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Abstract

This thesis is concerned with the multi-layer Markov modulated fluid flow (MMFF )

processes and their applications to queueing systems with customer abandonment.

For the multi-layer MMFF processes, we review and refine the theory on the joint dis-

tribution of the multi-layer MMFF processes and develop an easy to implement algorithm

to calculate the joint distribution. Then, we apply the theory to three quite general queue-

ing systems with customer abandonment to show the applicability of this approach and

obtain a variety of queueing quantities, such as the customer abandonment probabilities,

waiting times distributions and mean queue lengths.

The first application is the MAP/PH/K +GI queue. The MMFF approach and the

count-server-for-phase (CSFP ) method are combined to analyze this multi-server queueing

system with a moderately large number of servers. An efficient and easy-to-implement

algorithm is developed for the performance evaluation of the MAP/PH/K+GI queueing

model. Some of the queueing quantities such as waiting time distributions of the customers

abandoning the queue at the head of the waiting queue are difficult to derive through other

methods.

Then the double-sided queues with marked Markovian arrival processes (MMAP ) and

abandonment are studied. Multiple types of inputs and finite discrete abandonment times

make this queueing model fairly general. Three age processes related to the inputs are de-

fined and then converted into a multi-layer MMFF process. A number of aggregate queue-

ing quantities and quantities for individual types of inputs are obtained by the MMFF

approach, which can be useful for practitioners to design stochastic systems such as ride-

hailing platforms and organ transplantation systems.

The last queueing model is the double-sided queues with batch Markovian arrival pro-

cesses (BMAP ) and abandonment, which arise in various stochastic systems such as per-

ishable inventory systems and financial markets. Customers arrive at the system with a

batch of orders to be matched by counterparts. The abandonment time of a customer

depends on the batch size and the position in the queue of the customer. Similar to

the previous double-sided queueing model, a multi-layer MMFF process related to some
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age processes is constructed. A number of queueing quantities including matching rates,

fill rates, sojourn times and queue length for both sides of the system are derived. This

queueing model is used to analyze a vaccine inventory system as a case study in the thesis.

Overall, this thesis studies the joint stationary distribution of the multi-layer MMFF

processes and shows the power of this approach in dealing with complex queueing sys-

tems. Four algorithms are presented to help practitioners to design stochastic systems and

researchers do numerical experiments.
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Chapter 1

Introduction

1.1 Background and Motivation

The status of many important systems in our life fluctuates up and down in a continuous

state space over time given the underlying conditions, e.g., the stock price, the water level

in a reservoir and the data in a buffer for telecommunication systems. As an illustration,

take a simple example of two seasons with constant water volume changing to a water

reservoir. Specifically, the water level in a reservoir is constantly increasing during the

wet season while the water level is constantly decreasing during the dry season. It can

be seen from this example that such a system has an uncountable state space (e.g., water

level), and the change of state is controlled by the underlying conditions (e.g., seasons).

If the transition between the wet season and the dry season is dynamic and stochastic,

evaluating the performance of the system becomes an interesting problem and cannot be

easily solved by standard Markov chain methods. On the other hand, there are always

more than two underlying conditions in real-life systems and the status of the systems may

also provide feedback to the underlying conditions, thus the performance evaluation of such

systems is a challenging task. Classical methods are not powerful enough to analyze such

complicated stochastic systems. Therefore, we introduce multi-layer Markov modulated

fluid flow (MMFF ) processes and demonstrate its three applications to queueing models

in this thesis.
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Markov modulated fluid flow (MMFF ) processes are two dimensional Markov pro-

cesses and have been useful modelling tools for representing many real-life systems (e.g,

dams, telecommunication and risk models) and analysing some other complex stochastic

models. In the area of telecommunication systems, MMFF processes have been success-

fully applied to analyze the system performance [53, 85, 120]. In the area of risk analysis,

MMFF processes have been used to find some ruin-related quantities, e.g., the time un-

til ruin, the surplus before ruin and the deficit at ruin [20, 26]. More recently, MMFF

processes have been used in analyzing the performance of hydro-power generation sys-

tems [30], maintenance in continuously deteriorating systems [104], energy harvesting IoT

systems [109] and SIR epidemic models [105]. An extensive literature review of MMFF

processes will be provided in the next chapter. In general, MMFF processes still have

tremendous application potential in many areas. In this thesis, we focus on the area of

queueing theory, where MMFF processes and their generalizations can be used to analyze

complicated queueing models, especially the queueing models with customer abandonment.

Queues with customer abandonment are potentially very important, as many real-life

situations in service systems and industries can be modelled as such queueing models. For

instance, individuals may feel impatient when waiting for service, and perishable products

may expire after a period of time (e.g., Pfizer-BioNTech COVID-19 vaccine can be stored

for five days at refrigerated 2-8oC conditions [94]). Other examples can be found in the

emergency department in hospitals. For instance, a waiting patient may decide to leave

without being seen or transfer to another health care facility because his/her health con-

dition changes after a period of time [35, 57]. Therefore, the phenomenon of customer

abandonment has been incorporated in the study of queueing systems to improve the ac-

curacy of queueing analysis and to make queueing models more practical. In this thesis,

our first application is a queueing model with multiple servers and general abandonment

time.

Double-sided queues are a special type of queueing models in which each demands

service from the other. Double-sided queues with customer abandonment have gained a

lot of attention with the emerging of ride-hailing online platforms and sharing economy

in recent years. In the ride-hailing system, both passengers and drivers can abandon the

system without being paired after waiting for a long time. The time for online pairing

2



is very short and negligible if both sides are available, so the waiting is often due to the

imbalance between the demand and supply of the two sides. For instance, the demand

for ride-hailing during peak hours is often difficult to meet. Therefore, the performance

evaluation of such systems can help platforms make proper decisions and further provide

better service and achieve higher profits. In this thesis, we use MMFF processes to analyze

a double-sided queueing model with multiple types of customers and abandonment.

In trading systems, orders of impatient customers (i.e., buyers and sellers) are matched

with counterparts in a first-come-first-matched discipline by the system. A customer with

multiple-unit orders can be partially filled, and the customer with the unmatched or re-

maining orders can abandon the system with a general (discrete) abandonment time. Those

matching and abandonment features can also be seen in inventory systems. Inspired by

the studies of perishable inventory systems and crossing networks trading systems, we

introduce and analyze a double-sided queueing model with batch arrivals and customer

abandonment.

1.2 Methodology and Basic Ideas

MMFF processes are two-dimensional stochastic processes. The first dimension, i.e.,

the fluid level, is a piece-wise linear stochastic process in which the fluid changing rate is

modulated by the second dimension, which is an underlying continuous time Markov chain.

The changing rate can be positive, negative or zero. Figure 1.1 (a) plots a sample path

of the fluid level of a classical MMFF process. However, classical (single-layer) MMFF

processes are not appropriate tools to do stationary analysis, since the process can never

reach a steady state. In order to evaluate the stationary performance of the queueing

models with customer abandonment, multi-layer MMFF processes have to be used.

Multi-layer Markov modulated fluid flow (multi-layer MMFF ) processes, as a gener-

alization of MMFF processes, make the fluid changing rate and the underlying Markov

chain depend on the fluid layers. As such, the fluid changing rate and the underlying

Markov chain can be different for different layers of the fluid level, which are divided by

border lines. Under certain conditions, multi-layer MMFF processes have stationary dis-

3



tribution. Figure 1.1 (b) plots a sample path of the fluid level of a typical multi-layer

MMFF process with two (dashed) border lines at l1 = 0, l2 = 3 respectively and three

layers ((−∞, 0), (0, 3) and (3,+∞)).

0 10 20 30 40 50 60 70 80 90 100
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-10
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(a): A sample path of a MMFF process
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(b): A sample path of a three-layer MMFF process

Figure 1.1: Sample paths of MMFF processes

Multi-layer MMFF processes were investigated extensively in the past decade, and

have been applied in areas such as queueing theory (e.g., [68, 70, 110]) and risk analysis

(e.g., [21, 22]). A comprehensive analysis considering all possible transitions on borders

and effective and efficient algorithms for the joint stationary distribution are still needed

to the best of our knowledge. Multi-layer MMFF processes are complicated stochastic

processes with complicated solutions for a number of basic quantities. They may not be

a convenient tool to analyze simple stochastic systems, such as M/M/1 queueing system,

but they are powerful for the investigation of complicated stochastic systems, such as the

MAP/PH/K+GI queueing system in Chapter 4 and double-sided queues with abandon-

ment in Chapter 5 and Chapter 6.

For general queueing models with abandonment, the basic idea of our approach consists

of three steps.

• First, we introduce a multi-layer MMFF process associated with the age process

(i.e., the time spent in the system of the customer at the head of the queue) of the
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queueing model. Basically, we can turn an age process into a corresponding MMFF

process by introducing some fictitious periods. These border lines in multi-layer

MMFF processes can be modelled as the abandonment time points.

• Second, we use algorithms to find the joint stationary distribution of the correspond-

ing MMFF process, and censor out those fictitious periods to get the joint stationary

distribution of the age process.

• Last, we use the joint stationary distribution of the age process to find a number of

queueing quantities.

Regarding the basic idea of double-sided queues with abandonment, we track the ages

of both sides by a single age process because the two sides of the queueing model can

never co-exist in the system at the same time. We introduce a multi-layer MMFF process

associated with the age process and with a border line being 0. Thus, the age above 0 is

for one side and the age below 0 (i.e., flipped age) is for the counterpart. Since we can

get the joint stationary distribution of the age process, queueing quantities for individual

types (MMAP model) or order level (BMAP model) can be obtained by considering the

underlying states.

1.3 Scope of the Thesis

Based on the motivation and methodology introduced above, we will first review and refine

the basic theory on multi-layer MMFF processes. Thus, our first goal is to find the joint

stationary distribution of multi-layer MMFF processes, and develop an easy to implement

algorithm to calculate the joint stationary distribution and some basic quantities. Then

we apply this approach to analyze three queueing models with customer abandonment as

shown in Figure 1.2. More specifically,
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Figure 1.2: Scope of the thesis

1. MAP/PH/K+GI queueing model: This queueing model is a very general queueing

model as the Markovian arrival processes (MAP ) can approximate any stochastic ar-

rival processes and Phase-type (PH) distribution can approximate any non-negative

random variables. As we mentioned in the basic ideas in the previous section, we use

the border lines to model the abandonment time, which means the model can handle

finite discrete abandonment times, then we can use the discrete distribution to ap-

proximate general distributions with a large number of border lines in the model. In

order to analyze the queueing model with a moderately large number of servers, we

combine the multi-layer MMFF approach and the count-server-for-phase (CSFP )

method in [64] to reduce the number of states and make the algorithm more efficient.

In addition, we use this approach to find a bunch of interesting queueing quantities,

which are difficult to find by other methods. For example, the abandonment proba-

bility of the customer at the head of the queue and the waiting time distribution of

the customer abandoned at the head of the queue.

2. Double-sided queues with MMAP and abandonment: In this double-sided queueing

system, we use marked Markovian arrival processes (MMAP ) to model multiple

types of input. Different types of input have different abandonment time distribu-

tions, which makes the model fairly general compared with existing literature. A

number of interesting quantities, such as the matching rates/probabilities, waiting
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times and queue lengths for both sides can be obtained. These quantities for indi-

vidual types of inputs can also be obtained, which can be useful for the analysis and

design of, for instance, the ride-hailing platform.

3. Double-sided queues with BMAP and abandonment: In this queueing system, we use

batch Markovian arrival processes (BMAP ) to model batch arrivals. We consider

different abandonment time distributions for different batch sizes. In addition, the

abandonment time distribution can be changed for a particular batch as partial

matching may happen. Such a system can be used to analyze the performance

of financial, inventory and health care systems. We apply this queueing system

to a vaccine inventory model and obtain a number of queueing quantities and some

insights, e.g., the fill rates of orders, and the effects of abandonment time distributions

on the system performance.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give a brief literature

review on matrix-analytic methods, MMFF processes, queueing models with customer

abandonment and double-sided queues. In Chapter 3, we review and refine the theory

on multi-layer MMFF processes and develop a computational algorithm for the joint

stationary distribution. In Chapter 4, we apply multi-layer MMFF processes to the

MAP/PH/K + GI queue and develop an algorithm for computing a variety of queueing

quantities. Chapter 5 and Chapter 6 apply multi-layer MMFF processes to two double-

sided abandonment queues with marked arrivals and batch arrivals respectively. Chapter

7 concludes this thesis. Two important lemmas and the notations tables are collected in

Appendices
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Chapter 2

Literature Review

In this chapter, we review the literature related to our research problems. Section 2.1

briefly introduces three basic tools of matrix-analytic methods: Markovian arrival processes

(MAP ) in 2.1.1, Phase-type distributions in 2.1.2, and Quasi-Birth-and-Death (QBD) pro-

cesses in 2.1.3; as well as the count-server-for-phase method in 2.1.4. Section 2.2 reviews

the Markov modulated fluid flow (MMFF ) processes while Section 2.3 reviews existing lit-

erature about queueing models with customer abandonment. Finally, Section 2.4 discusses

the double-sided queues in the literature.

2.1 Matrix-Analytic Methods

Matrix-analytic methods (MAMs), as a set of powerful tools to analyze stochastic mod-

els, were first introduced by Marcel F. Neuts in the 1970s. Since then, MAMs have been

widely applied to analyze a variety of stochastic models in operations research, management

science, risk/insurance and telecommunication. Early important works have been summa-

rized in [78, 90, 91]. In terms of works on matrix-analytic methods and queueing theory,

we refer to [38, 62]. In this section, we review three basic components of MAMs (i.e.,

Markovian arrival processes, Phase-type distribution and Quasi-Birth-Death processes)

and the count-server-for-phase algorithm, which will be extensively used in our research
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problems. MAMs have nice probabilistic interpretations and numerical tractability. As

will be shown, the analysis of MMFF processes by MAMs involves several important and

probabilistically interpretable matrices, which enhance our understanding of the stochastic

models.

2.1.1 Markovian Arrival Processes

MAPs were first introduced in [89], and then become a set of indispensable tools in stochas-

tic modeling. Markovian arrival process (MAP ) is a generalization of Poisson process and

it keeps many useful properties of the Poisson process (e.g., Markovian property) because

of the underlying Markov chain. Meanwhile, MAPs can approximate any stochastic count-

ing process arbitrarily closely. Formal definitions of the continuous time MAPs are given

in [62]. The basic idea is as follows.

Define an underlying continuous time Markov chain {I(t), t ≥ 0} with infinitesimal

generator D = (d(i,j)) of order m. Decompose D into matrices {D0, D1}, where D0 =

(d0,(i,j)) and D1 = (d1,(i,j)), and all the elements of the two matrices are nonnegative except

the diagonal elements of D0 (i.e., d0,(i,i)), which are negative. Then (D0, D1) defines MAP

{(N(t), I(t)), t ≥ 0} with N(0) = 0. In the MAP , there are two ways to generate arrivals.

1. For phase i, define a Poisson process with arrival rate d1,(i,i) > 0, for i = 1, 2, ...,m.

The Poisson process is turned on, if I(t) = i; and is turned off, otherwise. If I(t) = i

and an arrival from the imposed Poisson process occurs, N(t) increases by one, for

i = 1, 2, ...,m.

2. At the end of each stay in state i, with probability d0,(i,j)/(−d(i,i)), I(t) transits

from phase i to j and N(t) remains the same (i.e., without an arrival); and, with

probability d1,(i,j)/(−d(i,i)), I(t) transits from phase i to j and N(t) increases by one

(i.e., with an arrival), for i 6= j, and i, j = 1, ...,m.

There are two important generalizations of the Markovian arrival processes: batch Marko-

vian arrival processes (BMAPs) [83] and marked Markovian arrival processes (MMAPs)

[65]. BMAPs can be used to model the arrival of a group of customers, which will be used
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in Chapter 6 in the double-sided queues with BMAP and abandonment, while MMAPs

can be used to model the arrival of different types of customers, which will be used in

Chapter 5 in the double-sided queues with MMAP and abandonment.

A BMAP with matrix representation (D0, D1, ..., DK) is a two-dimensional continuous-

time Markov process {(N(t), I(t)) : t ≥ 0} with state space {(n, i) : n ≥ 0, i ∈ {1, 2...,m}},
N(0) = 0 and infinitesimal generator

G =


D0 D1 ... DK

D0 D1 ... DK

D0 D1
. . . . . .

. . . . . . . . .

 , (2.1.1)

where D0 is a square matrix of order m with nonnegative off-diagonal elements and negative

diagonal elements and Dk, k = 1, 2, ..., K, are nonnegative square matrices of order m, and

matrix D = D0 +D1 + ...+DK is an irreducible infinitesimal generator.

Note that N(t) is the number of arrivals by time t and I(t) is the state of the underlying

Markov chain at time t. The maximum batch size is K, and Dk means the transition rates

with the arrival of batch size k, where k = 0, 1, ..., K.

MMAP are actually generalizations of BMAP with different interpretations to the

matrix representations. For BMAP , matrix Dk means the transition rates with ar-

rivals of batch size k. For MMAP , with the same matrix representation (D0, D1, ...DK),

the subscript k > 0 of Dk represents type k arrivals. Let Nk(t) be the number of

type k arrivals by time t, for k = 1, 2, ..., K, then the continuous time Markov chain

{(N1(t), N2(t), ..., NK(t), I(t)), t ≥ 0} becomes an MMAP .

For more details on MAPs, we refer to [62].

2.1.2 Phase-Type Distributions

PH-distributions, as a distribution class, were initially introduced in [88]. A PH-distribution

is the distribution of the time until absorption of an absorbing state of a finite-state con-

tinuous time Markov chain, which is usually called the underlying Markov chain of the
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PH-distribution. If we keep tracking the state of the underlying Markov chain, we can

know the residual time of absorption, and the residual time has a PH-distribution as well.

This is the partial memoryless or Markovian property of PH-distribution. In general,

define a continuous time Markov chain {I(t), t ≥ 0} with m + 1 states and infinitesimal

generator

Q =

(
T T0

0 0

)
, (2.1.2)

where T is a subgenerator of order m and T0 = −Te.

Assume the Markov chain will be absorbed into state m + 1 with probability one.

Then the absorption time of state m+ 1 of the continuous time Markov chain, denoted by

X = min{t : I(t) = m+1}, has a phase-type distribution, given that the initial distribution

of the Markov chain is (α, 1−αe). The distribution function of X is given by

P{X ≤ t} = 1−αexp(Tt)e. (2.1.3)

The set of PH-distributions is closed under a number of operations (e.g., “min”, “max”,

“+”), which is called closure properties. The closure properties play a key role in the

application of PH-distributions in queueing systems.

For more details on PH-distributions, we refer to [62, 78].

2.1.3 Quasi-Birth-and-Death Processes

Quasi-Birth-and-Death Processes (QBDs), as generalizations of Birth-and-Death Pro-

cesses, are two-dimensional Markov Processes and the transitions are skipfree to the left

and to the right. For discrete time QBD, define the transition probability matrix

P =


A0,0 A0,1

A1,0 A1,1 A0

A2 A1 A0

. . . . . . . . .

 , (2.1.4)

11



where A0,0, A0,1, A1,0, A1,1, A0, A1, A2 are nonnegative matrices, A0,0 is of order m0 by m0,

A0,1 is of order m0 by m, A1,0 is of order m by m0, and others are of order m by m. They

have to satisfy (A0+A1+A2)e = e, A1,0e+(A1,1+A0)e = e and A0,0e+A0,1e = e. Then we

can define a level independent QBD process {(Xk, Jk), k = 0, 1, 2, ...} as a two-dimensional

process with state space {{(0, 1), (0, 2), ..., (0,m0)} ∪ {{1, 2, ...} × {1, 2, ...,m}}, where Xk

is the level variable and Jk is the phase variable.

To analyze QBD processes, we need to first compute two basic matrices R and G.

We can find the limiting probabilities of the QBD processes by the matrix-geometric

solution with matrix R. Matrix G provides first passage probabilities. Both matrices

have probabilistic interpretation and are very important in matrix-analytic methods([78,

90, 91]). They can also be further applied to GI/M/1 (skipfree to the right process) and

M/G/1 (skipfree to the left process) type Markov chains (refer to [71, 90, 91, 96]).

Although QBD processes are not directly used in our research in this thesis, the al-

gorithmic probability philosophy of QBD and MMFF processes is the same. In paper

[98], the relationship between these two methods was discussed and a new matrix-analytic

method was developed to analyze the MMFF processes. Our research follows this idea. In

Chapter 3, the analysis of MMFF processes also starts from several basic matrix quantities

(i.e., Ψ, U and K).

For more details on QBDs and related structured Markov Chains, we refer to [62, 78,

91].

2.1.4 Count-Server-for-Phase Method

In this subsection, we briefly review the count-server-for-phase (CSFP ) method, which is

used to reduce the state space in the MAP/PH/K +GI queue in Chapter 4.

One biggest drawback of MAMs is the curse of dimensionality. In the MAP/PH/K

queueing system, if the order of MAP is ma and the order of PH is ms, we can use a

straightforward method, called track-phase-for-server (TPFS), to generate the state space

of the system, which results in a huge state space of mam
K
s for the resulting Markov chain,

which can be very big if the number of servers K is large.
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The TPFS method tracks the phase of each server and thus can handle nonidentical

multiple servers queueing models. The construction procedure is to find the Kronecker

product of the transition matrices of all servers. This procedure is easy to implement and

understand, although it would result in a huge number of states. However, if servers in

the queueing model are independent and identical, it is not necessary to know the phase

of each server. Since all servers are identical with the same Markov chain, we just need

to know the number of Markov chains that are in each phase, which leads to the CSFP

method. For the MAP/PH/K queueing system described above, the resulting state space

by CSFP method is ma(K + ms − 1)!/(K!(ms − 1)!), which is significantly smaller than

mam
K
s . We use an example in [63] to illustrate the significant difference between those two

methods.

Example 2.1 [63] In a MAP/PH/K queueing system, if ma = 1 and ms = 2, the numbers

of states of the resulting Markov chains by the TPFS and CSFP methods are given in

Table 2.1 for various K values.

K 2 4 6 8 10 15 20 30
TPFS 4 16 64 256 1024 32768 1048576 1073741824
CSFP 3 5 7 9 11 16 21 31

Table 2.1: Comparison of the numbers of states for TPFS and CSFP

The CSFP method was first formally introduced to solve a continuous time Markov

chain by Ramaswami in [97]. The algorithm for the discrete case was later introduced by

He and Alfa [63]. This approach has been applied to queueing models with multiple servers

for decades [9, 17, 39, 67, 76, 99, 111]. The construction procedure of the CSFP method

is complicated and challenging, we refer to [64] for more details and several important

subroutines.

2.2 Markov Modulated Fluid Flow Processes

The history of Markov modulated fluid flow (MMFF ) processes can date back to the

1950s. These models were initially used for dam control. After the 1980s, the popularity

13



of telecommunication systems results in more studies in MMFF (e.g., [11, 12, 103]).

Since the classical MMFF processes can approach positive infinity, negative infinity, or

both (depending on the mean drift rate), they do not have stationary distributions. In

telecommunication systems, the research focuses on the stationary distribution of the buffer

content, thus Markov modulated fluid queues (MMFQ), the truncated version of MMFF ,

were introduced and the stationary distributions were obtained by differential equations

solution techniques in the early works. In [103], MMFF processes were defined and some

basic quantities were obtained. By using Wiener-Hopf factorization, basic matrices such as

Ψ, for the state change at some regenerative epochs, and U , for the state change as the fluid

level reaches a new low level, were obtained. By using time-reversed Markov processes,

the joint stationary distributions of the fluid level and the state of the underlying Markov

chain were obtained for MMFQs. We use MMFF for MMFQ with the understanding

that stationary distributions exist under a certain restriction.

Paper [98] discovered a relationship between the basic quantities for MMFF processes

and the basic matrix G for discrete time QBD processes in MAMs, which led to a new

method for computing basic quantity Ψ, in addition to the classical method of solving a

quadratic Riccati equation. Paper [98] also found a new approach to compute the joint

stationary distribution by the crossing numbers of the fluid level, which led to another basic

matrix K. Those basic matrices are the most important matrices of MMFF processes.

Since then, the study of MMFF processes attracted the attention of many researchers and

a large number of papers appeared with various applications including; i) In matrix-analytic

methods: [5, 6, 7, 43, 44, 45, 46]; ii) In risk analysis: [4, 14, 18, 20, 21, 22, 23, 24, 25];

iii) In queueing theory: [68, 70, 110]; and iv) In the theory of MMFF processes (e.g.,

two-stage MMFF processes, first passage times, two dimensional MMFF processes, the

Yaglom limit and fluid network): [28, 29, 31, 32, 33, 87, 92].

Multi-layer MMFF processes are natural extensions of the classical MMFF processes,

which were first defined in [45] as a truncated classical MMFF process from both above

and below. The paper extended existing results on first passage probabilities and the joint

stationary distribution. It turns out that multi-layer MMFF processes can be analyzed

in a similar way, although the solution process is more involved and the presentation of

results can be tedious. Since then, more studies on multi-layer MMFF processes and their
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applications in queueing theory have followed.

• The basic theory for the analysis on multi-layer MMFF was established in [45, 46],

especially those that are related to the joint stationary distribution of the processes.

We review and refine the theory on the joint stationary distribution, and present the

theory and related algorithm in a systematic form in Chapter 3. The multi-layer

MMFF processes, in their full scale, have been analyzed in [32], but their paper

focused on the transient analysis only.

• Multi-layer MMFF processes have also been applied to multi-threshold MAP risk

models ([21, 22, 23, 24]). The basic idea is to assume that the insurer pays dividends

at different rates and collects net premiums at different rates when the surplus level

resides in different surplus layers. The joint discounted density of the surplus prior

to ruin and the deficit at ruin is obtained in their research.

• The theory on multi-layer MMFF processes has also been applied to queueing mod-

els in the past decade ([68, 70, 110]). Paper [110] investigated a single server queue

with multiple types of customers and customer abandonment, and obtained quan-

tities related to customer abandonment and waiting times. Paper [68] analyzed a

single server queue with multiple types of customers with service priority.

Our work on the queueing model in Chapter 4 is close to that in [110]. We consider

a queue with many servers and customer abandonment, and extend the analysis to cover

more queueing quantities (e.g., different types of abandonment probabilities and waiting

times, and the queue length).

2.3 Queueing Models with Customer Abandonment

Queueing models with customer abandonment play an essential role in the design of many

stochastic systems such as call centres [55, 56]. Customer abandonment means that a

customer, having joined the queue, decided to leave without service after a maximal waiting

time (i.e., abandonment time), which may be a constant value or follow a distribution. The
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impact of customers’ abandonment time distribution was empirically studied in [84]. Next,

we summarize the literature according to the abandonment time assumptions.

• One case is the abandonment time being a fixed constant. Early papers usually

assume the arrival processes are Poisson and service time follows an exponential

distribution. We refer to [36, 61] for the early work with analytic solutions. In terms

of approximation techniques, we refer to [117, 118] for examples. Approximation

techniques can deal with non-exponential arrival rates and service rates.

In terms of matrix-analytic methods, we refer the readers to [41, 67, 75]. Specifically,

[41] introduced a method to analyze the MAP/M/K queue with constant abandon-

ment time; [75] used the same method to analyze theM/PH/1 queue with constant

abandonment time; and [67] investigateM/PH/K queue with constant abandonment

time. Unfortunately, the method is failed to be applied to the MAP/PH/K queue

with customer abandonment, due to the lack of commutability of some matrices.

• In other papers, the abandonment time is assumed to be distributed in accordance

with a specific distribution, most of the time, exponential distribution. We refer

to [10, 101, 102] for the early work. Paper [114] compared the results of constant

abandonment time and an adjusted exponential abandonment time. Paper [112] used

the matrix geometric method to derive the steady-state probabilities of the queueing

system with exponential abandonment time.

• There are also general abandonment time distributed assumptions in the literature.

Few analytic solutions can be found in the literature. Paper [115] developed an

algorithm to compute approximations for the performance measures. Then, such

queueing systems have been studied by approximation techniques extensively in the

last decade with the increasing power of computers. (e.g., [47, 48, 49, 72, 73]).

MMFF processes have been proven to be an effective tool in analyzing queueing models

[68, 70, 110]. The basic idea of the approach is to introduce the workload/age process of

the queueing systems and find the corresponding Markov modulated fluid flow process

by transforming jumps to skip-free periods. We first find the stationary distribution of
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the fluid flow process, then obtain the stationary distribution of the workload/age by

censoring, and last investigate some other queueing quantities. Furthermore, queueing

models with general customer abandonment time distribution have also been studied in

[70, 110] by multi-layer MMFF processes. The basic idea is to use the borders to represent

the abandonment time points. However, their research focuses on single server queues, and

only obtain some queueing quantities (e.g., waiting time distributions and abandonment

probabilities).

In Chapter 4, we investigate multi-server queueing systems with general abandonment

time distribution (i.e., the MAP/PH/K+GI queue) by the multi-layer MMFF processes.

We also apply the CSFP method to reduce the state space so that the algorithm can handle

systems with up to one hundred (identical) servers.

2.4 Double-Sided Queues

The double-sided queue, also being called matching queue or synchronization queue, is

a queueing model that entities in each queue demands service from those in the other

queue. The model was first proposed in [74] as a passenger-taxi service system where

passengers come to a taxi-station to take taxis. When a passenger arrives, if there is an

available taxi, the passenger takes it and they both leave the taxi-station immediately;

otherwise, the passenger joins a single queue of passengers and waits for a taxi. When a

taxi arrives, if there is a waiting passenger, the taxi takes the passenger and they both

leave the taxi-station immediately; otherwise, the taxi joins a single queue of taxis and

waits for a passenger. Further, some literature studied double-sided queues with customer

abandonment in which passengers and taxis will leave if their patience runs out.

The double-sided queueing model is a challenging and interesting problem gaining in-

creasing attention from both the industry and the research community in many fields,

including

• Taxi-station system: The double-sided queueing model was first proposed by [74]

as a taxi-station system where passengers and taxis are matched with each other.
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• Organ transplant system: Patients and donated organs are waiting to match

with each other while the health state of the patients and the quality of the organs

deteriorate, and may abandon the system without matching. Papers [8, 37, 121]

analyzed this kind of organ transplant waiting systems in the United States.

• Perishable inventory system: Inventory model with abandonment can be found

in perishable inventory systems. Paper [93] studied a model with finite waiting space

and impatient demands. Paper [27] studied a blood bank model with perishable

blood and impatient demand.

• Financial market: Double-sided queueing model has been most recently studied

by [3] as a crossing networks trading system, which has batch order arrivals for both

sides.

Paper [51] analyzed a double-sided queue with priority and impatience. Papers [81, 82]

analyzed such double-sided queues by using diffusion models. Similar models in man-

ufacturing systems are called kitting systems, which have been investigated extensively

[50, 95, 106]. Again, their models usually assume that the arrivals of patients or customers

form a Poisson process. In [1, 2], they considered matching models with multiple types of

customers with a general matching rule such that whether or not a customer can match an

opposite customer depends on customers’ types. However, they assumed Poisson arrival

process and did not consider customer abandonment.

Matrix-analytic methods (MAMs) have been applied to analyze double-sided queues.

For example, [107] introduced a finite space double-sided queueing model with a phase-

type (PH) distribution for the interarrival times for one side. Paper [108] further analyzed

a finite space double-sided queueing model with MAP arrival processes, using the quasi-

birth-and-death (QBD) method. On the other hand, neither [107] nor [108] considered

customer abandonment in their models. Our models are close to the model in [108] but

with infinite waiting space and finite discrete abandonment time distributions for both

sides.

Instead of using QBD, we use MMFF processes to analyze our double-sided queueing

models. In queueing applications, MMFF processes are usually constructed from the age
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process of the customer at the head of the queue or the virtual work-load in the queueing

system. Analysis of the constructed MMFF processes leads to computational methods

for queueing quantities. Similar to the studies in [52, 110] and Chapter 4, the analysis

approach of the double-sided queueing models is also based on the age process. We use the

method developed in Chapter 3 to analyze the corresponding multi-layer MMFF process

constructed from the age process.
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Chapter 3

Multi-Layer MMFF Processes

In this chapter, we review and refine the basic theory on multi-layer MMFF processes

and develop an algorithm to compute the joint density/distribution function and basic

performance quantities (e.g., mean, variance). In Section 3.1, we first introduce the classical

(i.e., single-layer) MMFF processes and some basic quantities; then, we define the multi-

layer MMFF processes in Section 3.2; the joint stationary distribution is obtained in

Section 3.3; and an algorithm is summarized in Section 3.4 with several numerical examples.

Section 3.5 concludes this chapter.

3.1 Classical MMFF Processes and Basic Quantities

The classical MMFF processes (i.e., single-layer MMFF processes) are two dimensional

stochastic processes {(X(t), φ(t)), t ≥ 0} in which the changing rate of the piece-wise

linear fluid level ({X(t), t ≥ 0}) is modulated by a finite state continuous-time Markov

chain ({φ(t), t ≥ 0}). Specifically, we have

• {φ(t), t ≥ 0} is a continuous-time irreducible Markov chain on finite state space S
with infinitesimal generator Q.

• The fluid level {X(t), t ≥ 0} is controlled by φ(·) such that the value of X(t) changes

linearly at rate cφ(t). The changing rate ci of the fluid level can be positive, negative,
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or zero. We put the rates into vectors c = {ci, i ∈ S}. For convenience, the state

space S has to be partitioned into three subsets according to the sign of ci as follows:

S+ = {i ∈ S : ci > 0};
S− = {i ∈ S : ci < 0};
S0 = {i ∈ S : ci = 0}.

(3.1.1)

We further divide c, according the signs of its elements, and the infinitesimal gener-

ator Q of the underlying Markov chain as

c = (c+, c−, 0);Q =

S+
S−
S0

 Q++ Q+− Q+0

Q−+ Q−− Q−0

Q0+ Q0− Q00

 . (3.1.2)

Given the generator Q and fluid changing rates c, the mean drift of the fluid flow

process in steady state is

ζ = αc (3.1.3)

where α is the stationary distribution of Q. Note that we also put fluid changing

rates in diagonal matrices for computational convenience as

C+ = diag(c+);C− = −diag(c−). (3.1.4)

With the above definition, X(t) is controlled by φ(t) explicitly as

X(t) = X(0) +

∫ t

0

cφ(s)ds, or
dX(t)

dt
= cφ(t), for t ≥ 0. (3.1.5)

Based on the above equations, the fluid level {X(t), t ≥ 0} can approach positive

infinity, negative infinity, or both (depending on the mean drift rate ζ), so the classical

MMFF processes do not have limiting probabilities. Intuitively, when t tends to infinity,

the process will tend to +∞ if ζ > 0; the process will tend to −∞ if ζ < 0; and if ζ = 0,

the process is null-recurrent and |X(t)| → ∞. It has been shown mathematical rigorously

that the three limits hold with probability one ([13]).
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Although there are no limiting probabilities for classical MMFF processes, some basic

quantities related to the classical MMFF processes are essential for the steady state

analysis of the multi-layer MMFF processes in the following sections. Next, we discuss

three basic quantities in MMFF processes.

If φ(t) ∈ S0, the fluid flow level X(t) remains the same. This fact causes some technical

inconvenience when computing the basic quantities. The issue can be resolved by censoring

the time periods that φ(t) is in S0. The censored underlying Markov chain is defined by

T =

(
T++ T+−

T−+ T−−

)
=

(
Q++ Q+−

Q−+ Q−−

)
+

(
Q+0

Q−0

)
(−Q00)

−1(Q0+, Q0−). (3.1.6)

In the rest of this section, we work with both infinitesimal generators T and Q.

Matrices Ψ and Ψ̂ are the most fundamental quantities in the analysis of MMFF

processes. All other quantities and distribution functions can be built upon Ψ and Ψ̂.

In order to define Ψ and Ψ̂, we first introduce some embedded regenerative processes in

{(X(t), φ(t)), t ≥ 0}. Define, δ0 = inf{t > 0 : X(t) > 0}, and, for n > 0,

θn = inf{t > δn−1 : X(t) = 0},
δn = inf{t > θn : X(t) > 0},

(3.1.7)

which are called regenerative epochs (see Figure 3.1). For example, {(X(θn), φ(θn)), n =

1, 2, ...} is a regenerative process with state space {0} × S−. The fluid level is above 0 in

intervals (δn, θn+1) and below 0 in intervals (θn, δn). Then we have the definitions of every

elements in the matrices Ψ and Ψ̂:

Ψi,j = P{θn+1 − δn <∞, φ(θn+1) = j | φ(δn) = i}, for i ∈ S+, j ∈ S−;

Ψ̂i,j = P{δn − θn <∞, φ(δn) = j | φ(θn) = i}, for i ∈ S−, j ∈ S+.
(3.1.8)
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𝜃1 𝜃2𝛿0 𝛿1 𝛿2𝑡min(𝑥)0
𝑡

-𝑥

𝑋 𝑡 :
min 𝑋 𝑠 : 0 ≤ 𝑠 ≤ 𝑡 :

Figure 3.1: δn, θn, tmin(x) and min{X(s) : 0 ≤ s ≤ t}

Observe that Ψ (Ψ̂) is the transition of the state of the underlying Markov chain Q

from an epoch that the fluid flow level X(t) starts to increase (decrease) from zero to the

next first epoch that X(t) returns to zero.

Lemma 3.1. ([103]) Matrices Ψ and Ψ̂ are the minimal nonnegative solution to the fol-

lowing quadratic Riccati equations, respectively:

C−1+ T+− + C−1+ T++Ψ + ΨC−1− T−− + ΨC−1− T−+Ψ = 0;

C−1− T−+ + C−1− T−−Ψ̂ + Ψ̂C−1+ T++ + Ψ̂C−1+ T+−Ψ̂ = 0.
(3.1.9)

The computation of Ψ and Ψ̂ is critical for obtaining all other quantities. Numerous

papers addressed the issue. We use the Newton’s method developed in [58] to obtain the

minimal nonnegative solution to the quadratic Riccati equations. The algorithm is briefly

discussed in Appendix A. For more details and algorithms for Ψ and Ψ̂, please refer to

[58, 59, 77, 86, 98].

