The longer an

individual has spent in states (j, 0) or (j, 1), the more out of date their marker value X◦i (s)

is.

0,2

0,3

FAILED

CENSORED

1,2

1,3

FAILED

CENSORED

0,0

LOW

1,0

0,1

HIGH

1,1

0,2

0,3

FAILED

CENSORED

1,2

1,3

FAILED

CENSORED

0

1

Z(s)

A
(s

)

Figure 3.2: A joint model for the marker, failure, visit and right-censoring processes

We let

Hi(t) = {Ȳi(s), dĀi(s), Zi(s), 0 < s < t,Xi2}

denote the complete history of the joint process, and let

H̄i(t) = {Ȳi(s), dĀi(s), dN̄i0(s), dN̄i1(s), dN̄i2(s), 0 < s < t,Xi2}

denote the process history accommodating right censoring, where dĀi(s) = Ȳi(s)dAi(s),

dN̄i0(s) = Ȳi(s)dNi0(s), dN̄i1(s) = Ȳi(s)dNi1(s), and dN̄i2(s) = Ȳi(s)dNi2(s). We then let

X̄ ◦i (t) = {(aij, Xi(aij), j = 0, 1, . . . , Āi(s)} = {dĀi(s), X◦i (s), 0 < s < t,Xi(0)}
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denote the observed history of the covariate process under the last observation carried

forward approach, and finally we let

H̄◦i (t) = {Ȳi(s), dĀi(s), dN̄i2(s), X◦i (s), 0 < s < t}

denote the history of the observed data process when failure is subject to right censoring

and the markers are observed intermittently. The convention in this notation is that an

overbar denotes a process history under right-censoring and the superscript “o” denotes an

observed process history where the process of interest is subject to intermittent observation.

The intensities for the model depicted in Figure 3.2 are defined as follows. For the

failure intensity we have a general formulation

lim
∆t↓0

P (∆N̄i(t) = 1 | H̄i(t))

∆t
= Ȳi(t)λi(t | H̄i(t)), (3.8)

where as before Ȳi(t) = Yi(t)Y
†
i (t) with Yi(t) = I(t ≤ Ci) and Y †i (t) = I(t ≤ Ti). Note

that this intensity becomes zero following either failure or censoring. Also note that this

intensity is expressed in terms of the full censored data history whereby failure can depend

on the current (even if unknown) marker value.

As before let dNij(s) indicates a j → 1 − j transition for the marker process, and

Yij(s) indicate individual i is at risk for such a transition, j = 0, 1. The intensities for the

dynamic marker process are

lim
∆t↓0

P (∆N̄ij(t) = 1 | H̄i(t))

∆t
= sYij(t)λij(t | H̄i(t)) , (3.9)

where sYij(s) = sYi(s)I(Zi(s
−) = j), j = 0, 1. The visit process intensity is

lim
∆t↓0

P (∆Āi(t) = 1 | H̄i(t))

∆t
= Ȳi(t)λ

a
i (t | H̄i(t)) (3.10)

where Āi(t) =
∫ t

0
Ȳi(s)dAi(s) and ∆Āi(t) = Āi(t + ∆t−) − Āi(t

−). Note here that, in

general, the visit process intensity at time t can depend on Xi1(t), the latent marker value
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at that time. This would be the case for a non-ignorable marker-dependent visit process

which we consider how to deal with in Chapter 4.

The censoring intensity is

lim
∆t↓0

P (∆C̄i(t) = 1 | H̄i(t))

∆t
= Ȳi(t)λ

c
i(t | H̄i(t)) , (3.11)

where C̄i(t) = I(Ci ≤ t) and ∆C̄i(t) = C̄i(t + ∆t−) − C̄i(t−). Again if (3.11) depends on

Xi(t) rather than X◦i (t) we will have a dependent censoring mechanism in a standard Cox

regression analysis since we cannot render censoring independent by conditioning on Xi(t)

as Xi(t) is not observed.

We have thus formulated a general stochastic model for the multistate process in Figure

3.2 in terms of full set of intensities enabling us to calculate the probability for an arbitrary

path as

Pi = Pi0 ×

{
1∏
j=0

Pij

}
× Pia × Pic (3.12)

where if the realized process is represented as H̄i(∞) = {Ȳi(s), dĀi(s), dN̄i0(s), dN̄i1(s),

dN̄i2(s), 0 < s < Vi, (Vi, δi), Xi2},

Pi0 = λi(vi | H̄i(vi))
δi exp

ˆ

−
∫ ∞

0

Ȳi(u)λi(u | H̄i(u)) du

˙

,

Pij =

N̄ij(vi)∏
l=1

λij(sil | H̄i(sil), dN̄ij(si)) exp

ˆ

−
∫ ∞

0

Ȳij(u)λij(u | H̄i(u) du)

˙

, j = 0, 1,

Pia =

ri∏
j=1

λai (aij | H̄i(aij)) exp

ˆ

−
∫ ∞

0

Ȳi(u)λai (u | H̄i(u) du)

˙

,

and

Pic = λci(vi | H̄i(vi))
1−δi exp

ˆ

−
∫ ∞

0

Ȳi(u)λci(u | H̄i(u)du)

˙

,

where Āi(vi) = ri is the total number of post-baseline visits and N̄ij(vi) =
∫∞

0
Ȳi(s)dNij(s),

j = 0, 1 for individual i.

We aim to use this general framework to investigate the impact of naive use of {X◦i (s),
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0 < s} as the time-dependent marker in a Cox regression model given in (3.2) in the

framework of an independent or dependent visit and censoring process. To do so we

consider some specific models and let

λci(t | H̄i(t)) = Ȳi(t)ρc exp(Xi1(t−)ηc)

where ηc represents the strength of the marker dependence for the censoring time (ηc = 0

implies complete independence), and

λai (t | H̄i(t)) = Ȳi(t)ρa exp(Xi1(t−)ηa)

where ηa represents the strength of the dependence of the visit process and the marker

process. We assume the visit and censoring processes are conditionally independent of Xi2

given {Xi1(s), 0 < s} for simplicity, but it is straightforward to relax that association.

We use {Zi(s), 0 < s} to depict the multistate process in Figure 3.2 to distinguish it

from the 3-state multistate process {Zi(s), 0 < s}. With a fully specified joint model, for

a given individual in the kth row and jth column, we denote the state by (j, k). The state

space for {Zi(s), 0 < s} is therefore S = {(j, k), j = 0, 1, . . . , k = 0, 1, 2, 3}. The transition

intensities (3.7) - (3.10) govern the dynamics of the complete process.

3.3 Limiting Values of Naive Estimators under LOCF

3.3.1 A General Framework

When the visit process is conditionally independent of the marker value given the observed

data history, some explicit expressions can be established for the expected estimating func-

tions. However, we consider the theory here in general and also describe how to compute

the required expectations via Monte Carlo in Appendix C. In Appendix D we present an

expanded joint model which facilitates direct computation of the required expectations

based on a much larger but more comprehensive state space. This expanded state-space

is well-suited to the generalization of the EM algorithm of Chapter 2 to accommodate a
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semiparametric failure time analysis under a marker-dependent visit process but that is

beyond the scope of this thesis.

Suppose Xi2 is a p × 1 vector which will make Xi(t) = (Xi1(t), X ′i2)′ and X◦i (t) =

(X◦i1(t), X ′i2)′ a (p + 1) × 1 vector. Then for (3.7a) and (3.7b) we require the following

expectations

(i) The scalar r(0)(s) = E{Ȳi(s)dNi(s)} ,

(ii) The (p+ 1)× 1 vector r(1)(s) = E{Ȳi(s)X◦i (s)dNi(s)} ,

(iii) The scalar r(0)(s;ψ) = E{Ȳi(s) exp(ψ′X◦i (s))} , and

(iv) The (p+ 1)× 1 vector r(1)(s;ψ) = E{Ȳi(s)X◦i (s) exp(ψ′X◦i (s))}

These expressions require working with the full joint model and for an example we provide

the following derivation.

To compute r(0)(s), note

E{Ȳi(s)dNi(s)} = E
{
Ȳi(s)E{dNi(s) | Xi(s), Ȳi(s) = 1}

}
= E

{
Ȳi(s)[dΛ2(s)eβ1+X′i2β2P (Zi(s) ∈ C01 | Zi(s) ∈ C00 ∪ C01, Xi2)

+ dΛ2(s)eX
′
i2β2P (Zi(s) ∈ C00 | Zi(s) ∈ C00 ∪ C01, Xi2)]

}
= dΛ2(s)E

{
eX
′
i2β2(eβ1P (Zi(s) ∈ C01 | Xi2) + P (Zi(s) ∈ C00 | Xi2))

}
where C0k = {(j, k), j = 0, 1, . . .} is the set of states with the second subscript equal to k,

k = 0, 1. The remaining expectation is with respect to the covariate distribution for the

fixed covariate Xi2 and so the expectation will depend on the precise form of the covariate

distribution.

The derivations for i) - iv) will be described in detail in Appendix C based on the full

joint model of Figure 3.2, or an expanded version of it described in Appendix C. For the
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failure process we let

λi(t | H̄i(t)) = Ȳi(t)λ2 exp(Xi1(t)β1 +X ′i2β2 )

and for the marker transitions we let

λij(t | H̄i(t)) = Ȳij(t)λj exp(X ′i2 γj)

for simplicity in the following calculations. We next consider computations for a particular

setting to investigate the primary sources of the limiting biases.

3.3.2 Asymptotic Bias Under a Marker-Independent Visit Process

We first explore the asymptotic bias from carrying forward the marker value from the

most recent assessment under a marker-independent visit process. We again consider data

arising over the interval [0, 1], and here let Xi2 be a binary covariate with P (Xi2 = 1) =

P (Xi2 = 0) = 0.5. We plot the graph of the empirical bias of both ψ∗1 and ψ∗2 with respect

to different values of log(λ1/λ0) which reflects the proportion of time in the two marker

states while event-free for an individual with Xi2 = 0. We set the rate ρ of a Poisson visit

process so that E{A(1)} = 4, 8 or 12. We consider settings where λ0 = 4 or 8. We let the

true marker effect to be β1 = log 1.25 and β2 = log 1.5.

Given the value of λ0, for the 3-state process, we set the 1 → 2 intensity to 1.25λ2

and at different values of log(λ1/λ0), we solve for parameters of the multistate process so

that the probability of an event at administrative censoring time equals to 60%. As it is a

marker-independent visit process, ηa = 0, and we solve for the visit intensity ρa so that

E{A(1)} =
∞∑
j=0

j
1∑

k=0

P (Z(1) ∈ Rj |Z(0) = (0, k))P (Z(0) = (0, k)) .

Figure 3.3 - Figure 3.6 show the asymptotic bias of both ψ̂1 and ψ̂2 with respect to both

the log ratio of λ1 over λ0 and the Poisson mean number of visits under different values of
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λ0. We see that for all plots, when the expected number of visits increases, the limiting

absolute bias decreases, because we often obtain more information with increasing number

of visits. We also see that the limiting bias increases when log(λ1/λ0) increases. This

might be due to the increased number of visits to state 1 rather than to state 2, resulting

a higher chance of getting mismeasured covariate value when individuals move more often

in between state 0 and state 1.
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Figure 3.3: Asymptotic bias of ψ̂1 for β1, when the marker effect is estimated based on a
naive Cox regression model and marker value is carried forward as a function of the log of
the ratio of λ1 over λ0 -independent censoring and independent visit are considered here;
First panel shows biases for all expected number of assessments while remaining panels are
for a given expected number of assessments to better display the trend as a function of the
ratio of λ1 over λ0; λ0 = 4 here.
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Figure 3.4: Asymptotic bias of ψ̂2 for marker effect β2 when estimated based on a naive
Cox regression model and marker value is carried forward as a function of the log of the
ratio of λ1 over λ0 -independent censoring and independent visit are considered here; First
panel shows biases for all expected number of assessments while remaining panels are for
a given expected number of assessments to better display the trend as a function of the
ratio of λ1 over λ0; λ0 = 4 here.
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Figure 3.5: Asymptotic bias of ψ̂1 for marker effect β1 when estimated based on a naive
Cox regression model and marker value is carried forward as a function of the log of the
ratio of λ1 over λ0 -independent censoring and independent visit are considered here; First
panel shows biases for all expected number of assessments while remaining panels are for
a given expected number of assessments to better display the trend as a function of the
ratio of λ1 over λ0; λ0 = 8 here.
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Figure 3.6: Asymptotic bias of ψ̂2 for marker effect β2 when estimated based on a naive
Cox regression model and marker value is carried forward as a function of the log of the
ratio of λ1 over λ0 -independent censoring and independent visit are considered here; First
panel shows biases for all expected number of assessments while remaining panels are for
a given expected number of assessments to better display the trend as a function of the
ratio of λ1 over λ0; λ0 = 8 here.
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3.3.3 Asymptotic Bias Under a Marker-Dependent Visit Process

Here we investigate the asymptotic bias arising from carrying forward the most recently

recorded value of a time-dependent marker as the limiting value of a regression coefficient

in a Cox model under a dependent visit process. We set an administrative censoring time

A = 1. For the three-state process, we set the initial distribution via P (Z(0) = 0) = 0.5

and set the true log hazard ratio to exp(γ) = 2.5. We set the probability of death at the

administrative censoring to be P (Z(A) = 2 |Z(0) = 0) = 0.4 and 0.8. We then solve for

transition intensities under the constraints λ1/λ0 = 2, λ0/(λ0 + λ2) = 0.8. For the setting

with an independent visit process we adopt a Poisson visit process with rate ρ and set ρ

such that E{A(1)} = ρ = 4, 8 or 12.

