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Abstract

This thesis is concerned with the multi-layer Markov modulated fluid flow (MMFF )

processes and their applications to queueing systems with customer abandonment.

For the multi-layer MMFF processes, we review and refine the theory on the joint dis-

tribution of the multi-layer MMFF processes and develop an easy to implement algorithm

to calculate the joint distribution. Then, we apply the theory to three quite general queue-

ing systems with customer abandonment to show the applicability of this approach and

obtain a variety of queueing quantities, such as the customer abandonment probabilities,

waiting times distributions and mean queue lengths.

The first application is the MAP=PH=K +GI queue. The MMFF approach and the

count-server-for-phase (CSFP ) method are combined to analyze this multi-server queueing

system with a moderately large number of servers. An efficient and easy-to-implement

algorithm is developed for the performance evaluation of the MAP=PH=K+GI queueing

model. Some of the queueing quantities such as waiting time distributions of the customers

abandoning the queue at the head of the waiting queue are difficult to derive through other

methods.

Then the double-sided queues with marked Markovian arrival processes (MMAP ) and

abandonment are studied. Multiple types of inputs and finite discrete abandonment times

make this queueing model fairly general. Three age processes related to the inputs are de-

fined and then converted into a multi-layer MMFF process. A number of aggregate queue-

ing quantities and quantities for individual types of inputs are obtained by the MMFF

approach, which can be useful for practitioners to design stochastic systems such as ride-

hailing platforms and organ transplantation systems.

The last queueing model is the double-sided queues with batch Markovian arrival pro-

cesses (BMAP ) and abandonment, which arise in various stochastic systems such as per-

ishable inventory systems and financial markets. Customers arrive at the system with a

batch of orders to be matched by counterparts. The abandonment time of a customer

depends on the batch size and the position in the queue of the customer. Similar to

the previous double-sided queueing model, a multi-layer MMFF process related to some
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age processes is constructed. A number of queueing quantities including matching rates,

fill rates, sojourn times and queue length for both sides of the system are derived. This

queueing model is used to analyze a vaccine inventory system as a case study in the thesis.

Overall, this thesis studies the joint stationary distribution of the multi-layer MMFF

processes and shows the power of this approach in dealing with complex queueing sys-

tems. Four algorithms are presented to help practitioners to design stochastic systems and

researchers do numerical experiments.
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Chapter 1

Introduction

1.1 Background and Motivation

The status of many important systems in our life 
uctuates up and down in a continuous

state space over time given the underlying conditions, e.g., the stock price, the water level

in a reservoir and the data in a bu�er for telecommunication systems. As an illustration,

take a simple example of two seasons with constant water volume changing to a water

reservoir. Speci�cally, the water level in a reservoir is constantly increasing during the

wet season while the water level is constantly decreasing during the dry season. It can

be seen from this example that such a system has an uncountable state space (e.g., water

level), and the change of state is controlled by the underlying conditions (e.g., seasons).

If the transition between the wet season and the dry season is dynamic and stochastic,

evaluating the performance of the system becomes an interesting problem and cannot be

easily solved by standard Markov chain methods. On the other hand, there are always

more than two underlying conditions in real-life systems and the status of the systems may

also provide feedback to the underlying conditions, thus the performance evaluation of such

systems is a challenging task. Classical methods are not powerful enough to analyze such

complicated stochastic systems. Therefore, we introduce multi-layer Markov modulated


uid 
ow ( MMFF ) processes and demonstrate its three applications to queueing models

in this thesis.

1



Markov modulated 
uid 
ow ( MMFF ) processes are two dimensional Markov pro-

cesses and have been useful modelling tools for representing many real-life systems (e.g,

dams, telecommunication and risk models) and analysing some other complex stochastic

models. In the area of telecommunication systems,MMFF processes have been success-

fully applied to analyze the system performance [53, 85, 120]. In the area of risk analysis,

MMFF processes have been used to �nd some ruin-related quantities, e.g., the time un-

til ruin, the surplus before ruin and the de�cit at ruin [20, 26]. More recently,MMFF

processes have been used in analyzing the performance of hydro-power generation sys-

tems [30], maintenance in continuously deteriorating systems [104], energy harvesting IoT

systems [109] and SIR epidemic models [105]. An extensive literature review ofMMFF

processes will be provided in the next chapter. In general,MMFF processes still have

tremendous application potential in many areas. In this thesis, we focus on the area of

queueing theory, whereMMFF processes and their generalizations can be used to analyze

complicated queueing models, especially the queueing models with customer abandonment.

Queues with customer abandonment are potentially very important, as many real-life

situations in service systems and industries can be modelled as such queueing models. For

instance, individuals may feel impatient when waiting for service, and perishable products

may expire after a period of time (e.g., P�zer-BioNTech COVID-19 vaccine can be stored

for �ve days at refrigerated 2-8oC conditions [94]). Other examples can be found in the

emergency department in hospitals. For instance, a waiting patient may decide to leave

without being seen or transfer to another health care facility because his/her health con-

dition changes after a period of time [35, 57]. Therefore, the phenomenon of customer

abandonment has been incorporated in the study of queueing systems to improve the ac-

curacy of queueing analysis and to make queueing models more practical. In this thesis,

our �rst application is a queueing model with multiple servers and general abandonment

time.

Double-sided queues are a special type of queueing models in which each demands

service from the other. Double-sided queues with customer abandonment have gained a

lot of attention with the emerging of ride-hailing online platforms and sharing economy

in recent years. In the ride-hailing system, both passengers and drivers can abandon the

system without being paired after waiting for a long time. The time for online pairing

2



is very short and negligible if both sides are available, so the waiting is often due to the

imbalance between the demand and supply of the two sides. For instance, the demand

for ride-hailing during peak hours is often di�cult to meet. Therefore, the performance

evaluation of such systems can help platforms make proper decisions and further provide

better service and achieve higher pro�ts. In this thesis, we useMMFF processes to analyze

a double-sided queueing model with multiple types of customers and abandonment.

In trading systems, orders of impatient customers (i.e., buyers and sellers) are matched

with counterparts in a �rst-come-�rst-matched discipline by the system. A customer with

multiple-unit orders can be partially �lled, and the customer with the unmatched or re-

maining orders can abandon the system with a general (discrete) abandonment time. Those

matching and abandonment features can also be seen in inventory systems. Inspired by

the studies of perishable inventory systems and crossing networks trading systems, we

introduce and analyze a double-sided queueing model with batch arrivals and customer

abandonment.

1.2 Methodology and Basic Ideas

MMFF processes are two-dimensional stochastic processes. The �rst dimension, i.e.,

the 
uid level, is a piece-wise linear stochastic process in which the 
uid changing rate is

modulated by the second dimension, which is an underlying continuous time Markov chain.

The changing rate can be positive, negative or zero. Figure 1.1 (a) plots a sample path

of the 
uid level of a classicalMMFF process. However, classical (single-layer)MMFF

processes are not appropriate tools to do stationary analysis, since the process can never

reach a steady state. In order to evaluate the stationary performance of the queueing

models with customer abandonment, multi-layerMMFF processes have to be used.

Multi-layer Markov modulated 
uid 
ow (multi-layer MMFF ) processes, as a gener-

alization of MMFF processes, make the 
uid changing rate and the underlying Markov

chain depend on the 
uid layers. As such, the 
uid changing rate and the underlying

Markov chain can be di�erent for di�erent layers of the 
uid level, which are divided by

border lines. Under certain conditions, multi-layerMMFF processes have stationary dis-

3



tribution. Figure 1.1 (b) plots a sample path of the 
uid level of a typical multi-layer

MMFF process with two (dashed) border lines atl1 = 0; l2 = 3 respectively and three

layers ((�1 ; 0); (0; 3) and (3; + 1 )).

Figure 1.1: Sample paths ofMMFF processes

Multi-layer MMFF processes were investigated extensively in the past decade, and

have been applied in areas such as queueing theory (e.g., [68, 70, 110]) and risk analysis

(e.g., [21, 22]). A comprehensive analysis considering all possible transitions on borders

and e�ective and e�cient algorithms for the joint stationary distribution are still needed

to the best of our knowledge. Multi-layerMMFF processes are complicated stochastic

processes with complicated solutions for a number of basic quantities. They may not be

a convenient tool to analyze simple stochastic systems, such asM=M=1 queueing system,

but they are powerful for the investigation of complicated stochastic systems, such as the

MAP=PH=K + GI queueing system in Chapter 4 and double-sided queues with abandon-

ment in Chapter 5 and Chapter 6.

For general queueing models with abandonment, the basic idea of our approach consists

of three steps.

� First, we introduce a multi-layer MMFF process associated with the age process

(i.e., the time spent in the system of the customer at the head of the queue) of the

4



queueing model. Basically, we can turn an age process into a correspondingMMFF

process by introducing some �ctitious periods. These border lines in multi-layer

MMFF processes can be modelled as the abandonment time points.

� Second, we use algorithms to �nd the joint stationary distribution of the correspond-

ing MMFF process, and censor out those �ctitious periods to get the joint stationary

distribution of the age process.

� Last, we use the joint stationary distribution of the age process to �nd a number of

queueing quantities.

Regarding the basic idea of double-sided queues with abandonment, we track the ages

of both sides by a singleage processbecause the two sides of the queueing model can

never co-exist in the system at the same time. We introduce a multi-layerMMFF process

associated with the age process and with a border line being 0. Thus, the age above 0 is

for one side and the age below 0 (i.e., 
ipped age) is for the counterpart. Since we can

get the joint stationary distribution of the age process, queueing quantities for individual

types (MMAP model) or order level (BMAP model) can be obtained by considering the

underlying states.

1.3 Scope of the Thesis

Based on the motivation and methodology introduced above, we will �rst review and re�ne

the basic theory on multi-layerMMFF processes. Thus, our �rst goal is to �nd the joint

stationary distribution of multi-layer MMFF processes, and develop an easy to implement

algorithm to calculate the joint stationary distribution and some basic quantities. Then

we apply this approach to analyze three queueing models with customer abandonment as

shown in Figure 1.2. More speci�cally,
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Figure 1.2: Scope of the thesis

1. MAP=PH=K + GI queueing model: This queueing model is a very general queueing

model as the Markovian arrival processes (MAP ) can approximate any stochastic ar-

rival processes and Phase-type (PH) distribution can approximate any non-negative

random variables. As we mentioned in the basic ideas in the previous section, we use

the border lines to model the abandonment time, which means the model can handle

�nite discrete abandonment times, then we can use the discrete distribution to ap-

proximate general distributions with a large number of border lines in the model. In

order to analyze the queueing model with a moderately large number of servers, we

combine the multi-layer MMFF approach and the count-server-for-phase (CSFP)

method in [64] to reduce the number of states and make the algorithm more e�cient.

In addition, we use this approach to �nd a bunch of interesting queueing quantities,

which are di�cult to �nd by other methods. For example, the abandonment proba-

bility of the customer at the head of the queue and the waiting time distribution of

the customer abandoned at the head of the queue.

2. Double-sided queues withMMAP and abandonment: In this double-sided queueing

system, we use marked Markovian arrival processes (MMAP ) to model multiple

types of input. Di�erent types of input have di�erent abandonment time distribu-

tions, which makes the model fairly general compared with existing literature. A

number of interesting quantities, such as the matching rates/probabilities, waiting
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times and queue lengths for both sides can be obtained. These quantities for indi-

vidual types of inputs can also be obtained, which can be useful for the analysis and

design of, for instance, the ride-hailing platform.

3. Double-sided queues withBMAP and abandonment: In this queueing system, we use

batch Markovian arrival processes (BMAP ) to model batch arrivals. We consider

di�erent abandonment time distributions for di�erent batch sizes. In addition, the

abandonment time distribution can be changed for a particular batch as partial

matching may happen. Such a system can be used to analyze the performance

of �nancial, inventory and health care systems. We apply this queueing system

to a vaccine inventory model and obtain a number of queueing quantities and some

insights, e.g., the �ll rates of orders, and the e�ects of abandonment time distributions

on the system performance.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give a brief literature

review on matrix-analytic methods,MMFF processes, queueing models with customer

abandonment and double-sided queues. In Chapter 3, we review and re�ne the theory

on multi-layer MMFF processes and develop a computational algorithm for the joint

stationary distribution. In Chapter 4, we apply multi-layer MMFF processes to the

MAP=PH=K + GI queue and develop an algorithm for computing a variety of queueing

quantities. Chapter 5 and Chapter 6 apply multi-layerMMFF processes to two double-

sided abandonment queues with marked arrivals and batch arrivals respectively. Chapter

7 concludes this thesis. Two important lemmas and the notations tables are collected in

Appendices
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Chapter 2

Literature Review

In this chapter, we review the literature related to our research problems. Section 2.1

brie
y introduces three basic tools of matrix-analytic methods: Markovian arrival processes

(MAP ) in 2.1.1, Phase-type distributions in 2.1.2, and Quasi-Birth-and-Death (QBD) pro-

cesses in 2.1.3; as well as the count-server-for-phase method in 2.1.4. Section 2.2 reviews

the Markov modulated 
uid 
ow ( MMFF ) processes while Section 2.3 reviews existing lit-

erature about queueing models with customer abandonment. Finally, Section 2.4 discusses

the double-sided queues in the literature.

2.1 Matrix-Analytic Methods

Matrix-analytic methods (MAMs ), as a set of powerful tools to analyze stochastic mod-

els, were �rst introduced by Marcel F. Neuts in the 1970s. Since then,MAMs have been

widely applied to analyze a variety of stochastic models in operations research, management

science, risk/insurance and telecommunication. Early important works have been summa-

rized in [78, 90, 91]. In terms of works on matrix-analytic methods and queueing theory,

we refer to [38, 62]. In this section, we review three basic components ofMAMs (i.e.,

Markovian arrival processes, Phase-type distribution and Quasi-Birth-Death processes)

and the count-server-for-phase algorithm, which will be extensively used in our research
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problems. MAMs have nice probabilistic interpretations and numerical tractability. As

will be shown, the analysis ofMMFF processes byMAMs involves several important and

probabilistically interpretable matrices, which enhance our understanding of the stochastic

models.

2.1.1 Markovian Arrival Processes

MAPs were �rst introduced in [89], and then become a set of indispensable tools in stochas-

tic modeling. Markovian arrival process (MAP ) is a generalization of Poisson process and

it keeps many useful properties of the Poisson process (e.g., Markovian property) because

of the underlying Markov chain. Meanwhile,MAPs can approximate any stochastic count-

ing process arbitrarily closely. Formal de�nitions of the continuous timeMAPs are given

in [62]. The basic idea is as follows.

De�ne an underlying continuous time Markov chainf I (t); t � 0g with in�nitesimal

generator D = ( d(i;j )) of order m. DecomposeD into matrices f D0; D1g, where D0 =

(d0;(i;j )) and D1 = ( d1;(i;j )), and all the elements of the two matrices are nonnegative except

the diagonal elements ofD0 (i.e., d0;(i;i )), which are negative. Then (D0; D1) de�nes MAP

f (N (t); I (t)) ; t � 0g with N (0) = 0. In the MAP , there are two ways to generate arrivals.

1. For phasei , de�ne a Poisson process with arrival rated1;(i;i ) > 0, for i = 1; 2; :::; m.

The Poisson process is turned on, ifI (t) = i ; and is turned o�, otherwise. If I (t) = i

and an arrival from the imposed Poisson process occurs,N (t) increases by one, for

i = 1; 2; :::; m.

2. At the end of each stay in statei , with probability d0;(i;j )=(� d(i;i )), I (t) transits

from phasei to j and N (t) remains the same (i.e., without an arrival); and, with

probability d1;(i;j )=(� d(i;i )), I (t) transits from phasei to j and N (t) increases by one

(i.e., with an arrival), for i 6= j , and i; j = 1; :::; m.

There are two important generalizations of the Markovian arrival processes: batch Marko-

vian arrival processes (BMAPs ) [83] and marked Markovian arrival processes (MMAPs )

[65]. BMAPs can be used to model the arrival of a group of customers, which will be used
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in Chapter 6 in the double-sided queues withBMAP and abandonment, whileMMAPs

can be used to model the arrival of di�erent types of customers, which will be used in

Chapter 5 in the double-sided queues withMMAP and abandonment.

A BMAP with matrix representation (D0; D1; :::; DK ) is a two-dimensional continuous-

time Markov processf (N (t); I (t)) : t � 0g with state spacef (n; i ) : n � 0; i 2 f 1; 2:::; mgg,

N (0) = 0 and in�nitesimal generator

G =

0

B
B
B
B
@

D0 D1 ::: DK

D0 D1 ::: DK

D0 D1
. . . . . .

. . . . . . . . .

1

C
C
C
C
A

; (2.1.1)

whereD0 is a square matrix of orderm with nonnegative o�-diagonal elements and negative

diagonal elements andDk , k = 1; 2; :::; K , are nonnegative square matrices of orderm, and

matrix D = D0 + D1 + ::: + DK is an irreducible in�nitesimal generator.

Note that N (t) is the number of arrivals by timet and I (t) is the state of the underlying

Markov chain at time t. The maximum batch size isK , and Dk means the transition rates

with the arrival of batch size k, wherek = 0; 1; :::; K .

MMAP are actually generalizations ofBMAP with di�erent interpretations to the

matrix representations. For BMAP , matrix Dk means the transition rates with ar-

rivals of batch sizek. For MMAP , with the same matrix representation (D0; D1; :::DK ),

the subscript k > 0 of Dk represents typek arrivals. Let Nk(t) be the number of

type k arrivals by time t, for k = 1; 2; :::; K , then the continuous time Markov chain

f (N1(t); N2(t); :::; NK (t); I (t)) ; t � 0g becomes anMMAP .

For more details onMAPs, we refer to [62].

2.1.2 Phase-Type Distributions

PH-distributions, as a distribution class, were initially introduced in [88]. APH-distribution

is the distribution of the time until absorption of an absorbing state of a �nite-state con-

tinuous time Markov chain, which is usually called the underlying Markov chain of the
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PH-distribution. If we keep tracking the state of the underlying Markov chain, we can

know the residual time of absorption, and the residual time has aPH-distribution as well.

This is the partial memoryless or Markovian property ofPH-distribution. In general,

de�ne a continuous time Markov chainf I (t); t � 0g with m + 1 states and in�nitesimal

generator

Q =

 
T T 0

0 0

!

; (2.1.2)

whereT is a subgenerator of orderm and T 0 = � Te.

