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Abstract

Quantum computers have the potential to bring about a new age of technology, but
in order for them to become a reality, the elephant in the room must be addressed, quan-
tum errors. The complexity of quantum errors grows exponentially as the system size is
increased; scalable characterization protocols which work under physically realistic noise
are therefore needed to assess and optimize control.

Randomized Benchmarking (RB) is a family of characterization protocols with the
requisite qualities. RB protocols are independent of state preparation and measurement
(SPAM) errors, and because they extract partial information about the error profiles in the
form of figures of merit, they are scalable in the number of qubits. In this thesis, we study
these figures of merit under various error models, gate-sets, and sample distributions, to
further our understanding of their physical meaning, and to fine-tune the best practice for
diagnosing errors in basic gate-sets.

The first study presented in this thesis looks at the physical meaning of the unitarity
under physically realistic gate-dependent noise. Numerically, we demonstrate that un-
der these realistic noise models, the unitarity obtained via Extended RB (XRB) overlaps
strongly with the average of the unitarity of the errors over the set of individual operations.

The second study numerically and analytically proves that the Standard RB (SRB)
decay parameter p coincides with the decay parameter of the novel figure of merit gate-set
circuit fidelity. We also prove that, in the limit of high-fidelity single-qubit experiments, the
disconnect between the average gate fidelity and SRB experimental results is caused by a
basis mismatch between the gates and the state-preparation and measurement procedures.

In the third part of this thesis, we compare the results of two variations of the SRB
protocol, one that samples uniformly (SRB) and one that samples non-uniformly (NIST
RB) from the Clifford group. We prove that NIST RB produces an exponential fidelity
curve that gives different infidelity results than SRB.

The fourth and final study gives a standard for assessing basic gate-sets. Experimental
results are given from the assessment run on super-conducting and ion-trap devices. We
also experimentally show how the systematic error bounds can be tightened by accounting
for the error’s degree of coherence, as well as using weaker randomizing sets.
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Chapter 1

Introduction

Large scale quantum computers have the potential to revolutionize our world through
material design[13], quantum chemistry[110], drug discovery[29], quantum encryption[54],
and the boundless applications that have yet to be discovered. The Achilles heel to its
development is that quantum error, ubiquitously present in quantum systems, becomes
exponentially more complex as system size is increased.

Thankfully, assuming that the error does not exceed some threshold [3, 91, 93, 4, 130,
91], the error can be corrected. Therefore, we need scalable characterization techniques to
assess the errors in the elementary gate-set with enough detail to infer the quality of the
overall computation.

This thesis explores the methods and assumptions of various error estimation protocols
in order to improve pulse-engineering approaches and create more reliable, robust, and
potentially automated calibration methods.

As an explosively growing field, there is an ever increasing demand for a widely ac-
cepted benchmarking standard in order to bring continuity to the chaos. By furthering our
understanding of numerous protocols and figures of merit, we have been able to create this
widely accepted standard which obtains the most relevant information about the single-
and 2-qubit error profile, while limiting the overhead.

To ensure computational advantage, a characterization method must require fewer clas-
sical computational resources than simply simulating the ideal quantum circuit classically.
As such, characterization methods which fully describe the error profile, such as process
tomography, are not practical for large systems. While Quantum Volume [44] has become
very popular since its creation in 2019, it is not scalable for large quantum systems, and
therefore is only suitable for the NISQ era.
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As we enter into the Quantum Discovery Regime, where quantum computations are
no longer classically simulable, we must ensure that these characterization techniques test
circuits with outputs that can be calculated classically. In addition, state preparation and
measurement (SPAM) errors can be calculated and corrected by other means. Therefore,
it is important that the figure of merits calculated from these characterization protocols
only indicate the effectiveness of the gates and as such are independent of SPAM.

One such family of protocols which meet these qualifications is Randomized Bench-
marking. It is the most widely and rigorously studied characterization technique. In this
thesis, we study this family of protocols to better understand their physical meaning under
a variety of gate-sets, error models, and sample distributions. We then use this to cre-
ate a standard which obtains the most relevant figures of merit while also minimizing the
resources and time needed to obtain them.

The unitarity is a measure of the degree of coherence of noisy gates, and can be used to
help identify whether the errors are caused by calibration errors (coherent) or by the system
interacting with the environment (decoherent). It was developed by Wallman et al in [169]
which created a novel protocol now renamed Extended Randomized Benchmarking (XRB).
The authors established a rigorous theoretical framework for XRB under the physically
unrealistic assumption that the noise is gate-independent. Chapter 3 extends the novel
work done in [169] by establishing the physical meaning of unitarity under various gate-
dependent error models by numerical simulations.

Standard randomized benchmarking (SRB) measures the rate of error, or infidelity, in
the system. Recently, [131] showed that there is a gauge freedom between the average
gate infidelity and the infidelity obtained by SRB. Chapter 4 addresses this disconnect
by proving that for single-qubit experiments with high fidelity, the average gate infidelity
and the infidelity obtained from SRB experiments differ due to a physical basis mismatch
between the gates and the SPAM errors. This chapter then introduces a novel figure of
merit which describes the expected average fidelity over random circuits composed of gates
from a fixed gate-set known as the gate-set circuit fidelity, which is shown to be linearly
related to the average infidelity of the gates in the gate-set, which is obtained via SRB.

Chapter 5 clarifies the standing conflation in the literature between the now standard
Clifford-group RB (SRB) protocol proposed in [49, 45] and an alternate version of RB
proposed later by NIST [92] (NIST RB), which non-uniformly samples from the Clifford
group. In this chapter we discuss how NIST RB leads to an exponential fidelity decay, and
that the infidelity measured between the two protocols compares by numerically simulating
various gate-dependent error models.

Chapter 5 provides a perfect example of the importance of having a clear standard for
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characterizing basic gates-sets such that an impartial cross-platform comparison can be
made. Chapter 6 lays out in detail the set of protocols that make up this standard, each
of which provide different important figures of merit, that when used together, combine to
give a well-rounded description of the error profile. We then make, for the first time, an
even-handed cross-platform comparison of some of the world’s leading quantum computing
devices. This standard unbiasedly assesses basic gate-sets and their universality, for both
standard and non-standard gates.
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Chapter 2

Mathematical Background

2.1 Matrix preliminaries and inner products

Let A & B and their corresponding conjugate transposes A† & B† be any d × d matrices
(A,B,A†, B† ∈ Md(C)). The matrix A can be normalized via

A :=
A

||A||
, (2.1)

where the Frobenius norm [81] of A is

||A|| :=
√
〈A,A〉 =

√
Tr(A†A), (2.2)

and 〈A,A〉 is the Hilbert-Schmidt inner product of A with itself.

Definition 1 (Hilbert-Schmidt inner product). The overlap between the matrices A & B
is given by the trace (Tr):

〈A,B〉 := Tr
(
A†B

)
. (2.3)

Definition 2 (Polar Decomposition). There exists some unitary d×d matrix U such that
for any matrix A ∈Md(C)

A = U |A|, (2.4)

where the absolute value of matrix A is given by

|A| :=
√
A†A (2.5)
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Definition 3 (Commutator). The commutator between the matrices A and B is

[A,B] := AB −BA (2.6)

where A and B are said to commute if [A,B] = 0 (AB = BA), and anti-commute if
AB = −BA.

2.1.1 Vectorization of matrices

The vectorization of matrices will be used in section 2.2 in the representation of quantum
states, as well as in section 2.7 to establish the superoperator formalism.

Any matrix A ∈ Md(C) can be expressed with respect to some orthonormal basis
B = {B0, . . . ,Bd2−1} 1 for Bi = |i〉 〈i|.

A =
d2−1∑
i=0

αiBi (2.7)

where the constant (αi) is the overlap between A and Bi:

αi = 〈A,Bi〉 (2.8)

Therefore we can use this to vectorize the matrix A:

|A〉〉B =
d2−1∑
i=0

αi |i〉 (2.9)

for some orthonormal basis |i〉. The basis that will be used throughout this thesis when
vectorizing quantum states will be the normalized Pauli basis.

Note that for two vectorized matricies |w〉〉 =
∑

iwi |i〉 and |v〉〉 =
∑

j vj |j〉 for the
orthonormal basis {|i〉} such that 〈i| j〉 = δij:

〈v|w〉 = 〈v, w〉 (2.10)

1The basis elements (Bi) should not be confused with the matrix B used throughout the section.
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2.1.2 Special types of matrices

Normal, unitary, hermitian, and projection matrices will be frequently referred to through-
out this thesis. We therefore provide a brief review of the definitions and properties of
such matrices, and introduce the notation that will be used throughout.

Definition 4 (Normal). A matrix (A) is Normal if

AA† = A†A. (2.11)

This means that A and A† commute, and that A is unitarily diagonalizable, ie there exists
a unitary matrix (U) such that

D = UAU †

is a diagonal matrix.

Definition 5 (Unitary). The matrix U is a d× d unitary matrix if:

UU † = U †U = I. (2.12)

Note that all unitary matrices are normal and U † = U−1.

Definition 6 (Hermitian or Self-Adjoint). A matrix A is Hermitian if

A† = A. (2.13)

Note that if A is Hermitian it is also normal. Given that A has a discrete set of eigenvalues
{λi}, it has a spectral decomposition:

A =
∑
i

λiPi, (2.14)

where all eigenvalues {λi} are real and {Pi} are projectors onto the eigenspace of the corre-
sponding distinct eigenvalues[69]. A rank-N projector (for an N-fold degenerate eigenvalue
λi) can be expressed as:

Pi =
N∑

ni=1

|i, ni〉 〈ni, i| (2.15)

The expectation value of Pi gives the probability of the outcome λi

Pr(λi) = 〈ψ|Pi |ψ〉 ∈ [0, 1]. (2.16)

Therefore the expectation value of A can be calculated using the Born rule probabilities
[24]

E(A) =
∑
i

λi Pr(λi). (2.17)
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Definition 7 (Projectors). A set of matrices {Pi} are projectors if

Pi ≥ 0, (Positive semi-definite)

PiPj = δijPi, (Orthogonal)

Pi = P †i , (Hermitian)

P 2
i = Pi. (Idempotent)

Here Pi ≥ 0 is the notation for a positive semi-definite operator, where 〈ψ|Pi |ψ〉 ≥
0 ∀ |ψ〉 ∈ H.

2.2 Quantum State

In this thesis quantum states will be used to describe the preparation procedure which
can be represented by a vector in a finite Hilbert space. A qubit is a system whose
observable are represented by the Pauli matrices. It is a quantum state which can be
in some superposition of the two orthonormal states |0〉 and |1〉. A d(= 2n) dimensional
quantum state can be represented by a density matrix ρ, which is a positive semi-definite
self-adjoint matrix with unit trace:

Tr(ρ) = 1 (2.18)

A density matrix ρ can be a pure state or mixed state. Here an ideal preparation is
denoted by a pure state

ρ = |ψ〉 〈ψ| , (2.19)

while a mixed state is an ensemble of pure states,

ρ ≡
∑
i

pi |ψi〉 〈ψi| , (2.20)

where pi is the probability of being in state |ψi〉.
Given a composite quantum system (ρAB) in the hilbert space HAB = HA ⊗ HB, the

reduced operator of subsystem A (HA) is

ρA ≡ TrB (ρAB) . (2.21)

Where the partial trace is given by:

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|Tr(|b1〉 〈b2|) (2.22)

for any vectors |a1〉 , |a2〉 & |b1〉 , |b2〉 in the state spaces of A & B.
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2.3 Measurement

A quantum measurement can be represented by a set of positive semi-definite measure-
ment operators {µm} that sum to I for completeness. It is sometimes called a Positive
Operator-Value Measure (POVM), where m is a observable event corresponding to the
POVM element µm. An ideal measurement is a projector valued measure (PVM), which
is a POVM in the special case where {µm} is a set of orthogonal projectors.

Using Born’s rule, the probability of observing the event m given that the quantum
state was in ρ = |ψ〉 〈ψ| immediately before the measurement is:

Pr(m|ρ) = 〈ψ|µm |ψ〉 = 〈µm, ρ〉 (2.23)

For completeness, the probability of all observable events must be equal to 1,

1 ≡
∑
m

Pr(m|ρ) =
∑
m

〈ψ|µm |ψ〉 , (2.24)

therefore
∑

m µm = I.

2.4 Quantum Operation

A quantum operation (or quantum channel2), is a linear map which takes quantum states
to quantum states via a physical transformation. Specifically, it is a completely positive
trace preserving (CPTP) linear map.