To specify the censoring process, we consider exp(ηc) = 1 for an independent censoring

process and exp(ηc) = 1.2 for a mildly dependent censoring process, and set ρc so that the

net probability of censoring over [0, 1] is 40%. That is, we solve for ρc so that

PC =
∞∑
j=0

1∑
k=0

P (Z(1) = (j, 3) |Z(0) = (0, k))P (Z(0) = (0, k)) = 0.4 . (3.13)

To generate a dependent visit process, we let Rj =
{

(j, 0), (j, 1), (j, 2), (j, 3)
}

to be the set

of states at row j. We consider the values exp(ηa) = 0.6, 0.8, 1, 1.2, 2 where exp(ηa) = 1

stands for a conditionally independent visit process. With the administrative censoring at

time 1, we then solve for ρa so that the expected number of visits,

E{A(1)} =
∞∑
j=0

j
1∑

k=0

P (Z(1) ∈ Rj |Z(0) = (0, k))P (Z(0) = (0, k)) , (3.14)

is equal to 4, 8 or 12. We set the upper limit of the sum over visits j to be 50 in solving

(3.13) and (3.14); that is, we assume the expanded joint model consists of no more than

50 rows. This censors the visit process but at such a high number of visits that the upper

limit has negligible impact on the accuracy of the calculations.
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A Dependent Visit Process and Independent Right Censoring

We consider both the independent right censoring (i.e. ρc = ρc exp(ηc) = 0 so there is

no random censoring) as well as the dependent censoring case in the following section.

For both cases, we solve for ρa so that the number of total visit for an individual has

mean E{A(1)} =
∑∞

j=1 j
∑1

k=0 P (Z(1) ∈ Rj|Z(0) = (0, k))P (Z(0) = (0, k)) = 4, 8, 12 at

time 1 for each value exp(ηa) = 0.6, 0.8, 1, 1.2, 2. We plot the asymptotic bias for β with

E{A(1)} = ρ = 4, 8, 12 under both independent censoring (see Figure 3.7) and dependent

censoring (see Figure 3.8).

For the independent censoring case, the different values of ηa correspond to a range

of settings including cases when an elevated marker decreases the visit intensity to cases

where it increases the intensity of a visit. Note that the effects of a given ηa will be different

according to the baseline intensity of visits since a strongly dependent visit process will

have a weaker effect if visits occur frequently.

In the top left panel we see that the mean number of visits has a large impact on the

magnitude of the bias as it determines how long, on average, values are carried forward.

The trend in the asymptotic bias as a function of the marker dependence is weaker, so

in the remaining three panels of Figure 3.7 we display the plots for a given mean number

of visits so the scales better enable illustration of the trends. We generate a dataset of

n = 2000 individuals. We then solve for the limiting value ψ∗1 and plot ψ∗1−β1 vs. exp(ηa).

Dependent Censoring

When censoring is dependent we set exp(ηc) = 1.2 and solve for ρc so that PC = 0.40 so

40% of the individuals should be censored by the administrative censoring time 1. Figure

3.8 contains the corresponding plots where a similar pattern is seen.
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Figure 3.7: Asymptotic bias of regression coefficient for marker effect estimated based
on naive Cox regression with marker value carried forward as a function of the expected
number of assessments over (0, 1] and the strength of the marker effect on the visit intensity
- independent censoring is considered here; First panel shows biases for all expected number
of assessments while remaining panels are for a given expected number of assessments to
better show trend as a function of marker dependence.
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Figure 3.8: Asymptotic bias of regression coefficient for marker effect estimated based
on naive Cox regression with marker value carried forward as a function of the expected
number of assessments over (0, 1] and the strength of the marker effect on the visit intensity
- dependent censoring is considered here; First panel shows biases for all expected number
of assessments while remaining panels are for a given expected number of assessments
to better show trend as a function of marker dependence; The probability of dependent
censoring PC = 40%.
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In both plots, the x-axis reflects the extent of the dependence between the marker

value and the visit process. We could see from the top left panel that the limiting bias

ψ∗1 − β1 decreases as the expected number of visits increases. This is due to the increased

information obtained when we see patients more often. In general, the bias decreases when

exp(ηa) increases. Note that the bias at exp(ηa) = 1 may only be due to the out-of-date

marker value.

3.3.4 Simulation Studies to Investigate Finite Sample Bias

We then carry out a simulation study to investigate empirical properties of the estimator

with misspecified Cox model using X◦(s) (denoted by the mean on the table) and the

limiting value (β∗) under independent censoring to see how these two values agree with

each other in each parameter settings. For the misspecified Cox model, we consider 500

simulations and in each simulation, n = 1000. For solving the limiting value based on the

estimating equations, we consider n = 2000 individuals.

As expected, from Table 3.1 from the asymptotic calculations leading to Figure 3.7 and

Figure 3.8, Cox regression estimators are biased when marker values are carried forward.

Size of bias depends on the visit intensity dependence on marker value and we see good

agreement between the limiting value ψ? and the finite sample empirical average estimate.

Also, the empirical standard errors (ESE) agree well with the average robust standard

errors (ASE).

As in Table 3.1, we compared the values of the limiting value with the finite sample

empirical average estimate when a fixed covariate X2 is added. In Table 3.2 we compare

the limiting values ψ∗1 and ψ∗2 with estimates by fitting a Cox model for 500 simulations

of 2000 individuals each. It shows that there is a good agreement between the two values,

and the average robust standard errors are close to the empirical standard errors.
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40% Failure Rate 80% Failure Rate

E{A(1)} exp(ηa) ψ∗1 MEAN ESE ASE ψ∗1 MEAN ESE ASE

4 0.6 0.5734 0.5880 0.1686 0.1663 0.4322 0.4261 0.1157 0.1250
0.8 0.5845 0.5801 0.1656 0.1664 0.4271 0.4443 0.1268 0.1234

1 0.5976 0.6128 0.1620 0.1670 0.4347 0.4419 0.1184 0.1229
1.2 0.6074 0.6060 0.1715 0.1665 0.4343 0.4337 0.1312 0.1235

2 0.5915 0.6111 0.1520 0.1681 0.4486 0.4316 0.1348 0.1232

8 0.6 0.6724 0.6741 0.1846 0.1659 0.5403 0.5417 0.1155 0.1246
0.8 0.6762 0.6877 0.1627 0.1670 0.5627 0.5618 0.1182 0.1240

1 0.6886 0.6923 0.1650 0.1659 0.5607 0.5545 0.1140 0.1236
1.2 0.6971 0.6995 0.1845 0.1655 0.5591 0.5649 0.1186 0.1233

2 0.6922 0.6946 0.1832 0.1672 0.5637 0.5632 0.1165 0.1237

12 0.6 0.7330 0.7407 0.1563 0.1663 0.6127 0.6106 0.1274 0.1236
0.8 0.7473 0.7463 0.1392 0.1671 0.6131 0.6282 0.1228 0.1232

1 0.7446 0.7579 0.1440 0.1660 0.6348 0.6302 0.1115 0.1233
1.2 0.7466 0.7719 0.1546 0.1674 0.6286 0.6207 0.1070 0.1227

2 0.7488 0.7468 0.1806 0.1686 0.6289 0.6323 0.1226 0.1234

Table 3.1: Parameter estimates with coxph function and estimating equations for the
illness-death model. Number of individuals per simulation for the coxph =1000, Number
of simulations = 500. Number of individuals for estimating equations = 2000. P (Z(A) =
2 | Z(0) = 0) = 0.4.
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β1 β2

E{A(1)} exp(ηa) ψ∗1 MEAN ESE ASE ψ∗2 MEAN ESE ASE

4 0.6 0.0816 0.0832 0.1084 0.1112 0.4524 0.4569 0.1115 0.1119
0.8 0.0876 0.0843 0.1156 0.1110 0.4484 0.4529 0.1081 0.1121

1 0.0866 0.0905 0.1196 0.1112 0.4502 0.4521 0.1125 0.1120
1.2 0.0868 0.0869 0.1153 0.1116 0.4523 0.4531 0.1108 0.1122

2 0.0955 0.0940 0.1120 0.1133 0.4463 0.4419 0.1181 0.1119

8 0.6 0.1127 0.1188 0.1153 0.1119 0.4438 0.4423 0.1095 0.1128
0.8 0.1181 0.1187 0.1123 0.1119 0.4367 0.4434 0.1121 0.1129

1 0.1216 0.1278 0.1112 0.1123 0.4380 0.4432 0.1126 0.1131
1.2 0.1210 0.1225 0.1131 0.1125 0.4392 0.4361 0.1133 0.1129

2 0.1235 0.1249 0.1137 0.1141 0.4388 0.4329 0.1149 0.1128

Table 3.2: Parameter estimates with coxph function and estimating equation. ψ∗1 and ψ∗2
are calculated by estimating function. Mean, ESE, ASE are based on coxph() function.
Number of individuals per simulation =2000. P (Z(A) = 2|Z(0) = 0) = 0.6, exp(γ0) = 2
and exp(γ1) = 0.5. Number of individuals for coxph function =500, number of simulations
=500.
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3.4 Concluding Remarks

In this paper we developed a joint model for the marker, censoring and failure process that

deals with both marker independent and marker dependent visit when the marker value is

carried forward from the most recent assessment time. We have demonstrated that the Cox

regression estimates are biased in the covariate of time-varying marker from conventional

analysis when the last observation is carried forward for both marker-independent and

marker dependent visit process or right censoring process. We also extended the work by

adding a fixed covariate to the setting to generalize the finding.
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Chapter 4

A Joint Analysis With a Marker-Dependent

Visit Process

4.1 Introduction

In Chapter 3 we described two elaborate multistate processes which jointly described a

marker-failure process with a possibly marker-dependent visit process and marker-dependent

right-censoring process. The one depicted in Figure 3.2 was used to evaluate the asymp-

totic bias of regression coefficient estimators in the Cox model (3.2) as estimators of

the coefficients in the Cox model of (3.1). Such biases arise from carrying forward the

recorded marker values between assessments when they are observed according to a marker-

dependent visit process and a possibly marker-dependent censoring process. Through full

specification of the joint model, the probability of a particular sample path of observed

data can be evaluated as described in (3.12). Here we show how to compute the proba-

bility of all sample paths under this observation scheme and use this to construct a full

likelihood for an analysis which accommodates marker dependence for the visit and cen-

soring processes. We do this by evaluating the transition probabilities when the transition

intensities are piecewise-constant. An important special feature of our goal is to accommo-

date a larger number of cut-points for the transition intensity to the failure state which is

possible because the failures are only subject to right-censoring. The greater the number
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of cut-points for this baseline hazard, the better this will approximate the results of a Cox

model depicted in (3.1) which cannot be fit using standard method due to intermittent

observation of the marker process.

Note that the msm() function in R by Jackson (2011) can be used to fit Markov process

under intermittent observation, and can handle the case that some states may be entered

at exact observation times if they are terminal states. In our setting with the full joint

model, exact transition times are observed when failure is observed, when right-censoring

occurs, or when downward transitions are made upon visit occurrence. The states which

are in the inner two columns in Figure 3.2 are not absorbing states for the full process.

Thus the msm() function cannot be used for the full model fit; this is what motivates us

to consider a partition of the process.