Second, we consider matrices U and Û , which are defined as

U = C−1− T−− + C−1− T−+Ψ;

Û = C−1+ T++ + C−1+ T+−Ψ̂.
(3.1.10)

Define, for x ≥ 0,

tmin(x) = min{t : X(t) = −x};
imin(x) = φ(tmin(x)).

(3.1.11)
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We interpret imin(x) as the phase of the underlying Markov chain at the first time epoch

that X(t) reaches −x.

Lemma 3.2. ([12]) If ζ ≤ 0, {imin(x), x ≥ 0} is a continuous time Markov chain with

infinitesimal generator U . If ζ > 0, then {imin(x), x ≥ 0} is an absorption Markov chain

with state space S− ∪ {∆}, where ∆ is defined as an absorption state, and infinitesimal

generator

S−
∆

(
U −Ue

0 0

)
, (3.1.12)

where e is a column vector of ones.

If we define, for x ≥ 0, (See the dash line in Figure 3.1)

xmin(t) = min{X(s) : 0 ≤ s ≤ t}; (3.1.13)

we can find the minimum of the fluid flow process by matrix U . If ζ ≤ 0, the fluid can go

to −∞, thus the minimum must be −∞. If ζ > 0, the minimum must be finite. Assume

that X(0) = 0 and φ(0) has a distribution (β+,β−), then −xmin(∞) has a phase-type

distribution with representation

(
(β+,β−)

(
Ψ

I

)
,U

)
.

Similarly, the same idea can be applied to Û , which can be interpreted as a continuous

time Markov chain related to the maximum of the fluid flow process.

Third, we consider matrices K and K̂, which are defined as

K = C−1+ T++ + ΨC−1− T−+;

K̂ = C−1− T−− + Ψ̂C−1+ T+−.
(3.1.14)

Matrix K is associated with numbers of visits to certain fluid level and state during some

first passage periods. Without loss of generality, we assume that X(0) = 0 and φ(0) = i.

• For i ∈ S+ and x > 0, we define (N+(x))i,j as the mean number of visits of the

process (X(t), φ(t)) to state (x, j) before X(t) returns to zero. (N+(x))i,j can be
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further divided into {(N++(x))i,j, (N+−(x))i,j} with j ∈ S+ (called up-crossings) or

j ∈ S− (called down-crossings), respectively.

• For i ∈ S− and x < 0, we define (N−(x))i,j as the mean number of visits of the

process (X(t), φ(t)) to state (x, j) before X(t) returns to zero. (N−(x))i,j can be

further divided into {(N−+(x))i,j, (N−−(x))i,j} with j ∈ S+ (called up-crossings) or

j ∈ S− (called down-crossings), respectively.

Lemma 3.3. ([98]) For x > 0, we have i) N++(x) = exp{Kx}; and ii) N+−(x) =

N++(x)Ψ = exp{Kx}Ψ. For x < 0, we have iii) N−−(x) = exp{K̂(−x)}; and iv)

N−+(x) = N−−(x)Ψ̂ = exp{K̂(−x)}Ψ̂.

The three sets of basic quantities are summarized in Table 3.1. References are given in

Table 3.1 for further reading on the basic quantities. Using the basic quantities, the joint

stationary distribution of the multi-layer MMFF process can be found in a closed form.

Solutions Intuitive Interpretation Paper

Ψ (Ψ̂) Equation (3.1.9)

Ψ (Ψ̂) contains the transition probabilities of the
state of underlying Markov chain Q from an epoch
that X(t) starts to increase (decrease) from 0 to
the next first epoch that X(t) returns to 0.

[77]
[86]
[98]
[103]

U (Û) Equation (3.1.10)
U (Û) contains the transition rates of the state of
the underlying Markov chain Q when the fluid level
reaches a new lower (higher) point.

[12]

K (K̂) Equation (3.1.14)
K (K̂) contains the numbers of visits to certain fluid
level and state during some first passage periods.

[98]

Table 3.1: Basic quantities for MMFF processes

There are some relationships between the mean drift ζ and the basic matrices. These

relationships are important for derivation and numerical computation.

Lemma 3.4. ([12, 98, 103]) The relationships between ζ and basic quantities are as follows.

• If ζ > 0, then we have i) Ψe < e and Ψ̂e = e; ii) Ue < 0 and Ûe = 0; and iii) K is

singular and K̂ is non-singular.
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• If ζ = 0, then we have i) Ψe = e and Ψ̂e = e; ii) Ue = 0 and Ûe = 0; and iii) K
and K̂ are singular.

• If ζ < 0, then we have i) Ψe = e and Ψ̂e < e; ii) Ue = 0 and Ûe < 0; and iii) K is

non-singular and K̂ is singular.

For extensions to multi-layer MMFF processes, we need quantities when the processes

constrained to an interval, say (a, b). Similar to matrices (N+(x))i,j and (N−(x))i,j, we

define, for a < x < b,

• (N
(a,b)
+ (x))i,j be the expected number of visits to state (x, j) before the process reaches

to level a or level b, given that the process started in (a, i) for i ∈ S+ (See Figure 3.2).

N
(a,b)
+ (x) can be divided into two sub-blocks N

(a,b)
++ (x) for up-crossings and N

(a,b)
+− (x)

for down-crossings according to j ∈ S+ or j ∈ S−, respectively.

• (N̂
(a,b)
− (x))i,j be the expected number of visits to state (x, j) before the process reaches

to level b or level a, given that the process started in (b, i) for i ∈ S−. N̂
(a,b)
− (x) can be

divided into two sub-blocks N̂
(a,b)
−+ (x) for up-crossings and N̂

(a,b)
−− (x) for down-crossings

according to j ∈ S+ or j ∈ S−, respectively.

5.5 8.6 21.8 28.0 30.3 36.3

t

j

i

a = 0

x = 5

b = 9

Up-crossing level x = 5  at state j

i

j j j j

Figure 3.2: Up-crossings of level x, starting from level a, before visiting level a or level b
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Lemma 3.5. ([45]) For a < x < b, we have(
I eK(b−a)Ψ

eK̂(b−a)Ψ̂ I

)(
N

(a,b)
+ (x)

N̂
(a,b)
− (x)

)
=

(
eK(x−a) 0

0 eK̂(b−x)

)(
I Ψ

Ψ̂ I

)
. (3.1.15)

The first matrix on the left hand side in the above equation is invertible if ζ 6= 0.

For the first passage probabilities from one fluid level to another (e.g., from a to b or

vice versa), we define, for a < b,

• Ψ
(b−a)
+− is defined similar to Ψ except that the process does not reach fluid level b

and the process starts in fluid level a; Ψ̂
(b−a)
−+ is defined similar to Ψ̂ except that the

process does not reach fluid level a and the process starts in fluid level b.

• Λ
(b−a)
++ is defined as the probabilities for the process to go from level a to level b before

returning to level a. Λ̂
(b−a)
−− is defined as the probabilities for the process to go from

level b to level a before returning to level b.

Lemma 3.6. ([45]) The matrices of first passage probabilities satisfy the following equa-

tions: (
Λ

(b−a)
++ Ψ

(b−a)
+−

Ψ̂
(b−a)
−+ Λ̂

(b−a)
−−

)(
I ΨeU(b−a)

Ψ̂eÛ(b−a) I

)
=

(
eÛ(b−a) Ψ

Ψ̂ eU(b−a)

)
. (3.1.16)

The second matrix on the left-hand-side of the above equation is invertible if ζ 6= 0.

Lemmas 3.5 and 3.6 are developed for MMFF processes with only one layer in their

paper, but they are the foundation of the analysis of multi-layer MMFF processes and

will be used repeatedly in the following sections.

3.2 Definition of Multi-Layer MMFF Processes

The multi-layer MMFF processes were first introduced in [32]. As a generalization of clas-

sical MMFF processes, multi-layer MMFF processes are fluid flow processes in which the
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changing rate of the fluid level is modulated by layer-dependent continuous-time Markov

chains. A multi-layer Markov modulated fluid flow (MMFF ) process {(X(t), φ(t)), t ≥ 0}
consists of following four parts.

1. Borders and Layers:

• There are N + 1 constants such that N ≥ 1 and l0 = −∞ < l1 < ... < lN =∞,

to be called Borders.

• Borders form N intervals (l0, l1), (l1, l2), ..., and (lN−1, lN), to be called Layer 1,

2, ..., and N , respectively.

2. Generator and fluid changing rates within Layer n, i.e, ln−1 < X(t) < ln, for

n = 1, ..., N : (In this part, a classical MMFF process is defined for each layer.)

• {φ(t), t ≥ 0} is a continuous time irreducible Markov chain on finite state space

S(n) with infinitesimal generator Q(n).

• The fluid process {X(t), t ≥ 0} is controlled by φ(.) such that the value of X(t)

changes linearly at rate c
(n)
φ(t) at time t. The rate c

(n)
i of fluid level change can be

positive, negative, or zero. We put the rates into vectors c(n) = {c(n)i , i ∈ S(n)}.
For convenience, the state space S(n) has to be partitioned into three subsets

according to the sign of c
(n)
i as follows:

S(n)
+ = {i ∈ S(n) : c

(n)
i > 0};

S(n)
− = {i ∈ S(n) : c

(n)
i < 0};

S(n)
0 = {i ∈ S(n) : c

(n)
i = 0}.

(3.2.1)

We further divide c(n), according the signs of its elements, and the infinitesimal

generator Q(n) of the underlying Markov chain as

c(n) = (c
(n)
+ , c

(n)
− , 0);Q(n) =

S(n)
+

S(n)
−

S(n)
0

 Q
(n)
++ Q

(n)
+− Q

(n)
+0

Q
(n)
−+ Q

(n)
−− Q

(n)
−0

Q
(n)
0+ Q

(n)
0− Q

(n)
00

 . (3.2.2)
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Given the generator Q(n) and fluid rates c(n) in Layer n, the mean drift of the

fluid in Layer n is

ζ(n) = α(n)c(n), (3.2.3)

where α(n) is the stationary distribution of Q(n). Note that we also put fluid

changing rate in diagonal matrices for computational convenience as

C
(n)
+ = diag(c

(n)
+ );C

(n)
− = diag(c

(n)
− ). (3.2.4)

3. Generator on Border n, i.e, X(t) = ln, for n = 1, ..., N − 1:

• X(t) remains at ln during the period that φ(t) is in S(n)
b with sub-generator Q

(n)
bb ,

until φ(t) switches from S(n)
b to either S(n)

− with transition rate matrix Q
(n)
b+ or

S(n+1)
+ with transition rate matrix Q

(n)
b− .

• Note that Q
(n)
bb e +Q

(n)
b+ e +Q

(n)
b− e = 0, where e is the column vector of ones with

an appropriate size.

4. Transitions when reaching Border n, for n = 1, ..., N − 1:

• If X(t) reaches ln from below, the process {φ(t), t ≥ 0} can switch from S(n)
+ to

S(n)
− (i.e., reflecting back to Layer n) with probability P

(n)
+b−; S(n+1)

+ (i.e., passing

Border n to Layer (n+ 1)) with probability P
(n)
+b+; S(n)

b (i.e., entering Border n)

with probability P
(n)
+bb.

• If X(t) reaches ln from above, the process {φ(t), t ≥ 0} can switch from S(n+1)
−

to S(n+1)
+ (i.e., reflecting back to Layer (n+ 1)) with probability P

(n)
−b+; S(n)

− (i.e.,

passing Border n to Layer n) with probability P
(n)
−b−; S(n)

b (i.e., entering Border

n) with probability P
(n)
−bb.

• Note that P
(n)
+b+e + P

(n)
+b−e + P

(n)
+bbe = e; and P

(n)
−b+e + P

(n)
−b−e + P

(n)
−bbe = e.

• We shall call a border i) a sticky border if S(n)
b is nonempty; ii) a crossable border

if one of P
(n)
−b− and P

(n)
+b+ is nonzero; and iii) a reflective border if one of P

(n)
−b+ and

P
(n)
+b− is nonzero.
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With the above definition, if we define c
(n)
i = 0 for all n and i ∈ S(n)

b , then X(t) is

controlled by φ(t) explicitly as

X(t) = X(0) +

∫ t

0

c
(L(X(s)))
φ(s) ds, or

dX(t)

dt
= c

(L(X(t)))
φ(t) , (3.2.5)

where L(x) = n if ln−1 < x < ln, for n = 1, ..., N .

The classical MMFF processes are obviously special cases of multi-layer MMFF pro-

cesses when there is only one layer. Another special case is the classical Markov modulated

fluid queue (MMFQ) with N = 2 and the fluid level truncated at Border l1 = 0.

In general, the multi-layer MMFF process does not have the independent incremental

property, and its evolutions in individual layers interact with each other through the bor-

ders. On the other hand, it evolves conditionally independently within individual layers.

This observation implies that the process can be analyzed separately in individual layers

and then all layers are combined together. The study of the process within individual layers

is equivalent to that of the classical MMFF process, thus the basic quantities introduced

in Section 3.1 are essential for the analysis of multi-layer MMFF processes. Since the gen-

erator and fluid changing rates are different for individual layers, we add the superscript

“(n)” to the basic quantities for Layer n as Ψ(n), Ψ̂(n), U (n), Û (n), K(n) and K̂(n).

Example 3.1. Parameters of a multi-layer MMFF process with N = 3 are presented

in Table 3.2. In this example, all borders (l1 = −2 and l2 = 3) are sticky, reflective

and crossable, which means the fluid can enter the borders and cumulate mass at that

level. The generator and fluid changing rates for individual layers are quite different. The

basic quantities for this example can be found in Table 3.3. The numerical result satisfies

Lemma 3.4. The sample paths can be found in Figure 3.3.

30



Borders / Layers Parameters
Border (L3 =∞) Not defined

Layer 3 c(3) = (1.5, −3, −10, 0); Q(3) =


−3 1.5 1 0.5
2 −3 0 1
2 1 −4 1

0.5 0.5 0 −1

 .

Border (L2 = 3)

Q
(2)
bb =

(
−3 1
1 −2

)
; Q

(2)
b+ =

(
1.5
0.3

)
; Q

(2)
b− =

(
0.5
0.7

)
;

P
(2)
+b+ =

(
0.1

)
; P

(2)
+b− =

(
0.4

)
; P

(2)
+bb =

(
0.3 0.2

)
;

P
(2)
−b+ =

(
0.3
0.3

)
; P

(2)
−b− =

(
0.1
0.1

)
; P

(2)
−bb =

(
0.2 0.4
0.4 0.2

)
.

Layer 2 c(2) = (5, −2.5, 0, 0); Q(2) =


−2 0.5 0.5 1
1 −2 1 0
0 1 −1 0
1 0 0 −1

 .

Border (L1 = −2)

Q
(1)
bb =

(
−1

)
; Q

(1)
b+ =

(
0.2

)
; Q

(1)
b− =

(
0.8

)
;

P
(1)
+b+ =

(
0.3
0.5

)
; P

(1)
+b− =

(
0.3
0.1

)
; P

(1)
+bb =

(
0.4
0.4

)
;

P
(1)
−b+ =

(
0.2

)
; P

(1)
−b− =

(
0.3

)
; P

(1)
−bb =

(
0.5

)
.

Layer 1 c(1) = (20, 3, −2, 0); Q(1) =


−1 0 1 0
0 −1 0 1
1 2 −5 2
1 0 1 −2

 .

Border (L0 = −∞) Not defined

Table 3.2: Parameters of Example 3.1
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Quantities Layer n = 1 Layer n = 2 Layer n = 3

ζ(n) 10.6667 1.2500 -1.6905

Ψ(n)

(
0.0257
0.0766

) (
0.5

) (
0.5929 0.4071

)
Ψ̂(n)

(
0.5518 0.4482

) (
1
) (

0.4024
0.1895

)
U (n)

(
−1.8977

) (
−0.2000

) (
−0.3393 0.3393
0.2982 −0.2982

)
Û (n)

(
−0.0224 0.0224
0.2586 −0.2586

) (
0
) (

−1.2375
)

K(n)

(
−0.0243 0.0257
0.2433 −0.2567

) (
0
) (

−1.2375
)

K̂(n)
(
−1.8977

) (
−0.2000

) (
−0.3638 0.2683
0.3711 −0.2736

)
Ψ

(ln−ln−1)
+− NA

(
0.3873

)
NA

Ψ̂
(ln−ln−1)
−+ NA

(
0.7746

)
NA

Λ
(ln−ln−1)
++ NA

(
0.6127

)
NA

Λ̂
(ln−ln−1)
−− NA

(
0.2254

)
NA

Table 3.3: Basic quantities for Example 3.1

3.3 Joint Stationary Distribution

In this section, we present the solution for the joint stationary distribution of the fluid level

and the state of the underlying Markov chain. Define, for −∞ < x <∞,

p
(n)
j = lim

t→∞
P{X(t) = ln, φ(t) = j | X(0), φ(0)}, for j ∈ S(n)

b , n = 1, 2, ..., N − 1;

g
(n)
j (x) = lim

t→∞
P{X(t) < x, φ(t) = j | X(0), φ(0)}, for j ∈ S(n), n = 1, 2, ..., N ;

π
(n)
j (x) =

dg
(n)
j (x)

dx
, for j ∈ S(n), n = 1, 2, ..., N.

(3.3.1)
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Let,

p(n) = (p
(n)
j : j ∈ S(n)

b ), for n = 1, 2, ..., N − 1;

π(n)(x) = (π
(n)
j (x) : j ∈ S(n)), for n = 1, 2, ..., N and−∞ < x <∞.

(3.3.2)

Our analysis consists of three steps. Step 1: We use semi-Markov chain theory to get the re-

lationship between the density function π(n)(x), the border probabilities {p(1), ...,p(N−1)},
and an integral of a conditional density function in Subsection 3.3.1; Step 2: Construct

a censored CTMC to find the border probabilities {p(1), ...,p(N−1)} and use the border

probabilities to get the coefficients of the density function in Subsection 3.3.2; Step 3 (Sub-

section 3.3.3): Put things together to find the closed form expressions for the stationary

joint density function.

3.3.1 Density Function and Level-Crossing Numbers

Let fj(x, t) be the density at the state (x, j) at time t, given the initial state (X(0), φ(0)),

and define two taboo conditional density functions as follows

• γ(n)k,j (ln−1, x, t) be the taboo conditional density of (x, j) at time t, avoiding both

Border ln−1 and Border ln in the time interval (0, t), given that the initial state is

(ln−1, k), for ln−1 < x < ln;

• γ(n)k,j (ln, x, t) be the taboo conditional density of (x, j) at time t, avoiding both Border

ln−1 and Border ln in the time interval (0, t), given that the initial state is (ln, k), for

ln−1 < x < ln.

We note that fj(x, t)h ≈ P{x < X(t) < x+ h, φ(t) = j} for initial condition (X(0), φ(0)),

and γ
(n)
k,j (y, x, t)h is approximately the taboo conditional probability that the fluid level is

in (x, x+ h) at time t.

For ln−1 < x < ln, we condition on the state at which the process is either in Border

ln−1 or ln for the last time before reaching state (x, j) at time t. After that time point,

denoted as t−τ , the process will be between the two borders until it reaches (x, j) at t (see
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Figure 3.3). At the point t− τ , the fluid level either touches one of the borders and enters

into the interval (ln−1, ln) or goes from one of the two borders into the interval (ln−1, ln), a

total of six cases. The corresponding probabilities for the occurrence for the six cases are

given approximately as follows.
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Figure 3.3: The fluid process in (0, t) with (X(t), φ(t)) = (x, j) and the time epoch t− τ

1. Approaching Border ln−1 from above in state i ∈ S(n)
− , the probability is given by

PX(0),φ(0){ln−1<X(t−τ)<ln−1+cidτ,φ(t−τ)=i}
c
(n)
i dτ

c
(n)
i dτ , which can be written in density function

as: fi(ln−1+, t− τ)c
(n)
i dτ . Then the process can be reflected at Border ln−1 at epoch

t − τ with (matrix) probability P
(n−1)
−b+ . (Remark: In state i, when the time elapses

dτ units, the fluid level changes by cidτ . That is why we need to use cidτ , instead

of only dτ in the expression.) (See Figure 3.3(a).)

2. Approaching Border ln−1 from below in state i ∈ S(n−1)
+ , the probability is given by

PX(0),φ(0){ln−1−cidτ<X(t−τ)<ln−1,φ(t−τ)=i}
c
(n−1)
i dτ

c
(n−1)
i dτ , which can be written in density func-
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tion as fi(ln−1−, t− τ)c
(n−1)
i dτ . Then the process can upcross Border ln−1 at epoch

t− τ with (matrix) probability P
(n−1)
+b+ . (See Figure 3.3(b).)

3. Leaving Border ln−1 from state i ∈ S(n−1)
b , the probability is given by p

(n−1)
i . Then

the process can enter Layer n at epoch t−τ with (matrix) probability Q
(n−1)
b+ dτ . (See

Figure 3.3(c).)

4. Approaching Border ln from above in state i ∈ S(n+1)
− , the probability is given by

PX(0),φ(0){ln<X(t−τ)<ln+cidτ,φ(t−τ)=i}
c
(n+1)
i dτ

c
(n+1)
i dτ , which can be written in density function

as fi(ln+, t − τ)c
(n+1)
i dτ . Then the process can downcross Border ln at epoch t − τ

with (matrix) probability P
(n)
−b−. (See Figure 3.3(d).)

5. Approaching Border ln from below in state i ∈ S(n)
+ , the probability is given by

PX(0),φ(0){ln−cidτ<X(t−τ)<ln,φ(t−τ)=i}
c
(n)
i dτ

c
(n)
i dτ , which can be written in density function as

fi(ln−, t − τ)c
(n)
i dτ . Then the process can be reflected at Border ln at epoch t − τ

with (matrix) probability P
(n)
+b−. (See Figure 3.3(e).)

6. Leaving Border ln from state i ∈ S(n)
b , the probability is given by p

(n)
i . Then the

process can enter Layer n at epoch t − τ with (matrix) probability Q
(n)
b− dτ . (See

Figure 3.3(f).)

Using the arguments given in [46], given (X(0), φ(0)), and conditioning on the state

35



change (i.e., i→ k) at epoch t− τ , we have, for ln−1 < x < ln,

fj(x, t)h

=
∑
i∈S(n)−

∑
k∈S(n)+

∫ t

0

fi(ln−1+, t− τ)c
(n)
i (P

(n−1)
−b+ )i,kγ

(n)
k,j (ln−1, x, τ)hdτ

+
∑

i∈S(n−1)
+

∑
k∈S(n)+

∫ t

0

fi(ln−1−, t− τ)c
(n−1)
i (P

(n−1)
+b+ )i,kγ

(n)
k,j (ln−1, x, τ)hdτ

+
∑

i∈S(n−1)
b

∑
k∈S(n)+

∫ t

0

p
(n−1)
i (Q

(n−1)
b+ )i,kγ

(n)
k,j (ln−1, x, τ)hdτ

+
∑

i∈S(n+1)
−

∑
k∈S(n)−

∫ t

0

fi(ln+, t− τ)c
(n+1)
i (P

(n)
−b−)i,kγ

(n)
k,j (ln, x, τ)hdτ

+
∑
i∈S(n)+

∑
k∈S(n)−

∫ t

0

fi(ln−, t− τ)c
(n)
i (P

(n)
+b−)i,kγ

(n)
k,j (ln, x, τ)hdτ

+
∑
i∈S(n)b

∑
k∈S(n)−

∫ t

0

p
(n)
i (Q

(n)
b− )i,kγ

(n)
k,j (ln, x, τ)hdτ

+gj(x, t)h+ o(h),

(3.3.3)

where gj(x, t) is the conditional density such that the fluid level is always in Layer n in (0, t).

Recall that fj(x, t)h ≈ P{x < X(t) < x + h, φ(t) = j} for initial condition (X(0), φ(0)),

and γ
(n)
j,k (y, x, t)h is approximately the taboo conditional probability that the fluid level is

in (x, x + h) at time t. We have the term o(h) because in a short period of time h/c
(n)
j ,

there can still be more than one transitions occurring. The sum of the probabilities of all

those events is o(h).

We assume that ζ(1) > 0, ζ(N) < 0, and the process is irreducible. Then the stochastic

process is ergodic. Consequently, the joint stationary distribution exists, is given by the

limit of Equation (3.3.3), and is independent of the initial status at t = 0. Letting h→ 0

and t→∞ in Equation (3.3.3), in matrix form, we obtain:

Theorem 3.1. ([66]) We assume that ζ(1) > 0, ζ(N) < 0, and the process is irreducible.

Then the joint stationary distribution exists. For ln−1 < x < ln and n = 1, 2, ..., N , we
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have

π(n)(x) = w
(n)
L

∫ ∞
0

γ(n)(ln−1, x, s)ds+ w
(n)
U

∫ ∞
0

γ(n)(ln, x, s)ds, (3.3.4)

where

w
(n)
L = π

(n)
− (ln−1)C

(n)
− P

(n−1)
−b+ + π

(n−1)
+ (ln−1)C

(n−1)
+ P

(n−1)
+b+ + p(n−1)Q

(n−1)
b+ ;

w
(n)
U = π

(n+1)
− (ln)C

(n+1)
− P

(n)
−b− + π

(n)
+ (ln)C

(n)
+ P

(n)
+b− + p(n)Q

(n)
b− .

(3.3.5)

(Note: For notational convenience, we have added γ(1)(l0, x, s) = 0 and γ(M+N)(lN , x, s) = 0

to the above equation. Recall that the underlying Markov chain {φ(t), t ≥ 0} is irreducible

when the fluid level is in a certain layer.)

According to Theorem 3.1, to find the joint stationary distribution, we still need the

following sets of border probabilities and coefficients in vector form and the two integrals

in the above expression:

1. {p(n), n = 0, 1, 2, ..., N}; (Note that p(0) = p(N) = 0.)

2. {w(n)
L ,w

(n)
U n = 1, 2, ..., N};(Note that w

(1)
L = w

(N)
U = 0.)

3.
∫∞
0
γ(n)(ln−1, x, s)ds and

∫∞
0
γ(n)(ln, x, s)ds, for n = 1, 2, ..., N .

We find those two sets of vectors in the next subsection. The integrals can be calculated

by Lemma 3.7.

Lemma 3.7. ([66]) Matrices of the integrals satisfy the following equation:

(
I eK

(n)bnΨ(n)

eK̂
(n)bnΨ̂(n) I

)
∫ ∞
0

γ(n)(ln−1, x, s)ds∫ ∞
0

γ(n)(ln, x, s)ds


=

(
eK

(n)(x−ln−1) 0

0 eK̂
(n)(ln−x)

)(
(C

(n)
+ )−1 Ψ(n)(C

(n)
− )−1 Γ(n)

Ψ̂(n)(C
(n)
+ )−1 (C

(n)
− )−1 Γ̂(n)

)
,

(3.3.6)
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where bn = ln − ln−1, denote the width of the n-th layer, and

Γ(n) =
(

(C
(n)
+ )−1Q

(n)
+0 + Ψ(n)(C

(n)
− )−1Q

(n)
−0

)
(−Q(n)

00 )−1;

Γ̂(n) =
(

Ψ̂(n)(C
(n)
+ )−1Q

(n)
+0 + (C

(n)
− )−1Q

(n)
−0

)
(−Q(n)

00 )−1.
(3.3.7)

If ζ(n) 6= 0, the first matrix on the left hand side of Equation (3.3.6) is invertible.

Lemma 3.7 is derived from Lemma 3.5 by multiplying the number of visits (N
(ln−1,ln)
+ (x)

and N̂
(ln−1,ln)
− (x)) with the time length to generate one unit of fluid ((C

(n)
+ )−1 and (C

(n)
− )−1),

with the consideration of S(n)
0 (related to Γ(n) and Γ̂(n)).

3.3.2 Border Probabilities and Coefficients

In this subsection, we want to find out the border probabilities {p(1), ...,p(N−1)} and the

coefficients {w(n)
L ,w

(n)
U n = 1, 2, ..., N}. For that purpose, we have three steps:

1. Construct an embedded discrete time Markov chain with the border states as absorp-

tion states to find out which border it will enter after the process leaving a border;

2. Build a continuous time Markov chain by censoring out the periods that the original

MMFF process is between borders to find out the border probabilities {p(1), ...,p(N−1)};

3. Use the border probabilities and the embedded discrete time Markov chain to find

out the coefficients {w(n)
L ,w

(n)
U n = 1, 2, ..., N}.

Step 1: We construct a discrete time Markov chain such that the border states are

absorption states. We first define two fictitious sets of states for the n-th border: i) a

set of states for leaving the border by increasing the fluid level: which is S(n+1)
+ ; and ii)

a set of states for leaving the border by decreasing the fluid level: which is S(n)
− . Plus

the border states S(n)
b , we have three sets of states associated with each border. We

arrange the states in the order: (S(1)
− ,S(2)

+ , S(2)
− ,S(3)

+ , ..., S(N−1)
− ,S(N)

+ , S(1)
b , ...,S(N−1)

b ). The

embedded discrete time Markov chain is defined at the time epochs the MMFF process is

38



leaving (e.g., up-crossing, down-crossing, reflecting, and entering) a border. The transition

probability matrix D of the Markov chain has the following structure:

D =

(
A B

0 I

)
, (3.3.8)

where matrixA contains all the transition blocks from {S(1)
− ,S(2)

+ , S(2)
− ,S(3)

+ , ..., S(N−1)
− ,S(N)

+ }
to themselves, and matrix B contains all the transition blocks from {S(1)

− ,S(2)
+ , S(2)

− ,S(3)
+ ,

..., S(N−1)
− ,S(N)

+ } to {S(1)
b , ...,S(N−1)

b }. The transition blocks in A and B can be expressed

explicitly by the basic quantities as follows.

• From S(n)
− (i.e., the set below the n-th border), the process can

1. return to itself (i.e., S(n)
− ) with (matrix) probability Ψ̂

(ln−ln−1)
−+ P

(n)
+b−, (Note: If

n = 1 (below) or n = N (above), we should use the unbounded Ψ̂ and Ψ to

replace Ψ̂
(ln−ln−1)
−+ and Ψ

(ln−ln−1)
+− , respectively.)

2. go to the set above the n-th border (i.e., S(n+1)
+ ) with probability Ψ̂

(ln−ln−1)
−+ P

(n)
+b+,

3. enter the n-th border (i.e., S(n)
b ) with probability Ψ̂

(ln−ln−1)
−+ P

(n)
+bb,

4. go to the set above the (n−1)-st border (i.e., S(n)
+ ) with probability Λ̂

(ln−ln−1)
−− P

(n−1)
−b+ ,

5. go to the set below the (n−1)-st border (i.e., S(n−1)
− ) with probability Λ̂

(ln−ln−1)
−− P

(n−1)
−b− ,

and

6. enter the (n− 1)-st border (i.e., S(n−1)
b ) with probability Λ̂

(ln−ln−1)
−− P

(n−1)
−bb .

• From S(n+1)
+ (i.e., the set above the n-th border), the process can

1. return to itself (i.e., S(n+1)
+ ) with probability Ψ

(ln+1−ln)
+− P

(n)
−b+,

2. go to the set below the n-th border (i.e., S(n)
− ) with probability Ψ

(ln+1−ln)
+− P

(n)
−b−,

3. enter the n-th border (i.e., S(n)
b ) with probability Ψ

(ln+1−ln)
+− P

(n)
+bb,

4. go to the set above the (n+1)-st border (i.e., S(n+2)
+ ) with probability Λ

(ln+1−ln)
++ P

(n+1)
+b+ ,

5. go to the set below the (n+1)-st border (i.e., S(n+1)
− ) with probability Λ

(ln+1−ln)
++ P

(n+1)
+b− ,

and
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6. enter the (n+ 1)-st border (i.e., S(n+1)
b ) with probability Λ

(ln+1−ln)
++ P

(n+1)
+bb .

The absorption probabilities from those “leaving border” sets to the border sets can be

obtained by

(I − A)−1B =

S(n)
b

...

S(m)
−

S(m+1)
+

...


...

. . . H
(m,n)
−b . . .

. . . H
(m,n)
+b . . .
...

 ,
(3.3.9)

where H
(m,n)
−b contains the probabilities that the first border entered by the original MMFF

process, after leaving the m-th border by decreasing in the set S(m)
− , is S(n)

b , and H
(m,n)
+b

contains the probabilities that the first border entered by the original MMFF process,

after leaving the m-th border by increasing in the set S(m+1)
+ , is S(n)

b .

Step 2: We build a continuous time Markov chainQp by censoring out the periods that

the original MMFF process is between borders. Thus, the state space of Qp constitutes

(only) all the border states S(1)
b ∪ S

(2)
b ∪ ... ∪ S

(N−1)
b . The infinitesimal generator Qp can

be divided into blocks as follow:

Qp =

S(n)
b

S(m)
b


...

. . . Qm,n . . .
...

 ,
(3.3.10)

where, for m,n = 1, 2, ..., N − 1,

Qm,n =

{
Q

(m)
bb +Q

(m)
b− H

(m,m)
−b +Q

(m)
b+ H

(m,m)
+b , if m = n;

Q
(m)
b− H

(m,n)
−b +Q

(m)
b+ H

(m,n)
+b , if m 6= n.

(3.3.11)

Let p = (p(1),p(2), ...,p(N−1)), we have the following result.

Lemma 3.8. Vector p is proportional to the steady state probability of the process with

generator Qp.
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Proof. We mimic the proof given by Theorem 2.2 in [45], in which the case with only one

sticky border is considered. We denote by φ̂(t) the censored process of φ(t) observed only

when the fluid is in borders. We define θ̂0 = inf{t ≥ 0 : φ(t) ∈ S(m)
b ,m = 1, 2, ..., N − 1},

and for n ≥ 0, δ̂n = inf{t > θ̂n : φ(t) 6∈ S(m)
b ,m = 1, 2, ..., N − 1}, θ̂n+1 = inf{t > δ̂n :

φ(t) ∈ S(m)
b ,m = 1, 2, ..., N − 1}. Define Θn =

∑n
i=0(δ̂i − θ̂i) for n ≥ 0. Then the process

φ̂(t) evolves in the interval (Θn−1,Θn) exactly like φ(t) in the interval (θ̂n, δ̂n). Vector

p is proportional to the steady state probability of the process φ̂(t) (see [54]). By the

construction process of Qp given above, we can see that Qp is the generator of φ̂(t), which

completes the proof.

We can first solve the linear system pQp = 0 and pe = 1 for vector p. But vector p is

not the actual border probabilities. We shall further normalize p to get the actual border

probabilities, which will be discussed later.

Step 3: The computation of the coefficients (w
(n)
L ,w

(n)
U ) requires the border probabil-

ities and the matrix A in the embedded discrete time Markov chain in Equation (3.3.8).

Lemma 3.9. Let w = (w
(1)
U ,w

(2)
L ,w

(2)
U ,w

(3)
L , ...,w

(N−1)
U ,w

(N)
L ), we have

w = wA+ (p(1)Q
(1)
b− ,p

(1)Q
(1)
b+ ,p

(2)Q
(2)
b− , ...,p

(N−1)Q
(N−1)
b− ,p(N−1)Q

(N−1)
b+ ). (3.3.12)

Proof. First, based on the definition of matrix A, Equation (3.3.12) can be written as a

set of linear equations as follows, for n = 1, 2, ..., N − 1,

w
(n)
U = w

(n)
L Λ

(ln−ln−1)
++ P

(n)
+b− + w

(n)
U Ψ̂

(ln−ln−1)
−+ P

(n)
+b− + w

(n+1)
L Ψ

(ln+1−ln)
+− P

(n)
−b−

+w
(n+1)
U Λ̂

(ln+1−ln)
−− P

(n)
−b− + p(n)Q

(n)
b− ;

w
(n+1)
L = w

(n)
L Λ

(ln−ln−1)
++ P

(n)
+b+ + w

(n)
U Ψ̂

(ln−ln−1)
−+ P

(n)
+b+ + w

(n+1)
L Ψ

(ln+1−ln)
+− P

(n)
−b+

+w
(n+1)
U Λ̂

(ln+1−ln)
−− P

(n)
−b+ + p(n)Q

(n)
b+ ,

(3.3.13)

where w
(1)
L = 0, w

(N)
U = 0.

Essentially, we need to prove these two equations in (3.3.13). For the first equation, by

definition in Equation (3.3.5), we have

w
(n)
U = π

(n+1)
− (ln)C

(n+1)
− P

(n)
−b− + π

(n)
+ (ln)C

(n)
+ P

(n)
+b− + p(n)Q

(n)
b− . (3.3.14)
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We use Equation (3.3.4) in Theorem 3.1 to give the expression of the density limits

π
(n+1)
− (ln) and π

(n)
+ (ln), we have

π
(n+1)
− (ln) = w

(n+1)
L

∫ ∞
0

γ(n+1)(ln, ln, s)ds+ w
(n+1)
U

∫ ∞
0

γ(n+1)(ln+1, ln, s)ds,

π
(n)
+ (ln) = w

(n)
L

∫ ∞
0

γ(n)(ln−1, ln, s)ds+ w
(n)
U

∫ ∞
0

γ(n)(ln, ln, s)ds.
(3.3.15)

Then, we replace these two density limits in (3.3.14), we have

w
(n)
U =

(
w

(n+1)
L

∫ ∞
0

γ(n+1)(ln, ln, s)ds+ w
(n+1)
U

∫ ∞
0

γ(n+1)(ln+1, ln, s)ds

)
C

(n+1)
− P

(n)
−b−

+

(
w

(n)
L

∫ ∞
0

γ(n)(ln−1, ln, s)ds+ w
(n)
U

∫ ∞
0

γ(n)(ln, ln, s)ds

)
C

(n)
+ P

(n)
+b−

+p(n)Q
(n)
b− .

(3.3.16)

Next, we need to evaluate the integrals in the above equation. By the definition of the

taboo conditional density functions, we have

γ
(n)
k,j (ln, ln, s)h

≈ P{ln < X(s) < ln + h, φ(t) = j, ln−1 < X(t) < ln, t ∈ (0, s)|X(0) = ln, φ(0) = k}.
(3.3.17)

If φ(s) = j when the process approaching Border ln at time s, the fluid level changing rate

is c
(n)
j . Suppose the time elapses ds, the first return probability from (X(0) = ln, φ(0) = k)

to (X(s) = ln, φ(s) = j) at time s without touching Border ln−1 is γ
(n)
k,j (ln, ln, s)c

(n)
j ds.