For any state ρAB in the composite system HAB = HA ⊗HB, a map Φ acting on HA

(Φ : L(HA) → L(HA)) is defined as a quantum channel iff Φ is a completely positive,
trace-preserving, and linear. A definition for each of these properties follows.

Definition 8 (Completely Positive). Φ is completely positive if Φ⊗ IB is positive

Φ⊗ IB(ρAB) ≥ 0. (2.25)

Definition 9 (Trace Preserving). Φ is trace-preserving if

Tr Φ(ρA) = Tr ρA = 1 (2.26)

2Note that “quantum operation“, “quantum channel“, and “quantum gate“ will be used interchangeably
in this thesis.
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Definition 10 (Convex Linearity). For any given state that has a probability pi of the
state being in ρi, a channel Φ is said to be a linear map if:

Φ

(∑
i

piρi

)
=
∑
i

piΦ(ρi) (2.27)

Ideal quantum operations are unitary channels, which represent transformations in
closed quantum systems. In practice these gates are applied in an open system, as the
external system brings energy in and out of the system. The focus of this thesis is noise
in (the more physically realistic) open quantum systems which cause quantum operations
to be implemented non-ideally. 3

Definition 11 (Unitary). A channel (U(ρ) = UρU †) is said to be unitary iff:

U † ◦ U(ρ) = U ◦ U †(ρ) = ρ . (2.28)

Specifically,
U †U = UU † = I (2.29)

where U † = U−1, and thus unitary operations are reversible.

2.4.1 Important Quantum Channels

The gates introduced in this section are common in quantum algorithms, and will reappear
throughout this thesis.

Single Qubit Gates

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
An arbitrary pulse along any Cartesian axis system will be denoted as:

P (H, θ) := eiθH/2 . (2.30)

Note, in chapter 5, for simplicity, the Pauli Pulses will be denoted as:

Xθ := e−iθ/2 X , Yθ := e−iθ/2 Y , Zθ := e−iθ/2 Z ,
3Note that unitary noise in closed systems does exist, and will be discussed further in the coming

chapters.
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Entangling Gates

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



2.5 Twirling and Unitary t-designs

Definition 12. A unitary t-design is a finite set of N unitary matrices ({Un}) such that
for any given polynomial (Pt,t(U)) of degree of at most t in both matrix elements of U, and
their complex conjugates:

1

N

N∑
n=1

Pt,t(Un) =

∫
U(d)

Pt,t(U)dµ(U) (2.31)

Here, averaging Pt,t(U) over all of U(d) is equivalent to averaging over the set {Un}.

Definition 13. The twirl of a channel (Φ) over a discrete unitary 2-design (Ui ∈ U),

ΦU (ρ) =

|U |∑
i=1

piU
†
i ◦Φ ◦Ui(ρ)

=

|U |∑
i=1

pi

(
U †i Φ(UiρU

†
i )Ui

) (2.32)

The twirl of Φ over the Haar measure is a depolarizing channel.

2.6 Gate Sets

This section will cover the gate-sets that are used throughout this thesis.

2.6.1 Group

A group G is a set of elements {Gi} that satisfy:
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1. Closure: Gi · Gj = Gk,Gk ∈ G

2. Identity Element: ∃I ∈ G s.t. I · G = G,∀G ∈ G

3. Associativity: Gi · (Gj · Gk) = (Gi · Gj) · Gk

4. Inverse Element: ∀G ∈ G,∃G−1 ∈ G, s.t. G · G−1 = G−1G = I

2.6.2 Pauli

The n-qubit Pauli group (Pn) is a 1-design and is defined as:

Pn = {I, X, Y, Z}⊗n× {±1,±i} (2.33)

2.6.3 Cliffords

The n-qubit Clifford group Cn is a 2-design that is a normalizer of the Pauli group (Pn):

C ∈ Cn ⇐⇒ CPC† ∈ Pn, ∀P ∈ Pn (2.34)

Any single-qubit unitary with this property is an element of C up to some global phase
eiφ. The 24 single qubit Clifford gates (C1) can be decomposed into a series of π/2 and π
pulses about X, Y, Z. Similarly, the 11,520 2-qubit Clifford gates (C2) can be constructed
using C1 and an entangling gate4. Please see the supplementary material of [10] for their
full decomposition descriptions.

2.6.4 SU(4)

Special Unitary group (SU(d)) is a set of all d × d unitary matrices with determinant=1,
where d = 2n. For example, for d=4,

SU(4) = {A = 4× 4 complex matrix | A†A = I, det(A) = 1} (2.35)

Due to the global phase freedom, all unitary quantum operations are equivalent to an
element of SU(d).

Note that Pn ⊂ Cn ⊂ SU(d) ⊂ Un.

4This entangling gate must generate the CNOT gate with C1 (CNOT, CZ, SWAP, iSWAP...)
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2.7 Superoperator Formalism

Quantum errors are ubiquitously present in quantum systems, and in many cases cause the
system of interest to interact with the environment (open quantum system). This includes
the loss of information, or loss or gain of energy from the system to the environment. This
section will discuss how these noisy operators which act on open quantum systems can be
represented using the superoperator formalism.

2.7.1 Kraus Operator Sum Decomposition

Any CPTP map can be represented using the Kraus operator sum decomposition

Φ(ρ) =
∑
i

AiρA
†
i , (2.36)

where the linear operators Ai are the kraus operators. Since Φ is trace preserving,∑
i

A†iAi = I. (2.37)

The Kraus operator sum decomposition for a unitary channel is

Φ(ρ) = UρU †.

for U ∈ U.

2.7.2 Chi Matrix Representation

For a fixed basis set of operators B on the same state space, the Kraus operators can be
expressed in terms of basis elements as

Ai =
∑
m

αimBm (2.38)

where the constant (αim) is defined as the overlap between the Kraus operator Ai and the
basis element Bm:

αim = Tr
(
B†mAi

)
(2.39)
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Therefore equation 2.36 becomes:

Φ(ρ) =
∑
mn

χmnBmρB†n (2.40)

Where χ has matrix elements:

χmn ≡
∑
i

αimα
∗
in (2.41)

Note that:

χ00 =
1

d2

∑
i

|Tr(Ai)|2 (2.42)

For trace-preserving channels χ00 = 1, which implies that it is a measure of the leak-
age/loss.

2.7.3 Liouville (Process Matrix)

The Liouville representation, which will be widely used throughout this thesis, is useful
when working with sequences of channels because the composition of channels is given by
matrix multiplication. Since a channel acts on a state by multiplying a vectorization of
the state by the Liouville representation of the channel, we can write, for example,

Φ2 ◦ Φ1(ρ) ∼= Φ2Φ1|ρ〉〉 (2.43)

To obtain the vectorization of a state used by the Liouville representation, we start
with an orthonormal basis,

B = {B1, . . . ,Bd2}∀Bi ∈ Cd2 , (2.44)

where,

〈Bi,Bj〉 = δi,j ∀ Bi,Bj ∈ B.

A density matrix ρ can then be expressed as:

ρ =
∑
i∈Nd2

〈Bi, ρ〉Bi.
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Therefore, the Liouville representation of ρ is a column vector |ρ〉〉 ∈ Cd2 where the ith

element is 〈Bi, ρ〉.
For example, let’s express the density matrix ρ = |0〉 〈0| in the Pauli Liouville repre-

sentation5 (|ρ〉〉).

ρ = |0〉 〈0| =
[
1 0
0 0

]
= 1/2

[
1 0
0 1

]
+ 1/2

[
1 0
0 −1

]
= 1/2I + 1/2Z

therefore,

|ρ〉〉 = 1/2


1
0
0
1


(I)
(X)
(Y )
(Z)

Note that the ordering ([I,X,Y,Z]) for states and matrices is used throughout this thesis.
The Liouville representation of a channel Φ with respect to the basis B is a unique matrix
Φ ∈ Cd2×d2 such that,

Φ|ρ〉〉 = |Φ(ρ)〉〉 (2.45)

with matrix elements;
[Φ]ij = 〈Bi,Φ(Bj)〉 = 〈〈Bi|Φ|Bj〉〉.

Therefore the composition of channels can be represented by matrix multiplication. Simi-
larly, let’s express the Hadamard (H) in the Pauli Liouville representation H .

HIH† =
1√
2

[
1 1
1 −1

] [
1 0
0 1

]
1√
2

[
1 1
1 −1

]
= I

Similarly;
HXH† = Z HYH† = −Y HZH† = X

Therefore we can write H as:

(I)(X)(Y )(Z)
1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0


(I)
(X)
(Y )
(Z).

5Pauli Liouville representation is the Liouville representation given that the Pauli group is the orthonor-
mal basis that is used.
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If Φ is a CP map than it can be represented in block form as:

Φ =

(
S(Φ) ~Φsdl

~Φn Φu

)
. (2.46)

Here, S(Φ) is the average survival rate (scalar), ~Φsdl is the state-dependent leakage (1 ×
4n-1), and ~Φn and Φu are the non-unital (4n-1 × 1) and unital parts (4n-1 × 4n-1). Note

that if Φ is a trace preserving map, then S(Φ) = 1 and ~Φsdl = ~0. Also, if Φ is unital than

S(Φ) = 1, and ~Φn = ~Φsdl = ~0.

2.8 Distance Measures

2.8.1 Distance measures between quantum states

Definition 14. The Trace Distance between the quantum states ρ and σ is:

D(ρ, σ) ≡ 1

2
tr |ρ− σ| (2.47)

For qubits, physically, this value is half of the Euclidean distance between the vectors of ρ
and σ on the bloch sphere.

Definition 15. The fidelity of the states ρ and σ is:

f(ρ, σ) ≡ tr
√
ρ1/2σρ1/2 (2.48)

The fidelity is a symmetric comparison of two states, with a value that ranges between
0 and 1. The fidelity is 1 iff the states are identical, and 0 if the states have support on
mutually orthogonal subspaces.

Note that the Trace Distance between ρ and σ can be bounded by the fidelity as [61]:

1−
√
f(ρ, σ) ≤ D(ρ, σ) ≤

√
1− f(ρ, σ) (2.49)

The upper bound is reached in the case were both ρ and σ are both pure states, and in
the case where ρ and/or σ is a pure state, then the lower bound is tightened to:

1− f(ρ, σ) ≤ D(ρ, σ) (2.50)
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2.8.2 Fidelity between quantum operations

Definition 16. The average gate fidelity of the noisy experimental implementation (G̃) of
an ideal unitary channel (G) is:

F (G̃,G) ≡
∫
dψTr

[
G†(ψ)G̃(ψ)

]
(2.51)

This figure of merit is an average of the closeness of the operations over all physical pure
states, and thus is independent of the input state.

The noisy channel can be expressed as G̃ = E ◦ G where E is the error caused by
implementing the gate G (in the ideal case E = I). Therefore, eq. (2.51) can be rewritten
as [175]:

F (E) ≡ F (E , I) =
1

d+ 1
+

tr(E)

(d2 + d)
(2.52)

Note that the fidelity cannot distinguish between coherent and decoherent errors, but
instead is a figure of merit of the overlap between the expected operation, and the noisy
one that is actually applied.

Definition 17. The infidelity of an error channel (E) is an indicator of how far E is from
I instead of how close. It is defined in terms of F as:

r(E) = 1− F (E) (2.53)

Definition 18. The process fidelity is a figure of merit defined by equation eq. (2.42) and
can be written in terms of F as:

χ00(E) =
(d+ 1)F (E)− 1

d
(2.54)

Definition 19. The process infidelity of an error channel (E) written in terms of χ00 as:

eF (E) = 1− χ00(E) (2.55)

Definition 20. The effective depolarizing parameter (p) of an error channel E in the form
of eq. (2.46) is an indicator of leakage/loss which amounts to a shrinkage of the Bloch
sphere:

p(E) =
TrEu
d2 − 1

(2.56)
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F r p χ00 eF

F F 1− r (d−1)p+1
d

dχ00+1
d+1

1− d
d+1

eF

r 1− F r d−1
d

(1− p) d
d+1

(1− χ00) d
d+1

eF

p dF−1
d−1

1− d
d−1

r p d2χ00−1
d2−1

1− d2

d2−1
eF

χ00
(d+1)F−1

d
1− d+1

d
r (d2−1)p+1

d2
χ00 1− eF

eF
d+1
d

(1− F ) d+1
d
r d2−1

d2
(1− p) 1− χ00 eF

Table 2.1: This table from [34] is a summary of the linear relationships between the fidelity
(F from eq. (2.52)), infidelity (r from eq. (2.53)), effective depolarizing parameter (p from
eq. (2.56)), process fidelity (χ00 from eq. (2.42)), and process infidelity (eF from eq. (2.55))

These figures of merit can be adjusted such that we redefine E to be the average error
for a set of operations G = {Gi} such that:

EG = EG∈G(G†G̃) (2.57)

Therefore, the average gate-set fidelity of the gate-set G is defined as F (EG). As we
will see in section 2.10, these figures of merit can be estimated efficiently using variants of
the Randomized Benchmarking protocol.

