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Abstract

The main objective of this work is to study the surface segregation of a binary polymer
blend, where the two components have the same molecular volume but are different in
other properties such as end-to-end distance, stiffness, and length. Two models are used
to represent the polymer chain, which are known as the Gaussian chain model and the
worm-like chain model. Working with the Gaussian chain model, the only parameter is the
end-to-end distance and it is shown that the surface is rich in the polymer with a shorter
end-to-end distance.

Working with the worm-like chain model, we have the ability to change persistence and
contour length individually. Hence, we can determine if the polymer has a large end-to-
end distance, which of these parameters is responsible for that. This is a better model to
predict polymer behavior especially as the polymer gets stiffer. However, it involves more
complicated calculations.

The results for this model show that if two polymers have the same persistence length,
the shorter polymer segregates to the surface. On the other hand, if the two components
have the same chain length, the polymer with a shorter persistence length segregates to
the surface.

The other objective of this work is to compare the two mentioned models. In order to
do so, I consider a binary polymer blend, where two components have the same end-to-
end distance but their persistence length and contour length are different. According to
the Gaussian chain model, there would be no segregation in the polymer blend, but the
worm-like chain model showed that the shorter and stiffer component segregates to the
surface. This difference between the results shows that the Gaussian chain model has some
limitations which are well illustrated in the thesis.
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Chapter 1

Introduction

Polymers are large molecules, which have various properties that make them useful. They
are lightweight while still significantly strong. They are also processable and posses char-
acteristics such as softness, transparency, electrical and thermal insulation and resistance
to chemicals.

Polymeric materials are widely used in different technological and scientific fields [3, 4,
5]. Polymers are applied both for providing food itself [6] and its packaging [7, 8]. Edible
polymers can be added on the food surface to provide additional protection, and thus to
keep products stable and maintain food quality. Furthermore, petroleum polymers can be
used for packaging applications, which protect food from contaminants [9].

In addition, polymer films can be used as membranes as a results of their selective
miscibility [10]. Also, they are used in electrical fields (e.g., dielectrics, insulators and safety
hazards [11]). Polymers can be used in several other areas as well which demonstrates the
reason behind their significance [12]. Discussing the details of each application is beyond
the scope of this work.

In industry, we mostly deal with polymer blends in which two or more polymers are
combined together to form a new material with tailored properties [13]. Blending poly-
mers enables us to combine the desirable properties of several polymer components. De-
velopment of properties is also possible by designing new polymerization routes or new
monomers. However, the two latter methods are usually more expensive and time consum-
ing. Thus, the polymer blends are a cost effective option [14, 15]. In this work, we narrow
our research to binary polymer blends.

When working with polymer blends, the importance of their surface properties is often
critical. Many polymer blends applications, such as coatings, adhesives, and lubricants,
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are dependent on the surface properties [16]. There can be significant differences between
the bulk and surface properties, meaning that one component may segregate to the surface
due to enthalpic or entropic reasons. Hence, a solid understanding of polymer surface
properties is required for the above mentioned applications [17].

1.1 Polymerization

Now that we have discussed the importance of polymers in everyday life, the next few pages
define some important terms in regard to polymer science. Polymers or macromolecules
consist of a large number of molecular units that are connected by covalent bonds [18].
These molecular units are called monomers and are usually formed from carbon and hy-
drogen [19]. These monomers link together by a chemical reaction to form a polymer; this
process is called polymerization [20, 21]. This concept is illustrated in figure 1.1. The num-
ber of monomers in each polymer molecule is called the degree of polymerization, which
is denoted by N in this figure. If N is larger than 100, the molecule will be known as a
polymer. There are some polymers with more than 105 monomers.

Figure 1.1: Polymerization

If identical monomers are linked together, the polymer is called a homopolymer. How-
ever, if two or more different monomers form a polymer chain, the polymer is called a
copolymer. Copolymers can have different structures such as alternating copolymer, ran-
dom copolymer, block copolymer and graft copolymer [22]. In this work, we focus on
homopolymers and so we do not discuss copolymers any furthur.

1.2 Classifications of polymers

Polymers can be classified based on different aspects such as their origin, configuration,
thermal properties, mechanical properties, etc. Blends generally involve polymers which
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are different in one of the mentioned properties. Therefore, we provide a brief overview of
different polymer classifications.

There are some polymers in nature such as RNA, DNA, proteins, which are called
natural polymers. Some of the natural polymers even have more than 109 monomers [23].
In addition, semi-synthetic polymers are processed using natural polymers. For example,
natural rubber is heated with sulfur to enhance its elastic properties. The other group of
polymers is known as synthetic polymers like Teflon, nylon, polyester, and polyethylene
[20].

Furthermore, polymers have different architectures. They can be linear, branched, or a
cross-linked network. As shown in figure 1.2, linear polymers are long chains without any
branches. These polymers are generally soluble in an appropriate solvent.

Branched polymers consist of a backbone with several small chains attached along its
length. These branches may be formed from side reactions in the polymerization process.
Branched polymers are more soluble than the linear ones since their intermolecular interac-
tions are weaker. Cross-linked polymers form a three-dimensional network, which consists
of numerous backbones joined together by covalent bonds [24].

Figure 1.2: Polymer structures

The number of branches as well as their length affects the material properties. Polymers
with different architecture have different surface energy, which leads to enrichment of the
surface in one component rather than the other. The surface segregation of a binary
polymer blend with a linear and a branched component has been a subject of several
works which will be discussed in the literature review.
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1.3 Polymer blends

Attaining knowledge about polymer blends is essential since they account for about 30% of
plastics and this value increases annually (9% each year). Blending polymers is often done
for several reasons such as increasing strength, improving processability and producing
resistant, economic, and recyclable materials. When several different characteristics are
needed, the most straightforward way to achieve them is to combine several polymers with
different characteristics and produce a multi-component blend [25, 26].

In this work, our focus is on binary polymer blends, where two polymer components
are blended to produce a novel material with new properties [25, 27]. A critical issue in
blending is the miscibility of the components. Two components can be either miscible,
immiscible or somewhere in the middle (i.e. partially miscible)[28]. Generally, two factors
play role in miscibility of polymer blends; enthalpy and entropy, which will be elaborated
on in the following lines.

It is known that negative enthalpy is one of the factors that helps the mixing to occur
spontaneously. When two compounds are mixed, they can either absorb or release energy
and generally mixing is more favorable if it releases energy. On the other hand, increasing
the entropy of the system after mixing also contributes to the miscibility. This contribu-
tion is more significant in materials with low molecular weight. Take the example of a
hexane-ethanol mixture, which is miscible due to the larger entropy, while polyolefins and
poly(vinyl alcohol) are immiscible due to the smaller amount of entropy [28].

In order to check whether the two componets are miscible or not, the effect of entropy
and enthalpy should be considered as well as the temperature. Note that in this section,
for simplicity, the two components are the same in their size (degree of polymerization).
The Gibbs free energy combines all these parameters as follows [13],

∆Gm = ∆Hm − T∆Sm (1.1)

where ∆Gm is the mixing free energy, ∆Hm is the mixing enthalpy, T is the temperature
and ∆Sm is the mixing entropy. In order for two components to be miscible, ∆Gm needs
to be negative [28].

Negative ∆Gm is a requirement for miscibility. However, that is not enough. There is
another expression to be satisfied [15, 28].
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(
∂2∆Gm

∂φ2
1

)
T,P

> 0 (1.2)

where φ1 is the volume fraction of the first component and P shows the pressure. If the
first condition (equation (1.1)) is satisfied and the second condition (equation (1.2)) is not,
then the phase separation occurs, but not instantly [29, 1].

Gm

nkBT
= φ1 lnφ1 + (1− φ1) ln 1− φ1 + χNφ1(1− φ1) (1.3)

where kB is the Boltzmann’s constant and n is the total number of polymer molecules in
the blend. The first two terms are the entropic contribution, while the third term is the
enthalpic contribution to the mixing.

Here, χ is the interaction parameter, which is defined as [1, 30],

χ ≡ 2ε12 − ε1 − ε2
2kBTρ0

(1.4)

where ε12 is the interaction energy between the two polymer components, ε1 and ε2 are
the interaction energies between like polymer molecules of the first and second component,
respectively. ρ0 is the segment density.

Generally, there are two kinds of entropy; one is due to the translational motion which
is maximized when the polymer molecules are able to go everywhere and reduced by their
restriction to certain domains. The first two terms on the left hand side of equation
(1.3) correspond to traslational entropy. The maximum entropy occurs when the two
components have equal probability to go everywhere (φ1 = 0.5). The other type of entropy
is configurational entropy which is due to the polymer random walk. In a homogeneous
blend, configurational entropy is unaffected by phase separation, since all the polymers do
the random walk. Therefore, this entropy is not included in equation (1.3) [31].
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Figure 1.3: Phase diagram [1]

Figure 1.3 shows the phase diagram of a blend where both components have the same
degree of polymerization, N . The dotted and the solid curves are the spinodal and binodal
curves, respectively. Inside the spinodal curve, phase separation occurs quickly. In between
the binodal and spinodal curve, phase seperation happens slowly by nucleation and growth.
The binodal curve is the true phase boundary. χ is equal zero in this work. Hence, only
entropic sources play role in polymer behavior that we are going to study in the following
pages.

As one might expect, most polymer pairs are immiscible due to their high molecular
weight, which in turn leads to low entropy. However, it is worth mentioning that the
degree of compatibility can be widely different [13, 14]. As polymer blends are extremely
practical materials, several works have been done to solve the miscibility issue and thus
minimizing the mixing free energy [32, 33]. For example, addition of a third component
which is compatible with both existing components is one of the methods which is applied
for this issue [15].
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1.4 Bulk properties

Here we use the freely jointed model to describe the configurations of polymers in the bulk.
In this model, polymer units perform random walks, meaning that their trajectories are
just a set of uncorrelated displacement [34, 35]. A lot of parameters, which are required for
explaining polymer properties, are elaborated by using this model in the next few pages.

It is worth mentioning that a segment generally refers to a number of monomer units.
However, the terms ”segment” and ”monomer” can be used interchangeably in the context
of our work. In the next step, we wish to characterize the polymer size. There are several
definitions that can be used for this purpose. In the following sections, we will discuss two
of them.

1.4.1 End-to-end distance, R0

In the freely jointed model, each polymer has N − 1 bonds with length a along the chain,
which can orient in any direction. Vector ri points from the origin to the ith monomer,
and ui points from the ith monomer to i+ 1th monomer. Hence, we can say ui = ri+1 − ri
. As was mentioned before the segment length is a. Hence, it follows that |ui| = a and
〈ui · uj〉 = a2δij (where <> is the ensemble average and δij is the Kronecker delta function
which is equal 1 for i = j, otherwise it is equal to zero.)

Figure 1.4: ri , ui and R0 are shown in the figure.
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The vector R0 points from the first monomer in the polymer chain to the last one.
Hence, this vector can be expressed as

R0 = rN − r1 =
N−1∑
i=1

ri+1 − ri =
N−1∑
i=1

ui (1.5)

By knowing the number of monomers along the polymer chain as well as the bond length,
we have many different possibilities for R0. Hence, in order to attain a measure of its size,
we calculate the root-mean-square (RMS) of R0 shown in figure 1.4. This parameter is
called the average end-to-end length.