Integrating the probability with respect to the time s from 0 to ∞ and in matrix form we

have
∫∞
0
γ(n)(ln, ln, s)dsC

(n)
+ , which gives us the first return probabilities to Border ln from

Border ln, without touching Border ln−1. It turns out that this integral is equivalent to

Ψ̂
(ln−ln−1)
−+ .

Similarly, the integral
∫∞
0
γ(n)(ln−1, ln, s)dsC

(n)
+ is equivalent to Λ

(ln−ln−1)
++ . The integrals∫∞

0
γ(n+1)(ln, ln, s)dsC

(n+1)
− and

∫∞
0
γ(n+1)(ln+1, ln, s)dsC

(n+1)
− respectively give us the first

return probabilities to Border ln from Border ln, without touching Border ln+1, and the

first passage probabilities to Border ln from Border ln+1, without returning to Border ln+1.

In matrix form, they are equivalent to Ψ
(ln+1−ln)
+− and Λ̂

(ln+1−ln)
−− , respectively. This leads to
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the desired first equation in (3.3.13).

The second equation in (3.3.13) can be obtained in the same way, details are omitted.

3.3.3 Closed Form Expressions

With the assumption that ζ(1) > 0 and ζ(N) < 0, the stationary distribution of the MMFF

process exists. The expressions for the density functions and distribution functions can be

found with all the vectors in place. We define, for n = 1, 2, ..., N ,

(u
(n)
+ , u

(n)
− ) = (w

(n)
L , w

(n)
U )

(
I eK

(n)bnΨ(n)

eK̂
(n)bnΨ̂(n) I

)−1
, (3.3.18)

recall bn = ln − ln−1, denote the width of the n-th layer.

Combining Equation (3.3.18) and Lemma 3.7, we obtain a closed form expression of

the joint density function.

Theorem 3.2. ([66]) We assume that ζ(1) > 0, ζ(N) < 0, and ζ(n) 6= 01 , for n =

2, ..., N − 1. For n = 1, 2, ..., N , we have, for ln−1 < x < ln, the joint density function

π(n)(x) = u
(n)
+ eK

(n)(x−ln−1)((C
(n)
+ )−1, Ψ(n)(C

(n)
− )−1, Γ(n))

+u
(n)
− eK̂

(n)(ln−x)(Ψ̂(n)(C
(n)
+ )−1, (C

(n)
− )−1, Γ̂(n)).

(3.3.19)

Now, we construct the joint stationary distribution function. Let G(n)(x) =
∫ x
ln−1

π(n)(x)dx.

We obtain, for ln−1 < x < ln and n = 1, 2, ..., N ,

G(n)(x) = u
(n)
+

∫ x

ln−1

eK
(n)(y−ln−1)dy

(
(C

(n)
+ )−1, Ψ(n)(C

(n)
− )−1, Γ(n)

)
+u

(n)
−

∫ x

ln−1

eK̂
(n)(ln−y)dy

(
Ψ̂(n)(C

(n)
+ )−1, (C

(n)
− )−1, Γ̂(n)

)
.

(3.3.20)

1We note that results for the case with ζ(n) = 0 for some n = 2, 3, ..., N − 1 are much more involved.
We choose not to consider that case. Yet it is an interesting topic for future research.
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Finally, we need to normalize the coefficients in the joint density function {u(n)
+ ,u

(n)
− }

and the border probabilities p(n). By the law of total probability, the normalization factor

is given by

cnorm =
N−1∑
n=1

p(n)e +
N∑
n=1

u
(n)
+

∫ ln

ln−1

eK
(n)(y−ln−1)dy

(
(C

(n)
+ )−1,Ψ(n)(C

(n)
− )−1,Γ(n)

)
e

+
N∑
n=1

u
(n)
−

∫ ln

ln−1

eK̂
(n)(ln−y)dy

(
Ψ̂(n)(C

(n)
+ )−1, (C

(n)
− )−1, Γ̂(n)

)
e.

(3.3.21)

Consequently, we have u
(n)
+ =: u

(n)
+ /cnorm, u

(n)
+ =: u

(n)
− /cnorm and p(n) =: p(n)/cnorm

Many quantities of interest can then be obtained. For example, the m-th moment of

the (steady state) fluid level can be obtained as:

E[Xm(t)] =
N−1∑
n=1

lmn p(n)e +
N∑
n=1

∫ ln

ln−1

xmdG(n)(x)e

=
N−1∑
n=1

lmn p(n)e +
N∑
n=1

u
(n)
+

∫ ln

ln−1

ymeK
(n)(y−ln−1)dy

(
(C

(n)
+ )−1,Ψ(n)(C

(n)
− )−1,Γ(n)

)
e

+
N∑
n=1

u
(n)
−

∫ ln

ln−1

ymeK̂
(n)(ln−y)dy

(
Ψ̂(n)(C

(n)
+ )−1, (C

(n)
− )−1, Γ̂(n)

)
e.

(3.3.22)

Then, the mean and variance of the (steady state) fluid level can be easily found respectively

by E[X(t)] and E[X2(t)]− (E[X(t)])2.

The integrals in Equations (3.3.20), (3.3.21), and (3.3.22) can be evaluated by using

expressions in Lemma B.1 given in Appendix B.

3.4 Algorithm 1 and Numerical Examples

In this section, we summarize the computation steps for computing the density function,

distribution function, and the mean fluid level in Algorithm 1, then we present some
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numerical examples.

Algorithm 1: The joint stationary distribution of multi-layer MMFF processes

1. Input Parameters: {l0 = −∞, l1, ..., lN−1, lN =∞}, {Q(n), C
(n)
+ , C

(n)
− }, n = 1, 2, ..., N ,

and {P (n)
+b+, P

(n)
+b0, P

(n)
+b−, P

(n)
−b+, P

(n)
−b0, P

(n)
−b−, Q

(n)
b , Q

(n)
b+ , Q

(n)
b− }, for n = 1, 2, ..., N − 1;

2. Compute {Ψ(n),K(n),U (n), Ψ̂(n), K̂(n), Û (n)} for {Q(n), C
(n)
+ , C

(n)
− } by using the

algorithm in Appendix A and equations in Section 3.1, for n = 1, 2, ..., N ; Compute

{Γ(n), Γ̂(n)} by Equation (3.3.7) for n = 1, 2, ..., N ;

3. Compute {Ψ(ln−ln−1)
+− , Ψ̂

(ln−ln−1)
−+ ,Λ

(ln−ln−1)
++ , Λ̂

(ln−ln−1)
−− } for {Q(n), C

(n)
+ , C

(n)
− }, for

n = 1, 2, ..., N , by using Equation (3.1.16);

4. Construct matrix A and B (Equation (3.3.8)). Compute {H(m,n)
−b , H

(m,n)
+b } for

m,n = 1, 2, ..., N by using Equation (3.3.9);

5. Construct Qp by using Equations (3.3.10) and (3.3.11); Solve linear system

pQp = 0 and pe = 1 for {p1, ...,pN−1};

6. Compute {w(n)
U ,w

(n)
L , n = 1, 2, ..., N} by Lemma 3.9;

7. Compute {u(n)
+ ,u

(n)
− , n = 1, 2, ..., N} by Equation (3.3.18);

8. Compute cnorm by using Equation (3.3.21) and Lemma B.1;

9. Use cnorm to normalize {p(n), n = 1, 2, ..., N − 1} and {u(n)
+ ,u

(n)
− , n = 1, 2, ..., N};

10. Use the updated vectors and Lemma B.1 to compute the stationary distribution

function (Equation (3.3.20)), density function (Equation (3.3.19)), and the

moments of the steady state fluid level (Equation (3.3.22)).

Example 3.1. (continued) Applying the algorithm to Example 3.1, we obtained the

density function of the fluid level (See Figure 3.4 (a)) and calculated the mean fluid level

at E[X(t)] = 1.3443 and the variance of the fluid level V ar[X(t)] = 4.2857. For this

three-layer MMFF process, the density function changes drastically at the two borders.
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If we make all the borders in Example 3.1 non-sticky and change the passing and

reflecting probabilities a little bit. The density function of the fluid level is in Figure

3.4(b). Since generators and fluid changing rates in layers are unchanged, all the basic

quantities in Table 3.3 remain the same, but the mean and variance of the fluid level

become E[X(t)] = 1.1927 and V ar[X(t)] = 3.4793.
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Figure 3.4: The density functions of two multi-layer MMFF processes

Example 3.2. To demonstrate the ability of our algorithm to handle a moderately large

number of layers, We present an example with N = 102. All borders (l1 = −50, l2 =

−49, ..., l50 = −1, l51 = 0, l52 = 1, ..., l101 = 50) are sticky, reflective and crossable. The gen-

erator and fluid changing rates for individual layers and borders are presented in Table 3.4.

The mean and variance of the fluid level are E[X(t)] = −0.1785 and V ar[X(t)] = 67.8507.

Figure 3.5 shows the variety of the density functions that can be generated by multi-layer

MMFF processes.
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Borders / Layers Parameters

Layer n,
for n = 1, 2, ..., N

c(n) = (33− 0.3n, 23− 0.2n, −10− 0.3n, −5− 0.4n, 0, 0);

Q(n) =

−1− 0.1n 0 0.5 + 0.3n 0 0.5 + 0.7n 0
0 −1− 0.3n 0 0.5 + 0.1n 0.5 + 0.2n 0

1 + 0.1n 0 −2− 0.2n 0 1 + 0.1n 0
0 1 + 0.2n 0 −2− 0.5n 0 1 + 0.3n
0 1 + 0.1n 1 + 0.1n 0 −2− 0.2n 0

1 + 0.1n 0 0 1 + 0.1n 0 −2− 0.2n

 .

Border n,
for n = 1, 2, ..., N − 1

Q
(n)
bb =

(
−2n

)
; Q

(n)
b+ =

(
0.5n 0.5n

)
; Q

(n)
b− =

(
0.5n 0.5n

)
;

P
(n)
+bb =

(
0.2
0.2

)
; P

(n)
+b+ =

(
0.2 0.2
0.2 0.2

)
; P

(n)
+b− =

(
0.2 0.2
0.2 0.2

)
;

P
(n)
−bb =

(
0.2
0.2

)
; P

(n)
−b+ =

(
0.2 0.2
0.2 0.2

)
; P

(n)
−b− =

(
0.2 0.2
0.2 0.2

)
.

Table 3.4: Parameters of Example 3.2
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Figure 3.5: The density function of the multi-layer MMFF process in Example 3.2
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3.5 Summary

In this chapter, we discuss the basic theory on multi-layer MMFF processes in which the

fluid changing rate can be any real value and all borders can be sticky, reflective and cross-

able. We develop Algorithm 1 to compute the joint stationary distribution. This algorithm

works well for small/moderate size problems. For large size problems, the algorithm has

to be modified in order to reduce the size of the state space. For instance, computation of

border probabilities p has some dimensionality issue since the matrix Qp can be too big

for numerical evaluation. On the other hand, the state space used in computation can be

drastically reduced for many cases by taking advantage of some special structures of the

MMFF processes.

Our main contributions in this chapter are two-fold. First, we review and refine the

existing theory on multi-layer MMFF processes. We consider all possible transitions (i.e.,

crossing, reflecting and entering) on borders. Second, we develop an efficient algorithm

for computing the joint stationary distributions. Although many existing algorithms have

been studied in the literature, we improve some computational steps (e.g., Lemma 3.9

simplifies the computational steps for those coefficients in [66]) and provide a clear and

easy to implement algorithm.

In the following applications to queueing models, we utilize a special type of MMFF

processes, which is called canonical fluid flow process. The fluid changing rate of this

special type of MMFF processes can only be 1 or −1. Therefore, there is no need to

consider S(n)
0 in computations since they are empty, and there is no need to construct and

use C
(n)
+ and C

(n)
− in computation (only multiplication involved) since they are identity

matrices. In addition, some other special structures and technical computational issues

will be discussed and Algorithm 1 will be modified to make the algorithm numerically

more efficient in the following chapters.
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Chapter 4

The MAP/PH/K+GI Queue

In this chapter, we study the MAP/PH/K + GI queueing model by the multi-layer

MMFF processes developed in Chapter 3. Because MAP can approximate any arrival

process, phase-type random variables can approximate any non-negative random variables,

and the abandonment time is a random variable with the general discrete distribution, the

model is a very general queueing system. We develop an efficient algorithm for computing

the steady state waiting times distributions, abandonment probabilities and queue lengths.

Some of the quantities are difficult to obtain by other methods.

This chapter is organized as follows. In Section 4.1, we first introduce the queueing

model explicitly. In Section 4.2, we introduce a Markov process associated with the age

of the customer at the head of the waiting queue, to be called the age process. Based on

the age process, we introduce a multi-layer MMFF process and present an algorithm for

the stationary distribution of the age process in Section 4.3. In Section 4.4, computational

procedures are developed for a number of queueing quantities. Numerical examples are

presented in Section 4.5.
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4.1 Definitions

In this section, we define the multi-server queueing model with random customer abandon-

ment time. Upon arrivals, all customers join a single queue with the first-come-first-serve

discipline. There are K identical servers. When the waiting time of a customer reaches

(random) time τ , the customer leaves the system without service.

i) The arrival process of customers follows a continuous time Markovian arrival process

(MAP ) (D0, D1), where D0 and D1 are square matrices of order ma. Intuitively,

D0 contains the transition rates without arrival and D1 contains the transition rates

with one arrival. The underlying Markov chain of the arrival process {Ia(t), t ≥ 0}
has an irreducible infinitesimal generator D = D0 +D1. The stationary distribution

θa of the underlying Markov chain satisfies θaD = 0 and θae = 1. The (average)

customer arrival rate is given by λ =θaD1e.

ii) All customers join a single queue waiting for service based on the first-come-first-serve

discipline. If a customer’s waiting time reaches random time τ , the customer leaves

the system immediately without service. The abandonment time τ has a discrete

distribution: P{τ = ln} = ηn, for n = 1, 2, ..., N , where l1 = 0 < l2 < ... < lN−1 <

lN =∞.

iii) There are K identical servers. When a server becomes available, the customer at the

head of the queue (if there is any) enters the server for service. If an arriving customer

finds an available server, the customer enters the server directly upon arrival.

iv) The service time of each customer has an identical phase-type distribution with PH -

representation (β, T ) of order ms. We assume that βe = 1, i.e., the service time of

a customer is always greater than 0. The mean service time is given by −βT−1e.

Let µs = 1/(−βT−1e), which is the service rate.

v) Define ρ = λ/(Kµs). We assume ηNρ < 1 to ensure the stability of the queueing

system. Since ηNλ is the arrival rate of customers with infinite abandonment time,

and Kµs is the total service rate of the system, ηNρ < 1 ensures that all customers
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are either served or abandon the system in finite time. Consequently, the system is

stable.

4.2 The Age Process and a Multi-Layer MMFF Pro-

cess

In order to analyze the queueing model by MMFF processes, we introduce a Markov

process associated with the age of the customer at the head of the queue. The age of a

customer is defined as the time elapsed since the customer enters the system. We assume

the customers arrive according to an MAP and service times are of phase-type. Then

tracking the age of the customer at the head of the queue, phase of the arrival process,

and phases of the service processes of individual servers, provides enough information to

describe the dynamics of the queueing system. Define

• a(t): the age of the customer at the head of the queue at time t, if the (waiting)

queue is not empty; otherwise, a(t) = 0 (See Figure 4.1(a)). If ln < a(t) < ln+1, for

n = 1, 2, ..., N −1, a(t) increases linearly at rate one if there is no service completion,

otherwise, a(t+ 0) = max{0, a(t)− u}, where u is the interarrival time between the

customer at the head of the queue and the customer who is currently behind it. If

a(t) = ln, for n = 2, 3, ..., N − 1, a(t) continues to increase linearly at rate one with

probability 1 − ηn/(ηn + ... + ηN); Otherwise, a(t + 0) = max{0, ln − u}, where u is

the interarrival time between the departing customer (since its waiting time reaches

ln) and the customer who is currently behind it. By this definition, if a(t) = 0, there

is no customer waiting for service.

• I(a)(t): If a(t) > 0, I(a)(t) is the phase of the customer arrival process when the

customer now at the head of the queue first entered the queue for service; and if

a(t) = 0, I(a)(t) is the phase of the customer arrival process at time t (i.e., I(a)(t) =

Ia(t).) By this definition, I(a)(t) is piece-wise constant and its value changes only

when a(t) drops down.
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• ni(t): the number of servers whose service phase is i at time t, for i = 1, 2, . . . , ms.

The process {(a(t), I(a)(t), n1(t), . . ., nms(t)), t ≥ 0} is a continuous time Markov chain

because both arrival and service are controlled by an underlying Markov chain and a(t) only

depends on the arrival and service processes. According to the total number of working

servers, the state space of (n1(t), . . ., nms(t)) can be organized as Ω(0)∪Ω(1)∪ . . .∪Ω(K),

where, for k = 0, 1, 2, . . . , K,

Ω(k) =

{
n = (n1, ..., nms) : ni ≥ 0, ni integer, i = 1, ..., ms,

ms∑
i=1

ni = k

}
. (4.2.1)

The set Ω(k) consists of all states such that there are exactly k customers in service

(or k working servers), for k = 0, 1, . . . , K. The number of states in Ω(k) is given by

(k+ms− 1)!/(k!(ms− 1)!). Then the state space of the Markov process can be written as{
{0} × {1, ...,ma} × {∪Kk=0Ω(k)}

}
∪ {(0,∞)× {1, ...,ma} × Ω(K)} . (4.2.2)

Note: We use the CSFP method to track the service process in this chapter. The number

of states required by the underlying Markov chain for this approach isO

((
K +ms − 1

ms − 1

))
,

which is significant smaller than O(mK
s ), the number of required states by the TPFS

method.

Because of the independence between arrival process and service time distribution, we

have, if a(t) > 0, the phase of the customer arrival process is frozen (i.e., constant) except

for down-jump epochs. On the other hand, the phases of the service processes are changing

according to rate matricesQ(K,ms) for no service completion andQ−(K,ms)P
+(K−1,ms)

for service completion, and be frozen for down-jump epochs. If a(t) = 0, the arrival phases
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and service phases are all changing according to rate matrix

Q
(1)
bb =


A0,0 A0,1

A1,0 A1,1 A1,2

. . . . . . . . .

AK−1,K−2 AK−1,K−1 AK−1,K

AK,K−1 (D0 + η1D1)⊗ I + I ⊗Q(K,ms)

 ,

(4.2.3)

where A0,0 = D0, A0,1 = D1 ⊗ P+(0,ms), Ak,k−1 = I ⊗ Q−(k,ms), Ak,k = D0 ⊗ Q(k,ms)

and Ak,k+1 = D1⊗P+(k,ms). Matrices Q(k,ms), Q
−(k,ms) and P+(k,ms) are defined in

[64]. The construction of these matrices is quite complicated. Please refer to [64] for the

algorithm details.

Remark: For notational convenience, in the rest of this chapter, we let

Q0(K) = Q(K,ms);

Q1(K) = Q−(K,ms)P
+(K − 1,ms).

(4.2.4)

Next, we define a multi-layer MMFF process {(X(t), φ(t)), t ≥ 0} based on the age

process introduced above. The basic idea is to change the down jumps of the age process

into periods of decreasing fluid, keep the increasing periods of the age process for the

periods of increasing fluid, and keep the periods with a(t) = 0 for the periods with zero

fluid (See (a) and (b) in Figure 4.1). More specifically, we define
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Figure 4.1: Sample paths of the age process and its corresponding MMFF process

1. There are N layers with borders ln, for n = 1, 2, ..., N . Layer 1 is empty (i.e.,

S(1) = ∅).

2. For layer n ≥ 2, the state space for φ(t) is:

S(n)
+ = {+}× {1, ...,ma}×Ω(K), S(n)

− = {−}× {1, ...,ma}×Ω(K), and S(n)
0 = ∅.
(4.2.5)

The Q-matrix Q(n) of the underlying Markov chain is:

Q(n) =
S(n)
+

S(n)
−

(
I ⊗Q0(K) I ⊗Q1(K)

(ηn + ...+ ηN)D1 ⊗ I (η1 + ...+ ηn−1)D1 ⊗ I +D0 ⊗ I

)
.

(4.2.6)

The fluid flow rates are all 1 or −1, i.e., C
(n)
+ = C

(n)
− = I.

3. Within border 1 (i.e., l1 = 0), the transition rates of the underlying Markov chain

are given by Equation (4.2.3) for Q
(1)
bb and

Q
(1)
b+ =

(
0

(η2 + ...+ ηN)D1 ⊗ I

)
. (4.2.7)

4. The transition probabilities of approaching border 1 are given by (Note: There is no
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layer 1, thus can only enter border 1 from above)

P
(1)
−b+ = 0; P

(1)
−bb = (0, ..., 0, I). (4.2.8)

When entering from layer 2 to border 1, the underlying process φ(t) enters the set

{0} × {1, ...,ma} × Ω(K).

5. All other borders (n > 1) have no state. The probabilities of approaching border n,

for 2 ≤ n ≤ N − 1, from below are given by

P
(n)
+b− =

ηn
ηn + ...+ ηN

I; P
(n)
+b+ =

ηn+1 + ...+ ηN
ηn + ηn+1 + ...+ ηN

I. (4.2.9)

The probabilities of approaching border n, for 2 ≤ n ≤ N − 1, from above are given

by

P
(n)
−b− = I; P

(n)
−b+ = 0. (4.2.10)

The joint stationary distribution of the multi-layer MMFF process can be obtained

by Algorithm 1.

4.3 Joint Stationary Distribution of the Age Process

Similar to the age process, if φ(t) ∈ ∪Nn=2S
(n)
+ (i.e., increase periods), the service process

evolves and the state of the arrival process is frozen in the multi-layer MMFF process,

and, if φ(t) ∈ ∪Nn=2S
(n)
− (i.e., decrease periods), the states of the service processes are frozen

and the arrival process evolves. Therefore, it is easy to see that the age process can be

obtained by censoring out states in ∪Nn=2S
(n)
− . Computations can be done by implementing

Algorithm 1. However, the state space required for Algorithm 1 is too large to handle large

systems if K is big.

The bottleneck of the complexity of this algorithm is the state space of the transition

matrix Q(n). By CSFP method, the number of states of servers is O

((
K +ms − 1

ms − 1

))
.

Details about the complexity of the algorithm require more exploration. Using certain
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special structure of the MMFF process, we can improve Algorithm 1 and reduce the

required state space for its implementation as follows:

i) Border Probabilities: Since all borders, except Border 1, are empty. We only have

to compute p(1), which satisfies p(1)Q(1)
p = 0, where

Q(1)
p = Q

(1)
bb +Q

(1)
b+T

(1)
+ P

(1)
−bb, (4.3.1)

where T
(1)
+ contains the first passage probabilities from the set above Border 1 (up) to

return to Border 1 (from above), which can be computed recursively as follows. We

define T
(n)
+ the state transition probabilities that the process goes up leaving Border

n and returns to Border n (from above) for the first time (i.e., starting in S(n+1)
+ and

ending in S(n+1)
− ). Immediately, we have T

(N−1)
+ = Ψ(N), and, for n = 2, 3, ..., N − 1,

T
(n−1)
+ = Ψ

(ln−ln−1)
+− + Λ

(ln−ln−1)
++ (P

(n)
+b− + P

(n)
+b+T

(n)
+ )

×
(
I − Ψ̂

(ln−ln−1)
−+ (P

(n)
+b− + P

(n)
+b+T

(n)
+ )
)−1

Λ̂
(ln−ln−1)
−− .

(4.3.2)

ii) Vector p(1): Due to the special structure of Q
(1)
b+ and P

(1)
−bb, we obtain

Q(1)
p =


A0,0 A0,1

A1,0 A1,1 A1,2

. . . . . . . . .

AK−1,K−2 AK−1,K−1 AK−1,K

AK,K−1 ÃK,K

 , (4.3.3)

where ÃK,K = (D0 + η1D1) ⊗ I + I ⊗ Q0(K) + ((η2 + ... + ηN)D1 ⊗ I)T
(1)
+ . We can

explore the quasi-birth-and-death (QBD) structure in Q(1)
p to reduce the state space

required for computing p(1) as follows. Define

B1 = A1,0(−A0,0)
−1;

Bk = Ak,k−1(−Ak−1,k−1 −Bk−1Ak−2,k−1)
−1, for k = 2, 3, ..., K.

(4.3.4)
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Define Q(1)
p,K = D0⊗ I + I ⊗Q0(K) + (D1⊗ I)T

(1)
+ +BKAK−1,K . We also divide p(1)

according to the number of busy servers into (p
(1)
0 ,p

(1)
1 , ...,p

(1)
K ). Then p

(1)
K satisfies

p
(1)
K Q

(1)
p,K = 0, and p

(1)
k−1 = p

(1)
k Bk, for k = K,K− 1, ..., 1. In the computation, we set

p
(1)
K e = 1 and normalize the vectors later.

iii) Coefficients: Instead of constructing the embedded discrete Markov chain and solv-

ing the linear system in Subsection 3.3.2, we can simplify the equations as there is

only one sticky border (i.e., Border 1) and some probabilities of approaching borders

are 0. Let w(n) = (w
(n+1)
L ,w

(n)
U ), for n = 1, ..., N−1. After we obtain vector p(1), the

coefficients can be obtained directly by solving the following set of linear equations:

w(1) = p(1)(Q
(1)
b+ , 0);

w(n) = w(n)

(
Ψ

(ln+1−ln)
+− (P

(n)
−b+, P

(n)
−b−)

Ψ̂
(ln−ln−1)
−+ (P

(n)
+b+, P

(n)
+b−)

)
+w(n+ 1)

(
0

Λ̂
(ln+1−ln)
−− (P

(n)
−b+, P

(n)
−b−)

)

+w(n− 1)

(
Λ

(ln−ln−1)
++ (P

(n)
+b+, P

(n)
+b−)

0

)
, for n = 2, ..., N − 2;

w(N − 1) = w(N − 1)

(
Ψ(N)(P

(N−1)
−b+ , P

(N−1)
−b− )

Ψ̂
(lN−1−lN−2)
−+ (P

(N−1)
+b+ , P

(N−1)
+b− )

)

+w(N − 2)

(
Λ

(lN−1−lN−2)
++ (P

(N−1)
+b+ , P

(N−1)
+b− )

0

)
.

(4.3.5)

Denote by f(x) the joint stationary density function of the age process. Let f (n)(x) =

f(x), if ln−1 < x < ln. By Theorem 3.2 and censoring out ∪Nn=2S
(n)
− , we obtain the following

result.

Theorem 4.1. ([66]) We assume that ηNρ < 1 and (ηn+...+ηN)ρ 6= 1 for n = 2, 3, ..., N−
1. Then the steady state distribution of the age process exists and its density function is

given by

P{a(t) = 0} =
K∑
k=0

p̂
(1)
k e;

f (n)(x) = v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n), for ln−1 ≤ x < ln, n = 2, ..., N.

(4.3.6)
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where p̂
(1)
k = p

(1)
k /ĉnorm, v

(n)
+ = u

(n)
+ /ĉnorm, v

(n)
− = u

(n)
− /ĉnorm and v

(1)
+ = 0 and v

(N)
− = 0.

By the law of total probability, the normalization factor ĉnorm is given as

ĉnorm =
K∑
k=0

p
(1)
k e +

N∑
n=2

∫ ln

ln−1

(
u
(n)
+ eK

(n)(y−ln−1) + u
(n)
− eK̂

(n)(ln−y)Ψ̂(n)
)

edy. (4.3.7)

Proof. For the existence of the stationary of the age process, we need to show that ηNρ < 1

if and only if ζ(N) < 0. To do so, we find θ satisfying θQ(n) = 0 and θe = 1. We

divide θ into (θ+,θ−) according to S(n)
+ and S(n)

− . By routine calculations, we obtain

θ+ = (ηn + ... + ηN)(θaD1) ⊗ θ̃s/(θ+e + θ−e) and θ− = θa ⊗ (θ̃sQ1(K))/(θ+e + θ−e),

where θ̃s satisfies θ̃s(Q0(K) + Q1(K)) = 0 and θ̃se = 1. It has been shown in [67] that

θ̃sQ1(K)e = Kµs (i.e., the total service rate). Consequently, we obtain µn = θ+e−θ−e =

((ηn + ...+ ηN)λ−Kµs)/(θ+e + θ−e), which leads to the condition of the existence of the

stationary distribution. Also, the relationship shows that (ηn + ... + ηN)λ − Kµs = 0 if

and only if ζ(n) = 0. Thus, all assumptions in Theorem 3.2 are satisfied. The closed form

solution of the density function of the age process is obtained from that of the multi-layer

MMFF by censoring.

Remark: For notational convenience, we use notation with time variable t for the station-

ary counterparts of some quantities (e.g., a(t) for the age in steady state) in this thesis.

Again, evaluation of integrals in the above equation can be done by applying Lemma

B.1 in Appendix B. Next, we summarize the modified Algorithm 1 for computing the joint
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stationary distribution of the age process as Algorithm 2.

Algorithm 2: The joint stationary distribution of the age process

1. Input Parameters: K, N , {l1 = 0, l2, ..., lN =∞}, {η1, η2, ..., ηN}, {ma, D0, D1}, and

{ms,β, T};

2. Construct {Q(1)
bb , Q0(K), Q1(K)} by applying the algorithm in [64];

3. Construct transition blocks for the multi-layer MMFF process:

3.1 Borders: {l0 = −∞, l1 = 0, ..., lN =∞};

3.2 Construct {Q(n), C
(n)
+ , C

(n)
− , n = 1, 2, ..., N} using Equation (4.2.6); (Note: C

(n)
+

and C
(n)
− are not necessary since they are identity matrices);

3.3 Construct {Q(1)
bb , Q

(1)
b+ , Q

(1)
b−} using Equations (4.2.3) and (4.2.7);

3.4 Construct {P (n)
+b+, P

(n)
+bb, P

(n)
+b−, P

(n)
−b+, P

(n)
−bb, P

(n)
−b−, n = 1, 2, ..., N − 1} using

Equations (4.2.8), (4.2.9) and (4.2.10);

4. Similar to Steps 2 and 3 in Algorithm 1, compute {Ψ(n),K(n),U (n), Ψ̂(n), K̂(n), Û (n)}
for {Q(n), C

(n)
+ , C

(n)
− }; Compute {Ψ(ln−ln−1)

+− , Ψ̂
(ln−ln−1)
−+ ,Λ

(ln−ln−1)
++ , Λ̂

(ln−ln−1)
−− } for

{Q(n), C
(n)
+ , C

(n)
− }, for n = 1, 2, ..., N − 1;

5. Compute T
(1)
+ using Equation (4.3.2); Construct Q(1)

p,K using (4.3.4); and solve

p
(1)
K Q

(1)
p,K = 0 and p

(1)
K e = 1, and Compute p(1);

6. Compute {w(n), n = 1, 2, ..., N − 1} by Equation (4.3.5); and

{u(n)
+ ,u

(n)
− , n = 1, 2, ..., N} by using Algorithm 1;

7. Compute ĉnorm by using Equation (4.3.7), and use ĉnorm to get

{p̂(1)
k , n = 0, 1, ..., K} and {v(n)

+ ,v
(n)
− , n = 1, 2, ..., N};

8. Use the {p̂(1)
k , n = 0, 1, ..., K} and {v(n)

+ ,v
(n)
− , n = 1, 2, ..., N} and Equation (4.3.6)

to compute the density function of the age process.

The summarized computation process can be further simplified. For example, there
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is no need to do Step 3 since all subsequent computations can be done by directly using

matrices constructed in Step 2.

4.4 Queueing Quantities

Based on the joint stationary distribution of the age process, we find three sets of queueing

quantities: i) Customer abandonment/loss probabilities; ii) Waiting times; and iii) Queue

lengths. We assume that conditions stated in Theorem 4.1 hold throughout this section.

4.4.1 Abandonment Probabilities

Proposition 4.1. ([66]) The probability that a customer will eventually receive service is

given by

pS =
1

λ

K−1∑
k=0

p̂
(1)
k (D1 ⊗ I)e +

1

λ

N∑
n=2

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(I ⊗Q1(K))e, (4.4.1)

where LK(n)

ln−1,ln
and L̃K̂(n)

ln−1,ln
are defined in Lemma B.1. Then the customer abandonment

probability is pL = 1 − pS. We decompose pL into two parts: i) loss probability pL,1 of

customers at the head of the waiting queue; and ii) loss probability pL,>1 of customers

before reaching the head of the waiting queue. Then we obtain pL,>1 = pL − pL,1, and

pL,1 =
p̂
(1)
k ((η1D1)⊗ I)e

λ
+

1

λ

N−1∑
n=2

(
v
(n)
+ eK

(n)(ln−ln−1)e + v
(n)
− Ψ̂(n)e

) ηn∑N
m=n ηm

. (4.4.2)

Proof. By definitions, we have

pS =
1

λ

(
K−1∑
k=0

p̂
(1)
k (D1 ⊗ I)e +

∫ ∞
0

f(x)(I ⊗Q1(K))edx

)
. (4.4.3)

First note that the numerator in Equation (4.4.3) is the sum of transition rates that a

customer enters a server for service, and the denominator in Equation (4.4.3) is the arrival
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rate. Then the ratio is the percentage of customers who received service, which is also

the probability that a customer will eventually receive service. The desired expression is

obtained by combining Equation (4.4.3) and Lemma B.1.

The probability that a customer sees exactly K customers in service and no waiting

queue, and abandons the queue is
p̂
(1)
K ((η1D1)⊗I)e

λ
. For a customer at the head of the queue

to abandon the queue, its age must reach ln for some n = 2, 3, ..., N − 1. If its age reaches

ln, its age must be greater than ln−1, which occurs with probability ηn + ...+ ηN . Then the

probability that it abandons the queue is ηn/(ηn+ ...+ηN). Combining with the transition

rate for the age to reach ln, which is f(ln)e, we obtain

pL,1 =
p̂
(1)
k ((η1D1)⊗ I)e

λ
+

1

λ

N−1∑
n=2

f(ln)e
ηn∑N

m=n ηm
, (4.4.4)

which leads to the desired result.

4.4.2 Waiting Times

Proposition 4.2. ([66]) The distribution of waiting time WS of customers received service

is

P{WS = 0} =
1

pSλ

K−1∑
k=0

p̂
(1)
k (D1 ⊗ I)e;

dP{WS < x}
dx

=
1

pSλ

(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
)

(I ⊗Q1(K))e,

for ln−1 ≤ x < ln, n = 2, 3, ..., N.

(4.4.5)

The distribution of waiting time WL,1 of customers lost at the head of the waiting queue is

given by

P{WL,1 = ln} =
p̂
(1)
k ((η1D1)⊗ I)e

pL,1λ
, for n = 1;

P{WL,1 = ln} =

(
ηn

ηn + ...+ ηN

)
f (n)(ln)e

pL,1λ
, for n = 2, 3, ..., N − 1.

(4.4.6)
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The abandonment time WL,>1 of a customer that abandons the queue before reaching the

head of the queue, we have, for k = 1, 2, 3, ..., N − 1,

P{WL,>1 = lk} =

(
N∑

n=k+1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(D1 ⊗ I)e

)
ηk

pL,>1λ
. (4.4.7)

Proof. First note that WS = 0 occurs if a server is available when a customer arrives, which

leads to the expression for P{WS = 0}. When the age is x > 0 and there is an service

completion, the waiting time of the customer at the head of the queue is exactly x, so the

rate that the waiting time is x of customer received service is given by f(x)(I ⊗Q1(K))e,

then the rate ration given below gives the probability density function,

dP{WS < x}
dx

=
1

pSλ
f(x)(I ⊗Q1(K))e, for x > 0, (4.4.8)

which leads to the desired result.

For WL,1, it is clear that WL,1 = ln if a(t) reaches ln from below and an abandonment

occurs. The probability for WL,1 to reach ln is f (n)(ln)e/(pL,1λ). The probability for the

abandonment to occur is ηn/(ηn+ ...+ηN). Then expression (4.4.6) can be obtained easily.

We use the joint stationary distribution of the multi-layer MMFF process to find

the distribution of WL,>1. When the multi-layer MMFF process is in S
(n)
− and there is

an arrival, the arriving customer will abandon the queue in the future with probability

η2 + ...+ ηn−1 if ln−1 < x < ln. Since customer arrivals take place only when the fluid level

of the MMFF process is decreasing, we censor out the periods of time in which the fluid

level is increasing. Using the censored process, we obtain, for k = 2, 3, ..., N − 1,

P{WL,>1 = lk} =
cnorm

ˆ̂cnormpL,>1λ

(
N−1∑
n=k

∫ ln+1

ln

π
(n+1)
− (x)dx(D1 ⊗ I)

)
eηk, (4.4.9)

where

ˆ̂cnorm =
K∑
k=0

p
(1)
k e +

N∑
n=2

∫ ln

ln−1

(
u
(n)
+ eK

(n)(y−ln−1)Ψ(n) + u
(n)
− eK̂

(n)(ln−y)
)

edy. (4.4.10)
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In the multi-layer MMFF process, the fluid level increases and decreases both at rate 1.

If the process is ergodic, probabilities that the process is increasing or decreasing at an

arbitrary time are equal. Thus, we must have ĉnorm = ˆ̂cnorm, which leads to the desired

result in Equation (4.4.7).