2.8.3 Unitarity

The unitarity [169] of a channel is its degree of coherence. Coherent errors tend to posi-
tively interfere with each other in a sequence and thus cause worse case errors than their
decoherent counterparts. This means that coherent errors have a larger impact on the
fidelity. Therefore, the unitarity is an indicator of how much of the error is due to miscal-
ibration, and how much is from a loss of energy or information about the system to the
environment.

Definition 21. Unitarity (u) of the error channel (E) is defined as the average purity of
the output states averaged over all pure states (φ = |ψ〉 〈ψ|):

u(E) =
d

d− 1

∫
dφTrE(φ− I/d)2
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The unitarity can also be written in terms of the unital part of the noise by:

u(E) =
1

d2 − 1
TrE†uEu (2.58)

Where u(E) = 1 for any purely unitary error and u(D) = p2 for a purely depolarizing
channel D.

2.8.4 Bound on the worst case error

Definition 22. The diamond norm of a channel Φ is:

||Φ||� ≡ sup
ψ
||I⊗ Φ(ψ)|| (2.59)

The worst case error rate (1
2
||E − I||�) is an important figure of merit as it takes into

account the effects of error propagating to and from the ancilla’s in the environment. It
gives an upper bound on the impact an error can have on a quantum system, in compar-
ison to the fidelity which gives the average/expected impact. Unfortunately it cannot be
efficiently measured due to its maximization over all states. Therefore, it is more practical
to find the bounds on the diamond norm, which are a function of the infidelity (r) as seen
in [175]:

(d+ 1)r(E)

d
≤ 1

2
||E − I||� ≤

√
d(d+ 1)r(E) (2.60)

These bounds were improved in [170], by accounting for how much of the error is
coherent:

C(E)√
2
≤ ||E||� ≤

√
d3C(E)2

4
+

(d+ 1)2r(E)2

2
(2.61)

for,

C(E)2 =
d2 − 1

d2
(u(E)− 2p(E) + 1). (2.62)

From this bound it is clear that when the error is coherent, both the upper and lower
bounds scale as O(

√
r(E)) (since u(E) = 1), and when the error is purely stochastic, ie:

u(E) ≈
(

1− dr(E)

d− 1

)2

,
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then the bounds scale as O(r(E)). Note that this is the case for any norm-based measure,
and is not a feature of the “worst-case” nature of the diamond norm. In [170], Wallman
showed this by looking at the average instead of the maximum over all input states, and
saw this behaviour.

2.9 Types of Noise

This thesis focuses on the characterization of noise in the form of errors that are ubiqui-
tously present in open quantum systems. Note that we look at non-adversarial noise, and
specifically we assume that the error is Markovian. This section gives a brief description
of those errors, as well as their super-operator representations.

2.9.1 Coherent Errors

The upper bound on the infidelity (or worst case error) of a composition of gates is caused
by the buildup of coherent errors, as coherent errors positively (and sometimes negatively)
interfere in sequence. As we will see in chapter 5, this behaviour causes the infidelity to
increases non-linearly with respect to the sequence length.

Coherent errors are unitary channels (U(ρ)) where the inverse of the channel (U−1(ρ))
is its dual (U †(ρ))

U ◦ U †(ρ) = U † ◦ U(ρ) = ρ, (2.63)

and can be written in the form
U(ρ) = UρU †, (2.64)

where U is the single unitary Kraus operator. Unitary error (E) happens when a target
operator U is miscalibrated to a slightly different unitary operator U ′, where E = U ′U †.
This produces a rotation on the surface of the bloch sphere, without causing shrinkage.

A common gate-dependent unitary error (that will be referred to extensively in this
thesis) is the over-rotation of a target operator. In general, for an ideal gate G = P (H, θ)
(from eq. (2.30)), over-rotation can be represented by G̃ = P (H, θ + α).

For example, let the target be the Hadamard gate:

H =
1√
2

(X + Z) (2.65)
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therefore using Taylor Expansion, and the fact that H2 = I:

eiHθ =

(
iHθ − i

3!
(Hθ)3 +

i

5!
(Hθ)5 − ...

)
+

(
I− (Hθ)2

2!
+

(Hθ)4

4!
− ...

)
= iH

(
θ − θ3

3!
+
θ5

5!
− ...

)
+ I
(

1− θ2

2!
+
θ4

4!
− ..
)

= iH sin θ + I cos θ

Noting that:
H = eiH(π/2)

then for a given over-rotation parameter α:

eiH(π/2+α) = iH(sin (π/2 + α) + I cos (π/2 + α))

= iH cosα− I sinα

removing a −i global phase

= iI sinα +
(X + Z)√

2
cosα

Using the approach from section 2.7.3, the Pauli-Liouville representation of an over-
rotated Hadamard gate is given by:

1 0 0 0

0 0 0 1

0 0 −1 0

0 1 0 0

→


1 0 0 0

0 sin2 α −
√

2 cosα sinα cos2 α

0
√

2 cosα sinα (1− 2 cos2 α) −
√

2 cosα sinα

0 cos2 α
√

2 cosα sinα sin2 α


2.9.2 Cross-talk

An important type of coherent error process, called cross-talk [179, 142, 147, 2, 155, 161], is
defined as a process which does not satisfy locality and/or independence of local operations
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[148]. These conditions are defined as follows: The locality condition is met when a circuit
does not couple qubits or subsets of qubits unless it contains operations that are intended
to do so and the independence condition is met when each operation acting on each subset
of qubits is unaffected by operations that are simultaneously applied to other subsets of
qubits.

One of the most common types of crosstalk is spatial addressing errors [128, 122, 164,
28, 105]. These errors can occur between qubits, or between subsets of qubits. For example,
an error could be introduced if an X rotation is applied to qubit A, and the pulse used to
implement that rotation causes a small unintended X rotation on qubit B. In general, by
driving qubit A, the drive field also affects qubit B and therefore violates the independence
condition. An operation will satisfy the locality condition if a semiclassical description is
sufficient to describe the operation as there will then be no direct coupling between the
qubits.

Another type of crosstalk, referred to as “idle crosstalk” in [148], violates locality and
can be seen most clearly when all qubits aren’t subject to any driving field. For example, if
there is an always-on entangling gate error, each qubit’s state would depend on the state of
the other qubits and would thus violate the locality condition as it is not a tensor product
map.

We might want coupling to always exist for the implementation of a CR gate (controlled
phase shift). However, when driving single-qubit gates, this coupling can induce nonlocal
crosstalk. Similarly, if qubit A is coupled to B and B to C, then when implementing a
CR gate on A and B, the BC coupling may create non-local crosstalk. Both of these
scenarios are examples of a kind of crosstalk called static coupling which violates the
locality condition.

2.9.3 Incoherent Errors

An incoherent error is a process by which information from the quantum system is lost
to the environment, which causes the bloch sphere to shrink. Unlike coherent errors,
incoherent errors cannot be easily corrected by a simple calibration, but in sequence they
do not lead to worst case errors.

Amplitude Damping

Amplitude damping (or T1 decay) is the relaxation of a quantum system which causes
energy (and consequently phase information) to be lost from the system to the environment.
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This error causes the Bloch sphere to contract towards the north pole (ground state).

(rx, ry, rz)→ (rx
√

1− γ, ry
√

1− γ, γ + rz(1− γ)) (2.66)

One representation of the amplitude damping Kraus operators are

A0 =

1 0

0
√

1− γ

 A1 =

0
√
γ

0 0

 ,
where the decay constant (γ ∈ [0, 1]) represents the probability that the system sponta-
neously emits a photon. The Pauli-Liouville representation of a single-qubit amplitude
damping channel is

Eγ =


1 0 0 0

0
√

1− γ 0 0

0 0
√

1− γ 0

γ 0 0 1− γ

 ,

which has a fidelity of

F (Eγ) = 2/3 + (2
√

1− γ − γ)/6.

Phase Damping

Phase Damping (or T2*/T2 decay) is the loss of quantum information without the loss of
energy. The phase contains the information about the state (X and Y), while the amplitude
(Z) corresponds to the amount of energy. Thus the bloch sphere is squeezed about the X
and Y axis, while the Z axis is unaffected ((rx, ry, rz) → (rx(1 − λ), ry(1 − λ), rz)). The
Kraus operators for this channel are

A0 =
√

1− λ/2 I, A1 =
√
λ/2 Z,
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for a decay constant λ ∈ [0, 1]. Phase damping has a Pauli-Liouville representation of

Eλ =


1 0 0 0

0 1− λ 0 0

0 0 1− λ 0

0 0 0 1

 ,

with a fidelity of

F (Eλ) = 1− λ/3.

Depolarizing

Depolarizing noise is the physical process where with a probability (1− p) all information
about the system is lost (state becomes the maximally mixed state I), and with probability
p, the state remains intact.

D(ρ) =
(1− p)I

d
+ pρ (2.67)

Here we define p ∈ [0, 1] as the effective depolarizing constant. This type of error
causes the Bloch sphere to uniformly contract (as a function of p) towards the origin
((rx, ry, rz)→ (1− p)(rx, ry, rz)). The Kraus operators associated with this error are given
by

A0 =
√

(1 + 3p)/4I, A1 =
√

(1− p)/4X, A2 =
√

(1− p)/4Y, A3 =
√

(1− p)/4Z.

With a Pauli-Liouville representation of

Ep =


1 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 ,

and fidelity

F (Ep) =
1 + p

2
. (2.68)

23



2.10 Error Characterization

Quantum Characterization, Verification, & Validation (QCVV) is the field of study for
estimating the quality of quantum informational processors [168]. QCVV can be broken
into 4 distinct categories which include characterizing quantum states, measurements, pro-
cesses, and holistic benchmarks. This thesis will focus on Randomized Benchmarking like
protocols which make up a sub-field of quantum process characterization.

2.10.1 Quantum State

The first type of assessment confirms the production of a quantum state with desirable
properties. This includes Quantum State Tomography (QST) which was first proposed in
1968 [63]. Since 1989, QST has been used extensively to both demonstrate and quantify
how accurately the state of interest is produced [140, 165, 176, 82, 120, 84, 1, 38]. This
type of assessment motivates variants of QST such as QST via compressed sensing[66] from
2010 which reduced the overhead of this assessment, QST of the permutationally invariant
part of the density operator[162] from 2010, a self-learning technique from 2014 [56], and
QST for many-body systems [97] from 2017.

2.10.2 Quantum Measurement

The second type of assessment is the characterization of quantum measurements and is the
least developed area of study out of the 4 categories presented here. The most widely used
method for characterizing measurement error is similar to QST, where the user prepares
and then measures various quantum states to find the overlap between the expected and
measured outcomes [104, 15]. As such, this type of characterization strongly depends
on the state preparation error. Measurement and state characterization are related by a
gauge transformation, so it is very difficult to differentiate between state preparation and
measurement errors. For this reason state preparation and measurement errors are usually
talked about together as SPAM.

2.10.3 Quantum Process

The third category of QCVV evaluates quantum operations, and is the focus of this thesis.
This type of assessment of quantum devices can be split into three categories; 1. non-
scalable protocols which obtain partial information about the noisy effective identity gate
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and assumes insignificant SPAM errors, 2. non-scalable protocols which fully characterize
the noisy process, and 3. protocols which partially characterize the noise and are robust
to SPAM.

Non-Scalable, SPAM dependent protocols which obtain partial information
about the noisy effective identity gate

The first generation of QCVV experiments were developed for nuclear magnetic resonance
(NMR). The first method proposed was to measure physical properties of devices and
compare the expected values of measurement outcomes between devices. Fundamentally,
what these protocols attempt to do is characterize the identity operator. The first imple-
mentation of this type of assessment was the Rabi oscillation experiment in 1937 [136].
This experiment is used to calculate the relaxation time (T1) of the qubit from the excited
state to the ground state. In 1950, the Ramsey oscillation experiment [137] was expanded
to calculate the lifetime of coherence under both reversible (dephasing contribution from
relaxation time) and irreversible dephasing noise (T ∗2 ). Also in 1950, the spin-echo[68]
experiment was proposed to estimate the lifetime of coherence under only irreversible de-
phasing noise (T2).

