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Abstract

Quantifying the probability of a label prediction being correct on a given test point
or a given sub-population enables users to better decide how to use and when to trust
machine learning derived predictors. In this work, combining aspects of prior work on
conformal predictions and selective classification, we provide a unifying framework for con-
fidence requirements that allows for distinguishing between various sources of uncertainty
in the learning process as well as various region specifications. We then consider a set
of common prior assumptions on the data generation process and show how these allow
learning justifiably trusted predictors.
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Chapter 1

Introduction

Quantifying the certainty in the output of a predictor is important for instilling (and
justifying) trust in decision making that is based on machine learning. Standard (statis-
tical) techniques for ensuring and measuring the quality of a learned predictor fall short
of providing reliable and easily interpretable notions of confidence for specific predictions.
Bayesian statistical tools often come with confidence scores on predictions. However, these
rely on having chosen a good prior and are easily misinterpreted by users that are not well-
versed in Bayesian decision making. On the other end of the spectrum, PAC-type learning
theoretic guarantees are designed to provide general, ideally assumption-free guarantees.
They ensure low mistake probability over the data-generating process. However, arguably,
such a promise can be void when called to provide confidence in the predictions on specific
instances or specific sub-regions of the space. In this work, we provide a (non-Bayesian,
PAC-inspired) framework for learning predictors that come with instance or region-wise
guarantees. While much of the earlier work in the PAC-inspired setup ([43, 29, 27, 6]) took
a distribution-free approach, the insight that drives our investigations is that confidence
in any prediction of unknown information inherently relies on prior domain knowledge. In
the PAC setup, such knowledge is often expressed as restrictions on the data generating
process. We examine the problem of confidence in predictions under several common types
of such assumptions.

Our setup can be viewed as inspired by two lines of research of similar aim: as in
the framework of conformal predictions ([43]) our confidence-instilling predictors provide
coverage sets (subsets of the output space) for the possible labeling of instances. And as
the framework of selective classification or learning with abstentions [7, 51, 15, 21, 23], we
distill out a trade-off between the validity of the provided prediction (in the case of coverage
sets, a prediction is valid, if the coverage set includes the true target) and the non-triviality
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of such a coverage-set-predictor (validity can be trivially achieved by outputting the full
set of possible targets; a coverage set therefore should only be considered useful if on many
instances the coverage set is a singleton or at least sufficiently small).

In this work we consider binary classification tasks, and provide a unifying framework
for confidence requirements that allows for distinguishing between various sources of uncer-
tainty as well as various region specifications. Sources of uncertainty in statistical learning
include the randomness of the chosen training sample, the randomness in the choice of a
test-point, as well as the stochasticity in the label generation at some instance. To account
specifically for the latter, we introduce coverage set learning not only for the labels in the
classification task, but also for the conditional labeling function (CLF). A user may require
confidence in predictions over the whole domain, only for a specific sub-region, a collec-
tion of such regions or specific points. We model this by defining notions of domain-wide,
region-wide or point-wise validity and non-triviality.

Finally, we provide a few (standard) scenarios where the success requirements of our
framework can be realized. We present successful CLF-coverage set learners under assump-
tion of the CLF satisfying a Lipschitz condition for user specified regions. Additionally,
we show how to identify regions for successful label-coverage set predictors under an as-
sumption low approximation error by some hypothesis class. We end by discussing how
the sample complexities of CLF-coverage set learners and label-coverage set learners com-
pare to each other. We also compare these learning problems with other common learning
problems - distribution learning and approximating the Bayes classifier in terms of sample
complexities.

1.1 Contributions

In this work, we study a variety of distributional assumptions under which we can identify
regions (these could be the full space, a set of sub-regions of the space or a collection of
points) where valid and non-trivial coverage set predictions can be learned. We demonstrate
how these scenarios allow for identification of regions for trusted predictions. Additionally,
in several of these setups we also show how unlabeled data can be employed to improve the
non-triviality of our learned predictors. Our contributions can be summarized as follows:

• Formal framework for coverage set learnability We adapt notions of coverage
set learning for classification and learning of CLF-functions and introduce a PAC-
like framework of learning success. Our definitions allow for distinguishing between
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the various sources of uncertainty (training data, test point, stochasticity in label-
generation given a point), various types of regions where trusted predictions may
be required (domain-wide, region-wise, point-wise). Our definitions further make the
trade-off between validity and non-triviality explicit. We then instantiate our notions
under three different scenarios for the data-generating process.

• Lipschitzness of the CLF The first scenario that we consider is that the CLF-
function of the data-generating process satisfies a Lipschitz condition. This is a
standard assumption in non-parametric learning settings. We present an successful
CLF-coverage learning algorithm that achieves point-wise validity and domain-wide
non-triviality (with coverage intervals that decrease with the size of the input sample).

• Low approximation error by a hypothesis class H Under prior knowledge of
a learnable hypothesis class of low approximation error, given a collection of regions,
we show how to construct coverage sets satisfying region-conditional validity with
respect to that collection. We show how to identify regions that allow for non-
trivial validity. More specifically, we show that identifying regions that have sufficient
probability mass or are areas of high decisiveness (a novel notion that we introduce)
of the class H suffices for region-wise validity and non-triviality guarantees. Further,
we demonstrate that these can be identified with the use of unlabeled data.

• Comparing sample complexities We also analyze the (information theoretic)
difficulties of various related learning problems. We show that the ordering of sample
complexities of CLF-coverage set learning and label-coverage set learning depends on
the family of distributions of the learning problem. We show that sample complexities
of binary classification, coverage-set learning, and marginal distribution learning are
in strictly increasing order.
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Chapter 2

Formal Framework

We use a standard learning-theoretic setup. We let X denote some domain or feature
space and Y = {0, 1} be a binary label space. We assume that data is generated by a
probability distribution P over X × Y , let lP (x) = P(X,Y )∼P [Y = 1|X = x] denote the
corresponding conditional labeling function (CLF) (a real-valued function) and PX denote
the corresponding marginal distribution over the domain X . A hypothesis or classifier is
a function h : X → Y and a hypothesis class H is a set of hypotheses. In a standard
learning setting, a learner A takes in a sequence S = ((x1, y1), (x2, y2), . . . , (xn, yn)) of
labeled domain points and outputs a hypothesis h = A(S). The quality of prediction of a
hypothesis h on sample (x, y) is measured by a loss function `. For classification tasks we
typically use the binary loss

`0/1(h, x, y) = 1[h(x) 6= y].

The goal for the learner is to output a hypothesis h of low expected loss L0/1
P (h) =

E(X,Y )∼P
[
`0/1(h, x, y)

]
over the data-generating distribution. We let L0/1

S (h) denote the
empirical loss with respect to data S (that is, the expected loss with respect to the uni-
form distribution over S).

For a distribution P over X × {0, 1}, we let h∗P denote the Bayes classifier, that is
the classifier with minimal expected binary loss with respect to P . We have h∗P (x) = 1
if lP (x) ≥ 1/2 and h∗P (x) = 0 otherwise. For a hypothesis class H, we let optP (H) =

infh∈HL0/1
P (h) denote the approximation error of the class H.

In our setting, we would like to learn functions that output sets of labels (that are
aimed to contain the true labels), rather than single values. A label-coverage-hypothesis
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is a function c : X → {{0}, {1}, {0, 1}}.

Definition 1 (Label Coverage Set Learner). A label coverage set learner A takes as input
a labelled training set S = {(x1, y1), . . . , (xn, yn)} and outputs a label-coverage-hypothesis.

We are also interested in learning functions that can provide coverage guarantees for
the the conditional labeling function. A CLF-coverage-hypothesis is a function r : X →
{[a, b] : a ≤ b ∈ [0, 1]}

Definition 2 (CLF-Coverage Set Learner). A CLF-coverage set learner A takes as input
a labelled training set S = {(x1, y1), . . . , (xn, yn)} and outputs a CLF-coverage-hypothesis.

We use coverage set, coverage hypothesis and coverage set learner as umbrella terms for
the label and CLF-coverage set learning settings. Success for a coverage set hypothesis is
a combination of two competing requirements. Firstly, we would like the output set for a
domain point x to be a valid coverage, in the sense that it contains the true/observed label
(or the true conditional label probability in the case of CLF learning). This requirement
however can be trivially met by a coverage set hypothesis that always outputs the full set
of options (all of Y in the case of label coverage or the full interval [0, 1] in the case of
CLF-coverage). Such a hypothesis would be valid everywhere, however at the same time
pretty useless. To provide meaningful information, we need to additionally require that the
hypothesis, on a substantial portion of the space, outputs a small set of of options. For label
coverage, we will require a coverage set to be a singleton to be considered meaningful, while
for CLF-coverage we will require the output to be a short interval. Below, we formalize
these notions of validity and non-triviality requirements.

For validity requirements, we will distinguish three levels: We may require that the
output coverage sets are valid over the full domain (with high probability), conditioned on
being in a region or point-wise.

Definition 3 (Validity). Let c and r denote a label and a CLF-coverage set hypotheses,
respectively. Let P be a distribution over X × Y and α > 0 be a confidence parameter.

• We say the coverage set hypothesis satisfies (1 − α)-domain-validity (are (1 − α)-
domain-valid) with respect to P if we have

P(X,Y )∼P [Y ∈ c(X)] ≥ 1− α and

PX∼PX [lP (X) ∈ r(X)] ≥ 1− α

respectively.
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• For a subset B ⊆ X of the domain, we say that they satisfy (1 − α,B)-region-
conditional validity in B with respect to P if we have

P(X,Y )∼P [Y ∈ c(X)|X ∈ B] ≥ 1− α and

PX∼P [lP (X) ∈ r(X)|X ∈ B] ≥ 1− α

respectively.

• We say that the label coverage hypothesis c satisfies (1 − α, {x})-point-wise validity
at point x ∈ X with respect to P , if we have

P(X,Y )∼P [Y ∈ c(X)|X = x] ≥ 1− α

and we say that CLF-coverage hypothesis r satisfies point-wise validity at x ∈ X if
lP (x) ∈ r(x).

For a collection B ⊆ 2X , we also speak of region-conditional validity for B if the above
condition holds for all regions B ∈ B. Note that domain validity is a special case of region-
conditional validity when the collection B = {X}. Similarly, we simply refer to point-wise
validity if the above condition holds for (almost) all x ∈ X .

Similarly, non-triviality can be required (with high probability) over the full domain or
conditioned on sub-regions of interest. For the output interval [a, b] = r(x) ⊆ [0, 1] of a
CLF-coverage function, we let µ([a, b]) = |b − a| denote the length of the output interval.
While a label coverage output would be considered non-trivial if contains a unique label,
this is too strong a requirement for CLF-coverage function. For the latter, we introduce an
additional parameter γ corresponding to a bound on the length of an interval that would
be considered a non-trivial prediction.

Definition 4 (Non-triviality). Let c and r be label- and CLF-coverage set hypotheses, P
be a distribution over X × Y, β > 0 a confidence parameter and γ > 0 a length-tolerance
parameter. Let B ⊆ 2X be a collection of subsets of the domain. We say that c satisfies
(1− β,B)-region-conditional non-triviality with respect to P , if for every B ∈ B,

PX∼PX [c(x) 6= {0, 1}|X ∈ B] ≥ 1− β.

and that r has (1− β, γ,B)-region-conditional non-triviality if for every B ∈ B,

PX∼PX [µ(r(X)) ≤ γ|X ∈ B] ≥ 1− β.
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When B = {X}, we say that they satisfy (1−β)- (or (1−β, γ))-domain non-triviality with
respect to P .