R2
0 = 〈R0 ·R0〉 =

〈
N−1∑
i=1

N−1∑
j=1

ui · uj

〉
= a2

N−1∑
i=1

N−1∑
j=1

δij = (N − 1)a2

in the limit of large N−−−−−−−−−−−−→ R2
0 ≈ Na2

(1.6)

1.4.2 Radius of gyration, Rg

There is another quantity that is used to characterize the size of a polymer which is called
radius of gyration, Rg [36]. For polymer melts, this quantity is proportional to square root
of the degree of polymerization (Rg ∝ N0.5) [37].

The first step in deriving the radius of gyration is to define the center of mass. Consider
a polymer chain with N monomers, each with the same mass. As mentioned before, the
vector ri points from origin to the each monomer. We also define the vector rCM , which
points from the origin to the center of mass.

rCM =
1

N

N∑
i=1

ri (1.7)

To start, we draw a vector from the center of mass to each monomer along the polymer
chain. These vectors are denoted by di = ri − rCM .
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Figure 1.5: The center of mass as well as ri, di and rCM are shown in the figure.

The radius of gyration is defined by the following equation,

R2
g =

1

N

N∑
i=1

〈
|ri − rCM |2

〉
=

1

N

N∑
i=1

〈
d2
i

〉
(1.8)

To evaluate the sum in equation (1.8), we consider the following identity:

N∑
i=1

N∑
i=j

|di − dj|2 =
N∑
i=1

N∑
i=j

(d2
i − 2di · dj + d2

j)

= N

N∑
i=1

d2
i − 2

N∑
i=1

N∑
j=1

di · dj +N
N∑
j=1

d2
j

= N

N∑
i=1

d2
i − 2

[
N∑
i=1

di

]
·

[
N∑
j=1

dj

]
+N

N∑
i=1

d2
i

(1.9)

It follows from the definitions of di and rCM that
∑N

i=1 di =
∑N

i=1(ri − rCM) =
∑N

i=1 ri −

9



NrCM = 0. Furthermore, ri − rj = di − dj and therefore

N∑
i=1

N∑
i=j

〈
|ri − rj|2

〉
= 2N

N∑
i=1

〈
d2
i

〉
(1.10)

Note that 〈|ri − rj|2〉 is the end-to-end vector for a polymer chain which starts from the
jth monomer to the ith one. Hence, this value is equal to a2|i − j| (where |i − j| is the
number of bonds between the ith and jth monomers. Thus, equation (1.8), can be written
as follows,

R2
g =

1

2N2

〈
|ri − rj|2

〉
=

a2

2N2

N∑
i=1

N∑
j=1

|i− j| = a2

2N2

(
N∑
i=1

i−1∑
j=1

(i− j) +
N∑
i=1

N∑
j=i+1

(j − i)

)
(1.11)

By symmetry, the last two sums are equivalent and therefore R2
g = a2

N2

∑N
i=1

∑i−1
j=1(i− j) =

a2

N2

(∑N
i=1 i(i− 1)−

∑N
i=1

∑i−1
j=1 j

)
. Using the fact that

∑N
k=1 k = N(N+1)

2
, the second term

can be simplified and thus R2
g = a2

N2

(∑N
i=1 i(i− 1)−

∑N
i=1

i(i−1)
2

)
and therefore R2

g =

a2

2N2

∑N
i=1 i(i− 1) = a2

2N2

(∑N
i=1 i

2 −
∑N

i=1 i
)

. Now, by the use of the fact that
∑N

k=1 k
2 =

N(N+1)(2N+1)
6

, we have R2
g = a2

2N2

(
N(N+1)(2N+1)

6
− N(N+1)

2

)
. By simplifying, we have

R2
g =

a2N

6

N2 − 1

N2
≈ a2N

6
(1.12)

Note that equation (1.12) is true when N � 1.
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Figure 1.6: Radius of gyration

Figure 1.6 illustrates the radius of gyration of a single polymer chain. It should be
mentioned that based on equations (1.6) and (1.12) the end-to-end distance and radius of
gyration are proportional.

Rg =
R0√

6
(1.13)

Up to this point, two different quantities characteristic of the polymer size were introduced.
In the next chapter, other quantities will be discussed in detail. In the following section,
the focus is on the difference of the bulk and surface properties and the source of this
difference.

1.5 Surface properties

Different polymer components are different both from entropic and enthalpic perspectives.
This difference leads to the segregation of one component to the surface, which in turn
leads to different compositions for the bulk and surface. For some applications, such as
polymer processing, adhesion, and lubrication, it is essential to attain information about
the properties of the polymer blend within a few angstroms of its surface [38].
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Usually, the origin of segregation is mainly enthalpic. Generally, molecules do not
prefer to be at the surface since they lose half of their interactions there. In the case
of polymeric solutions, polymer molecules could stay in the bulk to benefit from their
interactions. However, in the case of polymer blends, it would be a competition between
different components to stay in the bulk and away from the surface [39].

In some cases, enthalpic differences may not be responsible for segregation and entropic
sources lead to surface enrichment of polymer blends in one component. Generally, polymer
molecules can move more freely in the bulk rather than the surface [40]. However, as we
are dealing with polymer blends rather than polymer solutions, there will be a competition
between two components for staying in the bulk. Various parameters will be responsible
for the difference in entropic energies such as length, stiffness, configuration, etc.

Figure 1.7: Polymer blend segregation. As the figure illustrates the blue component
segregates to the surface and the bulk is richer in the orange ones.

The objective of this work is to study the effect of the different parameters on the
segregation and find a universal behavior which enables us to have an estimation of the
segregation before doing any complicated calculation.

1.6 Literature review

Nowadays, polymers play an essential role in many applications. In some of these appli-
cations, such as adhesion, coating, catalysis, membranes, lubrication, and polymer pro-
cessing, attaining knowledge about surface structure and composition is crucial. Due to
the entropic constraints at the surface, polymer molecules show different behavior at the
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surface and in the bulk [41, 42]. Hence, the surface and bulk behavior should be studied
individually. Nevertheless, the focus of this work is on surface properties.

In a binary polymer blend, the surface does not act as a reflecting boundary and it
may be richer in one of the components. This surface enrichment affects some properties
such as surface tension, wall slip, wettability, and the glass transition of thin films [43]. It
is predicted that the segregation can be so significant that the surface is wetted only by
one component [44]. It is worth mentioning that the surface itself affect the segregation
behavior. For example, surface diffuseness has a considerable impact on the surface be-
havior meaning that the segregation is more significant when the surface is air rather than
a hard substrate [45].

Predicting which component segregates to the surface has been the subject of a plethora
of research projects recently. The segregation can be due to enthalpic or entropic forces.
The difference in the interactions of the two polymers may cause surface enrichment in one
component. Generally, if polymers segregate to the surface they lose half of their favorable
interactions. Thus, generally, they do not prefer to be at the surface from an enthalpic
point of view [39].

Considering enthalpic forces, in order to minimize the energy of the system, the surface
should be enriched in the polymer component with the lower surface energy. As an example,
if there are two different components in the blend and one of them is hydrophobic and the
other is hydrophile, the former segregates to the surface. However, it is not always the
component predicted from the enthalpic point of view that segregates to the surface, and
entropic forces should be considered as a significant source that determines the segregation
behavior [46].

Surface segregation due to entropic forces has been investigated from different perspec-
tives such as segregation in the binary polymer blends due to disparity in size and rigidity.
Each category attracts a lot of attention, which is elaborated in the following paragraphs
[47, 48].

Generally, it is shown theoretically that the polymer component with a low degree
of polymerization and a large number of ends segregates to the surface from an entropic
point of view in a polydisperse polymer blend [49, 50]. Fleer et al. showed that surface
segregation in polydisperse melts depends on the entropy loss of different components. For
ideal chains, the entropy loss is proportional to the chain length i.e. the entropy loss for
long chains is larger than short ones. Hence, the surface is enriched by the shorter polymer
chains [50].

Surface enrichment in short polymer chains is also confirmed experimentally in other
works. Bates et al. studied the surface segregation of polyolefin block copolymers using
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poly(ethylene-propylene)-poly(ethyl ethylene) (PEP-PEE). No interaction was determined
as discrimination between the two components. Deuteration was used to discriminate the
blocks by neutron contrast. In all the cases, regardless of the surface (i.e. solid or air), the
smaller block segregated to the surface [51].

However, the experimental methods, in which one of the components should be la-
beled by deuterium, such as neutron reflectivity (NR) [52, 53] and secondary ion mass
spectrometry(SIMS) [54], cannot provide a reliable result since the labeling affects the
segregation from the enthalpic point of view [55]. However, recently Hill et al. applied
surface layer matrix assisted laser desorption ionization time-of-flight mass spectrometry
(SL-MALDI-ToF-MS) to observe surface segregation based on length disparity in poly-
mer blends. These experimental results confirmed that the shorter polymer component
segregates to the surface [43].

Polymers generally have different levels of rigidity, which may affect the surface behavior
as well. There are several works which investigated the surface segregation due to stiffness
disparity. Wu et al. used the pure component parameter, β2 = Rg2

vm
, to characterize polymer

flexibilities, where vm is the molecular volume. This work shows that the component with
a smaller value of β, i.e. the more flexible polymer component segregates to the surface
due to entropic reasons [17]. This result is consistent with the work done by Fredrickson
and Donley [56].

Kumar et al. introduced a bending potential to specify the stiffness of different polymer
components. In this work, numerical wall polymer reference interaction site model (wall-
PRISM) integral equation as well as the computer simulations were applied to show that in
polymer blends the stiffer component segregates to the surface. It is stated that the reason
behind this behavior is not only the local packing but also the local conformational changes
[47]. Besides, by increasing stiffness disparity, density, and chain lengths, the segregation
becomes more evident.

Stepanow and Fedorenko studied a polymer blend in which the two components were
different in their statistical segment lengths near the hard wall by generalizing Edward’s
collective description. It is shown that stiffer polymers segregate to the surface [57].

In a work done by Yethiraj, it is shown that surface segregation is a function of density.
This work predicts that for low-density polymers, the more flexible polymer segregates to
the surface and in the liquid-like binary polymer blend, in which one component is stiffer
than the other, the stiffer polymer segregates to the surface. Since the flexible polymers are
less ordered, packing near the surface would be more challenging for them in comparison
with the stiffer ones [58, 47].

As was mentioned above, there are different predictions for surface behavior due to
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stiffness disparity based on the initial assumptions and the methods used for investigation.
Hence, we should try to apply realistic and comprehensive assumptions and viable methods
to get accurate results.
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1.7 Motivation

In industry, we rarely deal with pure commercial plastics, and most materials are actually
polymer blends [56]. This provides considerable motivation to study the behavior of poly-
mer blends in detail. Furthermore, for many applications such as catalysis, membranes,
corrosion, and biomaterials, we need to have some information about the surface proper-
ties [43]. Dealing with polymer blends, segregation behavior i.e., concentration profiles and
structure, should be determined [51].