Non-scalable protocols which obtain complete information about noisy channels

Assume insignificant SPAM error: The first protocol which assessed quantum op-
erations called Quantum Process Tomography (QPT) was created in 1997[129, 40], and
has since been developed further and used extensively[58, 124, 177, 102, 39, 163, 88, 87].
QPT aims to reconstruct the noisy process by preparing a set of quantum states, applying
the process to them, and then using QST to identify the output states. The downside to
fully reconstructing the process is that the overhead is very large, it takes a long time to
implement, and the outcome is dependent on SPAM. In 2003, an ancilla-assisted version of
QPT was developed [5], and in 2004, Hamiltonian tomography [150] was created to experi-
mentally identify the Hamiltonian of a controlled 2-level system. In 2005, [80, 125] showed
that as an alternative to QPT, in order to minimize overhead, complimentary classical
fidelities could be used to partially characterize the gates.

In 2006, [117] obtained a direct characterization of the quantum dynamics which relies
on approaches for error-detection which did not implement QST. In 2009, [18] constructed
a way to obtain the Lindbladian generators using symplectic tomography. [144] (2012)
proposed an efficient estimation method of the Pauli channel parameters via Pauli channel
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tomography. In a continued effort to reduce the overhead of QPT-like protocols, in 2014,
[138] created compressed sensing process tomography.

SPAM robust: In 2013, Gate Set Tomography (GST) was developed [115, 20, 90, 141,
178, 126, 151, 36, 139, 109, 134, 100, 143, 51] to reconstruct a set of processes, similar to
implementing QPT on each gate in a gate-set, in a self consistent way. Standard GST
(i.e. GST without model reduction) is not scalable, although its cost may be drastically
reduced by incorporating model-based approaches [123, 21].

SPAM independent protocols which obtain partial information about the error
model

Scalable in the high fidelity regime: The protocols presented here are scalable only
in the high fidelity regime, as the twirling gates are each composed of many basic gates.
The high fidelity regime is defined by the number of samples (circuits & shots) to get a
fixed relative precision on p, where the number of samples needed6 grows as p−10 for low
p. This causes the exponential to become harder to resolve as the system size increases, if
not within the high fidelity regime.

In 2005, Standard Randomized Benchmarking from protocol 1 (SRB) was developed
with the use of SU(d)[49], which obtained the average gate fidelity of the SU(d) gate-set.
This evaluation is independent of SPAM, scalable, and fast to implement when compared to
QPT-like protocols. Unlike QPT, SRB only obtains partial information about the system
instead of reconstructing the full process. Recent works have utilized different gate-sets
than SU(d) to probe other aspects of the error model[45, 92, 10, 32, 43, 77, 60, 27, 133, 74].
In 2011 and 2012, [106, 107] supported the robustness of the SRB protocol under essen-
tially arbitrary, non-adversarial state preparation and measurement errors. Interleaved
Randomized Benchmarking (IRB) protocol was developed by [108] (2012), which enabled
the error estimate of a single gate of interest. In 2015, [90] developed a protocol to esti-
mate the phase of the universal single-qubit gate-set in a robust and efficient way. [153]
developed Iterative Randomized Benchmarking (2016) which is similar to Interleaved Ran-
domized Benchmarking but instead implements the gate of interest many times between
the twirling gates, in order to amplify its error contribution relative to the twirling gate
error. In 2017 and 2018 the robustness of SRB-like protocols was supported by rigorous
proofs that the observed error rate relates directly to a well-defined notion of gate-fidelity

6For low p, the number of samples needed is N = 100/(A2p10). For example, for N on the order of
millions (106), and A of order 1, than p ≈ 0.4.
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[171, 131, 31], which fully overcame concerns about relating the measured RB error rates
to a meaningful concept of gate-fidelity under gate-dependent errors [131]. The systematic
error bounds on the estimates from IRB were tightened in 2019 [34] by accounting for the
amount of coherent error in the system.

Scalable: In 2019, Cycle Benchmarking from protocol 4 (CB) [52] was developed which
enabled the characterization of n-qubit cycles of large circuits efficiently. K-body Noise
Reconstruction [59, 71] is a variant of CB, developed in 2020, which is used to estimate
the probability distribution of the errors affecting the system, and can detect all correlated
Pauli errors. This work was further developed in 2021, when [72] created a protocol similar
but distinct from [59] with a more efficient recovery guarantee.

Non-Scalable: In 2015, [169] designed an SRB-like protocol, called Extended Random-
ized Benchmarking from protocol 3, which estimated the stochastic contribution to the
average-gate fidelity, enabling the user to differentiate between calibration and stochastic
noise. This protocol is deemed non-scalable because with larger system sizes, the number
of circuits becomes too large to obtain fixed precision.

2.10.4 Holistic Benchmarking

Holistic Benchmarking aims to test the quantum device as a whole, by calculating volu-
metric figures of merit, testing the device’s ability to perform specific tasks, or in some
cases how well the device performs that task relative to its classical counterpart.

This includes testing the devices ability to experimentally implement algorithms such
as Shor’s algorithm [154] starting in 2007 [96, 118], Grover search algorithm [67] starting in
2009[48, 57], Deutsch-Jozsa algorithm [47] in 2009 [48, 101], and the variational quantum
eigensolver (VQE) algorithm [127] beginning in 2018 [78].

Randomized Compiling [174] converts coherent and non-Markovian error into stochatic
error by randomizing the gates in a circuit using virtual twirling groups, which significantly
reduces run-time error. When CB [52] is implemented in conjunction with Randomized
Compiling, the fidelity of any sized circuit can be estimated, and thus any algorithm.

Volumetric figures of merit include Quantum Volume (2017) [19, 44] which calculates
the largest square circuit (number of qubits = circuit length) that the device can implement
with reasonable accuracy, and volumetric benchmarking (2020) [22, 132] which is similar to
quantum volume, but defines a family of rectangular circuits (number of qubits 6= circuit
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length). Cross-entropy benchmarking (2019) [6, 8], which belongs to the family of RB-like
protocols, also aims to address this type of assessment, and specifically is used to estimate
the largest random circuit that can be performed sufficiently well to exceed the performance
of a classical noisy sampling. An explicit connection between Cross-Entropy benchmarking
(2019) and the general framework of RB is made in [76].

Applications which are hard to classically simulate and can be used for supremacy
comparisons include quantum chemistry applications [149] (2016), Quantum Approximate
Optimization Algorithm [53] (2016), boson sampling [98, 103] (2016), IQP (instantaneous
quantum polynomial-time) circuits [25] (2017), translation-invariant Ising spin model [65]
(2017), certifying ground states of frustration-free Hamiltonians based on simple energy
measurements of local Hamiltonian terms [70] (2017), and cross-entropy benchmarking
[6, 8] (2019).

2.10.5 Randomized Benchmarking and QCVV

QCVV is tending towards protocols which assess quantum processes and holistic bench-
marks. Specifically, in the future, when we approach the end of the NISQ era we will need
to assess how well a device is able to implement computations, with particular focus on
those applications that classical computing devices are unable to implement efficiently.

A member of the Randomized Benchmarking family can be represented by a protocol
which leads to the sum of exponential fidelity decays, is SPAM independent, and uses ran-
domization. As can be seen by the discussion above, protocols in the Randomized Bench-
marking family can fall in two categories, namely 1) scalable (or scalable in high fidelity
regime), SPAM independent partial process characterization, and 2) holistic benchmarks.

The Randomized Benchmarking family has continued to grow to accommodate for the
challenges presented by the error models (cross-talk, gate-dependent,...), device require-
ments, compilation tools (RC), and the ways to assess quantum computing devices. It is
a mature family of protocols, which are supported by rigorous proofs and theoretical un-
derpinnings, which will continue to adapt and grow to accommodate the future challenges
of the assessment of quantum computing hardware.

Protocols that belong to the Randomized Benchmarking family are used to obtain
figures of merit which can be used to infer the reliability of a quantum device. These
protocols only obtain partial information about the system, and are not only scalable but
also fast to run in comparison to Tomography approaches. RB-like protocols can be used
to obtain information about the amount of coherent error in the device vs the amount of
stochastic error, and can be used for Noise Reconstruction[59]. In addition, RB protocols
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are also independent of SPAM error, so the figures of merit obtained by them give estimates
of just the gate operation error. Some disadvantages of this type of characterization are
that these types of protocols do not fully characterize the noise (as is seen in gate-set
tomography), do not characterize SPAM, and can only be used to characterize Markovian
non-catastrophic[30] errors.

The main complementary approaches to the family of RB protocols include Tomography-
like protocols, Ramsey and Rabi experiments, and Quantum Volume. The advantage of the
Tomography like protocols over RB-like protocols are that they are able to fully character-
ize the error of the process or gate-set and they can estimate the SPAM. The disadvantages
are that they are slow to implement, have large overheads, and they cannot always separate
the SPAM from the gate error. The Ramsey and Rabi experiments give clear information
about T1 and T2 times, although they do not provide any additional insight into the co-
herent error, SPAM, cross-talk, or many other aspects of the error. Unlike Cross-Entropy
Benchmarking, Quantum Volume does not attempt to illustrate supremacy, but instead
is used to quantify the maximum size of a circuit the device could implement before sur-
passing a mathematically defined error threshold. This is done by sampling circuits for
which the outcome distribution can be computed classically, and then slowly increasing the
circuit depth and width until the observed distribution is considered too noisy according
to a technical criterion. Therefore this type of Benchmark is not scalable as the outcomes
need to be classically simulable.

Quantum Volume, Cross-entropy benchmarking, Gate-Set Tomography, and Volumetric
benchmarking are examples of protocols which can be used for making cross-platform
comparisons. In chapter 6, we present an alternative to these approaches which focuses
on the error of the basic gate-sets. We show that this technique allows us to obtain
an even-handed cross-platform comparison, and the use of both Clifford or non-Clifford
basic gate-sets tests the device’s ability to implement a universal gate-set (which are the
primitives for Quantum Volume).

The benefits to this type of assessment (chapter 6) in comparison to the alternatives
(presented above) is that it is scalable, fast to implement, and obtains information about
various aspects of the error model which capture the devices essential performance fea-
tures. The major weakness to this type of assessment is that it does not obtain complete
information about the error profile, and thus does not pinpoint the physical mechanism
responsible for the error. The main challenges that remain for this type of cross-platform
comparison is to extend it to also test the scalability of the device, i.e. implement Cycle
Benchmarking on various qubit pairs of the device.
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2.10.6 Randomized Benchmarking Protocols

The four protocols we present here are based on the same family of benchmarking protocols
called Randomized Benchmarking. The first is called Standard Randomized Benchmarking
(SRB) and it calculates the average gate fidelity of the given gate-set. Note that this
section is just to introduce the reader to the protocols that will be considered throughout
this thesis, and will be discussed more thoroughly in the following chapters.

Note also that this protocol description has been transcribed from [23]/ chapter 5, and
has been placed here for convenience.
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Protocol 1: SRB, as described in [45, 49].

1. Sample a set of m gates Gi picked independently and uniformly at random
from the 2-design G

2. Determine the recovery gate Gm+1 (can be set to G−1
m:1);

3. Prepare a state ρ = |0〉〈0|;

4. Perform the sampled gates from step 1, followed by the recovery gate Gm+1

determined in step 2:
G̃m+1:1 = G̃m+1 ◦ . . . ◦ G̃1;

5. Measure a POVM {Q, I−Q}, where the first observable is Q ≈ Gm+1:1(|0〉〈0|),
and respective outcome labels are {“recovery”, “non-recovery”};

6. Repeat steps 3–5 a number times to estimate the probability of observing the
“recovery” event Pr(“recovery”|{Gi},m) = trQG̃m+1:1(ρ);

7. Repeat steps 1–6 for s different sets of m randomly sampled gates {Gi};

8. Repeat steps for 1–7 for different values of m of random gates.

9. Fit the estimated recovery probabilities to the decay model

AG pmG +BG ; (2.69)

10. Estimate the Clifford gate-set infidelity through

rG =
d− 1

d
(1− pG) (2.70)

for d = 2n for an n-qubit system.

The second protocol is Interleaved Randomized Benchmarking (IRB). It is very similar
to SRB except it calculates the average infidelity (over C) of the chosen gate of interest
composed with a random Clifford. It can be used along with SRB to approximate the
single gate error of the gate of interest.
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Protocol 2: IRB, as described in [108].