According to the law of total probability, we must have P{WS < ∞} = 1 and∑N−1
n=2 P{WL,1 = ln} = 1, which can be used to check computation accuracy. The law

of total probability
∑N−1

n=2 P{WL,>1 = ln} = 1 can also be used to check computation

accuracy. The mean waiting time E[WS] can be calculated by:

E[WS] =
1

pSλ

N∑
n=2

(
v
(n)
+ MK(n)

ln−1,ln
+ v

(n)
− M̃K̂(n)

ln−1,ln
Ψ̂(n)

)
(I ⊗Q1(K))e, (4.4.11)

where MK(n)

ln−1,ln
and M̃K̂(n)

ln−1,ln
are defined in Lemma B.1. The distribution of the waiting

time W of an arbitrary customer can be found from that of WS, WL,1, and WL,>1. The

mean waiting time can be found by

E[W ] = pSE[WS] + pL,1E[WL,1] + pL,>1E[WL,>1]. (4.4.12)

4.4.3 Queue Lengths

Let qS(t) be the number of customers in service (or busy servers) and qW (t) the waiting

queue length at an arbitrary time t. The distribution of qS(t) can be found directly from

the border probability vector p̂(1). The z-transform of qW (t) can be derived based on the

joint distribution of the age process. If a(t) = x at an arbitrary time t, the waiting queue

length consists of the customer at the head of the queue and all customers arrived after

that customer (i.e., in the period (t − x, t)) who have not abandoned the queue yet. To

identify who are still waiting in queue and who have abandoned the queue, we divide the

interval (t − x, t) into (t − l2, t), (t − l3, t − l2), ..., (t − x, t − ln−1), if ln−1 < x < ln (See

Figure 4.2). For customers who arrived in (t− l2, t), they abandon the queue before t with

probability η1 and are still in the queue at time t with probability 1− η1. The conditional

probability generating function of the number of such customers is e(D0+(η1+(1−η1)z)D1)l2
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(see Theorem 2.3.1 in [62] or Lemma B.2 in Appendix B). For customers who arrived in

(t− l3, t− l2), they abandon the queue before t with probability η2 and are still in the queue

at time t with probability 1− η2. The conditional probability generating function is given

by e(D0+(η1+η2+(1−η1−η2)z)D1)(l3−l2). In general, for customers arrived in (t − lm, t − lm−1),

they abandon the queue before t with probability 1 − η̂m and are still in the queue at

time t with probability η̂m, where η̂m = ηm + ηm+1 + ...+ ηN . The conditional probability

generating function is given by e(D0+(1−η̂m+η̂mz)D1)(lm−lm−1).

0

𝑎 𝑡

𝑡

𝑥

𝑙2

𝑙3

𝑙4

𝑡 − 𝑥 𝑡 − 𝑙4 𝑡 − 𝑙3 𝑡 − 𝑙2

𝑎 𝑡 = 𝑥

𝑒(𝐷0+(1−ෝ𝜂3+ෝ𝜂3𝑧)𝐷1)(𝑙3−𝑙2)

𝑒(𝐷0+(1−ෝ𝜂2+ෝ𝜂2𝑧)𝐷1)(𝑙2)

𝑒(𝐷0+(1−ෝ𝜂4+ෝ𝜂4𝑧)𝐷1)(𝑙4−𝑙3)

𝑒(𝐷0+(1−ෝ𝜂5+ෝ𝜂5𝑧)𝐷1)(𝑥−𝑙4)

𝑙5

Figure 4.2: The conditional probability generating function of the number of customers in
each interval

Denote by P ∗(η, z, x) = e(D0+(1−η+ηz)D1)x ⊗ I.

Lemma 4.1. Conditioning on a(t) at an arbitrary time t, for z ≥ 0, the probability gen-

erating function of qW (t) can be found as follows,

E[zqW (t)] = p̂(1)e + z
N∑
n=2

∫ ln

ln−1

f (n)(x)P ∗(η̂n, z, x− ln−1)
2∏

m=n−1

P ∗(η̂m, z, bm)dxe. (4.4.13)
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(Remark: bm = lm − lm−1, for m = 2, 3, ..., N .)

Proof. By the definition of probability generating function, we have

E[zqW (t)] =
∞∑
i=0

P{qW (t) = i}zi. (4.4.14)

If i = 0, we have

P{qW (t) = 0}z0 = p̂(1)e. (4.4.15)

If i ≥ 1, there must be a customer at the head of the queue and a(t) has to be positive,

thus the probability generating function of the number of customers (always 1) at the

head of the queue at time t is z. Conditioning on a(t) = x at an arbitrary time t and

x ∈ (ln−1, ln), the probability generating function of the number of customers behind the

head of the queue at time t is

P ∗(η̂n, z, x− ln−1)× P ∗(η̂n−1, z, ln−1 − ln−2)× · · · × P ∗(η̂2, z, l2), (4.4.16)

thus we have

∞∑
i=1

P{qW (t) = i}zi

= z
N∑
n=2

∫ ln

ln−1

f (n)(x)P ∗(η̂n, z, x− ln−1)× P ∗(η̂n−1, z, ln−1 − ln−2)× · · · × P ∗(η̂2, z, l2)dxe

= z

N∑
n=2

∫ ln

ln−1

f (n)(x)P ∗(η̂n, z, x− ln−1)
2∏

m=n−1

P ∗(η̂m, z, bm)dxe.

(4.4.17)

The sum of Equation (4.4.15) and Equation (4.4.17) leads to the desired result.

By Theorem 2.3.2 in [62] or Lemma B.2 in Appendix B, we have the following result.
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Proposition 4.3. ([66]) The distribution of qS(t) is given by

P{qS(t) = k} =


p̂
(1)
k e, if k = 0, 1, ..., K − 1;

1−
K−1∑
k=0

p̂
(1)
k e, if k = K.

(4.4.18)

The mean waiting queue length is given by

E[qW (t)] = 1− p̂(1)e

+
N∑
n=2

n−1∑
m=2

∫ ln

ln−1

f (n)(x)
(
eD(x−lm) ⊗ I

)
dx
(
η̂mλbmI + (eDbm − I)(D − eθa)

−1η̂mD1

)
e⊗ e

+
N∑
n=2

∫ ln

ln−1

f (n)(x)
(
η̂nλ(x− ln−1)I + (eD(x−ln−1) − I)(D − eθa)

−1η̂nD1

)
e⊗ edx.

(4.4.19)

To calculate the mean queue length, we need to evaluate the integral (Lemma B.1 in

Appendix B), for 2 ≤ m < n ≤ N ,∫ ln

ln−1

(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
) (
eD(x−ln−1) ⊗ I

)
dx. (4.4.20)

66



Combining Proposition 4.3 and Lemma B.1, we obtain

E[qW (t)] = 1− p̂(1)e

+
N∑
n=2

(
v
(n)
+ L

(K(n),D)
ln−1,ln

+ v
(n)
− L̃

(K̂(n),D)
ln−1,ln

)
×

(
n−1∑
m=2

eD(ln−1−lm)
(
η̂mλbmI + (eDbm − I)(D − eθa)

−1η̂mD1

)
⊗ I

)
e

+
N∑
n=2

η̂nλ
(
v
(n)
+

(
MK(n)

ln−1,ln
− ln−1LK

(n)

ln−1,ln

)
+ v

(n)
−

(
M̃K̂(n)

ln−1,ln
− ln−1L̃K̂

(n)

ln−1,ln

)
Ψ̂(n)

)
e

+
N∑
n=2

(
v
(n)
+

(
L(K(n),D)
ln−1,ln

− LK(n)

ln−1,ln

)
+ v

(n)
−

(
L̃(K̂(n),D)
ln−1,ln

− L̃K̂(n)

ln−1,ln
Ψ̂(n)

))
×
(
(D − eθa)

−1η̂nD1 ⊗ I
)
e.

(4.4.21)

Note that Lemma B.1 is used in the above expression.

Let qtot(t) be the total number of customers in the queueing system at an arbitrary

time t. Then the probability generating function and the mean of qtot(t) can be found as

E[zqtot(t)] =
K∑
k=0

zkp̂
(1)
k e + zKE[zqW (t)],

E[qtot(t)] =
K∑
k=0

kp̂
(1)
k e +K(1− p̂(1)e) + E[qW (t)].

(4.4.22)

The queueing quantities are connected to each other by the well-known Little’s law: i)

E[qW (t)] = λE[W ] for the number of waiting customers and the actual waiting times of

customers; ii) E[qS(t)] = λpSβ(−T )−1e for the number of customers in service and service

times; and iii) E[qtot(t)] = λE[W ] + λpSβ(−T )−1e for the total of number of customers in

the queueing system and the sojourn times of customers. The relationships can be used

for checking computation accuracy.
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4.4.4 Summary of Queueing Quantities

We summarize all important queueing quantities in Table 4.1 to help readers quickly find

the meaning and equations of these quantities.

Notations Quantities Equations

f (n)(x) Density of the age process (4.3.6)
PS, PL, PL,1, PL,>1 Abandonment probabilities (4.4.1), (4.4.2)
WS, E[WS] Waiting time of served customers (4.4.5), (4.4.11)
WL,1, WL,>1 Waiting time of abandoned customers (4.4.6), (4.4.7)
E[W ] Mean waiting time (4.4.12)
qS(t), E[qW (t)], E[qtot(t)] Queue lengths (4.4.18), (4.4.21), (4.4.22)

Table 4.1: Summary of queueing quantities in Chapter 4

4.5 Numerical Examples

Example 4.1. We consider anMAP/PH/K+GI queue withK = 3, N = 6, (l1, l2, l3, l4, l5, l6) =

(0, 1, 2, 3, 4,∞), η = (0, 0.1, 0.3, 0.3, 0.2, 0.1),

D0 =

(
−14 0

4.5 −5.5

)
, D1 =

(
12 2

0.5 0.5

)
; β = (0.5, 0.5), T =

(
−5.5 4.5

5 −5.8

)
.

(4.5.1)

Applying Algorithm 2, a number of queueing quantities can be obtained. First, we plot

the stationary density functions of the age of the customer at the head of the queue and

the waiting time of an arbitrary served customer in Figure 4.3. It seems that most of the

customers have to wait in the queue for service. It is interesting to see that i) The density

of the waiting time of the served customer is closed to the density of age of the customer

at the head of the queue; ii) The density of waiting time concentrated around l4 = 3 and

l5 = 4 even though this is for served customers. Second, we present the (conditional)

distributions of the waiting times of customers who abandoned the queue in Table 4.2.

While the possibility of customers abandoning the queue varies significantly before they

reach the head of the queue. Lastly, we summarize other queueing quantities in Table 4.3.
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Again, the mean age of the customer at the head of the queue is closed to the mean waiting

time of the arbitrarily served customer. The mean number of working servers is 3, which

means they are always busy. The mean total queue length is 30.68558, which is far greater

than 3. Next example, we increase the number of servers K to see the changes of these

queueing quantities.
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Figure 4.3: The stationary density functions of a(t) and WS for Example 4.1

l1 l2 l3 l4 l5 l6
P{WL,1 = ln} 0 0.0 0.025 0.488 0.487 0
P{WL,>1 = ln} 0 0.157 0.461 0.337 0.045 0
P{WL = ln} 0 0.136 0.406 0.356 0.102 0

Table 4.2: Conditional distributions of waiting times of customers abandoned the queue

E[a(t)] pS pL pL,1 pL,>1 pq,0 E[WS]
3.4375 0.2636 0.7364 0.0938 0.6426 0.0 3.4376

E[WL,1] E[WL,>1] E[WL] E[W ] E[qS] E[qW ] E[qtot]
3.4633 2.2731 2.4246 2.6917 3.0000 27.6858 30.6858

Table 4.3: Summary of queueing quantities for Example 4.1

Example 4.2. (Example 4.1 continued) For Example 4.1, we change the number of servers
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from K = 2 to K = 50, and compute queueing quantities for those queueing systems. The

results are divided into three groups {pL, pL,1, pL,>1}, {E[WS],E[WL,1],E[WL,>1],E[Wtot]},
and {E[qS],E[qW ],E[qtot]}. The results are plotted in Figure 4.4.
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Figure 4.4: Summary of queueing quantities for Example 4.2

From Figure 4.4, it is interesting to see that i) The abandonment probability pL,1 is not

monotone as K increases; ii) The mean waiting times are all decreasing (which is intuitive);

and iii) The abandonment probabilities and mean waiting times go to 0 when the number

of servers is large.

We also plot the density function of the waiting time of served customers for WS for

K = 2, K = 6, K = 10, K = 14,K = 18,and K = 22 in Figure 4.5. It is interesting to see

how the waiting time distribution shifts as K changes. One thing particularly interesting

is the impact of the abandonment epochs on the waiting time distribution, which becomes

less significant as K increases. Intuitively, it is due to fewer customers are forced to make

abandonment decisions as more servers become available.
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Figure 4.5: The stationary density functions of WS for K = 2, K = 6, K = 10, K = 14,
K = 18, and K = 22

Example 4.3. In this example, we consider a queueing system with a bursty arrival

process and service times with a big variation. We assume N = 5, l1 = 0, l2 = 1, l3 = 2,

l4 = 3, l5 =∞, η = (0, 0.2, 0.3, 0.4, 0.1),

ma = 4, D0 =


−15 0 2 2

20 −45 2 2

1 2 −25 5

1 0 2 −15

 , D1 =


5 5 1 0

10 5 1 5

1 6 5 5

5 1 1 5

 ;

ms = 3, β = (0.1, 0.0, 0.9), T =

 −17 0 10

0 −2 0

0 2 −2

 .

(4.5.2)

This example is special since the arrival process is bursty and the service times have a

special distribution as shown in Figure 4.6.
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Figure 4.6: Burstiness of the arrival process and density function of the service times

Let K go from 2 to 16. We compute queueing quantities for Example 4.3. Results

related to customer abandonment, waiting times and queue lengths are plotted in Figure

4.7.
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Figure 4.7: Summary of queueing quantities for Example 4.3

One issue related to the analysis of complicated stochastic systems is state space ex-

plosion. Specifically, for our MAP/PH/K +GI queue, the number of states in Ω(K) can

be very big. For Examples 4.2 and 4.3, the number of states for each layer is given by

ma

(
K +ms − 1

ms − 1

)
. We present the number of states as a function of K in Table 4.4.
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K 1 5 8 10 12 14 15 50 100
Example 4.2 4 12 18 22 26 30 32 102 202
Example 4.3 12 84 180 264 364 480 544 5304 20604

ma = 4, ms = 4 16 224 660 1144 1820 2720 3264 93704 707404

Table 4.4: Number of states in S(n)
+ ∪ S

(n)
− for Examples 4.2 and 4.3

It is shown that, if ma and ms are small, Algorithm 2 can be applied for computing

queueing quantities for K up to over 100. Since one can generate all kinds of arrival

processes and service times even for small ma and ms (e.g., Examples 4.2 and 4.3), the

method can be useful for researchers and practitioners.

Next, we use our algorithm to address the performance insensitivity to abandonment

time distributions, an issue examined in [48].

Example 4.4.([66]) We use the example in Section 6 in [48]. We consider an M/M/100+

GI queue with Poisson arrival process {D0 = −105, D1 = 105} and exponential service

time {β = 1, T = −1}. The distribution of the abandonment time τ can be i) an ex-

ponential distribution with parameter α, denoted as exp, ii) a uniform distribution on

[0, 1/α], denoted as Unif , or iii) a phase-type distribution with {βτ = (0.7, 0.3) and

Tτ =

(
−0.3α 0

0 −79α/30

)
}, denoted as H2, which is the well-known Hyperexponential

distribution, where α is a positive constant.

To use Algorithm 2, we discretize the above three abandonment distributions with

N = 1000, which gives satisfactory approximation results to the continuous case (as

compared to results in [48]). Specifically, for abandonment time τ with an exponen-

tial or H2 distribution, the interval [0, 3E[τ ]] is divided into N − 1 identical intervals

of length δ = 3E[τ ]/(N − 1). Then we define η1 = 0, ηn = P{(n − 1)δ ≤ τ < nδ}, for

n = 2, 3, ..., N − 1, and ηN = P{τ ≥ Nδ}. For τ with an uniform distribution, the interval

[0, 2E[τ ]] is divided into N − 1 identical intervals of length δ = 2E[τ ]/(N − 1). Then we

define η1 = 0, ηn = 1/(N − 1), for n = 2, 3, ..., N − 1, and ηN = 0.

Paper [48] observes that the performance of the queue is insensitive to abandonment

time distributions. Specifically, through simulation, they have observed that the queue
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with those three abandonment time distributions perform similarly, even though, for given

α, the three abandonment times have different means and variances. Results presented in

Table 4.5 indicates that queueing performance, with respect to more queueing quantities

than those in [48], is insensitive to abandonment time distributions, which is consistent

with the conclusion in [48].

E[a(t)] pL pL,1 pL,>1

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.5176 0.5010 0.5562 0.0496 0.0497 0.0493 0.0009 0.0010 0.0009 0.0487 0.0487 0.0484

0.5 0.1216 0.1154 0.1319 0.0601 0.0605 0.0593 0.0037 0.0040 0.0034 0.0564 0.0565 0.0559

1 0.0660 0.0614 0.0728 0.0668 0.0674 0.0658 0.0063 0.0069 0.0057 0.0605 0.0605 0.0601

2 0.0354 0.0319 0.0402 0.0738 0.0747 0.0726 0.0103 0.0116 0.0091 0.0635 0.0631 0.0635

10 0.0074 0.0056 0.0099 0.0886 0.0901 0.0868 0.0276 0.0340 0.0225 0.0609 0.0561 0.0643

E[WS ] E[WL,1] E[WL,>1] E[W ]

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.5187 0.5021 0.5572 0.5390 0.5306 0.5701 0.3460 0.3414 0.3731 0.5103 0.4943 0.5483

0.5 0.1232 0.1170 0.1336 0.1566 0.1556 0.1621 0.1113 0.1100 0.1172 0.1227 0.1167 0.1327

1 0.0673 0.0627 0.0742 0.0995 0.0994 0.1019 0.0720 0.0710 0.0752 0.0678 0.0635 0.0744

2 0.0364 0.0329 0.0413 0.0651 0.0654 0.0659 0.0474 0.0465 0.0492 0.0373 0.0341 0.0420

10 0.0078 0.0059 0.0104 0.0257 0.0264 0.0255 0.0182 0.0169 0.0192 0.0089 0.0072 0.0113

pq,0 E[qS ] E[qW ] E[qtot]

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.0340 0.0355 0.0287 99.794 99.784 99.826 53.582 51.904 57.57 153.38 151.69 157.39

0.5 0.2165 0.2238 0.2027 96.686 98.642 98.770 12.880 12.250 13.94 111.57 110.90 112.71

1 0.3316 0.3425 0.3144 97.988 97.922 98.092 7.122 6.667 7.816 105.11 104.59 105.91

2 0.4532 0.4684 0.4323 97.250 97.158 97.377 3.921 3.581 4.410 101.17 100.74 101.79

10 0.7089 0.7356 0.6774 95.699 95.537 95.890 0.936 0.758 1.185 96.63 96.30 97.07

Table 4.5: Summary of queueing quantities for Example 4.4: Part I

The observation seems to hold for queueing systems with a Poisson arrival process and

exponential service times. However, it may not hold, even approximately, for queueing

systems with a non-Poisson arrival process. Now, we change the customer arrival process

from Poisson to MAP with

D0 =

(
−1 0.2

1 −310

)
, D1 =

(
0.1 0.7

1 308

)
. (4.5.3)

The average arrival rate is 96.4483. The arrival process is bursty since the arrival rates
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in the two states of the underlying Markov chain are drastically different. Quantities in

Table 4.5 are reproduced and presented in Table 4.6. Table 4.6 demonstrates that some

quantities can be significantly different for the three abandonment times (e.g., pL,1 and

E[qW ] for α ≥ 2), which indicates that the queueing performance is no longer insensitive

to the abandonment time distributions.

E[a(t)] pL pL,1 pL,>1

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 1.2385 1.1090 1.4095 0.1470 0.1550 0.1376 0.0007 0.0008 0.0006 0.1463 0.1542 0.1371

0.5 0.3686 0.2842 0.4968 0.2525 0.2719 0.2302 0.0026 0.0038 0.0018 0.2500 0.2681 0.2284

1 0.2020 0.1432 0.3027 0.2994 0.3219 0.2715 0.0043 0.0071 0.0028 0.2951 0.3148 0.2687

2 0.1062 0.0694 0.1783 0.3413 0.3629 0.3105 0.0072 0.0137 0.0042 0.3341 0.3493 0.3063

10 0.0213 0.0117 0.0449 0.4031 0.4134 0.3821 0.0247 0.0617 0.0111 0.3785 0.3517 0.3710

E[WS ] E[WL,1] E[WL,>1] E[W ]

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 1.5054 1.3608 1.6947 1.8257 1.8502 1.8126 1.3504 1.3316 1.3851 1.4829 1.3567 1.6523

0.5 0.5113 0.4048 0.6691 0.7401 0.7240 0.7535 0.4933 0.4590 0.5296 0.5074 0.4205 0.6374

1 0.2990 0.2190 0.4307 0.4842 0.4518 0.5151 0.3015 0.2672 0.3401 0.3005 0.2358 0.4066

2 0.1671 0.1130 0.2681 0.3077 0.2666 0.3530 0.1763 0.1472 0.2139 0.1712 0.1270 0.2518

10 0.0370 0.0207 0.0753 0.0893 0.0630 0.1383 0.0427 0.0306 0.0640 0.0404 0.0268 0.0718

pq,0 E[qS ] E[qW ] E[qtot]

α Exp Unif H2 Exp Unif H2 Exp Unif H2 Exp Unif H2

0.1 0.3182 0.3321 0.3020 82.269 81.498 83.172 143.03 130.85 159.36 225.30 212.35 242.53

0.5 0.5009 0.5344 0.4622 72.091 70.226 74.247 48.94 40.56 61.47 121.03 110.78 135.72

1 0.5821 0.6210 0.5337 67.567 65.400 70.266 28.99 22.74 39.22 96.55 88.14 109.48

2 0.6546 0.6921 0.6013 63.530 61.443 66.501 16.51 12.25 24.29 80.04 73.69 90.79

10 0.7618 0.7796 0.7254 57.567 56.580 59.597 3.90 2.58 6.93 61.46 59.16 66.52

Table 4.6: Summary of queueing quantities for Example 4.4: Part II

To end this section, we analyze the M/E2/100 + E2 queue and compare our results to

that in [115].

Example 4.5.([66]) We consider the example in Section 2 in [115]. Instead of limiting the

waiting spaces to 200 in the original example (i.e., M/E2/100/200+E2 with 200 extra wait-

ing spaces), we assume that the queue has unlimited waiting space (i.e., M/E2/100 +E2).

The arrival process and service time follow a Poisson arrival process {D0 = −102, D1 =

102} and Erlang-E2 service time distribution {β = [1, 0], T =

(
−2 2

0 −2

)
} respec-
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tively. The abandonment time τ has a Erlang distribution with phase-type representation

{βτ = [1, 0], Tτ =

(
−2 2

0 −2

)
}. Similar to Example 4.4, we discretize the above Erlang

distribution with N = 1000.

For the queueing model, the customer arrival rate is λ = 102 and the service rate of

a server is µs = 1. Then ρ = 1.02. Since ηN is almost zero, ηNρ is nearly zero and the

queueing system is stable. Due to customer abandonments, the (waiting) queue length

rarely reaches 200. Thus, the performance of the M/E2/100/200 + E2 queue and the

M/E2/100 + E2(discretized) queue is very close. Results are presented in Table 4.7.

Perfoemance Measure Simulation (Whitt) Approximation (Whitt) MMFF
P{W = 0} 0.217±0.0021 0.250 0.2153

pL 0.0351±0.00029 0.0381 0.0350
E[qW ] 11.52±0.075 11.41 11.620
E[qtot] 109.9±0.092 109.5 110.05
E[WS] 0.1115±0.00071 0.1102 0.1125
E[WL] 0.1508±0.00042 0.1521 0.1524

Table 4.7: Summary of queueing quantities for Example 4.5

We note that the half-widths of 95% confidence intervals are shown in the column for

simulation results. Table 4.7 shows that our numerical results are fairly close to simulation

results. Some of our results are not in the 95% intervals of corresponding quantities since

their model has finite waiting space while our model has infinite waiting space. In addition,

the following two reasons may contribute to the difference in the numerical results: i) There

is always a chance that the actual quantity is outside of the confidence interval; and ii)

The abandonment time distributions are different for our and their models.

4.6 Summary

In this chapter, we apply the theory on multi-layerMMFF processes to theMAP/PH/K+

GI queue and develop computational methods for queueing quantities such as the customer

abandonment probabilities, distributions of waiting times, and the mean queue lengths.
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Our main contributions in this chapter are i) combining the MMFF method and the

CSFP method to analyse the MAP/PH/K + GI queueing model with a moderately

large number of servers; ii) finding queueing quantities related to customers abandoning

the queue at the head of the queue and customers abandoning the queue before reaching

the head of the queue and queue length distributions, which are difficult to derive by other

methods and can be useful for both practitioners and researchers.

There are still some unsolved problems in this chapter for future research including: i)

the variance and the distribution of the queue lengths for the MAP/PH/K+GI queue; ii)

the MMAP [K]/PH[K]/N/G[K] queue in which there are multiple types of customers; iii)

the MMAP/PH/K+GI queue with customer priorities; iv) applying this queueing model

to analyze left-without-being-seen (LWBS) phenomenon in the emergency department.
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Chapter 5

Double-sided Queues with MMAP and

Abandonment

A double-sided queueing model with marked Markovian arrival processes (MMAP ) and

finite discrete abandonment times is investigated in this chapter. Various types of pas-

sengers arrive at the system at random times to match any type of taxis that also arrive

at random times. Although the structure of our model is simple and similar to classical

double-sided queues, the model’s generality in terms of arrival processes (from a single type

to multiple types) and abandonment times appeals both researchers and practitioners.

To study the queueing model, we use the theory of multi-layer MMFF processes. For

the queueing system, we first define three age processes and convert them into a multi-

layer MMFF process. Then we analyze the multi-layer MMFF process to find queueing

performance measures related to the age processes, matching rates/probabilities, waiting

times, and queue lengths for both sides of the queueing system. We obtain a number

of aggregate quantities as well as quantities for individual types of inputs, which can be

useful for the analysis and design of some stochastic systems, such as passenger-taxi service

systems and organ transplantation systems.

This chapter is organized as follows. In Section 5.1, we define the double-sided queueing

model. Section 5.2 introduces three age processes for the queueing system and constructs

a multi-layer MMFF process. In Section 5.3, we develop a computation method for
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computing the joint stationary distribution of the age process. All queueing quantities are

obtained in Section 5.4. In Section 5.5, we present several numerical examples. Section 5.6

concludes this chapter.

5.1 Definitions

We define a double-sided queueing model for the stochastic system described above in

this section. The structure of the system is depicted in Figure 5.1. We assume that

the matching discipline for passengers and taxis is first-come-first-matched, and does not

depend on the types of passengers and taxis. Next, components of the queueing model

are defined explicitly, including i) Passenger arrival process; ii) Passenger’s abandonment

time; iii) Taxi arrival process; and iv) Taxi’s abandonment time.

Figure 5.1: A diagram for the double-sided queue with multiple types of inputs

i) Passengers arrive to the queueing system according to a continuous time marked

Markovian arrival process (MMAP ), which is defined by a set of square matrices

(D0, D1, ..., DK) of order ma. Intuitively, D0 contains the transition rates without

an arrival, Dk contains the transition rates with the arrival of a type k passenger,
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where k = 1, ..., K. The underlying Markov chain of the arrival process {Ia(t), t ≥ 0}
has an irreducible infinitesimal generator D = D0 + D1 + ... + DK . The stationary

distribution θa of the underlying Markov chain satisfies θaD = 0 and θae = 1. The

(average) type k passenger arrival rate is given by λk =θaDke, where k = 1, ..., K.

Define λ =
∑K

k=1 λk.

ii) The abandonment time τk for type k passengers has a discrete distribution: P{τk =

l̃n} = ηk,n, for k = 1, ..., K and n = 0, 1, ..., N , where l̃0 = 0 < l̃1 < ... < l̃N−1 < l̃N =

∞.

iii) Taxis arrive to the queueing system according to an MMAP with a set of square

matrices (B0, B1, ..., BH) of order mb. Similarly, B0 contains the transition rates

without an arrival, Bh contains the transition rates with the arrival of a type h taxi,

where h = 1, ..., H. The underlying Markov chain of the arrival process {Ib(t), t ≥ 0}
has an irreducible infinitesimal generator B = B0 + B1 + ... + BH . The stationary

distribution θb of the underlying Markov chain satisfies θbB = 0 and θbe = 1. The

(average) type h taxis arrival rate is given by µh =θbBhe, where h = 1, ..., H. Define

µ =
∑H

h=1 µh.

iv) The abandonment time τ̂h for type h taxis has a discrete distribution: P{τ̂h = l̂m} =

η̂h,m, for h = 1, ..., H and m = 0, 1, ...,M , where l̂0 = 0 < l̂1 < ... < l̂M−1 < l̂M =∞.

In the rest of this chapter, we make the following assumptions.

• We assume that the arrival processes and the abandonment times are independent.

• We assume
∑K

k=1 ηk,Nλk < µ and
∑H

h=1 η̂h,Mµh < λ to ensure the stability of the

queueing system. We note that ηk,N can be interpreted as the proportion of type k

passengers who stay in the queue forever until being served. Then
∑K

k=1 ηk,Nλk is

the total number of arrivals per unit time of passengers who have to be served. The

condition
∑K

k=1 ηk,Nλk < µ means that there are enough taxis to serve all those pas-

sengers. Consequently, the passenger queue can reach a steady state. The condition∑H
h=1 η̂h,Mµh < λ can be interpreted similarly.
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• We assume the matching time is negligible, so the queue in the system can be a

passenger queue or a taxi queue, which never co-exist.

The two sides of the double-sided queueing system are structurally symmetric, which

implies that if we can obtain the queueing quantities of one side, we can easily obtain

the queueing quantities of the other side by exchanging the parameters of the two sides.

This property can also be used to verify the accuracy of the results and to explore the

relationship between the quantities.

5.2 Age Processes and a Multi-Layer MMFF Process

In this section, we first define the ages of the passengers and taxis in the double-sided

queueing model. Based on the age processes, we introduce a multi-layer MMFF process.

The age of a passenger (taxi) is defined as the amount of time that has passed since

the passenger (taxi) entered the system. Because the passenger queue and the taxi queue

cannot coexist, the ages of the passengers and the ages of taxis can never co-exist either.

Let aP (t) be the age of the passenger at the head of the passenger queue at time t, if the

passenger queue is not empty; otherwise, aP (t) = 0. Similarly, let aT (t) be the age of the

taxi at the head of the taxi queue at time t, if the taxi queue is not empty; otherwise,

aT (t) = 0. It is obvious that at most one of aP (t) and aT (t) can be positive. If both aP (t)

and aT (t) are zero, then the system is empty at time t. We can reduce the two-dimensional

age process {(aP (t), aT (t)), t ≥ 0} to a one-dimensional stochastic process by flipping the

age of taxis over the horizontal axis (i.e., the time axis) (see Figure 5.2). Based on this

observation, we define a stochastic process {a(t), t ≥ 0}, to be called the age process, as

a(t) = aP (t), if aP (t) > 0; a(t) = −aT (t), if aT (t) > 0; and a(t) = 0, otherwise.
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Time

Age of Passengers

Age of Taxis

P_1
arrives

P_1
abandons

T_1
arrives

P_2
arrives

T_2
arrives

T_2
abandons

T_3
arrives

T_4
arrives

P_3
arrives

T_4
abandons

P_5
arrives

T_5
arrives

P_4
arrives

P_4
abandons

P_i:	i-th	passenger
T_i:	i-th	taxi

l1

l2

l3

l4

l5

l6

Figure 5.2: The sample path of the age process in a double-sided queue with abandonment
(M = 3 and N = 4)

For notational convenience, we define constants {ln, n = 0, 1, ...,M +N} as: l0 = −∞,

ln = −l̂M−n, for n = 1, 2, ...,M − 1, lM = 0, lM+n = l̃n, for n = 1, 2, ..., N − 1, and

lM+N =∞. The dynamics of a(t) can be described as follows.

• If 0 ≤ lM+n < a(t) < lM+n+1, for n = 0, 1, ..., N − 1, a(t) equals the age of passenger

and increases linearly at rate one if there is no taxi arrival; otherwise, a taxi arrives

at time t, and a(t + 0) = max{0, a(t)− u}, where u is the interarrival time between

the departing passenger (due to matching) and the passenger who is currently behind

it. If a(t) = lM+n > 0 and the type of the passenger at the head of the queue is k, for

n = 1, 2, ..., N−1 and k = 1, ..., K, a(t) continues to increase linearly at rate one with

probability 1− ηk,n/(ηk,n + ...+ ηk,N); otherwise, a(t+ 0) = max{0, lM+n− u}, where

u is the interarrival time between the departing passenger (due to abandonment) and

the passenger who is currently behind it. We note that some passengers who arrived

after the departing passenger may have left the queueing system due to abandonment.

• If ln−1 < a(t) < ln ≤ 0, for n = 1, ...,M , a(t) equals the flipped age of taxi and

decreases linearly at rate one if there is no passenger arrival; otherwise, a(t + 0) =

min{0, a(t) + u}, where u is the interarrival time between the departing taxi (due to
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matching) and the taxi that is currently behind it. If a(t) = ln < 0 and the type of

taxi at the head of the queue is h, for n = 1, 2...,M−1 and h = 1, ..., H, a(t) continues

to decrease linearly at rate one with probability 1 − η̂h,M−n/(η̂h,M−n + ... + η̂h,M);

otherwise, a(t + 0) = min{0, ln + u}, where u is the interarrival time between the

departing taxi (due to abandonment) and the taxi that is currently behind it.

• If a(t) = 0, a(t) remains zero until either a passenger or a taxi with positive aban-

donment time arrives. If a passenger arrives first, a(t) would equal the age of that

passenger. If a taxi arrives first, a(t) would equal the flipped age of the taxi.

To analyze the age process {a(t), t ≥ 0}, we introduce three supplementary variables

s(t), I(a)(t), and I(b)(t), which are related to the type of the passenger or taxi at the head

of the queue and the phases Ia(t) and Ib(t) of the two arrival processes.

• s(t): If the system is empty at time t, s(t) = 0; If there is a passenger queue, then

s(t) = k is the type of passenger at the head of the queue, for k = 1, ..., K; and if

there is a taxi queue, then s(t) = h is the type of the taxi at the head of the queue,

for h = 1, ..., H.

• I(a)(t): If a(t) > 0, I(a)(t) equals the phase of the passenger arrival process Ia(t) right

after the arrival of the passenger at the head of the queue; and if a(t) ≤ 0, I(a)(t)

equals the phase of the passenger arrival process at time t (i.e., I(a)(t) = Ia(t) if

a(t) ≤ 0.) By this definition, the value of I(a)(t) changes when a(t) is going down or

a(t) = 0.

• I(b)(t): If a(t) < 0, I(b)(t) is the phase of the taxi arrival process Ib(t) right after the

arrival of the taxi at the head of the queue; and if a(t) ≥ 0, the phase of the taxi

arrival process at time t (i.e., I(b)(t) = Ib(t) if a(t) ≥ 0.) By this definition, the value

of I(b)(t) changes when a(t) is going up or a(t) = 0.

It turns out that {(a(t), s(t), I(a)(t), I(b)(t)), t ≥ 0} is a continuous time Markov process

with state space

{{(−∞, 0)× {1, ..., H}} ∪ {0} ∪ {(0,∞)× {1, ..., K}}}×{1, ...,ma}×{1, ...,mb}. (5.2.1)
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We shall recycle the name age process again and call the continuous time Markov process

{(a(t), s(t), I(a)(t), I(b)(t)), t ≥ 0} an age process.

Next, based on the age process, we introduce a multi-layerMMFF process {(X(t), φ(t)), t ≥
0}. The idea is that convert the down jumps of the age process into periods of decreasing

fluid at slope −1 when the age a(t) is above 0, and maintain the increasing periods of

the age process for the periods of increasing fluid; change the up jumps of the age process

into periods of increasing fluid at slope +1 when the age a(t) is below 0, and maintain

the decreasing periods of the age process for the periods of decreasing fluid; and keep the

periods with a(t) = 0 for the periods with zero fluid. As a result, we add fictitious time

periods whose lengths equal the heights of the up or down jumps of a(t) to construct the

multi-layer MMFF process (see Figure 5.3). More specifically, we define

Time

Fluid Flow Level

P_1
arrives

P_1
abandons

T_1
arrives

P_2
arrives

T_2
arrives

T_2
abandons

T_3
arrives

T_4
arrives

P_3
arrives

T_4
abandons

P_4
arrives

T_5
arrives

P_5
arrives

P_4
abandons

l1

l2

l3

l4

l5

l6

P_i:	i-th	passenger
T_i:	i-th	taxi

Figure 5.3: The corresponding MMFF process for the age process in Figure 5.2

• The fluid level X(t) equals a(t) during the real time periods. In the fictitious time

periods, X(t) is determined by the linear interpolation of the fluid levels at the start

and end of the period.

• φ(t) = (s(t), I(a)(t), I(b)(t)) for t ≥ 0, which is defined as follows. In any time period in

which X(t) is increasing, I(a)(t) is fixed at the phase of the passenger arrival process

at the beginning of the period, and I(b)(t) = Ib(t), the phase of the taxi arrival

process, which evolves in this period of time. In any time period in which X(t) is

decreasing, I(b)(t) is fixed at the phase of the taxi arrival process at the beginning
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of the period, and I(a)(t) = Ia(t), the phase of the passenger arrival process, which

evolves in this period of time. If X(t) > 0 and X(t) is decreasing, s(t) = 0 since this

is the fictitious time period in which the next head of the queue passenger is coming.

If X(t) < 0 and X(t) is increasing, s(t) = 0.

By the above definitions, Ia(t) is frozen and Ib(t) is evolving when X(t) is in increasing

periods, so I(a)(t) is fixed at the phase of the passenger arrival process at the beginning

of the period and I(b)(t) = Ib(t). Similarly, Ib(t) is frozen and Ia(t) is evolving when X(t)

is in decreasing periods, so I(b)(t) is fixed at the phase of the taxi arrival process at the

beginning of the period and I(a)(t) = Ia(t). By this definition, if a(t) = 0, then s(t) = 0

and neither passenger nor taxi is waiting in the system.

The state space and transition matrices of X(t) and φ(t) are specified as follows.

1. There are M + N layers with Borders ln, for n = 0, 1, ...M,M + 1, ...,M + N . Note

that l0 = −∞, lM = 0 and lM+N = ∞. (Note that we use two constants M and N

to define the Borders and Layers for notational convenience.)

2. The state space of φ(t) for Layer n, for n = 1, 2, ...,M + N , is S(n) = S(n)
+ ∪ S(n)

− ,

where, for n = M + 1,M + 2, ...,M +N ,

S(n)
+ = {+} × {1, ..., K} × {1, ...,ma} × {1, ...,mb} ;

S(n)
− = {−} × {1, ...,ma} × {1, ...,mb} ,

(5.2.2)

and, for n = 1, 2, ...,M ,

S(n)
+ = {+} × {1, ...,ma} × {1, ...,mb} ;

S(n)
− = {−} × {1, ..., H} × {1, ...,ma} × {1, ...,mb} .