Assume the Markov chain will be absorbed into statem + 1 with probability one.

Then the absorption time of statem + 1 of the continuous time Markov chain, denoted by

X = min f t : I (t) = m+1g, has a phase-type distribution, given that the initial distribution

of the Markov chain is (� ; 1 � � e). The distribution function of X is given by

Pf X � tg = 1 � � exp(T t)e: (2.1.3)

The set ofPH-distributions is closed under a number of operations (e.g., \min ", \ max",

\+"), which is called closure properties. The closure properties play a key role in the

application of PH-distributions in queueing systems.

For more details onPH-distributions, we refer to [62, 78].

2.1.3 Quasi-Birth-and-Death Processes

Quasi-Birth-and-Death Processes (QBDs), as generalizations of Birth-and-Death Pro-

cesses, are two-dimensional Markov Processes and the transitions are skipfree to the left

and to the right. For discrete time QBD , de�ne the transition probability matrix

P =

0

B
B
B
B
@

A0;0 A0;1

A1;0 A1;1 A0

A2 A1 A0

. . . . . . . . .

1

C
C
C
C
A

; (2.1.4)
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whereA0;0; A0;1; A1;0; A1;1; A0; A1; A2 are nonnegative matrices,A0;0 is of orderm0 by m0,

A0;1 is of orderm0 by m, A1;0 is of orderm by m0, and others are of orderm by m. They

have to satisfy (A0+ A1+ A2)e = e, A1;0e+( A1;1+ A0)e = e and A0;0e+ A0;1e = e. Then we

can de�ne a level independentQBD processf (X k ; Jk); k = 0; 1; 2; :::g as a two-dimensional

process with state spaceff (0; 1); (0; 2); :::; (0; m0)g [ ff 1; 2; :::g � f 1; 2; :::; mgg, whereX k

is the level variable andJk is the phase variable.

To analyze QBD processes, we need to �rst compute two basic matricesR and G.

We can �nd the limiting probabilities of the QBD processes by the matrix-geometric

solution with matrix R. Matrix G provides �rst passage probabilities. Both matrices

have probabilistic interpretation and are very important in matrix-analytic methods([78,

90, 91]). They can also be further applied toGI=M=1 (skipfree to the right process) and

M=G=1 (skipfree to the left process) type Markov chains (refer to [71, 90, 91, 96]).

Although QBD processes are not directly used in our research in this thesis, the al-

gorithmic probability philosophy of QBD and MMFF processes is the same. In paper

[98], the relationship between these two methods was discussed and a new matrix-analytic

method was developed to analyze theMMFF processes. Our research follows this idea. In

Chapter 3, the analysis ofMMFF processes also starts from several basic matrix quantities

(i.e., 	, U and K).

For more details onQBDs and related structured Markov Chains, we refer to [62, 78,

91].

2.1.4 Count-Server-for-Phase Method

In this subsection, we brie
y review the count-server-for-phase (CSFP) method, which is

used to reduce the state space in theMAP=PH=K + GI queue in Chapter 4.

One biggest drawback ofMAMs is the curse of dimensionality. In theMAP=PH=K

queueing system, if the order ofMAP is ma and the order ofPH is ms, we can use a

straightforward method, called track-phase-for-server (TPFS), to generate the state space

of the system, which results in a huge state space ofmamK
s for the resulting Markov chain,

which can be very big if the number of serversK is large.
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The TPFS method tracks the phase of each server and thus can handle nonidentical

multiple servers queueing models. The construction procedure is to �nd the Kronecker

product of the transition matrices of all servers. This procedure is easy to implement and

understand, although it would result in a huge number of states. However, if servers in

the queueing model are independent and identical, it is not necessary to know the phase

of each server. Since all servers are identical with the same Markov chain, we just need

to know the number of Markov chains that are in each phase, which leads to theCSFP

method. For theMAP=PH=K queueing system described above, the resulting state space

by CSFP method is ma(K + ms � 1)!=(K !(ms � 1)!), which is signi�cantly smaller than

mamK
s . We use an example in [63] to illustrate the signi�cant di�erence between those two

methods.

Example 2.1 [63] In aMAP=PH=K queueing system, ifma = 1 and ms = 2, the numbers

of states of the resulting Markov chains by theTPFS and CSFP methods are given in

Table 2.1 for variousK values.

K 2 4 6 8 10 15 20 30
TPFS 4 16 64 256 1024 32768 1048576 1073741824
CSFP 3 5 7 9 11 16 21 31

Table 2.1: Comparison of the numbers of states forTPFS and CSFP

The CSFP method was �rst formally introduced to solve a continuous time Markov

chain by Ramaswami in [97]. The algorithm for the discrete case was later introduced by

He and Alfa [63]. This approach has been applied to queueing models with multiple servers

for decades [9, 17, 39, 67, 76, 99, 111]. The construction procedure of theCSFP method

is complicated and challenging, we refer to [64] for more details and several important

subroutines.

2.2 Markov Modulated Fluid Flow Processes

The history of Markov modulated 
uid 
ow ( MMFF ) processes can date back to the

1950s. These models were initially used for dam control. After the 1980s, the popularity
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of telecommunication systems results in more studies inMMFF (e.g., [11, 12, 103]).

Since the classicalMMFF processes can approach positive in�nity, negative in�nity, or

both (depending on the mean drift rate), they do not have stationary distributions. In

telecommunication systems, the research focuses on the stationary distribution of the bu�er

content, thus Markov modulated 
uid queues (MMFQ ), the truncated version ofMMFF ,

were introduced and the stationary distributions were obtained by di�erential equations

solution techniques in the early works. In [103],MMFF processes were de�ned and some

basic quantities were obtained. By using Wiener-Hopf factorization, basic matrices such as

	, for the state change at some regenerative epochs, andU, for the state change as the 
uid

level reaches a new low level, were obtained. By using time-reversed Markov processes,

the joint stationary distributions of the 
uid level and the state of the underlying Markov

chain were obtained forMMFQ s. We useMMFF for MMFQ with the understanding

that stationary distributions exist under a certain restriction.

Paper [98] discovered a relationship between the basic quantities forMMFF processes

and the basic matrix G for discrete time QBD processes inMAMs , which led to a new

method for computing basic quantity 	, in addition to the classical method of solving a

quadratic Riccati equation. Paper [98] also found a new approach to compute the joint

stationary distribution by the crossing numbers of the 
uid level, which led to another basic

matrix K. Those basic matrices are the most important matrices ofMMFF processes.

Since then, the study ofMMFF processes attracted the attention of many researchers and

a large number of papers appeared with various applications including; i) In matrix-analytic

methods: [5, 6, 7, 43, 44, 45, 46]; ii) In risk analysis: [4, 14, 18, 20, 21, 22, 23, 24, 25];

iii) In queueing theory: [68, 70, 110]; and iv) In the theory ofMMFF processes (e.g.,

two-stageMMFF processes, �rst passage times, two dimensionalMMFF processes, the

Yaglom limit and 
uid network): [28, 29, 31, 32, 33, 87, 92].

Multi-layer MMFF processes are natural extensions of the classicalMMFF processes,

which were �rst de�ned in [45] as a truncated classicalMMFF process from both above

and below. The paper extended existing results on �rst passage probabilities and the joint

stationary distribution. It turns out that multi-layer MMFF processes can be analyzed

in a similar way, although the solution process is more involved and the presentation of

results can be tedious. Since then, more studies on multi-layerMMFF processes and their
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applications in queueing theory have followed.

� The basic theory for the analysis on multi-layerMMFF was established in [45, 46],

especially those that are related to the joint stationary distribution of the processes.

We review and re�ne the theory on the joint stationary distribution, and present the

theory and related algorithm in a systematic form in Chapter 3. The multi-layer

MMFF processes, in their full scale, have been analyzed in [32], but their paper

focused on the transient analysis only.

� Multi-layer MMFF processes have also been applied to multi-thresholdMAP risk

models ([21, 22, 23, 24]). The basic idea is to assume that the insurer pays dividends

at di�erent rates and collects net premiums at di�erent rates when the surplus level

resides in di�erent surplus layers. The joint discounted density of the surplus prior

to ruin and the de�cit at ruin is obtained in their research.

� The theory on multi-layer MMFF processes has also been applied to queueing mod-

els in the past decade ([68, 70, 110]). Paper [110] investigated a single server queue

with multiple types of customers and customer abandonment, and obtained quan-

tities related to customer abandonment and waiting times. Paper [68] analyzed a

single server queue with multiple types of customers with service priority.

Our work on the queueing model in Chapter 4 is close to that in [110]. We consider

a queue with many servers and customer abandonment, and extend the analysis to cover

more queueing quantities (e.g., di�erent types of abandonment probabilities and waiting

times, and the queue length).

2.3 Queueing Models with Customer Abandonment

Queueing models with customer abandonment play an essential role in the design of many

stochastic systems such as call centres [55, 56]. Customer abandonment means that a

customer, having joined the queue, decided to leave without service after a maximal waiting

time (i.e., abandonment time), which may be a constant value or follow a distribution. The
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impact of customers' abandonment time distribution was empirically studied in [84]. Next,

we summarize the literature according to the abandonment time assumptions.

� One case is the abandonment time being a �xed constant. Early papers usually

assume the arrival processes are Poisson and service time follows an exponential

distribution. We refer to [36, 61] for the early work with analytic solutions. In terms

of approximation techniques, we refer to [117, 118] for examples. Approximation

techniques can deal with non-exponential arrival rates and service rates.

In terms of matrix-analytic methods, we refer the readers to [41, 67, 75]. Speci�cally,

[41] introduced a method to analyze theMAP=M=K queue with constant abandon-

ment time; [75] used the same method to analyzetheM=PH=1 queue with constant

abandonment time; and [67] investigateM=PH=K queue with constant abandonment

time. Unfortunately, the method is failed to be applied to theMAP=PH=K queue

with customer abandonment, due to the lack of commutability of some matrices.

� In other papers, the abandonment time is assumed to be distributed in accordance

with a speci�c distribution, most of the time, exponential distribution. We refer

to [10, 101, 102] for the early work. Paper [114] compared the results of constant

abandonment time and an adjusted exponential abandonment time. Paper [112] used

the matrix geometric method to derive the steady-state probabilities of the queueing

system with exponential abandonment time.

� There are also general abandonment time distributed assumptions in the literature.

Few analytic solutions can be found in the literature. Paper [115] developed an

algorithm to compute approximations for the performance measures. Then, such

queueing systems have been studied by approximation techniques extensively in the

last decade with the increasing power of computers. (e.g., [47, 48, 49, 72, 73]).

MMFF processes have been proven to be an e�ective tool in analyzing queueing models

[68, 70, 110]. The basic idea of the approach is to introduce the workload/age process of

the queueing systems and �nd the corresponding Markov modulated 
uid 
ow process

by transforming jumps to skip-free periods. We �rst �nd the stationary distribution of
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the 
uid 
ow process, then obtain the stationary distribution of the workload/age by

censoring, and last investigate some other queueing quantities. Furthermore, queueing

models with general customer abandonment time distribution have also been studied in

[70, 110] by multi-layerMMFF processes. The basic idea is to use the borders to represent

the abandonment time points. However, their research focuses on single server queues, and

only obtain some queueing quantities (e.g., waiting time distributions and abandonment

probabilities).

In Chapter 4, we investigate multi-server queueing systems with general abandonment

time distribution (i.e., the MAP=PH=K + GI queue) by the multi-layerMMFF processes.

We also apply theCSFP method to reduce the state space so that the algorithm can handle

systems with up to one hundred (identical) servers.

2.4 Double-Sided Queues

The double-sided queue, also being called matching queue or synchronization queue, is

a queueing model that entities in each queue demands service from those in the other

queue. The model was �rst proposed in [74] as a passenger-taxi service system where

passengers come to a taxi-station to take taxis. When a passenger arrives, if there is an

available taxi, the passenger takes it and they both leave the taxi-station immediately;

otherwise, the passenger joins a single queue of passengers and waits for a taxi. When a

taxi arrives, if there is a waiting passenger, the taxi takes the passenger and they both

leave the taxi-station immediately; otherwise, the taxi joins a single queue of taxis and

waits for a passenger. Further, some literature studied double-sided queues with customer

abandonment in which passengers and taxis will leave if their patience runs out.

The double-sided queueing model is a challenging and interesting problem gaining in-

creasing attention from both the industry and the research community in many �elds,

including

� Taxi-station system: The double-sided queueing model was �rst proposed by [74]

as a taxi-station system where passengers and taxis are matched with each other.
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� Organ transplant system: Patients and donated organs are waiting to match

with each other while the health state of the patients and the quality of the organs

deteriorate, and may abandon the system without matching. Papers [8, 37, 121]

analyzed this kind of organ transplant waiting systems in the United States.

� Perishable inventory system: Inventory model with abandonment can be found

in perishable inventory systems. Paper [93] studied a model with �nite waiting space

and impatient demands. Paper [27] studied a blood bank model with perishable

blood and impatient demand.

� Financial market: Double-sided queueing model has been most recently studied

by [3] as a crossing networks trading system, which has batch order arrivals for both

sides.

Paper [51] analyzed a double-sided queue with priority and impatience. Papers [81, 82]

analyzed such double-sided queues by using di�usion models. Similar models in man-

ufacturing systems are called kitting systems, which have been investigated extensively

[50, 95, 106]. Again, their models usually assume that the arrivals of patients or customers

form a Poisson process. In [1, 2], they considered matching models with multiple types of

customers with a general matching rule such that whether or not a customer can match an

opposite customer depends on customers' types. However, they assumed Poisson arrival

process and did not consider customer abandonment.

Matrix-analytic methods (MAMs ) have been applied to analyze double-sided queues.

For example, [107] introduced a �nite space double-sided queueing model with a phase-

type (PH) distribution for the interarrival times for one side. Paper [108] further analyzed

a �nite space double-sided queueing model withMAP arrival processes, using the quasi-

birth-and-death (QBD ) method. On the other hand, neither [107] nor [108] considered

customer abandonment in their models. Our models are close to the model in [108] but

with in�nite waiting space and �nite discrete abandonment time distributions for both

sides.

Instead of usingQBD , we useMMFF processes to analyze our double-sided queueing

models. In queueing applications,MMFF processes are usually constructed from the age
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process of the customer at the head of the queue or the virtual work-load in the queueing

system. Analysis of the constructedMMFF processes leads to computational methods

for queueing quantities. Similar to the studies in [52, 110] and Chapter 4, the analysis

approach of the double-sided queueing models is also based on the age process. We use the

method developed in Chapter 3 to analyze the corresponding multi-layerMMFF process

constructed from the age process.
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Chapter 3

Multi-Layer MMFF Processes

In this chapter, we review and re�ne the basic theory on multi-layerMMFF processes

and develop an algorithm to compute the joint density/distribution function and basic

performance quantities (e.g., mean, variance). In Section 3.1, we �rst introduce the classical

(i.e., single-layer)MMFF processes and some basic quantities; then, we de�ne the multi-

layer MMFF processes in Section 3.2; the joint stationary distribution is obtained in

Section 3.3; and an algorithm is summarized in Section 3.4 with several numerical examples.

Section 3.5 concludes this chapter.

3.1 Classical MMFF Processes and Basic Quantities

The classicalMMFF processes (i.e., single-layerMMFF processes) are two dimensional

stochastic processesf (X (t); � (t)) ; t � 0g in which the changing rate of the piece-wise

linear 
uid level ( f X (t); t � 0g) is modulated by a �nite state continuous-time Markov

chain (f � (t); t � 0g). Speci�cally, we have

� f � (t); t � 0g is a continuous-time irreducible Markov chain on �nite state spaceS

with in�nitesimal generator Q.

� The 
uid level f X (t); t � 0g is controlled by � (�) such that the value ofX (t) changes

linearly at rate c� (t ) . The changing rateci of the 
uid level can be positive, negative,
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or zero. We put the rates into vectorsc = f ci ; i 2 Sg. For convenience, the state

spaceS has to be partitioned into three subsets according to the sign ofci as follows:

S+ = f i 2 S : ci > 0g;

S� = f i 2 S : ci < 0g;

S0 = f i 2 S : ci = 0g:

(3.1.1)

We further divide c, according the signs of its elements, and the in�nitesimal gener-

ator Q of the underlying Markov chain as

c = ( c+ ; c� ; 0); Q =
S+

S�

S0

0

B
@

Q++ Q+ � Q+0

Q� + Q�� Q� 0

Q0+ Q0� Q00

1

C
A : (3.1.2)

Given the generatorQ and 
uid changing rates c, the mean drift of the 
uid 
ow

process in steady state is

� = � c (3.1.3)

where � is the stationary distribution of Q. Note that we also put 
uid changing

rates in diagonal matrices for computational convenience as

C+ = diag(c+ ); C� = � diag(c� ): (3.1.4)

With the above de�nition, X (t) is controlled by � (t) explicitly as

X (t) = X (0) +
Z t

0
c� (s)ds; or

dX (t)
dt

= c� (t ) ; for t � 0: (3.1.5)

Based on the above equations, the 
uid levelf X (t); t � 0g can approach positive

in�nity, negative in�nity, or both (depending on the mean drift rate � ), so the classical

MMFF processes do not have limiting probabilities. Intuitively, whent tends to in�nity,

the process will tend to +1 if � > 0; the process will tend to�1 if � < 0; and if � = 0,

the process is null-recurrent andjX (t)j ! 1 . It has been shown mathematical rigorously

that the three limits hold with probability one ([13]).
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Although there are no limiting probabilities for classicalMMFF processes, some basic

quantities related to the classicalMMFF processes are essential for the steady state

analysis of the multi-layer MMFF processes in the following sections. Next, we discuss

three basic quantities inMMFF processes.

If � (t) 2 S0, the 
uid 
ow level X (t) remains the same. This fact causes some technical

inconvenience when computing the basic quantities. The issue can be resolved by censoring

the time periods that � (t) is in S0. The censored underlying Markov chain is de�ned by

T =

 
T++ T+ �

T� + T��

!

=

 
Q++ Q+ �

Q� + Q��

!

+

 
Q+0

Q� 0

!

(� Q00)� 1(Q0+ ; Q0� ): (3.1.6)

In the rest of this section, we work with both in�nitesimal generatorsT and Q.

Matrices 	 and b	 are the most fundamental quantities in the analysis of MMFF

processes. All other quantities and distribution functions can be built upon 	 andb	.