1. Sample a set of m gates Gi picked independently and uniformly at random
from the 2-design G

2. Determine the recovery gate Gm+1 which is the inverse of the composition of
the m random gates, including the interleaved C gate;

3. Prepare a state ρ ≈ |0〉〈0|;

4. Perform the sampled gates from step 1, each followed by the interleaved gate
C, followed by the recovery gate Gm+1 determined in step 2:
G̃m+1:1 = G̃m+1 ◦ C̃ ◦ G̃m ◦ . . . ◦ C̃ ◦ G̃1;

5–8. Idem as in protocol 1.

9. Fit the estimated recovery probabilities to the decay model

AC pm
C

+BC ; (2.71)

10. Estimate the gate error using the value pG obtained by running

restC =
d− 1

d

(
1− pC

pG

)
. (2.72)

The third protocol calculates the amount of the error which is incoherent, and can be
used along with SRB to calculate the coherent infidelity.
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Protocol 3: XRB, as described in [175] .

1. Choose a random sequence of m gates from the (Clifford) group C:

G = (G1, . . . ,Gm)

2. Prepare the state ρ (usually |0〉 〈0|)

3. Apply the sequence:
G̃ = G̃mG̃m−1 . . . G̃1

4. Estimate the expectation value of Q given the sequence G is applied:

QG = 〈〈Q| G̃m . . . G̃1 |ρ〉〉 (2.73)

5. Repeat steps 1-4 to find the expected average over all sequences of length m:

EG

[
Q2

G

]
=

1

|C|m
∑
G∈Cm

Q2
G (2.74)

where |C|m is all of the possible sequences of m gates from the Clifford group C.

This expression can be rewritten as:

E
[
Q2

G

]
= 〈〈Q2|

(
1

|C|
∑
GεC

G̃⊗2

)m

|ρ⊗2〉〉 (2.75)

where we measure along the X, Y and Z axes:

|Q2〉〉 = |X⊗2〉〉+ |Y ⊗2〉〉+ |Z⊗2〉〉.

Note that we are now taking the average over the gates in the group U, instead
of over all the possible sequences.

6. Repeat steps 1-5 for different number of gates (m) and fit to:

E
[
Q2

G

]
= A+Bufit(

1

|C|
∑
GεC

G̃)m−1 (2.76)

to estimate the value of ufit.

By use of equation 2.58, we can calculate the unitarity of gate dependent error
and compare it to this fitted value.33



The final protocol is called Cycle Benchmarking (CB). Unlike the other protocols, CB
uses the Pauli group as the twirling group. For a system with more than 1 qubit, Pauli
error is significantly lower than Clifford error because the Clifford gates are composed of
entangling gates, which generally lead to larger error than single qubit Pauli’s. Similar to
IRB, CB is used to calculate the inferred infidelity of the clock cycle (or interleaved gate in
the case of IRB), although due to the very low error of the Pauli’s it is significantly better
at accurately predicting it. In addition to this, when used with Randomized Compiling, it
can be used to predict the error rate of an entire protocol, not just a single cycle or gate.

Protocol 4: CB, as described in [52].

1. Select a set of N-qubit Pauli gates of length |P|.

2. Choose two sequence lengths m1 and m2, s.t. Gm2−m1 is factorizable (G ′1 ⊗ G ′2).

3. For each Pauli matrix P ∈ P, L random sequences per Pauli for l ∈ (1, . . . , L),
and sequence lengths m ∈ (m1,m2), implement the sequence;

C̃(P ) = R̃mG̃R̃m−1G̃ . . . R̃1G̃R̃0 (2.77)

where Rj are N-qubit Pauli cycles. Then after calculating the expected
outcome C(P ), estimate their overlap via:

fP,m,l = tr
[
C(P )C̃(ρ)

]
(2.78)

for an initial state ρ that is a +1 eigenstate of P .

4. The composite process fidelity can then be estimated via:

FRC(G̃,G) =
∑
P∈P

1

|P|

(∑L
l=1 fP,m2,l∑L
l=1 fP,m1,l

) 1
m2−m1

. (2.79)

Note that the ratio of the dressed G (what CB measures) and the local fidelities of the
Pauli gates is used to estimate the process fidelity of G, ie:

FRC(G̃,G)

FRC(Ĩ, I)
(2.80)
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Chapter 3

Unitarity under Gate-Dependent
noise

3.1 Overview

We extend the work done by [169] that provided a method for estimating the degree of
coherence in the noise acting on a system via a variation on randomized benchmarking
protocols, which was done with the underlying assumption that noise is independent of the
target gate. While this might be a good approximation when the errors vary slightly from
operation to operation, it will likely not be accurate when the errors vary substantially
over the set of operations. In this work, we explore what this protocol measures when this
assumption is relaxed. In particular we look at what it measures when errors vary over the
gate set, to determine if it tracks the average unitarity over the gate set, or the unitarity
of the average. This is important to be able to distinguish because the average unitarity of
each error is able to distinguish between gate dependent coherent and decoherent errors,
while the unitarity of the average error is not. This was done by analytically proving that
the output should be the average unitary of each gate-dependent error. By examining gate-
dependent error models for the single-qubit Clifford gates, we numerically show that under
physically realistic gate-dependent errors, the figure of merit obtained via XRB overlaps
strongly with the average unitarity of the each of the gate-dependent errors, and has little
overlap with the unitarity of the average over the gate-dependent error.
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Introduction

One of the largest challenges to the development of a quantum computer is its sensitivity
to the errors ubiquitously present in controlled quantum systems, arising, for example,
due to their coupling to the quantum environment. Thankfully it has been proven that
physically reasonable error models can be corrected, enabling robust quantum computation,
provided that the error does not surpass a code-dependent threshold [3, 91, 93], known as
the fault-tolerant threshold. However, we must ensure that our diagnostic methods require
fewer classical computational resources than simply simulating an ideal quantum circuit,
otherwise the quantum computer provides no practical computational advantage. One
method of efficiently estimating noise is to consider benchmarking circuits using elements
from a fixed gate set under the assumption that the errors are gate-independent[169].

Recent work has clarified how certain kinds of quantum errors, such as coherent noise,
will generally lead to a larger worst-case error than stochastic noise (see section 2.8.4)
[107, 175, 146], and can be corrected in different ways[55]. Therefore the ability to efficiently
and robustly measure whether the noise is coherent or not will greatly affect our ability
to characterize a given experimental approach to fault-tolerant quantum computation. In
Ref. [169], an efficient protocol for estimating the coherence of noise was introduced and
proven to be robust to state preparation and measurement errors under the assumption
that the errors are gate-independent. However, it is problematic to assume that noise takes
the form of gate-independent coherent errors because one of the most natural sources of
coherent error depends on the gate.

In 2015, [169] proposed a method to characterize the degree of coherence of the error.
This method was later renamed extended randomized benchmarking (XRB). This was an
extraordinary finding as the returned figure of merit, called the unitarity, quantifies what
portion of the error was due to coherent calibration errors, and what portion was due to
the system interacting with the environment. Calibration errors are generally easier to
correct and lead to larger worst case errors than their decoherent counterparts. Therefore
the unitarity gives crucial information to the user about how much error will remain in
the system in the limit where they are able to correct all of the calibration errors. This
can help experimentalists decide whether that level of error is acceptable or if they need
to take the next, much more challenging step, of redesigning their system to reduce these
decoherent errors.

One of the main drawbacks to this revolutionary characterization protocol is that the
rigorous theoretical framework built to support the protocol, was developed under the
physically unrealistic assumption that the noise is gate independent. This chapter will
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discuss the effectiveness of XRB when the noise is gate-dependent, and will give a physical
interpretation of the figure of merits that it produces. The two types of gate-dependent
error that will be used to study the unitarity in this chapter are gate-dependent over-
rotations of Clifford gates and amplitude damping.

Gate Dependent XRB

In comparison to the XRB protocol presented in protocol 3, consider the case when the
error is gate dependent. In this scenario, the sequence of gates (Gi) and their corresponding
error (E i) becomes

EmGmEm−1Gm−1 . . .E1G1,

and can be represented in circuit form as,

Relabeling G̃j = EjGj, under any gate-dependent Markovian noise model, equation
2.75 becomes

E
[
Q2

G
]

= 〈〈Q2|

(
|G|−1

∑∑∑
GεG

G̃⊗2

)m

|ρ⊗2〉〉 (3.1)

= 〈〈Q2|Mm|ρ⊗2〉〉 (3.2)

forM = |G|−1∑∑∑
GεG G̃

⊗2
, and |Q2〉〉 = |X⊗2〉〉+ |Y ⊗2〉〉+ |Z⊗2〉〉.

We will use first order perturbation theory to calculate the eigenvalues (λ̃) ofM. First
we decomposeM via:

M =M0 + δM (3.3)

where δM is the perturbation matrix andM0 is the ideal implementation ofM,

M0 = |G|−1
∑∑∑
GεG

G⊗2.
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M0 has a degenerate space with eigenvalues of λ0{1,2} = 1, and eigenvectors v01 = |Id2〉〉
and v02 = |S〉〉, where S is the SWAP gate.

Then we can use 1st order perturbation theory, where

λ1i = v†0iMv0i (3.4)

= λ0i + δλ1i . (3.5)

for the small perturbation δλ1i , which corresponds to a small error acting on G̃.

Let |B1〉〉 and |B2〉〉 be the orthonormal basis vectors which span the 2 trivial irreducible
representations (irreps).

B1 = Id2/d (3.6)

B2 = (S − Id2/d)/
√
d2 − 1 (3.7)

Therefore, calculating the 1st order eigenvalues ofM via eq. (3.4) and the orthonormal
basis vectors from eqs. (3.6) and (3.7) [169],

〈〈Id2|M|Id2〉〉 = Tr

[
|G|−1

∑
GεG

Id2G̃⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
G̃⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
G̃(Id)

]2

= d2|G|−1
∑
GεG

S(G̃)2 (3.8)

where here S(G̃) is the survival error rate from eq. (2.46).
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〈〈Id2|M|S〉〉 = 〈〈S|M†|Id2〉〉 = Tr

[
|G|−1

∑
GεG

SG̃†⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
SG̃†⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
G̃†(Id)G̃†(Id)

]
= |G|−1

∑
GεG

d
∣∣∣∣∣∣G̃sdl∣∣∣∣∣∣2 + dS(G̃)2 (3.9)

where G̃sdl is the state-dependent leakage from eq. (2.46) of G̃. Similarly,

〈〈S|M|Id2〉〉 = Tr

[
|G|−1

∑
GεG

SG̃⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
SG̃⊗2(Id2)

]
= |G|−1

∑
GεG

Tr
[
G̃(Id)G̃(Id)

]
= |G|−1

∑
GεG

d
∣∣∣∣∣∣G̃n∣∣∣∣∣∣2 + dS(G̃)2 (3.10)

where G̃n is the non-unital part of G̃ from eq. (2.46) and is very small.

Lastly, given that S =
∑

k Ak ⊗ A
†
k, where Ak forms an orthonormal operator basis1,

1One such set of Kraus operators are Ak ∈ P1
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〈〈S|M|S〉〉 = Tr

[
|G|−1

∑
GεG

SG̃⊗2(S)

]
= |G|−1

∑
GεG

∑
k

Tr
[
SG̃(Ak)⊗ G̃(A†k)

]
= |G|−1

∑
GεG

∑
k

Tr
[
G̃(Ak)

†G̃(Ak)
]

= |G|−1
∑
GεG

∣∣∣∣∣∣G̃∣∣∣∣∣∣2 (3.11)

Therefore using the expressions above,

M11 = 〈〈Id
2

d
|M|Id

2

d
〉〉

= |G|−1
∑
GεG

S(G̃)2, (3.12)

M12 = 〈〈Id
2

d
|M| S√

d2 − 1
〉〉 − 〈〈Id

2

d
|M| Id2

d
√
d2 − 1

〉〉

= (d2 − 1)−1/2|G|−1
∑
GεG

∣∣∣∣∣∣G̃n∣∣∣∣∣∣2 (3.13)

M21 = 〈〈 S√
d2 − 1

|M|Id
2

d
〉〉 − 〈〈 Id2

d
√
d2 − 1

|M|Id
2

d
〉〉

= (d2 − 1)−1/2|G|−1
∑
GεG

∣∣∣∣∣∣G̃n∣∣∣∣∣∣2 (3.14)

Using the definition from eqs. (2.2) and (2.46), we see that
∣∣∣∣∣∣G̃∣∣∣∣∣∣2 = S(G̃)2 +

∣∣∣∣∣∣G̃sdl∣∣∣∣∣∣2 +∣∣∣∣∣∣G̃n∣∣∣∣∣∣2 +
∣∣∣∣∣∣G̃u∣∣∣∣∣∣2, where G̃u is the unital part of G̃, and thus;
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M22 = 〈〈 S√
d2 − 1

|M| S√
d2 − 1

〉〉+ 〈〈 Id2
d
√
d2 − 1

|M| Id2
d
√
d2 − 1

〉〉

− 〈〈 S√
d2 − 1

|M| Id2
d
√
d2 − 1

〉〉 − 〈〈 Id2
d
√
d2 − 1

|M| S√
d2 − 1

〉〉

= (d2 − 1)−1|G|−1
∑
GεG

∣∣∣∣∣∣G̃∣∣∣∣∣∣2 − S(G̃)2 −
∣∣∣∣∣∣G̃n∣∣∣∣∣∣2 − ∣∣∣∣∣∣G̃sdl∣∣∣∣∣∣2

= (d2 − 1)−1|G|−1
∑
GεG

∣∣∣∣∣∣G̃u∣∣∣∣∣∣2 (3.15)

= |G|−1
∑
GεG

u(G̃) (3.16)

Where u(G̃) is the unitarity of the noisy gate G̃.