(5.2.3)

The Q-matrix Q(n) of the underlying Markov chain is, for n = M+1,M+2, ...,M+N ,

Q(n) =
S(n)
+

S(n)
−

(
I ⊗ I ⊗B0 e⊗ I ⊗ (B1 + ...+BH)

(D1,n ⊗ I, ...,DK,n ⊗ I) D̂n ⊗ I

)
, (5.2.4)
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where Dk,n = Dk(ηk,n−M + ...+ ηk,N), D̂n = D −
∑K

k=1Dk(ηk,n−M + ...+ ηk,N); and,

for n = 1, 2, ...,M ,

Q(n) =
S(n)
+

S(n)
−

(
I ⊗ B̂n (I ⊗ B1,n, ..., I ⊗ BH,n)

e⊗ (D1 + ...+DK)⊗ I I ⊗D0 ⊗ I

)
, (5.2.5)

where Bh,n = Bh(η̂h,M−n+1 + ... + η̂h,M), B̂n = B −
∑H

h=1Bh(η̂h,M−n+1 + ... + η̂h,M).

We note that (D̂n,D1,n, ...,DK,n) defines a new MMAP of passengers in Layer n, in

which D̂n can be interpreted as the transition rates without an arrival of passengers,

and Dk,n contains the transition rates of an arrival of type k passenger with aban-

donment time greater than ln. Similarly, (B̂n,B1,n, ...,BH,n) can be interpreted as a

new MMAP of taxi for Layer n.

3. Within Border M (i.e., lM = 0), the underlying Markov chain has states {1, ...,ma}×
{1, ...,mb}, and its transition rate matrices are

Q
(M)
bb =

(
D0 +

∑K
k=1 ηk,0Dk

)
⊗ I + I ⊗

(
B0 +

∑H
h=1 η̂h,0Bh

)
;

Q
(M)
b+ = ((1− η1,0)D1 ⊗ I, ..., (1− ηK,0)DK ⊗ I) ;

Q
(M)
b− = (I ⊗ (1− η̂1,0)B1, ..., I ⊗ (1− η̂H,0)BH) ,

(5.2.6)

where
(

(D0 +
∑K

k=1 ηk,0Dk), (1− η1,0)D1, ..., (1− ηK,0)DK

)
defines a new MMAP of

passengers for Border M , and
(

(B0 +
∑H

h=1 η̂h,0Bh), (1− η̂1,0)B1, ..., (1− η̂H,0)BH

)
defines a new MMAP of taxis for Border M .

4. The transition probabilities entering Border M are given by

P
(M)
−b+ = 0; P

(M)
−b− = 0; P

(M)
−bb = I; P

(M)
+b+ = 0; P

(M)
+b− = 0; P

(M)
+bb = I. (5.2.7)

Note that there is no passing or reflection for Border M .

5. All other borders have no state. The probabilities of approaching Border n, for
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1 ≤ n ≤ N − 1, are P
(n+M)
−b+ = P

(n+M)
−bb = 0, P

(n+M)
−b− = I, P

(n+M)
+bb = 0,

P
(n+M)
+b− =


η1,n

η1,n+...+η1,N
I

...
ηK,n

ηK,n+...+ηK,N
I

 ;

P
(n+M)
+b+ =


η1,n+1+...+η1,N

η1,n+η1,n+1+...+η1,N
I 0 ... 0

0
η2,n+1+...+η2,N

η2,n+η2,n+1+...+η2,N
I ... 0

. . . . . . . . . . . .

0 ... 0
ηK,n+1+...+ηK,N

ηK,n+ηK,n+1+...+ηK,N
I

 .

(5.2.8)

The probabilities of approaching Border n, for 1 ≤ n ≤M − 1, are P
(n)
+b− = P

(n)
+bb = 0,

P
(n)
+b+ = I, P

(n)
−bb = 0,

P
(n)
−b− =


η̂1,M−n+1+...+η̂1,M
η̂1,M−n+...+η̂1,M

I 0 ... 0

0
η̂2,M−n+1+...+η̂2,M−n
η̂2,M−n+...+η̂2,M

I ... 0
. . . . . . . . . . . .

0 ... 0
η̂H,M−n+1+...+η̂H,M
η̂H,M−n+...+η̂H,M

I

 ;

P
(n)
−b+ =


η̂1,M−n

η̂1,M−n+...+η̂1,M
I

...
η̂H,M−n

η̂H,M−n+...+η̂H,M
I

 .

(5.2.9)

If the system satisfies the following three conditions,∑K
k=1 ηk,Nλk/µ < 1 and

∑H
h=1 η̂h,Mµh/λ < 1;∑K

k=1(
∑N

l=n ηk,l)λk/µ 6= 1 for n = 1, 2, ..., N − 1;∑H
h=1(

∑M
l=n η̂h,l)µh/λ 6= 1 for n = 1, 2, ...,M − 1.

(5.2.10)

The joint stationary distribution of the multi-layer MMFF process {(X(t), φ(t)), t ≥ 0}
can be found by Algorithm 1 in Chapter 3. We use similar notations for the border

probabilities in Border M as p(M) and the coefficients {u(n)
+ ,u

(n)
− , n = 1, 2, ...,M +N}.
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Our next two steps for analyzing the queueing model are: i) We find the joint stationary

distributions of age processes {(a(t), s(t), I(a)(t), I(b)(t)), t ≥ 0}, {(aP (t), s(t), I(a)(t), I(b)(t)), t ≥
0}, and {(aT (t), s(t), I(a)(t), I(b)(t)), t ≥ 0} in Section 5.3; ii) We find other queueing quan-

tities in Section 5.4.

5.3 Joint Stationary Distribution of Age Processes

Although Algorithm 1 has been developed for computing the joint stationary distributions

for multi-layer MMFF processes, we simplify the algorithm and make it more efficient by

taking advantage of the structure of the double-sided queues.

i) Border Probabilities: Since the multi-layer MMFF process has only one sticky

border (i.e., Border M , which has a non-empty state space), we construct a censored

continuous time Markov process Q
(M)
p for the border probabilities p(M) similar to the

one in Chapter 4, which satisfies p(M)Q
(M)
p = 0 and p(M)e = 1. But the fluid level

can go up and down from the Border M , thus we need to consider the first passage

probabilities to return to the (only) sticky Border M from both above and below

(Recall we consider only the probabilities from above in Chapter 4 equation 4.3.1),

we have

Q(M)
p = Q

(M)
bb +Q

(M)
b+ T

(M)
+ P

(M)
−bb +Q

(M)
b− T

(M)
− P

(M)
+bb , (5.3.1)

where T
(M)
+ is the transition of the underlying state from an epoch that the fluid flow

level X(t) starts to increase from Border M to the next first epoch that X(t) returns

to Border M , and T
(M)
− is the transition of the underlying state from an epoch that

the fluid flow level X(t) starts to decrease from Border M to the next first epoch that

X(t) returns to Border M . Matrices T
(M)
+ and T

(M)
− can be computed recursively as

follows:
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– We have T
(M+N−1)
+ = Ψ(M+N), and, for n = M + 1,M + 2, ...,M +N − 1,

T
(n−1)
+ = Ψ

(ln−ln−1)
+− + Λ

(ln−ln−1)
++ (P

(n)
+b− + P

(n)
+b+T

(n)
+ )

×
(
I − Ψ̂

(ln−ln−1)
−+ (P

(n)
+b− + P

(n)
+b+T

(n)
+ )
)−1

Λ̂
(ln−ln−1)
−− .

(5.3.2)

– We have T
(1)
− = Ψ̂(1), and, for n = 1, 2, ...,M − 1,

T
(n+1)
− = Ψ̂

(ln+1−ln)
−+ + Λ̂

(ln+1−ln)
−− (P

(n)
−b+ + P

(n)
−b−T

(n)
− )

×
(
I −Ψ

(ln+1−ln)
+− (P

(n)
−b+ + P

(n)
−b−T

(n)
− )
)−1

Λ
(ln+1−ln)
++ .

(5.3.3)

ii) Coefficients: Let w(n) = (w
(n+1)
L ,w

(n)
U ), for n = 1, ...,M +N − 1. After we obtain

vector p(M), the coefficients can be obtained by solving the following set of linear

equations:

w(M) = p(M)(Q
(M)
b+ , Q

(M)
b− );

w(1) = w(1)

(
Ψ

(l2−l1)
+− (P

(1)
−b+, P

(1)
−b−)

Ψ̂(1)(P
(1)
+b+, P

(1)
+b−)

)
+w(2)

(
0

Λ̂
(l2−l1)
−− (P

(1)
−b+, P

(1)
−b−)

)
;

w(n) = w(n)

(
Ψ

(ln+1−ln)
+− (P

(n)
−b+, P

(n)
−b−)

Ψ̂
(ln−ln−1)
−+ (P

(n)
+b+, P

(n)
+b−)

)
+w(n+ 1)

(
0

Λ̂
(ln+1−ln)
−− (P

(n)
−b+, P

(n)
−b−)

)

+w(n− 1)

(
Λ

(ln−ln−1)
++ (P

(n)
+b+, P

(n)
+b−)

0

)
,

for n = 2, ...,M − 1,M + 1, ...,M +N − 2;

w(M +N − 1) = w(M +N − 1)

(
Ψ(M+N)(P

(M+N−1)
−b+ , P

(M+N−1)
−b− )

Ψ̂
(lM+N−1−lM+N−2)
−+ (P

(M+N−1)
+b+ , P

(M+N−1)
+b− )

)

+w(M +N − 2)

(
Λ

(lM+N−1−lM+N−2)
++ (P

(M+N−1)
+b+ , P

(M+N−1)
+b− )

0

)
.

(5.3.4)

Let f(x) be the joint stationary density function of the age process {(a(t), s(t), I(a)(t), I(b)(t)), t ≥
0}. Note that the state space of {(a(t), s(t), I(a)(t), I(b)(t)), t ≥ 0} is given in (5.2.1). Let

f (n)(x) = f(x), if ln−1 < x < ln, for n = 1, 2, ...,M +N .
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Theorem 5.1. ([116]) Under the conditions given in Equation (5.2.10), the joint station-

ary distribution of the age process {(a(t), s(t), I(a)(t), I(b)(t)), t ≥ 0} exists and its density

function is given by

P{a(t) = 0} = p̂(M)e;

f (n)(x) = v
(n)
+ eK

(n)(x−ln−1)Ψ(n) + v
(n)
− eK̂

(n)(ln−x), for ln−1 < x ≤ ln, n = 1, ...,M ;

f (n)(x) = v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n), for ln−1 ≤ x < ln, n = M + 1, ...,M +N.

(5.3.5)

where v
(1)
+ = 0, v

(M+N)
− = 0, v

(n)
+ = u

(n)
+ /ĉnorm, v

(n)
− = u

(n)
− /ĉnorm and p̂ = p/ĉnorm.

According to P{−∞ < a(t) <∞} = 1 (i.e., the law of total probability), the normalization

factor is

ĉnorm = p(M)e+
M∑
n=1

(
u
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + u

(n)
− L̃K̂

(n)

ln−1,ln

)
e+

M+N∑
n=M+1

(
u
(n)
+ LK

(n)

ln−1,ln
+ u

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e.

(5.3.6)

Proof. The results are obtained by using Theorem 3.2 and censoring out the decreasing

periods when a(t) > 0 and increasing periods when a(t) < 0 (i.e., {(x, j) : 0 < x <∞, j ∈
S−} ∪ {(x, j),−∞ < x < 0, j ∈ S+}). The evaluation of the integrals LK(n)

ln−1,ln
and L̃K̂(n)

ln−1,ln

is given in Lemma B.1.

Based on the above joint stationary distribution, the joint distributions related to the

passenger age and the taxi age can be obtained immediately. Let f
(n)
P (x), for x > 0 and

n = M + 1, ...,M + N , and f
(n)
T (x), for x < 0 and n = 1, ...,M , be the joint stationary

density functions of the age processes of passengers and taxis, respectively.

Corollary 5.1.1. ([116]) The joint stationary distribution for the age process for passen-

gers is

P{aP (t) = 0} = p̂(M)e +
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e;

f
(n)
P (x) = v

(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n),

for ln−1 ≤ x < ln, n = M + 1, ...,M +N.

(5.3.7)
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The joint stationary distribution for the age process for taxis is

P{aT (t) = 0} = p̂(M)e +
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e;

f
(n)
T (x) = v

(n)
+ eK

(n)(−x−ln−1)Ψ(n) + v
(n)
− eK̂

(n)(ln+x),

for − ln−1 > x ≥ −ln, n = 1, ...,M.

(5.3.8)

Immediately, the probabilities related to the type of queue (i.e., passenger queue or

taxi queue) can be obtained: 1) Taxi queue: Empty passenger queue and non-empty taxi

queue (P{aP (t) = 0, aT (t) > 0}); 2) Passenger queue: Empty taxi queue and non-empty

passenger queue (P{aP (t) > 0, aT (t) = 0}); and 3) Empty system (P{aP (t) = 0, aT (t) =

0}).

pT =: P{aP (t) = 0, aT (t) > 0} =
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e;

pP =: P{aP (t) > 0, aT (t) = 0} =
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e;

P{aP (t) = 0, aT (t) = 0} = p̂(M)e.

(5.3.9)

Similarly, a number of queueing quantities for individual types of passengers and taxis

can also be obtained by using the joint density function of the multi-layer MMFF process.

The idea is to utilize the underlying states associated with individual types of passengers

and taxis (i.e., states for fixed s(t)).

Let f
(n)
P (k, x) be the joint density function of (a(t), s(t) = k, I(a)(t), I(b)(t)), for k =

1, 2, ..., K, ln−1 < x < ln, and n = M + 1, ...,M + N . Let pP (k) be the probability that a

type k passenger is at the head of the queue at an arbitrary time. Recall that the state space

of {(a(t), k, I(a)(t), I(b)(t)), t ≥ 0}, for k = 1, ..., K, is (0,∞)×{k}×{1, ...,ma}×{1, ...,mb}.
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Then we have, for k = 1, ..., K, and ln−1 < x < ln, n = M + 1, ...,M +N ,

f
(n)
P (k, x) = f

(n)
P (x)(e(k)⊗ I) =

(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
)

(e(k)⊗ I), ;

pP (k) =
M+M∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(e(k)⊗ e),

(5.3.10)

where e(k) is a column vector of size K whose k-th element is one and all others zero. It

is easy to see that pP = pP (1) + pP (2) + ...+ pP (K).

The computational steps for computing the joint stationary distribution are presented
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at the end of this section.

Algorithm 3: The joint stationary distribution of the age process

1. Input Parameters: M , N , K, H, {l̃0 = 0, ..., l̃N}, {l̂0 = 0, ..., l̂M}, {ηk,0, ..., ηk,N}, for

k = 1, 2, ..., K, {η̂h,0, ..., η̂h,M}, for h = 1, 2, ..., H, {ma, D0, ..., DK}, and

{mb, B0, ..., BH};

2. Construct transition blocks for the multi-layer MMFF process:

2.1 Borders: {l0 = −∞, ..., lM , ..., lM+N =∞} as l0 = −∞, ln = −l̂M−n, for

n = 1, 2, ...,M − 1, lM = 0, lM+n = l̃n, for n = 1, 2, ..., N − 1, and lM+N =∞;

2.2 Construct {Q(n), n = 1, 2, ...,M +N} using Equations (5.2.4) and (5.2.5);

2.3 Construct {Q(M)
bb , Q

(M)
b+ , Q

(M)
b− } using Equation (5.2.6);

2.4 Construct {P (n)
+b+, P

(n)
+b0, P

(n)
+b−, P

(n)
−b+, P

(n)
−b0, P

(n)
−b−, n = 1, 2, ...,M +N − 1} using

Equations (5.2.7), (5.2.8) and (5.2.9);

3. Use Algorithm 1 to compute {Ψ(n),K(n),U (n), Ψ̂(n), K̂(n), Û (n)} for n = 1, ...,M +N

and {Ψ(ln−ln−1)
+− , Ψ̂

(ln−ln−1)
−+ ,Λ

(ln−ln−1)
++ , Λ̂

(ln−ln−1)
−− } for n = 2, 3, ...,M +N − 1;

4. Compute T
(M)
+ and T

(M)
− using Equations (5.3.2) and (5.3.3); Construct Q

(M)
p using

Equation (5.3.1); and solve p(M)Q
(M)
p = 0 and p(M)e = 1 to get border probabilities;

5. Compute the coefficients {w(n), n = 1, 2, ...,M +N − 1} by solving the set of

linear equations (5.3.4); and compute the joint density function of the multi-layer

MMFF process;

6. Compute ĉnorm by using Equation (5.3.6), and use ĉnorm to get p̂(M) and

{v(n)
+ ,v

(n)
− , n = 1, 2, ...,M +N};

7. Use p̂(M), {v(n)
+ ,v

(n)
− , n = 1, 2, ...,M +N} and Equation (5.3.5) to compute the

density function of the age process;

8. Compute the density function of the age process for passengers using Equation

(5.3.7) and for taxis using Equation (5.3.8).
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5.4 Queueing Quantities

In this section, we use the result for the age process to find queueing quantities related to:

i) Matching rate and abandonment probabilities; ii) Waiting times; and iii) Queue lengths.

Due to the symmetry between the passenger queue and the taxi queue, in the rest of this

section, we shall mainly focus on quantities related to the passenger queue. Formulas for

the quantities related to the taxi queue are similar and most of them will be omitted.

5.4.1 Matching Rate and Abandonment Probabilities

Let ω be the number of pairs of matched passengers and taxis per unit time, to be called

the matching rate.

Proposition 5.1. ([116]) The matching rate of the system is

ω =
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(I ⊗ (D −D0)⊗ I)e

+
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(I ⊗ I ⊗ (B −B0))e.

(5.4.1)

Proof. According to Theorem 5.1 and Equation (5.3.9), the joint probability that there is

a taxi queue can be found by
∑M

n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
, and the total arrival

rate of passengers of all types can be found by I ⊗ (D − D0) ⊗ I. Therefore, the first

summation in Equation (5.4.1) is the matching rate when there is a taxi queue. Similarly,

the second summation is the matching rate when there is a passenger queue. Then the

sum of those two summations gives the total matching rate.

Let ωP (k) be the matching rate (service rate) of type k passengers (with any type of
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taxis). By fixing passenger type at k, for k = 1, ..., K, we obtain

ωP (k) =
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(I ⊗Dk ⊗ I)e

+
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(e(k)⊗ e⊗ ((B −B0)e)).

(5.4.2)

Using the same argument, we can actually find the matching rate for any type of passengers

with any type of taxis, denoted as ω(k, h) for type k passengers with type h taxis, as

ω(k, h) =
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(e(h)⊗ (Dke)⊗ e)

+
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(e(k)⊗ e⊗ (Bhe)).

(5.4.3)

Then we find the probability that an arbitrary type k passenger will take a type h taxi

as ω(k, h)/λk and the probability that an arbitrary type h taxi will be taken by a type k

passenger as ω(k, h)/µh, for k = 1, ..., K and h = 1, ..., H.

We note that the first summation on the right-hand side of Equation (5.4.3) can be

interpreted as the arrival rate of type k passengers times the probability that a type h taxi

is at the head of the taxis queue, and the second summation is the arrival rate of type h

taxis times the probability that a type k passenger is at the head of the passenger’s queue.

We also note that in computation, we first compute ω(k, h) by Equation (5.4.3), then sum

up ω(k, h) over h to obtain ωP (k) (i.e.,
∑H

h=1 ω(k, h) = ωP (k)), and finally sum up ωp(k)

over k to find ω (i.e.,
∑K

k=1 ωP (k) = ω).

Let pP,S be the probability that an arbitrary passenger is matched by a taxi, and pP,L

be the probability that an arbitrary passenger abandons the queue.

Corollary 5.1.2. ([116])

pP,S =
ω

λ
(5.4.4)

and the abandonment probability for passengers is given by pP,L = 1− pP,S.
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Similarly, we can find the matching probability of taxis as pT,S = ω/µ.

Corollary 5.1.3. ([116]) The ratio of the service probabilities of two sides equals to the

reciprocal of the ratio of arrival rates of two sides, i.e.,

pP,S
pT,S

=
µ

λ
. (5.4.5)

Proof. The result is obtained by Proposition 5.1.2 and the symmetry between the two

queues.

Corollary 5.1.3 also implies that the ratio of the service probabilities of two sides is

independent of the abandonment distributions and arrival processes, which is intuitive

since the total number of matched passengers equals the total number of matched taxis.

For individual types of passengers, the service probability of type k passengers is given

by

pP,S(k) =
ωP (k)

λk
(5.4.6)

and the abandonment probability for type k passengers is PP,L(k) = 1− PP,S(k).

Next, we decompose pP,L into two parts: i) abandonment probability pPL,1 of passengers

at the head of the queue; and ii) abandonment probability pPL,>1 of passengers before

reaching the head of the queue. Then we have the following result.

Proposition 5.2. ([116])

pPL,1 =
1

λ

M+N−1∑
n=M+1

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)(( K∑
k=1

ηk,n−M∑M+N
m=n ηk,m−M

e(k)

)
⊗ e

)

+
1

λ
p̂(M)

((
K∑
k=1

ηk,0Dke

)
⊗ e

)
,

(5.4.7)

and pPL,>1 = pP,L − pPL,1.

Proof. For a passenger at the head of the queue to abandon the queue, its age must reach

ln for some n = M + 1,M + 2, ...,M + N − 1. If its age reaches ln, its age must be
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greater than ln−1, which occurs with probability ηk,n−M + ... + ηk,N , if the passenger is

of type k. Then the conditional probability that it abandons the queue at t = lM+n is

ηk,n−M/(ηk,n−M + ... + ηk,N). Combining with the transition rate for the age to reach ln,

which is f (n)(ln)(e(k)⊗ e), if the passenger is of type k, we obtain

pPL,1 =
1

λ

M+N−1∑
n=M+1

f
(n)
P (ln)

((
K∑
k=1

ηk,n−M∑M+N
m=n ηk,m−M

e(k)

)
⊗ e

)
+

1

λ
p̂(M)

((
K∑
k=1

ηk,0Dke

)
⊗ e

)
.

(5.4.8)

By Equation (5.3.7), we obtain the desired result.

Remark: From Proposition 5.2, we can see that by tracking the age process, we can get

some quantities for passengers at the head of the queue and before reaching the head of the

queue. These quantities can be useful in practice. On the other hand, we can generalize

our model by introducing different abandonment time distributions to the passengers at

the head of the queue and before reaching the head of the queue. We will discuss this

generalization in the next queueing model in Chapter 6.

For type k passengers, the probability that they abandon the system at the head of the

queue is

pPL,1(k) =
1

λk

M+N−1∑
n=M+1

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)
(e(k)× e)

ηk,n−M∑M+N
m=n ηk,m−M

+
1

λk
p̂(M) ((ηk,0Dke)⊗ e) .

(5.4.9)

Consequently, the probability that a type k passenger abandons the queue before reaching

the head of the queue is given by pPL,>1(k) = pP,L(k)− pPL,1(k).

5.4.2 Waiting Times

In this subsection, we consider the waiting times (i.e., the sojourn time) of passengers. We

shall consider four types of waiting times. Namely, the waiting times of passengers i) Who

are matched with a taxi; ii) Who abandon the system; iii) Who abandon the system when
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the passenger is at the head of the passenger queue; and iv) Who abandon the system

before reaching the head of the passenger queue.

Proposition 5.3. ([116]) The distribution of waiting time WP,S of passengers received

service is

P{WP,S = 0} =
1

pP,Sλ

M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(I ⊗ (D −D0)⊗ I)e;

dP{WP,S < x}
dx

=
1

pP,Sλ

(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
)

(I ⊗ I ⊗ (B −B0))e,

for ln−1 ≤ x < ln, n = M + 1,M + 2, ...,M +N.

(5.4.10)

The distribution of waiting time WPL,1 of passengers abandoning the system at the head of

the queue is given by, for n = M (i.e., lM = 0),

P{WPL,1 = 0} =
1

pPL,1λ
p̂(M)

((
K∑
k=1

ηk,0Dke

)
⊗ e

)
, (5.4.11)

and, for n = M + 1,M + 2, ...,M +N − 1,

P{WPL,1 = ln} =

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)
pPL,1λ

((
K∑
k=1

ηk,n−M
ηk,n−M + ...+ ηk,N

e(k)

)
⊗ e

)
.

(5.4.12)

The waiting time WPL,>1 of a passenger that abandons the queue before reaching the head

of the queue, we have, for n = M,M + 1, ...,M +N − 1,

P{WPL,>1 = ln} =
1

pPL,>1λ

(
M+N∑
m=n+1

(
v
(m)
+ LK

(m)

lm−1,lm
Ψ(m) + v

(m)
− L̃K̂

(m)

lm−1,lm

)
×

((
K∑
k=1

ηk,n−MDke

)
⊗ e

))
.

(5.4.13)

Proof. That WP,S = 0 occurs if there is a taxi queue when a passenger arrives, the ratio of

the probability that passengers take taxi without waiting and PP,S leads to the expression

for P{WP,S = 0}. Similarly, we use the transition rate ratio to find, for ln−1 ≤ x < ln, n =
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M + 1,M + 2, ...,M +N ,

dP{WP,S < x}
dx

=
1

pP,Sλ
f
(n)
P (x)(I ⊗ (B −B0))e, (5.4.14)

which leads to the desired result.

For WPL,1, the probability P{WPL,1 = 0} is obtained from the proof of Proposition 5.2.

For n ≥M + 1, it is clear that WPL,1 = ln if a(t) reaches ln from below and abandonment

occurs. The probability for WPL,1 to reach ln is f
(n)
P (ln)e/(pPL,1λ). The probability for the

abandonment to occur is ηk,n−M/(ηk,n−M + ... + ηk,N), if the passenger at the head of the

queue is of type k. Then expression (5.4.12) can be obtained easily.

To find the distribution of WPL,>1, We need to go back to the joint stationary distribu-

tion of the multi-layer MMFF process {(X(t), φ(t), t ≥ 0}. When the multi-layer MMFF

process is in S
(n)
− and there is a passenger arrival, which may take place if X(t) ≥ 0, the

arriving passenger will abandon the queue in the future with probability ηk,1 + ...+ηk,n−1 if

ln−1 < x < ln and the type of the passenger at the head of the queue is k. Since passenger

arrivals take place only when the fluid level of the multi-layer MMFF process is decreas-

ing, we censor out the periods of time in which the fluid level is increasing when X(t) > 0,

and the periods of time in which the fluid level is decreasing when X(t) < 0. This censored

process has the same normalization factor as the age process. Then the desired results are

obtained by the density function of the MMFF process.

Remark: According to the law of total probability, we must have P{WP,S <∞} = 1 and∑M+N−1
n=M P{WPL,1 = ln} = 1, which can be used to check computation accuracy. The law

of total probability
∑M+N−1

n=M P{WPL,>1 = ln} = 1 can also be used to check computation

accuracy.

The mean waiting time for served passenger E[WP,S] can be calculated by:

E[WP,S] =
1

pP,Sλ

M+N∑
n=M+1

(
v
(n)
+ MK(n)

ln−1,ln
+ v

(n)
− M̃K̂(n)

ln−1,ln
Ψ̂(n)

)
(I ⊗ I ⊗ (B −B0))e, (5.4.15)

where closed form expressions of MK(n)

ln−1,ln
and M̃K̂(n)

ln−1,ln
can be found in Lemma B.1. The
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distribution of the waiting time WP of an arbitrary passenger can be found from that of

WP,S, WPL,1, and WPL,>1. The mean waiting time can be found by

E[WP ] = pP,SE[WP,S] + pPL,1E[WPL,1] + pPL,>1E[WPL,>1]. (5.4.16)

In Equations (5.4.10), (5.4.12), and (5.4.13), if only the components of the vectors asso-

ciated with s(t) = k are included in the summations, the joint distributions of (WP,S, s(t) =

k), (WPL,1, s(t) = k), and (WPL,>1, s(t) = k) can be obtained. Consequently, after proper

normalization, the waiting times of type k passengers can be obtained. The joint stationary

distribution of waiting time WP,S of type k passengers received service is

P{WP,S = 0|s(t) = k} =
1

pP,S(k)λk

M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
(e⊗ (Dke)⊗ e);

dP{WP,S < x|s(t) = k}
dx

=
1

pP,S(k)λk

(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
)

(e(k)⊗ e⊗ (−B0e)),

for ln−1 ≤ x < ln, n = M + 1,M + 2, ...,M +N.

(5.4.17)

The distribution of waiting time WPL,1 of type k passengers abandoning the system at

the head of the queue is given by, for k = 1, ..., K

P{WPL,1 = 0|s(t) = k} =
1

pPL,1(k)λk
p̂(M) ((ηk,0Dke)⊗ e) ,

P{WPL,1 = ln|s(t) = k} =

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)
pPL,1(k)λk

((
ηk,n−M

ηk,n−M + ...+ ηk,N
e(k)

)
⊗ e

)
.

for n = M + 1,M + 2, ...,M +N − 1

(5.4.18)

The waiting time WPL,>1 of type k passengers abandoning the queue before reaching the
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head of the queue, we have, for k = 1, ..., K and n = M,M + 1, ...,M +N − 1,

P{WPL,>1 = ln|s(t) = k} =

1

pPL,>1(k)λk

(
M+N∑
m=n+1

(
v
(m)
+ LK

(m)

lm−1,lm
Ψ(m) + v

(m)
− L̃K̂

(m)

lm−1,lm

)
× ((ηk,n−MDke)⊗ e)

)
.

(5.4.19)

5.4.3 Queue Lengths

Let qP (t) be the queue length of passengers at an arbitrary time t. Similar to Subsection

4.4.3, the z-transform of qP (t) can be derived based on the joint distribution of the age pro-

cess. We divide the interval (t−x, t) into (t−lM+1, t), (t−lM+2, t−lM+1), ..., (t−x, t−ln−1),
if ln−1 < x < ln. For a type k passenger arrived in (t − lM+1, t), it is still in the system

at time t with probability 1− ηk,0. The conditional probability generating function of the

number of such passengers is exp
{

(D0 +
∑K

k=1(ηk,0 + (1− ηk,0)z)Dk)lM+1

}
(see Lemma

B.2 or Theorem 2.5.1 in [62]). For passengers arrived in (t− lM+2, t− lM+1), they abandon

the queue before t with probability ηk,0 +ηk,1 and are still in the queue at time t with prob-

ability 1− ηk,0 − ηk,1, if the passenger is of type k. The conditional probability generating

function is given by exp
{(
D0 +

∑K
k=1(ηk,0 + ηk,1 + (1− ηk,0 − ηk,1)z)Dk

)
(lM+2 − lM+1)

}
.

In general, for passengers arrived in (t − ln, t − ln−1), they abandon the queue before t

with probability 1 − ξk,n and are still in the queue at time t with probability ξk,n, where

ξk,n =
∑N

i=n−M ηk,i, for n = M,M + 1, ...,M + N . The probability generating function is

given by exp
{(
D0 +

∑K
k=1(1− ξk,n + ξk,nz)Dk

)
(ln − ln−1)

}
. In general, define

P ∗(n, z, y) = exp

{(
D0 +

K∑
k=1

(1− ξk,n + ξk,nz)Dk

)
y

}
. (5.4.20)
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Conditioning on a(t) at an arbitrary time t, the probability generating function of qP (t)

can be found as

E[zqP (t)] = p̂(M)e +
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e

+z
M+N∑
n=M+1

∫ ln

ln−1

f
(n)
P (x)

(
I ⊗

(
P ∗(n, z, x− ln−1)

M+1∏
m=n−1

P ∗(m, z, bm)

)
⊗ I

)
dxe,

(5.4.21)

where bm = lm − lm−1, for m = M + 1,M + 2, ...,M + N . By Theorem 2.3.2 in [62] or

Lemma B.2, we have

∂P ∗(n, z, x)e

∂z

∣∣∣∣
z=1

=

(
K∑
k=1

ξk,nλk

)
xe + (eDx − I)(D − eθa)

−1

(
K∑
k=1

ξk,nDk

)
e. (5.4.22)

Recall that λk = θaDke and D = D0 +D1 + ...+DK . Consequently, we obtain

Proposition 5.4. ([116]) The mean queue length is given by

E[qP (t)] =
∂E[zqP (t)]

∂z

∣∣∣∣
z=1

=
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e

+
M+N∑
n=M+1

n−1∑
m=M+1

∫ ln

ln−1

f
(n)
P (x)

(
I ⊗ eD(x−lm) ⊗ I

)
dx

×
(
I ⊗

((∑K
k=1 ξk,mλk

)
bmI + (eDbm − I)(D − eθa)

−1
(∑K

k=1 ξk,mDk

))
⊗ I
)

e

+
M+N∑
n=M+1

∫ ln

ln−1

f
(n)
P (x)

(
I ⊗

((
K∑
k=1

ξk,nλk

)
(x− ln−1)I

+ (eD(x−ln−1) − I)(D − eθa)
−1

(
K∑
k=1

ξk,nDk

))
⊗ I

)
edx.

(5.4.23)

The evaluation of the integrals can be found in Lemma B.1.

The mean queue length and mean waiting time satisfy the well-known Little’s law:

E[qP (t)] = λE[WP ], which is useful for checking computation accuracy.
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Let qP (k, t) be the queue length of type k passengers in the queue at time t. Let

z = (z1, ..., zK). Define

P̂ ∗(n, z, y) = exp

{(
D0 +

K∑
k=1

(1− ξk,n + ξk,nzk)Dk

)
y

}
, (5.4.24)

which is the joint probability generating function of the numbers of the K types of passen-

gers arrived in (0, y) and are still in the queue at time y. By taking into consideration of the

passenger at the head of the passenger queue, the joint conditional probability generating

function of the numbers of the K types of passengers is obtained as follows.

Proposition 5.5. ([116])

E
[
ΠK
k=1z

qP (k.t)
k

]
= p̂(M)e +

M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e

+
M+N∑
n=M+1

∫ ln

ln−1

f
(n)
P (x)

(
I(z)⊗

(
P̂ ∗(n, z, x− ln−1)

M+1∏
m=n−1

P̂ ∗(m, z, bm)

)
⊗ I

)
dxe,

(5.4.25)

where I(z) = diag(z) (i.e., the matrix with {z1, ..., zK} on its diagonal and all other ele-

ments being zero).

The probability generating functions of the numbers of passengers of individual pas-

senger types in steady state can be obtained accordingly. For instance, the probability

generating function of qP (k, t) is obtained by setting z = (1, ..., 1, zk, 1, ..., 1) in Equation

(5.4.25). By routine calculations, the mean number of type k passengers in the system can
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be found accordingly:

E[qP (k, t)] =
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(e(k)⊗ e)

+
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n=M+1
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ln−1

f
(n)
P (x)
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×
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I ⊗
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−1ξk,mDk
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(n)
P (x) (I ⊗ (ξk,nλk(x− ln−1)I

+ (eD(x−ln−1) − I)(D − eθa)
−1ξk,nDk

)
⊗ I
)
edx.

(5.4.26)

The mean queue length and mean waiting time of type k passengers satisfy the well-

known Little’s law: E[qP (k, t)] = λkE[WP |s(t) = k], which is useful for checking computa-

tion accuracy.

5.4.4 Summary of Queueing Quantities

Since we derived many queueing quantities in this section, we summarize all important

queueing quantities in Table 5.1 to enable readers to quickly locate the meaning and

equations of these quantities.

Notations Quantities Equations Individual type k

f (n)(x) Density of the age process (5.3.5) f
(n)
P (k, x) (5.3.10)

pT & pP Probability of the type of the queue (5.3.9) pP (k) (5.3.10)

ω Matching rate (5.4.1) ωP (k) (5.4.2) & ω(k, h) (5.4.3)

PP,S , PP,L, PPL,1
& PPL,>1

Abandonment probabilities (5.4.4), (5.4.7)
PP,S(k), PP,L(k) (5.4.6),
PPL,1(k) & PPL,>1(k) (5.4.9)

WP,S & E[WP,S ] Waiting time of served passengers (5.4.10), (5.4.15) (WP,S , s(t) = k) (5.4.17)

WPL,1 & WPL,>1 Waiting time of abandoned passengers (5.4.12), (5.4.13)
(WPL,1, s(t) = k) (5.4.18)
& (WPL,>1, s(t) = k) (5.4.19)

E[WP ] Mean waiting time (5.4.16)

qP (t) & E[qP (t)] Queue lengths (5.4.21), (5.4.23) qP (k, t) (5.4.25) (5.4.26)

Table 5.1: Summary of queueing quantities in Chapter 5
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5.5 Numerical Examples

In this section, we show several numerical examples to gain insight into double-sided queues.

We also compare our approach to the diffusion approximation methods in [82] (see Example

5.2).

Example 5.1. We consider a double-sided queue with M = 6, N = 6, and abandonment

distributions given in Table 5.2.

n 1 2 3 4 5 6

l̃n 1 2 3 4 5 ∞
ηn 0.1 0.1 0.2 0.3 0.2 0.1

l̂n 1 2 3 4 5 ∞
η̂n 0.1 0.1 0.2 0.3 0.2 0.1

Table 5.2: Distributions of abandonment times for Example 5.1

We assume that there is one type of input for each side. For the arrival processes, we

first consider two Poisson processes for the two sides with λ = 3 and µ = 4.5, respectively.

Then we use two Markovian arrival processes with parameters

D0 =

(
−3 1

1 −5

)
, D1 =

(
1 1

1 3

)
; B0 =

(
−5 2

1 −7

)
, B1 =

(
2 1

2 4

)
, (5.5.1)

which have the same average arrival rates as the Poisson processes. Our objective is to

compare queueing quantities for such queueing systems. The distributions of the waiting

times of matched passengers and taxis for the two cases are plotted in Figure 5.4, and all

other queueing quantities are collected in Table 5.3.
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Figure 5.4: Comparison of the stationary density functions of WPS and WTS for Example
5.1

Model pP,S pP,L E[WP,S ] E[WP,L] E[WPL.1] E[WPL.>1] E[WP ] E[qP ]

MAP 0.999418 0.000582 0.013302 1.206424 1.260689 1.170121 0.013996 0.041988

Poisson 0.999637 0.000363 0.009128 1.172935 1.213901 1.142643 0.009550 0.028650

Model pT,S pT,L E[WT,S ] E[WT,L] E[WTL.1] E[WTL.>1] E[WT ] E[qT ]

MAP 0.666279 0.333721 2.585029 2.389564 3.381066 2.125594 2.519798 11.339090

Poisson 0.666425 0.333575 2.632891 2.364083 3.354171 2.101333 2.543223 11.444504

Table 5.3: Queueing quantities for Example 5.1

We observe that the model with MAP has higher abandonment probabilities for both

sides. Intuitively, that is caused by the higher squared coefficient of variation of the MAP s.