In order to de�ne 	 and b	, we �rst introduce some embedded regenerative processes in

f (X (t); � (t)) ; t � 0g. De�ne, � 0 = inf f t > 0 : X (t) > 0g, and, for n > 0,

� n = inf f t > � n� 1 : X (t) = 0 g;

� n = inf f t > � n : X (t) > 0g;
(3.1.7)

which are called regenerative epochs (see Figure 3.1). For example,f (X (� n ); � (� n )) ; n =

1; 2; :::g is a regenerative process with state spacef 0g � S � . The 
uid level is above 0 in

intervals (� n ; � n+1 ) and below 0 in intervals (� n ; � n ). Then we have the de�nitions of every

elements in the matrices 	 and b	:

	 i;j = Pf � n+1 � � n < 1 ; � (� n+1 ) = j j � (� n ) = ig; for i 2 S+ ; j 2 S� ;
b	 i;j = Pf � n � � n < 1 ; � (� n ) = j j � (� n ) = ig; for i 2 S� ; j 2 S+ :

(3.1.8)
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Figure 3.1: � n , � n , tmin (x) and minf X (s) : 0 � s � tg

Observe that 	 ( b	) is the transition of the state of the underlying Markov chain Q

from an epoch that the 
uid 
ow level X (t) starts to increase (decrease) from zero to the

next �rst epoch that X (t) returns to zero.

Lemma 3.1. ([103]) Matrices 	 and b	 are the minimal nonnegative solution to the fol-

lowing quadratic Riccati equations, respectively:

C � 1
+ T+ � + C � 1

+ T++ 	 + 	 C � 1
� T�� + 	 C � 1

� T� + 	 = 0;

C � 1
� T� + + C � 1

� T��
b	 + b	 C � 1

+ T++ + b	 C � 1
+ T+ �

b	 = 0 :
(3.1.9)

The computation of 	 and b	 is critical for obtaining all other quantities. Numerous

papers addressed the issue. We use the Newton's method developed in [58] to obtain the

minimal nonnegative solution to the quadratic Riccati equations. The algorithm is brie
y

discussed in Appendix A. For more details and algorithms for 	 andb	, please refer to

[58, 59, 77, 86, 98].

Second, we consider matricesU and bU, which are de�ned as

U = C � 1
� T�� + C � 1

� T� + 	;
bU = C � 1

+ T++ + C � 1
+ T+ �

b	 :
(3.1.10)

De�ne, for x � 0,
tmin (x) = min f t : X (t) = � xg;

imin (x) = � (tmin (x)) :
(3.1.11)
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We interpret imin (x) as the phase of the underlying Markov chain at the �rst time epoch

that X (t) reaches� x.

Lemma 3.2. ([12]) If � � 0, f imin (x); x � 0g is a continuous time Markov chain with

in�nitesimal generator U. If � > 0, then f imin (x); x � 0g is an absorption Markov chain

with state spaceS� [ f � g, where � is de�ned as an absorption state, and in�nitesimal

generator
S�

�

 
U �U e

0 0

!

; (3.1.12)

wheree is a column vector of ones.

If we de�ne, for x � 0, (See the dash line in Figure 3.1)

xmin (t) = min f X (s) : 0 � s � tg; (3.1.13)

we can �nd the minimum of the 
uid 
ow process by matrix U. If � � 0, the 
uid can go

to �1 , thus the minimum must be �1 . If � > 0, the minimum must be �nite. Assume

that X (0) = 0 and � (0) has a distribution (� + ; � � ), then � xmin (1 ) has a phase-type

distribution with representation

 

(� + ; � � )

 
	

I

!

; U

!

.

Similarly, the same idea can be applied tobU, which can be interpreted as a continuous

time Markov chain related to the maximum of the 
uid 
ow process.

Third, we consider matricesK and bK, which are de�ned as

K = C � 1
+ T++ + 	 C � 1

� T� + ;
bK = C � 1

� T�� + b	 C � 1
+ T+ � :

(3.1.14)

Matrix K is associated with numbers of visits to certain 
uid level and state during some

�rst passage periods. Without loss of generality, we assume thatX (0) = 0 and � (0) = i .

� For i 2 S+ and x > 0, we de�ne (N+ (x)) i;j as the mean number of visits of the

process (X (t); � (t)) to state (x; j ) before X (t) returns to zero. (N+ (x)) i;j can be
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further divided into f (N++ (x)) i;j ; (N+ � (x)) i;j g with j 2 S+ (called up-crossings) or

j 2 S� (called down-crossings), respectively.

� For i 2 S� and x < 0, we de�ne (N � (x)) i;j as the mean number of visits of the

process (X (t); � (t)) to state (x; j ) before X (t) returns to zero. (N � (x)) i;j can be

further divided into f (N � + (x)) i;j ; (N �� (x)) i;j g with j 2 S+ (called up-crossings) or

j 2 S� (called down-crossings), respectively.

Lemma 3.3. ([98]) For x > 0, we have i) N++ (x) = expfK xg; and ii) N+ � (x) =

N++ (x)	 = exp fK xg	 . For x < 0, we have iii) N �� (x) = expf bK(� x)g; and iv)

N � + (x) = N �� (x) b	 = exp f bK(� x)gb	 .

The three sets of basic quantities are summarized in Table 3.1. References are given in

Table 3.1 for further reading on the basic quantities. Using the basic quantities, the joint

stationary distribution of the multi-layer MMFF process can be found in a closed form.

Solutions Intuitive Interpretation Paper

	 ( b	) Equation (3.1.9)

	 ( b	) contains the transition probabilities of the
state of underlying Markov chainQ from an epoch
that X (t) starts to increase (decrease) from 0 to
the next �rst epoch that X (t) returns to 0.

[77]
[86]
[98]
[103]

U ( bU) Equation (3.1.10)
U ( bU) contains the transition rates of the state of
the underlying Markov chainQ when the 
uid level
reaches a new lower (higher) point.

[12]

K ( bK) Equation (3.1.14) K ( bK) contains the numbers of visits to certain 
uid
level and state during some �rst passage periods.

[98]

Table 3.1: Basic quantities forMMFF processes

There are some relationships between the mean drift� and the basic matrices. These

relationships are important for derivation and numerical computation.

Lemma 3.4. ([12, 98, 103]) The relationships between� and basic quantities are as follows.

� If � > 0, then we have i)	 e < e and b	 e = e; ii) Ue < 0 and bUe = 0; and iii) K is

singular and bK is non-singular.
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� If � = 0, then we have i)	 e = e and b	 e = e; ii) Ue = 0 and bUe = 0; and iii) K

and bK are singular.

� If � < 0, then we have i)	 e = e and b	 e < e; ii) Ue = 0 and bUe < 0; and iii) K is

non-singular and bK is singular.

For extensions to multi-layerMMFF processes, we need quantities when the processes

constrained to an interval, say (a; b). Similar to matrices (N+ (x)) i;j and (N � (x)) i;j , we

de�ne, for a < x < b ,

� (N (a;b)
+ (x)) i;j be the expected number of visits to state (x; j ) before the process reaches

to level a or levelb, given that the process started in (a; i) for i 2 S+ (See Figure 3.2).

N (a;b)
+ (x) can be divided into two sub-blocksN (a;b)

++ (x) for up-crossings andN (a;b)
+ � (x)

for down-crossings according toj 2 S+ or j 2 S� , respectively.

� ( bN (a;b)
� (x)) i;j be the expected number of visits to state (x; j ) before the process reaches

to level bor levela, given that the process started in (b; i) for i 2 S� . bN (a;b)
� (x) can be

divided into two sub-blocks bN (a;b)
� + (x) for up-crossings andbN (a;b)

�� (x) for down-crossings

according to j 2 S+ or j 2 S� , respectively.

Figure 3.2: Up-crossings of levelx, starting from level a, before visiting levela or level b
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Lemma 3.5. ([45]) For a < x < b , we have

 
I eK (b� a) 	

ebK (b� a) b	 I

!  
N (a;b)

+ (x)
bN (a;b)

� (x)

!

=

 
eK (x� a) 0

0 ebK (b� x)

!  
I 	
b	 I

!

: (3.1.15)

The �rst matrix on the left hand side in the above equation is invertible if� 6= 0.

For the �rst passage probabilities from one 
uid level to another (e.g., froma to b or

vice versa), we de�ne, fora < b,

� 	 (b� a)
+ � is de�ned similar to 	 except that the process does not reach 
uid levelb

and the process starts in 
uid levela; b	 (b� a)
� + is de�ned similar to b	 except that the

process does not reach 
uid levela and the process starts in 
uid levelb.

� � (b� a)
++ is de�ned as the probabilities for the process to go from levela to level bbefore

returning to level a. b� (b� a)
�� is de�ned as the probabilities for the process to go from

level b to level a before returning to levelb.

Lemma 3.6. ([45]) The matrices of �rst passage probabilities satisfy the following equa-

tions:
 

� (b� a)
++ 	 (b� a)

+ �

b	 (b� a)
� +

b� (b� a)
��

!  
I 	 eU(b� a)

b	 ebU(b� a) I

!

=

 
ebU(b� a) 	

b	 eU(b� a)

!

: (3.1.16)

The second matrix on the left-hand-side of the above equation is invertible if� 6= 0.

Lemmas 3.5 and 3.6 are developed forMMFF processes with only one layer in their

paper, but they are the foundation of the analysis of multi-layerMMFF processes and

will be used repeatedly in the following sections.

3.2 De�nition of Multi-Layer MMFF Processes

The multi-layer MMFF processes were �rst introduced in [32]. As a generalization of clas-

sicalMMFF processes, multi-layerMMFF processes are 
uid 
ow processes in which the
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changing rate of the 
uid level is modulated by layer-dependent continuous-time Markov

chains. A multi-layer Markov modulated 
uid 
ow ( MMFF ) processf (X (t); � (t)) ; t � 0g

consists of following four parts.

1. Borders and Layers :

� There areN + 1 constants such thatN � 1 and l0 = �1 < l 1 < ::: < l N = 1 ,

to be called Borders.

� Borders formN intervals (l0; l1), ( l1; l2), ..., and (lN � 1; lN ), to be called Layer 1,

2, ..., and N , respectively.

2. Generator and 
uid changing rates within Layer n, i.e, ln� 1 < X (t) < l n , for

n = 1; :::; N : (In this part, a classicalMMFF process is de�ned for each layer.)

� f � (t); t � 0g is a continuous time irreducible Markov chain on �nite state space

S(n) with in�nitesimal generator Q(n) .

� The 
uid process f X (t); t � 0g is controlled by � (:) such that the value ofX (t)

changes linearly at ratec(n)
� (t ) at time t. The rate c(n)

i of 
uid level change can be

positive, negative, or zero. We put the rates into vectorsc(n) = f c(n)
i ; i 2 S (n)g.

For convenience, the state spaceS(n) has to be partitioned into three subsets

according to the sign ofc(n)
i as follows:

S(n)
+ = f i 2 S (n) : c(n)

i > 0g;

S(n)
� = f i 2 S (n) : c(n)

i < 0g;

S(n)
0 = f i 2 S (n) : c(n)

i = 0g:

(3.2.1)

We further divide c(n) , according the signs of its elements, and the in�nitesimal

generatorQ(n) of the underlying Markov chain as

c(n) = ( c(n)
+ ; c(n)

� ; 0); Q(n) =
S(n)

+

S(n)
�

S(n)
0

0

B
@

Q(n)
++ Q(n)

+ � Q(n)
+0

Q(n)
� + Q(n)

�� Q(n)
� 0

Q(n)
0+ Q(n)

0� Q(n)
00

1

C
A : (3.2.2)
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Given the generatorQ(n) and 
uid rates c(n) in Layer n, the mean drift of the


uid in Layer n is

� (n) = � (n)c(n) ; (3.2.3)

where � (n) is the stationary distribution of Q(n) . Note that we also put 
uid

changing rate in diagonal matrices for computational convenience as

C(n)
+ = diag(c(n)

+ ); C(n)
� = diag(c(n)

� ): (3.2.4)

3. Generator on Border n, i.e, X (t) = ln , for n = 1; :::; N � 1:

� X (t) remains at ln during the period that � (t) is in S(n)
b with sub-generatorQ(n)

bb ,

until � (t) switches fromS(n)
b to either S(n)

� with transition rate matrix Q(n)
b+ or

S(n+1)
+ with transition rate matrix Q(n)

b� .

� Note that Q(n)
bb e + Q(n)

b+ e + Q(n)
b� e = 0, where e is the column vector of ones with

an appropriate size.

4. Transitions when reaching Border n, for n = 1; :::; N � 1:

� If X (t) reachesln from below, the processf � (t); t � 0g can switch fromS(n)
+ to

S(n)
� (i.e., re
ecting back to Layer n) with probability P (n)

+ b� ; S(n+1)
+ (i.e., passing

Border n to Layer (n + 1)) with probability P (n)
+ b+ ; S(n)

b (i.e., entering Bordern)

with probability P (n)
+ bb.

� If X (t) reachesln from above, the processf � (t); t � 0g can switch fromS(n+1)
�

to S(n+1)
+ (i.e., re
ecting back to Layer (n + 1)) with probability P (n)

� b+ ; S(n)
� (i.e.,

passing Bordern to Layer n) with probability P (n)
� b� ; S(n)

b (i.e., entering Border

n) with probability P (n)
� bb.

� Note that P (n)
+ b+ e + P (n)

+ b� e + P (n)
+ bbe = e; and P (n)

� b+ e + P (n)
� b� e + P (n)

� bbe = e.

� We shall call a border i) asticky borderif S(n)
b is nonempty; ii) a crossable border

if one ofP (n)
� b� and P (n)

+ b+ is nonzero; and iii) are
ective border if one ofP (n)
� b+ and

P (n)
+ b� is nonzero.
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With the above de�nition, if we de�ne c(n)
i = 0 for all n and i 2 S (n)

b , then X (t) is

controlled by � (t) explicitly as

X (t) = X (0) +
Z t

0
c(L (X (s)))

� (s) ds; or
dX (t)

dt
= c(L (X (t )))

� (t ) ; (3.2.5)

whereL(x) = n if ln� 1 < x < l n , for n = 1; :::; N .

The classicalMMFF processes are obviously special cases of multi-layerMMFF pro-

cesses when there is only one layer. Another special case is the classical Markov modulated


uid queue (MMFQ ) with N = 2 and the 
uid level truncated at Border l1 = 0.

In general, the multi-layerMMFF process does not have the independent incremental

property, and its evolutions in individual layers interact with each other through the bor-

ders. On the other hand, it evolves conditionally independently within individual layers.

This observation implies that the process can be analyzed separately in individual layers

and then all layers are combined together. The study of the process within individual layers

is equivalent to that of the classicalMMFF process, thus the basic quantities introduced

in Section 3.1 are essential for the analysis of multi-layerMMFF processes. Since the gen-

erator and 
uid changing rates are di�erent for individual layers, we add the superscript

\( n)" to the basic quantities for Layer n as 	 (n) , b	 (n) , U(n) , bU(n) , K (n) and bK (n) .

Example 3.1. Parameters of a multi-layerMMFF process withN = 3 are presented

in Table 3.2. In this example, all borders (l1 = � 2 and l2 = 3) are sticky, re
ective

and crossable, which means the 
uid can enter the borders and cumulate mass at that

level. The generator and 
uid changing rates for individual layers are quite di�erent. The

basic quantities for this example can be found in Table 3.3. The numerical result satis�es

Lemma 3.4. The sample paths can be found in Figure 3.3.
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Borders / Layers Parameters
Border (L3 = 1 ) Not de�ned

Layer 3 c(3) = (1 :5; � 3; � 10; 0); Q(3) =

0

B
B
@

� 3 1:5 1 0:5
2 � 3 0 1
2 1 � 4 1

0:5 0:5 0 � 1

1

C
C
A :

Border (L2 = 3)

Q(2)
bb =

�
� 3 1
1 � 2

�
; Q(2)

b+ =
�

1:5
0:3

�
; Q(2)

b� =
�

0:5
0:7

�
;

P (2)
+ b+ =

�
0:1

�
; P (2)

+ b� =
�

0:4
�

; P (2)
+ bb =

�
0:3 0:2

�
;

P (2)
� b+ =

�
0:3
0:3

�
; P (2)

� b� =
�

0:1
0:1

�
; P (2)

� bb =
�

0:2 0:4
0:4 0:2

�
:

Layer 2 c(2) = (5 ; � 2:5; 0; 0); Q(2) =

0

B
B
@

� 2 0:5 0:5 1
1 � 2 1 0
0 1 � 1 0
1 0 0 � 1

1

C
C
A :

Border (L1 = � 2)

Q(1)
bb =

�
� 1

�
; Q(1)

b+ =
�

0:2
�

; Q(1)
b� =

�
0:8

�
;

P (1)
+ b+ =

�
0:3
0:5

�
; P (1)

+ b� =
�

0:3
0:1

�
; P (1)

+ bb =
�

0:4
0:4

�
;

P (1)
� b+ =

�
0:2

�
; P (1)

� b� =
�

0:3
�

; P (1)
� bb =

�
0:5

�
:

Layer 1 c(1) = (20; 3; � 2; 0); Q(1) =

0

B
B
@

� 1 0 1 0
0 � 1 0 1
1 2 � 5 2
1 0 1 � 2

1

C
C
A :

Border (L0 = �1 ) Not de�ned

Table 3.2: Parameters of Example 3.1
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Quantities Layer n = 1 Layer n = 2 Layer n = 3
� (n) 10.6667 1.2500 -1.6905

	 (n)

�
0:0257
0:0766

�
�

0:5
� �

0:5929 0:4071
�

b	 (n)
�

0:5518 0:4482
� �

1
�

�
0:4024
0:1895

�

U(n)
�

� 1:8977
� �

� 0:2000
�

�
� 0:3393 0:3393
0:2982 � 0:2982

�

bU(n)

�
� 0:0224 0:0224
0:2586 � 0:2586

�
�

0
� �

� 1:2375
�

K (n)

�
� 0:0243 0:0257
0:2433 � 0:2567

�
�

0
� �

� 1:2375
�

bK (n)
�

� 1:8977
� �

� 0:2000
�

�
� 0:3638 0:2683
0:3711 � 0:2736

�

	 (ln � ln � 1 )
+ � NA

�
0:3873

�
NA

b	 (ln � ln � 1 )
� + NA

�
0:7746

�
NA

� (ln � ln � 1 )
++ NA

�
0:6127

�
NA

b� (ln � ln � 1 )
�� NA

�
0:2254

�
NA

Table 3.3: Basic quantities for Example 3.1

3.3 Joint Stationary Distribution

In this section, we present the solution for the joint stationary distribution of the 
uid level

and the state of the underlying Markov chain. De�ne, for�1 < x < 1 ,

p(n)
j = lim

t !1
Pf X (t) = ln ; � (t) = j j X (0); � (0)g; for j 2 S (n)

b ; n = 1; 2; :::; N � 1;

g(n)
j (x) = lim

t !1
Pf X (t) < x; � (t) = j j X (0); � (0)g; for j 2 S (n) ; n = 1; 2; :::; N ;

� (n)
j (x) =

dg(n)
j (x)

dx
; for j 2 S (n) ; n = 1; 2; :::; N:

(3.3.1)
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Let,

p (n) = ( p(n)
j : j 2 S (n)

b ); for n = 1; 2; :::; N � 1;

� (n)(x) = ( � (n)
j (x) : j 2 S (n)); for n = 1; 2; :::; N and � 1 < x < 1 :

(3.3.2)

Our analysis consists of three steps. Step 1: We use semi-Markov chain theory to get the re-

lationship between the density function� (n)(x), the border probabilities f p (1) ; :::; p (N � 1)g,

and an integral of a conditional density function in Subsection 3.3.1; Step 2: Construct

a censored CTMC to �nd the border probabilities f p (1) ; :::; p (N � 1)g and use the border

probabilities to get the coe�cients of the density function in Subsection 3.3.2; Step 3 (Sub-

section 3.3.3): Put things together to �nd the closed form expressions for the stationary

joint density function.