Therefore, from equation eq. (3.4), the eigenvalues ofM are:

λ11 =M11 = |G|−1
∑
GεG

S(G̃)2 (3.17)

which is equal to 1 if the gate-dependent noise is trace preserving (making δλ11 ≈ 0), and

λ12 =M22 = (d2 − 1)−1|G|−1
∑
GεG

∣∣∣∣∣∣G̃u∣∣∣∣∣∣2 (3.18)

= |G|−1
∑
GεG

u(G̃) (3.19)

In the high fidelity regime (|G|−1∑
GεGu(G̃) ≈ 1), and therefore δλ12 ≈ 0. Following

the logic from [169] thatM is diagonalizable:

Ej(Q2
j) = 〈〈Q2|Mm|ρ⊗2〉〉

= Aλm11 +Bλm12 (3.20)

= A+B|G|−1
∑
GεG

u(G̃) (3.21)
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for trace-preserving noise (ie S(G̃) = 1).

Therefore, we expect that the output from the XRB protocol (ufit) to be the average
unitary of each gate-dependent error:

uave =
1

|G|
∑
GεG

u
(
G̃ ◦ G−1

)
.

We will also numerically show that in the gate dependent case, the average unitary of
each error is not equivalent to the unitarity of the average error of the gate set, defined as:

u(Eave) = u

(
1

|G|
∑
GεG

G̃ ◦ G−1

)
.

for u(x) defined in eq. (2.58).

These values are calculated via equation 2.58, and then compared to the numerically
simulated fit of the XRB experiment via equation 2.76.

3.2 Numerical Results

In this section, we explore the relationship between the unitarity of the average error
(u(Eave)) and the average of the unitarities of each error (uave) via a numerical comparison
in which two gate-dependent error scenarios are considered, over-rotation and amplitude
dampening. For each gate a small random α, γ ∈ [0, 0.1] are assigned as in sections 2.9.1
and 2.9.3. In fig. 3.1 the two errors are applied simultaneously to each gate, while in fig. 3.2
the errors are considered separately.

The unitarity ufit obtained via protocol 3 is compared against the unitarity of the
average error (u(Eave)) and the average of the unitarities of each error (uave) where:

∆u(Eave) = |ufit − u(Eave)| (3.22)

and
∆uave = |ufit − uave|. (3.23)

We plot the results of this comparison in fig. 3.1, where we see that once there are
enough gates applied to create a good fit (≈ 10), the average of the unitarity of each gate
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Figure 3.1: ∆uave (Blue) and ∆u(Eave) (orange) as a function of sequence length m. The
amplitude damping and over rotation parameters of each of the 24 cliffords was randomly
generated between [0,0.1]. Clearly, ufit is better approximated by the average of the uni-
tarities of each error (uave) than by the unitarity of the average error (u(Eave)).

(uave) is approximately equal to the unitarity obtained via XRB (ufit). In addition, (uave)
is a significantly better approximation of (ufit) than the unitarity of the average error
(u(Eave)) at all sequence lengths.

As seen in figure 3.2a, u(Eave) has a strong dependence on the over-rotation angle. In
the case where the error is unitary, the unitarity of each error is 1, so when we take the
average over the set of gates we get uave = 1. Therefore uave can distinguish between
coherent and incoherent errors. When averaging over the coherent over-rotation error, Eave
is a depolarizing channel which is incoherent; therefore u(Eave) cannot differentiate between
coherent and incoherent errors, which causes it to have a dependence on the over-rotation
parameter. This makes it a poor measurement of the unitarity of a gateset. For gates
undergoing amplitude damping (figure 3.2b), u(Eave) again is much closer to ufit, as we
expect from looking at eq. (3.1).

Conclusion

For a single qubit system with gate-dependent amplitude dampening and/or over-rotation
error, the unitarity obtained via XRB is the average of the unitarities of each gate. The
average of the unitarity of each gate is able to differentiate between gate-dependent coherent
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(a) ∆u vs Over-Rotation (b) ∆u vs Amplitude Damping

Figure 3.2: ∆uave (Blue) and ∆u(Eave) (orange) calculated with respect to the over rotation
angle α (a) and the amplitude damping (b). The average of a set of unitary gates is a
depolarizing channel, which has a unitarity less than 1. This causes the large fluctuation of
∆u(Eave) in (a). In (b), uave is a better approximation of ufit than u(Eave) for decoherent
gate-dependent noise.

errors (e.g., due to calibration errors) and incoherent errors (e.g., due to intrinsic noise
processes). Knowledge about whether noise is coherent or incoherent in a system will have
a significant impact on how experiments are constructed and implemented. In summary, we
have shown how to interpret the output of the XRB protocol, and have proven analytically
that under any gate-dependent error, the unitarity obtained via the XRB protocol can
differentiate between coherent and decoherent gate-dependent error.
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Chapter 4

From randomized benchmarking
experiments to gate-set circuit
fidelity: how to interpret randomized
benchmarking decay parameters

4.1 Overview

Randomized benchmarking (RB) protocols have become an essential tool for providing a
meaningful partial characterization of experimental quantum operations. While the RB
decay rate is known to enable estimates of the average fidelity of those operations under
gate-independent Markovian noise, under gate-dependent noise this rate is more difficult
to interpret rigorously. In this paper, we prove that the single-qubit RB decay parameter
p coincides with the decay parameter of the gate-set circuit fidelity , a novel figure of merit
which characterizes the expected average fidelity over arbitrary circuits of operations from
the gate-set. We also prove that, in the limit of high-fidelity single-qubit experiments, the
possible alarming disconnect between the average gate fidelity and RB experimental results
is simply explained by a basis mismatch between the gates and the state-preparation and
measurement procedures, that is, to a unitary degree of freedom in labeling the Pauli
matrices. Based on numerical evidence and physically motivated arguments, we conjecture
that these results also hold for higher dimensions.
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4.2 Introduction

The operational richness of quantum mechanics hints at an unprecedented computational
power. However, this very richness carries over to a vast range of possible quantum error
processes for which a full characterization is impractical for even a handful of quantum
bits (qubits). Randomized benchmarking (RB) experiments [49, 99, 92, 46, 106, 107, 32,
43] were introduced to provide a robust, efficient, scalable, SPAM-independent1, partial
characterization of specific sets of quantum operations of interest, referred to as gate-sets.
Such experiments have been widely adopted across all platforms for quantum computing,
eg. [62, 42, 86, 10, 35, 156, 152, 111, 112], and have become a critical tool for characterizing
and improving the design and control of quantum bits (qubits).

Recently it has been shown that RB experiments on an arbitrarily large number of
qubits will always produce an exponential decay under arbitrary Markovian error mod-
els (that is, where errors are represented as completely-positive maps). This ensures a
well-defined theoretical characterization of these experiments and enables an important
test for the presence of non-Markovian errors, in spite of the gauge freedom between the
experimental quantities and a theoretical figure of merit such as the average gate fidelity
[131, 167, 116]. However, this theoretical advance still lacks a clear physical interpretation
that rigorously connects the experimentally observed decay to a fidelity-based character-
ization of a physical set of gate- dependent errors. Linking an experimentally measured
quantity to a physically meaningful figure of merit is not a mere intellectual satisfaction.
It is crucial to ensure that a quantity measured in the context of a process characterization
protocol indeed yields an outcome that assesses the quality of operations. What if a very
noisy quantum device could yield a decent RB parameter? What if there exist scenarios
where RB substantially underestimates the quality of a quantum device?

In this chapter, we show that in the regime of high fidelity gates on single qubits, a
simple physical interpretation of RB data does exist and allows a reliable characterization
of quantum operations. Further we conjecture, based on numerical evidence, that such
an interpretation extends to arbitrary dimensions. Consequently, this work provides the
theoretical foundation behind a fundamental tool for identifying and eliminating errors
through examining the results of RB experiments.

Consider a targeted ideal gate-set G = {G} and its noisy implementation G̃ = {G̃}. We
denote a circuit composed of m elements by

G̃m:1 := G̃m · · · G̃2G̃1 . (4.1)

1SPAM stands for “State preparation and measurement”.
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For leakage-free RB experiments with arbitrarily gate-dependent (but still Markovian)
errors, the average probability of an outcome µ after preparing a state ρ and applying a
circuit of m+ 1 operations that multiply to the identity is [167, 116]

EGm+1:1

〈
µ, G̃m+1:1(ρ)

〉
= Apm +B + ε(m), (4.2)

where 〈M1,M2〉 := tr
{
M †

1M2

}
refers to the Hilbert-Schmidt inner product. On the right-

hand side of eq. (4.2), A and B are independent of m (i.e., they only depend upon ρ, µ and
G̃) and ε(m) is a perturbative term that decays exponentially in m (decays significantly
faster than p).

By design, RB gives some information about the error rate of motion-reversal (i.e.,
identity) circuits composed of gate-set elements. In this chapter, we show how this infor-
mation relates to general circuits. Consider the traditional notion of average fidelity for a
noisy circuit C̃ to a target unitary circuit C,

F (C̃, C) :=

∫ 〈
C̃(ψ), C(ψ)

〉
dψ, (4.3)

where the integral is taken uniformly over all pure states. Equation (4.3) corresponds to
the definition of the usual notion of average gate fidelity, but is instead formulated in terms
of “circuit”, which is to be understood as a sequence of elementary gates. We introduce
this nuance to define a novel figure of merit, the gate-set circuit fidelity, which compares
all possible sequences of m implemented operations from the gate-set G̃ to their targets in
G,

Definition 23 (gate-set circuit fidelity).

F(G̃,G,m) := E
[
F (G̃m:1,Gm:1)

]
. (4.4)

The case m = 1 yields the average fidelity of the gate-set G̃ to G. In general, the overall
action of ideal circuits Gm:1 is reproduced by G̃m:1 with fidelity F(G̃,G,m). Having access
to the gate-set circuit fidelity enables going beyond quantifying the quality of gate-set
elements as it also quantifies the quality of circuits based on those elements. In this paper,
we prove that for all single-qubit gate-sets with fidelities close to 1 and for an appropriately
chosen targeted gate-set G, the gate-set circuit fidelity can be closely estimated via RB
experiments, for all circuit lengths m, even in cases of highly gate-dependent noise models.
This is possible because it turns out that F(G̃,G,m) essentially behaves like an exponential
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decay in m, uniquely parametrized by the RB decay constant p. The robust inclusion of
gate-dependence is a major step forward since it encompasses very realistic noise models.
We conjecture this result to hold for higher dimensions, based on numerical evidences
and physically motivated arguments. Notice that the gate-set circuit fidelity quantifies the
expected fidelity of all circuits (built from gate-set elements), and not only motion-reversal
ones. This is an important observation to keep in mind because although RB experiments
intrinsically revolve around motion-reversal circuits, the figure of merit that it yields isn’t
limited to such paradigm. Quantifying the quality of all circuits is much more useful than
quantifying identity ones.