We partition the full multistate process depicted in Figure 3.2 into sub-processes corre-

sponding to contributions between visit times, or between the last visit and the censoring

or failure time. In panel (a) of Figure 4.1 we show the multistate process of interest which

includes the marker states (0 and 1), a failure state (2), and a censoring state (3). Recall

that this process is only partially observed because the marker process is under intermit-

tent observation – that is transitions between states 0 and 1 are not observed. In panel

(b) of Figure 4.1 we show the component of the full process in Figure 3.2 corresponding to

the transitions for individual i, say, from the time of the assessment at aij when the jth

increment in the visit counting process occurs, until the next observable event which could

be failure, censoring or the occurrence of the next visit at time ai,j+1. Note as in Figure

3.2 the states are labeled with two indices with the first identifying the cumulative number

of visits and the second the state of the latent four state process in Figure 4.1a.

Let A0 < A1 < . . . represent random visit times and a0 < a1 < . . . be their realized

values. Here, entry to state (j, 2) corresponds to failure after the jth visit at aij, and entry

to state (j, 3) corresponds to censoring after aij. Transitions between (j, 0) and (j, 1) can

occur but are not observed. An individual makes a downward transition if a visit occurs
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(a) The multistate process {Z(s), 0 < s} incorporating censoring

j,2

j,3

j,0

j+1,0

j,1

j+1,1

j,2

j,3

A(s)=j

A(s)=j+1

ρa ρae
(ηa)

(b) The multistate representation of a component of the full joint process
depicted in Figure 3.2 for information immediately after the jth visit.

Figure 4.1: A multistate model for (A,Z) depicting a joint model for the multistate, visit
and failure process which accommodates a marker-dependent visit process and status of
binary covariate
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and at that time it is determined whether the marker is normal or elevated. We let

H̄i(t) = {Ȳi(s), dAi(s), Zi(s), 0 < s < t,Xi2} (4.1)

denote the complete history of the joint process, and let

H̄◦i (t) = {Ȳi(s), dAi(s), dN̄i(s), 0 < s < t,X◦i1(aij), j = 0, 1, . . . , Ai(t
−), Xi2} (4.2)

denote the observed history of the multistate processes under right censoring where here

dN̄i(s) = Ȳi(s)dNi(s) and {Ni(s), 0 < s} is the counting process for failure for individual

i. The visit process intensity is

lim
∆t↓0

P (∆Āi(t) = 1 | H̄i(t))

∆t
= Ȳi(t)λ

a
i (t | H̄i(t)) (4.3)

in general where Āi(t) =
∫ t

0
Ȳi(s)dAi(s) and ∆Āi(t) = Āi(t + ∆t−) − Āi(t−). We use the

state-space diagram in Figure 4.1b to investigate the effect of marker dependence on the

visit process intensity. To do this, we consider

λai (t | H̄i(t)) = Ȳi(t) ρa exp(Xi1(t−)ηa)

where ηa represents the strength of the dependence of the visit process and the marker

value. Note that the visit intensity could also depend on Xi2 but that would be ignorable

when we condition on Xi2 in the working Cox model so we do not consider it here.

4.2 Computation of the Transition Probability Matrix

4.2.1 Model Specification and Preliminary Derivation

Here we aim to fit the full model accommodating a marker-dependent visit and censoring

process. To do so we consider the likelihood based on the observed sample path as described

in (3.12).
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For the marker process, we let dNij(s) = 1 if a j → 1 − j transition occurs at time s

and dNij(s) = 0 otherwise, j = 0, 1. Let Yij(s) = I(Zi(s
−) = j) and Ȳij(s) = Yi(s)Yij(s),

j = 0, 1, where Yi(s) = I(s ≤ Ci) indicates individual i is under observation at time s.

Suppose Xi2 is a p×1 vector of fixed covariates, we then let

lim
∆t↓0

P (∆Nij(t) = 1 | Zi(t−) = j,Xi2)

∆t
= λj(t | Xi2) = λj(t) exp(X ′i2γj) , (4.4)

be a Markov transition rate where γj is a p×1 vector of regression coefficients. The function

λj(t) is the baseline intensity for j → 1− j transitions, j = 0, 1.

For the failure time process we wish to study the effect of the marker and the fixed

covariates and we let Xi1(t) = I(Zi(s
−) = 1) and define Xi(t) = (Xi1(t), X ′i2)′ to be the

time dependent covariate vector comprised of the marker Xi1(t) and the fixed covariate

Xi2. We continue to consider the case in which the marker is under continuous observation,

and here we construct the likelihood for the failure process parameters. The intensity for

the failure time Ti is

lim
∆t↓0

P (t ≤ Ti < t+ ∆t | t ≤ Ti, Xi(t))

∆t
= λ2(t | Xi(t)) (4.5)

which is taken to have the multiplicative form

λ2(t | Xi(t)) = λ2(t) exp(X ′i(t)β) = λ2(t) exp(Xi1(t)β1 +X ′i2β2) ,

where β = (β1, β
′
2)′.

We assume that the baseline intensities are piecewise-constant. As in Chapter 2, we

let 0 = bj0 < bj1 < . . . < bjkj = ∞ denote the break-points for the baseline intensity for

transitions from state j, j = 0, 1, or into state 2 (j = 2). We then let Bjk = [bj,k−1, bjk),

k = 1, . . . , Kj, j = 0, 1, 2 define the set of all sub-intervals and let

Bk0k1k2 = B0k0B1k1B2k2 (4.6)
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denote the sub-interval within B0k0 , B1k1 and B2k2 , in which all baseline intensities are

constant. We can relabel the sub-intervals of the positive real line sequentially and denote

this by

Bk = [bk−1, bk), k = 1, . . . , K

where each value of (k0, k1, k2) corresponds to a particular unique value of k in this row

index. Thus the multistate process depicted in Figure 4.1b is time-homogeneous within

each interval Bk, k = 1, . . . , K.

j,0

j+1,0 j+1,1

j,2

j,1

ρa ρaeηa

Figure 4.2: A simplified multistate model from Figure 4.1b under independent censoring.

Within each Bk we need to compute the transition probability matrix for the process

{Zi(s), 0 < s} |Xi2 depicted in Figure 4.1b. To simplify things and focus on the key

features of interest - a marker-dependent visit process, we now consider here a simplified

multistate model under the assumption that censoring is independent. It is displayed in

Figure 4.2. Here we order the states {(j, 0), (j, 1), (j + 1, 0), (j + 1, 1), (j, 2)} and consider
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the transition intensity matrix dQ(s |Xi2) for s ∈ Bk as

»

—

—

—

—

—

—

—

—

—

–

−dQ(k)
1· (Xi2) dQ

(k)
12 (Xi2) dQ

(k)
13 (Xi3) 0 dQ

(k)
15 (Xi2)

dQ
(k)
21 (Xi2) −dQ(k)

2· (Xi2) 0 dQ
(k)
24 (Xi2) dQ

(k)
25 (Xi2)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We suppose sub-interval k is obtained by the intersection of B0k0 , B1k1 and B2k2 . In this

case for the first row of dQ(s |Xi2), s ∈ Bk, we have

dQ
(k)
12 (Xi2) = λ0k0 exp(X ′i2γ01) ds

dQ
(k)
13 (Xi2) = ρa ds

dQ
(k)
15 (Xi2) = λ2k2 exp(X ′i2β2)ds

where dQ
(k)
1· (Xi2) =

∑
6̀=1 dQ

(k)
1` (Xi2). For the second row, we have

dQ
(k)
21 (Xi2) = λ1k1 exp(X ′i2γ10) ds

dQ
(k)
24 (Xi2) = ρa exp(ηa) ds

dQ
(k)
25 (Xi2) = λ2k2 exp(β1 +X ′i2β2)ds

where again dQ
(k)
2· (Xi2) =

∑
6̀=2 dQ

(k)
2` (Xi2). Note that the visit process transition intensity

could be time non-homogeneous but we consider a homogeneous (but marker-dependent)

intensity here.

We can then write the time-dependent transition intensity matrix as

dQ(u |Xi2) =
K+1∑
k=1

I(u ∈ Bk) dQ(k)(u | Xi2) .

With this defined we can proceed to compute the transition probability matrix. If I is a

5 × 5 identity matrix then the transition probability matrix for s ∈ [bk−1, bk) is obtained
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by product integration via

P (s, t | Xi2) =
∏
(s,t]

{I + dQ(u | Xi2)}

(Cook and Lawless, 2018).

To elaborate, if we consider the fine partition of time based on Bk, k = 1, . . . , K with

break-points labeled 0 = b0 < b1 < · · · < bK−1 < bK = ∞ we can let dQ(u | Xi2) =

dQ(k)(Xi2) for u ∈ Bk and P (k)(s, t) the corresponding transition probability matrix for

s, t ∈ Bk. Then if s is in the kth sub-interval and t is in the lth interval (k < l), more

generally we can write

P (s, t | Xi2) = P (k)(s, bk | Xi2)

«

l−1∏
j=k+1

P (j)(bj−1, bj | Xi2)

ff

P (l)(bl−1, t | Xi2) (4.7)

where P (k)(u, v |Xi2) is based on the transition probability matrix for the kth interval

bk−1 < u < v < bk.

Having obtained an expression for the transition probability for the sub-process depicted

in Figure 4.1b equivalently Figure 4.2 within any interval Bk and based on (4.7) we can

compute the probability for any sample path of observed data based on (3.12) which we

reproduce below for the special case of independent censoring. In terms of full set of

intensities we calculate the probability for an arbitrary path here as

Pi =
∏

(0,∞)

Pi0 ×

{
1∏
j=0

Pij

}
× Pia (4.8)

where if the realized process is represented as

H̄i(∞) = {Ȳi(s), dĀi(s), dN̄i0(s), dN̄i1(s), dN̄i2(s), 0 < s < Vi, (Vi, δi), Xi2}
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then we have

Pi0 = λi(vi | H̄i(vi))
δi exp

ˆ

−
∫ ∞

0

Ȳi(u)λi(u | H̄i(u)du)

˙

,

Pij =

N̄ij(vi)∏
l=1

λij(sil | H̄i(sil), dN̄ij(si)) exp

ˆ

−
∫ ∞

0

Ȳij(u)λij(u | H̄i(u)du)

˙

, j = 0, 1,

Pia =

ri∏
j=1

λai (aij | H̄i(aij)) exp

ˆ

−
∫ ∞

0

Ȳi(u)λai (u | H̄i(u)du)

˙

,

where ri is the total number of post-baseline visits for individual i and N̄ij(vi) =∫∞
0
Ȳi(s)dNij(s), j = 0, 1. Under conditionally independent censoring λci(t | H̄i(t)) =

λci(t | H̄◦i (t)) and under the further assumption that censoring is non-informative we can

omit the term

Pic = λci(vi | H̄i(vi))
1−δi exp

ˆ

−
∫ ∞

0

λci(u | H̄i(u)du)

˙

,

of (3.12) to obtain (4.8). Of course the entire path is not observed since the transitions be-

tween the marker states are unknown (both how many there are between assessments, and

their times). We therefore consider a full analysis that accommodates the incompleteness

of the information which requires computation of the transition probability matrix.

4.2.2 The Transition Probability Matrix

We next discuss the calculation of the transition probability matrix. For convenience we

relabel the states (j, 0), (j, 1), (j + 1, 0), (j + 1, 1) and (j, 2) in Figure 4.2 as states 1,2,3,4

and 5 respectively. We then let the transition intensity matrix within interval Bk given by

dQ(k)(u | Xi2)/du be written as
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ11 λ12 λ13 0 λ15

λ21 λ22 0 λ24 λ25

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for the kth sub-interval, where we drop the subscript k denoting the interval for ease of

notation the same procedure should be followed within each interval. Here then λ13 denotes

the intensity of visit for normal marker value and λ24 to denote the intensity of visit if

marker value is elevated. We let λ11 = −(λ12 + λ13 + λ15) and λ22 = −(λ21 + λ24 + λ25).

Given the transition matrix for bk−1 < s < t ≤ bk, we could write P (k)(s, t |Xi2) =

exp(dQ(k)(Xi2)/ds (t− s)) as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

P11(s, t |Xi2) P12(s, t |Xi2) P13(s, t |Xi2) P14(s, t |Xi2) P15(s, t |Xi2)

P21(s, t |Xi2) P22(s, t |Xi2) P23(s, t |Xi2) P24(s, t |Xi2) P25(s, t |Xi2)

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(4.9)

Here, the transition probabilities in (4.9) share a common denominator which we denote

by PD(s, t |Xi2). If we let

λ∗ =

b

λ2
12 + p2λ13 + 2λ15 + 2λ21 − 2λ23 − 2λ25qλ12 + pλ13 + λ15 + λ22q

2 ,

then PD(s, t |Xi2) is given by

PD(s, t |Xi2) = λ∗ (−λ11 − λ22 + λ∗)3 (−λ11 − λ22 − λ∗)3
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The (1,1) element of (4.9) is given by P11(s, t |Xi2) = PN
11(s, t |Xi2)/PD(s, t |Xi2), where

PN
11(s, t |Xi2) = −32

(
(−λ11 + λ22 − λ∗) e−1/2 (−λ11−λ22−λ∗)(t−s)

− e−1/2 (−λ11−λ22+λ∗)(s−t) (−λ11 + λ22 + λ∗)
)

((−λ22(λ13 + λ15) + (λ24 + λ25)λ12)3 .