3.3.1 Density Function and Level-Crossing Numbers

Let f j (x; t ) be the density at the state (x; j ) at time t, given the initial state (X (0); � (0)),

and de�ne two taboo conditional density functions as follows

� 
 (n)
k;j (ln� 1; x; t ) be the taboo conditional density of (x; j ) at time t, avoiding both

Border ln� 1 and Border ln in the time interval (0; t), given that the initial state is

(ln� 1; k), for ln� 1 < x < l n ;

� 
 (n)
k;j (ln ; x; t ) be the taboo conditional density of (x; j ) at time t, avoiding both Border

ln� 1 and Border ln in the time interval (0; t), given that the initial state is ( ln ; k), for

ln� 1 < x < l n .

We note that f j (x; t )h � Pf x < X (t) < x + h; � (t) = j g for initial condition ( X (0); � (0)),

and 
 (n)
k;j (y; x; t )h is approximately the taboo conditional probability that the 
uid level is

in (x; x + h) at time t.

For ln� 1 < x < l n , we condition on the state at which the process is either in Border

ln� 1 or ln for the last time before reaching state (x; j ) at time t. After that time point,

denoted ast � � , the process will be between the two borders until it reaches (x; j ) at t (see
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Figure 3.3). At the point t � � , the 
uid level either touches one of the borders and enters

into the interval ( ln� 1; ln ) or goes from one of the two borders into the interval (ln� 1; ln ), a

total of six cases. The corresponding probabilities for the occurrence for the six cases are

given approximately as follows.

Figure 3.3: The 
uid process in (0; t) with ( X (t); � (t)) = ( x; j ) and the time epocht � �

1. Approaching Border ln� 1 from above in statei 2 S (n)
� , the probability is given by

PX (0) ;� (0) f ln � 1<X (t � � )<l n � 1+ ci d�;� (t � � )= i g

c( n )
i d�

c(n)
i d� , which can be written in density function

as: f i (ln� 1+ ; t � � )c(n)
i d� . Then the process can be re
ected at Borderln� 1 at epoch

t � � with (matrix) probability P (n� 1)
� b+ . (Remark: In state i , when the time elapses

d� units, the 
uid level changes byci d� . That is why we need to useci d� , instead

of only d� in the expression.) (See Figure 3.3(a).)

2. Approaching Borderln� 1 from below in state i 2 S (n� 1)
+ , the probability is given by

PX (0) ;� (0) f ln � 1 � ci d�<X (t � � )<l n � 1 ;� (t � � )= i g

c( n � 1)
i d�

c(n� 1)
i d� , which can be written in density func-
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tion as f i (ln� 1� ; t � � )c(n� 1)
i d� . Then the process can upcross Borderln� 1 at epoch

t � � with (matrix) probability P (n� 1)
+ b+ . (See Figure 3.3(b).)

3. Leaving Borderln� 1 from state i 2 S (n� 1)
b , the probability is given by p(n� 1)

i . Then

the process can enter Layern at epocht � � with (matrix) probability Q(n� 1)
b+ d� . (See

Figure 3.3(c).)

4. Approaching Border ln from above in statei 2 S (n+1)
� , the probability is given by

PX (0) ;� (0) f ln <X (t � � )<l n + ci d�;� (t � � )= i g

c( n +1)
i d�

c(n+1)
i d� , which can be written in density function

as f i (ln+ ; t � � )c(n+1)
i d� . Then the process can downcross Borderln at epocht � �

with (matrix) probability P (n)
� b� . (See Figure 3.3(d).)

5. Approaching Border ln from below in state i 2 S (n)
+ , the probability is given by

PX (0) ;� (0) f ln � ci d�<X (t � � )<l n ;� (t � � )= i g

c( n )
i d�

c(n)
i d� , which can be written in density function as

f i (ln � ; t � � )c(n)
i d� . Then the process can be re
ected at Borderln at epoch t � �

with (matrix) probability P (n)
+ b� . (See Figure 3.3(e).)

6. Leaving Border ln from state i 2 S (n)
b , the probability is given by p(n)

i . Then the

process can enter Layern at epoch t � � with (matrix) probability Q(n)
b� d� . (See

Figure 3.3(f).)

Using the arguments given in [46], given (X (0); � (0)), and conditioning on the state
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change (i.e.,i ! k) at epoch t � � , we have, forln� 1 < x < l n ,

f j (x; t )h

=
X

i 2S ( n )
�

X

k2S ( n )
+

Z t

0
f i (ln� 1+ ; t � � )c(n)

i (P (n� 1)
� b+ ) i;k 
 (n)

k;j (ln� 1; x; � )hd�

+
X

i 2S ( n � 1)
+

X

k2S ( n )
+

Z t

0
f i (ln� 1� ; t � � )c(n� 1)

i (P (n� 1)
+ b+ ) i;k 
 (n)

k;j (ln� 1; x; � )hd�

+
X

i 2S ( n � 1)
b

X

k2S ( n )
+

Z t

0
p(n� 1)

i (Q(n� 1)
b+ ) i;k 
 (n)

k;j (ln� 1; x; � )hd�

+
X

i 2S ( n +1)
�

X

k2S ( n )
�

Z t

0
f i (ln+ ; t � � )c(n+1)

i (P (n)
� b� ) i;k 
 (n)

k;j (ln ; x; � )hd�

+
X

i 2S ( n )
+

X

k2S ( n )
�

Z t

0
f i (ln � ; t � � )c(n)

i (P (n)
+ b� ) i;k 
 (n)

k;j (ln ; x; � )hd�

+
X

i 2S ( n )
b

X

k2S ( n )
�

Z t

0
p(n)

i (Q(n)
b� ) i;k 
 (n)

k;j (ln ; x; � )hd�

+ gj (x; t )h + o(h);

(3.3.3)

wheregj (x; t ) is the conditional density such that the 
uid level is always in Layern in (0; t).

Recall that f j (x; t )h � Pf x < X (t) < x + h; � (t) = j g for initial condition ( X (0); � (0)),

and 
 (n)
j;k (y; x; t )h is approximately the taboo conditional probability that the 
uid level is

in (x; x + h) at time t. We have the termo(h) because in a short period of timeh=c(n)
j ,

there can still be more than one transitions occurring. The sum of the probabilities of all

those events iso(h).

We assume that� (1) > 0, � (N ) < 0, and the process is irreducible. Then the stochastic

process is ergodic. Consequently, the joint stationary distribution exists, is given by the

limit of Equation (3.3.3), and is independent of the initial status att = 0. Letting h ! 0

and t ! 1 in Equation (3.3.3), in matrix form, we obtain:

Theorem 3.1. ([66]) We assume that� (1) > 0, � (N ) < 0, and the process is irreducible.

Then the joint stationary distribution exists. For ln� 1 < x < l n and n = 1; 2; :::; N , we
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have
� (n)(x) = w (n)

L

Z 1

0

 (n)(ln� 1; x; s)ds + w (n)

U

Z 1

0

 (n)(ln ; x; s)ds; (3.3.4)

where

w (n)
L = � (n)

� (ln� 1)C(n)
� P (n� 1)

� b+ + � (n� 1)
+ (ln� 1)C(n� 1)

+ P (n� 1)
+ b+ + p (n� 1)Q(n� 1)

b+ ;

w (n)
U = � (n+1)

� (ln )C(n+1)
� P (n)

� b� + � (n)
+ (ln )C(n)

+ P (n)
+ b� + p (n)Q(n)

b� :
(3.3.5)

(Note: For notational convenience, we have added
 (1) (l0; x; s) = 0 and 
 (M + N )(lN ; x; s) = 0

to the above equation. Recall that the underlying Markov chainf � (t); t � 0g is irreducible

when the 
uid level is in a certain layer.)

According to Theorem 3.1, to �nd the joint stationary distribution, we still need the

following sets of border probabilities and coe�cients in vector form and the two integrals

in the above expression:

1. f p (n) ; n = 0; 1; 2; :::; Ng; (Note that p (0) = p (N ) = 0.)

2. f w (n)
L ; w (n)

U n = 1; 2; :::; Ng;(Note that w (1)
L = w (N )

U = 0.)

3.
R1

0 
 (n)(ln� 1; x; s)ds and
R1

0 
 (n)(ln ; x; s)ds, for n = 1; 2; :::; N .

We �nd those two sets of vectors in the next subsection. The integrals can be calculated

by Lemma 3.7.

Lemma 3.7. ([66]) Matrices of the integrals satisfy the following equation:

 
I eK ( n ) bn 	 (n)

ebK ( n ) bn b	 (n) I

!
0

B
@

Z 1

0

 (n)(ln� 1; x; s)ds

Z 1

0

 (n)(ln ; x; s)ds

1

C
A

=

 
eK ( n ) (x� ln � 1 ) 0

0 ebK ( n ) (ln � x)

!  
(C(n)

+ )� 1 	 (n)(C(n)
� )� 1 � (n)

b	 (n)(C(n)
+ )� 1 (C(n)

� )� 1 b� (n)

!

;

(3.3.6)
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wherebn = ln � ln� 1, denote the width of then-th layer, and

� (n) =
�

(C(n)
+ )� 1Q(n)

+0 + 	 (n)(C(n)
� )� 1Q(n)

� 0

�
(� Q(n)

00 )� 1;

b� (n) =
�

b	 (n)(C(n)
+ )� 1Q(n)

+0 + ( C(n)
� )� 1Q(n)

� 0

�
(� Q(n)

00 )� 1:
(3.3.7)

If � (n) 6= 0, the �rst matrix on the left hand side of Equation (3.3.6) is invertible.

Lemma 3.7 is derived from Lemma 3.5 by multiplying the number of visits (N (ln � 1 ;ln )
+ (x)

and bN (ln � 1 ;ln )
� (x)) with the time length to generate one unit of 
uid ((C(n)

+ )� 1 and (C(n)
� )� 1),

with the consideration ofS(n)
0 (related to � (n) and b� (n)).

3.3.2 Border Probabilities and Coe�cients

In this subsection, we want to �nd out the border probabilitiesf p (1) ; :::; p (N � 1)g and the

coe�cients f w (n)
L ; w (n)

U n = 1; 2; :::; Ng. For that purpose, we have three steps:

1. Construct an embedded discrete time Markov chain with the border states as absorp-

tion states to �nd out which border it will enter after the process leaving a border;

2. Build a continuous time Markov chain by censoring out the periods that the original

MMFF process is between borders to �nd out the border probabilitiesf p (1) ; :::; p (N � 1)g;

3. Use the border probabilities and the embedded discrete time Markov chain to �nd

out the coe�cients f w (n)
L ; w (n)

U n = 1; 2; :::; Ng.

Step 1: We construct a discrete time Markov chain such that the border states are

absorption states. We �rst de�ne two �ctitious sets of states for the n-th border: i) a

set of states for leaving the border by increasing the 
uid level: which isS(n+1)
+ ; and ii)

a set of states for leaving the border by decreasing the 
uid level: which isS(n)
� . Plus

the border statesS(n)
b , we have three sets of states associated with each border. We

arrange the states in the order: (S(1)
� ; S(2)

+ , S(2)
� ; S(3)

+ , ..., S(N � 1)
� ; S(N )

+ , S(1)
b ; :::;S(N � 1)

b ). The

embedded discrete time Markov chain is de�ned at the time epochs theMMFF process is
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leaving (e.g., up-crossing, down-crossing, re
ecting, and entering) a border. The transition

probability matrix D of the Markov chain has the following structure:

D =

 
A B

0 I

!

; (3.3.8)

where matrixA contains all the transition blocks fromfS (1)
� ; S(2)

+ , S(2)
� ; S(3)

+ , ..., S(N � 1)
� ; S(N )

+ g

to themselves, and matrixB contains all the transition blocks fromfS (1)
� ; S(2)

+ , S(2)
� ; S(3)

+ ,

..., S(N � 1)
� ; S(N )

+ g to fS (1)
b ; :::;S(N � 1)

b g. The transition blocks in A and B can be expressed

explicitly by the basic quantities as follows.

� From S(n)
� (i.e., the set below then-th border), the process can

1. return to itself (i.e., S(n)
� ) with (matrix) probability b	 (ln � ln � 1 )

� + P (n)
+ b� , (Note: If

n = 1 (below) or n = N (above), we should use the unboundedb	 and 	 to

replace b	 (ln � ln � 1 )
� + and 	 (ln � ln � 1 )

+ � , respectively.)

2. go to the set above then-th border (i.e., S(n+1)
+ ) with probability b	 (ln � ln � 1 )

� + P (n)
+ b+ ,

3. enter then-th border (i.e., S(n)
b ) with probability b	 (ln � ln � 1 )

� + P (n)
+ bb,

4. go to the set above the (n� 1)-st border (i.e.,S(n)
+ ) with probability b� (ln � ln � 1 )

�� P (n� 1)
� b+ ,

5. go to the set below the (n� 1)-st border (i.e.,S(n� 1)
� ) with probability b� (ln � ln � 1 )

�� P (n� 1)
� b� ,

and

6. enter the (n � 1)-st border (i.e.,S(n� 1)
b ) with probability b� (ln � ln � 1 )

�� P (n� 1)
� bb .

� From S(n+1)
+ (i.e., the set above then-th border), the process can

1. return to itself (i.e., S(n+1)
+ ) with probability 	 (ln +1 � ln )

+ � P (n)
� b+ ,

2. go to the set below then-th border (i.e., S(n)
� ) with probability 	 (ln +1 � ln )

+ � P (n)
� b� ,

3. enter then-th border (i.e., S(n)
b ) with probability 	 (ln +1 � ln )

+ � P (n)
+ bb,

4. go to the set above the (n+1)-st border (i.e., S(n+2)
+ ) with probability � (ln +1 � ln )

++ P (n+1)
+ b+ ,

5. go to the set below the (n+1)-st border (i.e., S(n+1)
� ) with probability � (ln +1 � ln )

++ P (n+1)
+ b� ,

and
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6. enter the (n + 1)-st border (i.e., S(n+1)
b ) with probability � (ln +1 � ln )

++ P (n+1)
+ bb .

The absorption probabilities from those \leaving border" sets to the border sets can be

obtained by

(I � A)� 1B =

S(n)
b

...

S(m)
�

S(m+1)
+

...

0

B
B
B
B
@

...

: : : H (m;n )
� b : : :

: : : H (m;n )
+ b : : :
...

1

C
C
C
C
A

;
(3.3.9)

whereH (m;n )
� b contains the probabilities that the �rst border entered by the originalMMFF

process, after leaving them-th border by decreasing in the setS(m)
� , is S(n)

b , and H (m;n )
+ b

contains the probabilities that the �rst border entered by the original MMFF process,

after leaving them-th border by increasing in the setS(m+1)
+ , is S(n)

b .

Step 2: We build a continuous time Markov chainQp by censoring out the periods that

the original MMFF process is between borders. Thus, the state space ofQp constitutes

(only) all the border statesS(1)
b [ S (2)

b [ ::: [ S (N � 1)
b . The in�nitesimal generator Qp can

be divided into blocks as follow:

Qp =

S(n)
b

S(m)
b

0

B
B
@

...

: : : Qm;n : : :
...

1

C
C
A ;

(3.3.10)

where, form; n = 1; 2; :::; N � 1,

Qm;n =

(
Q(m)

bb + Q(m)
b� H (m;m )

� b + Q(m)
b+ H (m;m )

+ b ; if m = n;

Q(m)
b� H (m;n )

� b + Q(m)
b+ H (m;n )

+ b ; if m 6= n:
(3.3.11)

Let p = ( p (1) ; p (2) ; :::; p (N � 1)), we have the following result.

Lemma 3.8. Vector p is proportional to the steady state probability of the process with

generatorQp .
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Proof. We mimic the proof given by Theorem 2.2 in [45], in which the case with only one

sticky border is considered. We denote bŷ� (t) the censored process of� (t) observed only

when the 
uid is in borders. We de�ne �̂ 0 = inf f t � 0 : � (t) 2 S (m)
b ; m = 1; 2; :::; N � 1g,

and for n � 0, �̂ n = inf f t > �̂ n : � (t) 62 S(m)
b ; m = 1; 2; :::; N � 1g, �̂ n+1 = inf f t > �̂ n :

� (t) 2 S (m)
b ; m = 1; 2; :::; N � 1g. De�ne � n =

P n
i =0 (�̂ i � �̂ i ) for n � 0. Then the process

�̂ (t) evolves in the interval (� n� 1; � n ) exactly like � (t) in the interval ( �̂ n ; �̂ n ). Vector

p is proportional to the steady state probability of the procesŝ� (t) (see [54]). By the

construction process ofQp given above, we can see thatQp is the generator of�̂ (t), which

completes the proof.

We can �rst solve the linear systempQp = 0 and pe = 1 for vector p. But vector p is

not the actual border probabilities. We shall further normalizep to get the actual border

probabilities, which will be discussed later.

Step 3: The computation of the coe�cients (w (n)
L ; w (n)

U ) requires the border probabil-

ities and the matrix A in the embedded discrete time Markov chain in Equation (3.3.8).