4.3 The dynamics of the gate-set circuit fidelity

It follows from the RB literature [49, 106] that for gate-independent noise models of the
form G̃ = EG or G̃ = GE , where E is a fixed error, the gate-set circuit fidelity behaves
exactly as

F(G̃,G,m) =
1

d
+
d− 1

d
pm , (4.5)

where p is estimated through standard RB by fitting to eq. (4.2) with ε(m) = 0 and d is the
dimension of the system. The relationship between the survival probability (p) decay curve
and the decay in eq. (4.5) shouldn’t be surprising. Indeed, consider a RB experiment with
a noise model of the form EG and a perfect inversion step Gm+1 ∈ G and perfect SPAM.
In such a case, the gate-set circuit fidelity and the survival probability exactly coincide.
A less trivial matter is to show the link between the RB decay parameter and eq. (4.5)
for gate-dependent leakage-free noise models for which the choice of targeted gate-set is
to be treated more carefully. In fact, as we will show, a poor choice of targeted gate-set
can lead to a strong violation of eq. (4.5) in the sense that 1−F(G̃,G,m) can differ from
1− (1

d
+ d−1

d
pm) by several orders of magnitude. An appropriate choice of targeted gate-set

will essentially restore the decay relation shown in eq. (4.5).

Equation (4.5) generalizes to

F(G̃,G,m) =
1

d
+
d− 1

d
ftr(G̃,G,m) , (4.6)

where the fidelity on the traceless hyperplane is similar to the gate-set circuit fidelity, but
is averaged over the traceless part of the pure states, ψtr = ψ − I/d:

ftr(G̃,G,m) :=
E
(∫ 〈

G̃m:1(ψtr),Gm:1(ψtr)
〉
dψ
)

∫
〈ψtr, ψtr〉dψ

. (4.7)

48



The integrand in the numerator of the right-hand side of eq. (4.7) can be visualized as
the fidelity restricted on the Bloch space, comparing the ideally mapped Bloch vectors
ψtr → Gm:1(ψtr) to their noisy analog G̃m:1(ψtr). Equation (4.6) is quickly obtained by
realizing that the symmetric integral over the Bloch space evaluates to zero.

Under gate-dependent noise, 1− ftr(G̃,G, 1) could differ from 1− p by several orders
of magnitude [131, 135]. Such discrepancy was seen as a serious concern: the observed
RB decay seemingly fails in characterizing the quality of quantum operations. To see the
possible immense disconnect between p and ftr(G̃,G, 1), consider the canonical example
where single-qubit gates are perfectly implemented, but differ from the targets G ∈ G by
a labeling of the Pauli axes:

G̃(X) = G(Y ) , (4.8a)

G̃(Y ) = G(Z) , (4.8b)

G̃(Z) = G(X) . (4.8c)

This noise model would lead to an absence of decay in the survival probability, that is
p = 1. Indeed, motion-reversal circuits are perfectly implementing the identity gate, re-
gardless of the length of the circuit. A quick calculation results in ftr(G̃,G,m) = 0, which

translates to a difference in orders of magnitude | log(1− p) − log
(

1− ftr(G̃,G, 1)
)
| that

tends to infinity as p → 1. The RB experiment indicates no operational error while the
average gate fidelity is 1/2. Does the outcome of RB massively underestimate the error?
Notice that since the implementation error is a permutation of labels, there is actually no
observable error in the device. The alarmingly low value of gate-set circuit fidelity of G̃ to
G is simply a consequence of a poor choice of targeted gate-set.

As a more involved example, let the noise model be G̃ = UGU † for any non-identity
unitary channel U and let the set of targeted operations be G (this includes our previous
mislabeling example as a special scenario). In such cases ftr(G̃,G, 1) can take any value in
the interval [0, 1), depending on the choice of U . However, using the same argument as in
the previous example, the survival probability is not subject to a decay (p = 1), showing
once again how the decay parameter could arbitrarily differ from a poorly defined average
gate fidelity. This apparent disconnect arises due to a basis mismatch between the bases
in which the noisy gate-set and the targeted gate-set are defined. A reconciliation of the
RB observations with a gate-set circuit fidelity is obtained by changing the set of targets
to UGU † since ftr(G̃,UGU †, 1) = 1. One might argue that implementing G̃ = UGU † in-
stead of the ideal G should raise an operational error. Not necessarily: consider a circuit
uniquely constructed from operations G̃i ∈ G̃. According to Born’s rule, the probability
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of measuring the outcome i associated with the positive operator µi after performing the
circuit on a state ρ is:

pi =
〈
µi, G̃m:1(ρ)

〉
=
〈
µi,UGmU † · · · UG2U †UG1U †(ρ)

〉
=
〈
µi,UGm:1U †(ρ)

〉
= 〈µ′i,Gm:1(ρ′)〉 , (4.9)

where ρ′ = U †(ρ), µ′i = U †(µi). That is, the error can be interpreted as part of SPAM pro-
cedures instead of operations. Since the unitary transformation can be pushed to either
SPAM procedures or coherent manipulations, it should be seen as a mismatch between
them. Indeed, the physical unitary conjugation G̃ = UGU † doesn’t affect the internal
action of operations, but exclusively the connection between operations and SPAM proce-
dures. Changing the targeted gate-set G to UGU † is allowed by the degree of freedom in
labeling the basis for SPAM procedures and the basis for processes.

In section 4.6.1, we show how exactly the disconnect between pm and ftr(G̃,UGU †,m)
depends on the choice of targeted gate-set UGU †. That is, we provide an expression of the
form

ftr(G̃,UGU †,m) = C(U)pm +D(m,U) , (4.10)

where U is a physical unitary channel (see theorem 25). A first interesting observation is
that D(m,U) is typically negligible or becomes rapidly negligible as it is also exponentially
suppressed in m2. This means that the relative variation in ftr as the circuit grows in
length,

ftr(G̃,UGU †,m+ 1)

ftr(G̃,UGU †,m)
= p+ δ(m,U) , (4.11)

depends weakly on the choice of targeted gate-set. More precisely, δ(m,U) is composed
of two factors: the first one decays exponentially in m and is at most of order (1− p)m/2,
while the second carries the dependence in U ; the existence of a specific choice of U such
that this last factor becomes at most of order (1− p)3/2 is proven in the single-qubit case
(section 4.6.2), and conjectured to hold in general. The explicit behaviour of δ(m,U) given
a numerically simulated gate-dependent noise model is illustrated in fig. 4.1.

2Since D(1,U) is typically close to 0, the exponential suppression is quite effective compared to pm ≈
1−m(1− p) which is essentially linear for small m.
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Consequently, the gate-set circuit fidelity can be updated with a good approximation
through the recursion relation

F(G̃,UGU †,m+ 1) ≈ 1

d
+ p

(
F(G̃,UGU †,m)− 1

d

)
. (4.12)

Roughly speaking, this means that the choice of basis U selected to express the targets,
UGU †, is not highly significant when it comes to updating the gate-set circuit fidelity as
the circuit grows in depth. The RB decay rate p enables the decrease in fidelity due to
adding a gate to a circuit to be predicted.

However, to provide insight on the total value of the gate-set circuit fidelity given a
circuit’s length m, we need a stronger relation between the RB estimate of p and the gate-
set circuit fidelity. Fortunately, the freedom in the choice of targeted gate-set allows us to
choose a basis which will facilitate estimation of the total change in gate-set circuit fidelity
for arbitrary circuit lengths.

In section 4.6.2, we prove that the potentially large disconnect between p and
ftr(G̃,UGU †, 1) under general gate-dependent noise is almost completely accounted for by
a basis mismatch which, as we argued earlier, does not exactly correspond to a process
error since unitary conjugation does not affect the internal dynamics of operations.

Proposition 1. For any single-qubit noisy gate-set G̃ perturbed from G, there exists an
ideal targeted gate-set UGU †, where U is a physical unitary, such that

F(G̃,UGU †,m) =
1

d
+
d− 1

d
pm +O

(
(1− p)2

)
. (4.13)

In fact, we conjecture this result to hold for any dimension, or at least for most realistic
gate-dependent noise models. To grasp the physical reasoning behind this, we refer to
the end of section 4.6.2, as it rests on some prior technical analysis. The extension of
proposition 1 to 2-qubit systems is supported by numerical evidence (see sections 4.6.1
to 4.6.2).

The unitary freedom appearing in the gate-set circuit fidelity means that there exist
infinitely many fidelity-based figures of merit describing noisy circuits, one for each targeted
gate-set UGU †. Of course, there exist choices of targeted operations that yield gate-set
circuit fidelities that differ from eq. (4.13) (see [131, 135]); the example shown in eqs. (4.8a)
to (4.8c) is an elementary instance thereof. Proposition 1 simply states that there exists
a natural choice of gate-set UGU † that connects the outcome of an RB experiment to a
gate-set circuit fidelity. The choice of basis U allows us to take either the perspective of the
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gates or the perspective of SPAM procedures. This is implicitly done when defining gates
relative to the energy eigenbasis of the system. In this picture, the gate-set circuit fidelity
describes the accuracy of the internal behaviour of operations as they act in concert.

To reformulate the result, the family of circuits G̃m:1 built from a composition of m noisy
operations G̃ ∈ G̃ mimics the family of ideal circuits UGm:1U † with fidelity 1

d
+ d−1

d
pm. In the

paradigm where the initially targeted operations G ∈ G are defined with respect to SPAM
procedures, U captures the misalignment between the basis in which the operations G̃ ∈ G̃
are defined and the basis defined by SPAM procedures. This goes farther: consider an
additional gate-set H, for which the targeted operationsH ∈ H are also defined with respect
to SPAM procedures. From proposition 1, there exists a physical unitary V for which H̃m:1

imitates the action of VHm:1V† with fidelity 1
d

+ d−1
d
qm (where q is estimated through RB).

U †V captures the basis mismatch between the gate-sets G̃ and H̃. A non-trivial mismatch
could easily be imagined if, for instance, gates belonging to H̃ were obtained through a
different physical process than G̃, or calibrated with regards to alternate points of reference.

4.4 Finding the appropriate set of targeted gates for

specific noise models

We now discuss how the appropriate unitary conjugation on the initial targeted gate-set
can be calculated for specific noise models, whether from numerical simulations, analytic
approximations, or tomographic reconstructions. As shown in theorem 25 and eq. (4.10),
the total change of gate-set circuit fidelity depends on the physical basis in which the ideal
gate-set is expressed. In the single-qubit case, we showed the existence of a physical basis
U that reconciles ftr(G̃,UGU †,m) with pm through proposition 1. One might suspect that
the unitary U can be found through the maximization of the gate-set fidelity:

U = argmax
V

F(G̃,VGV†, 1) , (4.14)

and indeed this would handle noise models of the form G̃ = UEGU †, as

p = ftr(G̃,UGU †, 1) ≥ ftr(G̃,G, 1) .

However, this hypothesis fails for simple noise models of the form G̃ = U †EGU †, where

p = ftr(G̃,UGU †, 1) ≤ ftr(G̃,G, 1) .
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These examples show that p can be greater or less than ftr(G̃,G, 1), depending on the noise
model. More examples are derived in [131, 135]. This particular case study is informative
as these two last noise models share something in common: there exists a choice of unitary
U that cancels the noisy map on the right of the noisy gate-set. Although such exact
cancellation is not always possible, we now show that a close approximation is sufficient.
Consider the slightly more general noise model of the form G̃ = ELGER, where we allow
fixed but arbitrary error maps to the left and the right of an ideal gate-set. It can be
shown while staying under the scope of the original analysis provided in [106, 107] that
pm = ftr(ERELG,G,m), since EREL is the effective error map between two otherwise perfect
implementations of the gate-set elements. In the single-qubit case (and for many, if not all
physically motivated higher dimensional noise models) there exists a unitary operation U
such that

F (EREL, I) = F(ELGER, UGU †, 1) +O((1− p)2) , (4.15)

(see section 4.6.2). That is, the fidelity of the map between two noisy gate-sets can be seen
as the gate-set circuit fidelity between a noisy gate-set and an appropriately targeted ideal
one. A choice of such physical unitary is

U = argmax
V

F (ERV , I) , (4.16)

which essentially cancels the unitary part of ER 3. Another way to see this is that the
unitary freedom allows us to reexpress the errors EL, ER as

EL → U †EL
ER → ERU .

We can then choose the unitary that depletes ERU from any coherent component. Intu-
itively, reexpressing the error on one side to make it incoherent prevents any type of unitary
conjugation of the form G̃ = UEGU †.

For more general gate-dependent noise models, the idea remains more or less the same.
As shown in section 4.6.2, the right error ER is replaced by its generalization, the 4th order

right error E (4)
R = E

[
G4:1

†G̃4:1

]
(eq. (4.38a)). From there, we find:

Proposition 2 (Finding the appropriate targeted gate-set). A proper choice of physical
basis U for which eq. (4.13) applies is

U = argmax
V

F
(
E
[
G4:1

†G̃4:1

]
V , I
)
. (4.17)

3Of course, argmax
V

F
(
V†EL, I

)
would also fulfill eq. (4.15).
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For this choice, U cancels the unitary part of the 4th order right error.