These quality criteria for coverage set hypotheses give rise to a notion of success for
a coverage set learner that calls for validity and non-triviality to hold simultaneously.
This success notion is relative to what can be achieved with full knowledge of the data
generating distribution. When we know the CLF at every point, it is possible to achieve
a CLF coverage set hypothesis with width zero (coverage set is a singleton) at all points.
This is true for all types and levels of validity.

However, achieving validity and non-triviality simultaneously might not be possible for
label coverage, even with full knowledge of the data generating distribution. This is often
the case when the CLFs are close to a half (the labelling is far from deterministic) at
many points. For example, consider a data generating distribution where the CLF is 1

2

at all points. Then, if we require (1 − α)-domain validity, for α < 1
2
, even with complete

distribution knowledge, the maximum level of domain non-triviality we can achieve is α.
We now define a baseline non-triviality that captures the best non-triviality we can hope
to achieve for CLF and label, coverage given a target validity requirement. We have a
baseline corresponding to each type of non-triviality (domain/region-conditional)

Definition 5 (Baseline non-triviality for label coverage set hypothesis). Given a validity
requirement, a collection of subsets of the domain B ⊆ 2X , the baseline B-region-conditional
non-triviality for label coverage relative to the distribution P is

β̄label(B;P ) = sup
c:X→{{0},{1},{0,1}}

c is valid

infβ>0c has (1− β,B)-region conditional non triviality w.r.t. P .

The special cases of B = {X} and B = {{x} : x ∈ X} define the domain-wide and
region-conditional non-triviality baselines.

Definition 6 ((α, β, δ)- and (α, β, γ, δ)-successful coverage set learning). Let P be a class
of distributions and B ⊆ 2X . For a triplet of parameters (α, β, δ) ∈ (0, 1]3, a label coverage
set learner A is (α, β, δ,B)-region-conditional successful for P if, there exists an m(α, β, δ)
such that for all m ≥ m(α, β, δ) and all P ∈ P the probability over the generation of an
i.i.d. S of size m that A(S) is (1−α,B)-region-conditional valid and (β̄label(B;P )− β,B)-
region-conditional-non-trivial is greater than 1 − δ. Note that β̄label(B;P ) is the baseline
non-triviality for label coverage defined in Definition 5.

Two special cases of region-conditional learning success are domain-wide learning suc-
cess and pointwise learning success which are the cases of B = {X} and B = {{x} : x ∈ X}
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respectively. We can analogously phrase the requirements for CLF-coverage set learner to
be (α, β, γ, δ)-successful ((β, γ, δ)-successful in the case of point-wise CLF-coverage learn-
ing) when there is a sample size such that, with probability at least 1− δ, the learned CLF
coverage set hypothesis satisies (1− α)-validity and (1− β, γ)-non-triviality.

We say that a label coverage set is successful if it is (α, β, δ)-successful for all triplets
of parameters (α, β, δ) ∈ (0, 1]3.

The sample complexity of domain wide/region/point wise coverage set learning is the
(point-wise) smallest function for which there exists a learner A satisfying the above defi-
nition.
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Chapter 3

Related Work

Quantifications of confidence in predictions are often derived in Bayesian learning setups,
and then rely on on the usual conditions on the quality of priors in a Bayesian reasoning
framework [5]. In this work, we take a non-Bayesian perspective and therefore focus on
discussing prior work that also developed notions of confidence in statistical learning the-
oretic setups. There are papers developing algorithmic methods for confidence scores in a
non-Bayesian framework. Jiang et al. [22] propose a method that assigns the confidence of
a prediction for a point to be the ratio of the distance to the nearest, high density sample
point with the same prediction and the distance to the nearest, high density sample point
with a different prediction. Another approach is providing confidence scores by applying a
scaling transformation to the real-valued predictions of learning algorithms such as support
vector machines, neural networks, and boosting [38, 39, 20]. A common scaling transfor-
mation applied in these mathods is the Platt scaling introduced by Platt [40] to obtain
well-calibrated posterior probabilities from the output of support vector machines. Confi-
dence scores are well-calibrated if the confidence score corresponds to the average accuracy
of points with that confidence score. The validity of the confidence scores from these algo-
rithms rely on several technical assumptions on the data-generating process. The papers
studying these algorithms empirically evaluate the calibration of the confidence scores on
labelled data.

In this work, we take a step back and aim to develop a general framework for the
meaning and validity of confidence in learned prediction and then provide several concrete
scenarios where such confident predictions can be derived. We now provide a brief survey
of various lines of work that are most relevant to our problem.

• Conformal prediction One early approach to providing confidence estimates to
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prediction is through the notion of conformal prediction [43]. Conformal prediction
outputs regions in the label space for each point in the domain. The goal is for
the conformal prediction of each point to contain labels that occur with significant
probability according to the CLF of that point. In most previous work, methods are
proposed to meet this goal with high probability over both the training data used for
the conformal prediction and the test point. This type of guarantee is referred to as
marginal coverage guarantee. We refer the reader to the textbook by Vovk et al. [49]
for a detailed survey of this topic.

A disadvantage of the marginal guarantee is that it only holds with high probability
over test points drawn i.i.d. from the training distribution. There is some work on
conformal prediction aiming to overcome this limitation. These works explore guar-
antees that hold for all points or with high probability conditioned on membership
in predefined subsets of the domain [29, 30, 48, 6]. These works aim to obtain re-
sults that hold for all distributions. Most results of these papers describe limits of
distribution-free, conditional conformal prediction. Lei and Wasserman [29, 30] show
that it is impossible to give point-wise-guarantees in the distribution-free, regres-
sion setting. Vovk et al. [48] extend this result to a general prediction setting that
includes classification. Barber et al. [6] show that it is also impossible to give con-
formal predictions that have distribution-free, region-conditional validity that hold
for all regions with mass greater than some minimum weight parameter δ. However,
distribution-free, region-conditional validity is possible for a pre-defined collection of
regions with finite VC dimension. Barber et al. provide an algorithm to achieve
this type of validity. The algorithm is a modification of a common algorithm for
conformal prediction - the split conformal algorithm. We discuss the split conformal
algorithm and the modified version in more detail in the appendix in Section A.1.
While this algorithm has the desired quality of providing distribution-free validity
guarantees, under certain distributional assumptions, this algorithm could provide
coverage sets with sub-optimal non-triviality. We show that this is the case under
the distributional assumptions we consider in this work in Section 5.1.

• Selective Classification Another line of work that is related to our paper is selective
classification / classification with abstention [7, 51, 15, 21, 23]. In this setting, a
classifier is given the option to abstain from making a prediction. The goals of
selective classification are to minimize incorrect predictions while also minimizing
abstentions. The first goal is analogous to our validity requirement and the second
is analogous to our non-triviality goal. A selective classifier implicitly describes a
set of low certainty. This is the set of all points for which the classifier abstains.
The level of uncertainty of this set is determined by the classifier’s trade-off between
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the two goals of minimizing errors and minimizing abstentions. Many works in this
line provide accuracy guarantees that hold with high probability over the domain
[7, 51, 15, 21, 23].

Point-wise guarantees for selective classification that all predictions made are correct
predictions are provided in earlier work by El-Yaniv and Wiener [13]. Their results
for such point-wise guarantees are developed under an distributional assumption of
realizability by a hypothesis class. Point-wise guarantees in the agnostic case are
also studied by El-Yaniv and Wiener [50]. The guarantee they provide, called the
point-wise competitive guarantee, is different from a guarantee on the accuracy. The
guarantee is that, given a function class, on each point that the classifier does not
abstain, the classifier’s label is the same as the label assigned by the classifier in the
function class with least true error.

• Covariate shift Our goal of getting guarantees beyond guarantees that hold on
average for test points drawn from the training distribution is shared by the problem
of learning with covariate shift. Here the goal is to learn a classifier based on samples
from a training distribution to achieve low error with respect to a different test
distribution. The training and test distributions have different marginal distributions,
but share the same conditional labelling functions for all points. There are many
papers on this topic, see e.g., the book by Quionero-Candela et al. [41] for a survey
of this topic. For a collection of regions, it is possible to obtain non-trivial coverage
sets with region-conditional validity if it is possible to learn with non-vacuous error
bounds for appropriately chosen test distributions (that depend on the collection of
regions). However, existing bounds on errors on distribution with covariate shift fail
to enable non-trivial region-conditional or point-wise valid coverage sets. A main
issue with many existing bounds such as bounds based on H∆H-divergence and
total variational distance that are studied by Ben-David et al. [8] is that they view
the training and test distributions symmetrically. Our results can be interpreted as
giving better generalization bounds for covariate shift under some assumptions on
the training and test distributions. The bounds our results imply do not treat the
training and test distributions symmetrically.

• PQ learning A learning framework - PQ learning, introduced by Goldwasser et.
al. [19], combines selective classification and learning with covariate shift. This is a
form of selective classification with accuracy requirements for test points drawn from
a distribution (Q) different from the distribution training points are drawn from (P ).
The goal is to learn a classifier with minimal incorrect predictions on points drawn
from the test distribution Q (minimal Q-error) and minimal abstentions on points
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drawn from the training distribution P (minimal P-error). The goals of our coverage
set learning problem can be interpreted as achieving both low error rate and low
abstention rate on the test distribution Q, without any performance requirements on
the training distribution. Goldwasser et al. note that for P and Q with low total
variation distance, low abstention rate for P implies a low abstention rate for Q. In
such a case, successful PQ learning also implies the goals of our problem. Our results
on label coverage set learning can be interpreted as describing additional properties of
the training and test distributions, other than proximity in total variation distance,
for which it is possible to have low error rate and low abstention rate on the test
distribution.

• Out of distribution detection Another common approach to finding points having
uncertain predictions is to find points that are generated by the underlying distri-
bution with low likelihood. One common approach is to assume that the underlying
distribution can be approximated by generative models such as Gaussian mixture
models and to then approximate the underlying distribution. Points that occur with
low likelihood in the approximate distribution are identified as out of distribution
points [9], [34]. Another approach is to perform statistical tests to determine the
difficulty of distinguishing test points from sample points. The approaches we pro-
pose in this work go beyond in or out distribution identification to assign certainty.
In some cases, our approaches are able to identify predictions of high certainty even
among points that are out of distribution.

• Probabilistic concepts A problem setting that is closely related to the problem
of constructing CLF coverage sets is probabilistic concepts learning of a family of
probability distributions. In this setting, we are given pairs of points and labels that
are drawn from a distribution belonging to the distribution family. The goal is to
estimate the CLF of most points accurately. Probabilistic concepts learning can be
used to construct CLF coverage sets. Likewise, we can learn probabilistic concepts
using CLF coverage sets. We discuss this connection between CLF-coverage learning
and probabilistic-concepts learning in Section A.2 in the appendix. Efficient learn-
ing algorithms for learning probabilistic concepts for several families of probability
distributions are given by Kearns and Schapire [24]. Among those families are the
family of non-decreasing functions, the family of probabilistic decision lists and some
classes motivated by the assumption that the labelling is deterministic but some of
the relevant variables are not observable to the learner. Alon et al. [1] take a purely
statistical approach and provide a characterization of the learnability of families of
distributions in terms of combinatorial dimensions that are known as fat shattering
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dimensions.