For P12(s, t |Xi2) = PN
12(s, t |Xi2)/PD(s, t |Xi2), the numerator PN

12(s, t |Xi2) is given by

64λ12 ppλ24 + λ25qλ12 − pλ22q pλ14 + λ15qq
3
`

e−1/2 p−λ11−λ22−λ∗qt − e−1/2 p−λ11−λ22+λ∗q(t−s)˘ .

Then for P13(s, t |Xi2) = PN
13(s, t |Xi2)/PD(s, t |Xi2) we obtain PN

13(s, t |Xi2) as

− 32 ppλ14 + λ15qλ21 − pλ24 + λ25qλ11q
2

`

−λ22

`

e−1/2 p−λ11−λ22−λ∗q(t−s) + e−1/2 p−λ11−λ22+λ∗q(t−s) − 2
˘

λ∗+
`

λ21
2 + pλ12 − λ13 − λ15 + 2λ24 + 2λ25qλ21 − pλ24 + λ25q p−λ11 − λ24 − λ25q

˘

`

e−1/2 p−λ11−λ22−λ∗q(t−s) − e−1/2 p−λ11−λ22+λ∗q(t−s)˘λ13 .

Next P14(s, t |Xi2) = PN
14(s, t |Xi2)/PD(s, t |Xi2) where

P14(s, t |Xi2) = −32λ12 ((−λ11)λ24 + (λ21 + λ25)λ13 + (λ21 + λ25)λ15

+ λ12λ25)2 ((−λ11 − λ22 + λ∗) e−1/2 (−λ11−λ22−λ∗)(t−s)

+ (λ11 + λ22 + λ∗) e−1/2 (−λ11−λ22+λ∗)(t−s) − 2λ∗
)
λ24 .

And finally P15(s, t |Xi2) = PN
15(s, t |Xi2)/PD(s, t |Xi2) where

PN
15(s, t |Xi2) = −32 (−λ22(λ13 + λ15) + (λ24 + λ25)λ12)2 ((−λ22λ15 + λ25λ12)(
e−1/2 (−λ11−λ22−λ∗)(t−s) + e−1/2 (−λ11−λ22+λ∗)(t−s) − 2

)
λ∗

+
(
λ22λ

2
15 + ((λ21 − λ24)λ12 + λ22 (λ13 + λ22))λ15 + λ12λ25 (λ12 + λ13 − λ22)

)(
e−1/2 (−λ11−λ22−λ∗)(t−s) − e−1/2 (−λ11−λ22+λ∗)(t−s))) .

Similarly, for the second row of the transition probability matrix (4.9), we have P21(s, t |Xi2)

= PN
21(s, t |Xi2)/PD(s, t |Xi2) where

P21(s, t |Xi2) = 64 ((λ13 + λ15)λ21

− (λ24 + λ25)λ11)3 (e−1/2 (−λ11−λ22−λ∗)(t−s) − e−1/2 (−λ11−λ22+λ∗)(t−s))λ21
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Next P22(s, t |Xi2) = PN
22(s, t |Xi2)/PD(s, t |Xi2) where

PN
22(s, t |Xi2) = 32

(
(λ22 − λ11 + λ∗) e−1/2 (−λ11−λ22−λ∗)(t−s)

− e−1/2 (−λ11−λ22+λ∗)(t−s) (λ22 − λ11 − λ∗)
)

(−λ22(λ13 + λ15) + (λ24 + λ25)λ12)3 ,

and P23(s, t |Xi2) = PN
23(s, t |Xi2)/PD(s, t |Xi2) where PN

23(s, t |Xi2) is given by

−32 (−λ22(λ13 + λ15) + (λ24 + λ25)λ12)2 ((−λ11 − λ22 + λ∗) e−1/2 (−λ11−λ22−λ∗)(t−s)

+ (λ11 + λ22 + λ∗) e−1/2 (−λ11−λ22+λ∗)(t−s) − 2λ∗
)
λ13λ21 .

Then P24(s, t |Xi2) = PN
24(s, t |Xi2)/PD(s, t |Xi2) with

PN
24(s, t |Xi2) = −32 ((λ24 + λ25)λ12

− λ22(λ13 + λ15))2 λ24

(
−λ11

(
e−1/2 (−λ11−λ22−λ∗)(t−s) + e−1/2 (−λ11−λ22+λ∗)(t−s) − 2

)
λ∗

+
(
λ2

12 + (2λ13 + 2λ15 + λ21 − λ24 − λ25)λ12 + (λ13 + λ15) (λ13 + λ15 + λ22)
)(

e−1/2 (−λ11−λ22−λ∗)(t−s) − e−1/2 (−λ11−λ22+λ∗)(t−s)))
And finally P25(s, t |Xi2) = PN

25(s, t |Xi2)/PD(s, t |Xi2) where

PN
25(s, t |Xi2) = 32 (−λ11(λ24 + λ25) + (λ13 + λ15)λ21)2 (− (−λ11λ25 + λ21λ15)(
e−1/2 (−λ11−λ22−λ∗)(t−s) + e−1/2 (−λ11−λ22+λ∗)(t−s) − 2

)
λ∗

+
(
λ11λ25

2 + ((λ12 − λ13)λ21 − λ11 (−λ11 − λ24))λ25 + λ15λ21 (−λ11 + λ21 + λ24)
)(

e−1/2 (−λ11−λ22+λ∗)(t−s) − e−1/2 (−λ11−λ22−λ∗)(t−s)
))

4.2.3 The Observed Data Likelihood for the Joint Model

Having obtained the form of the transition probability matrix over an arbitrary pair of times

s < t, we can now give the likelihood for the data when the marker is under intermittent

observation. If an individual i is seen at times 0 = ai0 < ai1 < . . . < airi and we observe

Xi1(aij) at each of these visits, if we then let Vi = min(Ti, Ci) and δi = I(Vi = Ti) denote

the censored outcome data following the last assessment, the observed data likelihood is

given by

Li ∝
{ ri∏

j=1

P (Zi(aij) = Xi1(aij), Ai(aij) = j − 1 | H̄◦i (a−ij))λai (aij |Xi1(a−ij), H̄◦i (a−ij))
}

1∑
l=0

P (Zi(Vi) = (ri, l) |Ai(V −i ) = ri, H̄◦i (V −i )) (λ2(Vi) exp(β1 +X ′i2β2))δi

(λc(Vi) exp(ηc))
1−δi
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where the probabilities are computed based on the multistate model in Figure 4.1b and the

piecewise constant assumptions via (4.7). If censoring is marker-independent then the last

term can be omitted and {Z(s), 0 < s} process can be viewed as the simplified multistate

model depicted in Figure 4.2.

4.3 Simulation Studies

4.3.1 Design of Simulation Studies

In the simulation study, individuals are under observation over the interval from time

0 to the minimum of event and administrative right-censoring time. We first solve the

parameters for the multistate process. We let λ0 = 4 and let λ1 = 2λ0=8. We then solve

for the values of λ2 under the further constraint that the elevated marker value increases the

hazard for failure by 25% and the probability of an event at the administrative censoring

time P (Zi(1) = 2 |Zi(0) = 1) = 60%. We set the covariate effect of the failure process to

be β1 = log 1.25 and β2 = log 1.5. We let the dependency of the marker process when the

marker is elevated to be ηa = log 1.2. We considered two sets of values for the covariate

effect on marker process γ0 = log 1.2, γ1 = log 0.8 and γ0 = log 1.5, γ1 = log 0.5.

We put 2 cut-points at 1/3 and 2/3 for the marker process and 4 cut-points at 0.2, 0.4,

0.6, 0.8 for the failure process. For the joint analysis, we perform 200 iterations of dataset

of 500 individuals each, and we compare the estimates we get from this joint analysis with

the estimates from the naive Cox model and naive piecewise constant model when the

conventional analysis is used.

4.3.2 Simulation Results

The results of the simulation studies are displayed in Table 4.1 for the setting where there

is a modest covariate effect on the marker transition intensities and Table 4.2 for the

setting of a stronger effect of X2 on the marker transitions. We find with the relatively

infrequent vistis (ρa = 4) the bias from the Cox model and the piecewise constant model

is appreciable - we know from the theoretical results that these biases are due to both
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the carrying forward of the marker values as well as the marker-dependent visit process

whereby visits occur with a higher intensity when the marker state is elevated. The joint

analysis in contrast tends to yield estimators with negligible empirical bias. There is a

higher empirical standard error for the marker effect on failure in the joint analysis but

this price is paid to mitigate the bias from the misspecified model. The parameters of the

marker process intensities are also generally well-estimated, as is the intensity for the visit

process, including the parameter ηa reflecting the extent of the marker-dependence. Note

these are well estimated because the visit times are observed precisely and there are many

visit times informing these parameter estimates.
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Cox PWC Joint Analysis

Parameter TRUE EBIAS ESE EBIAS ESE EBIAS ESE

Failure Process
β1 0.2231 -0.1330 0.1882 -0.1401 0.1681 0.0009 0.2262
β2 0.4055 0.0012 0.2043 0.0395 0.1481 -0.0150 0.1019

log λ21 -0.1698 -0.0056 0.1361
log λ22 -0.1698 0.0080 0.1288
log λ23 -0.1698 0.0063 0.1513
log λ24 -0.1698 0.0089 0.1535
log λ25 -0.1698 0.0020 0.1854

Marker Process
log λ01 1.3863 0.0346 0.1731
log λ02 1.3863 0.0713 0.2182
log λ03 1.3863 0.0590 0.2185

γ0 0.1823 -0.0195 0.2010

log λ11 2.0794 0.0285 0.1437
log λ12 2.0794 0.0658 0.2180
log λ13 2.0794 0.0836 0.2087

γ1 -0.2231 -0.0023 0.1880

Visit Process
log ρa 1.3863 0.0001 0.0485

ηa 0.1823 0.0009 0.1054

Table 4.1: Parameter estimates for naive Cox, naive piecewise constant model and joint
analysis. There are 5 cut-points for the failure model and 3 cut-points for marker process.
Number of individuals per simulation =500 and number of simulation = 200. ρa = 4,
γ0 = log 1.2 and γ1 = log 0.8.
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Cox PWC Joint Analysis

Parameter TRUE EBIAS ESE EBIAS ESE EBIAS ESE

Failure Process
β1 0.2231 -0.1227 0.1762 -0.1221 0.1611 -0.0446 0.1991
β2 0.4055 0.0420 0.1766 0.0573 0.1643 0.0118 0.1181

log λ21 -0.1698 -0.0001 0.1233
log λ22 -0.1698 0.0415 0.1154
log λ23 -0.1698 0.0168 0.1450
log λ24 -0.1698 -0.0076 0.1473
log λ25 -0.1698 0.0086 0.1692

Marker Process
log λ01 1.3863 -0.0034 0.1808
log λ02 1.3863 0.0275 0.2047
log λ03 1.3863 0.0480 0.2228

γ0 0.4055 0.0167 0.1657

log λ11 2.0794 0.0285 0.1437
log λ12 2.0794 0.0469 0.2064
log λ13 2.0794 0.0812 0.2509

γ1 -0.6931 0.0025 0.2295

Visit Process
log ρa 1.3863 -0.0105 0.0463

ηa 0.1823 0.0268 0.0802

Table 4.2: Parameter estimates for naive Cox, naive piecewise constant model and joint
analysis. There are 5 cut-points for the failure model and 3 cut-points for marker process.
Number of individuals per simulation =500 and number of simulation = 200. ρa = 4,
γ0 = log 1.5 and γ1 = log 0.5.
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4.4 Application

4.4.1 Application to the Psoriatic Arthritis Data

The likelihood-based approach of joint modeling was applied on patients with psoriatic

arthritis (PSA). In this study, interest lies in evaluating the effect of inflammatory markers

on severity and progression of joint damage. Patients are assessed both by X-ray for the

level of joint damage and through clinic visits for values of markers. During radiological

examinations, a damage score from 0 to 5 is evaluated for each joint, where score 0 means

a normal joint and score 5 means the joint needs surgery. In the application, we consider

joint with grade 1 or higher as damaged joints and we define patients with greater than

or equal to 3 damaged joints as failure. For clinic visits, blood samples are taken to get

values of biomarkers. We take the genetic marker HLA-B27 as fixed covariate and consider

the level of ESR as a time-varying marker, where an ESR value of less than or equal to 20

mm/hr for female, and less than or equal to 13 mm/hr is considered normal. We define

patients with normal ESR value in state 0 and abnormal ESR value in state 1. Note that

the clinic visits and x-ray visits do not necessarily happen at the same time, and we use

the age at the first clinic visit as time origin so each individual has a visit at time 0 for our

data. There are 2 cut-points at 2 and 6 years for the marker process and 4 cut-points at 2,

4, 6 and 8 years for the failure process. As in Chapter 2, we sample from the integers 1 to

n with replacement n times to create a bootstrap sample and then compute the bootstrap

standard error as the square root of the empirical variance of the estimates.