Lemma 3.9. Let w = ( w (1)
U ; w (2)

L ; w (2)
U ; w (3)

L ; :::;w (N � 1)
U ; w (N )

L ), we have

w = wA + ( p (1) Q(1)
b� ; p (1) Q(1)

b+ ; p (2) Q(2)
b� ; :::; p (N � 1)Q(N � 1)

b� ; p (N � 1)Q(N � 1)
b+ ): (3.3.12)

Proof. First, based on the de�nition of matrix A, Equation (3.3.12) can be written as a

set of linear equations as follows, forn = 1; 2; :::; N � 1,

w (n)
U = w (n)

L � (ln � ln � 1 )
++ P (n)

+ b� + w (n)
U

b	 (ln � ln � 1 )
� + P (n)

+ b� + w (n+1)
L 	 (ln +1 � ln )

+ � P (n)
� b�

+ w (n+1)
U

b� (ln +1 � ln )
�� P (n)

� b� + p (n)Q(n)
b� ;

w (n+1)
L = w (n)

L � (ln � ln � 1 )
++ P (n)

+ b+ + w (n)
U

b	 (ln � ln � 1 )
� + P (n)

+ b+ + w (n+1)
L 	 (ln +1 � ln )

+ � P (n)
� b+

+ w (n+1)
U

b� (ln +1 � ln )
�� P (n)

� b+ + p (n)Q(n)
b+ ;

(3.3.13)

wherew (1)
L = 0, w (N )

U = 0.

Essentially, we need to prove these two equations in (3.3.13). For the �rst equation, by

de�nition in Equation (3.3.5), we have

w (n)
U = � (n+1)

� (ln )C(n+1)
� P (n)

� b� + � (n)
+ (ln )C(n)

+ P (n)
+ b� + p (n)Q(n)

b� : (3.3.14)
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We use Equation (3.3.4) in Theorem 3.1 to give the expression of the density limits

� (n+1)
� (ln ) and � (n)

+ (ln ), we have

� (n+1)
� (ln ) = w (n+1)

L

Z 1

0

 (n+1) (ln ; ln ; s)ds + w (n+1)

U

Z 1

0

 (n+1) (ln+1 ; ln ; s)ds;

� (n)
+ (ln ) = w (n)

L

Z 1

0

 (n)(ln� 1; ln ; s)ds + w (n)

U

Z 1

0

 (n)(ln ; ln ; s)ds:

(3.3.15)

Then, we replace these two density limits in (3.3.14), we have

w (n)
U =

�
w (n+1)

L

Z 1

0

 (n+1) (ln ; ln ; s)ds + w (n+1)

U

Z 1

0

 (n+1) (ln+1 ; ln ; s)ds

�
C(n+1)

� P (n)
� b�

+
�

w (n)
L

Z 1

0

 (n)(ln� 1; ln ; s)ds + w (n)

U

Z 1

0

 (n)(ln ; ln ; s)ds

�
C(n)

+ P (n)
+ b�

+ p (n)Q(n)
b� :

(3.3.16)

Next, we need to evaluate the integrals in the above equation. By the de�nition of the

taboo conditional density functions, we have


 (n)
k;j (ln ; ln ; s)h

� Pf ln < X (s) < l n + h; � (t) = j; l n� 1 < X (t) < l n ; t 2 (0; s)jX (0) = ln ; � (0) = kg:
(3.3.17)

If � (s) = j when the process approaching Borderln at time s, the 
uid level changing rate

is c(n)
j . Suppose the time elapses ds, the �rst return probability from ( X (0) = ln ; � (0) = k)

to (X (s) = ln ; � (s) = j ) at time s without touching Border ln� 1 is 
 (n)
k;j (ln ; ln ; s)c(n)

j ds.

Integrating the probability with respect to the time s from 0 to 1 and in matrix form we

have
R1

0 
 (n)(ln ; ln ; s)dsC(n)
+ , which gives us the �rst return probabilities to Border ln from

Border ln , without touching Border ln� 1. It turns out that this integral is equivalent to
b	 (ln � ln � 1 )

� + .

Similarly, the integral
R1

0 
 (n)(ln� 1; ln ; s)dsC(n)
+ is equivalent to � (ln � ln � 1 )

++ . The integrals
R1

0 
 (n+1) (ln ; ln ; s)dsC(n+1)
� and

R1
0 
 (n+1) (ln+1 ; ln ; s)dsC(n+1)

� respectively give us the �rst

return probabilities to Border ln from Border ln , without touching Border ln+1 , and the

�rst passage probabilities to Borderln from Border ln+1 , without returning to Border ln+1 .

In matrix form, they are equivalent to 	 (ln +1 � ln )
+ � and b� (ln +1 � ln )

�� , respectively. This leads to
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the desired �rst equation in (3.3.13).

The second equation in (3.3.13) can be obtained in the same way, details are omitted.

3.3.3 Closed Form Expressions

With the assumption that � (1) > 0 and� (N ) < 0, the stationary distribution of the MMFF

process exists. The expressions for the density functions and distribution functions can be

found with all the vectors in place. We de�ne, forn = 1; 2; :::; N ,

(u (n)
+ ; u (n)

� ) = ( w (n)
L ; w (n)

U )

 
I eK ( n ) bn 	 (n)

ebK ( n ) bn b	 (n) I

! � 1

; (3.3.18)

recall bn = ln � ln� 1, denote the width of then-th layer.

Combining Equation (3.3.18) and Lemma 3.7, we obtain a closed form expression of

the joint density function.

Theorem 3.2. ([66]) We assume that� (1) > 0, � (N ) < 0, and � (n) 6= 01 , for n =

2; :::; N � 1. For n = 1; 2; :::; N , we have, forln� 1 < x < l n , the joint density function

� (n)(x) = u (n)
+ eK ( n ) (x� ln � 1 )((C(n)

+ )� 1; 	 (n)(C(n)
� )� 1; � (n))

+ u (n)
� ebK ( n ) (ln � x)( b	 (n)(C(n)

+ )� 1; (C(n)
� )� 1; b� (n)):

(3.3.19)

Now, we construct the joint stationary distribution function. Let G (n)(x) =
Rx

ln � 1
� (n)(x)dx.

We obtain, for ln� 1 < x < l n and n = 1; 2; :::; N ,

G (n)(x) = u (n)
+

Z x

ln � 1

eK ( n ) (y� ln � 1 )dy
�

(C(n)
+ )� 1; 	 (n)(C(n)

� )� 1; � (n)
�

+ u (n)
�

Z x

ln � 1

e
bK ( n ) (ln � y)dy

�
b	 (n)(C(n)

+ )� 1; (C(n)
� )� 1; b� (n)

�
:

(3.3.20)

1We note that results for the case with � (n ) = 0 for some n = 2 ; 3; :::; N � 1 are much more involved.
We choose not to consider that case. Yet it is an interesting topic for future research.
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Finally, we need to normalize the coe�cients in the joint density functionf u (n)
+ ; u (n)

� g

and the border probabilitiesp (n) . By the law of total probability, the normalization factor

is given by

cnorm =
N � 1X

n=1

p (n)e +
NX

n=1

u (n)
+

Z ln

ln � 1

eK ( n ) (y� ln � 1 )dy
�

(C(n)
+ )� 1; 	 (n)(C(n)

� )� 1; � (n)
�

e

+
NX

n=1

u (n)
�

Z ln

ln � 1

e
bK ( n ) (ln � y)dy

�
b	 (n)(C(n)

+ )� 1; (C(n)
� )� 1; b� (n)

�
e:

(3.3.21)

Consequently, we haveu (n)
+ =: u (n)

+ =cnorm , u (n)
+ =: u (n)

� =cnorm and p (n) =: p (n)=cnorm

Many quantities of interest can then be obtained. For example, them-th moment of

the (steady state) 
uid level can be obtained as:

E[X m (t)] =
N � 1X

n=1

lm
n p (n)e +

NX

n=1

Z ln

ln � 1

xmdG (n)(x)e

=
N � 1X

n=1

lm
n p (n)e +

NX

n=1

u (n)
+

Z ln

ln � 1

ymeK ( n ) (y� ln � 1 )dy
�

(C(n)
+ )� 1; 	 (n)(C(n)

� )� 1; � (n)
�

e

+
NX

n=1

u (n)
�

Z ln

ln � 1

yme
bK ( n ) (ln � y)dy

�
b	 (n)(C(n)

+ )� 1; (C(n)
� )� 1; b� (n)

�
e:

(3.3.22)

Then, the mean and variance of the (steady state) 
uid level can be easily found respectively

by E[X (t)] and E[X 2(t)] � (E[X (t)])2.

The integrals in Equations (3.3.20), (3.3.21), and (3.3.22) can be evaluated by using

expressions in Lemma B.1 given in Appendix B.

3.4 Algorithm 1 and Numerical Examples

In this section, we summarize the computation steps for computing the density function,

distribution function, and the mean 
uid level in Algorithm 1, then we present some
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numerical examples.

Algorithm 1: The joint stationary distribution of multi-layer MMFF processes

1. Input Parameters: f l0 = �1 ; l1; :::; lN � 1; lN = 1g , f Q(n) ; C(n)
+ ; C(n)

� g, n = 1; 2; :::; N ,

and f P (n)
+ b+ , P (n)

+ b0, P (n)
+ b� , P (n)

� b+ , P (n)
� b0, P (n)

� b� , Q(n)
b , Q(n)

b+ , Q(n)
b� g, for n = 1; 2; :::; N � 1;

2. Computef 	 (n) ; K (n) ; U(n) ; b	 (n) ; bK (n) ; bU(n)g for f Q(n) ; C(n)
+ ; C(n)

� g by using the

algorithm in Appendix A and equations in Section 3.1, forn = 1; 2; :::; N ; Compute

f � (n) ; b� (n)g by Equation (3.3.7) for n = 1; 2; :::; N ;

3. Computef 	 (ln � ln � 1 )
+ � ; b	 (ln � ln � 1 )

� + ; � (ln � ln � 1 )
++ ; b� (ln � ln � 1 )

�� g for f Q(n) ; C(n)
+ ; C(n)

� g, for

n = 1; 2; :::; N , by using Equation (3.1.16);

4. Construct matrix A and B (Equation (3.3.8)). Compute f H (m;n )
� b ; H (m;n )

+ b g for

m; n = 1; 2; :::; N by using Equation (3.3.9);

5. Construct Qp by using Equations (3.3.10) and (3.3.11); Solve linear system

pQp = 0 and pe = 1 for f p1; :::; pN � 1g;

6. Computef w (n)
U ; w (n)

L ; n = 1; 2; :::; Ng by Lemma 3.9;

7. Computef u (n)
+ ; u (n)

� ; n = 1; 2; :::; Ng by Equation (3.3.18);

8. Computecnorm by using Equation (3.3.21) and Lemma B.1;

9. Usecnorm to normalize f p (n) ; n = 1; 2; :::; N � 1g and f u (n)
+ ; u (n)

� ; n = 1; 2; :::; Ng;

10. Use the updated vectors and Lemma B.1 to compute the stationary distribution

function (Equation (3.3.20)), density function (Equation (3.3.19)), and the

moments of the steady state 
uid level (Equation (3.3.22)).

Example 3.1. (continued) Applying the algorithm to Example 3.1, we obtained the

density function of the 
uid level (See Figure 3.4 (a)) and calculated the mean 
uid level

at E[X (t)] = 1 :3443 and the variance of the 
uid levelV ar[X (t)] = 4 :2857. For this

three-layer MMFF process, the density function changes drastically at the two borders.
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If we make all the borders in Example 3.1 non-sticky and change the passing and

re
ecting probabilities a little bit. The density function of the 
uid level is in Figure

3.4(b). Since generators and 
uid changing rates in layers are unchanged, all the basic

quantities in Table 3.3 remain the same, but the mean and variance of the 
uid level

becomeE[X (t)] = 1 :1927 andV ar[X (t)] = 3 :4793.

Figure 3.4: The density functions of two multi-layerMMFF processes

Example 3.2. To demonstrate the ability of our algorithm to handle a moderately large

number of layers, We present an example withN = 102. All borders (l1 = � 50; l2 =

� 49; :::; l50 = � 1; l51 = 0; l52 = 1; :::; l101 = 50) are sticky, re
ective and crossable. The gen-

erator and 
uid changing rates for individual layers and borders are presented in Table 3.4.

The mean and variance of the 
uid level areE[X (t)] = � 0:1785 andV ar[X (t)] = 67:8507.

Figure 3.5 shows the variety of the density functions that can be generated by multi-layer

MMFF processes.
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Borders / Layers Parameters

Layer n;
for n = 1 ; 2; :::; N

c(n) = (33 � 0:3n; 23� 0:2n; � 10� 0:3n; � 5 � 0:4n; 0; 0);
Q(n) =0

B
B
B
B
B
B
@

� 1 � 0:1n 0 0:5 + 0:3n 0 0:5 + 0:7n 0
0 � 1 � 0:3n 0 0:5 + 0:1n 0:5 + 0:2n 0

1 + 0:1n 0 � 2 � 0:2n 0 1 + 0:1n 0
0 1 + 0:2n 0 � 2 � 0:5n 0 1 + 0:3n
0 1 + 0:1n 1 + 0:1n 0 � 2 � 0:2n 0

1 + 0:1n 0 0 1 + 0:1n 0 � 2 � 0:2n

1

C
C
C
C
C
C
A

:

Border n;
for n = 1 ; 2; :::; N � 1

Q(n)
bb =

�
� 2n

�
; Q(n)

b+ =
�

0:5n 0:5n
�

; Q(n)
b� =

�
0:5n 0:5n

�
;

P (n)
+ bb =

�
0:2
0:2

�
; P (n)

+ b+ =
�

0:2 0:2
0:2 0:2

�
; P (n)

+ b� =
�

0:2 0:2
0:2 0:2

�
;

P (n)
� bb =

�
0:2
0:2

�
; P (n)

� b+ =
�

0:2 0:2
0:2 0:2

�
; P (n)

� b� =
�

0:2 0:2
0:2 0:2

�
:

Table 3.4: Parameters of Example 3.2

Figure 3.5: The density function of the multi-layerMMFF process in Example 3.2
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3.5 Summary

In this chapter, we discuss the basic theory on multi-layerMMFF processes in which the


uid changing rate can be any real value and all borders can be sticky, re
ective and cross-

able. We develop Algorithm 1 to compute the joint stationary distribution. This algorithm

works well for small/moderate size problems. For large size problems, the algorithm has

to be modi�ed in order to reduce the size of the state space. For instance, computation of

border probabilities p has some dimensionality issue since the matrixQp can be too big

for numerical evaluation. On the other hand, the state space used in computation can be

drastically reduced for many cases by taking advantage of some special structures of the

MMFF processes.

Our main contributions in this chapter are two-fold. First, we review and re�ne the

existing theory on multi-layer MMFF processes. We consider all possible transitions (i.e.,

crossing, re
ecting and entering) on borders. Second, we develop an e�cient algorithm

for computing the joint stationary distributions. Although many existing algorithms have

been studied in the literature, we improve some computational steps (e.g., Lemma 3.9

simpli�es the computational steps for those coe�cients in [66]) and provide a clear and

easy to implement algorithm.

In the following applications to queueing models, we utilize a special type ofMMFF

processes, which is calledcanonical 
uid 
ow process. The 
uid changing rate of this

special type ofMMFF processes can only be 1 or� 1. Therefore, there is no need to

considerS(n)
0 in computations since they are empty, and there is no need to construct and

use C(n)
+ and C(n)

� in computation (only multiplication involved) since they are identity

matrices. In addition, some other special structures and technical computational issues

will be discussed and Algorithm 1 will be modi�ed to make the algorithm numerically

more e�cient in the following chapters.
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Chapter 4

The MAP/PH/K+GI Queue

In this chapter, we study the MAP=PH=K + GI queueing model by the multi-layer

MMFF processes developed in Chapter 3. BecauseMAP can approximate any arrival

process, phase-type random variables can approximate any non-negative random variables,

and the abandonment time is a random variable with the general discrete distribution, the

model is a very general queueing system. We develop an e�cient algorithm for computing

the steady state waiting times distributions, abandonment probabilities and queue lengths.

Some of the quantities are di�cult to obtain by other methods.

This chapter is organized as follows. In Section 4.1, we �rst introduce the queueing

model explicitly. In Section 4.2, we introduce a Markov process associated with the age

of the customer at the head of the waiting queue, to be calledthe age process. Based on

the age process, we introduce a multi-layerMMFF process and present an algorithm for

the stationary distribution of the age process in Section 4.3. In Section 4.4, computational

procedures are developed for a number of queueing quantities. Numerical examples are

presented in Section 4.5.
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4.1 De�nitions

In this section, we de�ne the multi-server queueing model with random customer abandon-

ment time. Upon arrivals, all customers join a single queue with the �rst-come-�rst-serve

discipline. There areK identical servers. When the waiting time of a customer reaches

(random) time � , the customer leaves the system without service.

i) The arrival process of customers follows a continuous time Markovian arrival process

(MAP ) (D0; D1), where D0 and D1 are square matrices of orderma. Intuitively,

D0 contains the transition rates without arrival and D1 contains the transition rates

with one arrival. The underlying Markov chain of the arrival processf I a(t); t � 0g

has an irreducible in�nitesimal generatorD = D0 + D1. The stationary distribution

� a of the underlying Markov chain satis�es� aD = 0 and � ae = 1. The (average)

customer arrival rate is given by� = � aD1e.

ii) All customers join a single queue waiting for service based on the �rst-come-�rst-serve

discipline. If a customer's waiting time reaches random time� , the customer leaves

the system immediately without service. The abandonment time� has a discrete

distribution: Pf � = lng = � n , for n = 1; 2; :::; N , where l1 = 0 < l 2 < ::: < l N � 1 <

lN = 1 .

iii) There are K identical servers. When a server becomes available, the customer at the

head of the queue (if there is any) enters the server for service. If an arriving customer

�nds an available server, the customer enters the server directly upon arrival.

iv) The service time of each customer has an identical phase-type distribution withPH -

representation (� , T ) of order ms. We assume that� e = 1, i.e., the service time of

a customer is always greater than 0. The mean service time is given by� � T � 1e.

Let � s = 1=(� � T � 1e), which is the service rate.

v) De�ne � = �= (K� s). We assume� N � < 1 to ensure the stability of the queueing

system. Since� N � is the arrival rate of customers with in�nite abandonment time,

and K� s is the total service rate of the system,� N � < 1 ensures that all customers
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are either served or abandon the system in �nite time. Consequently, the system is

stable.