We study the different coverage set learning problems under two different types of
standard assumptions on the data-generating process: Access to a hypothesis class that
has low approximation error and Lipschitzness of the CLF . Low approximation error is
a standard assumption in statistical learning theory (e.g., [45]). Smooth behaviour of the
CLF (such as Lipschitzness and related notions) is commonly assumed in non-parametric
learning setups, for example nearest neighbor type learning ([44]).
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Chapter 4

Lipschitzness of Labelling Function
Assumption

In this section, we assume that the generating distribution satisfies Lipschitzness, which
we define below. We also assume that the domain X is [0, 1]d

Definition 7. A distribution P over X × {0, 1} satisfies λ-Lipschitzness for λ > 0, with
respect to a metric s(., .) over X if for every x, x′ ∈ X , |lP (x)− lP (x′)| ≤ λs(x, x′).

Under the assumption that the generating distribution is Lipschitz and that an up-
per bound on the Lipschitz constant λ is known, we provide a CLF-coverage set learner
(Algorithm 1) for which we show the strongest validity and non-triviality guarantees - 1-
point-wise validity and domain non-triviality (see definitions 3 and 4). We also identify
conditions on points that lead to more narrow CLF-coverage sets.

The CLF-coverage set learner is defined as Algorithm 1. This algorithm partitions the
domain into cells. The input parameter r to the algorithm determines the size of the cells.
For each cell (c), the algorithm then calculates the average label of samples in the cell - l̂[c].
This is an estimate of the expected label conditioned upon membership in the cell. The
algorithm calculates a confidence interval (of width w[c]) for this estimate, based on the
number of samples in the cell. The confidence interval is more narrow for cells containing
many samples. The algorithm assigns all points in a cell the same CLF-coverage set. The
CLF-coverage set for a point x contained in a cell tx is an interval centered at l̂[tx] and
having width w[tx] + rλ

√
d.

We will now analyze the validity and the non-triviality of the CLF-coverage-hypothesis
provided by Algorithm 1. We start with the analysis of the validity. Theorem 1 states the
point-wise validity guarantee of the CLF-coverage-hypothesis provided by Algorithm 1.
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Algorithm 1 Lipschitz CLF-coverage learner

Input: Test point x, Labelled samples S = (xi, yi)
m
i=1,

Radius r, Estimation parameter δ,
Lipschitz constant λ

Output: Labelling probability estimate, confidence width of estimate
Split the domain X = [0, 1]d into a grid of (1/r)d hypercube cells each of side length r.
Find the cell tx containing the test point x.
p̂[tx] := fraction of samples in tx.

wp(m, δ/2r
d) =

√
1

2m
ln 4rd

δ
.

w`(m, δ/2r
d, p̂[tx]) = 2wp(m,δ/2rd)

p̂[tx]−wp(m,δ/2rd)

ˆ̀[tx] := fraction of samples in the cell tx with label 1.
w[tx] := 1
if p̂[tx]− wp(m, δ/2) > 0 then

w[tx] = w`(m, δ, p̂[tx])
end if

IS,r,λ(x) :=

(
max(0, ˆ̀[tx]− w[tx]− rλ

√
d),

min(1, ˆ̀[tx] + w[tx] + rλ
√
d))

)
Return IS,r,λ(x)

Namely, the CLF-coverage set for x is centered at ˆ̀[tx] (as an estimate of `P (x)), and
has width 2(w[tx] + rλ

√
d).

Theorem 1. Suppose the data generating distribution P satisfies λ-Lipschitzness. For any
r > 0, δ > 0, with probability at least 1−δ over the generation of the sample S, Algorithm 1
with input parameters S, r, δ, λ yields a CLF-coverage-hypothesis having point-wise validity
(see definition 3).

Proof. The algorithm partitions the space into rd cells. Let pc be the probability weight
of a cell c and let p̂c be the estimate of pc that is calculated based on a sample to be the
fraction of sample points in the cell c. Let lc be the average CLF of the cell and let l̂c be
the estimate of lc that is calculated as the fraction of sample points in the cell c with label
1.
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The crux of the proof is bounding how far the estimate l̂c can be from lc. This involves
bounding how far p̂c can be from pc. Once we show that l̂c is a good estimate of lc, we
bound how far from lc the CLF of any point in the cell c can be. This bound is in terms of
the size of the cell and the Lipschitz constant. The smaller the cell size and the Lipschitz
constant, the closer the CLF of any point in c must be to the average CLF - lc. We use
two technical lemmas - Lemma 7 and Lemma 8 to bound |p̂c− pc| and |l̂c− lc| respectively.
These lemmas are stated and proved in the appendix. These lemmas are proved primarily
by applying the Hoeffding inequality (stated in the appendix as Lemma 5).

From Lemma 7 and a union bound, we know that with probability 1− δ
2
, for every cell

c,
pc ∈ [p̂c − wp(c), p̂c + wp(c)].

Here wp(c) = wp(m, δ/2r
d) =

√
1

2m
ln 4rd

δ
(as defined in Lemma 7).

From Lemma 8, we know that with probability 1− δ
2
, for every cell c,

ˆ̀
c ∈ [ˆ̀c − w`(c), ˆ̀

c − w`(c))].

Here w`(c) = w`(m, δ/2r
d, p̂c) = 2wp(m,δ/2rd)

p̂[tx]−wp(m,δ/2rd)
(as defined in Lemma 8).

The maximum distance between any two points in any cell is r
√
d. By the λ-Lipschitzness

property, any point in the cell has labelling probability within λr
√
d of the average labelling

probability of the cell. Therefore, with probability 1− δ, for each cell c, for every point x
in the cell c, the labelling probability of x satisfies:

`P (x) ∈ [ˆ̀c − w`(c)− λr
√
d, ˆ̀

c + w`(c) + λr
√
d].

This is the interval returned by the algorithm. Therefore, for every point, the CLF
lies in the coverage set returned by the algorithm, with probability at least 1 − δ. This
proves that the algorithm returns point-wise valid CLF-coverage sets with probability at
least 1− δ over the training samples.

Next, we analyse the non-triviality of the CLF-coverage-hypothesis of Algorithm 1 in
Theorem 2. This theorem states that for a large enough sample size and an appropri-
ately chosen input parameter r, Algorithm 1 returns a CLF-coverage-hypothesis with large
domain non-triviality.
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Theorem 2. For every λ-Lipschitz distribution, for every β, γ, δ > 0, there is a sample size
m(β, γ, δ, λ) such that with probability at least 1−δ over samples S of size m ≥ m(β, γ, δ, λ),

Algorithm 1 with input parameters S, r = 1/m
1
8d , δ, λ yields a CLF-coverage-hypothesis

having (1− β, γ)-domain-wide non-triviality (see Definition 4).

Proof. We know that cells with large probability weights have narrow confidence intervals
for their CLF estimates. Additionally, the probability of drawing a point from a cell with
low probability weight is low. Using these ideas, we can show that with high probability
over domain points, we can get CLF estimates with narrow confidence intervals.

We show that the lengths of the CLF confidence intervals for cells with probability
weights greater than a parameter µ is less than γ. We then show that the probability
weight of all cells with weight less than µ is less than β. This suffices to show the required
(1−β, γ)-domain-wide non-triviality stated in the theorem. The rest of the proof describes
how to choose the weight parameter µ and the sample size.

When the sample size is m, with probability at least 1− δ
2
, for all cells with probability

weight greater than µ = 1
m1/4 , the probability weight estimate, which is the fraction of

samples that lie in the cell, is at least µ −
√

1
2m

ln 4rd

δ
(by Lemma 7). Therefore, when

Algorithm 1 is provided with the input parameter describing the size of cells equalling
r = 1

m1/8d , the length of the confidence interval of the labelling probability of cells with
weight at least µ is less than the following quantity (see Algorithm 1):√

2
2m

ln 4m1/8

δ

1
m1/4 − 2

√
1

2m
ln 4m1/8

δ

+
2λd
√
d

m1/8d

=
2

m1/4√
ln 4m1/8

δ

− 2
+

2λd
√
d

m1/8d
.

This quantity decreases with increase in m and converges to zero. Therefore, for every
γ > 0, there is M1(γ, δ, λ) such that the above quantity is less than γ. When the sample
size m is larger than M1(γ, δ, λ), with probability 1− δ

2
, the size of confidence intervals for

labelling probabilities of cells with weights greater than µ = 1
m1/4 , is smaller than γ.

The points for which we can’t say anything about the interval lengths are points in
cells with weight less than µ. Since there are 1

rd
cells, the total weight of such points is at

most µ · 1
rd

= 1
m1/8 . For any β > 0, let M2(β) be such that 1

M2(β)1/8
< β.
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Choosing a sample size M(β, γ, δ, λ) greater than M1(γ, δ, λ) and M2(β), we get that

PX∼PX [Algorithm 1 returns CLF-coverage set of width greater than γ for X]

≤ PX∼PX

[
X ∈ cell with weight at most µ = 1/M(β, γ, δ, λ)

1
4

]
≤ µ · 1

rd

=
1

M(β, γ, δ, λ)1/8

<
1

M2(β)1/8

< β.

This proves that with probability at least 1 − δ over training data, the CLF-coverage-
hypothesis returned by Algorithm 1 is (1− β, γ)-domain-wide non-trivial.
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Chapter 5

Function Class With Low
Approximation Error Assumption

In this section, we study the assumption that the function class H has approximation
error optP (H) less than εapprox. That is, we assume we know that minh∈H L0/1

P (h) ≤
εapprox. Under this assumption, we show how to construct a label-coverage-hypothesis
having region-conditional validity with respect to a predefined collection of regions - B.
We construct the label-coverage-hypothesis using both a labelled sample set Sl and an
unlabelled sample set Su. We also study non-triviality of the label coverage sets and
identify sufficient conditions of regions that result in non-trivial coverage-sets

First we introduce some notation that we use to state the results in this section.

• Empirical risk minimizer: hH(Sl) denotes an empirical risk minimizer, from the

class H, for the sample Sl. That is, hH(Sl) ∈ argminh∈HL
0/1
Sl

(h).

• Error of a region: The error of a classifier h for a region B ⊆ X relative to P is
defined as

L0/1
P,B(h) = P(X,Y )∼P [h(X) 6= Y,X ∈ B].

• Conditional error of a region: The conditional error of a classifier h for the region
B ⊆ X , relative to P , is defined as

L0/1
P |B(h) = P(X,Y )∼P [h(X) 6= Y |X ∈ B].

Note that the conditional error of a region is the error of that region divided by the
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probability weight of the region. That is,

L0/1
P |B(h) =

L0/1
P,B(h)

P (B)
.

• Empirical error of a region: An estimate for the error of a classifier h on a region
B based on a labelled sample Sl is

L0/1
Sl,B

(h) =
|(x, y) ∈ Sl : x ∈ B, h(x) 6= y|

|Sl|
.

Before we describe the construction of the coverage sets, here is a brief overview of the
approach we propose in this section. As the first step, we show how to obtain an upper
bound on the conditional error of the empirical risk minimizer - L0/1

P |B(hH(Sl)), for a given
B ⊆ X . We propose methods for two upper bounds that are both calculated using the
labelled and unlabelled samples. We then show how to use the conditional error bound
to find a valid label-coverage-hypothesis for the collection B. This is done by assigning
trivial coverage sets for points in regions with high conditional error bounds (higher than
the validity parameter α) and assigning non-trivial coverage sets having the label of hH(Sl)
for all other points.