Some experimental methods need to label one polymer component, such as neutron
reflectivity (NR) [52, 53] and secondary ion mass spectrometry(SIMS)[54]. Although, deu-
terium labeling is not the best way for monitoring the segregation due to the entropic
sources, as it may create enthalpic interactions which may in turn affect the results [55].

Recently, SL-MALDI-TOF-MS method has been used to study the surface segregation
behavior for a polymer blend where the components are different in their lengths [43]. So
far, there is no acceptable experimental method to study the surface enrichment when the
two polymer components are different in their stiffness. Until a valid experimental method
is found, there is no option other than studying the surface segregation by the use of theory
and simulation.

Going through different works in this area, we can see that there is lack of general un-
derstanding regarding which component segregates to the surface due to stiffness disparity
[51, 58, 47, 56], which was the motivation for us to study this topic.
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1.8 Thesis outline

In this work, the surface composition of a 50-50 binary polymer blend is studied. Two
polymers have identical interactions and the same molecular volume meaning that vm =
am`c, where am is the cross-sectional area and `c is the contour length of the chain. Thus,
if they are longer they should be also thinner and if they are shorter they should be also
thicker. Although, two polymer components are different in their conformational properties
e.g., end-to-end, contour and persistence lengths.

In this thesis, initially, the Gaussian chain model and the worm-like chain model are
introduced and the diffusion equation is solved for each case to attain the recursion relation
for the partial partition function. Next, the single-chain partition function, concentration,
excess concentration, and integrated excess are derived.

We wish to predict the surface composition at the surface and compare the two models.
Using Gaussian chain model, one of the main assumptions is that the polymer chain is
totally flexible. However, this assumptions is not realistic for many polymer chains as they
have some level of rigidity. As the polymer chain become longer and their molecular weight
increases, this model works better. In this model, the only parameter is the end-to-end
distance of the two polymer components.

On the other hand, we work with the worm-like chain model in which we have more
realistic assumptions and thus, the results are more precise. However, the calculation for
this model is more complicated and time consuming in respect with the Gaussian chain
model. In this model, we have two parameters; contour length and persistence length of
the two polymer components. In this model, we can quantify the rigidity of both polymer
components. The significance of this model is that we can study the surface segregation
of a binary polymer blend in which one of the components is stiffer than the other. For
the worm-like chain model, three different cases are considered; different contour lengths,
different persistence lengths, and the same end-to-end distance with different individual
values for contour and persistence lengths.

Finally, in the result section, the excess concentration profiles for the two components
with different conformational properties are presented for the Gaussian chain as well as
the worm-like chain model. In addition, the universal behavior is studied. The excess
concentration profiles could be collapsed under appropriate conditions, which is called
universal behavior. The significance of universal behavior is that we can have an estimation
of the peak height and integrated excess of the excess concentration profiles of a binary
polymer blend with a simple calculation.
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Chapter 2

Modeling

In this chapter, several common models are introduced. Specifically, the Gaussian chain
and worm-like chain models are discussed in detail as they are used to represent polymer
chains in this work. This thesis aims to predict the concentration of binary polymer blends
at the surface, where the concentration in the bulk is 50-50, and quantify the segregation.

The two polymer components have identical interactions and the same molecular vol-
ume (i.e. the one which is shorter is thicker and the one which is longer is thinner). It is
worth mentioning that as the two polymer components are similar in their interactions, the
surface segregation can not be due to enthalpic forces and thus entropic forces are respon-
sible for this surface enrichment in one component. The system is solved in a canonical
ensemble.

2.1 Self-consistent field theory (SCFT)

Generally, working with large molecules such as polymers is easier than working with small
molecules such as water. Polymer molecules, typically have 103 to 105 monomers and this
large number of monomers reduces the effect of monomer type on the polymer properties.
It is worth mentioning that as polymer chains are highly interdigitated, one polymer may
be in contact with a plethora of other polymer chains. Considering all these interactions,
our calculation could be extremely complicated.

Simulating equilibrium behavior of polymeric systems would be possible by the appli-
cation of molecular dynamics (MD) and Monte Carlo (MC) simulations. Although, there
is another powerful approach, known as self-consistent field theory, which is a statistical
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mechanics tool [3]. By applying this approach, instead of considering all inter-chain inter-
actions among polymer chains, we just consider one polymer but in an external field [1]
(i.e. the field represents the non-bonded interactions among monomers [59]). Thus, SCFT
[60, 61] enables us to convert a fully interacting system to a single polymer in an external
field. The partition function can be obtained by solving a diffusion equation.

Figure 2.1: Self-consistent field theory

Concentration should have a sigmoidal profile, which is given as

φref(z) =
1

2
(1 + tanh(

2z

ξ
)) (2.1)

where ξ is the width of the surface and z is the distance from the surface. All the lengths
will be scaled with respect to ξ. The reference concentration is shown in the figure 2.2.
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Figure 2.2: Sigmoidal shape of reference concentration

The next step is to determine the external field in a way that all the interactions among
polymer chains can be substituted by it. In order to do so, we adjust the field in a way to
attain this sigmoidal profile for the reference concentration, φref(z) [59].

To determine the field, we use the simple and Anderson mixing algorithms, which
are discussed at the end of this chapter. After determining the field, the next step is to
decide about the best model to use in the work. This decision depends on the polymer
characteristics that we wish to represent (e.g. stiffness, length, etc.).

Now, we move on to the next step, which is determining an appropriate model for
representing the polymer chains. Initially, different models are brought up and after that,
the models which will be used in this work are illustrated. There are different models,
such as the rigid rod [62, 63, 64], the freely jointed model [65, 66, 67], the bead-spring
model [68, 69, 70], the Gaussian chain model [71, 72, 73] and the worm-like chain model
[74, 75, 76].

The rigid rod model considers polymers to be thoroughly rigid. This model could be
used for modeling liquid crystalline molecules [77]. Usually, polymers have some level of
flexibility (specially as they get longer). Thus, this model is not the best model to use as
it does not take flexibility into account.

In the freely jointed model, there are several rigid rods connected with totally flexible
bonds. This model could be used to model nucleic acid and proteins. In this model,
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monomers do not have orientational interactions with each other and it can be mostly
used for understanding physics of polymers. The bond angle can change freely but the
distance between two units is constant. Here we encounter the concept of random walks
for polymer configurations. This means that the bond can have any angle and the beads
can have any position. The characteristic size of the polymer configuration is given by the
average end-to-end distance, R0. It should be taken into account that the random walk
can not describe polymer behavior, which is the limitation of this model.

Next model is the bead-spring model, where instead of rigid rods in the freely jointed
model, we substitute springs. This model contains N + 1 beads, which are made of several
repeat subunits, connected by N springs.

In addition to these three models, there are the Gaussian and worm-like chain models.
In the Gaussian chain model, we assume that the polymer chain is completely flexible.
Hence, there is no orientation in this model. All the polymers have some level of rigidity.
However, when the polymer gets longer, their rigidity becomes less significant. Thus, this
model could be used for long flexible polymer chains.

At the end, there is the worm-like chain model, which assumes some level of rigidity for
the polymer chain. This model represents polymer chains more realistically, but its calcu-
lations are more complicated than the Gaussian chain model. In this work, the Gaussian
and worm-like chain models are used to study polymer blend segregation. Therefore, these
two models are elaborated in detail in the following pages.

Figure 2.3: (a) Rigid rod (b) Freely jointed chain (c) Bead-spring model

2.2 Gaussian chain model

The Gaussian chain is a convenient model for analytical and numerical calculations. How-
ever, each model has several assumptions which should be satisfied in order to have validate
results. In this model, it is assumed that the polymer chain is completely flexible, which is
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true only for long chains with a high molecular weight. The smallest length in this model
is the segment length which is denoted by a.

Figure 2.4: Gaussian chain model

In the following pages, partial partition functions are obtained. After that, the single-
chain partition function and concentration of each component are calculated [78, 1]. The
only parameter in this model is end-to-end distance, R0, of two polymers, which was
discussed in the previous chapter.

Figure 2.5: End-to-end distance

In the following pages, the partial partition function, q(z,s), is being calculated, where
s=0 to 1 is a contour variable along the length of polymer. In order to do so, we need the
initial condition and recursion relation.

q(z, 0) = 1 (2.2)

For solving the recursion relation, one can use the Crank-Nicolson method [79]. q(z,s)
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satisfies the diffusion equation below

∂q(z, s)

∂s
− α2∂

2q(z, s)

∂2z
+ w(z)q(z, s) = 0, 0 < z < D, 0 < s < 1 (2.3)

where α2 =
R2

0

6
and s is the backbone parameter and D is the box size. We have Neumann

boundary condition at both ends. Also, the initial condition was given in equation (2.2).

We discretize equation (2.3) by defining i = s , i+1 = s+∆s , j = z and j+1 = z+∆z.
Applying the forward-difference method at ith step in the diffusion equation, we have

qi+1,j − qi,j

∆s
− α2 q

i,j+1 − 2qi,j + qi,j−1

∆z2
+ wiqi,j = 0 (2.4)

Similarly, for the backward-difference method at (i+1 )st step we have

qi+1,j − qi,j

∆s
− α2 q

i+1,j+1 − 2qi+1,j + qi+1,j−1

∆z2
+ wi+1qi+1,j = 0 (2.5)

by the use of equation (2.4) and (2.5) one can apply the averaged-difference method.

qi+1,j − qi,j

∆s
− α2

2

qi,j+1 − 2qi,j + qi,j−1

∆z2
+

1

2
wiqi,j

−α
2

2

qi+1,j+1 − 2qi+1,j + qi+1,j−1

∆z2
+

1

2
wi+1qi+1,j = 0

(2.6)

Equation (2.6) can be reexpressed in matrix form in which the column vectors q(i+1) and
q(i) are related by

Aq(i+1) = Bq(i) i = 0, 1, 2, ... (2.7)

where A and B are matrices. In order to define these two matrices, we should rewrite
equation (2.6). For simplicity, we define λ = α2∆s

∆z2
and substitute it.

qi+1,j − qi,j − λ

2

[
qi,j+1 − 2qi,j + qi,j−1 + qi+1,j+1 − 2qi+1,j + qi+1,j−1

]
+

∆s

2
(wiqi,j + wi+1qi+1,j) = 0

(2.8)

Now, by writing equation (2.8) in the form of equation (2.7), we obtain
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−λ
2
qi+1,j−1 + (1 + λ+

∆s

2
wi+1)qi+1,j − λ

2
qi+1,j+1 =

λ

2
qi,j−1 + (1− λ− ∆s

2
wi)qi,j +

λ

2
qi,j+1

(2.9)

In the next step, A and B can be written in this way;

A =



1 + λ+ w1∆S
2

−λ 0 · · · 0

−λ
2

1 + λ+ w2∆S
2

−λ
2

. . .
...

0
...

...
. . . . . . . . . 0

...
. . . −λ

2
1 + λ+ wn−1∆S

2
−λ

2

0 · · · 0 −λ 1 + λ+ wn∆S
2



B =



1− λ− w1∆S
2

λ 0 · · · 0
λ
2

1− λ− w2∆S
2

λ
2

. . .
...