We also observed that the waiting time distributions are not that different for the two

models. On the other hand, some other quantities can be different significantly (e.g., pP,L),

especially for passengers.

Example 5.2.([116]) We use the numerical example in [82] to compare our approach to the

diffusion approximation methods. Since the distributions of abandonment times in their

paper are exponentially distributed for both passengers and taxis with parameters θ and γ
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respectively, we discretize the abandonment distributions with M = N = 1000 and M =

N = 2000. The distribution of interarrival time can be: i) Exponential with parameter

α and β respectively; ii) Erlang Distribution with parameter α and β respectively. We

compare the queue length, which is defined as the difference between the passenger queue

and the taxi queue, and present the results in Table 5.4.

Parameters Multi-layer MMFF process Liu et al, 2015

(α, β)(1, 2) (θ, γ) M = N = 1000 M = N = 2000 Simulation Poisson Diffusion 1 Diffusion 2

Erlang(2) (1, 2)
-0.4396
(2.58%)

-0.4334
(1.13%)

-0.4285
(±0.0018)

-0.3858
(9.96%)

-0.4493
(4.87%)

-0.5
(16.69%)

Erlang(2) (0.1, 0.2)
-5.0847
(2.04%)

-5.0407
(1.15%)

-4.9832
(±0.015)

-4.9719
(0.23%)

-4.9983
(0.30%)

-5
(0.34%)

Erlang(2) (0.01, 0.02)
-50.8731
(1.57%)

-50.4535
(0.73%)

-50.089
(±0.1507)

-50
(0.18%)

-50
(0.18%)

-50
(0.18%)

Exponential (1, 2)
-0.4007
(3.38%)

-0.3933
(1.46%)

-0.3876
(±0.002)

-0.3858
(0.46%)

-0.3178
(18%)

-0.5
(29%)

Exponential (0.1, 0.2)
-5.0620
(1.69%)

-5.0171
(0.79%)

-4.9779
(±0.0157)

-4.9719
(0.12%)

-4.9776
(0.01%)

-5
(0.45%)

Exponential (0.01, 0.02)
-50.8615
(1.80%)

-50.4406
(0.96%)

-49.9609
(±0.142)

-50
(0.08%)

-50
(0.08%)

-50
(0.08%)

Table 5.4: Comparison of the queue lengths between MMFF processes and diffusion
methods

The half widths of 90% confidence intervals are shown in the Simulation column in

Table 5.4 for the simulation results. The percentage numbers in the bracket in all other

columns show the error rate comparing to the simulation results. Those numbers show

that our numerical results are fairly close to the simulation results no matter what are the

parameters, especially for the non-Poisson arrival and light traffic cases, our results out-

perform all other methods (i.e., Poisson approximation and two diffusion models) in their

paper. Because we use discrete distribution to approximate the exponential abandonment

distribution in [82], our results can be improved by increasing the number of support points

(i.e., M and N).

Example 5.3.([116]) In this example, we consider multiple types of passengers and taxis.

All the input parameters are presented in Table 5.5.
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Passengers Type Arrival l̃1 = 2 l̃2 = 3 l̃3 = 4 l̃4 = 5 l̃5 =∞

D0 =

(
−7, 1
1, −5

) 1 D1 =

(
1, 2
0, 2

)
η1,1 = 0 η1,2 = 0 η1,3 = 0 η1,4 = 0.9 η1,5 = 0.1

2 D2 =

(
2, 0
0, 1

)
η2,1 = 0.4 η2,2 = 0.3 η2,3 = 0.2 η2,4 = 0.1 η2,5 = 0

3 D3 =

(
1, 0
0, 1

)
η3,1 = 0.1 η3,2 = 0.1 η3,3 = 0.1 η3,4 = 0.1 η3,5 = 0.6

Taxis Type Arrival l̂1 = 2 l̂2 = 3 l̂3 = 4 l̂4 = 5 l̂5 =∞

B0 =

(
−3, 0
1, −10

) 1 B1 =

(
1, 0
1, 6

)
η̂1,1 = 0.2 η̂1,2 = 0.2 η̂1,3 = 0.2 η̂1,4 = 0.2 η̂1,5 = 0.2

2 B2 =

(
2, 0
0, 2

)
η̂2,1 = 0.9 η̂2,2 = 0 η̂2,3 = 0 η̂2,4 = 0 η̂2,5 = 0.1

Table 5.5: Parameters of Example 5.3

We can get the matching rate of any type of passengers and any type of taxis (Table 5.6).

Other quantities for each type are collected in Table 5.7, and the density function of

waiting times for served passengers and taxis of each type are plot in Figure 5.5. Note

that E[WP,S](k), E[WP,L](k), E[WP ](k) are for conditional mean waiting times of individual

types of passengers. Quantity notations for taxis are defined similarly.

Matching Rate ω(k, h) Type 1 taxis Type 2 taxis pPL,1(k)λk pPL,>1(k)λk Sum
Type 1 passengers 0.6380 1.2759 0.2436 0.0925 2.25 = λ1
Type 2 passengers 0.1098 0.2196 0.0867 0.8344 1.25 = λ2
Type 3 passengers 0.2521 0.5043 0.0338 0.2098 1 = λ3
pTL,1(h)µh 1.3e-05 0.0001 Note: Arrival rate and leaving rate

(i.e., matched and abandoned)
should be equal to each other.

pTL,>1(h)µh 3.7e-06 3.3e-05
Sum 1 = µ1 2 = µ2

Table 5.6: Matching rate for any type

Passenger pP,S(k) pPL,1(k) pPL,>1(k) E[WP,S](k) E[WP,L](k) E[WP ](k) E[qP (k, t)]
Type 1 0.8506 0.1083 0.0411 3.6704 5.0000 3.8690 8.7052
Type 2 0.2636 0.0689 0.6675 2.8797 2.6733 2.7277 3.4097
Type 3 0.7564 0.0338 0.2098 3.7870 2.9662 3.5871 3.5871
Taxi pT,S(h) pTL,1(h) pTL,>1(h) E[WT,S](h) E[WT,L](h) E[WT ](h) E[qT (k, t)]
Type 1 0.99998 1.33e-05 3.70e-06 0.0023 2.0275 0.0023 0.0023
Type 2 0.99993 5.83e-05 1.63e-05 0.0022 2.0000 0.0023 0.0047

Table 5.7: Queueing quantities for Example 5.3
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Figure 5.5: The stationary density functions of WPS and WTS for Example 5.3

As demonstrated in Figure 5.5 and Tables 5.6 and 5.7, the queueing performance for

the individual types of passengers can be significantly different. One reason for that is the

difference between the arrival patterns of different types of passengers and the abandonment

time distributions. On the other hand, the performances of the two types of taxis are

similar, even though their arrival pattern and their abandonment time distributions are

different. Thus, this example indicates that no single element (e.g., the arrival process,

abandonment time) can dominate the performance of the queueing system.

5.6 Summary

This chapter studies a double-sided queueing model with marked Markovian arrival pro-

cesses and finite discrete abandonment times using multi-layer MMFF processes. We

develop computational methods for queueing quantities related to the age processes, the

abandonment probabilities, waiting times, and queue lengths.

The contributions of this chapter are i) introducing a general double-sided queueing

model with multiple types of inputs and general abandonment; ii) analyzing this queueing
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model by multi-layer MMFF processes and computing a variety of queueing quantities.

Our model can be further extended to a more general case in which the arrival processes

depend on the age of the passenger or taxi at the head of the queue. Double-sided queues

with customer priority are also worth considering. The study of such queues is more

challenging, and it will be the subject of future research.
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Chapter 6

Double-sided Queues with BMAP and

Abandonment

In this chapter, we consider a double-sided queueing model with batch Markovian arrival

processes and finite discrete abandonment times, which arises in various stochastic systems

such as perishable inventory systems and financial markets. Customers arrive to the system

with a batch of orders to be matched by counterparts and the abandonment time of a

customer depends on its batch size and its position in the queue. First, we obtain the

joint stationary distributions of the age processes via the stationary analysis of a multi-

layer MMFF process. Second, using the joint stationary distribution of the age processes,

we derive a number of queueing quantities related to matching rates, fill rates, sojourn

times and queue length for both sides of the system. Last, we apply our model to analyze

a vaccine inventory system and gain insight into the effect of uncertainty in supply and

demand processes on the performance of the inventory system.

This chapter is organized as follows. In Section 6.1, the queueing model of interest is

introduced. In Section 6.2, the age process of the buyer/seller at the head of the queue is

introduced. Based on the age process, a multi-layer MMFF process is constructed and

analyzed. In Section 6.3, the stationary distribution of the multi-layer MMFF process

is utilized to obtain various queueing quantities. In Section 6.4, we apply our model to

analyze a vaccine inventory system. Section 6.5 concludes this chapter.
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6.1 Definitions

In this section, we define a double-sided queueing system with batch arrivals and aban-

donment. The system has two types of agents/customers, to be called buyers and sellers,

arriving at the system independently. Each buyer (seller) has a number of buyer (seller)

orders, which are expected to be matched by seller (buyer) orders. The number of orders

held by a buyer (seller) is called it’s batch size. The batch size of a buyer (seller) may

change after some of its orders are matched by seller (buyer) orders. A buyer (seller) order

has to be matched with a seller (buyer) order if there are one or more than one seller

(buyer) orders in the system. As soon as a buyer order is matched with a seller order, the

pair leaves the system immediately, thus the buyer queue and the seller queue do not co-

exist in the system at any time. The matching rule is first-arrived-first-matched. Within a

batch (i.e., a buyer or seller), we do not specify the matching order since it does not affect

the quantities of interest in this research.

Each buyer (seller) has limited patience and may abandon the system before all its

orders are matched. If a buyer (seller) abandons the system, all remaining (unmatched)

orders of the buyer (seller) are removed from the system. The abandonment time of a

buyer (seller) depends on its batch size and its position in the buyer (seller) queue. A

buyer (seller) in the buyer (seller) queue can be in a position behind the head of the queue

or at the head of the queue. Specifically, the abandonment mechanism for buyers is defined

as follows:

• If a buyer arrives and finds a buyer queue, the buyer joins the buyer queue and its

abandonment time is sampled, conditioning on its batch size. The abandonment time

of the buyer will stay with the buyer until it abandons the queue or it becomes the

head of the queue.

• If a buyer arrives and finds an empty system, the buyer forms a buyer queue and its

abandonment time is sampled. The abandonment time of the buyer will stay with

the buyer until it abandons the queue or its batch size changes due to the arrival of

sellers.
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• If a buyer arrives and finds a seller queue, its orders are matched by seller orders in

the seller queue. If the buyer’s batch size is greater than the total batch size of all

sellers in the queue, the seller queue disappears and the buyer forms a buyer queue

by itself. Its abandonment time is sampled accordingly. For every buyer, matching

takes priority over abandonment.

• If a waiting buyer becomes the head of the queue, its abandonment time is re-sampled

based on its new position and batch size, conditioning on its elapsed waiting time.

We assume that the conditional distribution exists for any possible elapsed waiting

time.

• At the head of the queue, if the batch size of a buyer is changed (this may happen

more than one time due to the arrivals of sellers), its abandonment time is re-sampled

based on its new batch size, conditioning on the elapsed waiting time. Again, we

assume that the conditional distribution exists for any possible elapsed waiting time.

The abandonment mechanism for sellers is defined similarly. Next, the arrival processes

and abandonment time distributions of the queueing model are defined explicitly in the

following four items:

1. Buyer’s arrival process: Assume the maximum batch size of a buyer is K. Buyers

arrive at the queueing system according to a continuous time BMAP with matrix

representation (D0, D1, ..., DK) of order mb. The underlying Markov chain of the

arrival process {Ib(t), t ≥ 0} with generator D = D0 + D1 + ... + DK is irreducible

and has stationary distribution θb. The (average) arrival rate of batch size k buyers

is given by λk =θbDke, for k = 1, ..., K. Define λ =
∑K

k=1 kλk as the arrival rate of

buyer orders.

2. Buyer’s abandonment times: Assume that the abandonment time of a buyer of

batch size k, for k = 1, 2, ..., K, before becoming the head of the buyer queue, is

τk, which has a discrete distribution: P{τk = l̃n} = ηk,n, for n = 0, 1, ..., N , where

l̃0 = 0 < l̃1 < ... < l̃N−1 < l̃N = ∞ are the possible abandonment times. Assume

that the abandonment time of a buyer of batch size k, after becoming the head of
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the buyer queue, is τ̇k, which has a discrete distribution: P{τ̇k = l̃n} = η̇k,n, for

n = 0, 1, ..., N . Note that the batch size k of a buyer may change after the buyer

becomes the head of the buyer queue, due to matching of orders.

3. Seller’s arrival process: Without loss of generality, we assume the maximum batch

size of sellers is also K. Sellers arrive to the queueing system according to a different

BMAP with matrix representation (D̂0, D̂1, ..., D̂K) of order ms. The underlying

Markov chain of the arrival process {Is(t), t ≥ 0} with generator D̂ = D̂0 + D̂1 +

...+ D̂K is irreducible and has stationary distribution θs. The (average) arrival rate

of size k sellers is given by µk =θsD̂ke, for k = 1, ..., K. Define µ =
∑K

k=1 kµk as the

arrival rate of the seller orders.

4. Seller’s abandonment times: Assume that the abandonment time of a seller of

batch size k, for k = 1, 2, ..., K, before reaching the head of the seller queue, is τ̂k,

which has a discrete distribution: P{τ̂k = l̂m} = η̂k,m, for m = 0, 1, ...,M , where

l̂0 = 0 < l̂1 < ... < l̂M−1 < l̂M = ∞ are the possible abandonment times. Assume

that the abandonment time of a seller of size k, after becoming the head of the queue,

is ˙̂τk, which has a discrete distribution: P{ ˙̂τk = l̂m} = ˙̂ηk,m, for m = 0, 1, ...,M .

In the rest of the chapter, we make the following assumptions to ensure the stability of

the queueing model (i.e., a finite buyer queue and a finite seller queue probabilistically),

K∑
k=1

kλkηk,N < µ and
K∑
k=1

kµkη̂k,M < λ. (6.1.1)

In addition, we assume that max{l̃n : P{τ̇k = l̃n} 6= 0} ≥ max{l̃n : P{τ̇k+1 = l̃n} 6= 0} ≥
max{l̃n : P{τk+1 = l̃n} 6= 0}, and max{l̂n : P{ ˙̂τk = l̂n} 6= 0} ≥ max{l̂n : P{ ˙̂τk+1 = l̂n} 6=
0} ≥ max{l̂n : P{τ̂k+1 = l̂n} 6= 0} to ensure the existence of conditional distributions of

abandonment times for re-sampling.

It is important to note the following two points. First, the abandonment of a buyer

(seller) means that all remaining orders of the buyer (seller) abandon the system together.

The model is more complicated if orders of a buyer (seller) can abandon the queue in-

dividually, since that allows partial abandonment of a buyer (seller). That model is still
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solvable, but it is much more complicated, and we do not consider that case in this the-

sis. Second, the abandonment time distributions of a buyer (seller) are used indirectly.

Instead of sampling abandonment times at arrivals or other state changing epochs in our

analysis, abandonment decisions, to continue to wait or to abandon the queue, are made at

all possible abandonment epochs, by using conditional distributions of the abandonment

times. The two models are equivalent probabilistically since the distributions of the actual

abandonment times for the latter model are the same as that of the original model.

In order to illustrate the queueing model, we present Example 6.1, in which we will

draw the sample path of the age process to show the dynamics of the model in Section 6.2

and give the queueing quantities as we derive the results in Section 6.3.

Example 6.1. A double-sided queue with maximum batch size K = 3, and M = N = 5.

All the input parameters are presented in Table 6.1.

Buyer Arrival Batch Size l̃1 = 1 l̃2 = 3 l̃3 = 5 l̃4 = 7 l̃5 =∞

D0 =

(
−8, 2
3, −7

) D1 =

(
1, 2
0, 2

)
η1,1 = 0
η̇1,1 = 0

η1,2 = 0
η̇1,2 = 0

η1,3 = 0
η̇1,3 = 0

η1,4 = 0.9
η̇1,4 = 0.1

η1,5 = 0.1
η̇1,5 = 0.9

D2 =

(
2, 0
0, 1

)
η2,1 = 0.4
η̇2,1 = 0.1

η2,2 = 0.3
η̇2,2 = 0.1

η2,3 = 0.2
η̇2,3 = 0.1

η2,4 = 0.1
η̇2,4 = 0.1

η2,5 = 0
η̇2,5 = 0.6

D3 =

(
1, 0
0, 1

)
η3,1 = 0.1
η̇3,1 = 0.1

η3,2 = 0.1
η̇3,2 = 0.1

η3,3 = 0.1
η̇3,3 = 0.1

η3,4 = 0.1
η̇3,4 = 0.1

η3,5 = 0.6
η̇3,5 = 0.6

Seller Arrival Batch Size l̂1 = 2 l̂2 = 3 l̂3 = 4 l̂4 = 5 l̂5 =∞

D̂0 =

(
−5, 1
1, −10

) D̂1 =

(
1, 0
1, 6

)
η̂1,1 = 0.2

˙̂η1,1 = 0

η̂1,2 = 0.2
˙̂η1,2 = 0

η̂1,3 = 0.2
˙̂η1,3 = 0

η̂1,4 = 0.2
˙̂η1,4 = 0.2

η̂1,5 = 0.2
˙̂η1,5 = 0.8

D̂2 =

(
2, 0
0, 2

)
η̂2,1 = 0.9

˙̂η2,1 = 0

η̂2,2 = 0
˙̂η2,2 = 0

η̂2,3 = 0
˙̂η2,3 = 0

η̂2,4 = 0
˙̂η2,4 = 0.1

η̂2,5 = 0.1
˙̂η2,5 = 0.9

D̂3 =

(
1, 0
0, 0

)
η̂3,1 = 1
˙̂η3,1 = 0

η̂3,2 = 0
˙̂η3,2 = 0

η̂3,3 = 0
˙̂η3,3 = 0.1

η̂3,4 = 0
˙̂η3,4 = 0.1

η̂3,5 = 0
˙̂η3,5 = 0.8

Table 6.1: Parameters of Example 6.1

6.2 The Age Process

In this section, we first introduce the age processes of the buyers and sellers in the double-

sided queueing model in Subsection 6.2.1. Then we convert the age processes into a multi-

layer MMFF process for the analysis of the queueing model in Subsection 6.2.2.
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6.2.1 Age Processes

We define age of a buyer (seller) in the system as the time elapsed since the buyer (seller)

enters the system. The ages of the buyers and the ages of sellers can never both be positive

because the buyer queue and the seller queue can never coexist in the system. Let aB(t)

be the age of the buyer at the head of the buyer queue at time t, if the buyer queue is

not empty; otherwise, aB(t) = 0. The age aS(t) of the seller at the head of the seller

queue at time t is defined similarly. If both aB(t) and aS(t) are zero, then the system is

empty at time t. If we flip aS(t) of sellers over the horizontal axis (i.e., the time axis) (See

the green lines in Figure 6.1), we can combine the two age processes {aB(t), t ≥ 0} and

{aS(t), t ≥ 0} into a one-dimensional stochastic process {a(t), t ≥ 0}, to be called the age

process, as a(t) = aB(t), if aB(t) > 0; a(t) = −aS(t), if aS(t) > 0; and a(t) = 0, otherwise.

Likewise, we track the remaining batch size of the buyer (seller) at the head of the

queue. Let sB(t) be the remaining batch size of the buyer at the head of the queue at

time t, if the buyer queue is not empty; otherwise, sB(t) = 0. Let sS(t) be the remaining

batch size of the seller at the head of the queue at time t, if the seller queue is not empty;

otherwise, sS(t) = 0. We flip the batch size of sellers over the horizontal axis (i.e., the

time axis), we can convert the two-dimensional process {(sB(t), sS(t)), t ≥ 0} into a one-

dimensional stochastic process {s(t), t ≥ 0} as s(t) = sB(t), if sB(t) > 0; s(t) = −sS(t), if

sS(t) > 0; and s(t) = 0, otherwise.
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Figure 6.1: A sample path of the age process of Example 6.1

Note that in Figure 6.1, we use blue lines to represent the age of buyers, and green

lines to represent the flipped age of sellers. The blue lines together with green lines show

the age process {a(t), t ≥ 0}. We also use single, double, and triple lines to indicate that

the batch size is one, two, and three, respectively.

Now, we have a two-dimensional stochastic process {(a(t), s(t)), t ≥ 0} capturing both

the age and remaining batch size. For notational convenience, we define constants {ln, n =

0, 1, ...,M + N} as: l0 = −∞, ln = −l̂M−n, for n = 1, 2, ...,M − 1, lM = 0, lM+n = l̃n, for

n = 1, 2, ..., N − 1, and lM+N = ∞. The dynamics of (a(t), s(t)) can be described by five

cases at any time t as follows.

1. If 0 ≤ lM+n < a(t) < lM+n+1, for n = 0, 1, ..., N − 1, there are two situations for

{(a(t), s(t)), t ≥ 0}.

(a) If there is no seller arrival at time t, a(t) equals the age of the buyer and increases

linearly at rate 1; and s(t+ 0) = s(t).

(b) If a seller arrives at time t with batch size v, and the total batch size of all

buyers currently in the queue is ŝ(t) (Note that ŝ(t) ≥ s(t)), we have
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i) if v < s(t), then a(t) equals the age of the buyer and increases linearly at

rate 1; and s(t+ 0) = s(t)− v;

ii) if s(t) ≤ v < ŝ(t), we find the first waiting buyer (to be called a tagged

buyer) such that the total batch size ŝtag(t) of the tagged buyer and buyers

currently ahead of the tagged buyer is strictly great than v, then a(t+ 0) =

a(t) − u, where u is the interarrival time between the buyer at the head

of the queue and the tagged buyer, and s(t + 0) = ŝtag(t) − v; (Note: The

tagged buyer will be the next buyer to be at the head of the queue. Some

buyers arrived earlier than the tagged buyer may have abandoned the queue

after their arrivals to the queue.)

iii) if s(t) ≤ v = ŝ(t), then a(t+ 0) = 0 and s(t+ 0) = 0; and

iv) if ŝ(t) < v, then a(t + 0) = 0 and starts to decrease at rate −1, and

s(t+ 0) = ŝ(t)− v.

2. If a(t) = lM+n > 0 for n = 1, 2, ..., N − 1,

(a) with probability 1− η̇k,n/(η̇k,n + ...+ η̇k,N), a(t) continues to increase linearly at

rate 1 and s(t+ 0) = s(t) = k;

(b) otherwise, a(t+0) = max{0, lM+n−u}, where u is the interarrival time between

the departing buyer (due to abandonment) and the buyer who is currently be-

hind it, and if a(t + 0) > 0, then s(t + 0) is the batch size of the buyer who

is now at the head of the queue; if a(t + 0) = 0, then s(t + 0) = 0. We note

that some buyers arrived after the departing buyer may have left the queueing

system due to abandonment.

3. This case is symmetric to Case 1. If ln−1 < a(t) < ln ≤ 0, for n = 1, ...,M , there are

two situations for {(a(t), s(t)), t ≥ 0},

(a) If there is no buyer arrival at time t, a(t) equals the age of the seller and decreases

linearly at rate −1; and s(t+ 0) = s(t).

(b) If a buyer arrives at time t with batch size v, and the total batch size of all

sellers currently in the queue is ŝ(t) (Note that ŝ(t) ≥ −s(t)), we have
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i) if v < −s(t), then a(t) equals the age of the seller and increases linearly at

rate one; and s(t+ 0) = s(t) + v;

ii) if −s(t) ≤ v < ŝ(t), we find the first waiting seller (a.k.a. tagged seller) such

that the total batch size ŝtag(t) of the tagged seller and sellers currently

ahead of the tagged seller is great than v, then a(t+ 0) = a(t)− u, where u

is the interarrival time between the seller at the head of the queue and the

tagged seller, and s(t+ 0) = v − ŝtag(t);
iii) if −s(t) ≤ v = ŝ(t), then a(t+ 0) = 0 and s(t+ 0) = 0; and

iv) if ŝ(t) < v, then a(t+ 0) = 0 and starts to increase at rate 1, and s(t+ 0) =

v − ŝ(t).

4. This case is symmetric to Case 2. If a(t) = ln < 0, for n = 1, 2...,M − 1,

(a) with probability 1 − ˙̂ηk,M−n/( ˙̂ηk,M−n + ... + ˙̂ηk,M), a(t) continues to decrease

linearly at rate −1 and s(t+ 0) = s(t) = −k;

(b) otherwise, a(t + 0) = min{0, ln + u}, where u is the interarrival time between

the departing seller (due to abandonment) and the seller is currently behind it,

and if a(t + 0) < 0, then s(t + 0) is the flipped batch size of the seller who is

now at the head of the queue; if a(t+ 0) = 0, then s(t+ 0) = 0.

5. If a(t) = 0, we have s(t) = 0. That (a(t), s(t)) remains to be (0, 0) until the arrival

of the next buyer or seller.

In order to analyze the queueing model, we need to track the underlying states of the two

BMAPs and obtain the joint stationary distribution of the process {(a(t), s(t), Ib(t), Is(t)), t ≥
0}. However, the process becomes very complicated as both BMAPs are evolving at the

same time so that we need to track the ages of all buyers (sellers) in the system instead

of the age of the buyer (seller) at the head of the queue. Based on the assumption that

two BMAPs are independent, we can “freeze” one of the BMAPs during some periods

of the age process and then “unfreeze” them during periods of jumps. We use two supple-

mentary variables {I(b)(t), I(s)(t)} to represent the underlying states of the two BMAPs

{Ib(t), Is(t)} as follows,
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• When a(t) > 0 is in an increasing period, the buyer arrival process Ib(t) is frozen and

the seller arrival process Is(t) is evolving, so I(b)(t) is fixed at the phase of the buyer

arrival process at the beginning of the period and I(s)(t) = Is(t); When a(t) < 0 is in

a decreasing period, the buyer arrival process Ib(t) is evolving and the seller arrival

process Is(t) is frozen, so I(s)(t) is fixed at the phase of the seller arrival process at

the beginning of the period and I(b)(t) = Ib(t);

• When a(t) > 0 is in a down jump period, the buyer arrival process Ib(t) is evolving

and the seller arrival process Is(t) is frozen, so I(b)(t) = Ib(t) and I(s)(t) is fixed at

the phase of the seller arrival process at the beginning of the period; When a(t) < 0

is in an up jump period, the buyer arrival process Ib(t) is frozen and the seller arrival

process Is(t) is evolving, so I(b)(t) is fixed at the phase of the buyer arrival process

at the beginning of the period and I(s)(t) = Is(t);

• When a(t) is in a period in which a(t) = 0 and s(t) = 0, both arrival processes are

evolving, so I(b)(t) = Ib(t) and I(s)(t) = Is(t).

We recycle the name age process and call the stochastic process {(a(t), s(t), I(b)(t), I(s)(t)), t ≥
0} an age process, with state space

{{(−∞, 0)× {−K, ...,−1}} ∪ {0} ∪ {(0,∞)× {1, ..., K}}} × {1, ...,mb} × {1, ...,ms}.
(6.2.1)

6.2.2 Multi-Layer MMFF Process

We replace jumps in the age process with linear increasing and decreasing periods and

construct a multi-layer MMFF process {(X(t), s(t), I(b)(t), I(s)(t)), t ≥ 0} (See Figure

6.2). Specifically, the original increasing and decreasing periods in the age process are kept

in the MMFF process and called real periods. However, the up and down jumps in the

age process are replaced with fictitious periods of linear increase at rate 1 and decrease

at rate −1, respectively, in the MMFF process. The lengths of these fictitious periods

equal the heights of the up or down jumps. In the real periods, X(t) = a(t), and |s(t)| is

120



the remaining batch size of the buyer (seller) at the head of the queue. In the fictitious

periods, X(t) is determined by the fluid level at the start of the period plus the product

of changing rate (1 or −1) and the elapsed time from the start of the period, and |s(t)| is

the remaining batch size of the newly arrived seller (buyer) (to be matched by orders of

buyers (sellers) in the queue);

X(t)

time

Real Periods
Fictitious Periods

Figure 6.2: The corresponding MMFF process for the age process in Figure 6.1

Let φ(t) = (s(t), I(b)(t), I(s)(t)) for t ≥ 0, a multi-layerMMFF process {(X(t), φ(t)), t ≥
0} is well defined. Next, we use the items of the queueing model to construct the multi-layer

MMFF process {(X(t), φ(t)), t ≥ 0}. The associated state space and transition matrices

are specified as follows:

1. There are M + N layers with borders ln, for n = 0, 1, ...M,M + 1, ...,M + N . Note

that l0 = −∞, lM = 0 and lM+N =∞.

2. The state space of φ(t) for Layer n, for n = 1, 2, ...,M + N , is S(n) = S(n)
+ ∪ S(n)

− ,

where, for n = M + 1,M + 2, ...,M +N ,

S(n)
+ = {1, ..., K} × {1, ...,mb} × {1, ...,ms} ;

S(n)
− = {−K + 1, ..., 0} × {1, ...,mb} × {1, ...,ms} ;

(6.2.2)
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and, for n = 1, 2, ...,M ,

S(n)
+ = {0, ..., K − 1} × {1, ...,mb} × {1, ...,ms} ;

S(n)
− = {−K, ...,−1} × {1, ...,mb} × {1, ...,ms} .

(6.2.3)

The transition rate matrix Q(n) of the underlying Markov chain is, for n = M +

1,M + 2, ...,M +N ,

Q(n) =

I ⊗ D̂0 I ⊗ D̂1 ... I ⊗ D̂K−1 I ⊗ D̂K

I ⊗ D̂0 ... I ⊗ D̂K−2 I ⊗ D̂K−1 I ⊗ D̂K

. . .
...

...
...

. . .

I ⊗ D̂0 I ⊗ D̂1 I ⊗ D̂2 ... I ⊗ D̂K

DK,n ⊗ I DK−1,n ⊗ I ... D1,n ⊗ I D̄n ⊗ I
DK,n ⊗ I ... D2,n ⊗ I D1,n ⊗ I D̄n ⊗ I

. . .
...

...
...

. . .

DK,n ⊗ I DK−1,n ⊗ I DK−2,n ⊗ I ... D̄n ⊗ I


,

(6.2.4)

where Dk,n = Dk(ηk,n−M + ...+ ηk,N), D̄n = D −
∑K

k=1Dk(ηk,n−M + ...+ ηk,N); and,

for n = 1, 2, ...,M ,

Q(n) =

I ⊗ ¯̂Dn I ⊗ D̂1,n ... I ⊗ D̂K−1,n I ⊗ D̂K,n
I ⊗ ¯̂Dn ... I ⊗ D̂K−2,n I ⊗ D̂K−1,n I ⊗ D̂K,n

. . .
...

...
...

. . .

I ⊗ ¯̂Dn I ⊗ D̂1,n I ⊗ D̂2,n ... I ⊗ D̂K,n
DK ⊗ I DK−1 ⊗ I ... D1 ⊗ I D0 ⊗ I

DK ⊗ I ... D2 ⊗ I D1 ⊗ I D0 ⊗ I
. . .

...
...

...
. . .

DK ⊗ I DK−1 ⊗ I DK−2 ⊗ I ... D0 ⊗ I


,

(6.2.5)

where D̂k,n = D̂k(η̂k,M−n+1 + ...+ η̂k,M),
¯̂Dn = D̂ −

∑K
k=1 D̂k(η̂k,M−n+1 + ...+ η̂k,M).
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3. Within Border M (i.e., lM = 0), the underlying Markov chain has states {1, ...,mb}×
{1, ...,ms}, and its transition rate matrices are

Q
(M)
bb =

(
D0 +

∑K
k=1 η̇k,0Dk

)
⊗ I + I ⊗

(
D̂0 +

∑K
k=1

˙̂ηk,0D̂k

)
;

Q
(M)
b+ = ((1− η̇K,0)DK ⊗ I, . . . , (1− η̇1,0)D1 ⊗ I) ;

Q
(M)
b− =

(
I ⊗ (1− ˙̂η1,0)D̂1, . . . , I ⊗ (1− ˙̂ηK,0)D̂K

)
.

(6.2.6)

4. The transition probabilities of approaching Border M are given by, in matrix form,

P
(M)
−b+ = 0; P

(M)
−bb =

(
I, ˙̂η1,0, ˙̂η2,0, ..., ˙̂ηK−1,0

)
; P

(M)
+b− = 0; P

(M)
+bb = (η̇K−1,0, η̇K−2,0, ..., η̇1,0, I);

P
(M)
−b− =


0

(1− ˙̂η1,0)I 0

(1− ˙̂η2,0)I 0
. . . . . .

(1− ˙̂ηK−1,0)I 0

 ;

P
(M)
+b+ =



0 (1− η̇K−1,0)I
0 (1− η̇K−2,0)I

0
. . .
. . . (1− η̇1,0)I

0


.

(6.2.7)

Note that the batch size of buyer or seller does not change when crossing Border

M if the buy or seller has positive abandonment time, but the state spaces of φ(t)

are different between layers above and below Border M , so that we need to shift the

states using the matrix P
(M)
+b+ for up-crossing and matrix P

(M)
−b− for down-crossing.

Note that there is no reflection for Border M since that X(t) approaching zero means

that there is no buyer order, if X(t) > 0, or no seller order, if X(t) < 0.

5. All other borders have no state. The probabilities of approaching Border n, for
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1 ≤ n ≤ N − 1, are P
(n+M)
−b+ = 0, P

(n+M)
−b− = I,

P
(n+M)
+b− =


η̇K,n

η̇K,n+...+η̇K,N
I 0 ... 0

...
...

...
...

η̇1,n
η̇1,n+...+η̇1,N

I 0 ... 0

 ;

P
(n+M)
+b+ =

η̇K,n+1+...+η̇K,N
η̇K,n+η̇K,n+1+...+η̇K,N

I 0 ... 0

0
η̇K−1,n+1+...+η̇K−1,N

η̇K−1,n+η̇K−1,n+1+...+η̇K−1,N
I ... 0

. . . . . . . . . . . .

0 ... 0
η̇1,n+1+...+η̇1,N

η̇1,n+η̇1,n+1+...+η̇1,N
I

 .

(6.2.8)

The probabilities of approaching Border n, for 1 ≤ n ≤ M − 1, are P
(n)
+b− = 0,

P
(n)
+b+ = I,

P
(n)
−b− =



˙̂η1,M−n+1+...+ ˙̂η1,M
˙̂η1,M−n+...+ ˙̂η1,M

I 0 ... 0

0
˙̂η2,M−n+1+...+ ˙̂η2,M−n

˙̂η2,M−n+...+ ˙̂η2,M
I ... 0

. . . . . . . . . . . .

0 ... 0
˙̂ηK,M−n+1+...+ ˙̂ηK,M
˙̂ηK,M−n+...+ ˙̂ηK,M

I

 ;

P
(n)
−b+ =


0 ... 0

˙̂η1,M−n
˙̂η1,M−n+...+ ˙̂η1,M

I
...

...
...

...

0 ... 0
˙̂ηK,M−n

˙̂ηK,M−n+...+ ˙̂ηK,M
I

 .

(6.2.9)

The joint density function of this multi-layer MMFF process is important because

some of the queueing quantities can be derived directly from this process instead of the

age process. The joint stationary density of the process is given in the following theorem.
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Theorem 6.1. Under the conditions in Equation (6.2.10).∑K
k=1 kηk,Nλk/µ < 1 and

∑K
k=1 kη̂k,Mµk/λ < 1;∑K

k=1 k(
∑N

l=n ηk,l)λk/µ 6= 1 for n = 1, 2, ..., N − 1;∑K
k=1 k(

∑M
l=n η̂k,l)µh/λ 6= 1 for n = 1, 2, ...,M − 1.

(6.2.10)

The joint density function of {(X(t), φ(t)), t ≥ 0} is given by, for x < l1,

(π
(1)
+ (x), π

(1)
− (x)) = u

(1)
− e
K̂(1)(l1−x)(Ψ̂(1), I); (6.2.11)

for ln−1 < x < ln, for n = 2, ...,M +N − 1, the joint density function is

(π
(n)
+ (x), π

(n)
− (x)) = u

(n)
+ eK

(n)(x−ln−1)(I,Ψ(n)) + u
(n)
− eK̂

(n)(ln−x)(Ψ̂(n), I); (6.2.12)

for x > lM+N−1, the joint density function is

(π
(M+N)
+ (x), π

(M+N)
− (x)) = u

(M+N)
+ eK

(M+N)(x−lM+N−1)(I,Ψ(M+N)). (6.2.13)

We can compute the joint stationary density function of the process {(X(t), φ(t)), t ≥ 0}
by Algorithm 1. We can also use Algorithm 3 to compute the density function with a small

change with respect to the border probabilities in Step 4 as follows.

i) Border Probabilities: Similar to Chapter 5, we need to find the border probabilities

p(M) by constructing a censored continuous time Markov process Q
(M)
p such that

p(M)Q
(M)
p = 0 and p(M)e = 1. However, the fluid in this system can cross or enter

Border M when approaching the border. (Recall that the fluid can only enter Border

M when approaching it in Chapter 5). Thus we have

Q
(M)
p = Q

(M)
bb +

(
Q

(M)
b+ , Q

(M)
b−

)( T
(M)
+ 0

0 T
(M)
−

)

×

(
I −

(
0 P

(M)
−b−T

(M)
−

P
(M)
+b+T

(M)
+ 0

))−1(
P

(M)
−bb

P
(M)
+bb

)
.