The first conditional error bound we propose does not require knowing a bound on
the approximation error optP (H). This bound pessimistically assumes that all the gen-
eralization error - difference between the true error and the sample error, occurs in the
region of interest. Although we do not need to know a bound on optP (H) to calculate this
conditional error bound, this bound is non-vacuous only when optP (H) is small. Another
requirement for this bound to be non-vacuous is for the region of interest to contain many
sample points. Therefore, small conditional error bounds from this method are only pos-
sible for regions with high probability weights. We now state this conditional error bound
as Theorem 3.

Theorem 3. For every B ⊆ X , for any classifier h : X → {0, 1}, recall that

L0/1
Sl,B

(h) =
|(x, y) ∈ Sl : x ∈ B, h(x) 6= y|

|Sl|
.

For any δ > 0, with probability at least 1 − δ over the generation of Sl and Su, if
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|Su∩B|
|Su| >

√
1

2|Su| ln
4
δ
, then

L0/1
P |B(hH(Sl)) ≤

L0/1
Sl,B

(hH(Sl)) + εUC(|Sl|, δ/2)

|Su∩B|
|Su| −

√
1

2|Su| ln
4
δ

.

Here εUC(|Sl|, δ/2) = C
√

VCdim(H)+log(2/δ)
|Sl|

for a universal constant C.

Proof. Recall that the quantity we want to bound - the conditional error of a region is
the ratio of the error of the region and the probability weight of the region. This is,

L0/1
P |B(hH(Sl)) =

L0/1P,B(hH(Sl))

P (B)
. In the proof, we will show how to estimate an upper bound

for the numerator - L0/1
P,B(hH(Sl)) using Sl and a lower bound for the denominator - P (B)

using Su. Together these bounds will give us the upper bound on L0/1
P |B(hH(Sl)) stated in

the theorem.

Upper bound for L0/1
P,B(hH(Sl)): By uniform convergence, with probability 1− δ

2
,

L0/1
P,B(hH(Sl)) < L0/1

Sl,B
(hH(Sl)) + εUC(|Sl|, δ/2).

Lower bound for P (B): By Lemma 7, the estimate of P (B) based on unlabelled samples

- |Su∩B||Su| satisfies, with probability 1− δ
2
, P (B) > |Su∩B|

|Su| −
√

1
2|Su| ln

4
δ
.

Therefore, with probability 1−δ, both the upper bound on the numerator and the lower
bound on the denominator are valid. This implies that the upper bound for L0/1

P |B(hH(Sl))
stated in the theorem holds true.

In the second conditional error bound, we aim to avoid pessimistically assigning all the
generalization error to the region of interest. We introduce a sample dependent property of
regions that identifies regions with low generalization error in a more refined way. We call
this property of a region the decisiveness of the function class on that region. We say that
the function class H is decisive on a region B ⊆ X , based on Su and Sl, if all classifiers in
H with low empirical error on Sl, label the points in Su ∩B similarly. Theorem 4 provides
a conditional error bound in terms of the decisiveness of the region of interest. For a region
with probability weight too low to get non-vacuous conditional generalization bounds by
using Theorem 3, we can still get non-vacuous bounds when the set has high decisiveness
using Theorem 4. In the end of this chapter, we provide an example where this is the case.
The example is a distribution that is approximated well by the class of threshold classifiers.

21



Regions far from the threshold of the ERM classifier have high decisiveness. We show an
example of a region far from the threshold that has vacuous conditional error bound by
Theorem 3 due to low weight but non-vacuous conditional error bound by Theorem 4 due
to high decisiveness. Note that the bound in the following theorem, unlike the bound in
the previous theorem, requires the knowledge of an upper bound on the approximation
error of the function class H.

Before we state the decisiveness-based conditional error bound, we formally define the
decisiveness property of regions.

Definition 8 (Disagreement between classifiers in a region). We define the disagreement
between two classifiers h1, h2 : X → Y in a set B ⊆ X as

∆P (h1, h2, B) = PX∼PX [h1(X) 6= h2(X), X ∈ B].

We empirically estimate the disagreement of classifiers in B, using unlabelled samples Su
as

∆Su(h1, h2, B) =
|{x ∈ Su ∩B : h1(x) 6= h2(x)}|

|Su|
.

Definition 9 (Decisiveness of function class in a region). For any γ > 0, let Hγ denote the
set of classifiers with empirical error within γ of the least empirical error of any classifier
in H i.e., Hγ(Sl) = {h ∈ H : L0/1

Sl
(h) ≤ L0/1

Sl
(hH(Sl)) + γ}. The γ-decisiveness of H in a

set B ⊆ X is
DCB,H(Sl, Su, γ) = 1− sup

h1,h2∈Hγ(Sl)

∆Su(h1, h2, B).

The following theorem provides conditional error bounds for regions in terms of their
probability weights and decisiveness. When a region has high probability weight and high
decisiveness, the conditional error of the empirical risk minimizer is low.

Theorem 4. For every B ⊆ X , for any δ > 0, with probability at least 1 − δ over the

generation of Sl and Su, if |Su∩B||Su| >
√

1
2|Su| ln

4
δ
, then

L0/1
P |B(hH(Sl)) ≤
εapprox + 1−DCB,H (Sl, Su, 2εUC(|Sl|, δ/4)) + εUC(|Su|, δ/4)

|Su∩B|
|Su| −

√
1

2|Su| ln
8
δ

.

Here, for any m ∈ N, εUC(m, δ/4) = C
√

(VCdim(H)+log(4/δ))
m

for a universal constant C.
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Proof. Let us denote the classifier in the class with the least error by h∗ = argminh∈HL
0/1
P (h).

The main idea of the proof is that with high probability, h∗ belongs to the the class Hγ (see
definition 9) for γ = 2εUC(|Sl|, δ/4). By the definition of decisiveness, all classifiers in Hγ

have similar behavior on a region B with high decisiveness. In particular, h∗, hH(Sl) ∈ Hγ

have similar behavior in B. Since hH(Sl) is similar to h∗ and since h∗ has low overall error,
we can conclude that hH(Sl) has low error on the region B. We also find a lower bound
on the probability weight of the region B. Combining an upper bound (using decisiveness)
on the error of hH(Sl) and a lower bound on P (B), we obtain the upper bound on the
conditional error of hH(Sl) that is stated in the theorem.

By uniform convergence, we get that with probability at least 1− δ
4
,

L0/1
Sl

(h∗) ≤ L0/1
Sl

(hH(Sl)) + 2εUC(|Sl|, δ/4). This implies that h∗ ∈ H2εUC(|Sl|,δ/4).

Also by uniform convergence, with probability at least 1− δ
2
, for any h ∈ H2εUC(|Sl|,δ/4),

∆P (h, h∗, B) ≤ ∆Su(h, h∗, B) + εUC(|Su|, δ/4)

≤ 1−DCB,H (Sl, Su, 2εUC(|Sl|, δ/4)) + εUC(|Su|, δ/4).

In particular, the above inequality holds for hH(Sl).

L0/1
P,B(hH(Sl)) ≤ L0/1

P,B(h∗) + ∆P (hH(Sl), h
∗, B)

≤ εapprox + 1−DCB,H (Sl, Su, 2εUC(|Sl|, δ/4))

+ εUC(|Su|, δ/4)

This concludes bounding the error of hH(Sl) on the region B. Next we use Su to obtain
a lower bound on P (B) with Lemma 7. We get that with probability at least 1 − δ

8
,

P (B) > |Su∩B|
|Su| −

√
1

2|Su| ln
8
δ
.

Combining the upper bound on we obtain the upper bound on L0/1
P,B(hH(Sl)) and the

lower bound on P (B), we get the upper bound on L0/1
P |B(hH(Sl)) =

L0/1P,B(hH(Sl))

P (B)
provided by

the theorem.

Having provided two ways of bounding conditional errors, we now describe how to
use these bounds to construct label-coverage-hypotheses having (1−α)-region-conditional
validity for a collection of subsets B, with probability at least 1−δ over sample generation.

23



1. For each B ∈ B, calculate the upper bound on LP |B(hH(Sl)) using either Theorem 3
or Theorem 4. For this calculation, set the probability of failure of samples parameter
to be δ

|B| .

2. For each B ∈ B, if the upper bound on LP |B(hH(Sl)) is greater than α, then assign
‘trivial’ status to the region B. Otherwise assign ‘non-trivial’ status to B.

3. For any point x ∈ X , if x ∈ B for some B ∈ B with ‘trivial’ status, assign the
trivial label-coverage set - {0, 1} to x. Otherwise, assign the non-trivial coverage set
{hH(Sl)(x)} to x.

To see that the above conditional error based coverage set satisfies (1 − α,B)-region-
conditional validity, note that for any B ∈ B with LP |B(hH(Sl)) < α, if all points in
B are assigned non-trivial coverage sets with the label of the empirical risk minimizer -
hH(Sl), we have (1− α)-region conditional validity relative to B. And now if any point in
such a region B is assigned the trivial coverage set, the (1− α)-region-conditional validity
still holds.

5.1 Comparison of methods

We have seen a few approaches for constructing label-coverage sets with region-conditional
validity so far. In this chapter, we proposed two methods that stem from the two condi-
tional error bounds provided by Theorem 3 and Theorem 4. We will refer to these methods
as ‘conditional error bound methods’ (abbreviated as CEB methods). We will refer to the
CEB method based on Theorem 3 as the ‘baseline CEB method’ and the CEB method
based on Theorem 4 as the ‘decisiveness-based CEB method’. Another method for cover-
age sets with region-conditional validity is the modified split conformal algorithm proposed
by Barber et al. [6] (see Algorithm 2 in Section A.1 in Appendix A for a description of
this algorithm). In this section, we will discuss some differences among these approaches.
We will focus on differences in the case of the data generating distribution satisfying the
assumption we have been studying in this chapter - low approximation error by a function
class H.

The modified split conformal algorithm and the baseline CEB both have the advantage
of providing distribution-free validity. The baseline CEB method uses the whole labelled
training set to both train an ERM classifier and evaluate that classifier. The split confor-
mal algorithm on the other hand partitions the labelled training set into two parts and
uses one part for training a model and the other part for evaluating that model. Due to
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this, the classifier used for coverage sets construction in the baseline CEB method is likely
to have lower error (by a constant factor) than the classifier in the split conformal method.
This could result in the baseline CEB method’s coverage sets having higher non-triviality
compared to the coverage sets from the split conformal algorithm. However, the split con-
formal method allows for more general training algorithms and is therefore likely to adapt
better even when the probability distribution is not approximated well by the function
class.

Compared to the split conformal algorithm and the baseline CEB method, the decisiveness-
based CEB method has the disadvantage of requiring knowledge of an upper bound on the
approximation error of the function class in order to construct coverage sets. However,
the decisiveness-based CEB method makes better use of the distributional assumption to
provide coverage sets with higher non-triviality in some cases. The distributional assump-
tion allows the decisiveness-based CEB method to better utilize unlabelled data. Recall
that both conditional error bounds are obtained by estimating the error on the region(
L0/1
P,B

)
and the probability weight of the region (P (B)). Unlabelled data is used to esti-

mate the probability weight by both the baseline and the decisiveness-based CEBs. The
decisiveness-based CEB also uses the unlabelled data to estimate region’s error whereas
the baseline CEB uses only labelled data for this. The rest of this section describes an
example where decisiveness-based CEB method provides better non-triviality compared to
the baseline CEB method and the split conformal method.

We use the following notation for the example: The domain X is the unit real interval
- [0, 1]. The class of threshold classifiers over this domain is denoted by Hthresholds = {ha :
a ∈ [0, 1]}. The threshold classifier denoted by ha for a ∈ [0, 1] is such that h(x) = 0 for
every x ≤ a and h(x) = 1 for every x > a. For ε > 0, Pthresholds,ε denotes the class of
probability distributions that are approximated by the class H with approximation error -
optP (H) at most ε. That is, a probability distribution P belongs to the class Pthresholds,ε if

and only if minh∈H L0/1
h ≤ ε.