4.2 The Age Process and a Multi-Layer MMFF Pro-

cess

In order to analyze the queueing model byMMFF processes, we introduce a Markov

process associated with the age of the customer at the head of the queue. Theage of a

customer is de�ned as the time elapsed since the customer enters the system. We assume

the customers arrive according to anMAP and service times are of phase-type. Then

tracking the age of the customer at the head of the queue, phase of the arrival process,

and phases of the service processes of individual servers, provides enough information to

describe the dynamics of the queueing system. De�ne

� a(t): the age of the customer at the head of the queue at timet, if the (waiting)

queue is not empty; otherwise,a(t ) = 0 (See Figure 4.1(a)). If ln < a (t) < l n+1 , for

n = 1; 2; :::; N � 1, a(t) increases linearly at rate one if there is no service completion,

otherwise,a(t + 0) = max f 0; a(t) � ug, whereu is the interarrival time between the

customer at the head of the queue and the customer who is currently behind it. If

a(t) = ln , for n = 2; 3; :::; N � 1, a(t) continues to increase linearly at rate one with

probability 1 � � n=(� n + ::: + � N ); Otherwise, a(t + 0) = max f 0; ln � ug, whereu is

the interarrival time between the departing customer (since its waiting time reaches

ln ) and the customer who is currently behind it. By this de�nition, if a(t) = 0, there

is no customer waiting for service.

� I (a)(t): If a(t) > 0, I (a)(t) is the phase of the customer arrival process when the

customer now at the head of the queue �rst entered the queue for service; and if

a(t) = 0, I (a)(t) is the phase of the customer arrival process at timet (i.e., I (a)(t) =

I a(t).) By this de�nition, I (a)(t) is piece-wise constant and its value changes only

when a(t) drops down.
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� ni (t): the number of servers whose service phase isi at time t, for i = 1, 2, . . . , ms.

The processf (a(t); I (a)(t); n1(t); : : :; nms (t)), t � 0g is a continuous time Markov chain

because both arrival and service are controlled by an underlying Markov chain anda(t) only

depends on the arrival and service processes. According to the total number of working

servers, the state space of (n1(t); : : :; nms (t)) can be organized as 
(0)[ 
(1) [ : : : [ 
( K ),

where, fork = 0, 1, 2, . . . , K,


( k) =

(

n = ( n1; :::; nms ) : ni � 0; ni integer; i = 1; :::; ms;
msX

i =1

ni = k

)

: (4.2.1)

The set 
( k) consists of all states such that there are exactlyk customers in service

(or k working servers), fork = 0, 1, . . . , K. The number of states in 
(k) is given by

(k + ms � 1)!=(k!(ms � 1)!). Then the state space of the Markov process can be written as

�
f 0g � f 1; :::; mag � f[ K

k=0 
( k)g
	

[ f (0; 1 ) � f 1; :::; mag � 
( K )g: (4.2.2)

Note: We use theCSFP method to track the service process in this chapter. The number

of states required by the underlying Markov chain for this approach isO

  
K + ms � 1

ms � 1

!!

,

which is signi�cant smaller than O(mK
s ), the number of required states by theTPFS

method.

Because of the independence between arrival process and service time distribution, we

have, if a(t) > 0, the phase of the customer arrival process is frozen (i.e., constant) except

for down-jump epochs. On the other hand, the phases of the service processes are changing

according to rate matricesQ(K; m s) for no service completion andQ� (K; m s)P+ (K � 1; ms)

for service completion, and be frozen for down-jump epochs. Ifa(t) = 0, the arrival phases
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and service phases are all changing according to rate matrix

Q(1)
bb =

0

B
B
B
B
B
B
@

A0;0 A0;1

A1;0 A1;1 A1;2

. . . . . . . . .

AK � 1;K � 2 AK � 1;K � 1 AK � 1;K

AK;K � 1 (D0 + � 1D1) 
 I + I 
 Q(K; m s)

1

C
C
C
C
C
C
A

;

(4.2.3)

whereA0;0 = D0, A0;1 = D1 
 P+ (0; ms), Ak;k � 1 = I 
 Q� (k; ms), Ak;k = D0 
 Q(k; ms)

and Ak;k +1 = D1 
 P+ (k; ms). Matrices Q(k; ms), Q� (k; ms) and P+ (k; ms) are de�ned in

[64]. The construction of these matrices is quite complicated. Please refer to [64] for the

algorithm details.

Remark : For notational convenience, in the rest of this chapter, we let

Q0(K ) = Q(K; m s);

Q1(K ) = Q� (K; m s)P+ (K � 1; ms):
(4.2.4)

Next, we de�ne a multi-layer MMFF processf (X (t); � (t)) ; t � 0g based on the age

process introduced above. The basic idea is to change the down jumps of the age process

into periods of decreasing 
uid, keep the increasing periods of the age process for the

periods of increasing 
uid, and keep the periods witha(t) = 0 for the periods with zero


uid (See (a) and (b) in Figure 4.1). More speci�cally, we de�ne
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Figure 4.1: Sample paths of the age process and its correspondingMMFF process

1. There are N layers with borders ln , for n = 1; 2; :::; N . Layer 1 is empty (i.e.,

S(1) = ; ).

2. For layer n � 2, the state space for� (t) is:

S(n)
+ = f + g � f 1; :::; mag � 
( K ); S(n)

� = f�g � f 1; :::; mag � 
( K ); and S(n)
0 = ; :

(4.2.5)

The Q-matrix Q(n) of the underlying Markov chain is:

Q(n) =
S(n)

+

S(n)
�

 
I 
 Q0(K ) I 
 Q1(K )

(� n + ::: + � N )D1 
 I (� 1 + ::: + � n� 1)D1 
 I + D0 
 I

!

:

(4.2.6)

The 
uid 
ow rates are all 1 or � 1, i.e., C(n)
+ = C(n)

� = I .

3. Within border 1 (i.e., l1 = 0), the transition rates of the underlying Markov chain

are given by Equation (4.2.3) forQ(1)
bb and

Q(1)
b+ =

 
0

(� 2 + ::: + � N )D1 
 I

!

: (4.2.7)

4. The transition probabilities of approaching border 1 are given by (Note: There is no
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layer 1, thus can only enter border 1 from above)

P (1)
� b+ = 0; P (1)

� bb = (0 ; :::; 0; I ): (4.2.8)

When entering from layer 2 to border 1, the underlying process� (t) enters the set

f 0g � f 1; :::; mag � 
( K ).

5. All other borders (n > 1) have no state. The probabilities of approaching bordern,

for 2 � n � N � 1, from below are given by

P (n)
+ b� =

� n

� n + ::: + � N
I ; P (n)

+ b+ =
� n+1 + ::: + � N

� n + � n+1 + ::: + � N
I: (4.2.9)

The probabilities of approaching bordern, for 2 � n � N � 1, from above are given

by

P (n)
� b� = I ; P (n)

� b+ = 0: (4.2.10)

The joint stationary distribution of the multi-layer MMFF process can be obtained

by Algorithm 1.

4.3 Joint Stationary Distribution of the Age Process

Similar to the age process, if� (t) 2 [ N
n=2 S(n)

+ (i.e., increase periods), the service process

evolves and the state of the arrival process is frozen in the multi-layerMMFF process,

and, if � (t) 2 [ N
n=2 S(n)

� (i.e., decrease periods), the states of the service processes are frozen

and the arrival process evolves. Therefore, it is easy to see that the age process can be

obtained by censoring out states in[ N
n=2 S(n)

� . Computations can be done by implementing

Algorithm 1. However, the state space required for Algorithm 1 is too large to handle large

systems ifK is big.

The bottleneck of the complexity of this algorithm is the state space of the transition

matrix Q(n) . By CSFP method, the number of states of servers isO

  
K + ms � 1

ms � 1

!!

.

Details about the complexity of the algorithm require more exploration. Using certain
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special structure of theMMFF process, we can improve Algorithm 1 and reduce the

required state space for its implementation as follows:

i) Border Probabilities : Since all borders, except Border 1, are empty. We only have

to compute p (1) , which satis�es p (1) Q(1)
p = 0, where

Q(1)
p = Q(1)

bb + Q(1)
b+ T (1)

+ P (1)
� bb; (4.3.1)

whereT (1)
+ contains the �rst passage probabilities from the set above Border 1 (up) to

return to Border 1 (from above), which can be computed recursively as follows. We

de�ne T (n)
+ the state transition probabilities that the process goes up leaving Border

n and returns to Bordern (from above) for the �rst time (i.e., starting in S(n+1)
+ and

ending in S(n+1)
� ). Immediately, we haveT (N � 1)

+ = 	 (N ) , and, for n = 2; 3; :::; N � 1,

T (n� 1)
+ = 	 (ln � ln � 1 )

+ � + � (ln � ln � 1 )
++ (P (n)

+ b� + P (n)
+ b+ T (n)

+ )

�
�

I � b	 (ln � ln � 1 )
� + (P (n)

+ b� + P (n)
+ b+ T (n)

+ )
� � 1

b� (ln � ln � 1 )
�� :

(4.3.2)

ii) Vector p (1) : Due to the special structure ofQ(1)
b+ and P (1)

� bb, we obtain

Q(1)
p =

0

B
B
B
B
B
B
@

A0;0 A0;1

A1;0 A1;1 A1;2

. . . . . . . . .

AK � 1;K � 2 AK � 1;K � 1 AK � 1;K

AK;K � 1
~AK;K

1

C
C
C
C
C
C
A

; (4.3.3)

where ~AK;K = ( D0 + � 1D1) 
 I + I 
 Q0(K ) + (( � 2 + ::: + � N )D1 
 I )T (1)
+ . We can

explore the quasi-birth-and-death (QBD) structure inQ(1)
p to reduce the state space

required for computingp (1) as follows. De�ne

B1 = A1;0(� A0;0)� 1;

Bk = Ak;k � 1(� Ak� 1;k� 1 � Bk� 1Ak� 2;k� 1)� 1; for k = 2; 3; :::; K:
(4.3.4)
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De�ne Q(1)
p ;K = D0 
 I + I 
 Q0(K ) + ( D1 
 I )T (1)

+ + BK AK � 1;K . We also dividep (1)

according to the number of busy servers into (p (1)
0 ; p (1)

1 ; :::; p (1)
K ). Then p (1)

K satis�es

p (1)
K Q(1)

p ;K = 0, and p (1)
k� 1 = p (1)

k Bk , for k = K; K � 1; :::; 1. In the computation, we set

p (1)
K e = 1 and normalize the vectors later.

iii) Coe�cients : Instead of constructing the embedded discrete Markov chain and solv-

ing the linear system in Subsection 3.3.2, we can simplify the equations as there is

only one sticky border (i.e., Border 1) and some probabilities of approaching borders

are 0. Letw (n) = ( w (n+1)
L ; w (n)

U ), for n = 1; :::; N � 1. After we obtain vectorp (1) , the

coe�cients can be obtained directly by solving the following set of linear equations:

w (1) = p (1) (Q(1)
b+ ; 0);

w (n) = w(n)

 
	 (ln +1 � ln )

+ � (P (n)
� b+ ; P (n)

� b� )
b	 (ln � ln � 1 )

� + (P (n)
+ b+ ; P (n)

+ b� )

!

+ w(n + 1)

 
0

b� (ln +1 � ln )
�� (P (n)

� b+ ; P (n)
� b� )

!

+ w(n � 1)

 
� (ln � ln � 1 )

++ (P (n)
+ b+ ; P (n)

+ b� )

0

!

; for n = 2; :::; N � 2;

w (N � 1) = w(N � 1)

 
	 (N )(P (N � 1)

� b+ ; P (N � 1)
� b� )

b	 (lN � 1 � lN � 2 )
� + (P (N � 1)

+ b+ ; P (N � 1)
+ b� )

!

+ w(N � 2)

 
� (lN � 1 � lN � 2 )

++ (P (N � 1)
+ b+ ; P (N � 1)

+ b� )

0

!

:

(4.3.5)

Denote by f (x) the joint stationary density function of the age process. Letf (n)(x) =

f (x), if ln� 1 < x < l n . By Theorem 3.2 and censoring out[ N
n=2 S(n)

� , we obtain the following

result.

Theorem 4.1. ([66]) We assume that� N � < 1 and (� n + :::+ � N )� 6= 1 for n = 2; 3; :::; N �

1. Then the steady state distribution of the age process exists and its density function is

given by

Pf a(t) = 0 g =
KX

k=0

p̂ (1)
k e;

f (n)(x) = v (n)
+ eK ( n ) (x� ln � 1 ) + v (n)

� ebK ( n ) (ln � x) b	 (n) ; for ln� 1 � x < l n ; n = 2; :::; N:
(4.3.6)
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wherep̂ (1)
k = p (1)

k =ĉnorm , v (n)
+ = u (n)

+ =ĉnorm , v (n)
� = u (n)

� =ĉnorm and v (1)
+ = 0 and v (N )

� = 0.

By the law of total probability, the normalization factor̂cnorm is given as

ĉnorm =
KX

k=0

p (1)
k e +

NX

n=2

Z ln

ln � 1

�
u (n)

+ eK ( n ) (y� ln � 1 ) + u (n)
� e

bK ( n ) (ln � y) b	 (n)
�

edy: (4.3.7)

Proof. For the existence of the stationary of the age process, we need to show that� N � < 1

if and only if � (N ) < 0. To do so, we �nd � satisfying � Q(n) = 0 and � e = 1. We

divide � into ( � + ; � � ) according to S(n)
+ and S(n)

� . By routine calculations, we obtain

� + = ( � n + ::: + � N )( � aD1) 
 ~� s=(� + e + � � e) and � � = � a 
 (~� sQ1(K ))=(� + e + � � e),

where ~� s satis�es ~� s(Q0(K ) + Q1(K )) = 0 and ~� se = 1. It has been shown in [67] that
~� sQ1(K )e = K� s (i.e., the total service rate). Consequently, we obtain� n = � + e� � � e =

((� n + ::: + � N )� � K� s)=(� + e + � � e), which leads to the condition of the existence of the

stationary distribution. Also, the relationship shows that (� n + ::: + � N )� � K� s = 0 if

and only if � (n) = 0. Thus, all assumptions in Theorem 3.2 are satis�ed. The closed form

solution of the density function of the age process is obtained from that of the multi-layer

MMFF by censoring.

Remark : For notational convenience, we use notation with time variablet for the station-

ary counterparts of some quantities (e.g.,a(t) for the age in steady state) in this thesis.

Again, evaluation of integrals in the above equation can be done by applying Lemma

B.1 in Appendix B. Next, we summarize the modi�ed Algorithm 1 for computing the joint
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stationary distribution of the age process as Algorithm 2.

Algorithm 2: The joint stationary distribution of the age process

1. Input Parameters: K , N , f l1 = 0; l2; :::; lN = 1g , f � 1; � 2; :::; � N g, f ma; D0; D1g, and

f ms; � ; Tg;

2. Construct f Q(1)
bb ; Q0(K ); Q1(K )g by applying the algorithm in [64];

3. Construct transition blocks for the multi-layer MMFF process:

3.1 Borders: f l0 = �1 ; l1 = 0; :::; lN = 1g ;

3.2 Construct f Q(n) ; C(n)
+ ; C(n)

� ; n = 1; 2; :::; Ng using Equation (4.2.6); (Note:C(n)
+

and C(n)
� are not necessary since they are identity matrices);

3.3 Construct f Q(1)
bb , Q(1)

b+ , Q(1)
b� g using Equations (4.2.3) and (4.2.7);

3.4 Construct f P (n)
+ b+ , P (n)

+ bb, P (n)
+ b� , P (n)

� b+ , P (n)
� bb, P (n)

� b� , n = 1; 2; :::; N � 1g using

Equations (4.2.8), (4.2.9) and (4.2.10);

4. Similar to Steps 2 and 3 in Algorithm 1, computef 	 (n) ; K (n) ; U(n) ; b	 (n) ; bK (n) ; bU(n)g

for f Q(n) ; C(n)
+ ; C(n)

� g; Compute f 	 (ln � ln � 1 )
+ � ; b	 (ln � ln � 1 )

� + ; � (ln � ln � 1 )
++ ; b� (ln � ln � 1 )

�� g for

f Q(n) ; C(n)
+ ; C(n)

� g, for n = 1; 2; :::; N � 1;

5. ComputeT (1)
+ using Equation (4.3.2); ConstructQ(1)

p ;K using (4.3.4); and solve

p (1)
K Q(1)

p ;K = 0 and p (1)
K e = 1, and Compute p (1) ;

6. Computef w (n); n = 1; 2; :::; N � 1g by Equation (4.3.5); and

f u (n)
+ ; u (n)

� ; n = 1; 2; :::; Ng by using Algorithm 1;

7. Compute ĉnorm by using Equation (4.3.7), and use ^cnorm to get

f p̂ (1)
k ; n = 0; 1; :::; K g and f v (n)

+ ; v (n)
� ; n = 1; 2; :::; Ng;

8. Use thef p̂ (1)
k ; n = 0; 1; :::; K g and f v (n)

+ ; v (n)
� ; n = 1; 2; :::; Ng and Equation (4.3.6)

to compute the density function of the age process.

The summarized computation process can be further simpli�ed. For example, there
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is no need to do Step 3 since all subsequent computations can be done by directly using

matrices constructed in Step 2.

4.4 Queueing Quantities

Based on the joint stationary distribution of the age process, we �nd three sets of queueing

quantities: i) Customer abandonment/loss probabilities; ii) Waiting times; and iii) Queue

lengths. We assume that conditions stated in Theorem 4.1 hold throughout this section.

4.4.1 Abandonment Probabilities

Proposition 4.1. ([66]) The probability that a customer will eventually receive service is

given by

pS =
1
�

K � 1X

k=0

p̂ (1)
k (D1 
 I )e +

1
�

NX

n=2

�
v (n)

+ L K ( n )

ln � 1 ;ln
+ v (n)

�
eL

bK ( n )

ln � 1 ;ln
b	 (n)

�
(I 
 Q1(K ))e; (4.4.1)

where L K ( n )

ln � 1 ;ln
and eL bK ( n )

ln � 1 ;ln
are de�ned in Lemma B.1. Then the customer abandonment

probability is pL = 1 � pS. We decomposepL into two parts: i) loss probability pL; 1 of

customers at the head of the waiting queue; and ii) loss probabilitypL;> 1 of customers

before reaching the head of the waiting queue. Then we obtainpL;> 1 = pL � pL; 1, and

pL; 1 =
p̂ (1)

k (( � 1D1) 
 I )e
�

+
1
�

N � 1X

n=2

�
v (n)

+ eK ( n ) (ln � ln � 1 )e + v (n)
�

b	 (n)e
� � n

P N
m= n � m

: (4.4.2)

Proof. By de�nitions, we have

pS =
1
�

 
K � 1X

k=0

p̂ (1)
k (D1 
 I )e +

Z 1

0
f (x)( I 
 Q1(K ))edx

!