4.4.2 Application Result

The results of the analysis for both independent visit process (ηa = 0) and dependent visit

process are provided in Table 4.3, where we see that elevation of the erythrocyte sedimation

marker does have a significant impact on the failure process but the presence of HLA-B27

does not, (HR = 1.13, 95% CI: 0.87, 1.42; p=0.3879) for independent visit and (HR =

1.08, 95% CI: 0.85, 1.38; p=0.5216) for dependent visit process. We also see that those

individuals who are HLA-B27 positive have a statistically significant lower intensity for
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a transition to the elevated ESR state (HR = 0.51, 95% CI: 0.30, 0.88; p=0.0149) and a

lower, but not statistically significant transition intensity to the normal ESR state (HR =

0.75, 95% CI: 0.45, 1.25; p=0.2720) for dependent visit process. Finally we see that there

does appear to be a significant effect of the marker process on the visit intensity since

exp(pηa) = 0.63 with 95% CI given by (0.48, 0.82) and p=0.0004.

4.5 Future Research

This chapter reports on an innovative joint modeling approach which deals with an inter-

mittently observed binary time-dependent marker for the setting where the value of the

marker affects the intensity of the visit process. Here the marker and failure intensities

were piecewise constant and the visit intensity was taken to be time homogeneous. The

visit intensity could be relaxed to take a piecewise constant form as well and like the failure

process, it could accommodate a large number of pieces because the visit times are known

precisely. An interesting area of future research would be to extend the visit intensity

model to accommodate an individual specific random effect to accommodate unexplained

heterogeneity in the propensity for visits in the spirit of the mixed Poisson model described

in Section 1.3.

The approach taken to estimation in this chapter was maximization of the observed

data likelihood, but the expanded state space of Appendix D lays the foundation for an EM

algorithm in a multistate setting which accommodates a marker-dependent visit process

by incorporating information on the state occupied at the time of each visit through spec-

ification of a separate marker-visit occurrence state. It is in this framework that a random

effect model for the visit intensity would most naturally be fitted; a gamma distributed ran-

dom effect may be most natural. Joint modeling requires stronger model assumptions than

standard analyses and this investment in model assumptions is worthwhile to mitigate the

bias from the last observation carried forward approach. However the model assumptions

may be incorrect in which case different types of biases are induced. Model checking in the

setting of an intermittently observed marker and a right-censored failure time process are
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Independent Visit Dependent Visit

Parameter Est. ESE p-value Est. ESE p-value

Failure Process

β1 0.5784 0.1147 < 0.0001 0.3698 0.1583 0.0195
β2 0.1076 0.1246 0.3879 0.0803 0.1253 0.5216

log λ21 -1.8626 0.1036 < 0.0001 -1.7720 0.1068 < 0.0001
log λ22 -1.9322 0.0946 < 0.0001 -1.8703 0.1072 < 0.0001
log λ23 -2.4029 0.1360 < 0.0001 -2.3395 0.1279 < 0.0001
log λ24 -2.4575 0.1629 < 0.0001 -2.3971 0.1812 < 0.0001
log λ25 -2.4866 0.0959 < 0.0001 -2.4323 0.1074 < 0.0001

Marker Process

log λ01 -0.9183 0.1218 < 0.0001 -0.7656 0.1380 < 0.0001
log λ02 -0.9885 0.1281 < 0.0001 -0.8681 0.1060 < 0.0001
log λ03 -1.1702 0.2113 < 0.0001 -1.0270 0.2206 < 0.0001

γ0 -0.8166 0.3028 0.0070 -0.6596 0.2708 0.0149

log λ11 -0.2721 0.1223 0.0261 -0.4656 0.1359 0.0006
log λ12 -0.4486 0.1398 0.0013 -0.6575 0.1513 < 0.0001
log λ13 -0.8564 0.2600 0.0010 -1.1844 0.2808 < 0.0001

γ1 -0.2419 0.2845 0.3952 -0.2836 0.2582 0.2720

Visit Process

log ρa -0.1879 0.0467 0.0001 -0.0024 0.0562 0.9659
ηa -0.4608 0.1312 0.0004

Table 4.3: Table of parameter estimates for joint analysis for applying to the PsA data for
both independent visit (ηa = 0) and dependent visit process.
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warranted, as are methods for conducting sensitivity analyses to investigate the possible

impact of model misspecification. The types of misspecification of possible interest include

misspecification of the marker intensities due to incorrect dependence modeling, incorrect

time-scale, or unexplained heterogeneity and misspecification of the visit intensity for the

same reasons. Model checking through fitting expanded models (or carrying out score tests

for the need for expanded models) is an important area of future research.

As discussed in Section 2.7.2 it would be natural to extend this analysis approach to deal

with interval-censored failure time data and settings with more complex (e.g. multicategory

or multi-type) marker processes; for the former setting, the visits at which the failure status

is determined may also be different from those at which the marker is measured. More

elaborate responses such as clustered failure time processes, recurrent event processes, or

progressive damage processes are also of interest.
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Chapter 5

Summary and Future Research

5.1 A Review

This thesis has been concerned with the analysis of failure times and the examination of

the relationship between a dynamic discrete biomarker and fixed covariates and the failure

time. There is a long history on the development of statistical methods for the analysis of

failure time data with time dependent covariates, but the vast majority of these methods

presume the dynamic covariates are under continuous observation. This is not true in

practice, as the time-dependent covariates representing markers measuring the severity of

disease activity or more broadly the state of the underlying disease condition, can only be

measured at periodic assessment times. The values at these assessment times are typically

carried forward and presumed to be accurate measurements of the marker until the next

assessment is made. A major contribution of this thesis is the development of a framework

to investigate the biases that arise from this conventional approach to analysis. We find

there is typically an attenuation in the regression coefficient for the time dependent marker

and an associated smaller bias for the effect of any fixed covariates with the conventional

approach.

In Chapter 2 we describe an EM algorithm that facilitates fitting a joint model for a

discrete marker process and failure process which mitigates the biases arising from conven-

tional analyses involving the carry-forward approach to the intermittently observed marker
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process. The EM algorithm yields maximum likelihood estimators which are therefore

consistent when modelling assumptions are valid. We restrict attention to a single binary

time-dependent covariate but in principle the algorithm is naturally adapted to deal with

more than two categories for the marker, or even multiple time-dependent markers. The

EM algorithm accommodates a different number of cut points for the failure process which

is under right censored observation and the marker process which is in completely ob-

served measurements. As the number of pieces in the piecewise constant intensity for the

failure time increases, this method better approximates the results of the semi-parametric

regression model.

There is a price to pay when joint modelling the marker process and the failure process

in the sense that the standard error of the regression coefficients can be increasing due

to the need to estimate the parameters governing the marker process and there would

be more variability of the model when the number of parameters estimated increases.

We therefore conduct a careful examination of the determinants of the bias from the

conventional carry forward approach in order to give some guidance on when joint modelling

may be warranted. The framework we develop in Chapter 3 makes use of the theory of

the misspecified models and specifically misspecified Cox regression models. We find, quite

naturally, that the less frequent the visits leading to the measurements of the markers, the

greater the bias from the carry forward approach. The framework was also exploited to

investigate the consequences of a marker-dependent visit process. Often markers reflecting

disease severity will be outdated in the time of examination if the symptoms lead individuals

to seek medical care. We therefore identify a second source of bias in this situation if simple

joint models are used.

In Chapter 4 we develop a likelihood-based approach to joint modelling of the marker

process, failure process, visit process and the censoring process. This joint model enables

one to mitigate the bias in the regression coefficients from a marker-dependent visit process

and a marker-dependent loss to follow-up. The joint model involves the specifications of

marker states, failure states, censoring states, and states based on the cumulative number

of visits at which markers are assessed. The visit process intensities and censoring intensi-
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ties can depend on the latent marker status. This investigation is carried out in the context

of a Markov model. Piecewise constant intensities are specified for all transitions within

this large joint model, and likelihood based inferences proposed. Existing software requires

partitioning of the state space into smaller state spaces corresponding to information on the

joint process between assessment times or between the final assessment time and failure.

Because visit times, failure times and censoring times are observed precisely, these intensi-

ties may involve a large number of break-points, or even be estimated semi-parametrically.

We focus primarily on a small number of pieces for the failure process, conditionally inde-

pendent and non-informative right censoring, and a marker-modulated time homogeneous

visit process intensity. Simulation studies confirm that the model has good performance

and application to the motivating data set illustrates how different estimators can arise

between the naive model and the joint model.

5.2 Future Work: Interval-Censored Failure Times

In many circumstances the failure process may also be under intermittent observation.

This arises in osteoporosis studies when asymptomatic fractures could not be detectable

other than through x-ray or bone scans. In these situations it is at the periodic assessment

times that the failure status of individuals is determined which leads to type K interval-

censored data (Sun, 2007). Sometimes the assessment times for the failure process will be

the same as the assessment times for the marker process, but often they will also different.

Blood samples need not be obtained at the same time as an x-ray or bone scan. In these

settings it is of interest to jointly model the visit process for the time-dependent covariates

and the visit process for the assessment of the failure status. These more elaborate joint

models can be characterized by state spaces with many more states - while this may look

unwieldy there will be many constraints that can reduce the number of parameters to be

estimated and make the model possible to fit.

Cook and Lawless (2019) consider the situation where there may be periodic visits that

are scheduled and others that are disease driven. In this context there may be an informal
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schedule for the assessment of markers but elevated markers arising due to exacerbation

of symptoms could lead to premature visits that the patient initiated. In such situations,

point process model could be considered with one type of event corresponding to a routine

visit and another type of event corresponding to a symptom driven visit. To date no

such models have been considered to our knowledge and this represents an area of future

research.

5.3 Heterogeneity and Truncated Data

Throughout this thesis we have assumed that the model intensities can be characterized

based on either observable covariates at the baseline, or a time dependent marker process.

On many occasions such models will be inadequate because there is unexplained person-

to-person variation in the visit process, the dynamics of the marker process, or the failure

process itself. The latter is difficult to deal with but it is possible to introduce random

effects for characterizing variation from individual to individual beyond that which would

be expected based on the available information. Such a random effect model could ac-

commodate more rapid or slower than average transitions between the marker states, or

more variation in the visit process than would be expected based on a modulated Markov

model. The development of likelihood methods and estimation approaches for these ex-

panded models is worthwhile both to accommodate settings where there is an additional

component of variation, and to form a basis for score tests of the need for model expansion.