Example 1. Let the domain X be the unit interval [0, 1] ⊆ R. Let the marginal distribution
PX be the uniform distribution. Let the conditional distribution be:

P (y = 1|x) =

{
1− 0.001, if x ≥ 1

2

0.001, if x < 1
2
.

We want to construct label-coverage sets based on samples drawn from P using prior knowl-
edge that P has approximation error by the threshold class optP (Hthresholds) = 0.001. We
have access to 100 labelled samples drawn i.i.d from P and 107 unlabelled samples drawn
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i.i.d from PX . The goal is to provide (0.85, 0.85, {B})-region-conditional coverage sets for
B = [0, 0.01]. The following hold:

• With probability more than 1
2

over the samples drawn, the split conformal method
assigns trivial label-coverage sets for all points in B.

• With probability more than 1
2

over the samples drawn, the baseline CEB method
assigns trivial label-coverage sets for all points in B.

• With probability more than 1
2
, the decisiveness-based CEB method assigns non-trivial

label-coverage sets for all points in B.

Note that in this example, the claim we make about the split conformal algorithm
is for the algorithm with parameter (1 − α) equalling 0.85. Barber et al. [6] show that
with this parameter, the coverage sets satisfy a notion called 0.85-restricted conditional
coverage. This is a weaker validity guarantee that implies (0.85, 0.85)-region conditional
validity. Now we prove the correctness of the above example. We outline a sketch of this
proof here and defer the full details of the proof to the appendix.

Proof. There are three parts to this proof:

1. Showing that the baseline CEB method returns trivial coverage sets: We show that
the bound provided by Theorem 3 for B with sample failure parameter δ = 0.15 is
vacuous (greater than 1.0). This implies trivial coverage sets. Note that εUC(|Sl|,0.15/2)

|Su∩B|
|Su|

is a lower bound on the baseline CEB given by Theorem 3. The numerator of this
lower bound is a constant value that we can calculate. The denominator is close to
P (B) = 0.01 with high probability. The denominator is less than the numerator with
high probability and hence the baseline CEB is vacuous.

2. Showing that the split conformal algorithm returns trivial coverage sets: First we
show that with probability, there are only few validation samples in B. Then we
show that this implies that the split conformal algorithm returns trivial coverage
sets.

3. Showing that the decisiveness-based CEB method returns non-trivial coverage sets:
We first show that with high probability over the samples, the decisiveness of the
region B is the highest value - one. This will imply that the error of the region B is
low. The unlabelled samples provide an estimate of the probability weight of B that
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is larger than the bound on the region’s error. This results in a small conditional
error bound due to the decisiveness-based CEB given by Theorem 4.

To show that decisiveness is one with high probability, we show that any classifier
in Hthresholds that labels any point in Su ∩ B zero, has high sample error with high
probability. This shows that all classifiers with low empirical error have the same
behaviour on Su∩B i.e., label zero for all points in Su∩B. Therefore the decisiveness
is one.

27



Chapter 6

Comparisons of sample complexities

In this work, we introduced two learning problems for a given family of data generating
distributions - label-coverage set learning and CLF-coverage set learning (see Definition 6).
A natural question to ask is how the two problems compare in terms of their sample
complexities. In this chapter we investigate this question. We show that the ordering of
the sample complexities depends on the family of distributions of the learning problem. We
also consider two other commonly studied learning problems - distribution learning in total
variation distance and Bayes classifier learning. We also compare the sample complexities
of these learning problems to the sample complexity of CLF-coverage set learning. We find
that the problems - distribution learning, CLF-coverage set learning and Bayes classifier
learning have strictly decreasing sample complexities.

We start by comparing the label-coverage set learning problem and the CLF-coverage
set learning problem. We construct an example where label-coverage set learning has a
higher sample complexity than CLF-coverage set learning (Example 2). Then we construct
an example where the sample complexity order is reversed i.e., CLF-coverage set learning
has higher sample complexity than label-coverage set learning (Example 3). For these
examples, the domain is a singleton X = {x0}. Since the domain only has one element, all
types of guarantees - point-wise, region-conditional, and domain-wide are equivalent. Any
distribution over the domain can be described by the CLF of the point x0. We denote the
distribution with CLF value p at x0 by Bernx0(p).

Example 2 (Label-coverage set learning harder than CLF-coverage set learning). Let the
domain be X = {x0}. For any coverage learning parameters 0 < α < 1

2
, β, γ, δ > 0, consider

the distribution family Pα,γ = {Bernx0(1 − α − γ/2),Bernx0(1 − α + γ/2)}. (α, β, γ, δ)-
successful CLF coverage learning requires no samples. However, (α, β, δ)-successful label
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coverage learning requires samples.

Proof of validity of Example 2. A CLF-coverage set learner that always outputs [1 − α −
γ/2, 1− α + γ/2] is valid for both distributions in Pα,γ. The CLF-coverage set has width
γ and therefore satisfies (1, γ)-non-triviality (and therefore also (1 − β, γ)-non-triviality).
Therefore, such a learner is successful and does not require any input samples drawn from
the generating distribution.

An (α, β, δ)-successful label-coverage set learner has to output the trivial coverage set
for x0 when the distribution is {Bernx0(1− α− γ/2). Otherwise, the validity requirement
is violated. It has to output the non-trivial coverage set - {0} when the distribution is
Bernx0(1 − α + γ/2). Otherwise, the non-triviality requirement is violated. Therefore,
from the output of any successful label-coverage set learner, we can distinguish between
the distributions Bernx0(1 − α − γ/2) and Bernx0(1 − α + γ/2) with probability at least
1− δ. This means that any successful label-coverage set learner would need to use samples
drawn from the generating distribution.

Example 3 (CLF-coverage set learning harder than label-coverage set learning). Let the
domain be X = {x0}. For any coverage set learning parameters 0 < α < 1

2
, β, γ < α/4, 0 <

δ < 1
2
−α, consider the distribution family Pα,γ = {Bernx0(α−γ),Bernx0(α−4γ)}. (α, β, δ)-

successful label-coverage set learning requires no samples. However, (α, β, γ, δ)-successful
CLF-coverage set learning requires samples.

Proof of validity of Example 3. A label-coverage learner that always outputs the non-trivial
label-coverage set {0} is a successful learner. The label-coverage set {0} is valid for both
distributions in Pα,γ since the CLF of x0 is smaller than α in both distributions. This
coverage-set is also non-trivial. Therefore, this learner is successful and does not require
any input samples drawn from the generating distribution.

On the other hand, an (α, β, γ, δ)-successful CLF-coverage set learner requires input
samples drawn from the generating distribution. This is because such a learner can be
used to distinguish between the two distributions in Pα,γ with probability of success at
least 1−α−δ > 0. Due to the validity requirement, with probability at least 1−α−δ, the
true CLF of the generating distribution lies in the output CLF-coverage set and the width
of the CLF-coverage set is at most γ. Since the width is at most gamma and since the
CLFs of the two distributions are more than 2γ distance away from each other, the CLF-
coverage set contains only the CLF of the generating distribution and does not contain the
CLF of the other distribution in the family. Therefore a distinguishing algorithm for the
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family Pα,γ that runs the successful CLF-coverage learner and identifies the distribution as
the one with CLF contained in the output of the learner, has probability of success at least
1−α−δ. Since this distinguishing algorithm requires samples, the successful CLF-coverage
set learner must also require input samples drawn from the generating distribution.

In the rest of the section, we focus on analyzing how the sample complexities of distri-
bution learning, CLF-coverage set learning, and Bayes classifier learning compare. We find
that these three problems are in strictly decreasing order of sample complexity. In most
of this section, we use another problem called probabilistic concepts (p-concepts) learning
as a proxy for the CLF-coverage set learning. This problem setting, which was introduced
by Kearns et al. [24], is closely related to the CLF-coverage set learning problem. Here is
a formal definition of p-concepts learning:

Definition 10 (p-concepts error). Given a distribution P over X×{0, 1}, and a conditional
labelling function l : X → [0, 1], we define the p-concepts error of l relative to P as

LpcP (l) = EX∼PX [|l(X)− lP (X)|].

Definition 11 (p-concepts learning). A p-concepts learner A is a function that takes a
labeled sample S as input and outputs a function l̂ : X → [0, 1]. We say a family of
distributions P is p-concepts learnable with sample complexity m : (0, 1)2 → N if for any
ε, δ > 0, any m ≥ m(ε, δ) and any distribution P ∈ P we have

PS∼Pm [LpcP ≤ ε] ≥ 1− δ.

One should note that this is different than the task of learning a regression (real-valued)
function. Whereas in the common setup of regression function learning, the training con-
sists of pairs (x, g(x)) labeled by the real value of the function g one wishes to approximate,
here we only get binary labeled samples (where the binary label is drawn according to the
real valued target function lp).

P-concepts learnability implies a form of CLF-coverage set learnability. This is the
weakest form of CLF-coverage set learnability with domain-wide validity and point-wise
non-triviality. This is stated as Lemma 3 in Section A.2 of the appendix. All forms of
CLF-coverage set learnabilities imply p-concepts learnability. This is because even the
weakest form with domain-wide validity and non-triviality implies p-concepts learnability.
We state this result as Lemma 4 in Section A.2 of the appendix.
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We first show that successful distribution learning of both the joint and marginal dis-
tributions implies successful p-concepts learning. Here is a formal definition of distribution
learning in total variation distance:

Definition 12 (Total Variation(TV) distance). The total variation distance between two
distributions over a domain U , represented by their probability density functions (PDFs)
p1 and p2 is defined by: dTV (p1, p2) =

∫
x∈U |p1(x)− p2(x)|dx.

Definition 13 (Distribution learner). A distribution-learner A over a domain U is a
function that takes a sample S drawn from the distribution as input and outputs a density
function p : U → [0, 1].

Definition 14 (TV distance learning of distributions). We say a family of distributions
P is TV-learnable with sample complexity mTV,P : (0, 1)2 → N if there exists a distribution
learner A such that for any ε, δ > 0, any m ≥ m(ε, δ) and any distribution P ∈ P we have

PS∼Pm [dTV (A(S), P ) ≤ ε] ≥ 1− δ

In this case we say A is a TV-learner of P.

Now we state the result that shows that the TV-distance learnability of the joint dis-
tribution P and the marginal distribution PX implies p-concepts learnability.:

Theorem 5. Let P be a family of distributions and let PX be the family of marginal
distributions of distributions in P. That is PX = {PX : P ∈ P}. Suppose that P and PX
are TV distance distribution learnable with sample complexities mTV,P : (0, 1)2 → N and
mTV,PX : (0, 1)2 → N respectively. Then P is is p-concepts learnable with sample complexity
mpc : (0, 1)2 → N with mpc(ε, δ) = max {mTV,P(ε/2, δ/2),mTV,PX (ε/2, δ/2)}.