0
...

...
. . . . . . . . . 0

...
. . . λ

2
1− λ− wn−1∆S

2
λ
2

0 · · · 0 λ 1− λ− wn∆S
2



The single partition function for the ith polymer type is

Qi =

∫
dzqi(z, s)qi(z, 1− s) (2.10)

where i can be either 1 or 2. By the application of statistical mechanics, we obtain

φi(z) ∝
∫ 1

0

dsqi(z, s)qi(z, 1− s) (2.11)

for the concentration of component i.
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In order to convert the proportional sign to equal, one shall insert a constant k.

φi(z) = k

∫ 1

0

dsqi(z, s)qi(z, 1− s) (2.12)

To determine k, we integrate over z.∫
φi(z)dz = k

∫ 1

0

ds

∫
dzqi(z, s)qi(z, 1− s) (2.13)

By applying equation (2.10) we have

ni
n
D = kQi (2.14)

where ni is the number of polymer chains of component i and n = n1 + n2 is the total
number of polymer chains in the blend. Based on equation (2.14), the constant could be
calculated and substituted in equation (2.12) to obtain

φi(z) =
niD

nQi

∫ 1

0

dsqi(z, s)q(z, 1− s) (2.15)

There are two important parameters in this regard; excess concentration and integrated
excess. Excess concentration is defined as follows,

δφi(z) = φi(z)− φ̄iφref (z) (2.16)

where φ̄i is the bulk concentration for component i. The integrated excess is defined by

Θex,i

ρ0

=

∫
δφi(z)dz (2.17)

where ρ−1
0 is the volume of an individual segment.

The Gaussian chain model is popular because of its easy formulation. However, it has
some limitations. The Gaussian chain model assumes that polymer chains are long and
flexible, and thus it can not explain some of the physical properties that are associated
with the discreteness of chains. Some examples can be found in [3]. If we are dealing with
short polymer chains or stiff ones, using the worm-like chain model would be recommended,
which is illustrated in the following pages.
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2.3 Worm-like chain model

The worm-like chain model, unlike the Gaussian chain model, includes the energy cost as-
sociated with bending. In the worm-like chain model, we consider orientation dependence,
as well as backbone parameter and distance from the surface. Using the worm-like chain
model for representing the polymer chain makes the calculations more complicated since
we consider the orientation variable all along the polymer chain.

In the Gaussian chain model, only the energy associated with local stretching is con-
sidered. However, for the worm-like chain model in addition to that the energy of local
bending is considered, which makes the predictions more realistic. The parameter κ con-
trols the bending rigidity. The smallest length in this model is the segment bond length
,b, and each polymer has N segments along the chain.

The contour length (lc) and persistence length (lp) of each polymer component repre-
sent the parameters in this model. Contour length is the length of the polymer chain when
it is stretched out and persistence length is the typical distance over which the orientation
remains relatively constant. If persistence length is much smaller than the contour length,
the polymer chain becomes flexible and approaches the Gaussian chain limit. If persis-
tence length is considerable with respect to the contour length, then the polymer chain
approaches a rigid rod. The chain contour length and persistence length can be represented
using the parameters mentioned earlier, lc = Nb and lp = κb.

Figure 2.6: The worm-like chain model

Figure 2.6 shows a polymer chain, represented by the worm-like chain model, where
u(s) is a unit tangent vector, which gives the orientation at each point. Furthermore, r(s)
is the position vector, which starts from the origin and ends at the point associated with
s on the polymer chain. Thus, the vector R, defining the end-to-end distance, is equal to
r(1)− r(0). It should be emphasized that s, which is the backbone parameter, should be
in the range of [0, 1]. Now, that all the other parameters are determined, one can define
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the unit tangent vector as follows,

u(s) ≡ 1

bN

d

ds
r(s) (2.18)

Generally, one could change contour and persistence length of two components as well
as the width of the surface to study their effects. In this work, our variables are lc

ξ
and

lp
ξ

for both polymer components. The end-to-end distance of the worm-like chain can be

expressed in terms of the contour and persistence lengths by equation (2.19)[80].

R0 =
√

2lplc

√
(1− lp

lc
[1− exp(− lc

lp
)]) (2.19)

The second term is a correction factor. For long chains, where lc � lp, this formula
simplifies to

R0 =
√

2lclp (2.20)

As implied by equation (2.20), a polymer with a large persistence length (i.e. a stiff
polymer chain) and a polymer with a large contour length (i.e. long polymer chain) will
tend to have a large end-to-end distance.

Now, as we did for the Gaussian chain model, we derive a recursion relation for partial
partition function. With this in mind, we can extend the partition function in terms of
Legendre polynomials and substitute it in the diffusion equation. The diffusion equation
is as follows [80, 81, 82],

∂q(r,u, s)

∂s
+ lcu · ∇rq(r,u, s) =

lc
2lp
∇2

uq(r,u, s)− w(r,u)q(r,u, s) (2.21)

It is worth mentioning, that the reverse partition function, q†(r,u, s) satisfies the same
equation with one hand side multiplied by −1 [81]. We know that q†(r,u, s) is equal
q(r,−u, 1− s). In this work, we tend to solve the equation in one dimension. Thus, r can
be replaced by z and u can be replaced by uz giving

∂sq(z, uz, s) + lcuz∂zq(z, uz, s) =
lc
2lp
∇2
uzq(z, uz, s)− w(z)q(z, uz, s) (2.22)

where uz = cos(θ) is expressed in terms of θ, which is the angle relative to the z axis. In
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this work, the field does not have θ dependence, We can expand the partition function in
terms of Legendre polynomials, but before that, we have to know some basic mathematics
regarding functional expansions [83, 84, 85].

2.3.1 Orthogonal basis functions

We can expand a vector in three dimensional space into its components, as an example the
vector shown in figure 2.7 could be written in this way;

~M = Mxî +My ĵ +Mzk̂ (2.23)

Figure 2.7: Orthogonal functions

where Mx, My and Mz are components, î, ĵ and k̂ are orthogonal basis functions meaning
that the inner product of any two of them is equal to zero.

î · ĵ = î · k̂ = ĵ · k̂ = 0 (2.24)

Now, for calculating Mx, we have

~M · î = Mxî · î +My ĵ · î +Mzk̂ · î (2.25)
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Mx =
~M · î
î · î

=
~M · î∣∣∣̂i∣∣∣2 (2.26)

where
∣∣∣̂i∣∣∣ denotes the magnitude of vector î. These basis functions are normalized, and so

this value is equal to one. The similar steps can be taken to calculate My and Mz. In the
above discussion, we used the inner product of two vectors (u,v), which has the following
properties;

(u,v) = (v,u)

(ku,v) = (v, ku) = k(u,v)

(u,u) ≥ 0

(u + w,v) = (u,v) + (w,v)

(2.27)

In this part, we define the inner product for two functions instead of two vectors as [84]

(f1, f2) =

∫ b

a

f1(x)f2(x)dx (2.28)

where f1 and f2 are two functions defined on the interval [a, b]. If the inner product of
these two functions is equal to zero, they are said to be orthogonal. Although, in this area
one important point should be considered. When two vectors are orthogonal, it means that
they are perpendicular, but this is not true for functions. Two functions being orthogonal
does not have any geometric significance [83, 86].

2.3.2 Legendre polynomials

The Legendre polynomial Pl(x) represents a bounded solution for a second-order differential
equation [87]. Pl(x) can be defined as follows,

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l l ≥ 0 (2.29)

We can expand any function in terms of Legendre polynomials in this way,

f(x) =
∞∑
l=0

ClPl(x) (2.30)
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where Cl can be defined based on following equation,

Cl =
1

||Pl||2

∫ 1

−1

Pl(x)f(x)dx (2.31)

One can show that

||Pl||2 = (Pl, Pl) =

∫ 1

−1

P 2
l (x)dx =

2

2l + 1
(2.32)

Here are first few Legendre polynomials which can be calculated by applying equation
(2.29) [88],

P0(x) = 1 (2.33a)

P1(x) = x (2.33b)

P2(x) =
1

2
(3x2 − 1) (2.33c)

P3(x) =
1

2
(5x3 − 3x) (2.33d)

P4(x) =
1

8
(35x4 − 30x2 + 3) (2.33e)

P5(x) =
1

8
(63x5 − 70x3 + 15x) (2.33f)

Legendre polynomials are orthogonal over (−1, 1), which could be shown as follows,∫ 1

−1

Pl(u)Pl′(u)du =
2

2l + 1
δll′ (2.34)

where δll′ is the Kronecker delta function. This equation means that if l 6= l′ the result is
zero, otherwise, it is 2

2l+1
.

Other properties of Legendre polynomials are shown in the following equations,

∇2
uPl(u) = −l(l + 1)Pl(u) (2.35)

∫
Pl(u)Pl′(u)Pl′′(u)du = 2Γ2

l,l′,l′′ (2.36)
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In the case that the sum of l, l′ and l′′ is even and |l − l′| ≤ l′′ ≤ l + l′, then

Γ2
l,l′,l′′ = (−1)k

√
(2k − 2l)!(2k − 2l′)!(2k − 2l′′)!

(2k + 1)!

k!

(k − l)!(k − l′)!(k − l′′)!
(2.37)

and otherwise, Γl,l′,l′′ = 0. In equation (2.37), k is equal to l+l′+l′′

2
.

In order to solve the equation, we can expand the partition function in terms of Legendre
polynomials and substitute that into the diffusion equation.

q(z, uz, s) =
∑
l

ql(z, s)Pl(uz)
(2.38)

2.3.3 Taylor series expansions

Initial value partial differential equations are solved numerically by the use of a Taylor
series expansion [89, 90]. Expanding q(z, uz, s+ ∆s), we have

q(z, uz, s+ ∆s) = q(z, uz, s) + ∆s∂sq(z, uz, s) +
(∆s)2

2!
∂2
sq(z, uz, s)+

(∆s)3

3!
∂3
sq(z, uz, s) +

(∆s)4

4!
∂4
sq(z, uz, s) +O(∆s5)

(2.39)

For simplification, we can just keep the first three terms on the right hand side of equation
(2.39) and neglect the other terms as they are so small. By moving q(z, uz, s) to the left
hand side of the equation and dividing by ∆s we have

Ds ≡
q(z, uz, s+ ∆s)− q(z, uz, s)

∆s
= ∂sq(z, uz, s) +

∆s

2!
∂2
sq(z, uz, s) +O(∆s2) (2.40)

Similarly, the expansion for q(z + ∆z, uz, s) is

q(z + ∆z, uz, s) = q(z, uz, s) + ∆z∂zq(z, uz, s) +
(∆z)2

2!
∂2
zq(z, uz, s)+

(∆z)3

3!
∂z

3q(z, uz, s) +
(∆z)4

4!
∂4
zq(z, uz, s) +O(∆z5)

(2.41)
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Subtracting the analogous expansion for q(z−∆z, uz, s) obtained by switching the sign of
∆z, we obtain

q(z + ∆z, uz, s)− q(z −∆z, uz, s) = 2∆z∂zq(z, uz, s)+

2
(∆z)3

3!
∂z

3q(z, uz, s) + 2
(∆z)5

5!
∂5
zq(z, uz, s) +O(∆z7)