Different truncation schemes could be used to screen or exclude individuals from a

population upon sampling. Left truncation arises when individuals are required to be

event-free at a time of sampling; that is if an individual is contacted at time A0 and they

are only selected if T > A0 where T is the failure time of interest, A0 is the left-truncation

time. Right truncation, on the other hand, occurs when we only sample individuals if,

at a contact time R, they are recruited if T < R: in this case, R is the right truncation

time. For example, in studies of the HIV incubation distribution, we may only select

individuals retrospectively based on whether they have developed AIDS; the incubation
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period is then right-truncated (Kalbfleisch and Lawless, 1989; Lagakos et al., 1988). In each

of these settings, bias could arise if analysis do not account for the fact that individuals

are selected based on conditions related to their failure time. There has been a long

literature on time-to-event data under truncation. Turnbull (1976) extended Kaplain-Meier

estimator to truncation data in the presence of censoring. The asymptotic properties of

the product limit estimators were explored in several papers (Wang et al., 1986; Woodroofe

et al., 1985; Keiding and Gill, 1990). Inverse probability weighted estimators are consistent

under truncation, and the Kaplan-Meier estimator can be viewed as an IPW estimator in

this case (Horvitz and Thompson, 1952; Shen, 2003). Regression modeling can be adopted

to handle time-to-event data under truncation (Bhattacharya et al., 1983; Gross and Lai,

1996). Expansion of the joint models to accommodate truncation is an area for future

work.
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Appendices

A An EM Algorithm for Cox Regression

A.1 A Slight Model Re-formulation

We consider here the setting of this chapter with a right-censored failure time and an

intermittently observed binary time-dependent covariate. The description here is aiming

to outline the modifications to the algorithm in the body of the thesis to support a fully

semiparametric Cox regression analysis for the failure time process. We let Ti denote the

time of event of interest for individual i which is subject to right censoring at a random

censoring time Ci. We then let Vi = min(Ti, Ci) and δi = I(Vi = Ti). We also define

Yi(s) = I(s ≤ Ci), Y
†
i (s) = I(s ≤ Ti) and let Ȳi(s) = Yi(s)Y

†
i (s) = I( s ≤ Vi) indicate

whether individual i is under observation and at risk of failure at time s, as before. Let

Ni2(s) = I(Ti ≤ s) indicate whether individual i has failed by time s, where dNi2(s) =

lim
∆s→0

∆Ni2(s) where ∆Ni2(s) = lim
∆s→0

Ni2(s + ∆s−) − Ni2(s−), which takes the value 1 if

failure occurs at time s. We let dN̄i2(s) = Ȳi(s)dNi2(s), N̄i2(s) =
∫ s

0
dN̄i2(u) and define

∆N̄i2(s) = N̄i2(s+ ∆s−)− N̄i2(s−) as terms related to the censored data counting process

accordingly.

We consider a discrete internal time-dependent covariate which we refer to as a marker

since it is a reflection of the state of a disease in an individual at risk of failure. For a

binary marker, let Xi1(s) = 1 if the marker indicates active disease and zero otherwise. As

examples, this may represent a presence of high blood pressure in study of a cardiovascular

disease, an acute state of inflammation in an arthritis study, or elevated marker indicating

102



abnormal kidney function in a study of diabetes nephropathy. When viewed as a stochastic

process, we write this as {Xi1(s), 0 < s}. We consider a p × 1 fixed covariate Xi2 and

write Xi(s) = (Xi1(s), X ′i2)′. We then consider a regression model for failure based on a

multiplicative Cox model with

lim
∆t↓0

P (∆Ni2(t) = 1 |Ti ≥ t,Xi(t))

∆t
= λ2(t |Xi(t)) = λ2(t) exp(X ′i(t)β) (5.1)

where we write Λ2(t) =
∫ t

0
λ2(s)ds and dΛ2(t) = λ2(t) dt. Here, unlike the body of Chapter

2, the baseline intensity function is of an unspecified form.

For a sample of size n, the partial likelihood based on the Cox model (5.1) is

L ∝
n∏
i=1

{
dΛ2(vi |Xi(vi))

δi exp(−
∫ ∞

0

Ȳi(s)dΛ2(s |Xi(s)))
}
,

and the corresponding log-likelihood is

` =
n∑
i=1

{∫ ∞
0

Ȳi(s)dNi2(s) log dΛ2(s |Xi(s))−
∫ ∞

0

Ȳi(s)dΛ2(s |Xi(s))
}
.

The partial likelihood estimating equations for dΛ2(s) is

U2(s) =
n∑
i=1

Ui2(s) =
n∑
i=1

Ȳi(s){dNi2(s)− dΛ2(s |Xi(s))} , 0 < s . (5.2)

From (5.2) it is apparent that dΛ2(s) is estimated to be zero except at unique recorded

failure times across the sample, denoted s1, . . . , sL. We may effectively rewrite (5.2) as

U2l =
n∑
i=1

Ui2l =
n∑
i=1

Ȳi(sl){dNi2(sl)− dΛ2(sl |Xi(sl))} , l = 1, . . . , L , (5.3)

and let (U21, . . . , U2L)′ be a vector of estimating functions for dΛ2(sl), l = 1, . . . , L. The
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(p+ 1)× 1 estimating function for β is analogous to (2.11) but written here as

U2,L+1 =
n∑
i=1

Ui1 =
n∑
i=1

∫ ∞
0

Ȳi(s){dNi2(s)− dΛ2(s |Xi(s))}Xi(s) (5.4)

and combining these estimating functions for dΛ2(·) and β we write

U2 = (U21, . . . , U2L, U
′
2,L+1)′.

The Cox model partial likelihood is inherently conditional on the marker process. Mod-

els for such internal time-dependent covariates are naturally viewed jointly with the failure

process as discussed earlier. To do this, we consider a 3-state model depicted in Figure

A.1 with state space S = {0, 1, 2}. We let Zi(s) = k if state k is occupied by individual i

at time s, k = 0, 1, 2, and let {Zi(s), 0 < s} represent the 3-state stochastic process. Let

Hi(t) = {Zi(s), 0 < s < t,Xi2} denote the history of the joint process for individual i,

including the fixed covariate vector Xi2, i = 1, . . . ,m. The function Yij(s) = I(Zi(s
−) = j)

indicates that individual i is at risk of a transition out of state j at time s, j = 0, 1. Note

that in the 3-state model, the failure time Ti is the time of entry to the absorbing state 2,

and we may write Xi1(s) = I(Zi(s) = 1) to indicate that the time-varying binary marker

is elevated at time s, where Xi1(s) = 0 if the marker value is low and Xi1(s) = 1 if the

marker value is high. The p × 1 covariate vector Xi2 contains fixed (time independent)

covariates.

0

MARKER
NORMAL

2

FAILED

1

MARKER
ELEVATED

Figure A.1: A multistate diagram depicting a joint model for a dynamic binary covariate
and a failure time process

When we consider the joint model of Figure A.1 we need to introduce additional count-
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ing processes and intensities to reflect the marker dynamics. Let Nij(t) count the number

of j → 1−j transitions over (0, t] and dNij(s) = 1 if a j → 1−j transition occurs at time s

for the marker with dNij(s) = 0 otherwise; we then write Ni(t) = (Ni0(t), Ni1(t), Ni2(t))′ to

denote the multivariate counting process for Figure A.1. The history may then be equiva-

lently defined as in terms of the multivariate counting process as Hi(t) = {dNi(s), 0 < s <

t, Zi(0), Xi2}. The intensities for the marker process dynamics can then be defined as in

Section 2.2.1. Note while a semiparametric model can be adopted for the failure time we

cannot easily fit a semiparametric model for the marker dynamics since transitions between

states 0 and 1 are not observed. We therefore retain the piecewise constant form of them.

Recall we had Uj(θj) = (αj, γj) = (Uj1, . . . , UjKj , U
′
j,Kj+1)′ where Ujk, k = 1, . . . , Kj

is given in (2.3) and the p × 1 vector Uj,Kj+1 is given in (2.4), j = 0, 1. Combining

these with the Cox model estimating function, we then consider U = (U ′0, U
′
1, U

′
2)′ where

U2 = (U21, . . . , U2L, U
′
2,L+1)′. The full parameter vector is then θ = (θ′0, θ

′
1, dΛ2(·), β′)′. We

next define the conditional expectation of the complete data score equations, emphasizing

the failure time terms since the marker model is unchanged from that of Section 2.2.1 and

Section 2.4.2.

A.2 Observed Data Score Equations

Here we consider the intermittent observation process and the resulting observed data

Di = {Ȳi(s), dAi(s), dN̄i2(s), X◦i (s), 0 < s ≤ Vi} where X◦i (s) = (X◦i1(s), X ′i2)′ and X◦i1(s) =

Xi1(aiA(s−)) is the most recently recorded value. Let θr denote the value of the estimate at

rth iteration. For an EM algorithm, at the E-step, we take the conditional expectation of

the estimating function Ui(θ) with respect to the missing data (here {Xi(s), 0 < s < Vi})

given the observed data; here we make the iterative aspect of the EM algorithm explicit

by evaluating this conditional expectation at θr, the value at the rth iteration. We then
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write

Ūi(θ; θ
r) = E{Ui(θ) |Di; θ

r} =

¨

˚

˚

˚

˝

Ūi0(θ; θr)

Ūi1(θ; θr)

Ūi2(θ; θr)

˛

‹

‹

‹

‚

, (5.5)

where we use an overbar to denote the conditional expectations of the corresponding esti-

mating equations given the observed data. The expectation for Ui0 and Ui1 were given in

Section 2.4.2 and only modest adaptations are required here. We therefore focus on the ex-

pectations of the Cox estimating functions for dΛ2(·) and β. Recall Ui21 = (Ui21, . . . , Ui2L)′

is the L× 1 contribution to the score function from individual i for dΛ2(·), and Ui22 is the

(p+ 1)× 1 score function for β.

The conditional expectation of U21(θ; θr)U21(θ; θr)U21(θ; θr)

For the observed data score related to (5.3) we obtain

Ū2l(θ; θ
r) =

n∑
i=1

E{Ȳi(sl) | dNi2(sl)− dΛ2(sl |Xi(sl)) |Di; θ
r}

=
n∑
i=1

Ȳi(sl)dNi2(sl)− dΛ2(sl) exp(X ′i2β2)E{exp(X ′i1(sl)β1) |Di; θ
r} (5.6)

The conditional expectation of U22(θ; θr)U22(θ; θr)U22(θ; θr)

From the complete data partial score in (5.4), we obtain the following expected score at θr

Ū22(θ; θr) =
n∑
i=1

∫ ∞
0

Ȳi(s){dNi2(s)− dΛ2(s) exp(β1 +X ′i2β2)} rXi(s; θ
r) (5.7)

for the contribution from individual i, where

rXi(s; θ
r) =

¨

˝

P (Xi1(s) = 1 |Di; θ
r)

Xi2

˛

‚
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Adding contributions from each individual in (5.6) and solving for dΛ2(s) gives the profile-

type semiparametric interim estimator

drΛr
2(s; β, θr) =

∑n
i=1 Ȳi(s)dNi2(s)∑n

i=1 Ȳi(s)E{expX ′i(s)β |Di; θr}

=

∑n
i=1 Ȳi(s)dNi2(s)∑n

i=1 Ȳi(s) exp(X ′i2β2)E{expXi1(s)β1 |Di; θr}
, (5.8)

which can be inserted into (5.7) in an analogous way that we did for the piecewise constant

model. Doing so gives a (p+ 1)× 1 pseudo-profile observed data score

Ū2(β; θr) =
n∑
i=1

∫ ∞
0

Ȳi(s)
{
X̃i(s; θ

r)−
∑n

i=1 Ȳi(s)X̃i(s; θ
r)eβ1+X′i2β2∑n

i=1 Ȳi(s)E{exp(X ′i(s)β) |Di; θr}

}
dNi2(s),

where we use Ū2(β; θr) to distinguish it from the analogous piecewise constant function

in the body of the chapter. Because N̄i2(s) only increments at the unique failure times

s1 < s2 < . . . < sL, this can be re-expressed as a sum

n∑
i=1

L∑
l=1

Ȳi(sl)
{
X̃i(sl; θ

r)−
∑n

i=1 Ȳi(sl)X̃i(sl; θ
r) exp(β1 +X ′i2β2)∑n

i=1 Ȳi(sl)E{exp(X ′i(sl)β) |Di; θr}

}
dNi2(sl) (5.9)

over the distinct times s1 < s2 < · · · < sL.

In order to calculate the conditional expectation E{Xi1(sl) |Di; θ
r} = P (Xi1(sl) =

1 |Di; θ
r), we consider first the case where s lies between two assessment times. Let Ai(s) =

(ai,ri(s)−1, ai,ri(s)) be the inter-visit interval for individual i spanning s where ai,ri(s)−1 < s <

ai,ri(s). Then under a Markov model, suppressing the dependence of those expressions on

θr, we write E{Xi1(s) |Di} = P (Xi1(s) = 1 |Di) as

E{Xi1(s) |Di} = P (Xi1(s) = 1 |Z(ai,ri(s)−1), Z(ai,ri(s)), Xi2)

=
P (Z(ai,ri(s)−1), Zi(s) = 1, Z(ai,ri(s)) |Xi2)

P (Z(ai,ri(s)−1), Z(ai,ri(s)) |Xi2)

=
P (Z(ai,ri(s)) |Zi(s) = 1, Xi2)P (Zi(s) = 1 |Z(ai,ri(s)−1), Xi2)

P (Z(ai,ri(s)) |Z(ai,ri(s)−1), Xi2)
.
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which is computable from the transition probability matrix as estimated at the rth itera-

tion.