Proof. Let A denote the TV distribution learner of P with the sample complexity de-
scribed in the theorem and let AX be the TV distribution learner of PX . We describe
how to construct a p-concepts learner using the two TV distribution learners. Let P be
a distribution from the family P . Let p : X × {0, 1} → [0, 1] denote the pdf of P and let
pX : X → [0, 1] denote the pdf of the marginal - PX . Recall that lP : X → [0, 1] denotes
the conditional labelling function. Given a sample S drawn from P , let p̂ denote the pdf
of the probability distribution output by A for the sample S and let p̂X denote the pdf
of AX (S). We denote the output of the p-concepts learner to be l̂ : X → [0, 1]. For each

x ∈ X , we define l̂(x) = p(x)
pX (x)

for every x ∈ X . We will show that such a learner that

outputs l̂ is a successful p-concepts learner.

31



We know that for a sample sizeM greater than bothmTV,P(ε/2, δ/2) andmTV,PX (ε/2, δ/2)
with probability at least 1− δ, dTV (p̂, p) ≤ ε

2
and dTV (p̂X , pX ) ≤ ε

2
.

ε

2
≥ dTV (p̂, p)

=

∫
x∈X

( ∣∣∣pX (x)lP (x)− p̂X (x)l̂(x)
∣∣∣+
∣∣∣pX (x)(1− lP (x))− p̂X (x)(1− l̂(x))

∣∣∣ )dx
≥
∫
x∈X

∣∣∣pX (x)lP (x)− p̂X (x)l̂(x)
∣∣∣ dx

=

∫
x∈X

∣∣∣pX (x)lP (x)− pX (x)l̂(x) + pX (x)l̂(x)− p̂X (x)l̂(x)
∣∣∣ dx

=

∫
x∈X

∣∣∣pX (x)lP (x)− pX (x)l̂(x) + pX (x)l̂(x)− p̂X (x)l̂(x)
∣∣∣ dx

=

∫
x∈X

∣∣∣pX (x)(lP (x)− l̂(x)) + l̂(x)(pX (x)− p̂X (x))
∣∣∣ dx

≥
∫
x∈X

pX (x)
∣∣∣lP (x)− l̂(x)

∣∣∣ dx− ∫
x∈X

l̂(x) |pX (x)− p̂X (x)| dx

≥
∫
x∈X

pX (x)
∣∣∣lP (x)− l̂(x)

∣∣∣ dx− ∫
x∈X
|pX (x)− p̂X (x)| dx

≥ EX∼PX [|l̂(X)− lP (X)|]− dTV (p̂X , pX )

≥ EX∼PX [|l̂(X)− lP (X)|]− ε

2

This shows that with probability at least 1−δ over samples of size greater than mpc(ε, δ),

EX∼PX [|l̂(X)− lP (X)|] ≤ ε. Therefore, the p-concepts learner we constructed in the proof
succeeds with sample complexity mpc.

We saw that the learnability of the joint and marginal distributions implies p-concepts
learnability and hence a form of CLF-coverage set learnability (with domain-wide require-
ments). Now we ask if CLF-coverage set learnability can be achieved with lower sample
complexity compared to distribution learnability. There are cases when CLF-coverage
set learning has strictly lower sample complexity than even just the marginal distribution
learning problem. This is true even for the strictest form of CLF-coverage set learning that
requires point-wise validity and point-wise non-triviality. We now describe an example of
this case. First we introduce some notation that we use for this example.
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The domain is the real line X = R. The family of distributions contain mixtures of
unit variance Gaussians. For any µ > 0, let Fµ be the class of distributions:

Fµ =

{
1

2
N (x, 1)× {1}+

1

2
N (−x, 1)× {0} : x ≥ µ

}
.

For a large value of µ > 0, Fµ, contains distributions with the positive and negative
Gaussian components that are well-separated. When the separation increases, approximat-
ing the CLFs with low p-concepts-error becomes easier. As separation tends to infinity,
the labelling function l : R→ [0, 1] becomes a good approximation to the CLF:

l(x) =

{
0 if x < 0;

1 otherwise.

However, the separation does not make learning the marginal distribution in TV distance
easier. This is the intuition we use to construct an example where CLF-coverage set
learning has higher sample complexity than marginal distribution learning.

We first show a lower bound on the sample complexity of marginal distribution learning
of each distribution family Fµ. We later show that we can find a distribution family Fµ with
an arbitrarily low sample complexity. We state the lower bound on marginal distribution
learning’s sample complexity as the following lemma:

Lemma 1 (Lower bound for marginal distribution learning sample complexity). For every
ε > 0, δ = 1

3
, for any µ > 0, the sample complexity for (ε, δ)-TV distance learning of the

marginals of family Fµ is at least mtv,Fµ(ε, 1
3
) ≥ C 1

ε2
for a universal constant C.

Proof. In this proof, we show that successful learning of the marginal implies that we can
distinguish between two distributions having low KL divergence. Using a lower bound for
the sample complexity of distinguishing between distributions with low KL divergence, we
get the lower bound stated in the theorem for learning the marginal distribution.

We outline the steps of this proof and defer the full details of the proof to the appendix:

1. For any m > 0, let Dm = 1
2
N (m, 1) × {1} + 1

2
N (−m, 1) × {0}. The magnitude of

m indicates the separation of the two Gaussian components in the distribution Dm.
We pick two distributions: Dm and Dm′ such that the TV distance between them
is in the range (ε, 2ε) and m,m′ are large (both distributions have well-separated
components). We describe why we can pick such distributions.
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2. Since the TV distance between the distributions is greater than ε, successful (ε, 1/3)-
TV distance learning of the marginals implies that we can distinguish between Dm
and Dm′ with probability at least 2

3
.

3. We show that if we can distinguish between Dm and Dm′ with probability at least 2
3
,

then we can also distinguish betweenN (m, 1) andN (m′, 1) with the same probability
of success and the same sample complexity.

4. We show that the TV distance between N (m, 1) and N (m′, 1) is at most 3ε. This
is true since the TV distance between Dm and Dm′ is less than 2ε and since both
distributions have well-separated components.

5. Using the fact that the TV distance between N (m, 1) and N (m′, 1) is small, we
show that the KL divergence between these distributions is also small. Since suc-
cessful marginal distribution implies successful distinguishing between N (m, 1) and
N (m′, 1), a lower bound on the sample complexity of distinguishing between N (m, 1)
andN (m′, 1) is also a lower bound on the sample complexity for learning the marginals.

The previous lemma provides a lower bound on the sample complexity of marginal
distribution learning for all families Fµ. In the following theorem, we show that there is
a class Fµ with arbitrarily small sample complexity for learning CLF-coverage sets with
point-wise validity and point-wise non-triviality. Combined with the previous lemma, this
theorem shows that there is a class for which marginal distribution learning has higher
sample complexity than CLF-coverage set learning.

Theorem 6. For every M ∈ N and every ε > 0, there exists a µ > 0 such that the sample
complexity for (ε, 1/3)−p-concepts-learning Fµ is at most M .

Proof. For any m > 0, let Dm = 1
2
N (m, 1) × {1} + 1

2
N (−m, 1) × {0}. The labelling

probability for a point x according to this distribution is

fm(x) :=
exp(−(x−m)2)

exp(−(x−m)2) + exp(−(x+m)2)

=
1

1 + exp(−2xm)

Consider µ(ε,M) > 1√
M

ln 1−ε
ε

+ 1√
M

. We will show that the (ε, 1/3)-p-concepts-learning
problem for Fµ(ε,M) can be reduced to the problem of finding, for each Dm ∈ Fµ(ε,M), an
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m′ s.t. |m−m′| < 1√
M

with probability 2
3
, based on samples from Dm. This problem has

sample complexity at most
√
M

For any m ≥ µ, for any m′ s.t. |m −m′| < ∆(M) = 1√
M

, we will show that for every

x ∈ R, |fm(x)− fm′| < ε.

|fm(x)− fm′(x)|

=
|exp(−2xm)− exp(−2xm′)|

(1 + exp(−2xm))(1 + exp(−2xm′))

≤ |exp(−2xm)− exp(−2xm′)|

For x < x̄ = 1
2∆(M)

ln 1
1−ε ,

|exp(−2xm)− exp(−2xm′)| ≤ 1− exp(−2x|m−m′|)
< 1− exp(−2x̄|m−m′|)
≤ ε

For x ≥ x̄,

|exp(−2xm)− exp(−2xm′)| < exp (−2xmin{m,m′})
≤ exp (−2x̄(µ(ε,M)−∆))

≤ exp

(
− 2 ·

√
M

2
ln

1

1− ε
· 1√

M
ln

1− ε
ε

)
= ε

We now move on to comparing CLF-coverage set learning and Bayes classifier learning.
First we define the Bayes classifier learning problem. Recall that the Bayes classifier h∗P is
the classifier with the least possible error and is defined with the knowledge of P .:

Definition 15 (Bayes classifier learning of distributions). We say a family of distributions
P is Bayes-classifier-learnable with sample complexity mbayes,P : (0, 1)2 → N if there exists
a learner A that takes as input a sample set S drawn from P and outputs a classifier
A(S) : X → {0, 1} such that for any ε, δ > 0, any m ≥ mbayes,P(ε, δ) and any distribution
P ∈ P we have

PS∼Pm [L0/1
P (A(S)) ≤ ε+ L0/1

P (h∗P )] ≥ 1− δ
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In this case we say A is a Bayes-classifier-learner of P.

CLF-coverage set learnability implies Bayes-classifier-learnability. This is true of even
the easiest form of CLF-coverage learnability with domain-wide requirements of validity
and non-triviality. We can show that when a CLF-coverage hypothesis r has good domain-
wide validity and non-triviality, we can construct a classifier h, based on r, that has error
close to the Bayes classifier. This results in the following observation:

Lemma 2. Suppose r has (1− ε/3, 1− ε/3, ε/3)-domain-wide-validity. Then consider the
classifier h : X → {0, 1} constructed from r such that for each x ∈ X ,

h(x) =

{
1 if 1

2
6∈ r(x) and r(x) contains values greater than 1

2
,

0 otherwise.

Then L0/1
P (A(S)) ≤ ε+L0/1

P (h∗P ). That is, the excess error of h compared to h∗P is at most
ε.

Proof. Consider the following cases for points x in the domain. Let us consider each case
and provide an upper bound on the excess error over h∗P for points belonging to that case.

(C1) lP (x) 6∈ r(x): The probability of a point satisfying this condition is at most ε
3

due
to the validity of r. We can trivially upper bound the excess error of a point in this
case by one. This results in an upper bound of ε

3
for this case.

(C2) Width of r(x) is greater than ε
3
: The probability of a point satisfying this condition

is at most ε
3

due to the non-triviality condition. Again, we can trivially upper bound
the excess error of a point in this case by one. We again get an upper bound of ε

3
for

this case.

(C3) C1 and C2 do not hold and 1
2
6∈ r(x): When this condition is satisfied, h(x) =

h∗P (x). Therefore, there is no contribution to the excess error by points satisfying
this condition.

(C4) C1 and C2 do not hold and 1
2
∈ r(x): For points satisfying this condition, |lP (x) −

0.5| < ε
3
. If h(x) 6= h∗P (x), then the excess error is at most ε

3
. This case contributes

at most ε
3

to the total excess error.

Summing up the contribution due to the different cases, we get that the excess error of
h compared to h∗P is at most ε.

36



Now we show that learning CLF-coverage sets can be harder than learning the Bayes
classifier. We show this by constructing an example where p-concepts learning has higher
sample complexity than Bayes classifier learning. Since all forms of CLF-coverage learn-
ability imply p-concepts learnability (Lemma 4), we can conclude that in this example, all
CLF-coverage set learning problems have higher sample complexity than Bayes classifier
learning.