(2.42)

Similarly, by dividing equation (2.42) by 2∆z we have,

Dz ≡
q(z + ∆z, uz, s)− q(z −∆z, uz, s)

2∆z
= ∂zq(z, uz, s) +

(∆z)2

3!
∂3
zq(z, uz, s) +O(∆z4)

(2.43)

For obtaining Dzz, we have to write Dz once base on the difference between q(z+∆z, uz, s)
and q(z, uz, s) and the other time between q(z, uz, s) and q(z −∆z, uz, s). The other steps
can be written as follows,

Dzz ≡
q(z + ∆z, uz, s)− 2q(z, uz, s) + q(z −∆z, uz, s)

∆z2 =

∂2
zq(z, uz, s) + 2

(∆z)2

4!
∂4
zq(z, uz, s) + 2

(∆z)4

6!
∂6
zq(z, uz, s) +O(∆z6)

(2.44)

2.3.4 Solving the equations

Now, we can write equation (2.22) by the help of Legendre polynomials in this way,

Pl(uz)∂sql(z, s) + lcuzPl(uz)∂zql(z, s) =

lc
2lp
∇2
uzPl(uz)ql(z, s)− w(z)ql(z, s)Pl(uz)

(2.45)

As it can be understood from equation (2.33b), P1(cos θ) = cos θ = uz, so we can substitute
uz in equation (2.45) with P1(uz). In addition, by the use of equation (2.35), we can
substitute ∇2

uzPl = −l(l + 1)Pl giving

Pl(uz)∂sql(z, s) + lcP1(uz)Pl(uz)∂zql(z, s) =

− lc
2lp

l(l + 1)Pl(uz)ql(z, s)− w(z)ql(z, s)Pl(uz)
(2.46)
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If we multiply equation (2.46) by Pl′(uz), then we have

Pl′(uz)Pl(uz)∂sql(z, s) + lcP1(uz)Pl(uz)Pl′(uz)∂zql(z, s) =

− lc
2lp

l(l + 1)Pl(uz)Pl′(uz)ql(z, s)− w(z)ql(z, s)Pl(uz)Pl′(uz)
(2.47)

By integrating over uz, we then have

2

2l + 1
δll′∂sql(z, s) + 2lcΓ

2
1,l,l′∂zql(z, s) =

− lc
2lp

l(l + 1)
2

2l + 1
δll′ql(z, s)−

2

2l + 1
w(z)δll′ql(z, s)

(2.48)

After that, we can multiply by 2l+1
2

, which gives

δll′∂sql(z, s) + (2l + 1)lcΓ
2
1,l,l′∂zql(z, s) =

− lc
2lp

l(l + 1)δll′ql(z, s)− w(z)δll′ql(z, s)
(2.49)

In order to make the equation simpler, we define the constant c ≡ lc
2lp

and ψ1,l,l′ = (2l +

1)Γ2
1,l,l′ . Thus, we have

δll′∂sql(z, s) + lcψ1,l,l′∂zql(z, s) =

−cl(l + 1)δll′ql(z, s)− w(z)δll′ql(z, s)
(2.50)

We can write equation (2.50) in the matrix notation,

∂sq + lcψ1∂zq = −cLq − wq (2.51)

where L is a diagonal matrix with elements l(l+ 1). Now, we differentiate equation (2.51)
in respect to z. Note that both the partial partition function and the field depend on z,
thus we have

∂s∂zq + lcψ1∂
2
zq = −cL∂zq − w∂zq − q∂zw (2.52)

Similarly, we differentiate equation (2.51) in respect to s. Only the partition function
depends on s, and so we have

∂2
sq + lcψ1∂s∂zq = −cL∂sq − w∂sq (2.53)
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By combining these two equations, calculating (2.53)− lcψ1(2.52), and simplifying, we will
be able to omit the ∂s∂z term. By doing so we have

∂2
sq = l2cψ

2
1∂

2
zq + lcψ1[cL+ wI]∂zq − [cL+ wI]∂sq + lcψ1q∂zw (2.54)

By adding ∆s
2

(2.54) to the right hand side of equation (2.51) we get

∂sq +
∆s

2
∂2
sq =

∆s

2
l2cψ

2
1∂

2
zq + lcψ1[

∆s

2
cL+

∆s

2
wI − I]∂zq

−∆s

2
[cL+ wI]∂sq + [

∆s

2
lcψ1∂zw − cL− wI]q

(2.55)

both ∂sq + ∆s
2
∂2
sq and ∂sq can be substituted by Ds, but ∂sq + ∆s

2
∂2
sq is a better approxi-

mation for it. By substituting all the partial derivatives, we have

Dsq =
∆s

2
l2cψ

2
1Dzzq + lcψ1[

∆s

2
cL+

∆s

2
wI − I]Dzq

−∆s

2
[cL+ wI]Dsq + [

∆s

2
lcψ1∂zw − cL− wI]q

(2.56)

by moving all the terms, which include Ds to the left hand side of the equation, we can
rewrite equation (2.56) as

[I +
∆s

2
cL+

∆s

2
wI]Dsq =

∆s

2
l2cψ

2
1Dzzq + lcψ1[

∆s

2
cL+

∆s

2
wI − I]Dzq + [

∆s

2
lcψ1∂zw − cL− wI]q

(2.57)

Now, we can define new variables in order to make the equation simpler.

A ≡ 1

∆s
I +

1

2
cL+

1

2
wI (2.58a)

B ≡ ∆s

∆z2

1

2
l2cψ

2
1 (2.58b)

C ≡ ∆s

2∆z
lcψ1[

1

2
cL+

1

2
wI − 1

∆s
I] (2.58c)

E ≡ ∆s

2
lcψ1∂zw − cL− wI (2.58d)
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Now, with these new variables, the equation can be written as

∆sADsq = (∆z)2BDzzq + 2∆zCDzq + Eq (2.59)

Here again, we assume i = s , i+ 1 = s+ ∆s , j = z and j+ 1 = z+ ∆z, so we can rewrite
the derivatives in this way,

Dsq =
1

∆s
(qi+1,j − qi,j) (2.60a)

Dzq =
1

2∆z
(qi,j+1 − qi,j−1) (2.60b)

Dzzq =
1

∆z2 (qi,j+1 − 2qi,j + qi,j−1) (2.60c)

By substituting (2.60) in equation (2.59), we obtain

A(qi+1,j − qi,j) = B(qi,j+1 − 2qi,j + qi,j−1) + C(qi,j+1 − qi,j−1) + Eqi,j (2.61)

We now rearrange this into a recursion relation for qi+1,j involving qi,j for all j. This gives

qi+1,j = A−1[B − C]qi,j−1 + A−1[A+ E − 2B]qi,j + A−1[C +B]qi,j+1 (2.62)

After calculating partition function, the canonical ensemble is used in order to calculate
concentration. For single partition function, Q, we have

Q =

∫ 1

−1

duz

∫
dzq(z, uz, s)q(z,−uz, 1− s) (2.63)

If we write partition functions by applying equation (2.38) then we have

Ql =

∫ 1

−1

duzPl(uz)Pl′(−uz)
∫
dzql(z, s)ql′(z, 1− s) (2.64)

One can substitute Pl′(−uz) with (−1)l
′
Pl′(uz), and then by the use of equation (2.34) for

l = l′, we have

Ql = (−1)l
2

2l + 1

∫
dzql(z, s)ql′(z, 1− s) (2.65)
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Then, for concentration, we have

φ(z) =
D

Q

∫ 1

−1

duz

∫ 1

0

dsq(z, uz, s)q(z,−uz, 1− s) (2.66)

which can be written as

φl(z) =
D

Q

∫ 1

−1

Pl(uz)Pl′(−uz)duz
∫ 1

0

dsql(z, s)ql′(z, 1− s) (2.67)

Similarly, this reduces to

φl(z) = (−1)l
2

2l + 1

D

Q

∫ 1

0

dsql(z, s)ql′(z, 1− s) (2.68)

Thus, we have

φi(z) =
ni
n

∑
l

(−1)l
2

2l + 1

D

Q

∫ 1

0

dsql(z, s)ql′(z, 1− s) (2.69)

2.4 Anderson mixing

For the field calculation, we begin with an initial guess for w(z). From that, we can
produce an improved field which is closer to the actual field. By continuing this iteration,
the error becomes smaller until it is within our chosen tolerance. Then, the calculation
will be finished.

There are several methods to generate a new field in a way that will be closer to the
actual one, but in this work, simple mixing and Anderson mixing were used. Simple
mixing works slowly, but it is a stable technique. On the other hand, Anderson mixing
works faster, but it is not as stable. As a result, when the error is large, a simple mixing
method is used. When the error becomes sufficiently small, we switch to Anderson mixing.
There are several related works that used this method [91, 92, 93].

The first step is to determine the deviation from the reference concentration,

d
(k)
j = φ1,j + φ2,j − φref,j (2.70)
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where d stands for deviation and k is the iteration number. Our final goal here is to make
this deviation close enough to zero. In the simple mixing method, the new field is obtained
from

w
(k+1)
j = w

(k)
j + λd

(k)
j (2.71)

where λ is a mixing parameter.

This method is so time consuming, which is why Anderson mixing method is applied
[94]. The error can be defined as

error ≡

[
1

M

∑
j

(d
(k)
j )2

]1/2

(2.72)

We define a symmetric matrix

Umn =
∑
j

(d
(k)
j − d

(k−m)
j )(d

(k)
j − d

(k−n)
j ), (2.73)

where m,n = 1, ..., nr and nr is the number of preceding iterations.

Vm =
∑
j

(d
(k)
j − d

(k−m)
j )d

(k)
j (2.74)

Now, for all histories, we calculate the coefficient.

Cn =
∑
m

(U−1)nmVm (2.75)

where n is the number of histories. At first, previous histories should be combined.

W
(k)
j = w

(k)
j +

nr∑
n=1

Cn(w
(k−n)
j − w(k)

j ) (2.76)

D
(k)
j = d

(k)
j +

nr∑
n=1

Cn(d
(k−n)
j − d(k)

j ) (2.77)
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The new field is then given by

w
(k+1)
j = W

(k)
j + λD

(k)
j (2.78)

As λ gets larger, iterations converge faster, but they are less stable and that convergence
requires an accurate initial guess.
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Chapter 3

Results

3.1 SCFT of the Gaussian chain model

This section describes Gaussian chain results in detail. In this model, the only parameter,
which could be changed, is the end-to-end distance of both polymer components, R0,1,
and R0,2. The final objective in the following pages is to illustrate the concentration and
the excess concentration profiles. We will discover that the profiles can be scaled so as to
collapse onto a universal curve, when R0,1, R0,2 � ξ and R0,1 ≈ R0,2.