Next we consider the case in which s occurs after the last assessment time. If Ai(Vi) = ri

is the number of post-baseline assessments and airi < s < Vi then when δi = 0

E{Xi1(s) |Di} =
P (Xi1(s) = 1 |Z(airi), Xi2)P (Z(C−i ) < 2 |Xi1(s) = 1, Xi2)

P (Z(C−i ) < 2 |Z(airi), Xi2)

=
P (Zi(s) = 1 |Z(airi), Xi2)P (Z(C−i ) < 2 |Zi(s) = 1, Xi2)

P (Z(C−i ) < 2 |Z(airi), Xi2)
.

Likewise, if airi < s < Vi and δi = 1, then E{Xi1(s) |Di} = P (Xi1(s) = 1 |Z(airi), Ti)

is

1∑
j=0

P (Z(T−i ) = j |Zi(s) = 1, Xi2)[dΛ2(Ti | Xi2)]1−j [dΛ2(Ti | Xi2)eβ]j P (Zi(s) = 1 |Z(airi), Xi2)

1∑
j=0

P (Z(T−i ) = j |Z(airi), Xi2)[dΛ2(Ti | Xi2)]1−j [dΛ2(Ti | Xi2)eβ]j
.

Again this can be estimated at the (r+ 1)st step of the EM algorithm from the transition

probability matrix estimate at rth step. Given the above conditional probabilities, we find

E{exp(Xi1(s)β1) |Di} = exp(β1)P (Zi(s) = 1 |Di) + P (Zi(s) = 0 |Di)

= exp(β)P (Zi(s) = 1 |Di) + [1− P (Zi(s) = 1 |Di)] .

As in equations (2.17) and (2.19) for the marker processes, we note that these expected

score equations involve computing E{Sijk |Di; θ
r} and E{Nijk |Di; θ

r}. To evaluate these

expressions we consider the following setting. Let ai0 = 0 < ai1 < . . . < airi denote the

ri assessment times for individual i, i = 1, . . . ,m. Let Ail = {ai,l−1, ail} denote interval l

between visits, l = 1, . . . , ri, and Ai,ri+1 = [airi , Vi] denote the interval from the last visit

to failure or censoring where Vi = min(Ti, Ci).

Let Rijk = {l : Ail∩Bjk 6= ∅} be the labels for inter-visit intervals Ail, l = 1, . . . , ri + 1,

which span Bjk for individual i and let Cijkl = Ail ∩ Bjk denote the lth sub-interval,

l ∈ Rijk. In Figure A.2, we consider interval Bjk giving labels Rijk = {r + 1, r +
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| |
bj,k−1 bjk

air ai,r+1 ai,r+2 ai,r+3

Cijk,r+1 Cijk,r+2 Cijk,r+3

Figure A.2: Timeline depicting the visit process at a given time interval [bj,k−1, bjk]

2, r + 3} labeling the inter-visit intervals Ai,r+1, Ai,r+2, Ai,r+3 spanning Bjk. We let

Dijkl = {(Zi(ai,l−1), ai,l−1), (Zi(ail), ail), Xi2}

denote the relevant data for sub-interval Ail, l = r + 1, r + 2, r + 3.

To compute (2.19) in the setting with the semiparametric Cox model for failure times,

we consider each interval Ai,r+1, Ai,r+2, Ai,r+3 separately and then add the results together.

Specifically, we let Nijkl denote the j → 1 − j transition count for interval Ail ∩ Bjk for

individual i and note

E{Nijk |Di; θ
r} =

∑
l∈Rijk

E{Nijkl |Dijkl; θ
r }

where the expectation for each sub-interval E{Nijkl |Dijkl} is calculated as

∫ ∞
0

Ȳi(s)I(s ∈ Cijkl)
P (Zi(s

−) = j |Zi(ai,l−1), Xi2)P (Zi(ail) |Zi(s−) = 1− j,Xi2) eαjk+X′i2γj

P (Zi(ail) |Zi(ai,l−1), Xi2)
ds.

Likewise for (2.21) we have

E{Sijk |Di; θ
r} =

∑
l∈Rijk

E{Sijkl |Dijkl; θ
r}

where Sijkl is the time spent in state j for intersection of interval Bjk and Ail for individ-

ual i and momentarily suppressing the dependence on θr we note E{Sijkl |Dijkl} can be
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computed as

∫ ∞
0

Ȳi(s)I(s ∈ Cijkl)E{I(Zi(s
−) = j) |Dijkl} ds

=

∫ ∞
0

Ȳi(s)I(s ∈ Cijkl)
P (Zi(s

−) = j |Zi(ai,l−1), Xi2)P (Zi(ail) |Zi(s−) = j,Xi2)

P (Zi(ail) |Zi(ai,l−1), Xi2)
ds.

| |
bj,k−1 bjk

ai,r−1 air Vi

Figure A.3: An illustrative example of the visit process where an event is observed in a
given time interval

We next consider the setting where an individual’s follow-up ends at time Vi within the

interval Bjk as depicted in Figure A.3. Here, we have Rijk = {ri, ri+1}, where we define the

inter-visit intervals to be Airi = [ai,ri−1, airi ] and Ai,ri+1 = [airi , Vi], where Vi = min(Ti, Ci)

and we let δi = I(Vi = Ti). Note that the expectation for the first sub-interval is calculated

as before.

For the second sub-interval, we first consider the case of an individual censored in

interval Bjk. In this case, we have δi = 0 (i.e. Vi = Ci) and the second sub-interval is

Ai,ri+1 = [airi , Vi]. Here, the data are Dijk,ri+1 = {Zi(airi), airi , Vi, δi = 0, Xi2}. We then

calculate

E{Nijk,ri+1 |Dijk,ri+1}

=

∫ ∞
0

Ȳi(s)I(s ∈ Cijk,ri+1)E{I(Zi(s
−) = j)dNij(s) |Dijk,ri+1} ds

where E{I(Zi(s
−) = j)dNij(s) |Dijk,ri+1} is given by

∑1
v=0 P (Zi(s

−) = j |Zi(airi), Xi2)P (Zi(C
−
i ) = v |Zi(s−) = 1− j,Xi2) eαjk+X′i2γj∑1

v=0 P (Zi(C
−
i ) = v |Zi(airi), Xi2)
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. Likewise, the expectation for the time at risk E{Sijk,ri+1 |Dijk,ri+1} is computed as

∫ ∞
0

Ȳi(s)I(s ∈ Cijk,ri+1)

∑1
v=0 P (Zi(s

−) = j |Zi(airi), Xi2)P (Zi(C
−
i ) = v |Zi(s−) = j,Xi2)∑1

v=0 P (Zi(C
−
i ) = v |Zi(ai,ri), Xi2)

ds

Then we consider the case of an individual who has the event of interest at the end of

the second sub-interval. Here, δi = 1 (i.e. Vi = Ti) and the observed data are Dijk,ri+1 =

{Zi(airi), airi , Vi, δi = 1, Xi2}. We can then calculate (2.19) as

E{Nijk,ri+1 |Dijk,ri+1} =

∫ ∞
0

Ȳi(s)I(s ∈ Cijk,ri+1)E{I(Zi(s
−) = j)dNij(s) |Dijk,ri+1} ds

where E{I(Zi(s
−) = j)dNij(s) |Dijk,ri+1} is

∑1
v=0 P (Zi(s

−) = j |Zi(airi), Xi2) eαjk+X′i2γj P (Zi(T
−
i ) = v |Zi(s−) = 1− j,Xi2)dH0(Ti)e

vβ1+X′i2β2∑1
v=0 dH0(Ti)evβ1+X′i2β2P (Zi(T

−
i ) = v |Zi(ai,ri), Xi2)

The expectation for the time at risk E{Sijk,ri+1 |Dijk,ri+1} is likewise computed as

E{Sijk,ri+1 |Dijk,ri+1} =

∫ ∞
0

Ȳi(s)I(s ∈ Cijk,ri+1)E{I(Zi(s
−) = j)dSij(s) |Dijk,ri+1} ds

where E{I(Zi(s
−) = j)dSij(s) |Dijk,ri+1} is

∑1
v=0 P (Zi(s

−) = j |Zi(airi), Xi2)P (Zi(T
−
i ) = v |Zi(s−) = j,Xi2)dH0(Ti)e

vβ1+X′i2β2 ds∑1
v=0 dH0(Ti)evβ1+X′i2β2P (Zi(T

−
i ) = v |Zi(ai,ri), Xi2)

.

A.3 The Maximization Step

We are next required to solve

Ū(θ; θr) = 0 =
n∑
i=1

Ūi(θ; θ
r)

where Ūi(θ; θ
r) is given by (5.5) to obtain an updated estimate θr+1.

The solutions to the expected estimating functions for the marker process transitions

are obtained as in the body of the chapter. For the failure process we use the approach
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adopted for semiparametric maximum likelihood estimation by noting that setting (5.9) to

zero and solving gives rβr+1. This can be substituted into (5.8) to obtain drΛr+1
2 (s; rβr+1; θr).

Combining the updated estimates θr+1
0 and θr+1

1 with βr+1
0 and drΛr+1(·) we use θr+1 to

recompute the expectations and repeat this procedure iteratively until the difference in

successive estimates becomes negligible or the L2 norm of Ū(θ; θr) becomes lower than a

specified tolerance.

B Estimating the Transition Probability Matrix

In order to calculate the transition probability matrix we must deal with the fact that the

intensities between the markers states are estimated based on piecewise constant models

while the failure intensities are governed by a semi-parametric model. To illustrate how

the required expectations can be computed in this context consider a setting where the

two marker-to-marker transition intensities have the same location for the break-points

so K0 = K1 = K and λ0(s) and λ1(s) are constant over common intervals [bk−1, bk), k =

1, . . . , K. We let Rk denote the number of failures observed to fall in Bk and let δk =

{skr , r = 1, . . . , Rk} denote the set of failure times over Bk, k = 1, . . . , K. Since dpΛ2(s) =

0 unless s = tkr for some r, within Bk the transition intensity matrix for the 3-state

process has zero-valued intensities for failure between failure times. Let Sk0 = pbk−1, sk1q,

Skr = (skr−1 , skr), r = 1, . . . , Rk and SkRk+1 = pskRk , bkq partition Bk. Within intervals

∫kr, r = 0, . . . , Rk + 1, no failure occurs so the intensity matrix has estimate of the form

d pQ1(t) =

¨

˚

˚

˚

˝

−pλ0k dt pλ0k dt 0

pλ1k dt −pλ1k dt 0

0 0 0

˛

‹

‹

‹

‚

for t ∈ Skr ,
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r = 0, 1, . . . , Rk+1. As the failure time is only observed at an instant in time, the intensity

matrix d pQ2(skr | Xi2) at each failure time within Bk has the form

¨

˚

˚

˚

˝

−[pλ0k dt+ dpΛ2(skr)e
X′2

pβ2 ] pλ0k dt dpΛ2(skr)e
X′2

pβ2

pλ1k dt −[pλ1k dt+ dpΛ2(skr)e
pβ1+X′2

pβ2 ] dpΛ2(skr)e
pβ1+X′2

pβ2

0 0 0

˛

‹

‹

‹

‚

for skr ∈ Sk that occurred in Bk and dt is very small (near zero) value, such as 10−6. If we

let sk0 = bk−1, then the probability matrix over each piece is estimated by

pP (bk−1, bk) =
∏

(bk−1,bk]

[ I + d pQ(u | Xi2) ]

=

Rk∏
r=1

{ ∏
(skr−1

,skr ]

[ I + d pQ1(u)] [I + d pQ2(skr | Xi2)]
} ∏

(sRk ,bk]

[I + d pQ1(u)]}

over the interval Bk where I is a 3 × 3 identity matrix. For computations for bk−1 ≤ s <

t < bk the limit of the product integration can be modified accordingly.