We don’t need any samples to learn the Bayes classifier exactly for the classes Fµ
(the Bayes classifier is always the one that assigns label zero to negative domain elements
and one to non-negative domain elements). However, for learning p-concepts, we will
need samples. Note that given any P ∈ Fµ, the CLF of any different P ′ has positive
p-concepts error with respect to P . Let us say that this p-concepts error is εµ. Then, for
p-concepts learning of Fµ with ε < ε(µ) and δ > 1

2
, we will need samples since we will

be able to distinguish between P and P ′ using such a learner. This proves that for every
Fµ, there is an α(µ), β(µ), γ(µ) such that the (α(µ), β(µ), γ(µ), δ)-CLF-coverage learning
problem (even domain-wide) has higher sample complexity compared to the (ε(µ), δ)-Bayes
classifier learning problem (follows from Lemma 4).
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Chapter 7

Conclusion and future work

In this work, we developed a unifying framework that takes into account various desiderata
for uncertainty quantification in binary classification:

• Identifying sources of uncertainty in binary classification – randomness of the train-
ing sample, randomness in the choice of a test point, and randomness in the label
generation of a test point.

• Refined control on the randomness in the choice of a test point - standard PAC
frameworks assume that the test point is drawn from the underlying distribution
and incurs the randomness from this process. However, we are often interested in
accuracy guarantees for specific test points and the standard average guarantees can
be meaningless. We model this by defining region-conditional requirements. These
are requirements for when test-points are drawn from the distribution, conditioned
upon membership in predefined subsets that encode which test points are of interest.

• Ability to make trade-offs between validity and non-triviality - We have distinct qual-
ity measures of validity and non-triviality. In situations where the most important
goal is to avoid incorrect predictions, we can set the validity parameter to be high. In
situations where we have limited resources and can only deal with a limited number
of regions marked as uncertain, we can set the non-triviality paramter to be high.

In this framework, we analyze the sample complexities for constructing valid and non-
trivial coverage sets under a few different assumptions on the underlying distributions. We
observe that unlabelled data is helpful for improving the quality of coverage sets. One
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way of extending this framework is to extend to problems beyond binary classification
such as multi-label classification and regression. Another extension is to also analyze the
computational complexity of the coverage set learning problems. Even in the current
framework, many questions remain open:

• The method proposed under the assumption that the distribution is approximated
well by a function class uses only the empirical risk minimizer to construct label
coverage sets. It would be interesting to see if we can use other classifiers as well.
This might give rise to other properties beyond decisiveness that give rise to non-
trivial coverage sets for regions.

• We analyze the implications of probabilistic concepts learning for CLF coverage set
learning. Using p-concepts, we get CLF-coverage sets with only domain-wide guaran-
tees. It would be interesting to see how to get stronger CLF-coverage sets guarantees,
perhaps for certain families of distributions such as the well studied family of Gaus-
sian mixture models. For this family, what are properties of regions for which we can
get valid CLF-coverage sets with greater non-triviality?

• In the comparison of sample complexities of learning problems, the problems we
compared often had different levels of difficulties. When we said that Problem 1 is
easier than Problem 2, in all but one pair of problems, we were able to show that the
hardest form of Problem 1 is easier than the easiest form of Problem 2. The exception
to this is when we compared p-concepts learning and CLF-coverage learning. We
showed that the easiest form of CLF-coverage learning implies p-concepts learning.
However, we were only able to show that p-concepts learning implies the easiest
form of CLF-coverage learning. It remains open in which cases (if any) p-concepts
learning also implies harder forms of CLF-coverage learning (with region-conditional
or point-wise requirements).
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Appendix A

Extended related work

A.1 Split conformal algorithm

The split conformal was algorithm introduced by Vovk et al. [49]. This algorithm is shown
to provide distribution-free, marginal coverage by Lei and Wasserman [30]. The split
conformal method partitions the sample into two parts - the training set and the validation
set. The training set is used to train a model. The validation set is used to evaluate that
model. The size of the coverage sets is determined by how well the trained model fits
the validation set. When the model fits the validation set well, the algorithm outputs
small coverage sets. A modification of this algorithm for regression conformal prediction
satisfying a more refined guarantee than the marginal coverage is provided by Barber et
al. [6]. Rather than simply guaranteeing coverage with high probability over test points
drawn from the domain, the refined guarantee is for coverage with high probability over
test-points drawn conditioned on membership in predefined subsets of the domain.

We now state this form of the split conformal algorithm by Barber et al.[6] as Algo-
rithm 2.

We refer the reader to the paper of Barber et al.[6] for a proof that this algorithm yields
coverage sets satisfying region-conditional validity. While this algorithm has the desired
quality of providing distribution-free validity guarantees, under certain distributional as-
sumptions, this algorithm could provide coverage sets with sub-optimal non-triviality. We
show that this is the case under the distributional assumptions we consider in this work.
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Algorithm 2 Split conformal algorithm for restricted conditional coverage

Input: Validity parameter: α, Collection of subsets of the domain: B,
Labelled samples: S = (xi, yi)

m
i=1, Binary classification learning algorithm: A,

Test point: x.
Output: Label coverage set for x
St = {(x1, y1), . . . , (xn, yn)}
Sv = {(xn+1, yn+1), . . . , (xm, ym)}
Default coverage set for x is Ĉ(x) = {A(St)(x)}.
for B ∈ B such that x ∈ B do

NSv(B) = |Sv ∩B|
L0/1
Sv ,B

(A(St)) = |{(x′, y′) : (x′, y′) ∈ Sv ∩B and A(St)(x
′) 6= y′}|

threshold = NSv(B)−
⌈(

1− α + 1
m−n

)
(NSv(B) + 1)

⌉
if L0/1

Sv ,B
(A(St)) ≥ threshold then

Set coverage set of x to be trivial i.e. Ĉ(x) = {0, 1}
end if

end for
Return Ĉ(x)

A.2 Probabilistic-concepts

Probabilistic concepts learning is closely related to the problem of CLF-coverage learning.
We formally defined probabilistic concepts learning in Definition 11. In this section, we
discuss the connection between probabilistic concepts and CLF-coverage sets.

Learnability of probabilistic concepts implies the learnability of CLF-coverage sets hav-
ing domain-wide validity and non-triviality guarantees. The following lemma makes this
concrete by showing how to construct CLF-coverage sets from a conditional labelling func-
tion with low p-concepts error:

Lemma 3. An real-valued function l : X → {0, 1} such that EX∼PX [|l(X) − lP (X)|] ≤ ε
can be used to construct a CLF-coverage hypothesis r with (1 − ν)-domain-wide validity
and (1, 2νε)-domain-wide non-triviality, for any ν ∈ (0, 1). r is such that for each x ∈ X ,
r(x) =

[
l(x)− ε

ν
, l(x) + ε

ν

]
.

Proof. By the Markov inequality, for any ν ∈ (0, 1), PX∼P [|lP (X) − l̂(X)| > ε/ν] ≤ ν.
Which means that the CLF-coverage hypothesis based on l̂ satisfies (1−ν)-domain-validity.
The CLF-coverage sets of all points have width 2 ε

ν
. Therefore, this CLF-coverage hypoth-

esis satisfies (1, 2ε/ν)-non-triviality.
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All forms of CLF-coverage learnability imply p-concepts-learnability. This is because
even the weakest form of CLF-coverage learnability that requires only domain-wide validity
and non-triviality implies p-concepts learnability. We state this as the following lemma:

Lemma 4. A CLF-coverage set r that has (1 − α)-domain-wide validity and (1 − β, γ)-
domain-wide non-triviality yields an approximate CLF l : X → [0, 1] with p-concepts error
at most (2− α− β + γ). That is, EX∼PX [|l(X)− lP (X)|] ≤ (2− α− β + γ). l is such that
for each x ∈ X , l(x) ∈ r(x).

Proof. Due to (1−α)-domain validity and (1−β, γ)-domain non-triviality, the probability
weight of points satisfying at least one of the following two (bad) conditions is at most
α + β.

1. The true CLF lies outside the CLF-coverage set r.

2. The CLF-coverage set r has length more than γ.

For points satisfying one of the above conditions, we can trivially upper bound the difference
between the true CLF and the CLF estimate obtained from the CLF-coverage set - l, by
one. The weight of the points not satisfying the above conditions can be trivially bounded
above by one. For all points not satisfying either condition, the difference between the true
CLF and the CLF estimate can be bounded by γ. Therefore, we can bound the p-concepts
error of l by 2− α− β + γ.
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Appendix B

Useful lemmas

Lemma 5 (Hoeffding’s inequality for general bounded random variables). Let X1, . . . , XN

be independent random variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for any
t > 0, we have

Pr

[
N∑
i=1

(Xi − E[Xi]) ≥ t

]
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Lemma 6 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the
same measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then, P (A)+Q(Ac) ≥
1
2

exp(−KL(P,Q)). Here, KL(P,Q) is the KL-divergence between P and Q.

Lemma 7. Let P be a distribution over domain X. Let X ′ be a subset of X. Let S be an
i.i.d. sample of size m drawn from the distribution P . Let p̂(X ′, S) be the fraction of the
m samples that are in X ′. For any δ > 0, with probability 1− δ over the generation of the
samples S,

|P (X ′)− p̂(X ′, S)| ≤ wp(m, δ)

where

wp(m, δ) =

√
1

2m
ln

2

δ
.

Proof. Let Xi be a random variable indicating if the ith sample belongs to set X ′. Xi = 1
if the ith sample belongs to X ′ and zero otherwise. For each i, E[Xi] = P (X ′). p̂(X ′, S) =∑N

i=1Xi
m

. Applying Hoeffding’s inequality, we get the inequality of the theorem.
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Lemma 8. Let D be distribution over X × {0, 1}. Let X ′ be a subset of X. Let S be
an i.i.d. sample of size m drawn from D. Let ˆ̀(X ′, S) be the fraction of the m labelled
samples with label 1 in S ∩X ′. For any δ > 0, with probability 1 − δ over the generation
of the samples S, if p̂(X ′, S)− wp(m, δ/2) > 0, then

|¯̀P (X ′)− ˆ̀(X ′, S)| < w`(m, δ, p̂(X
′, S))

w`(m, δ, p̂(X
′, S)) =

1

p̂(X ′, S)− wp(m, δ/2)

·

(
wp(m, δ/2) +

√
1

2m
ln

4

δ

)
,

where p̂(X ′, S) is the fraction of the samples from S in X ′ that have label 1, wp(m, δ/2))
is as defined in Lemma 7.

Proof of Lemma 8. Let Xi be a random variable such that

Xi =

{
1 If ith sample belongs to the set X ′ and has label one.

0 otherwise.

E[Xi] = P (X ′)¯̀
P (X ′), for each i.

∑m
i=1Xi = mp̂ˆ̀

P (X ′, S). Note that by triangle inequal-
ity,

|P (X ′)ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|
≤ |p̂ˆ̀

P (X ′, S)− P (X ′)¯̀
P (X ′)|+ |p̂− P (X ′)|ˆ̀P (X ′, S)

≤ |p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp.
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For any ε > 0,

Pr[|¯̀P (X ′)− ˆ̀(X ′, S)| > ε]

= Pr[P (X ′) · |¯̀P (X ′)− ˆ̀(X ′, S)| > P (X ′)ε]

≤ Pr[|p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp > (p̂− wp)ε]
= Pr[|mp̂ˆ̀(X ′, S)−mP (X ′)¯̀

P (X ′)| > m(p̂− wP )ε− wp]

= Pr[
m∑
i=1

|Xi − E[Xi]| > m((p̂− wP )ε− wp)]]

≤ 2 exp
(
−2m((p̂− wP )ε− wp)2

)
(By Hoeffding’s inequailty).