3.1.1 Different end-to-end lengths

As was mentioned in the earlier chapters, in a binary polymer blend, different properties of
the two components may lead to segregation of one component to the surface. However, in
this work, the focus is on segregation due to entropic effects. This section, considers binary
polymer blends where the two components have different end-to-end distances. The first
question is which of the two components segregates to the surface? In order to answer this
question, we take the example of a binary blend with R0,1 = 10ξ and R0,2 = 20ξ. Figure
3.1 shows the concentration profile for this case.
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Figure 3.1: Concentration profile. The red curve shows the concentration of each polymer
component if there is no segregation in the blend. The black curve and the blue curve are
for polymers with an end-to-end distance equal to 10ξ and 20ξ, respectively.

As clearly evident in figure 3.1, the polymer component with a smaller end-to-end
distance segregates to the surface. One important quantity in this regard is the excess
concentration, which is the difference between the black and the red curves in figure 3.1
(which is also equal to the difference between the red and blue curves) and could be
calculated as follows,

φex(z) = φ(z)− 0.5φref(z) (3.1)

The excess concentration profile associated with figure 3.1 is shown in the figure 3.2.
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Figure 3.2: Excess concentration profile (R0,1 = 10ξ and R0,2 = 20ξ)

The area under the curve shown in figure 3.2 is referred to as the integrated excess,
which is calculated as follows,

Θex = ρ0

∫
φex(z)dz (3.2)

where ρ0 is the bulk segment density. In regard to figure 3.2, there are several points
that should be emphasized. One of these points is the peak height which we denote by
Φmax, and the other is the point where we reach bulk concentration, which we denote by
zbulk. Naturally, we approach the bulk properties gradually and not at one exact point.
Therefore, we consider this point as a point where the excess concentration drops to 10−4.

Other than determining which component segregates to the surface, we are interested in
investigating the trend as well. In the next step, R0,1 is kept the same but R0,2 is different
in each case. As R0,2 increases, Φmax and zbulk increase implying that the segregation
becomes more pronounced.
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Figure 3.3: Excess concentration (R0,1 = 10ξ and R0,2 = 2R0,1, 4R0,1, 8R0,1 for blue, red
and black curves, respectively.)

Figure 3.3 shows three cases; in all the cases R0,1 = 10ξ and R0,2 increases from 20ξ to
40ξ to 80ξ. Increasing the end-to-end distance of the second polymer increases the peak
height and the integrated excess. These parameters could help us in comparing the plots
quantitatively. The peak height is 0.41, 0.47 and 0.49 and the integrated excess is 2.74,
6.36 and 13.57 for the case with R0,2 = 2R0,1, 4R0,1 and 8R0,1, respectively.

In the previous case, we kept R0,1 the same and increased R0,2

R0,1
. The question which is

brought up here is whether the mentioned ratio is the only parameter that controls the
shape of the profile. In order to check, we can consider three different cases with the same
R0,2

R0,1
but different R0,1 and R0,2.
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Figure 3.4: Excess concentration profile (R0,2

R0,1
= 2, R0,1 = 10ξ, 20ξ, and 40ξ for blue, red

and black curves, respectively.)

Figure 3.4 shows three cases with a constant value of R0,2

R0,1
but different average end-to-

end lengths. The figure illustrates the effect of average end-to-end distance on the profile
shape. As the average end-to-end distance increases, the peak height and integrated excess
increase as well. The peak height is 0.41, 0.47 and 0.49 and the integrated excess is 2.74,
6.38 and 13.91 for R0,1 equal to 10ξ, 20ξ and 40ξ, respectively.

3.1.2 Universal plot

This section will show that the excess concentrations can be collapsed onto a universal
curve, under appropriate conditions. The objective here is to predict the peak height and
integrated excess for a blend just by knowing the end-to-end distances of two polymer
components. This will be possible by the use of the universal plot. In order to reveal the
universality, the effect of different parameters need to be studied. As it described at the
beginning of this chapter, we have only two parameters which are the end-to-end distances
for both polymers. We define our parameters in another way;

Ravg =
R0,1 +R0,2

2
(3.3)

∆R = R0,2 −R0,1 (3.4)
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where Ravg is the average of two end-to-end lengths of the two polymer components and ∆R
is their difference. In order to attain the mentioned universal plot, one of these parameters
should be kept the same and the effect of another one should be studied. The universal
plot may not be extremely precise for all the values of Ravg and ∆R, and thus investigating
the deviation would be the next objective.

Effect of ∆R

In order to study the effect of ∆R, we keep Ravg the same and change ∆R, as shown in
figure 3.5.

Figure 3.5: Excess concentration profile. (Ravg = 100ξ for all the cases and ∆R=0.2ξ, ξ,2ξ
and 3ξ for blue, red, black and green curves, respectively.)

Figure 3.5 shows that by increasing ∆R, Φmax increases but zbulk remains constant for
all the cases. We conclude that in the case of different ∆R, only the vertical axis needs to
be scaled. The scaling can be done by dividing the peak height by ∆R.
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Figure 3.6: Excess concentration profile with scaled vertical axis. (Ravg = 100ξ for all the
cases and ∆R=0.2ξ, ξ,2ξ and 3ξ for blue, red, black and green curves, respectively.)

As it is shown in figure 3.6, after scaling, the discrepancy between different curves
decreases. Generally, it could be comprehended from this figure that as the ∆R increases
the scaled peak height decreases. The blue and red curves, which are associated with
∆R = 0.2ξ and ∆R = ξ, have similar peak heights after scaling despite the fact that ∆R
for one of them is roughly five times that of the other. However, for the case of ∆R = 3ξ,
there is significant deviation from other curves, which will be illustrated in the following
figures.
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Figure 3.7: Scaled peak height versus ∆R
ξ

Figure 3.7 shows the scaled peak height versus ∆R
ξ

. For ∆R
ξ

smaller than 1, the curve

is roughly horizontal, but as ∆R
ξ

increases, the scaled peak height decreases, implying that

for large values of ∆R
ξ

we would have significant deviation from the universal plot.

Figure 3.8: Scaled integrated excess versus ∆R
ξ
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Figures 3.7 and 3.8 show the scaled peak height and integrated excess versus ∆R
ξ

,
respectively. As illustrated by these figures, the scaling works in a particular range and as
∆R gets larger the deviation from the universal plot increases.

Effect of Ravg

In the following section, the effect of Ravg is illustrated.

Figure 3.9: Excess concentration profile. (In all the cases, ∆R = 0.1ξ and Ravg =
10ξ, 40ξ, 70ξ,and 100ξ for blue, red , black and green curves, respectively)

Figure 3.9 shows that by increasing Ravg, the peak height initially increases but as the
average end-to-end distance increases the peak height converges to a universal value. This
makes sense since, as it was mentioned previously, the Gaussian chain model works well for
long chains with high molecular weights. Hence, the results will be more realistic as the
chains become longer. As a result, if Ravg is sufficiently large, changing that does not affect
the peak height and only changes zbulk. Hence, in this case, the horizontal axis should be
scaled. As a result, it is clear that in order to collapse the curves onto a universal plot, the
polymers should have large Ravg and small ∆R.
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Figure 3.10: Excess concentration profile with scaled horizontal axis. (In all the cases
∆R = 0.1ξ and Ravg = 10ξ, 40ξ, 70ξ,and 100ξ for blue, red , black and green curves,
respectively)

As figure 3.10 shows, after scaling, the discrepancy between plots decreases. Only for
the case of Ravg = 10ξ is significant deviation from other curves, which is due to the small
Ravg as discussed previously.
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Figure 3.11: Scaled peak height versus 1
Ravg

Figure 3.12: Scaled integrated excess versus 1
Ravg

Figures 3.11 and 3.12 show how the peak height and integrated excess change with
respect to ξ

Ravg
. By considering the polymers with Ravg

ξ
more than 50 and extrapolat-

ing, the peak height and integrated excess for the universal plot are found to be 0.15∆R
ξ
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and 0.041Ravg∆R

ξ
, respectively. In the next step, three different cases are considered with

different ∆R and Ravg.

Figure 3.13: Excess concentration profile. ((Ravg,∆R) is (100ξ, 0.1ξ), (80ξ, 0.2ξ) and
(60ξ, 0.3ξ) for the blue, red and black curves, respectively)

Figure 3.14: Scaled excess concentration profile. ((Ravg,∆R) is (100ξ, 0.1ξ), (80ξ, 0.2ξ)
and (60ξ, 0.3ξ) for the blue, red and black curves, respectively)
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As figure 3.13 illustrates, different cases have different Φmax and zbulk, but after scaling,
the plots collapse as illustrated in figure 3.14. These two figures confirm the effectiveness
of the universal plot in the acceptable range.

3.2 SCFT of the worm-like chain model

The remaining part of this chapter deals with the worm-like chain results. In this model,
unlike the Gaussian chain model, we have four parameters; contour length and persistence
length of each of the two polymer components, which could be either similar or different
in different case studies. In order to compare this model with the Gaussian chain model,
we need to know how their parameters are related. End-to-end distance can be calculated
based on contour and persistence length with the below formula,

R0 =
√

2lplc

√
(1− lp

lc
[1− exp(− lc

lp
)]) (3.5)

The second square root is a correction factor and as was stated in the previous chapter,
for long chains, where lc � lp, this formula can be simplified.

R0 =
√

2lclp (3.6)

In all the cases that we consider here, we have at least 10 persistence lengths along the
polymer chain, which means that the simplified formula will be within 5% accuracy.

3.2.1 Same persistence length, different contour lengths

Initially, persistence length is kept the same and the effect of contour length is studied.
Figure 3.15 shows the profiles for a binary polymer blend with one polymer shorter than
the other. The component with a shorter contour length segregates to the surface. As
the contour length decreases, the end-to-end distance decreases as well, and based on
the Gaussian chain results the polymer component with a shorter end-to-end distance
segregates to the surface. This means that the results for these two models are compatible
qualitatively. The results will be compared quantitatively as well at the end of this chapter.
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Figure 3.15: Polymer concentration profile. (lp = ξ, lc,1 = 10ξ and lc,2 = 20ξ for red and
blue curves, respectively)

The other interesting perspective is to study the trend by increasing the difference of
two contour lengths. It could be done by keeping lc,1 the same and increasing lc,2.

Figure 3.16: Excess concentration profile. (lc,1 = 10ξ and lc,2 = 2lc,1, 4lc,1, 8lc,1 for blue,
red and black curves, respectively)
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Figure 3.16 shows that as the discrepancy between contour lengths of the two polymers
increases, Φbulk and zbulk increase as well. In the next step, the ratio of two contour
lengths is kept constant but their average is different in each case. This time, we compare
the results with the Gaussian chain model quantitatively.

Figure 3.17: Excess concentration profile. The solid curve shows the worm-like chain and
the dashed curve shows the Gaussian chain results. Curves with the same color correspond
to the same input parameters. (In all the cases lp = ξ and lc,2

lc,1
= 2. The contour lengths

for the first polymer are 10ξ, 20ξ and 40ξ for the blue, red and black curves, respectively.)