C Computation of Limiting Value Based on a Monte Carlo

Algorithm

Under a marker-independent visit process the calculation of conditional expectations in

(3.7a) and (3.7b) requires integration of distribution of the visit as well as the distri-

bution of its maximum order statistics f(ak = t |A(s−) = k). The calculations are

more challenging with a marker-dependent visit process. We therefore introduce the use

of Monte Carlo methods for the required integration. As in Section 3.1 of Chapter 3,

we let Xi1(s) = I(Zi(s
−) = 1) and let X◦i1(s) = Xi1(aiAi(s−)) denote the most recently

recorded binary marker value. Let Xi2 denote a p× 1 fixed covariate vector and we write

X◦i (s) = (X◦i1(s), X ′i2)′. We let nsim denote the total number of individuals for whom the

data are to be simulated. For a very large dataset (i.e. if nsim ≈ 5000), the conditional

expectations can be approximated as follows.
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We let r̂(0)(s;ψ) be

pE{Ȳ (s) exp(ψ′X◦(s))}

=
1

nsim

nsim∑
i=1

∞∑
k=0

{
I(s < Ci) I(s < Ti) I(Ai(s) = k)

1∑
x=0

I(Zi(aik) = x) exp(xi1ψ1 +X ′i2ψ2)
}

where ψ = (ψ1, ψ
′
2)′, and

∑1
x=0 I(Zi(aik) = x) exp(xi1ψ1 +X ′i2ψ2) is given by

I(Zi(aik) = 0) exp(X ′i2ψ2) + I(Zi(aik) = 1) exp(ψ1 +X ′i2ψ2)

. Here, Ȳ (s) exp(ψ′X◦(s)) only takes a non-zero value when Ȳ (s) = 1. In other words,

in a simulation study, we only need to select individuals occupying either of the middle

two columns of states in Figure 3.2 for a given time s. Likewise for the other conditional

expectations, we have the Monte Carlo approximation r̂(1)(s;ψ) given by

pE{Ȳ (s)X◦(s) exp(ψ′X◦(s))}

=
1

nsim

nsim∑
i=1

{ ∞∑
k=0

I(Zi(s) ∈ {(0, k), (1, k)})
1∑

xi1=0

I(Zi(aik) = xi1)x◦i (s) exp(xi1ψ1 +X ′i2ψ2)
}

=
1

nsim

nsim∑
i=1

∞∑
k=0

{
I(s < Ci) I(s < Ti) I(Ai(s) = k)

(I(Zi(aik) = 0)x◦i (s) exp(X ′i2ψ2) + I(Zi(aik) = 1)x◦i (s) exp(ψ1 +X ′i2ψ2)
}
.

For r(0)(s) we use the Monte Carlo approximation r̂(0)(s) given by

pE{Ȳ (s)dN(s)}

=
1

nsim

nsim∑
i=1

{ ∞∑
k=0

I(Zi(s) ∈ {(0, k), (1, k)})
1∑

xi1=0

I(Zi(aik) = xi1)dΓ0(s) exp(xi1ψ1 +X ′i2ψ2)
}

=
1

nsim

nsim∑
i=1

∞∑
k=0

dΓ0(s)
{
I(s < Ci)I(s < Ti) I(Ai(s) = k)

I(Zi(aik) = 0) exp(X ′i2ψ2) + I(Zi(aik) = 1) exp(xi1ψ1 +X ′i2ψ2)
ı}

,
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and finally r(1)(s) is

pE{Ȳ (s)dN(s)X◦(s))}

=
1

nsim

nsim∑
i=1

{ ∞∑
k=0

I(Zi(s) ∈ {(0, k), (1, k)})
1∑

xi1=0

I(Zi(aik) = x)x dΓ0(s) exp(xψ)
}

=
1

nsim

nsim∑
i=1

∞∑
k=0

dΓ0(s)
{ ∞∑
k=0

I(s < Ci)I(s < Ti)I(Ai(s) = k) I(Zi(aik) = 1) exp(ψ)
}
.

D An Expanded Joint Model For a Marker, Misspecified Marker,

Failure, Visit and Censoring Process

D.1 Notation and Intensities

Here we consider a joint model for a four state process involving a binary marker, failure

and censoring process, and the process by which visits are made for the measurement of

markers, and the misspecified marker value resulting from carrying forward a recorded

marker to the next time a visit is made, or failure or right-censoring occurs. This joint

model differs from the multistate model of Figure 3.2 in that it incorporates through the

path of the marker state that was occupied at the time each visit occurs; in Figure 3.2 a

visit-marker state could be entered upon a visit or following a marker-transition between

visits so the marker state occupied at the time of a visit is not captured. This new state

space enables joint modeling of X◦i1(t) and Xi1(t) since X◦i1(t) is the marker value at the

time of the most recent visit. We let Z(t) denote the state of the four state process which is

occupied with state 0 representing being event-free and uncensored with a normal marker

value, 1 representing being event-free and uncensored with an elevated marker value, 2

representing the state of having failed, and 3 representing the state of being lost to follow-

up and right-censored.

We let A(t) be the counting process recording the cumulative number of post-baseline

visits, and we let X◦1 (t) represent the misspecified marker value resulting from carrying
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forward the most recently recorded marker value. We then consider an expanded state

space and let Z(t) = (A∗(t), Z(t), X◦1 (t)) for the a joint model where A∗(t) is used to

denote the counting process for the visits, with the extension of additional states following

the rth visit labeled rp to denote the setting where some elements of Z(t) have changed

between visits - this permits defining a state space which facilitates distinguishing between

the true marker value as determined by Z(t) and the mismeasured value reflected by X◦1 (t).

We let

H̄(t) = {(A∗(s), Z(s), X◦1 (s)), 0 < s < t} = {Z(s), 0 < s < t}

denote the history of the expanded joint process. In what follows for simplicity we assume

individuals begin in state (0,0,0) with probability 1.

Figure D.1 gives the state space with arrows reflecting the possible transitions. There

are still only four types of intensities in the figure, some of which are labelled by m for

marker-related transitions in the Z(t) sub-process, d for death, c for censoring, and a for

assessments (visits). These are defined as follows.

Marker Transition Intensities

For the marker related intensities we set

λm(t | H̄i(t)) = λj(t |Xi2) , j = 0, 1 . (5.10)

Death Transition Intensities

Here we let

λd(t | H̄i(t)) = λi2(t) = λ2(t |Xi1(t), Xi2) (5.11)

where the intensity depends on the true marker value as well as fixed covariates.

Censoring Intensities

Here we let

λc(t | H̄i(t)) (5.12)
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0 0 00 2 0

0 3 0

0p 1 00p 2 0

0p 0 00p 3 0

1 0 01 2 0

1 3 0

1p 1 01p 2 0

1p 0 01p 3 0

2 0 0

0 1 1 0 2 1

0 3 1

0p 0 1 0p 2 1

0p 1 1 0p 3 1

1 1 1 1 2 1

1 3 1

1p 0 1 1p 2 1

1p 1 1 1p 3 1

2 1 1

Figure D.1: A multistate model for (A(t), Z(t), X◦1 (t)) depicting a more general joint model
for the multistate, visit and censoring process which accommodates a marker dependent
visit process and records the misclassification status of the binary time-dependent covariate.
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where the nature of the dependence on this history determines whether censoring is de-

pendent or independent.

Visit Intensities

Here we let

λa(t | H̄i(t)) (5.13)

where the nature of the dependence on this history determines whether visit process is

dependent on the marker or not.

We consider Markov models and set

λai (t|H̄(t)) = ρa exp(Xi1(t−)ηa)

to accommodate a marker-driven visit process, and

λci(t|H̄(t)) = ρc exp(Xi1(t−)ηc)

to accommodate marker-dependent censoring.

D.2 Derivations of r(k)(s) and r(k)(s;ψ) for Model in Figure D.1

Here we consider the evaluation of the key function in (3.6) to describe an alternative

approach to estimating the limiting values of the estimators under misspecified Cox re-

gression model based on the expanded multistate process of Figure D.1. We consider each

function in (3.7a) and (3.7b) in turn.

I. Evaluation of r(0)(s) = E(Ȳi(s)dNi(s))
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From (3.7a) with k = 0 we obtain

r(0)(s) = E(Ȳi(s)dNi(s))

= EȲ (s)

{
EX(s)

“

E(dN̄(s) | Ȳ (s), X(s))
‰

}
= EȲ (s)

{
EX(s)

”

Ȳ (s)dΛ2(s)eX
′(s)β

ı

}
= dΛ2(s)EX2

{
eX
′
2β2EȲ (s) |X2

Ȳ (s)
“

EX1(s)|Ȳ (s),X2
(eX1(s)β1)

‰

}
= dΛ2(s)EX2

{
eX
′
2β2EȲ (s),X1(s) |X2

`

Ȳ (s)eX1(s)β1
˘

}
= dΛ2(s)EX2

{
eX
′
2β2

∞∑
a=0

1∑
z=0

1∑
x◦=0

ezβ1P (Z(s) = (a, z, x◦) | Z(0) = (0, 0, 0), X2)

}
.

II. Evaluation of r(1)(s) = E{Ȳi(s)X◦i (s)dNi(s)}
Likewise if k = 1 we obtain from (3.7a) the following

r(1)(s) = E{Ȳi(s)X◦i (s)dNi(s)} (5.14)

= E
´

EX◦(s),Ȳ (s)

”

E
{
Ȳ (s)X◦(s)dΛ2(s)eX1(s)β1+X′2β2 | X◦1 (s) = 1, X2, Ȳ (s) = 1

}
| X2

ı¯

Consider the first element of r(1)(s), denoted r
(1)
1 (s). This is of the form

EX2

´

EX◦(s),Ȳ (s)

“

E{Ȳ (s)X◦1 (s)dΛ2(s | X(s))|X◦1 (s) = 1, X2, Ȳ (s) = 1} | X2

‰

¯

= EX2

ˆ

EX◦(s),Ȳ (s)

„

Ȳ (s)X◦1 (s)

1∑
k=0

dΛ2(s)ekβ1+X′2β2

× P (Z(s) ∈ {(a, k, 1), a = 0, 1, . . .}|Z(s) ∈ {(a, k, 1), a = 0, 1, . . . , k = 0, 1}, X2)



| X2

˙

= EX2

˜

dΛ2(s)eX
′
2β2

1∑
k=0

ekβ1P (Z(s) ∈ {(a, k, 1), a = 0, 1, . . .}|X2)

¸

Note Ȳ (s)X◦(s) = 1 iff a subject is in a state in the set S = {(∗, k, 1), k = 0, 1}.
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Let Z denote the full multistate process. Then the first element of (5.14) is equal to

dΛ2(s)EX2

˜

eX
′
2β2

1∑
k=0

ekβ1P (Z(s) ∈ {(a, k, 1), a = 0, 1, . . .} | X2)

¸

For the remaining p elements of r(1)(s), we have r
(1)
2 (s) in the form

EX2

ˆ

dΛ2(s)eX
′
2β2X2

1∑
x◦=0

1∑
k=0

ekβ1P (Z(s) ∈ {(a, k, x◦), a = 0, 1, . . . , x◦ = 0, 1}|X2)

˙

III. Evaluation of r(0)(s;ψ) = E{Ȳi(s) exp(X◦1 (s)ψ1 +X ′2ψ2)}

Now for (3.7b) with k = 0 we obtain

r(0)(s;ψ) = E

{
Ȳi(s)e

X◦1 (s)ψ1+X′2ψ2

}
= EX2

´

EȲ (s),X◦1 (s)|X2

{
Ȳ (s)eX

◦
1 (s)ψ1+X′2ψ2

}
¯

= EX2

ˆ

eX
′
2ψ2

∞∑
a=0

1∑
z=0

1∑
x◦1=0

ex
◦
1ψ1P (Z(s) = (a, z, x◦1)|Z(0) = (0, 0, 0), X2)

˙

IV. Evaluation of r(1)(s;ψ) = E{Ȳ (s)X◦(s) exp(X◦1ψ1 +X ′2ψ2)}

Finally if k = 1, (3.7b) gives

r(1)(s;ψ) = E

{
Ȳ (s)X◦(s)eX

◦
1ψ1+X′2ψ2

}
,
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where the first element is

r
(1)
1 (s;ψ) = E

{
Ȳ (s)X◦1 (s)eX

◦
1 (s)ψ1+X′2ψ2

}

= EX2

{
eX
′
2ψ2EȲ (s),X◦1 (s)|X2

„

Ȳ (s)X◦1 (s)eX
◦
1 (s)ψ1

}

= EX2

{
eX
′
2ψ2

∞∑
a=0

1∑
z=0

eψ1P (Z(s) = (a, z, 1)|Z(0) = (0, 0, 0), X2)

}

and the remaining elements are

r
(1)
2 = E

{
Ȳ (s)X2e

X◦1 (s)ψ1+X′2ψ2

}

= EX2

{
X2e

X′2ψ2E
`

Ȳ (s)eX
◦
1 (s)ψ1 | X2

˘

}

= EX2

{
X2e

X′2ψ2

∞∑
a=0

1∑
z=0

1∑
x◦1=0

ex
◦
1ψ1P (Z(s) = (a, z, x◦1) | Z(0) = (0, 0, 0), X2)

}
.
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