(6.2.14)
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ii) Coefficients: Let w(n) = (w
(n+1)
L ,w

(n)
U ), for n = 1, ...,M +N − 1. After we obtain

vector p(M), the coefficients can be obtained by solving the following set of linear

equations (note that matrices T
(M)
+ and T

(M)
− are used to find w(M)):

w(M) = p(M)(Q
(M)
b+ , Q

(M)
b− )

(
I −

(
T

(M)
+ (P

(M)
−b+, P

(M)
−b−)

T
(M)
− (P

(M)
+b+, P

(M)
+b−)

))−1
;

w(1) = w(1)

(
Ψ

(l2−l1)
+− (P

(1)
−b+, P

(1)
−b−)

Ψ̂(1)(P
(1)
+b+, P

(1)
+b−)

)
+w(2)

(
0

Λ̂
(l2−l1)
−− (P

(1)
−b+, P

(1)
−b−)

)
;

w(n) = w(n)

(
Ψ

(ln+1−ln)
+− (P

(n)
−b+, P

(n)
−b−)

Ψ̂
(ln−ln−1)
−+ (P

(n)
+b+, P

(n)
+b−)

)
+w(n+ 1)

(
0

Λ̂
(ln+1−ln)
−− (P

(n)
−b+, P

(n)
−b−)

)

+w(n− 1)

(
Λ

(ln−ln−1)
++ (P

(n)
+b+, P

(n)
+b−)

0

)
,

for n = 2, ...,M − 1,M + 1, ...,M +N − 2;

w(M +N − 1) = w(M +N − 1)

(
Ψ(M+N)(P

(M+N−1)
−b+ , P

(M+N−1)
−b− )

Ψ̂
(lM+N−1−lM+N−2)
−+ (P

(M+N−1)
+b+ , P

(M+N−1)
+b− )

)

+w(M +N − 2)

(
Λ

(lM+N−1−lM+N−2)
++ (P

(M+N−1)
+b+ , P

(M+N−1)
+b− )

0

)
.

(6.2.15)

The joint stationary distributions of the age processes are similar to that in Chapter 5.

Let f(x) be the joint stationary density function of the age process {(a(t), s(t), Ib(t), Is(t)), t ≥
0}, which is a row vector of size Kmbms. Let f (n)(x) = f(x), if ln−1 < x < ln, for n = 1,

2, ...,M +N . By censoring out the fictitious periods in the MMFF process, we have the

following result.

Theorem 6.2. Under the conditions in Equation (6.2.10), the joint stationary distribution
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of the age process {(a(t), s(t), Ib(t), Is(t)), t ≥ 0} exists and its density function is

P{a(t) = 0} = p̂(M)e;

f (n)(x) =
(
v
(n)
+ eK

(n)(x−ln−1)Ψ(n) + v
(n)
− eK̂

(n)(ln−x)
)
, for ln−1 < x ≤ ln, n = 1, ...,M ;

f (n)(x) =
(
v
(n)
+ eK

(n)(x−ln−1) + v
(n)
− eK̂

(n)(ln−x)Ψ̂(n)
)
, for ln−1 ≤ x < ln, n = M + 1, ...,M +N.

(6.2.16)

where p̂(M) = p(M)/ĉnorm, v
(n)
+ = u

(n)
+ /ĉnorm, v

(n)
− = u

(n)
− /ĉnorm and v

(1)
+ = 0 and v

(M+N)
− =

0. The normalization factor is

ĉnorm = p(M)e +
M∑
n=1

(
u
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + u

(n)
− L̃K̂

(n)

ln−1,ln

)
e

+
M+N∑
n=M+1

(
u
(n)
+ LK

(n)

ln−1,ln
+ u

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e.

(6.2.17)

Let f
(n)
B (x), for ln−1 < x < ln and n = M + 1, ...,M +N be the joint stationary density

functions of the age process of buyers.

Corollary 6.2.1. The joint stationary distribution for the age process of buyers is

P{aB(t) = 0} = p̂(M)e +
M∑
n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e;

f
(n)
B (x) = f (n)(x), for ln−1 ≤ x < ln, n = M + 1, ...,M +N.

(6.2.18)

Similarly, queueing quantities for the remaining batch size of the buyer at the head of

the queue can also be obtained by fixing the underlying states s(t) at a specific value k. Let

f
(n)
B (k, x) be the joint density function of (a(t), s(t) = k, I(b)(t), I(s)(t)), for k = 1, 2, ..., K,

ln−1 < x < ln, and n = M + 1, ...,M +N , we have

f
(n)
B (k, x) = f

(n)
B (x)(e(k)⊗ I), (6.2.19)

where e(k) is a column logical vector of size K with only the k-th element being 1.

Let pB(k) be the probability that k orders remained for the buyer at the head of the
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queue at an arbitrary time. We have, for k = 1, ..., K,

pB(k) =
M+M∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(e(k)⊗ e). (6.2.20)

Let pB be the probability that there is a buyer queue (i.e., a(t) > 0). We have

pB = pB(1) + pB(2) + ...+ pB(K). (6.2.21)
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Next, we present the algorithm for the joint stationary distribution of the age process.

Algorithm 4: The joint stationary distribution of the age process

1. Input Parameters: M , N , K, {l̃0 = 0, ..., l̃N}, {l̂0 = 0, ..., l̂M}, {η̇k,0, ..., η̇k,N} and

{ηk,0, ..., ηk,N}, for k = 1, 2, ..., K, { ˙̂ηk,0, ..., ˙̂ηk,M}, {η̂k,0, ..., η̂k,M}, for k = 1, 2, ..., K,

{mb, D0, ..., DK}, and {ms, D̂0, ..., D̂K};

2. Construct transition blocks for the multi-layer MMFF process:

2.1 Borders: {l0 = −∞, ..., lM , ..., lM+N =∞} as l0 = −∞, ln = −l̂M−n, for

n = 1, 2, ...,M − 1, lM = 0, lM+n = l̃n, for n = 1, 2, ..., N − 1, and lM+N =∞;

2.2 Construct {Q(n), n = 1, 2, ...,M +N} using Equations (6.2.4) and (6.2.5);

2.3 Construct {Q(M)
bb , Q

(M)
b+ , Q

(M)
b− } using Equation (6.2.6);

2.4 Construct {P (n)
+b+, P

(n)
+b0, P

(n)
+b−, P

(n)
−b+, P

(n)
−b0, P

(n)
−b−, n = 1, 2, ...,M +N − 1} using

Equations (6.2.7), (6.2.8) and (6.2.9);

3. Use Algorithm 1 to compute {Ψ(n),K(n),U (n), Ψ̂(n), K̂(n), Û (n)} for n = 1, ...,M +N

and {Ψ(ln−ln−1)
+− , Ψ̂

(ln−ln−1)
−+ ,Λ

(ln−ln−1)
++ , Λ̂

(ln−ln−1)
−− } for n = 2, 3, ...,M +N − 1;

4. Compute T
(M)
+ and T

(M)
− by Equations (5.3.2) and (5.3.3); Construct Q

(M)
p by

Equation (6.2.14); and solve p(M)Q
(M)
p = 0 and p(M)e = 1 to get border

probabilities;

5. Solving the set of linear equations (6.2.15) to get the coefficients

{w(n), n = 1, 2, ...,M +N − 1}; and get the joint density function of the

multi-layer MMFF process in Theorem 6.2.10;

6. Compute ĉnorm by using Equation (6.2.17), and use ĉnorm to get p̂(M) and

{v(n)
+ ,v

(n)
− , n = 1, 2, ...,M +N};

7. Use p̂(M), {v(n)
+ ,v

(n)
− , n = 1, 2, ...,M +N} and Equation (6.2.16) to compute the

density function of the age process;

8. Compute the density function of the age process for buyers using Equation (6.2.18).
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Using the joint density functions of the age processes, in the following sections, we

derive a number of queueing quantities for buyer orders (Subsection 6.3.1) and for buy-

ers (Subsection 6.3.2). To distinguish the two sets of quantities, we use notations with

superscript “o” for order level queueing quantities in Subsection 6.3.1.

6.3 Queueing Quantities

In this section, we use the results in both Theorem 6.1, Theorem 6.2 and some basic quan-

tities of the MMFF processes to find queueing quantities for the double-sided queueing

model. As the two sides of the model are symmetric, we mainly present the results related

to the buyer side. The results for the seller side can be obtained similarly.

6.3.1 Order Level Queueing Quantities

Matching rates and fill rates of orders

Let ωo be the number of matched orders per unit time, to be called the matching rate of

the orders. Note that the matching rates of buyer orders and seller orders are the same.

Proposition 6.1. The matching rate of the orders is

ωo =
1

ĉnorm

M∑
n=1

∫ ln

ln−1

(
π

(n)
+ (x)δ(−,+, n) + π

(n)
− (x)δ(−,−)

)
dx

+
1

ĉnorm

M+N∑
n=M+1

∫ ln

ln−1

(
π

(n)
+ (x)δ(+,+) + π

(n)
− (x)δ(+,−, n)

)
dx,

(6.3.1)

where ∫ ln
ln−1

π
(n)
+ (x)dx = u

(n)
+ LK

(n)

ln−1,ln
+ u

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n),∫ ln

ln−1
π

(n)
− (x)dx = u

(n)
+ LK

(n)

ln−1,ln
Ψ(n) + u

(n)
− L̃K̂

(n)

ln−1,ln
,

(6.3.2)
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and

δ(−,−) =
((
A⊗ eeT

)
� (e⊗ (D1, D2, ..., DK)⊗ I)

)
e,

δ(+,−, n) =
((
Â⊗ eeT

)
� (e⊗ (D1,n,D2,n, ...,DK,n)⊗ I)

)
e,

δ(−,+, n) =
((

˜̂
A⊗ eeT

)
� (e⊗ (I ⊗ D̂1,n, I ⊗ D̂2,n, ..., I ⊗ D̂K,n)

)
e,

δ(+,+) =
((
Ã⊗ eeT

)
� (e⊗ (I ⊗ D̂1, I ⊗ D̂2, ..., I ⊗ D̂K)

)
e,

(6.3.3)

where � is the Hadamard product and ⊗ is the Kronecker product for matrices, A = (ai,j)

is a square matrix of order K with element ai,j = min(i, j) and Ã = (ãi,j) is an upside

down flipped A (i.e., ãi,j = aK−i+1,j), Â = (âi,j) is a square matrix of order K with element

âi,j = min(i− 1, j) and
˜̂
A is an upside down flipped Â.

Proof. At an arbitrary time, matching of orders can take place only if a buyer or seller

arrives. Suppose that the state of the MMFF process is (x, s, ib, is) at an arbitrary time.

We consider four cases: i) x > 0 and s > 0; ii) x > 0 and s < 0; iii) x < 0 and s < 0; and

iv) x < 0 and s > 0.

i) If x > 0 and s > 0, there are buyers in queue and matching will take place when

the next seller arrives. Given the phase is of the seller arrival process, the arrival rate of a

seller of batch size k is given by (D̂ke)is . Consequently, the conditional matching rate for

state (x, s, ib, is) is

δ(x, s, ib, is) =
K∑
k=1

min{s, k}(D̂ke)is . (6.3.4)

Let δ(+,+) be the vector with elements δ(x, s, ib, is) defined in Equation (6.3.4). Recall

that the stationary distribution of the MMFF process is given by
(
π

(n)
+ (x),π

(n)
− (x)

)
.

Then the matching rate for case i) at X(t) = x is given by π
(n)
+ (x)δ(+,+). Summing up

over x from ln−1 to ln for n = M + 1,M + 2, ...,M + N , the matching rate for case i) is

obtained. With the explicit expressions of
∫ ln
ln−1

π
(n)
+ (x)dx and δ(+,+), the matching rate

for this case can be written as the product of the first line in Equation (6.3.2) and the last

line in Equation (6.3.3), for n = M + 1,M + 2, ...,M +N .

ii) If x > 0 and s < 0, this is a fictitious time period. There is possibly a seller waiting

to be matched by the next arriving buyer. Different from case i), in the real queueing
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system, the buyer has arrived earlier and survived up to the current time epoch, i.e., the

buyer has an age of x. The probability that the buyer has an age x is ηk,n−M + ...+ ηk,N ,

which depends on the batch size of the buyer too. For the case with batch size k of the

buyer, ln−1 < x < ln, and the phase ib of the buyer arrival process, the conditional arrival

rate is given by (Dk,ne)ib . Consequently, the conditional matching rate for state (x, s, ib, is)

is, for ln−1 < x < ln,

δ(x, n, s, ib, is) =
K∑
k=1

min{−s, k}(Dk,ne)ib . (6.3.5)

Let δ(+,−, n) be the vector with elements δ(x, n, s, ib, is). Then the matching rate for

case ii) at X(t) = x is given by π
(n)
− (x)δ(+,−, n). Summing up over x from ln−1 to ln,

for n = M + 1,M + 2, ...,M + N , the matching rate for case ii) is obtained. With the

explicit expressions of
∫ ln
ln−1

π
(n)
− (x)dx and δ(+,−, n), the matching rate for this case can

be written as the product of the second line in Equation (6.3.2) and the second line in

Equation (6.3.3), for n = M + 1,M + 2, ...,M +N .

Cases iii) and iv) can be obtained similarly.

iii) If x < 0 and s < 0, there are sellers in queue and matching will take place when

the next buyer arrives. Given the phase ib of the buyer arrival process, the arrival rate of

a buyer of batch size k is given by (Dke)ib . Consequently, the conditional matching rate

for state (x, s, ib, is) is

δ(x, s, ib, is) =
K∑
k=1

min{−s, k}(Dke)ib . (6.3.6)

Let δ(−,−) be the vector with elements δ(x, s, ib, is) for this case. With the explicit

expressions of
∫ ln
ln−1

π
(n)
− (x)dx and δ(−,−), the matching rate for this case can be written

as the product of the second line in Equation (6.3.2) and the first line in Equation (6.3.3),

for n = 1, 2, ..., N .

iv) If x < 0 and s > 0, there is possibly a buyer to be matched by arriving sellers.

Different from case iii), in the real queueing system, those sellers have arrived earlier and
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survived up to the current time epoch, i.e., the seller has an age of x. The probability for

that depends on the batch size of the seller. For the case with batch size k of the seller,

ln−1 < x < ln, and the phase is of the seller arrival process, the arrival rate is given by

(D̂k,ne)is . Consequently, the matching rate for state (x, s, ib, is) is, for ln−1 < x < ln,

δ(x, n, s, ib, is) =
K∑
k=1

min{s, k}(D̂k,ne)is . (6.3.7)

Let δ(−,+, n) be the vector with elements δ(x, n, s, ib, is). With the explicit expressions

of
∫ ln
ln−1

π
(n)
+ (x)dx and δ(−,+, n), the matching rate for this case can be written as the

product of the first line in Equation (6.3.2) and the third line in Equation (6.3.3), for

n = 1, 2, ..., N .

Combining the four cases and normalizing the coefficient vectors, the matching rate is

obtained.

Let poB,F be the fill rate of buyer orders. Note that fill rate is a commonly used term in

inventory and supply chain systems and is defined as the fraction of orders being matched.

Recall that λ is the arrival rate of buyer orders.

Corollary 6.2.2. We have

poB,F =
ωo

λ
. (6.3.8)

The loss probability of buyer orders is poB,L = 1− poB,F .

Loss probability poB,L can be decomposed into two parts based on the location of the

buyers in the queue: i) loss probability poBL,1 of buyer orders at the head of the queue; and

ii) loss probability poBL,>1 of buyer orders before reaching the head of the queue. Then we

have
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Proposition 6.2.

poBL,1 =
1

λ

M+N−1∑
n=M+1

f (n)(ln)




K∑
k=1

kη̇k,n−M
M+N∑
m=n

η̇k,m−M

e(K − k + 1)

⊗ e


+

1

λ
p̂(M)

((
K∑
k=1

kη̇k,0Dke

)
⊗ e

)
,

(6.3.9)

and poBL,>1 = poB,L − poBL,1, and e(K − k + 1) is a column logical vector with only the

(K − k + 1)-st element being one.

Proof. The abandonment of the buyers at the head of the queue can only happen when

X(t) = 0 or X(t) > 0 and fluid increases, therefore, we can use the age process to find this

probability.

For X(t) = 0, in the corresponding age process, the probability of a(t) = 0 is p̂(M).

Given state (ib, is), the abandonment rate equals the total arrival rates of all orders with

buyers with 0 patience time
((∑K

k=1 kη̇k,0Dke
)
⊗ e
)

. Divided by λ leads to the second

item of the right-hand side of Equation (6.3.9) (i.e., 1
λ
p̂(M)

((∑K
k=1 kη̇k,0Dke

)
⊗ e
)

).

For X(t) > 0 and fluid increases, in the corresponding age process, the density function

for a(t) = ln is f (n)(ln) = v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n). Given a(t) = ln, s(t) = k, and state

(ib, is), the probability that the buyer at the head of the queue abandons the system at ln

is
η̇k,n−M∑M+N

m=n η̇k,m−M
. Multiplying the size k with the abandonment probability of the buyer at

the head of the queue with batch size k, and then combine with the joint density function,

we get the abandonment rate of buyer orders when a(t) = ln. Considering all possible

abandonment points from M + 1 to M + N − 1, the total abandonment rate of buyer

orders divided by λ leads to the first item on the right-hand side of Equation (6.3.9).
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Sojourn times of orders

In this subsection, we present the sojourn times of buyer orders. We consider four types of

sojourn times, namely, the sojourn times of i) filled orders; ii) lost orders; iii) lost orders

at the head of the queue; and iv) lost orders before reaching the head of the queue.

Proposition 6.3. The distribution of sojourn time W o
B,F of filled buyer orders is

P{W o
B,F = 0} =

1

pB,Fλĉnorm

(
M∑
n=1

∫ ln

ln−1

π
(n)
− (x)dxδ(−,−) +

∫ ln

ln−1

π
(n)
+ (x)dxδ(−,+, n)

)
;

dP{W o
B,F < x}
dx

=
1

pB,Fλĉnorm

(
π

(n)
+ (x)δ(+,+) + π

(n)
− (x)δ(+,−, n)

)
,

for ln−1 ≤ x < ln, n = M + 1, ...,M +N,

(6.3.10)

where the integrals are given in Equation (6.3.2). The distribution of sojourn time W o
BL,1

of lost orders at the head of the queue is given by

P{W o
BL,1 = 0} =

1

poBL,1λ
p̂(M)

((
K∑
k=1

kη̇k,0Dke

)
⊗ e

)
, (6.3.11)

and, for n = M + 1,M + 2, ...,M +N − 1,

P{W o
BL,1 = ln} =

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)
poBL,1λ

×

((
K∑
k=1

kη̇k,n−M
η̇k,n−M + ...+ η̇k,N

e(K − k + 1)

)
⊗ e

)
.

(6.3.12)

The distribution of sojourn time W o
PL,>1 of lost orders before reaching the head of the queue,

we have, for n = M,M + 1, ...,M +N − 1,

P{W o
BL,>1 = ln} =

1

poBL,>1λĉnorm

(
M+N∑
m=n+1

∫ ln

ln−1

π
(n)
− (x)dx

(
e⊗

(
K∑
k=1

kηk,n−MDke

)
⊗ e

))
.

(6.3.13)
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Proof. Since matching can happen during the fictitious time periods in the multi-layer

MMFF processes, we need to use the joint stationary distribution of the multi-layer

MMFF process to find the sojourn time distribution of filled buyer orders.

For W o
B,F = 0, matching can only happen when there is a seller queue and a buyer

arrives, the ratio of the probability that buyer orders get filled without waiting (i.e., cases

iii) and iv) in the proof of Proposition 6.1) and poB,F leads to the expression for P{W o
B,F =

0}.

For W o
B,F > 0, we condition on the fluid level X(t). Similar to cases i) and ii) in the

proof of Proposition 6.1, we change the total probability that X(t) > 0 to the density

function of X(t) and then divided by ĉnorm for normalization, which leads to the desired

result.

For the sojourn time distribution of lost orders when the buyer is at the head of the

queue, we can use the age process like Proposition 6.2. The distribution of W o
BL,1 can be

obtained from the proof of Proposition 6.2 easily.

For the distribution of W o
BL,>1, we need to use the joint stationary distribution of the

multi-layer MMFF process {(X(t), φ(t), t ≥ 0}. When X(t) is decreasing and there is

a buyer arrival, which may take place when X(t) ≥ 0, the arriving buyer will abandon

the queue in the future with probability ηk,1 + ... + ηk,n−1 if ln−1 < x < ln and the batch

size of the buyer is k. Therefore, we have the abandonment rate at ln of orders before

reaching the head of the queue as
∑M+N

m=n+1

∫ ln
ln−1

π
(n)
− (x)dx

(
e⊗

(∑K
k=1 kηk,n−MDke

)
⊗ e
)

.

Since the buyer arrival process evolves only when X(t) is decreasing, we censor out the

real periods of time when X(t) 6= 0 and get the same normalization factor ĉnorm as the age

process. Last, divided by the total abandonment rate of orders before reaching the head

of the queue (i.e., pBL,>1λ), we get the desired results.

The mean sojourn time for filled buyer orders E[W o
B,F ] can be obtained by:

E[W o
B,F ] =

1

pB,Fλ

(
M+N∑
n=M+1

(
v
(n)
+ MK(n)

ln−1,ln
+ v

(n)
− M̃K̂(n)

ln−1,ln
Ψ̂(n)

)
δ(+,+)

+
(
v
(n)
+ MK(n)

ln−1,ln
Ψ(n) + v

(n)
− M̃K̂(n)

ln−1,ln

)
δ(+,−, n)

)
,

(6.3.14)
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where MK(n)

ln−1,ln
and M̃K̂(n)

ln−1,ln
can be found in Lemma B.1. The mean sojourn time of an

arbitrary buyer order can be obtained by

E[W o
B] = poB,FE[W o

B,F ] + poBL,1E[W o
BL,1] + poBL,>1E[W o

BL,>1]. (6.3.15)

Queue length of orders

Let qoB(t) be the queue length of buyer orders at an arbitrary time t. If a(t) = x, s(t) =

k, I(b)(t) = mb at an arbitrary time t, the queue length consists of the remaining batch

size of the buyer at the head of the queue and the total batch size of the buyers arrived

after that buyer (i.e., in the period (t − x, t)) who have not abandoned the queue yet. If

we only consider buyers who are still in the queue, the arrival process of buyer orders in

(t− ln, t− ln−1) can be expressed as a time inhomogeneous BMAP with

∆(n) := (D0(n), D1(n), ..., DK(n)), (6.3.16)

where D0(n) = D0 +
∑K

k=1(1 − ξk,n)Dk and Dk(n) = ξk,nDk for k = 1, ..., K and ξk,n =∑N
i=n−M ηk,i, for n = M,M + 1, ...,M +N .

In general, by Theorem 2.4.1 in [62] or Lemma B.2, for buyers arrived in (t−ln, t−ln−1),
the probability generating function for the batch size is given by

P ∗(n, z, x) = exp

{(
D0(n) +

K∑
k=1

zkDk(n)

)
x

}
. (6.3.17)

The probability generating function of qoB(t) can be derived based on the joint distribution

of the age process. Recall that P{a(t) ≤ 0} = p̂(M)e+
∑M

n=1

(
v
(n)
+ LK

(n)

ln−1,ln
Ψ(n) + v

(n)
− L̃K̂

(n)

ln−1,ln

)
e.

Conditioning on a(t) at an arbitrary time t, we have

E[zq
o
B(t)] = P{a(t) ≤ 0}+

M+N∑
n=M+1

∫ ln

ln−1

f
(n)
B (x)

×
(
I(zK)⊗

(
P ∗(n, z, x− ln−1)

∏M+1
m=n−1 P

∗(m, z, bm)
)
⊗ I
)

dxe,

(6.3.18)
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where I(zK) = diag(zK , zK−1, ..., z1) and bm = lm− lm−1, for m = M+1,M+2, ...,M+N .

By Theorem 2.4.2 in [62] or Lemma B.2, we have

∂P ∗(n, z, x)e

∂z

∣∣∣∣
z=1

=

(
K∑
k=1

kξk,nλk

)
xe + (eDx− I)(D− eθb)

−1

(
K∑
k=1

kξk,nDk

)
e. (6.3.19)

Consequently, we obtain

Proposition 6.4. The mean queue length of remaining buyer orders is given by

E[qoB(t)] =
∂E[zq

o
B(t)]

∂z

∣∣∣∣
z=1

=
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
(I(K)⊗ I ⊗ I)e

+
M+N∑
n=M+1

n−1∑
m=M+1

∫ ln

ln−1

f
(n)
B (x)

(
I ⊗ eD(x−lm) ⊗ I

)
dx

×

(
I ⊗

((
K∑
k=1

kξk,mλk

)
bmI(eDbm − I)(D − eθb)

−1

(
K∑
k=1

kξk,mDk

))
⊗ I

)
e

+
M+N∑
n=M+1

∫ ln

ln−1

f
(n)
B (x)

(
I ⊗

((
K∑
k=1

kξk,nλk

)
(x− ln−1)I

+ (eD(x−ln−1) − I)(D − eθb)
−1

(
K∑
k=1

kξk,nDk

))
⊗ I

)
edx,

(6.3.20)

where I(K) = diag(K,K − 1, ..., 1). The integrals in the above equation can be evaluated

using closed form expressions in Lemma B.1.

The mean queue length (i.e., total batch size) of buyer orders can also be obtained by

Little’s law as E[qoB(t)] = λE[W o
B], which can be used to check the computation accuracy.

6.3.2 Buyer-Seller Level Queueing Quantities

In this subsection, we find queueing quantities associated with buyers and sellers, instead

of orders. The idea for finding those quantities is similar to that for orders. Consequently,

some details are omitted.
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Matching rates and matching probability of buyers-sellers

Let ωB be the number of fully filled buyers per unit time, to be called the matching rate

of the buyers. Similarly, let ωS be the matching rate of the sellers. Note that ωB may not

be equal to ωS because of the partial matching.

Proposition 6.5. The matching rate of the buyers of the system is

ωB =
1

ĉnorm

M∑
n=1

∫ ln

ln−1

(
π

(n)
+ (x)δ̂(−,+, n) + π

(n)
− (x)δ̂(−,−)

)
dx

+
1

ĉnorm

M+N∑
n=M+1

∫ ln

ln−1

(
π

(n)
+ (x)δ̂(+,+) + π

(n)
− (x)δ̂(+,−, n)

)
dx,

(6.3.21)

where

δ̂(−,−) =
((
E ⊗ eeT

)
� (e⊗ (D1, D2, ..., DK)⊗ I)

)
e,

δ̂(+,−, n) =
((
Ê ⊗ eeT

)
� (e⊗ (D1,n,D2,n, ...,DK,n)⊗ I)

)
e,

δ̂(−,+, n) =
((
F ⊗ eeT

)
� (e⊗ (I ⊗ D̂1,n, I ⊗ D̂2,n, ..., I ⊗ D̂K,n)

)
e,

δ̂(+,+) =
((
F̂ ⊗ eeT

)
� (e⊗ (I ⊗ D̂1, I ⊗ D̂2, ..., I ⊗ D̂K)

)
e,

(6.3.22)

where matrices E, Ê, F and F̂ are logical (i.e., elements can be 0 or 1) square matrices

of order K: The (i, j)-th element of E is 1 if and only if i ≥ j; The (i, j)-th element of Ê

is 1 if and only if i − 1 ≥ j; The (i, j)-th element of F is 1 if and only if i ≥ K − j and

i 6= K; and the (i, j)-th element of F̂ is 1 if and only if i ≥ K − j + 1.

Proof. The result is obtained from Proposition 6.1 by replacing matrices A, Â,
˜̂
A and Ã

with logical matrices E, Ê, F and F̂ , respectively. In Proposition 6.1, we count how many

orders are being matched, in this proposition, we use logical matrices to indicate if a buyer

is fully filled when matching happens.

Let pB,F be the fully filled probability of buyers, to be called the matching probability

of the buyers.
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Corollary 6.2.3.

pB,F =
ωB∑K
k=1 λk

. (6.3.23)

The abandonment probability of the buyers is pB,L = 1− pB,F .

Remark:
∑K

k=1 λk is the arrival rate of buyers, which is different from the arrival rate

of buyer orders λ.

Again, we decompose pB,L into two parts based on the location in the queue: i) abandon-

ment probability pBL,1 of buyers at the head of the queue; and ii) abandonment probability

pBL,>1 of buyers before reaching the head of the queue. Then we have

Proposition 6.6.

pBL,1 =
1

K∑
k=1

λk

M+N−1∑
n=M+1

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)



K∑
k=1

η̇k,n−M
M+N∑
m=n

η̇k,m−M

e(K − k + 1)

⊗ e


+

1
K∑
k=1

λk

p̂(M)

((
K∑
k=1

η̇k,0Dke

)
⊗ e

)
,

(6.3.24)

and pBL,>1 = pB,L − pBL,1.

Proof. Similar to Proposition 6.2.

Sojourn times of buyers-sellers

In this subsection, we present the sojourn times of buyers.
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Proposition 6.7. The distribution of sojourn time WB,F of fully filled buyers is

P{WB,F = 0} =
1

pB,F

K∑
k=1

λkĉnorm

(
M∑
n=1

∫ ln

ln−1

π
(n)
− (x)dxδ̂(−,−) +

∫ ln

ln−1

π
(n)
+ (x)dxδ̂(−,+, n)

)
;

dP{WB,F < x}
dx

=
1

pB,F

K∑
k=1

λkĉnorm

(
π

(n)
+ (x)δ̂(+,+) + π

(n)
− (x)δ̂(+,−, n)

)
,

for ln−1 ≤ x < ln, n = M + 1, ...,M +N.

(6.3.25)

The distribution of sojourn time WBL,1 of lost buyers at the head of the queue is given by

P{WBL,1 = 0} =
1

pBL,1

K∑
k=1

λk

p̂(M)

((
K∑
k=1

η̇k,0Dke

)
⊗ e

)
, (6.3.26)

and, for n = M + 1,M + 2, ...,M +N − 1,

P{WBL,1 = ln} =

(
v
(n)
+ eK

(n)(ln−ln−1) + v
(n)
− Ψ̂(n)

)
pBL,1

K∑
k=1

λk

((
K∑
k=1

η̇k,n−M
η̇k,n−M + ...+ η̇k,N

e(K − k + 1)

)
⊗ e

)
.

(6.3.27)

The distribution of sojourn time WBL,>1 of lost buyers before reaching the head of the

queue, we have, for n = M,M + 1, ...,M +N − 1,

P{WBL,>1 = ln} =

(
M+N∑
m=n+1

(
v
(m)
+ LK

(m)

lm−1,lm
Ψ(m) + v

(m)
− L̃K̂

(m)

lm−1,lm

)(
e⊗

(
K∑
k=1

ηk,n−MDke

)
⊗ e

))

pBL,>1

K∑
k=1

λk

.

(6.3.28)

Proof. Similar to Proposition 6.3.
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The mean sojourn time for fully filled buyers E[WB,F ] can be calculated by

E[WB,F ] =
1

pB,F

K∑
k=1

λk

(
M+N∑
n=M+1

(
u
(n)
+ MK(n)

ln−1,ln
+ u

(n)
− M̃K̂(n)

ln−1,ln
Ψ̂(n)

)
δ̂(+,+)

+
(
u
(n)
+ MK(n)

ln−1,ln
Ψ(n) + u

(n)
− M̃K̂(n)

ln−1,ln

)
δ̂(+,−, n)

)
.

(6.3.29)

The mean sojourn time of an arbitrary buyer can be found by

E[WB] = pB,FE[WB,F ] + pBL,1E[WBL,1] + pBL,>1E[WBL,>1]. (6.3.30)

Queue lengths of buyers-sellers

Proposition 6.8. The mean queue length of buyers is given by

E[qB(t)] =
M+N∑
n=M+1

(
v
(n)
+ LK

(n)

ln−1,ln
+ v

(n)
− L̃K̂

(n)

ln−1,ln
Ψ̂(n)

)
e

+
M+N∑
n=M+1

n−1∑
m=M+1

∫ ln

ln−1

f
(n)
B (x)

(
I ⊗ eD(x−lm) ⊗ I

)
dx

×

(
I ⊗

((
K∑
k=1

ξk,mλk

)
bmI + (eDbm − I)(D − eθb)

−1

(
K∑
k=1

ξk,mDk

))
⊗ I

)
e

+
M+N∑
n=M+1

∫ ln

ln−1

f
(n)
B (x)

(
I ⊗

((
K∑
k=1

ξk,nλk

)
(x− ln−1)I

+ (eD(x−ln−1) − I)(D − eθb)
−1

(
K∑
k=1

ξk,nDk

))
⊗ I

)
edx.

(6.3.31)

Note that the expression of the queue length of buyers in this queueing model is the

same as the one in Chapter 5 Proposition 5.4.
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6.3.3 Summary of Queueing Quantities

We summarize all important queueing quantities in Table 6.2 to help readers quickly find

the meaning and equations of these quantities.

Buyer-Seller level quantities Order level quantities

Density of the age process f (n)(x) (6.2.16) f
(n)
B (k, x) (6.2.19)

Type of the queue pB (6.2.21) pB(k) (6.2.20)
Matching rate ωB (6.3.21) ωo (6.3.1)

Abandonment probabilities
PB,F , PB,L (6.3.23),
PBL,>1, PBL,1 (6.3.24)

P o
B,F , P o

B,L (6.3.8),
P o
BL,1 & P o

BL,>1 (6.3.9)

Sojourn time of filled buyers WB,F (6.3.25), E[WB,F ] (6.3.29) W o
B,F (6.3.10), E[W o

B,F ] (6.3.14)

Sojourn time of lost buyers WBL,1 (6.3.27), WBL,>1 (6.3.28) W o
BL,1 (6.3.12), W o

BL,>1 (6.3.13)

Mean sojourn time E[WB] (6.3.30) E[W o
B] (6.3.15)

Queue lengths E[qB(t)](6.3.31) E[qoB(t)] (6.3.20)

Table 6.2: Summary of queueing quantities in Chapter 6

6.3.4 Numerical Example

Example 6.1. (continued) We use the parameters provided in Example 6.1 and all the

results in this section to demonstrate the efficiency and effectiveness of the approach and

the algorithm.

The probability that there is a buyer queue is pB = 0.2684 and the probability that

there is a seller queue is pS = 0.7095. As demonstrated in Table 6.3 and Figure 6.3, we can

find the queueing performance for both order level and buyer-seller level. For the notation

of the queueing quantities related to sellers, we replace the subscript “B” of queueing

quantities for buyers with subscript “S” for sellers.
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Buyer order ωo poB,F poBL,1 poBL,>1 E[W o
B,F ] E[W o

B,L] E[W o
B] E[qoB(t)] P{W o

B,F = 0}
8.1017 0.9778 0.0006 0.0216 0.2893 1.1253 0.3079 2.5510 0.7131

Buyer ωB pB,F pBL,1 pBL,>1 E[WB,F ] E[WB,L] E[WB] E[qB(t)] P{WB,F = 0}
4.7720 0.9825 0.0004 0.0172 0.3030 1.1227 0.3174 1.5417 0.7056

Seller order ωo poS,F poSL,1 poSL,>1 E[W o
S,F ] E[W o

S,L] E[W o
S ] E[qoS(t)] P{W o

S,F = 0}
8.1017 0.9002 0.0000 0.0998 0.9456 2.0069 1.0515 9.4635 0.2869

Seller ωS pS,F pSL,1 pSL,>1 E[WS,F ] E[WS,L] E[WS ] E[qS(t)] P{WS,F = 0}
5.2139 0.9201 0.0000 0.0799 0.9964 2.0137 1.0777 6.1067 0.2759

Table 6.3: Queueing quantities for Example 6.1
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Figure 6.3: The stationary density functions of W o
BF ,WBF ,W o

SF and WSF for Example 6.1

Example 6.2. A double-sided queue with maximum batch size K = 4, and M = N = 5.

All the input parameters are presented in Table 6.4. We assume that the batch size of

buyers can only be 4, while the batch size of sellers can be 1 or 2. The batch size of a

buyer can be less than 4 when the buyer is at the head of the queue due to partial matching,

so we still define the abandonment time distributions for buyers at the head of the queue

with less than 4 orders.

The probability that there is a buyer queue is pB = 0.2222 and the probability that

there is a seller queue is pS = 0.7748. We can find the queueing quantities for both order
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level and buyer-seller level in Table 6.5 and Figure 6.4.

Buyer Arrival Batch Size l̃1 = 5 l̃2 = 10 l̃3 = 15 l̃4 = 20 l̃5 =∞

D0 =

(
−7, 2
3, −5

) D1 =

(
0, 0
0, 0

)
η̇1,1 = 0 η̇1,2 = 0 η̇1,3 = 0 η̇1,4 = 0.1 η̇1,5 = 0.9

D2 =

(
0, 0
0, 0

)
η̇2,1 = 0 η̇2,2 = 0 η̇2,3 = 0.1 η̇2,4 = 0.1 η̇2,5 = 0.8

D3 =

(
0, 0
0, 0

)
η̇3,1 = 0 η̇3,2 = 0 η̇3,3 = 0 η̇3,4 = 0.1 η̇3,5 = 0.9

D4 =

(
5, 0
1, 1

)
η4,1 = 0.1
η̇4,1 = 0.1

η4,2 = 0.1
η̇4,2 = 0.1

η4,3 = 0.1
η̇4,3 = 0.1

η4,4 = 0.1
η̇4,4 = 0.1

η4,5 = 0.6
η̇4,5 = 0.6

Seller Arrival Batch Size l̂1 = 5 l̂2 = 10 l̂3 = 15 l̂4 = 20 l̂5 =∞

D̂0 =

(
−50, 6
1, −5

) D̂1 =

(
25, 2
1, 1

)
η̂1,1 = 0.2

˙̂η1,1 = 0

η̂1,2 = 0.2
˙̂η1,2 = 0

η̂1,3 = 0.2
˙̂η1,3 = 0

η̂1,4 = 0.2
˙̂η1,4 = 0.2

η̂1,5 = 0.2
˙̂η1,5 = 0.8

D̂2 =

(
17, 0
0, 2

)
η̂2,1 = 0.1

˙̂η2,1 = 0

η̂2,2 = 0
˙̂η2,2 = 0

η̂2,3 = 0
˙̂η2,3 = 0

η̂2,4 = 0
˙̂η2,4 = 0.1

η̂2,5 = 0.9
˙̂η2,5 = 0.9

Table 6.4: Parameters of Example 6.2

Buyer order ωo poB,F poBL,1 poBL,>1 E[W o
B,F ] E[W o

B,L] E[W o
B] E[qoB(t)] P{W o

B,F = 0}
15.9111 0.9944 0.0000 0.0056 0.7343 5.3778 0.7601 12.1611 0.7686

Buyer ωB pB,F pBL,1 pBL,>1 E[WB,F ] E[WB,L] E[WB] E[qB(t)] P{WB,F = 0}
3.9778 0.9944 0.0000 0.0056 0.7554 5.3783 0.7811 3.1245 0.7639

Seller order ωo poS,F poSL,1 poSL,>1 E[W o
S,F ] E[W o

S,L] E[W o
S ] E[qoS(t)] P{W o

S,F = 0}
15.9111 0.9359 0.0000 0.0641 4.0606 5.5133 4.1537 70.6127 0.2126

Seller ωS pS,F pSL,1 pSL,>1 E[WS,F ] E[WS,L] E[WS ] E[qS(t)] P{WS,F = 0}
11.1149 0.9262 0.0000 0.0738 4.0191 5.6314 4.1380 49.6564 0.2120

Table 6.5: Queueing quantities for Example 6.2
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Figure 6.4: The stationary density functions of W o
BF ,WBF ,W o

SF and WSF for Example 6.2

From these two examples, we can observe that the sojourn times for buyer-seller level are

stochastically larger than the corresponding sojourn times for order level (i.e., W o
BF ≺ WBF

and W o
SF ≺ WSF ), due to the partial matching. In addition, we ran a large number of

numerical examples and found that the density functions of W o
BF and WBF are quite close,

as are the density functions of W o
SF and WSF .