Figure 3.17 shows the trend caused by changing the contour length. In all cases,
the ratio of two contour lengths is constant but the average contour length is different.
Both models predict that by increasing this value, Φmax and zbulk increase as well. Φmax,
predicted by the Gaussian chain model, is larger than the worm-like chain model. As the
polymers become longer, the error decreases. Hence, for the black curve, the discrepancy
between the two models is least. It is worth mentioning that we have at least 40, 20, and
10 persistence lengths in the black, red, and blue curves, respectively (for the polymer
component with a minimum number of persistence lengths).
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3.2.2 Same contour length, different persistence lengths

In the following pages, the contour length is kept constant, and the effect of persistence
length is studied. As figure 3.18 illustrates, the surface is rich in the polymer component
with smaller persistence length (i.e. the more flexible polymer component). Figure 3.18
shows a binary polymer blend where the two contour lengths are both equal to 40ξ. How-
ever, they are different in persistence length. As shown in the figure, the surface is rich in
the polymer with the smaller persistence length, which is equal to ξ rather than the one
with larger persistence length.

Figure 3.18: Concentration profile (lc = 40ξ and lp,1 = ξ, lp,2 = 2ξ for red and blue curves,
respectively.)

As in the previous section, we now study the trend.
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Figure 3.19: Excess concentration profile (lc = 40ξ and lp,1 = ξ for all cases and lp,2 = 2lp,1,
4lp,1, 8lp,1 for blue, red and black curves, respectively.)

Figure 3.19 shows that as we increase the difference between the persistence lengths of
two polymer components, Φmax and zbulk both increase. Generally, as the polymer becomes
stiffer (i.e. persistence length increases), the end-to-end distance increases as well. As a
result, the worm-like chain model predicts that the more flexible polymer (i.e. the polymer
with shorter end-to-end length) segregates to the surface, which is consistent with the
Gaussian chain results.
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Figure 3.20: Excess concentration profile (lc = 40ξ, lp,1 = 2ξ and lp,2 = 16ξ)

As the polymer components become stiffer, the excess concentration profile develops an
unusual local maximum near z ≈ 0 (figure 3.20). However, by looking at the concentration
profile (figure 3.21), it is evident that this profile is reasonable as two concentrations are
similar up to z ≤ 0 and after that, there is a drop in the concentration of the stiffer
component.
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Figure 3.21: Concentration profile (lc = 40ξ, lp,1 = 2ξ and lp,2 = 16ξ for red and blue
curves, respectively.)

Figure 3.22: Excess concentration profile. The solid curve shows the worm-like chain and
the dashed curve shows the Gaussian chain results. Curves with the same color correspond
to the same parameters (lc = 40ξ and lp,2

lp,1
= 2, lp,1 = 0.5ξ, ξ,and 2ξ for black, red and blue

curves, respectively.)
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Figure 3.22 shows that according to the worm-like chain model, if the polymers are
more flexible (i.e. shorter end-to-end distance) Φmax is larger, which is contrary to what
the Gaussian chain model predicts. It is worth mentioning that as the polymers become
more flexible, the results of the two models become closer. This trend makes sense since
the Gaussian chain model assumes the polymers are completely flexible. Hence, as two
components in the worm-like chain get more flexible, the difference between the results
decreases.

The minimum number of persistence lengths is 40, 20, and 10 for black, red, and
blue curves, respectively (for the polymer component with the least number of persistence
lengths). Hence, we could realize that as the number of persistence lengths along the chain
increases the results of the two models get closer.

In addition, there is one other difference between these two models. For the Gaussian
chain model, as the end-to-end distance increases, Φmax and zbulk increase, but that is not
true for the worm-like chain model. For this model, in the case where Φmax is largest, zbulk

is smallest.

One might think that the only important factor here is that the persistence length
should be sufficiently small with respect to the contour length. However, another factor
that plays a role in this regard is whether the persistence length is smaller than the width
of the surface.

Figure 3.23 shows three different cases. In all cases, the contour length is constant and
lp,2
lp,1

= 2. It is worth mentioning as for the previous case, Φmax for the Gaussian chain

model is larger than that of the worm-like chain model and as the polymers become more
flexible, the discrepancy between the two models decreases. Although, unlike figure 3.22,
the trend for the worm-like chain model and the Gaussian model is similar, meaning that
increasing the stiffness causes Φmax and zbulk to increase for both models. One other factor
to mention here is that for both models, the curves with larger Φmax both have larger zbulk.
So, in order for the Gaussian chain model to be accurate, the persistence length should be
smaller than any other length (e.g. the contour length and the width of the surface).
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Figure 3.23: Excess concentration profile. The solid curve shows the worm-like chain and
the dashed curve shows the Gaussian chain results. Curves with the same color denote the
same input parameters (lc = 20ξ and lp,2

lp,1
= 2 for all the cases and lp,1 = 0.125ξ, 0.25ξ and

0.5ξ for blue, red and black curves, respectively.)

3.2.3 Same end-to-end length

In the following chapter, the product of the contour and persistence lengths is kept constant
for both polymer components, but their individual values are different in each case. Figure
3.24 illustrates that the shorter and stiffer polymer segregates to the surface and figure 3.25
shows that as the second polymer becomes longer and more flexible the excess concentration
increases. The green curve shows the case that the second polymer is totally flexible (i.e.
Gaussian chain). It is evident that as the polymer gets longer with a larger number of
persistence lengths along the chain, the worm-like results approach the Gaussian chain
limit.
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Figure 3.24: Concentration profile (lc,1 = 10ξ, lp,1 = 2ξ and lc,2 = 20ξ, lp,2 = ξ for red and
blue curves, respectively.)

Figure 3.25: Excess concentration profile ((lc,1, lp,1) = (10ξ, 2ξ) and (lc,2, lp,2) =
(20ξ, ξ),(40ξ, 0.5ξ) and (80ξ, 0.25ξ) for blue, red and black curves, respectively. The green
curve shows the Gaussian chain limit.)
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Chapter 4

Conclusion

4.1 Overview

In this thesis, the entropic surface segregation of a binary polymer blend is studied. The
blends involve two polymers with the same molecular volume, but different contour lengths,
stiffnesses, and thicknesses. The Gaussian chain model [72, 95] and the worm-like chain
model [74, 75, 96] are used to represent the polymer chains and study their segregation in
each case. SCFT is applied to each model in order to simplify our calculations whereby an
external field replaces all the inter-chain interactions acting on a particular polymer.

A general discussion about SCFT is given in Chapter 2. Following that, the external
field is determined by enforcing the sigmoidal profile for the concentration and applying
Anderson mixing method.

First, the Gaussian chain model is elaborated. In this model, the polymer chain is
considered to be thoroughly flexible and the end-to-end distance is our only parameter. A
recursion relation for partial partition functions is derived to solve diffusion equation, using
the Crank-Nicolson method. Next, the single-chain partition function and concentration of
each polymer are calculated and excess concentration and integrated excess are evaluated.

After that, we move on to the worm-like chain model, which includes an energy penalty
for bending. In this model, we have two parameters; the contour length and the persistence
length. The relationship between these two parameters and the end-to-end distance is given
by R0 ≈

√
2lclp, and thus increasing the chain length or its stiffness increases the end-to-

end distance of the polymer. Finally, the diffusion equation is solved by expanding the
partial partition function in terms of Legendre polynomials, and the same steps as for the
Gaussian chain model are applied to determine the concentration.
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In Chapter 3, initially, the Gaussian chain model results are presented. The only
parameters for this model are the end-to-end distance of each polymer. Thus, we go
through the case of two components with different end-to-end distances. The results show
that the polymer with the smaller end-to-end distance segregates to the surface. Also,
if we consider the excess concentration profile, as the discrepancy between two polymer
segment lengths increases, Φmax and zbulk become larger.

In the next step, the universal plot is developed. For doing so, we define our two
parameters as the difference between two end-to-end distances, ∆R, and their average,
Ravg. First, Ravg is kept constant and the effect of ∆R is studied. By increasing ∆R, Φmax

increases but zbulk remains the same, so only the vertical axis needs to be scaled in this
case.

Then, the effect of changing Ravg is studied with ∆R held constant. If Ravg is sufficiently
large, by increasing that only zbulk changes and Φmax remains approximately constant. So
this time, only the horizontal axis needs to be scaled. After doing so, the universal plot is
attained. However, it should be noted that if Ravg is too small or ∆R is too large, we will
have significant deviations from the universal plot.

Finally, the worm-like chain results are presented. As here we have two parameters per
molecule, their effect is studied individually. In the first case, the surface segregation of a
polymer blend with different contour lengths is illustrated. In this case, the polymer chain
with the shorter contour length segregates to the surface and as the discrepancy between
contour lengths increases, Φmax and zbulk increase as well. If we keep the ratio of contour
lengths the same, while increasing the average contour length, Φmax and zbulk increase
as was the case for the Gaussian chain model. When the two models are compared, in
all the cases the Gaussian chain model shows greater segregation, but the trend agrees
qualitatively.

In the next step, we keep the contour length constant and change the persistence
length. Increasing persistence length makes the polymer stiffer. In this case, the more
flexible polymer segregates to the surface. However, studying the persistence length trend
is not as straight forward as the contour length, and it depends on lp

ξ
.

If we keep the ratio of the two persistence lengths constant and increase the average
persistence length, the trend for the worm-like chain depends on whether lp

ξ
is smaller or

larger than one.

If smaller, the trend for the worm-like chain model is same as the Gaussian chain model
qualitatively. However, the Gaussian chain still shows larger segregation. Otherwise, the
trend for the worm-like chain model is opposite to the Gaussian chain model trend, meaning
that for the Gaussian chain model as we increase the average persistence length, Φmax and
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zbulk of the excess concentration profile increase, while in the worm-like chain model, by
increasing the average persistence length, Φmax decreases, but zbulk increases.

We conclude that for the Gaussian chain model to be accurate, the persistence length
should be smaller than any other lengths in our system such as the width of the surface or
the contour lengths.

The final set of blends considers the case that the end-to-end distance is constant, but
the persistence length and the contour length are different, meaning that their product is
kept constant. Here, the Gaussian chain model would not predict any segregation, since
two segment lengths are equal, but that is not the case for the worm-like chain model.
Even if we have the same segment length, we still have segregation due to the difference in
the contour and persistence lengths. It is worth mentioning, that in each case, the shorter
and stiffer polymer segregates to the surface. Also, as the number of persistence lengths
in the longer polymer increases, the results approach the case that the longer polymer is a
Gaussian chain.

As was mentioned in detail, the Gaussian chain model has some limitations in the sur-
face segregation prediction due to its initial assumption (i.e. completely flexible chain).
Although, the worm-like chain model provides more accurate results, it is far more com-
plicated. Generally, for long flexible polymer chains, it is best to use the Gaussian chain
model, but as the polymer chains become stiffer, the worm-like chain model should be used
for representing them.

4.2 Areas for improvement

In this work, considerable effort was made to perform a comprehensive study. However,
there is always several aspects to enhance a research in one area and make it more general.
In the following pages, several aspect of the work, which would benefit from more detailed
consideration, are discussed.