: (4.4.3)

First note that the numerator in Equation (4.4.3) is the sum of transition rates that a

customer enters a server for service, and the denominator in Equation (4.4.3) is the arrival
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rate. Then the ratio is the percentage of customers who received service, which is also

the probability that a customer will eventually receive service. The desired expression is

obtained by combining Equation (4.4.3) and Lemma B.1.

The probability that a customer sees exactlyK customers in service and no waiting

queue, and abandons the queue isp̂ (1)
K (( � 1D 1 )
 I )e

� . For a customer at the head of the queue

to abandon the queue, its age must reachln for somen = 2; 3; :::; N � 1. If its age reaches

ln , its age must be greater thanln� 1, which occurs with probability � n + :::+ � N . Then the

probability that it abandons the queue is� n=(� n + :::+ � N ). Combining with the transition

rate for the age to reachln , which is f (ln )e, we obtain

pL; 1 =
p̂ (1)

k (( � 1D1) 
 I )e
�

+
1
�

N � 1X

n=2

f (ln )e
� n

P N
m= n � m

; (4.4.4)

which leads to the desired result.

4.4.2 Waiting Times

Proposition 4.2. ([66]) The distribution of waiting time WS of customers received service

is

Pf WS = 0g =
1

pS�

K � 1X

k=0

p̂ (1)
k (D1 
 I )e;

dPf WS < x g
dx

=
1

pS�

�
v (n)

+ eK ( n ) (x� ln � 1 ) + v (n)
� e

bK ( n ) (ln � x) b	 (n)
�

(I 
 Q1(K ))e;

for ln� 1 � x < l n ; n = 2; 3; :::; N:

(4.4.5)

The distribution of waiting time WL; 1 of customers lost at the head of the waiting queue is

given by

Pf WL; 1 = lng =
p̂ (1)

k (( � 1D1) 
 I )e
pL; 1�

; for n = 1;

Pf WL; 1 = lng =
�

� n

� n + ::: + � N

�
f (n)(ln )e

pL; 1�
; for n = 2; 3; :::; N � 1:

(4.4.6)
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The abandonment timeWL;> 1 of a customer that abandons the queue before reaching the

head of the queue, we have, fork = 1; 2; 3; :::; N � 1,

Pf WL;> 1 = lkg =

 
NX

n= k+1

�
v (n)

+ L K ( n )

ln � 1 ;ln
	 (n) + v (n)

�
eL

bK ( n )

ln � 1 ;ln

�
(D1 
 I )e

!
� k

pL;> 1�
: (4.4.7)

Proof. First note that WS = 0 occurs if a server is available when a customer arrives, which

leads to the expression forPf WS = 0g. When the age isx > 0 and there is an service

completion, the waiting time of the customer at the head of the queue is exactlyx, so the

rate that the waiting time is x of customer received service is given byf (x)( I 
 Q1(K ))e,

then the rate ration given below gives the probability density function,

dPf WS < x g
dx

=
1

pS�
f (x)( I 
 Q1(K ))e; for x > 0; (4.4.8)

which leads to the desired result.

For WL; 1, it is clear that WL; 1 = ln if a(t) reachesln from below and an abandonment

occurs. The probability for WL; 1 to reach ln is f (n)(ln )e=(pL; 1� ). The probability for the

abandonment to occur is� n=(� n + :::+ � N ). Then expression (4.4.6) can be obtained easily.

We use the joint stationary distribution of the multi-layer MMFF process to �nd

the distribution of WL;> 1. When the multi-layer MMFF process is inS(n)
� and there is

an arrival, the arriving customer will abandon the queue in the future with probability

� 2 + ::: + � n� 1 if ln� 1 < x < l n . Since customer arrivals take place only when the 
uid level

of the MMFF process is decreasing, we censor out the periods of time in which the 
uid

level is increasing. Using the censored process, we obtain, fork = 2; 3; :::; N � 1,

Pf WL;> 1 = lkg =
cnorm

^̂cnorm pL;> 1�

 
N � 1X

n= k

Z ln +1

ln

� (n+1)
� (x)dx(D1 
 I )

!

e� k ; (4.4.9)

where

^̂cnorm =
KX

k=0

p (1)
k e +

NX

n=2

Z ln

ln � 1

�
u (n)

+ eK ( n ) (y� ln � 1 ) 	 (n) + u (n)
� e

bK ( n ) (ln � y)
�

edy: (4.4.10)
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In the multi-layer MMFF process, the 
uid level increases and decreases both at rate 1.

If the process is ergodic, probabilities that the process is increasing or decreasing at an

arbitrary time are equal. Thus, we must have ^cnorm = ^̂cnorm , which leads to the desired

result in Equation (4.4.7).

According to the law of total probability, we must have Pf WS < 1g = 1 and
P N � 1

n=2 Pf WL; 1 = lng = 1, which can be used to check computation accuracy. The law

of total probability
P N � 1

n=2 Pf WL;> 1 = lng = 1 can also be used to check computation

accuracy. The mean waiting timeE[WS] can be calculated by:

E[WS] =
1

pS�

NX

n=2

�
v (n)

+ M K ( n )

ln � 1 ;ln
+ v (n)

�
fM

bK ( n )

ln � 1 ;ln
b	 (n)

�
(I 
 Q1(K ))e; (4.4.11)

where M K ( n )

ln � 1 ;ln
and fM bK ( n )

ln � 1 ;ln
are de�ned in Lemma B.1. The distribution of the waiting

time W of an arbitrary customer can be found from that ofWS, WL; 1, and WL;> 1. The

mean waiting time can be found by

E[W] = pSE[WS] + pL; 1E[WL; 1] + pL;> 1E[WL;> 1]: (4.4.12)

4.4.3 Queue Lengths

Let qS(t) be the number of customers in service (or busy servers) andqW (t) the waiting

queue length at an arbitrary timet. The distribution of qS(t) can be found directly from

the border probability vector p̂ (1) . The z-transform ofqW (t) can be derived based on the

joint distribution of the age process. Ifa(t) = x at an arbitrary time t, the waiting queue

length consists of the customer at the head of the queue and all customers arrived after

that customer (i.e., in the period (t � x; t )) who have not abandoned the queue yet. To

identify who are still waiting in queue and who have abandoned the queue, we divide the

interval ( t � x; t ) into ( t � l2; t), ( t � l3; t � l2), ..., (t � x; t � ln� 1), if ln� 1 < x < l n (See

Figure 4.2). For customers who arrived in (t � l2; t), they abandon the queue beforet with

probability � 1 and are still in the queue at timet with probability 1 � � 1. The conditional

probability generating function of the number of such customers ise(D 0+( � 1+(1 � � 1 )z)D 1 )l2
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(see Theorem 2.3.1 in [62] or Lemma B.2 in Appendix B). For customers who arrived in

(t � l3; t � l2), they abandon the queue beforet with probability � 2 and are still in the queue

at time t with probability 1 � � 2. The conditional probability generating function is given

by e(D 0+( � 1+ � 2+(1 � � 1 � � 2 )z)D 1 )( l3 � l2 ) . In general, for customers arrived in (t � lm ; t � lm� 1),

they abandon the queue beforet with probability 1 � �̂ m and are still in the queue at

time t with probability �̂ m , where ^� m = � m + � m+1 + ::: + � N . The conditional probability

generating function is given bye(D 0+(1 � �̂ m + �̂ m z)D 1 )( lm � lm � 1 ) .

Figure 4.2: The conditional probability generating function of the number of customers in
each interval

Denote by P � (�; z; x ) = e(D 0+(1 � � + �z )D 1 )x 
 I .

Lemma 4.1. Conditioning on a(t) at an arbitrary time t, for z � 0, the probability gen-

erating function of qW (t) can be found as follows,

E[zqW (t ) ] = p̂ (1) e + z
NX

n=2

Z ln

ln � 1

f (n)(x)P � (�̂ n ; z; x � ln� 1)
2Y

m= n� 1

P � (�̂ m ; z; bm )dxe: (4.4.13)
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(Remark: bm = lm � lm� 1, for m = 2; 3; :::; N .)

Proof. By the de�nition of probability generating function, we have

E[zqW (t ) ] =
1X

i =0

Pf qW (t) = igzi : (4.4.14)

If i = 0, we have

Pf qW (t) = 0 gz0 = p̂ (1) e: (4.4.15)

If i � 1, there must be a customer at the head of the queue anda(t) has to be positive,

thus the probability generating function of the number of customers (always 1) at the

head of the queue at timet is z. Conditioning on a(t) = x at an arbitrary time t and

x 2 (ln� 1; ln ), the probability generating function of the number of customers behind the

head of the queue at timet is

P � (�̂ n ; z; x � ln� 1) � P � (�̂ n� 1; z; ln� 1 � ln� 2) � � � � � P � (�̂ 2; z; l2); (4.4.16)

thus we have

1X

i =1

Pf qW (t) = igzi

= z
NX

n=2

Z ln

ln � 1

f (n)(x)P � (�̂ n ; z; x � ln� 1) � P � (�̂ n� 1; z; ln� 1 � ln� 2) � � � � � P � (�̂ 2; z; l2)dxe

= z
NX

n=2

Z ln

ln � 1

f (n)(x)P � (�̂ n ; z; x � ln� 1)
2Y

m= n� 1

P � (�̂ m ; z; bm )dxe:

(4.4.17)

The sum of Equation (4.4.15) and Equation (4.4.17) leads to the desired result.

By Theorem 2.3.2 in [62] or Lemma B.2 in Appendix B, we have the following result.
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Proposition 4.3. ([66]) The distribution of qS(t) is given by

Pf qS(t) = kg =

8
><

>:

p̂ (1)
k e; if k = 0; 1; :::; K � 1;

1 �
K � 1X

k=0

p̂ (1)
k e; if k = K:

(4.4.18)

The mean waiting queue length is given by

E[qW (t)] = 1 � p̂ (1) e

+
NX

n=2

n� 1X

m=2

Z ln

ln � 1

f (n)(x)
�
eD (x� lm ) 
 I

�
dx

�
�̂ m �b m I + ( eDbm � I )(D � e� a)� 1�̂ mD1

�
e 
 e

+
NX

n=2

Z ln

ln � 1

f (n)(x)
�
�̂ n � (x � ln� 1)I + ( eD (x� ln � 1 ) � I )(D � e� a)� 1�̂ nD1

�
e 
 edx:

(4.4.19)

To calculate the mean queue length, we need to evaluate the integral (Lemma B.1 in

Appendix B), for 2 � m < n � N ,

Z ln

ln � 1

�
v (n)

+ eK ( n ) (x� ln � 1 ) + v (n)
� e

bK ( n ) (ln � x) b	 (n)
� �

eD (x� ln � 1 ) 
 I
�

dx: (4.4.20)
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Combining Proposition 4.3 and Lemma B.1, we obtain

E[qW (t)] = 1 � p̂ (1) e

+
NX

n=2

�
v (n)

+ L (K ( n ) ;D )
ln � 1 ;ln

+ v (n)
�

eL ( bK ( n ) ;D )
ln � 1 ;ln

�

�

 
n� 1X

m=2

eD (ln � 1 � lm )
�
�̂ m �b m I + ( eDbm � I )(D � e� a)� 1�̂ mD1

�

 I

!

e

+
NX

n=2

�̂ n �
�

v (n)
+

�
M K ( n )

ln � 1 ;ln
� ln� 1L K ( n )

ln � 1 ;ln

�
+ v (n)

�

�
fM

bK ( n )

ln � 1 ;ln
� ln� 1

eL
bK ( n )

ln � 1 ;ln

�
b	 (n)

�
e

+
NX

n=2

�
v (n)

+

�
L (K ( n ) ;D )

ln � 1 ;ln
� L K ( n )

ln � 1 ;ln

�
+ v (n)

�

�
eL ( bK ( n ) ;D )

ln � 1 ;ln
� eL

bK ( n )

ln � 1 ;ln
b	 (n)

��

�
�
(D � e� a)� 1�̂ nD1 
 I

�
e:

(4.4.21)

Note that Lemma B.1 is used in the above expression.

Let qtot (t) be the total number of customers in the queueing system at an arbitrary

time t. Then the probability generating function and the mean ofqtot (t) can be found as

E[zqtot (t ) ] =
KX

k=0

zkp̂ (1)
k e + zK E[zqW (t ) ];

E[qtot (t)] =
KX

k=0

kp̂ (1)
k e + K (1 � p̂ (1) e) + E[qW (t)]:

(4.4.22)

The queueing quantities are connected to each other by the well-known Little's law: i)

E[qW (t)] = � E[W] for the number of waiting customers and the actual waiting times of

customers; ii)E[qS(t)] = �p S� (� T)� 1e for the number of customers in service and service

times; and iii) E[qtot (t)] = � E[W] + �p S� (� T)� 1e for the total of number of customers in

the queueing system and the sojourn times of customers. The relationships can be used

for checking computation accuracy.

67



4.4.4 Summary of Queueing Quantities

We summarize all important queueing quantities in Table 4.1 to help readers quickly �nd

the meaning and equations of these quantities.

Notations Quantities Equations
f (n)(x) Density of the age process (4.3.6)
PS, PL , PL; 1, PL;> 1 Abandonment probabilities (4.4.1), (4.4.2)
WS, E[WS] Waiting time of served customers (4.4.5), (4.4.11)
WL; 1, WL;> 1 Waiting time of abandoned customers (4.4.6), (4.4.7)
E[W] Mean waiting time (4.4.12)
qS(t), E[qW (t)], E[qtot (t)] Queue lengths (4.4.18), (4.4.21), (4.4.22)

Table 4.1: Summary of queueing quantities in Chapter 4

4.5 Numerical Examples

Example 4.1. We consider anMAP=PH=K + GI queue withK = 3, N = 6, ( l1; l2; l3; l4; l5; l6) =

(0; 1; 2; 3; 4; 1 ), � = (0 ; 0:1; 0:3; 0:3; 0:2; 0:1),

D0 =

 
� 14 0

4:5 � 5:5

!

; D1 =

 
12 2

0:5 0:5

!

; � = (0 :5; 0:5); T =

 
� 5:5 4:5

5 � 5:8

!

:

(4.5.1)

Applying Algorithm 2, a number of queueing quantities can be obtained. First, we plot

the stationary density functions of the age of the customer at the head of the queue and

the waiting time of an arbitrary served customer in Figure 4.3. It seems that most of the

customers have to wait in the queue for service. It is interesting to see that i) The density

of the waiting time of the served customer is closed to the density of age of the customer

at the head of the queue; ii) The density of waiting time concentrated aroundl4 = 3 and

l5 = 4 even though this is for served customers. Second, we present the (conditional)

distributions of the waiting times of customers who abandoned the queue in Table 4.2.

While the possibility of customers abandoning the queue varies signi�cantly before they

reach the head of the queue. Lastly, we summarize other queueing quantities in Table 4.3.
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Again, the mean age of the customer at the head of the queue is closed to the mean waiting

time of the arbitrarily served customer. The mean number of working servers is 3, which

means they are always busy. The mean total queue length is 30.68558, which is far greater

than 3. Next example, we increase the number of serversK to see the changes of these

queueing quantities.

Figure 4.3: The stationary density functions ofa(t) and WS for Example 4.1

l1 l2 l3 l4 l5 l6
Pf WL; 1 = lng 0 0.0 0.025 0.488 0.487 0
Pf WL;> 1 = lng 0 0.157 0.461 0.337 0.045 0
Pf WL = lng 0 0.136 0.406 0.356 0.102 0

Table 4.2: Conditional distributions of waiting times of customers abandoned the queue

E[a(t)] pS pL pL; 1 pL;> 1 pq;0 E[WS]
3.4375 0.2636 0.7364 0.0938 0.6426 0.0 3.4376
E[WL; 1] E[WL;> 1] E[WL ] E[W] E[qS] E[qW ] E[qtot ]
3.4633 2.2731 2.4246 2.6917 3.0000 27.6858 30.6858

Table 4.3: Summary of queueing quantities for Example 4.1

Example 4.2. (Example 4.1 continued) For Example 4.1, we change the number of servers
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from K = 2 to K = 50, and compute queueing quantities for those queueing systems. The

results are divided into three groupsf pL ; pL; 1; pL;> 1g, f E[WS]; E[WL; 1]; E[WL;> 1]; E[Wtot ]g,

and f E[qS]; E[qW ]; E[qtot ]g. The results are plotted in Figure 4.4.

Figure 4.4: Summary of queueing quantities for Example 4.2

From Figure 4.4, it is interesting to see that i) The abandonment probabilitypL; 1 is not

monotone asK increases; ii) The mean waiting times are all decreasing (which is intuitive);

and iii) The abandonment probabilities and mean waiting times go to 0 when the number

of servers is large.

We also plot the density function of the waiting time of served customers forWS for

K = 2, K = 6, K = 10, K = 14,K = 18,and K = 22 in Figure 4.5. It is interesting to see

how the waiting time distribution shifts as K changes. One thing particularly interesting

is the impact of the abandonment epochs on the waiting time distribution, which becomes

less signi�cant asK increases. Intuitively, it is due to fewer customers are forced to make

abandonment decisions as more servers become available.
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Figure 4.5: The stationary density functions ofWS for K = 2, K = 6, K = 10, K = 14,
K = 18, and K = 22

Example 4.3. In this example, we consider a queueing system with a bursty arrival

process and service times with a big variation. We assumeN = 5, l1 = 0, l2 = 1, l3 = 2,

l4 = 3, l5 = 1 , � = (0 ; 0:2; 0:3; 0:4; 0:1),

ma = 4; D0 =

0

B
B
B
@

� 15 0 2 2

20 � 45 2 2

1 2 � 25 5

1 0 2 � 15

1

C
C
C
A

; D1 =

0

B
B
B
@

5 5 1 0

10 5 1 5

1 6 5 5

5 1 1 5

1

C
C
C
A

;

ms = 3; � = (0 :1; 0:0; 0:9); T =

0

B
@

� 17 0 10

0 � 2 0

0 2 � 2

1

C
A :

(4.5.2)

This example is special since the arrival process is bursty and the service times have a

special distribution as shown in Figure 4.6.
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Figure 4.6: Burstiness of the arrival process and density function of the service times

Let K go from 2 to 16. We compute queueing quantities for Example 4.3. Results

related to customer abandonment, waiting times and queue lengths are plotted in Figure

4.7.