When p̂− wp > 0, choosing

wl(m, δ, p̂) >
wp

p̂− wp
+

1

p̂− wp

√
1

2m
ln

4

δ
,

we get that with probability 1− δ, |¯̀P (X ′)− ˆ̀(X ′, S)| < w`(m, δ, p̂).
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Appendix C

Extended proofs

Proof of validity of Example 1. Here we expand on the proof outline from Chapter 5 and
provide all the full calculations that were omitted in the outline. There are three parts to
this proof:

1. Showing that the baseline CEB method returns trivial coverage sets: We show that
the bound provided by Theorem 3 for B with sample failure parameter δ = 0.15 is
greater 1.0. This implies trivial coverage sets.

Note that a lower bound for this bound is

εUC(|Sl|, 0.15/2)
|Su∩B|
|Su|

=

√
9(1+log(2/0.15))

150

|Su∩B|
|Su|

>
0.35 · 107

|Su ∩B|
.

The expected value of |Su ∩B| is 107 · 0.01 = 105. With high probability, |Su ∩B| is
not much larger than 105. By the Hoeffding inequality,

P

[
|Su ∩B| > 105 +

√
107

2
ln 4

]
≤ 1

10
.
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With probability at least 0.9,

|Su ∩B|
|Su|

<
105

107
+ 10−3.5

√
ln 10

2

< 0.013.

Since 0.35 > 0.013, the bound given by Theorem 3 is bigger than 1.0.

2. Showing that the split conformal algorithm returns trivial coverage sets: First we
show that with probability at least 0.52, the number of validation samples that lie
in the region B is at most six. Then we show that this low number of validation
samples in B implies that the split conformal method returns trivial coverage sets.

(a) Showing that there are few validation samples in B. The expected size of |Sv∩B|
is P (B)|Sv| = 0.01 · 75 = 0.75. By applying the Hoeffding inequality, we get
that

P [|Sv ∩B| ≥ 6] ≤ exp

(
−2(6− P (B)|Sv|)2

|Sv|

)
≤ exp

(
−2(6− 0.75)2

75

)
< 0.48.

(b) Showing that split conformal algorithm returns trivial coverage sets when |Sv ∩
B| ≤ 6. Recall that the split conformal algorithm (Algorithm 2) calculates
a threshold value and the number of errors in Sv ∩ B made by the empirical
risk minimizer from Hthresholds. The split conformal algorithm returns trivial
coverage sets if the errors in Sv ∩ B is greater than the threshold value. If the
threshold value is negative, then the split conformal algorithm returns trivial
coverage sets regardless of the number of errors in Sv ∩ B. We will now show
that when |Sv ∩ B| ≤ 6, the threshold value is negative. The threshold is at
most

|Sv ∩B| −
⌈(

1− α +
1

|Sv|

)
(|Sv ∩B|+ 1)

⌉
.

When |Sv ∩B| ≤ 6, this threshold value is negative.

3. Showing that the decisiveness-based CEB method returns non-trivial coverage sets:
We first show that with probability at least 0.62 over samples, the decisiveness of

53



the region B is the highest value - one. Like in the first part, we also show that
the fraction of sample points that lie in B is at least 0.013 with probability at least
0.9. The high decisiveness combined with the lower bound on the fraction of samples
that lie in B results in the conditional error bound in Theorem 4 with sample failure
parameter δ = 0.15 being less than 0.85. This results in non-trivial coverage sets for
(0.85, 0.85)-region-conditional validity.

To show that decisiveness is one with high probability, we show that any classifier
in Hthresholds that labels any point in Su ∩ B zero, has high sample error with high
probability. This shows that all classifiers with low empirical error have the same
behaviour on Su∩B - labelling all points in Su∩B zero. And therefore the decisiveness
is one.

(a) Showing that the decisiveness of set B is one with high probability over the
samples. We show this by showing that all classifiers in Hthresholds having sample
error within 2εUC

(
|Sl|, 1

4
· 0.15

)
of the optimal sample error all label all points

in Su ∩ B zero. First we show that the sample error of the classifier h 1
2

is at
most 0.0686 with probability at least 0.84. This implies that the sample of the
empirical risk minimizing classifier is also at most 0.0686. We show this by
applying the Hoeffding inequality. The expected sample error is 0.001.

P
[
L0/1
Sl,B
≥ 0.1

]
≤ exp

(
−2(12− 0.15)2

150

)
< 0.16.

All classifiers with sample error within 2εUC(100, 0.15/4) have sample error at
most 0.0686 + 2 · 0.34 = 0.77.

0.686 + 2εUC

(
|Sl|,

1

4
· 0.15

)
= 0.686 + 2

√
9(1 + log(4/0.15))

150

< 0.832

Now we show that with high probability any classifier that labels some point in
B one (a classifier ha ∈ Hthresholds with a < 0.01) has sample error larger than
0.832. We first show that there are few labelled samples in B similar to how we
showed that there are few validation samples in B. With probability at least
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0.77, |Sl ∩B| ≤ 12.

P [|Sl ∩B| ≥ 12] ≤ exp

(
−2(12− P (B)|Sl|)2

|Sl|

)
< 0.23.

Next we show that of the labelled sample points not in B, most have labels
different from the labels assigned by a classifier ha ∈ Hthresholds with a < 0.01.
A labelled sample not in B with label agreeing with a classifier ha ∈ Hthresholds

differs from the label assigned to it by the classifier h 1
2
. We have already shown

that most labelled samples have labels agreeing with the classifier h 1
2
. Therefore,

the number of labelled samples in Sl\B that are correctly labelled by a classifier
ha with a < 0.01 is upper bounded by the number of labelled samples on which
h 1

2
makes an error. We have shown that this is at most 12 with probability

at least 0.832. Therefore, any classifier ha with a < 0.01 makes error on at
least (150− 12− 12) labelled sample points with probability at least 0.62. This
concludes our proof that the decisiveness of the set B is one with probability at
least 0.62.

(b) Showing a lower-bound on the number of unlabelled samples in B. By Lemma 7,

with probability at least 1
10

, |Su∩B||Su| > 0.01−
√

1
2|Su| ln 10.

Therefore, with probability at least 0.52, the conditional generalization error of
the empirical risk minimizer can be bounded above by 0.15, using Theorem 4.
The decisiveness-based method for (1 − α) = 0.85-region conditional validity
returns non-trivial coverage sets for all points in the set B.

Proof of Lemma 1. In this proof, we show that successful learning of the marginal implies
that we can distinguish between two distributions having low KL divergence. Using a
lower bound for the sample complexity of distinguishing between distributions with low
KL divergence, we get the lower bound stated in the theorem for learning the marginal
distribution.

Let m′ ≥ m ≥ µ be such that

• ε < TV (Dm′ ,Dm) < 2ε

• N (m′, 1)((∞, 0)) < N (m, 1)((∞, 0)) < ε.
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For every m, since as m′ approaches infinity, TV (Dm′ ,Dm) approaches one, there should
exist an m′ such that TV (Dm′ ,Dm) > ε. Since TV (Dm′ ,Dm) is continuous in m and m′,
there should exist m′ such that TV (Dm′ ,Dm) is also less than 2ε. In particular, we can
choose m large enough so that the second condition is also satisfied. Then, successful
(ε, 1/3)-TV distance learning of the marginals of family Fµ implies that we can distinguish
between the distributions Dm and Dm′ with probability at least 2

3
. We can do this by

learning the marginal and choosing the distribution out of Dm and Dm′ which is closest in
TV distance to the learnt marginal. This works because TV (Dm′ ,Dm) > ε.

We now show that distinguishing between distributions Dm and Dm′ with probability
at least 2

3
implies that we can also distinguish between the distributions N (m, 1) and

N (m′, 1) with probability at least 2
3

with the same sample complexity. Let AD denote an
algorithm that takes samples of size n drawn from one of Dm or Dm′ and identifies the
distribution the samples are drawn from with probability of success at least 2

3
. We now

describe a distinguishing algorithm AN for N (m, 1) and N (m′, 1) that takes as input a
sample S = (X1, . . . , Xn) where each Xi is drawn i.i.d. from the distribution P which is
one of N (m, 1) and N (m′, 1). Consider a random variable Zi that takes value Xi with
probability 1

2
and value −Xi with probability 1

2
, for each i ∈ {1, . . . , n}. Each Zi is a

random variable of the distribution Dm if Xi is a random variable of N (m, 1) and is a
random variable of Dm′ if Xi is a random variable of N (m′, 1). AN runs AD on the sample
S ′ = (Z1, . . . , Zn). The output of AN is N (m, 1) if the output of AD is D(m, 1). And
the output of AN is N (m, 1) otherwise. With sample size n, AN distinguishes between
samples drawn from N (m, 1) and N (m′, 1). In the rest of the proof we will find a lower
bound on the sample complexity to distinguish between N (m, 1) and N (m′, 1).

We start by finding an upper bound on |m−m′| implied by the fact that TV (Dm′ ,Dm) <
2ε. First note that TV (Dm′ ,Dm) < 2ε implies that TV (N (m, 1),N (m′, 1)) < 2ε+ε (which
also means TV (N (m, 0),N (m′, 0)) < 2ε + ε). Let p0,m denote the pdf of N (−m, 1) and
let Let p1,m denote the pdf of N (m, 1).

2ε = TV (Dm′ ,Dm)

=

∫ ∞
−∞

1

2
|p0,m(x) + p1,m(x)− p0,m′(x)− p1,m′(x)|dx

=

∫ ∞
0

|p0,m(x) + p1,m(x)− p0,m′(x)− p1,m′(x)|dx
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Since m′ > m, p0,m(x) > p0,m′(x) for x ≥ 0. Using this fact and the triangle inequality,

≥
∫ ∞

0

|p1,m(x)− p1,m′(x)|dx−
∫ ∞

0

p0,m(x)− p0,m′(x)dx

>

∫ ∞
0

|p1,m(x)− p1,m′(x)|dx−
∫ ∞

0

p0,m(x)dx

≥
∫ ∞

0

|p1,m(x)− p1,m′(x)|dx− ε (By choice of m)

=⇒ 3ε > TV (N (m, 1),N (m′, 1)).

Theorem 1.3 of [12] states a lower bound on the difference in the means of two Gaussians
in terms of their TV distance. From this theorem, we get that TV (N (m, 1),N (m′, 1)) < 3ε
implies |m−m′| < C ′ε for a universal constant C.

Finally, we provide a lower bound on the sample complexity of distinguishing between
two univariate Gaussians – N (m, 1) and N (m′, 1) with probability of success at least 2

3
in

terms of |m−m′|. First note that the KL divergence between these distributions is |m−m
′|2

2
.

For a sample size of n, the KL divergence betweenN (m, 1)n andN (m′, 1)n is n|m−m′|2
2

Then
we can apply the Bretagnolle-Huber inequality (stated in the appendix as Lemma 6) to
show that the probability of failure for any distinguishing algorithm for N (m, 1)n and
N (m′, 1)n is at least:

1

2
exp(−KL(N (m, 1)n,N (m′, 1)n)) ≥ 1

2
exp

(
n|m−m′|2

2

)
≥ 1

2
exp

(
C ′nε2

2

)
In order for the probability of failure to be less than 1

3
,

1

3
<

1

2
exp

(
C ′nε2

2

)
=⇒ n >

2

C ′ε2
ln

3

2
.

This proves the lower bound on the sample complexity stated in the lemma.
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