4.2.1 Stiffness

Polymer stiffness could vary within a large range. Polymers can be very flexible or virtually
rigid [75, 97]; for example, polyethylene or polystyrene, which are synthetic polymers,
the persistence length is on the order of 1nm, while, the value for biopolymers such as
filamentous(F-actin), double-stranded(ds) DNA and microtubules is approximately 50nm
[98].
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Stiffness could be quantified [99, 100]. In this work lc
lp

was used as initial indicator

for stiffness. If the mentioned parameter was large enough, it meant that the polymer is
flexible and the Gaussian chain model would be accurate. Otherwise, there was a significant
deviation between the worm-like chain and Gaussian chain predictions.

As mentioned before, in the worm-like chain model, stiffness is taken into the account.
Hence, the worm-like chain model is more precise in predicting segregation for stiff poly-
mers. At the very end of the result section, it was shown, that other than the mentioned
ratio, lp

ξ
should be sufficiently small for the Gaussian chain model to work well. In other

words, the persistence length should be small in comparison with all other lengths in the
system.

Generally, in regards to flexible polymers, it would be realistic to use the Gaussian
chain model to represent the polymer chain, but as the polymer becomes stiffer, this
model loses its accuracy. The reason that we use both of these models in this work is to
do comprehensive research and compare two models. Furthermore, the comparison allows
us to quantify the Gaussian chain model accuracy as the polymer chain becomes stiffer.

Figure 4.1: (a) Rigid rod (b) Gaussian chain

On the other hand, the polymer stiffness plays a critical role in many applications [101].
As an example, for new sensors, DNA oligonucleotides should be adsorbed on graphene
and graphene oxide, and the stiffness of polymers plays a critical role in this adsorption
since their bending rigidity is important in this regard [98].

In this work, both the Gaussian chain and worm-like chain models were used to provide a
comprehensive perspective in this regard. However, there is still an area for improvement.
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In the worm-like chain model section, for defining the partial partition function, it was
assumed that it is dependent on the distance from the surface, tangent vector, and backbone
parameter.

This assumption could be altered in a way to make the case more comprehensive.
By taking azimuthal angle into account, we would be able to consider the effect of the
direction that polymers are aligned in as well. By doing so spherical harmonics should be
used instead of Legendre polynomials.

4.2.2 Polydispersity

In the case of polymer blends, molecular weight distribution plays a critical role in the
blend’s properties [102]. Figure 4.2 shows the molecular weight distribution of polymer
chains in the blend.

Figure 4.2: Molecular weight distribution [2]

Different molecular weight averages are defined in this field such as number average
molecular weight (M̄n), weight average molecular weight (M̄w), viscosity average molecular
weight (M̄v) and z-average molecular weight (M̄z). M̄n highlights the smaller molecules
and M̄w and M̄z highlight the larger ones. The following formulas are applied to quantify
the mentioned values [103, 104].

M̄n =

∑
iNiMi∑
iNi

(4.1)

where Ni denotes the number of molecules with molecular weight equal to Mi. The nu-
merator shows the sample molecular weight and the denominator shows the total number
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of polymer molecules [105]. Plastic tensile strength is dependent on M̄n, since smaller
molecules have a larger effect on its value, and these molecules do not increase the strength
[106].

M̄w =

∑
i ciMi∑
i ci

(4.2)

where ci is the weight of Ni molecules. Definition of M̄v is slightly more complicated but
its value is smaller than M̄w. Melt viscosity is dependent on M̄w (in most cases to the
power of 3.4), since longer chains are more critical in determining M̄v [106].

Similarly, M̄z, which is used for polymer rheology and polymer processing, is defined
as

M̄z =

∑
iNiM

3
i∑

iNiM2
i

(4.3)

If all the molecular averages are equal, the blend would be a monodisperse blend.

M̄n = M̄w = M̄z (4.4)

On the other hand, we have polydisperse blends consisting of different molecular weights.
In this case, the average molecular weights are not equal anymore.

M̄n < M̄v < M̄w < M̄z (4.5)

Needless to say, all the polydisperse polymer blends are not the same, and thus one should
define a parameter to quantify the polydispersity. The polydispersity index (PDI) is the
measure of molecular weight profile broadness, which is defined as

PDI =
M̄w

M̄n

≥ 1 (4.6)

For monodisperse blends, PDI is equal to one. Figure 4.3 is a visual representation of the
monodisperse and polydisperse concept.
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Figure 4.3: If polymer chains could be represented by circles, (a) shows a monodisperse
blend and (b) shows a polydisperse blend.

In this research, we study the behavior of binary polymer blend where our two compo-
nents are monodisperse. Although, a complete monodisperse polymer blend is rare. The
polydispersity index for most polymers is between 2 to 15, so it would be nice to consider
this fact in future works.

In addition to average molecular weight, molecular weight distribution plays an essential
role in polymer’s behavior [107]. Polymer blends could have the same polydispersity index
but different molecular weight distributions, which leads to different properties.

4.2.3 Packing effect

Based on the results of this work, if two components have the same contour length but
different persistence lengths, the one which has a smaller persistence length (i.e. the one
which is more flexible) segregates to the surface. However, if the polymers have the same
end-to-end distance but different persistence lengths, the one with a larger persistence
length (i.e. the one which is stiffer) segregates to the surface.

These results were attained using the worm-like chain model since in this model we
have the power to control the persistence length and contour length individually. However,
for the Gaussian chain model, the only parameter is the end-to-end distance which would
increase either by increasing the contour length or the persistence length, meaning that if
we have either long or stiff polymer chains, in both cases the end-to-end distance would be
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large. In other words, if the end-to-end distance is a considerable value, there is no way to
know if the contour length is responsible or the persistence length.

Yethiraj used Monte Carlo simulations and integral equation theory to predict the
surface segregation of a binary polymer blend, in which one component is stiffer than the
other [58]. In their work, an athermal system was used to exclude enthalpic effects thus
isolate the effect of entropic sources. It is stated that the segregation is dependent on the
density, and for low density blends, the more flexible component segregates to the surface
and at melt-like or liquid-like densities the stiffer component segregates to the surface. The
flexible component used in the simulation does not have bond angle limitation in addition
to excluded volume, however, that is not true for the stiff component. Excluded volume for
a polymer chain means that a monomer along the polymer chain can not be in a position
which is already filled by another monomer of the same polymer chain.

The bending potential of a stiff component could be derived as follows;

βUB =
κ

2
(1 + cos θ)2 (4.7)

where β is equal to 1
kT

, k is the Boltzmann’s constant, T is the temperature, κ is the
bending constant, and θ is the bond angle.

Surface enrichment in polymer blends is studied as a function of packing and configu-
rational effects. The competition between these two parameters affects the final result of
the surface enrichment. It is stated that in low-density polymer blends, the loss of config-
urational entropy near the surface makes the polymer reluctant to stay at the surface.

However, in the liquid-like density polymer blends, the behavior would be totally dif-
ferent, since in this case the packing effect would be a dominant factor. At higher density,
polymer molecules tend to pack against each other. When it comes to packing, the stiffer
polymers find it easier to pack against each other. Hence, in this case, we would have
surface enrichment in stiffer component [58].

In this work, density and packing effect was not considered as one of the parameters
which play a role in segregation, thus, It would be nice to consider as many parameters to
make the simulation closer to the real life.

4.2.4 Different parameters

In this work, as changing all the inputs makes the work daunting, we set some of them
constant and focused on studying the effect of other inputs that we had. For example, in
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this work, we study the binary polymer blends which are 50-50 in the bulk. However, a
lot of blends that are applied in industry with different concentrations. Hence, we need to
study the effect of changing concentration as well.

The other thing, which could be extended about our work, is the number of polymer
components that we have in the blend. In this work, only a binary polymer blend is taken
into account. However, In industry, we may deal with polymer blends with larger number
of components. Changing other inputs can be the subject of new studies in this area.

4.2.5 Experiments

As was discussed in the introduction chapter, several experiments were designed to measure
the surface segregation of polymer blends where one component is stiffer than the other.
However, none of these experiments were free of problems. For example, some experimental
methods rely on labeling one polymer component by deuterium. Although tracking the
mentioned component becomes possible, there are some studies which show that in the
isotopic binary polymer blend, the deuterated component always segregates to the surface
[48, 55]. These findings reveal that labeling a polymer component will affect the segregation
itself and it is not a reliable method for studying surface enrichment of polymer blend.

Although recently an experimental method [43], known as surface layer matrix-assisted
laser desorption ionization time-of-flight (SL-MALDI-TOF-MS) [108, 109, 110], was applied
to study the segregation of a polymer blend where polymer chains are different in length.
The fact that makes this method unique is that there is no need for labeling one component.
Besides, by the use of this experimental method, one could determine the molecular weight
distribution. This experiment confirmed the simulation results qualitatively.

This method could be used to study the surface enrichment of polymer blends, where
one polymer component is longer than the other, but there is no experiment to observe
the surface segregation of polymer blends with different stiffness yet. Based on the results
of this work, the shorter polymer component segregates to the surface, which is confirmed
by experiments, but two other cases were studies in this work as well where one polymer
component was flexible and the other was stiff. In the first case, the two components have
the same contour length and in the second case, they have the same end-to-end distance,
however, we are not able to confirm these results by the experiments.

There is a huge gap in this area which is lack of a viable experiment in this field.
Experiments help us confirm the results predicted by theory or simulation qualitatively.
Quantitative deviation could help us to enhance our assumptions to get them closer to
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the real life. Hence, the other issue, which needs to be taken in this field, is designing a
practical experiment.
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Appendix A

Tridiagonal matrix

In a tridiagonal matrix, all the elements are zero except for diagonal elements and the first
diagonal below and above the main diagonal.

A =


a11 a12 0 · · · · · · 0

a21 a22 a23
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . an−1,n

0 · · · · · · 0 an,n−1 ann


One can write a three diagonal matrix in the form of product of two other tridiagonal

matrices as follows;

A = LU (A.1)

L =


l11 0 · · · · · · 0

l21 l22
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · · · · 0 ln,n−1 ln,n


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U =


1 u12 0 · · · · · · 0

0 1 u23
. . .

...
...

. . . . . . . . . 0
...

. . . . . . un−1,n

0 · · · · · · 0 1


Our first step is how to calculate L and U elements based on A elements. By multiplying
L and U, we have;

a11 = l11 (A.2)

ai,i−1 = li,i−1 (A.3)

ai,i = li,i−1ui−1,i + lii (A.4)

ai,i+1 = li,iui,i+1 (A.5)

The above formulas could be rearranged to calculate L and U elements. Initially, we set
l11 = a11 and u12 = a12

l11
also we know that li,i−1 = ai,i−1 and after that other elements

should be derived in this way;

li,i = ai,i − li,i−1ui−1,i (A.6)

Now that li,i is known, we can calculate ui,i+1;

ui,i+1 =
ai,i+1

li,i
(A.7)

Until here L and U are defined and we can write matrix A in the form of the product of L
and U. Now let’s assume that Ax = r is the equation that we tend to solve. This equation
can be written in this way;

LUx = r (A.8)

If we assume that Ux = ρ then we could write equation [A.8] in this way, Lρ = r, hence
we could solve for ρ first and after calculating that solve for x in equation, Ux = ρ.
With this in mind, we can illustrate the procedure for solving this equation, which is the
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final objective of this appendix;

Aqi+1 = Bqi (A.9)
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