Figure 4.7: Summary of queueing quantities for Example 4.3

One issue related to the analysis of complicated stochastic systems is state space ex-

plosion. Speci�cally, for ourMAP=PH=K + GI queue, the number of states in 
(K ) can

be very big. For Examples 4.2 and 4.3, the number of states for each layer is given by

ma

 
K + ms � 1

ms � 1

!

. We present the number of states as a function ofK in Table 4.4.
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K 1 5 8 10 12 14 15 50 100
Example 4.2 4 12 18 22 26 30 32 102 202
Example 4.3 12 84 180 264 364 480 544 5304 20604

ma = 4, ms = 4 16 224 660 1144 1820 2720 3264 93704 707404

Table 4.4: Number of states inS(n)
+ [ S (n)

� for Examples 4.2 and 4.3

It is shown that, if ma and ms are small, Algorithm 2 can be applied for computing

queueing quantities forK up to over 100. Since one can generate all kinds of arrival

processes and service times even for smallma and ms (e.g., Examples 4.2 and 4.3), the

method can be useful for researchers and practitioners.

Next, we use our algorithm to address the performance insensitivity to abandonment

time distributions, an issue examined in [48].

Example 4.4. ([66]) We use the example in Section 6 in [48]. We consider anM=M=100+

GI queue with Poisson arrival processf D0 = � 105; D1 = 105g and exponential service

time f � = 1; T = � 1g. The distribution of the abandonment time � can be i) an ex-

ponential distribution with parameter � , denoted asexp, ii) a uniform distribution on

[0; 1=� ], denoted asUnif , or iii) a phase-type distribution with f � � = (0 :7; 0:3) and

T� =

 
� 0:3� 0

0 � 79�= 30

!

g, denoted asH2, which is the well-known Hyperexponential

distribution, where � is a positive constant.

To use Algorithm 2, we discretize the above three abandonment distributions with

N = 1000, which gives satisfactory approximation results to the continuous case (as

compared to results in [48]). Speci�cally, for abandonment time� with an exponen-

tial or H2 distribution, the interval [0 ; 3E[� ]] is divided into N � 1 identical intervals

of length � = 3E[� ]=(N � 1). Then we de�ne � 1 = 0, � n = Pf (n � 1)� � � < n� g, for

n = 2; 3; :::; N � 1, and � N = Pf � � N� g. For � with an uniform distribution, the interval

[0; 2E[� ]] is divided into N � 1 identical intervals of length � = 2E[� ]=(N � 1). Then we

de�ne � 1 = 0, � n = 1=(N � 1), for n = 2; 3; :::; N � 1, and � N = 0.

Paper [48] observes that the performance of the queue is insensitive to abandonment

time distributions. Speci�cally, through simulation, they have observed that the queue
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with those three abandonment time distributions perform similarly, even though, for given

� , the three abandonment times have di�erent means and variances. Results presented in

Table 4.5 indicates that queueing performance, with respect to more queueing quantities

than those in [48], is insensitive to abandonment time distributions, which is consistent

with the conclusion in [48].

E[a(t)] pL pL; 1 pL;> 1

� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.5176 0.5010 0.5562 0.0496 0.0497 0.0493 0.0009 0.0010 0.0009 0.0487 0.0487 0.0484
0.5 0.1216 0.1154 0.1319 0.0601 0.0605 0.0593 0.0037 0.0040 0.0034 0.0564 0.0565 0.0559
1 0.0660 0.0614 0.0728 0.0668 0.0674 0.0658 0.0063 0.0069 0.0057 0.0605 0.0605 0.0601
2 0.0354 0.0319 0.0402 0.0738 0.0747 0.0726 0.0103 0.0116 0.0091 0.0635 0.0631 0.0635
10 0.0074 0.0056 0.0099 0.0886 0.0901 0.0868 0.0276 0.0340 0.0225 0.0609 0.0561 0.0643

E[WS] E[WL; 1] E[WL;> 1] E[W ]
� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.5187 0.5021 0.5572 0.5390 0.5306 0.5701 0.3460 0.3414 0.3731 0.5103 0.4943 0.5483
0.5 0.1232 0.1170 0.1336 0.1566 0.1556 0.1621 0.1113 0.1100 0.1172 0.1227 0.1167 0.1327
1 0.0673 0.0627 0.0742 0.0995 0.0994 0.1019 0.0720 0.0710 0.0752 0.0678 0.0635 0.0744
2 0.0364 0.0329 0.0413 0.0651 0.0654 0.0659 0.0474 0.0465 0.0492 0.0373 0.0341 0.0420
10 0.0078 0.0059 0.0104 0.0257 0.0264 0.0255 0.0182 0.0169 0.0192 0.0089 0.0072 0.0113

pq;0 E[qS] E[qW ] E[qtot ]
� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.0340 0.0355 0.0287 99.794 99.784 99.826 53.582 51.904 57.57 153.38 151.69 157.39
0.5 0.2165 0.2238 0.2027 96.686 98.642 98.770 12.880 12.250 13.94 111.57 110.90 112.71
1 0.3316 0.3425 0.3144 97.988 97.922 98.092 7.122 6.667 7.816 105.11 104.59 105.91
2 0.4532 0.4684 0.4323 97.250 97.158 97.377 3.921 3.581 4.410 101.17 100.74 101.79
10 0.7089 0.7356 0.6774 95.699 95.537 95.890 0.936 0.758 1.185 96.63 96.30 97.07

Table 4.5: Summary of queueing quantities for Example 4.4: Part I

The observation seems to hold for queueing systems with a Poisson arrival process and

exponential service times. However, it may not hold, even approximately, for queueing

systems with a non-Poisson arrival process. Now, we change the customer arrival process

from Poisson toMAP with

D0 =

 
� 1 0:2

1 � 310

!

; D1 =

 
0:1 0:7

1 308

!

: (4.5.3)

The average arrival rate is 96.4483. The arrival process is bursty since the arrival rates
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in the two states of the underlying Markov chain are drastically di�erent. Quantities in

Table 4.5 are reproduced and presented in Table 4.6. Table 4.6 demonstrates that some

quantities can be signi�cantly di�erent for the three abandonment times (e.g.,pL; 1 and

E[qW ] for � � 2), which indicates that the queueing performance is no longer insensitive

to the abandonment time distributions.

E[a(t)] pL pL; 1 pL;> 1

� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 1.2385 1.1090 1.4095 0.1470 0.1550 0.1376 0.0007 0.0008 0.0006 0.1463 0.1542 0.1371
0.5 0.3686 0.2842 0.4968 0.2525 0.2719 0.2302 0.0026 0.0038 0.0018 0.2500 0.2681 0.2284
1 0.2020 0.1432 0.3027 0.2994 0.3219 0.2715 0.0043 0.0071 0.0028 0.2951 0.3148 0.2687
2 0.1062 0.0694 0.1783 0.3413 0.3629 0.3105 0.0072 0.0137 0.0042 0.3341 0.3493 0.3063
10 0.0213 0.0117 0.0449 0.4031 0.4134 0.3821 0.0247 0.0617 0.0111 0.3785 0.3517 0.3710

E[WS] E[WL; 1] E[WL;> 1] E[W ]
� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 1.5054 1.3608 1.6947 1.8257 1.8502 1.8126 1.3504 1.3316 1.3851 1.4829 1.3567 1.6523
0.5 0.5113 0.4048 0.6691 0.7401 0.7240 0.7535 0.4933 0.4590 0.5296 0.5074 0.4205 0.6374
1 0.2990 0.2190 0.4307 0.4842 0.4518 0.5151 0.3015 0.2672 0.3401 0.3005 0.2358 0.4066
2 0.1671 0.1130 0.2681 0.3077 0.2666 0.3530 0.1763 0.1472 0.2139 0.1712 0.1270 0.2518
10 0.0370 0.0207 0.0753 0.0893 0.0630 0.1383 0.0427 0.0306 0.0640 0.0404 0.0268 0.0718

pq;0 E[qS] E[qW ] E[qtot ]
� Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.3182 0.3321 0.3020 82.269 81.498 83.172 143.03 130.85 159.36 225.30 212.35 242.53
0.5 0.5009 0.5344 0.4622 72.091 70.226 74.247 48.94 40.56 61.47 121.03 110.78 135.72
1 0.5821 0.6210 0.5337 67.567 65.400 70.266 28.99 22.74 39.22 96.55 88.14 109.48
2 0.6546 0.6921 0.6013 63.530 61.443 66.501 16.51 12.25 24.29 80.04 73.69 90.79
10 0.7618 0.7796 0.7254 57.567 56.580 59.597 3.90 2.58 6.93 61.46 59.16 66.52

Table 4.6: Summary of queueing quantities for Example 4.4: Part II

To end this section, we analyze theM=E2=100 + E2 queue and compare our results to

that in [115].

Example 4.5. ([66]) We consider the example in Section 2 in [115]. Instead of limiting the

waiting spaces to 200 in the original example (i.e.,M=E2=100=200+E2 with 200 extra wait-

ing spaces), we assume that the queue has unlimited waiting space (i.e.,M=E2=100 + E2).

The arrival process and service time follow a Poisson arrival processf D0 = � 102; D1 =

102g and Erlang-E2 service time distribution f � = [1; 0]; T =

 
� 2 2

0 � 2

!

g respec-
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tively. The abandonment time� has a Erlang distribution with phase-type representation

f � � = [1; 0]; T� =

 
� 2 2

0 � 2

!

g. Similar to Example 4.4, we discretize the above Erlang

distribution with N = 1000.

For the queueing model, the customer arrival rate is� = 102 and the service rate of

a server is� s = 1. Then � = 1:02. Since� N is almost zero,� N � is nearly zero and the

queueing system is stable. Due to customer abandonments, the (waiting) queue length

rarely reaches 200. Thus, the performance of theM=E2=100=200 + E2 queue and the

M=E2=100 + E2(discretized) queue is very close. Results are presented in Table 4.7.

Perfoemance Measure Simulation (Whitt) Approximation (Whitt) MMFF
Pf W = 0g 0.217� 0.0021 0.250 0.2153

pL 0.0351� 0.00029 0.0381 0.0350
E[qW ] 11.52� 0.075 11.41 11.620
E[qtot ] 109.9� 0.092 109.5 110.05
E[WS] 0.1115� 0.00071 0.1102 0.1125
E[WL ] 0.1508� 0.00042 0.1521 0.1524

Table 4.7: Summary of queueing quantities for Example 4.5

We note that the half-widths of 95% con�dence intervals are shown in the column for

simulation results. Table 4.7 shows that our numerical results are fairly close to simulation

results. Some of our results are not in the 95% intervals of corresponding quantities since

their model has �nite waiting space while our model has in�nite waiting space. In addition,

the following two reasons may contribute to the di�erence in the numerical results: i) There

is always a chance that the actual quantity is outside of the con�dence interval; and ii)

The abandonment time distributions are di�erent for our and their models.

4.6 Summary

In this chapter, we apply the theory on multi-layerMMFF processes to theMAP=PH=K +

GI queue and develop computational methods for queueing quantities such as the customer

abandonment probabilities, distributions of waiting times, and the mean queue lengths.
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Our main contributions in this chapter are i) combining theMMFF method and the

CSFP method to analyse theMAP=PH=K + GI queueing model with a moderately

large number of servers; ii) �nding queueing quantities related to customers abandoning

the queue at the head of the queue and customers abandoning the queue before reaching

the head of the queue and queue length distributions, which are di�cult to derive by other

methods and can be useful for both practitioners and researchers.

There are still some unsolved problems in this chapter for future research including: i)

the variance and the distribution of the queue lengths for theMAP=PH=K + GI queue; ii)

the MMAP [K ]=PH[K ]=N=G[K ] queue in which there are multiple types of customers; iii)

the MMAP=PH=K + GI queue with customer priorities; iv) applying this queueing model

to analyze left-without-being-seen (LWBS) phenomenon in the emergency department.
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Chapter 5

Double-sided Queues with MMAP and

Abandonment

A double-sided queueing model with marked Markovian arrival processes (MMAP ) and

�nite discrete abandonment times is investigated in this chapter. Various types of pas-

sengers arrive at the system at random times to match any type of taxis that also arrive

at random times. Although the structure of our model is simple and similar to classical

double-sided queues, the model's generality in terms of arrival processes (from a single type

to multiple types) and abandonment times appeals both researchers and practitioners.

To study the queueing model, we use the theory of multi-layerMMFF processes. For

the queueing system, we �rst de�ne three age processes and convert them into a multi-

layer MMFF process. Then we analyze the multi-layerMMFF process to �nd queueing

performance measures related to the age processes, matching rates/probabilities, waiting

times, and queue lengths for both sides of the queueing system. We obtain a number

of aggregate quantities as well as quantities for individual types of inputs, which can be

useful for the analysis and design of some stochastic systems, such as passenger-taxi service

systems and organ transplantation systems.

This chapter is organized as follows. In Section 5.1, we de�ne the double-sided queueing

model. Section 5.2 introduces three age processes for the queueing system and constructs

a multi-layer MMFF process. In Section 5.3, we develop a computation method for
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computing the joint stationary distribution of the age process. All queueing quantities are

obtained in Section 5.4. In Section 5.5, we present several numerical examples. Section 5.6

concludes this chapter.

5.1 De�nitions

We de�ne a double-sided queueing model for the stochastic system described above in

this section. The structure of the system is depicted in Figure 5.1. We assume that

the matching discipline for passengers and taxis is �rst-come-�rst-matched, and does not

depend on the types of passengers and taxis. Next, components of the queueing model

are de�ned explicitly, including i) Passenger arrival process; ii) Passenger's abandonment

time; iii) Taxi arrival process; and iv) Taxi's abandonment time.

Figure 5.1: A diagram for the double-sided queue with multiple types of inputs

i) Passengers arrive to the queueing system according to a continuous time marked

Markovian arrival process (MMAP ), which is de�ned by a set of square matrices

(D0; D1; :::; DK ) of order ma. Intuitively, D0 contains the transition rates without

an arrival, Dk contains the transition rates with the arrival of a type k passenger,
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wherek = 1; :::; K . The underlying Markov chain of the arrival processf I a(t); t � 0g

has an irreducible in�nitesimal generatorD = D0 + D1 + ::: + DK . The stationary

distribution � a of the underlying Markov chain satis�es� aD = 0 and � ae = 1. The

(average) typek passenger arrival rate is given by� k = � aDke, where k = 1; :::; K .

De�ne � =
P K

k=1 � k .

ii) The abandonment time � k for type k passengers has a discrete distribution:Pf � k =
~lng = � k;n , for k = 1; :::; K and n = 0; 1; :::; N , where~l0 = 0 < ~l1 < ::: < ~lN � 1 < ~lN =

1 .

iii) Taxis arrive to the queueing system according to anMMAP with a set of square

matrices (B0; B1; :::; BH ) of order mb. Similarly, B0 contains the transition rates

without an arrival, Bh contains the transition rates with the arrival of a typeh taxi,

whereh = 1; :::; H . The underlying Markov chain of the arrival processf I b(t); t � 0g

has an irreducible in�nitesimal generatorB = B0 + B1 + ::: + BH . The stationary

distribution � b of the underlying Markov chain satis�es� bB = 0 and � be = 1. The

(average) typeh taxis arrival rate is given by � h = � bBhe, whereh = 1; :::; H . De�ne

� =
P H

h=1 � h.

iv) The abandonment time ^� h for type h taxis has a discrete distribution:Pf �̂ h = l̂mg =

�̂ h;m , for h = 1; :::; H and m = 0; 1; :::; M , where l̂0 = 0 < l̂1 < ::: < l̂M � 1 < l̂M = 1 .

In the rest of this chapter, we make the following assumptions.

� We assume that the arrival processes and the abandonment times are independent.

� We assume
P K

k=1 � k;N � k < � and
P H

h=1 �̂ h;M � h < � to ensure the stability of the

queueing system. We note that� k;N can be interpreted as the proportion of typek

passengers who stay in the queue forever until being served. Then
P K

k=1 � k;N � k is

the total number of arrivals per unit time of passengers who have to be served. The

condition
P K

k=1 � k;N � k < � means that there are enough taxis to serve all those pas-

sengers. Consequently, the passenger queue can reach a steady state. The condition
P H

h=1 �̂ h;M � h < � can be interpreted similarly.
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� We assume the matching time is negligible, so the queue in the system can be a

passenger queue or a taxi queue, which never co-exist.

The two sides of the double-sided queueing system are structurally symmetric, which

implies that if we can obtain the queueing quantities of one side, we can easily obtain

the queueing quantities of the other side by exchanging the parameters of the two sides.

This property can also be used to verify the accuracy of the results and to explore the

relationship between the quantities.

5.2 Age Processes and a Multi-Layer MMFF Process

In this section, we �rst de�ne the ages of the passengers and taxis in the double-sided

queueing model. Based on the age processes, we introduce a multi-layerMMFF process.

The ageof a passenger (taxi) is de�ned as the amount of time that has passed since

the passenger (taxi) entered the system. Because the passenger queue and the taxi queue

cannot coexist, the ages of the passengers and the ages of taxis can never co-exist either.

Let aP (t) be the age of the passenger at the head of the passenger queue at timet, if the

passenger queue is not empty; otherwise,aP (t) = 0. Similarly, let aT (t) be the age of the

taxi at the head of the taxi queue at timet, if the taxi queue is not empty; otherwise,

aT (t) = 0. It is obvious that at most one of aP (t) and aT (t) can be positive. If bothaP (t)

and aT (t) are zero, then the system is empty at timet. We can reduce the two-dimensional

age processf (aP (t); aT (t)) ; t � 0g to a one-dimensional stochastic process by 
ipping the

age of taxis over the horizontal axis (i.e., the time axis) (see Figure 5.2). Based on this

observation, we de�ne a stochastic processf a(t); t � 0g, to be calledthe age process, as

a(t) = aP (t), if aP (t) > 0; a(t) = � aT (t), if aT (t) > 0; and a(t) = 0, otherwise.
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