6.4 Application of the Model to Vaccine Inventory

Systems

In this section, we illustrate a potential application of the proposed queueing model to

analyze the performance of vaccination services and inventory systems in a hypothetical

setting, which may be close to reality for particular vaccination practices. For this applica-

tion, as illustrated in Figure 6.5, we consider that vaccines stochastically arrive in batches

(e.g., of several multi-dose vials or in the form of individual doses in the same container) to

a vaccination center/clinic, and expected to be administrated to patients randomly arriv-

ing at the clinic. We assume that the randomness in the arrival processes of patients and
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vaccine inventory replenishments follow BMAP . Patients may abandon the clinic/center

before receiving a vaccination service (e.g., if a patient group arrives when the vaccine

inventory is depleted, they may wait for or leave before a replenishment); while vaccines

may expire after their safe-use time (i.e., open or closed vaccine expiration). This hypo-

thetical case of the vaccine clinic complies with our definition of the double-sided queue

with BMAP .

2

1

1

2

2

1

A served patient leaves
the system with waiting

A served patient leaves
the system without waiting

Abandon the queue
without serving

Expire after a
period of time

Empty SystemPatient Queue Vaccine Queue

Partially used

Figure 6.5: Diagram of the vaccine inventory system

This hypothetical case may represent, to some extent, the vaccination practices in

particular clinical settings including childhood vaccination through outreach programs in

developing countries and recent COVID-19 vaccination practices. Several papers have il-

lustrated that the stochastic nature of patient arrivals to the vaccination clinic can be

represented with known stochastic distributions [19, 119]. In both cases, patient arrivals

may be in a batch form as multiple members of the same family or sub-community may

seek vaccination or abandon the queue simultaneously. Similarly, vaccine arrivals refer to

randomly timed replenishments in batches, while abandonment refers to the vaccine ex-

piration. Random vaccine replenishments could be due to random events (e.g., extreme

weather conditions, safety hazards, etc.) causing delays in accessibility to outreach regions

during outreach programs, while they may be caused by uncertainties in early vaccine sup-

ply and inefficiencies in cold-chain infrastructure/network during COVID-19 vaccination.

Arriving vaccines in each batch expires together based on the time from the arrival in
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these two examples because a) in outreach programs, all vaccines at hand are disposed of

at the end of the day for safety, b) if ultra-freezers are not used, arriving batches of Pfizer

COVID-19 vaccines expire in 34-35 days (if stored in special cold-containers) or after 4-5

days (if stored in regular refrigeration units) [94]. Therefore, the proposed model may

represent (to some extend) the vaccination performances at least in those two cases.

For the hypothetical example, we considered the case where vaccine replenishments of

y doses arrive at a vaccination clinic within exponential interarrival times with mean 1/λ̂

unit of time. Therefore, the supply of vaccines follows a Poisson process with parameter

λ̂. However, each vaccine dose may lose its effectiveness, or its vial is broken during

transportation with probability p. Then, the number of effective doses follows binomial

distribution B(y, 1− p) for each arrival. Together, doses of vaccines arrive according to a

compound Poisson process, and it can be expressed as a BMAP as follows,

D0 = −λ̂+ pyλ̂; Dk =

(
y

k

)
(1− p)kpy−kλ̂, for k = 1, 2, ..., y. (6.4.1)

We consider patients arriving at this clinic for vaccination according to a Poisson process

with parameter µ̂. However, the demand for each patient depends on the patient’s weight.

While patients with weight in the normal range need only one dose, those with weight

beyond this range need two doses. Suppose that the proportion of overweight patients in

this area is r (0 < r < 1). Then we have another compound Poisson process with its

BMAP expression given in Equation (6.4.2),

D̂0 = −µ̂; D̂1 = (1− r)µ̂; D̂2 = rµ̂. (6.4.2)

Note that the interarrival times for both patient and vaccine arrivals can be generalized to

other distributions via an approximation with an appropriate phase-type distribution.

We suppose the vaccine will expire in v units of time after arrival and patient will

abandon the system without serving after w units of time, which means the abandonment

times are constants and M = N = 2, l̃1 = v, l̂1 = w, ηk,1 = η̇k,1 = 1 and η̂k,1 = ˙̂ηk,1 = 1. In

this example, we assume that λ̂ = 1, y = 10, p = 0.2, µ̂ = 5, r = 0.3, v = 4, w = 1. We also

assume patients with different weights have the same abandonment times distribution and
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the distribution will not be changed after the first dose for overweight patients.

Demand ωo poB,F poBL,1 poBL,>1 E[W o
B,F ] E[W o

B,L] E[W o
B] E[qoB(t)] P{W o

B,F = 0}
6.1420 0.9449 0.0000 0.0551 0.0398 1.0000 0.0927 0.6023 0.8601

Patient ωB pB,F pBL,1 pBL,>1 E[WB,F ] E[WB,L] E[WB] E[qB(t)] P{WB,F = 0}
4.7220 0.9444 0.0000 0.0556 0.0401 1.0000 0.0935 0.4674 0.8591

Dose ωo poS,F poSL,1 poSL,>1 E[W o
S,F ] E[W o

S,L] E[W o
S ] E[qoS(t)] P{W o

S,F = 0}
6.1420 0.7678 0.0092 0.2230 2.1719 4.0000 2.5965 20.7718 0.0689

Batch ωS pS,F pSL,1 pSL,>1 E[WS,F ] E[WS,L] E[WS ] E[qS(t)] P{WS,F = 0}
0.6241 0.6241 0.0074 0.3685 2.2910 4.0000 2.9334 2.9334 0.0265

Table 6.6: Queueing quantities for the vaccine inventory system
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Figure 6.6: The stationary density functions of W o
BF ,WBF ,W o

SF and WSF

We can find the performance of both sides of the system and the sojourn time distri-

butions for both vaccine and patients as illustrated in Table 6.6 and Figure 6.6. From the

results in Table 6.6, we can also see that 94.49% of patients’ demands have been filled,

however, only 76.78% of effective vaccine doses are being used in this example.

If the supplier wants to reduce the wastage of the vaccine but also maintain a high

demand fill rate, the vaccine arrival rate should be reduced. Suppose the objective is to

maximize the total matching probability for both sides (i.e., (poB,F + poS,F )/2), the vaccine
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arrival rate should be around λ̂ = 0.85 (See Figure 6.7). When λ̂ = 0.85, 84.79% of vaccine

doses are being used and 88.70% of patients’ demands can be filled.
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Figure 6.7: Matching probabilities with varying vaccine arrival rate.

6.4.1 Sensitivity Analysis

We continue exploring the effects of the abandonment distributions and arrival processes

on the queueing performance (e.g., matching probabilities) in this subsection.

We consider four different distributions with the the same mean for each side. We sort

the distributions by coefficients of variation (CV ) in ascending order as, 0 = CV (Constant) <

CV (Erlang) < 1 = CV (Exponential) < CV (Hyperexponential). The hyperexponential

distribution for patients is

β = [0.9, 0.1], T =

(
−9/2 0

0 −1/8

)
; (6.4.3)
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and the hyperexponential distribution for vaccines is

β = [0.8, 0.2], T =

(
−2 0

0 −1/18

)
. (6.4.4)

We discretize all continuous distributions with M = N = 10000.

Matching Probabilities poB,F |poS,F
Abandonment Distribution (Patients)

Constant=1 Erlang(2, 2) Exp(1) Hyperexponential

Abandonemnt
Distribution
(Vaccines)

Constant=4 0.9449|0.7678 0.9407|0.7644 0.9380|0.7621 0.9279|0.7539
Erlang(2, 0.5) 0.9004|0.7316 0.8915|0.7244 0.8856|0.7196 0.8632|0.7013
Exp(0.25) 0.8687|0.7058 0.8558|0.6953 0.8472|0.6883 0.8136|0.6610

Hyperexponential 0.7440|0.6045 0.7095|0.5765 0.6851|0.5566 0.5807|0.4718

Table 6.7: Comparison of different abandonment distributions

From Table 6.7 we can see that the distribution of abandonment times has significant

impacts on the queueing performance (e.g., matching probabilities), and with the increasing

of the coefficient of variation of the abandonment distribution of either side, the matching

probabilities are decreasing (i.e., vaccine coverage is decreasing while wastage is increasing).

Intuitively, although the arrival processes and mean abandonment time are unchanged, the

increasing of variation of the abandonment times increases the probability that two sides

miss each other.

Next, we explore the effect of the arrival processes. To represent higher uncertainty of

supply and demand, we use Markov-modulated Poisson processes (MMPP ) to replace the

Poisson processes without changing the total rates. Patients arrival can be affected by the

weather, traffic and many other factors, therefore, we use the following MMPP ,

D̂0 =

(
−16 2

1 −1.5

)
; D̂1 =

(
9.8 0

0 0.35

)
; D̂2 =

(
4.2 0

0 0.15

)
. (6.4.5)

In this process, with probability of 1/3 the arrival rate is 14, with probability of 2/3, the

arrival rate is 0.5. It captures the non-stationary arrivals of patients to the clinic.

For the vaccine arrival process, we consider two situations. First, to capture the non-

stationary arrivals of vaccines to remote areas, e.g., lower arrival rate to remote villages
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due to roads inaccessible after severe weather, we use the MMPP in Equation (6.4.6) as

the arrival process. In this process, with probability of 25% the arrival rate is 3, with

probability of 75%, the arrival rate is 1/3.

D0 =

(
−6 + 0.210 × 3 3

1 −4/3 + 0.210 × 1
3

)
;

Dk =


(

10

k

)
0.8k0.210−k3 0

0

(
10

k

)
0.8k0.210−k 1

3

 , for k = 1, 2, ..., 10.

(6.4.6)

Second, we consider an ideal situation with constant interarrival times for the vaccine

arrival process. We use a technique called Erlangization to approximate the constant in-

terarrival times by Erlang distribution Erlang(mb,mbλ̂)[15, 100]. To obtain high accuracy,

mb needs to be relatively large (we consider mb = 50, 30, 10 in this example). From Table

6.8, we can see that the matching probabilities for both sides are better if mb is larger,

which indicates that the situation with constant interarrival times for vaccine arrivals could

result in the best performance. But constant vaccine replenishments time may not be the

case in reality, especially in remote areas of low- and middle-income countries.

Matching Probabilities poB,F |poS,F
Arrival Process (Patients)

Poisson MMPP

Arrival
Process
(Vaccines)

Renewal Process with Erlang(50, 50) 0.9999|0.8124 0.9630|0.7825
Renewal Process with Erlang(30, 30) 0.9998|0.8124 0.9620|0.7817
Renewal Process with Erlang(10, 10) 0.9992|0.8119 0.9569|0.7775

Poisson 0.9449|0.7678 0.8882|0.7217
MMPP 0.8993|0.7307 0.8448|0.6864

Table 6.8: Comparison of different arrival processes

The result of the sensitivity analysis on the arrival process given in Table 6.8 also

shows that the non-stationary Poisson arrival processes (i.e., MMPP ) result in worse

system performance. This result is important because most previous studies assumed

stationary Poisson arrival processes when analyzing the vaccine administration problem.
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Although the Poisson process is shown to be a good match to the panel data on patient

arrivals in several regions of developing countries, other interarrival time distributions

(normally with high variance) are shown to better fit the arrival processes in reality [119].

Therefore, the performance of the proposed model in terms of matching rate under more

general distributions worse than the Poisson arrival process, indicates that the existing

analyses may overestimate the performance of vaccine administration in such regions. This

highlights the need to develop more advanced methods, e.g., the proposed method and its

extensions, to analyze the problem in such regions more accurately.

6.5 Summary

In this chapter, we consider a double-sided queueing model with BMAP and finite discrete

abandonment times. Our contributions are two-fold.

First, the model is quite general as BMAP can approximate any stochastic arrival

process and the finite discrete distribution can approximate general distributions. We

assume that the abandonment times of the customers on both sides depend on their position

in the queue and their batch size, which is a quite practical assumption. We use multi-

layer MMFF processes to analyze the queueing model and compute a number of queueing

quantities such as the matching rates, fill rates, abandonment probabilities, distributions

of sojourn times, and the mean queue lengths.

Second, we apply our model to a hypothetical vaccine inventory system. Our model

can capture the uncertainty in supply, demand and storage in the system by consider-

ing non-stationary arrival processes and abandonment distribution functions with varying

coefficients of variation. We observe that system performance is sensitive to the level of

uncertainty and higher uncertainty in supply, demand and storage leads to more wastage

of vaccines and worse system performance. This indicates that there is an incentive

for decision-makers to consider the uncertainty of the patients abandonment and non-

stationary arrivals when designing the vaccine inventory system and to maintain a stable

vaccine inventory system.
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Chapter 7

Concluding Remarks

In this chapter, we summarize the main contributions in this thesis and give a brief dis-

cussion on several future research topics related to this thesis.

7.1 Summary

In this thesis, we first studied the basic theory on the multi-layer MMFF processes.

Specifically, we reviewed and refined the existing theory on multi-layer MMFF processes

and developed an efficient algorithm for computing the joint stationary distributions. Then

we used three applications to queueing models to demonstrate the applicability of this

approach. A number of interesting quantities were obtained for these queueing models,

such as the abandonment probabilities, distributions of waiting times and the mean queue

lengths. All three queueing models are fairly general and cover many interesting and

challenging cases including i) models without abandonment; ii) models with only zero

patience inputs (i.e., balking); iii) models with a constant abandonment time; and iv) the

mixtures of all of them.

For the MAP/PH/K + GI queueing model, several ideas in applied probability and

queueing theory were put together with the multi-layer MMFF processes to develop an

algorithm for evaluating the queueing performances. Some of the queueing quantities
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obtained in this model, such as the probability and waiting time of customers abandoning

at the head of the queue or before reaching the head of the queue, are not easy to derive by

other methods. We also demonstrated the efficiency of our algorithm by several numerical

examples with moderately large numbers of servers.

For the double-sided queues with MMAP and abandonment, the contributions are

two-fold. First, the queueing model with multiple types of inputs and abandonment is

fairly general. Second, we constructed a multi-layer MMFF process to analyze the model

and obtained a variety of queueing quantities, including both aggregate quantities and

quantities for individual types, which can be useful to gain insight into the stochastic

model of interest.

For the double-sided queues with BMAP and abandonment, the contribution is mainly

its generality and practicality. The generality of the model is guaranteed by the BMAP

and the discrete abandonment times. In addition, the abandonment time of a batch in

this model depends on its batch size and its position in the queue, which makes the model

more practical for inventory systems, such as the shelf life after opening in the perishable

inventory systems. We applied this model to a vaccine inventory system and evaluated the

system’s performance. We considered various system settings and compared the perfor-

mance under different levels of uncertainty.

7.2 Future Research

7.2.1 Stationary Distribution with Zero Mean-Drift

In Chapter 3, the expression of the joint density function in Theorem 3.2 does not include

the case with ζ(n) = 0. Although this issue has been discussed briefly in [77], we hope

to give computational details for multi-layer MMFF processes with ζ(n) = 0, for some

n = 2, 3, ..., N − 1, in future research.
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7.2.2 Other Queueing Models

In Chapter 4, we studied the MAP/PH/K+GI queue, and we considered two double-sided

queues with MMAP and BMAP , respectively in Chapter 5 and Chapter 6. A natural ex-

tension is to consider MMAP or BMAP in the MAP/PH/K+GI queueing model, e.g, a

generalized queueing model with multiple types of customers (i.e., MMAP [K]/PH[K]/N+

G[K] queue). This model can be combined with some data analytic techniques to solve

the emergency department abandonment problem, which will be discussed in Subsection

7.2.4.

Second, we plan to consider the MAP/PH/K + GI queue with customer priorities

in future research. This extension may require advanced applied probability tools such

as the two-dimensional MMFF processes. A more powerful tool may be found by com-

bining multi-dimensional MMFF processes and multi-layer MMFF processes. More

explorations are required for this research direction.

Last, double-sided queues have become an increasingly interesting research topic in

recent years with the emerging of the sharing economy, for example, ridesharing, bicycle-

sharing, online rental and online lending [34, 42]. Further investigation of such queueing

models remains of interest for future research. For example, a double-sided queueing model

with priority has been studied by [51]. It may be an interesting direction to consider batch

arrivals and priority in the double-sided queueing model. Based on the work of [1, 2], the

double-sided queueing model with a type-dependent matching mechanism could also be an

interesting topic for future research.

7.2.3 Applications to Perishable Inventory Systems

In Chapter 6, we studied a vaccine inventory system as a case study, however, there are

some limitations in our vaccine inventory system. First, we did not consider the wastage of

the remaining doses in an opened multi-dose vaccine vial at the end of the day open (i.e.,

open vial wastage), while open vial wastage is a major contributor to the vaccine wastage

[79]. Our model can still be used to analyze the open vial wastage of the multi-dose vial

vaccine system if we consider a more complicated vaccine expiration mechanism, which is
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left for future research. Second, we considered a continuous-time model without breaks,

but the vaccination outreach sessions are normally 2-8 hours per day [19], although we can

use BMAP to approximate the out-sessions periods of time, the computational complexity

would become a problem as the state space increases. Future work will focus on developing

a more realistic model and building an optimal decision model for the vaccine inventory

system.

7.2.4 Utilizing the Proposed Models for Healthcare Data Ana-

lytics

In the healthcare system, abandonment or leaving without being seen (LWBS) is an unde-

sirable problem in the emergency department. Abandonment can be viewed as an aspect

of patient behavior and also a critical component of queueing models. Numerous studies

have been conducted looking at the factors involved in LWBS in the emergency department,

including age, gender, triage, chief complaint, etc [35, 57, 80].

Kaplan-Meier analysis and the survival tree algorithms are commonly used in the bio-

statistics field and also used in our other research projects on Amyotrophic lateral sclerosis

(ALS) patients management. Inspired by these applications, we propose to estimate the

abandonment time distributions of the patients in the emergency department and classify

patients based on their abandonment times and contributing risk factors. First, we can use

the Kaplan-Meier estimation to get the empirical distribution for the patient abandonment

times. Empirical distribution makes no assumption about the underlying distribution of

the abandonment time. Another advantage of the Kaplan-Meier estimation is that we

can deal with right-censored data, a common data type in most emergency departments.

Second, we can do patients classification based on abandonment time distribution and as-

sociated factors, which can improve the performance evaluation results. We can get the

number of types of patient classes from the data by the survival tree algorithms.

With the empirical abandonment time distribution and multiple types of patients, the

analysis of the queueing system becomes difficult. However, we have shown that our

queueing models are able to handle both multiple types of customers and discrete aban-
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donment time distribution. In addition, there are many existing algorithms to do param-

eters fitting for MMAP and PH distributions [16, 40, 69]. Therefore, we can develop an

MMAP [K]/PH[K]/N+G[K] queueing model to evaluate the performance in the system.

We can also get the performance for a specific type of patients, e.g., the waiting time and

loss probability of senior male patients with ESI 3 triage.
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Appendix A

Newton’s Method to the Quadratic

Riccati Equations

In this Appendix, we present the Newton’s method in [58] to obtain the minimal nonneg-

ative solution Ψ of the quadratic Riccati equation

C−1+ T+− + C−1+ T++Ψ + ΨC−1− T−− + ΨC−1− T−+Ψ = 0. (A.0.1)

We give the computational steps for solving this equation, while the dual equation of

Ψ̂ in Equation (3.1.9) can be solved similarly.

1. Let A = C−1+ T++, B = C−1+ T+−, C = C−1− T−+ and D = C−1− T−−;

2. Find a = maxiaii, d = maxidii and let Aγ = A+ aI, Dγ = D + dI;

3. Initialize Ψ0 = 0 and n = 0;

4. Compute Ψn+1 = (AγΨn + ΨnDγ + ΨnBΨn + C)/(a + d) iteratively. Use ||Ψn+1 −
Ψn||1 < 10−15 as the stopping criteria.

Given the condition that ζ 6= 0, {Ψn, n ≥ 0} converges to Ψ quadratically.
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More efficient algorithms called doubling algorithms can solve for Ψ and Ψ̂ simulta-

neously, such as the Structure-preserving Doubling Algorithm in [60] and Alternating-

Directional Doubling Algorithm in [113]. Since those algorithms are faster due to fewer

computations for Ψ and Ψ̂ together, they typically require only half as much time as the

Newton’s method.
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Appendix B

Lemmas

B.1 Evaluation of Several Integrals

Closed form expressions given in this Appendix are partially obtained in [66]. We present

them here for convenience and completeness. Define

LKa,b =

∫ b

a

exp(K(x− a))dx; L̃Ka,b =

∫ b

a

exp(K(b− x))dx;

MK
a,b =

∫ b

a

x exp(K(x− a))dx; M̃K
a,b =

∫ b

a

x exp(K(b− x))dx;

M(K,2)
a,b =

∫ b

a

x2 exp(K(x− a))dx; M̃(K,2)
a,b =

∫ b

a

x2 exp(K(b− x))dx;

M(K,n)
a,b =

∫ b

a

xn exp(K(x− a))dx; M̃(K,n)
a,b =

∫ b

a

xn exp(K(b− x))dx;

for n = 3, 4, 5, ...

L(K,D)
a,b =

∫ b

a

exp(K(x− a))
(
I ⊗ eD(x−a) ⊗ I

)
dx;

L̃(K,D)
a,b =

∫ b

a

exp(K(b− x))Ψ̂(n)
(
I ⊗ eD(x−a) ⊗ I

)
dx.

(B.1.1)
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Assume that −∞ < a < b <∞. If matrix K is invertible, we have

LKa,b = L̃Ka,b = K−1(eK(b−a) − I);

MK
a,b = K−1

(
K−1 − aI + (bI −K−1)eK(b−a)

)
;

M̃K
a,b = K−1

(
−K−1 − bI + (aI +K−1)eK(b−a)

)
;

M(K,2)
a,b = K−1

(
b2eK(b−a) − a2I − 2MK

a,b

)
;

M̃(K,2)
a,b = K−1

(
a2eK(b−a) − b2I + 2M̃K

a,b

)
;

M(K,n)
a,b = K−1

(
bneK(b−a) − anI − nM(K,n−1)

a,b

)
;

M̃(K,n)
a,b = K−1

(
aneK(b−a) − bnI + nM̃(K,n−1)

a,b

)
,

(B.1.2)

and L(K,D)
a,b , L̂(K,D)

a,b satisfy the following Sylvester equations, respectively,

KL(K,D)
a,b + L(K,D)

a,b (I ⊗D ⊗ I) = eK(b−a)
(
I ⊗ eD(b−a) ⊗ I

)
− I;

KL̃(K,D)
a,b − L̃(K,D)

a,b (I ⊗D ⊗ I) = eK(b−a)Ψ̂(n) − Ψ̂(n)
(
I ⊗ eD(b−a) ⊗ I

)
.

(B.1.3)

If matrix K is singular. Let vL and vR be the left and right eigenvectors, corresponding

to eigenvalue zero, of K, i.e., vLK = 0 and KvR = 0, and are normalized by vLe = 1 and

vLvR = 1. It can be shown that K − vRvL is invertible. We have

LKa,b = L̃Ka,b = (K − vRvL)−1
(
eK(b−a) − I

)
+ (b− a)vRvL;

MK
a,b = (K − vRvL)−1

(
beK(b−a) − aI

)
+

(b2 − a2)
2

vRvL

−(K − vRvL)−2
(
eK(b−a) − I

)
+ (b− a)vRvL;

M̃K
a,b = (K − vRvL)−1

(
aeK(b−a) − bI

)
+

(b2 − a2)
2

vRvL

+(K − vRvL)−2
(
eK(b−a) − I

)
− (b− a)vRvL;

M(K,2)
a,b = (K − vRvL)−1

(
b2eK(b−a) − a2I − 2MK

a,b

)
+

(b3 − a3)
3

vRvL;

M̃(K,2)
a,b = (K − vRvL)−1

(
a2eK(b−a) − b2I + 2M̃K

a,b

)
+

(b3 − a3)
3

vRvL;

M(K,n)
a,b = (K − vRvL)−1

(
bneK(b−a) − anI − nM(K,n−1)

a,b

)
+

(bn+1 − an+1)

n+ 1
vRvL;

M̃(K,n)
a,b = (K − vRvL)−1

(
aneK(b−a) − bnI + nM̃(K,n−1)

a,b

)
+

(bn+1 − an+1)

n+ 1
vRvL,

(B.1.4)
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and L(K,D)
a,b , L̃(K,D)

a,b satisfy the following Sylvester equations, respectively,

(K − vRvL)L(K,D)
a,b + L(K,D)

a,b (I ⊗D ⊗ I) = eK(b−a)
(
I ⊗ eD(b−a) ⊗ I

)
− I − vRvLL1;

(K − vRvL)L̃(K,D)
a,b − L̃(K,D)

a,b (I ⊗D ⊗ I) = eK(b−a)Ψ̂(n) − Ψ̂(n)
(
I ⊗ eD(b−a) ⊗ I

)
− vRvLΨ̂(n)L1,

(B.1.5)

where L1 = I ⊗
(∫ b

a
eD(x−a)dx

)
⊗ I = I ⊗

(
(eD(b−a) − I − (b− a)eθa)(D − eθa)

−1)⊗ I.

Proof. We only consider LMa,b, MK
a,b, M

(K,2)
a,b and M(K,n)

a,b . We can easily have following

equations:

K
∫ b

a

eK(x−a)dx =

∫ b

a

deK(x−a) = eK(b−a) − I;

K
∫ b

a

xeK(x−a)dx =

∫ b

a

xdeK(x−a) = beK(b−a) − aI −
∫ b

a

eK(x−a)dx;

K
∫ b

a

x2eK(x−a)dx =

∫ b

a

x2deK(x−a) = b2eK(b−a) − a2I − 2

∫ b

a

xeK(x−a)dx;

K
∫ b

a

xneK(x−a)dx =

∫ b

a

xndeK(x−a) = bneK(b−a) − anI − n
∫ b

a

xn−1eK(x−a)dx;

vRvL

∫ b

a

eK(x−a)dx = vRvL(b− a);

vRvL

∫ b

a

xeK(x−a)dx = vRvL
(b2 − a2)

2
;

vRvL

∫ b

a

x2eK(x−a)dx = vRvL
(b3 − a3)

3
;

vRvL

∫ b

a

xneK(x−a)dx = vRvL
(bn+1 − an+1)

n+ 1
.

(B.1.6)

If K is non-singular, the results are obtained directly from the first four equations. If K is

singular, then K − vRvL is non-singular. The results are obtained by routine calculations

using all the above equations. Results for L̃Ka,b, M̃K
a,b, M̃

(K,2)
a,b and M̃(K,n)

a,b can be obtained

similarly.

The proof of L(K,D)
a,b and L̃(K,D)

a,b are similar, details are omitted.
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B.2 The Probability Generating Function of MAPs

The probability generating functions (PGF) of the number of arrivals for MAP , BMAP

and MMAP given in this Appendix are well-known (See [62]). We present them here for

convenience and completeness.

For MAP with matrix representation (D0, D1), let {N(t), t ≥ 0} be the number of

arrivals by time t and P ∗(z, t) be the conditional PGF of N(t), for z ≥ 0. According to

Theorem 2.3.1 in [62], we have

P ∗(z, t) =
∞∑
n=o

znP (n, t) = exp{(D0 + zD1)t}. (B.2.1)

By Theorem 2.3.2 in [62], if the underlying Markov chain is irreducible and the initial

distribution is α, we have

E[N(t)] = λt+α(exp(Dt)− I)(D − eθ)−1D1e, t ≥ 0, (B.2.2)

where D = Do +D1 and λ is the stationary arrival rate.

For BMAP with matrix representation (D0, D1, ..., DK), let {NB(t), t ≥ 0} be the

number of arrivals by time t and P ∗B(z, t) be the PGF of NB(t), for z ≥ 0. According to

Theorem 2.4.1 in [62], we have

P ∗B(z, t) = exp{(D0 + zD1 + z2D2 + ...+ zKDK)t}, (B.2.3)

and according to Theorem 2.4.2 in [62], given the initial distribution of the underlying

Markov chain α, we have

E[NB(t)] = λt+α(exp(Dt)− I)(D − eθ)−1

(
K∑
j=1

jDje

)
, t ≥ 0, (B.2.4)

where D = D0 +D1 + ..+DK is irreducible and has stationary distribution vector θ and

λ = θ
(∑K

j=1 jDj

)
e is the stationary arrival rate.
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For MMAP with matrix representation (D0, D1, ..., DK), if we want to get the total

number of arrivals by time t, we can convert it into an MAP with representation (D0, D1+

D2 + ... + DK). We can also get the joint PGF for the numbers of arrivals by time t for

each type. Let P ∗M(z, t) be the joint PGF and NM,k(t) be the number of arrivals of type k

customers, k = 1, 2, ..., K. According to Theorem 2.5.1 in [62], we have

P ∗M(z, t) = exp{(D0 + z1D1 + z2D2 + ...+ zKDK)t}, (B.2.5)

where z = (z1, z2, ..., zK). Given the initial state α, we have

E[NM,k(t)] = λkt+α(exp(Dt)− I)(D − eθ)−1Dke, t ≥ 0, (B.2.6)

where D = D0 +D1 + ..+DK is irreducible and has stationary distribution vector θ and

λk = θDke is the arrival rate of type k customers.
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Appendix C

Important Notations

In this appendix, we summarize important notations of each chapter from Chapter 3 to

Chapter 6 in following tables. The notations of Chapter 3 can be applied to all the following

chapters.
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Indices:
t time (t ≥ 0)
N number of layers/borders (n ∈ {1, ..., N})
Random Variables:
X(t) the fluid level at time t
φ(t) the state of the underlying Markov chain at time t
Parameters: (Note that we add superscript (n) to represent Layer n parameters)
ci changing rate of the fluid level when φ(t) = i
S state space of the underlying Markov chain
S+,S−,S0 S+ = {i ∈ S : ci > 0}; S− = {i ∈ S : ci < 0}; S0 = {i ∈ S : ci = 0}
c, c+, c− vectors c = {ci, i ∈ S}; c+ = {ci, i ∈ S+}; c− = {ci, i ∈ S−}
ζ mean drift of the fluid level
C+, C− C+ = diag(c+); C− = −diag(c−)
Q the infinitesimal generator of the underlying Markov chain
Q++, Q+−, Q+0 the transition from S+ to S+,S− and S0
Q−+, Q−−, Q−0 the transition from S− to S+,S− and S0
Q0+, Q0−, Q00 the transition from S0 to S+,S− and S0
T the censored underlying Markov chain
Basic Quantities: (Note that we add superscript (n) to represent Layer n quantities)

Ψ, Ψ̂ the transition of the state of Q at regenerative epochs

U , Û a continuous time Markov chain related to the minimal (maximal)
of the fluid flow process.

K, K̂ associated with numbers of visits to certain fluid level and state dur-
ing some first passage periods

Table C.1: Important notations in Chapter 3

180



Multi-layer Parameters:
ln Border n
(ln−1, ln) Layer n

S(n)
b state space of the underlying Markov chain on Border n

Q
(n)
b , Q

(n)
b+ , Q

(n)
b− generator on Border n

P
(n)
+b+, P

(n)
+b−, P

(n)
+bb transition probabilities when approaching Border n from above

P
(n)
−b+, P

(n)
−b−, P

(n)
−bb transition probabilities when approaching Border n from below

Multi-layer Quantities:

Λ
(b−a)
++ the probabilities for the process to go from level a to level b before

returning to level a.

Λ̂
(b−a)
−− the probabilities for the process to go from level b to level a before

returning to level b

Ψ
(b−a)
+− similar to Ψ except that the process does not reach fluid level b and

the process starts in fluid level a

Ψ̂
(b−a)
−+ similar to Ψ̂ except that the process does not reach fluid level a and

the process starts in fluid level b
Joint Stationary Distribution:

p
(n)
j border probabilities

p(n) p(n) = (p
(n)
j : j ∈ S(n)

b ), for n = 1, 2, ..., N − 1;

π
(n)
j (x) density function

π(n)(x) π(n)(x) = (π
(n)
j (x) : j ∈ S(n)), for n = 1, 2, ..., N and−∞ < x <∞

u
(n)
+ , u

(n)
− coefficients in the density function of MMFF processes

cnorm normalization factor of MMFF processes

Table C.2: Important notations in Chapter 3 (Continued)
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Indices:
ma order of Markovian arrival process
ms order of phase-type distributed service time ( i = 1, 2, . . . , ms)
N number of possible abandonment epochs (n = 1, ..., N)
K number of servers
Random Variables:
a(t) the age of the customer at the head of the queue at time t
Ia(t) the phase of the customer arrival process at time t
I(a)(t) the phase of the customer arrival process right after the arrival of the

customer at the head of the queue
ni(t) the number of servers whose service phase is i at time t
τ the abandonment time
Parameters:
(D0, D1) Markovian arrival processes
λ the (average) customer arrival rate
ηn the probability that abandonment time is ln
(β, T ) service time representation
µs the service rate
Quantities:
f (n)(x) density function of the age process

p̂
(1)
k border probabilities of the age process

v
(n)
+ , v

(n)
− coefficients of the density function of the age process

ĉnorm normalization factor of the age process
pS, pL, pL,1, pL,>1 abandonment probabilities
WS,WL,1,WL,>1 waiting times
qS(t), qW (t), qtot(t) queue lengths

Table C.3: Important notations in Chapter 4
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Indices:
ma, mb order of the marked Markovian arrival process of passengers (taxis)
N , M number of possible abandonment epochs (n = 1, ..., N ;m =

1, ...,M)
K number of types of passengers (k = 1, ..., K)
H number of types of taxis (h = 1, ..., H)
Random Variables:
a(t), aP (t), aT (t) the age of the passenger (taxi) at the head of the queue at time t
Ia(t), Ib(t) the phase of the passenger (taxi) arrival process at time t
I(a)(t), I(b)(t) the phase of the passenger (taxi) arrival process right after the

arrival of the passenger (taxi) at the head of the queue
s(t) the type of the passenger (taxi) at the head of the queue at time

t
τk, τ̂h the abandonment time for type k passengers (type h taxis)
Parameters:
(D0, ..., DK) marked Markovian arrival processes of passengers
λk the (average) type k passenger arrival rate

λ the total average arrival rate of passengers λ =
∑K

k=1 λk
ηk,n the probability that abandonment time is l̃n for type k passengers
(B0, ..., BH) marked Markovian arrival processes of taxis
µh the (average) type h taxis arrival rate

µ the total average arrival rate of taxis µ =
∑H

h=1 µh
η̂h,m the probability that abandonment time is l̂m for type h taxis
Quantities: (Note that some quantities are omitted here, check Table 5.1 for detailed summary)
ω, ωP (k), ω(k, h) matching rates
pP,S, pP,L, pPL,1, pPL,>1abandonment probabilities of passengers
WP,S,WPL,1,WPL,>1 waiting times of passengers
qP (t), qP (k, t) queue lengths

Table C.4: Important notations in Chapter 5
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Indices:
mb, ms order of the batch Markovian arrival process of buyers (sellers)
N , M number of possible abandonment epochs (n = 1, ..., N ;m =

1, ...,M)
K maximum batch size of orders (k = 1, ..., K)
Random Variables:
a(t), aB(t), aS(t) the age of the buyer (seller) at the head of the queue at time t
Ia(t), Ib(t) the phase of the passenger (taxi) arrival process at time t
I(a)(t), I(b)(t) the phase of the passenger (taxi) arrival process right after the

arrival of the passenger (taxi) at the head of the queue
s(t), sB(t), sS(t) the remaining batch size of the buyer (seller) at the head of the

queue at time t
τk, τ̂h the abandonment time of a buyer (seller) with batch size k before

reaching the head of the queue

τ̇k, ˙̂τk the abandonment time of a buyer (seller) with batch size k after
becoming the head of the queue

Parameters:
(D0, ..., DK) batch Markovian arrival processes of buyers
λk the (average) type k buyers arrival rate

λ the arrival rate of buyer orders λ =
∑K

k=1 kλk
ηk,n, η̇k,n the probability that abandonment time is l̃n, for size k buyers
(B0, ..., BK) batch Markovian arrival processes of sellers
µk the (average) type k sellers arrival rate

µ the arrival rate of seller orders µ =
∑K

k=1 kµk
η̂k,m, ˙̂ηk,m the probability that abandonment time is l̂m, for size k sellers
Quantities: (Note that we add superscript “o” to represent order level quantities)
ωB matching rates of buyers
pB,F , pB,L, pBL,1, pBL,>1 loss probabilities of buyers
WB,F ,WBL,1,WBL,>1 sojourn times of buyers
qB(t) queue lengths

Table C.5: Important notations in Chapter 6
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