This provides a means to guide the search for the appropriate choice of ideal targeted
gate-set of comparison UGU † given a numerical noise model G̃. Indeed, the 4th order right

error is easily found, either by direct computation of the average E
[
G4:1

†G̃4:1

]
, or more

efficiently by solving the eigensystem defined in eq. (4.25a). The optimization defined in
eq. (4.17) can be solved via a gradient ascent parametrized over the d2 − 1 degrees of
freedom of SU(d).

In the single-qubit case, the optimization procedure can be replaced by an analytical
search. Given the process matrix E (4)

R of the 4th order right error, it suffices to find the

polar decomposition of its 3× 3 submatrix acting on the Bloch vectors: E (4)
R Πtr = DtrV tr.

The unitary factor V corresponds to U †, while the positive factor D captures an incoherent
process (rigorously defined in eq. (4.41)).

With this at hand, we performed numerically simulated RB experiments under gate-
dependent noise models. Each of the 24 Cliffords was constructed by a sequence of X and
Y pulses, Gx = P (X, π/2) and Gy = P (Y, π/2), where

P (H, θ) := eiθH/2 . (4.18)

The 2-qubit Cliffords were obtained through the construction shown in [10, 42], where the
11520 gates are composed of single-qubit Clifford and CZ gates. The implementation of
the 2-qubit entangling operation was consistently performed with an over-rotation: G̃CZ =
P (σ1

zσ
2
z − σ1

z − σ2
z , π/2 + 10−1). In fig. 4.2, the single-qubit gate generators are modeled

with a slight over-rotation: G̃x = P (X, π/2+10−1) and G̃y = P (Y, π/2+10−1). This model
exemplifies the failure of the maximization hypothesis proposed in eq. (4.14). In figs. 4.1
and 4.3, the single-qubit gate generators are followed by a short Z pulse, G̃x = P (σz, θz)Gx
and G̃y = P (σz, θz)Gy, which reproduces the toy model used in [131].

4.5 Conclusion

RB experiments estimate the survival probability decay parameter p of motion-reversal
circuits constituted of operations from a noisy gate-set G̃ of increasing length (see eq. (4.2)).
While motion-reversal is intrinsic to the experimental RB procedure, the estimated decay
constant p can be interpreted beyond this paradigm. In this chapter we have shown that,
in a physically relevant limit, the very same parameter determines an interesting figure
of merit, namely the gate-set circuit fidelity (defined in eq. (4.4)): as a random operation
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from G̃ is introduced to a random circuit constructed from elements in G̃, p captures the
expected relative change in the gate-set circuit fideilty through eq. (4.12).

It is also possible to characterize the full evolution of gate-set circuit fidelity as a
function of the circuit length. In this chapter, we have also demonstrated that given a
single-qubit noisy gate-set G̃ perturbed from G, there exists an alternate set of targeted
gates obtained through a physical basis change UGU † such that the gate-set circuit fidelity
takes the simple form given in eq. (4.13). This gives a rigorous underpinning to previous
work that has assumed that the experimental RB decay parameter robustly determines
a relevant average gate fidelity (eq. (4.3)) for experimental control under generic gate-
dependent scenarios. We conjecture a similar result to hold for higher dimensions and
provide numerical evidence and physically motivated arguments to support this conjecture.
Given any specific numerical noise model G̃ perturbed from G, we showed how to obtain
a physical unitary U for which eq. (4.13) holds. The procedure can be seen as a fidelity
maximation of the 4th order right error acting on the gate-set through a unitary correction
(see proposition 2).

The introduction of such a physical basis adjustment is natural because it has no
effect on how errors accumulate as a function of the sequence length. Rather, it only
reflects a basis mismatch to the experimental SPAM procedures. This is in principle
detectable by RB experiments but in practice not part of the goals of such diagnostic
experiments. In particular, differences in the (independent) basis adjustments required for
distinct gate-sets will not appear in any characterization of the individual gate-sets, but will
be detected when comparing RB experiments for this distinct gate-sets (e.g., comparing
dihedral benchmarking and standard randomized benchmarking experiments which have
distinct gate-sets but share gates in common, or comparing independent single-qubit RB
on two qubits - which has no two-qubit entangling gate - with standard two-qubit RB). We
leave the problem of characterizing relative basis mismatch between independent gate-sets
as a subject for further work.

4.6 Supplementary Material

4.6.1 An expression for the total change in the gate-set circuit
fidelity

In this section, we extend the standard RB analysis under gate-dependent noise provided
in [167, 116] in order to prove the claim from eq. (4.11) that standard RB returns the
relative variation of the gate-set circuit fidelity.
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Let A be the Liouville matrix of a linear map A and Πtr(ρ) = ρ − I tr ρ/d be the
projector onto the traceless component. We denote the Frobenius norm, which is defined
by the Hilbert-Schmidt inner product, as ‖·‖F . For instance, in the qubit case ‖Πtr‖2

F = 3.
We denote the induced 2-norm as ‖ · ‖2, which corresponds to the maximal singular value.
Let ej be the canonical unit vectors, A =

∑
j,k aj,keje

T
k , and

vec(A) =
∑
j,k

aj,kek ⊗ ej . (4.19)

Using the identity

vec(ABC) = (CT ⊗ A)vec(B) , (4.20)

we have

ftr(G̃,G,m) = E


〈
G̃m:1Πtr,Gm:1Πtr

〉
‖Πtr‖2

F


=

vec†(Πtr)

‖Πtr‖F
T mvec(Πtr)

‖Πtr‖F
(4.21)

where the twirling superchannel [37, 131, 167] is

T = E[Gtr ⊗ G̃] (4.22)

and Gtr = GΠtr. Changing the gate-set G to UGU † for some physical unitary U leaves
Πtr = UΠtrU †. Therefore

ftr(G̃,UGU †,m) =
vec†(UΠtr)

‖Πtr‖F
T mvec(UΠtr)

‖Πtr‖F
. (4.23)

The spectrum of T is unchanged under the basis change G → UGU †. Moreover, its most
important eigenvectors are as follows:

Lemma 24. Let p be the highest eigenvalue of T and

Am := p−mE
[
(Gtr,m:1)†ΠtrG̃m:1

]
, (4.24a)

Bm := p−mE
[
G̃m:1Πtr(Gtr,m:1)†

]
. (4.24b)

Then we have

vec†(AT
∞)T = p vec†(AT

∞) , (4.25a)

T vec(B∞) = p vec(B∞) . (4.25b)

56



Proof. By eq. (4.20),

vec(Bm) = p−mE((Gtr,m:1)∗ ⊗ G̃m:1)vec(Πtr) . (4.26)

As the Liouville representation is real-valued and the Gj are independent,

vec(Bm) = (T /p)m vec(Πtr) . (4.27)

Since the noisy gate-set G̃ is a small perturbation from G the spectrum of T will be
slightly perturbed from {1, 0, 0, . . .}. Therefore (T /p)m approaches a rank 1 projector as
m increases and so vec(B∞) is a +1-eigenvector of T /p.

The same argument applies to AT
∞.

Lemma 24 allows us to write

T = p
vec(B∞)vec†(AT

∞)〈
AT
∞,B∞

〉 + ∆ , (4.28)

with ∆vec (B∞) = vec†
(
AT
∞
)
∆ = 0. In eq. (4.23), we can expand the vectors as

vec†(UΠtr)

‖Πtr‖F
= a(U)

vec†(AT
∞)

‖A∞‖F
+
√

1− a2(U)w†(U) (4.29a)

vec(UΠtr)

‖Πtr‖F
= b(U)

vec(B∞)

‖B∞‖F
+
√

1− b2(U)v(U) (4.29b)

where

a(U) :=

〈
AT
∞,U

〉
‖Πtr‖2

F

(
‖A∞‖2

F

‖Πtr‖2
F

)−1/2

, (4.30)

b(U) :=
〈U ,B∞〉
‖Πtr‖2

F

(
‖B∞‖2

F

‖Πtr‖2
F

)−1/2

. (4.31)

and v(U), w(U) are implicitly defined unit vectors. Using this expansion together with
eq. (4.28) in eq. (4.23) yields the following result:

Theorem 25 (Total gate-set circuit fidelity). The gate-set circuit fidelity obeys

F(G̃,UGU †,m) =
1

d
+
d− 1

d
(C(U)pm +D(m,U)) , (4.32)

57



where

C(U) :=

〈
AT
∞,U

〉
‖Πtr‖2

F

〈U ,B∞〉
‖Πtr‖2

F

(〈
AT
∞,B∞

〉
‖Πtr‖2

F

)−1

=
〈Πtr,A∞U〉
‖Πtr‖2

F

〈
Πtr,U †B∞

〉
‖Πtr‖2

F

‖Πtr‖2
F

〈Πtr,A∞B∞〉
(4.33a)

D(m,U) :=
√

1− a2(U)
√

1− b2(U)w(U)†∆mv(U) . (4.33b)

In [131, 167, 116] it is shown that standard RB provides an estimate of p. Notice that p
is independent of the basis in which the ideal gate-set of comparison, UGU †, is expressed.

From eq. (4.32), it is straightforward to show that

δ(m,U) :=
ftr(G̃,UGU †,m+ 1)

ftr(G̃,UGU †,m)
− p =

√
1− a2(U)

√
1− b2(U)

w(U)†∆m(∆− pΠtr)v(U)

ftr(G̃,UGU †,m)
, (4.34)

which is exponentially suppressed. We show in the next section that the eigenvalues of
∆ are at most of order

√
1− p, which ensures a very fast decay, as shown in fig. 4.1.

Equation (4.11) is in fact a reformulation of eq. (4.34).

4.6.2 Varying the ideal gate-set of comparison

In this section, we prove proposition 1 by determining how the basis U of the ideal gate-set
UGU † affects the coefficients in eq. (4.32).

Let G be an ideal gate set defined with respect to the SPAM procedures. We can write
the elements of a noisy gate-set as

G̃ = G + δ
(I)
G G , (4.35)

so that the perturbations δG both capture the errors in the noisy gate and the mismatch with
the targeted computational basis. Under gate-independent noise with no basis mismatch,
G̃ = EG and the infidelity of the perturbed operations I + δ

(I)
G is r(E) := 1 − F (E , I). A

basis mismatch will change the infidelity of the perturbations roughly to r(UE) + r(U †) for
some unitary channel U , which will typically differ substantially from the fidelity inferred
from the associated RB experiment.
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Figure 4.1: Absolute value of the deviation δ(m,V) , described in eq. (4.11) (also
see eq. (4.34)), as function of circuit length m with noise model generated by G̃x =
P (σz, 10−1)Gx and G̃y = P (σz, 10−1)Gy, G̃CZ = P (σ1

zσ
2
z−σ1

z−σ2
z , π/2+10−1) (see eq. (2.30)).

The red triangles are obtained with the choice of basis V = I, while the blue circles are
obtained with the choice V = U where U is found through eq. (4.17). The purple horizontal
dashed line corresponds to (1−p)2, while the full green line corresponds to (1−F(G̃,G, 1))2.
For both ideal gate-sets G and UGU †, the deviation becomes quickly negligible as the se-
quence length increases. In fact, in the case V = U (blue circles), the deviation is always
below (1− p)2.

Experimentally, such basis mismatches will be relatively small as operations will be
somewhat consistent with SPAM procedures. Under this assumption, we now show that
there exists an alternate perturbative expansion,

G̃ = UGU † + δ
(U)
G UGU

† , (4.36)

for which r(I + Eδ(U)
G ) is in line with the data resulting from an RB experiment.

In section 4.6.1, we showed that (T /p)n converges to a rank-1 projector. We now
quantify the rate of convergence. Recall that T is perturbed from a rank-1 projector with
spectrum {1, 0, 0, · · · }. Hence, by the Bauer-Fike theorem [14], for any eigenvalue λ 6= p
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Figure 4.2: gate-set circuit fidelity F(G̃,VGV†,m) as a function of circuit length m with
noise model generated by G̃x = P (X, π/2+10−1), G̃y = P (Y, π/2+10−1), G̃CZ = P (Z1Z2−
Z1−Z2, π/2+10−1) (see eq. (2.30)). The different colors portray choices of basis; the yellow
circles V = I, the blue stars V = U where U is found through eq. (4.17), and the green
squares V = U2. Here the lines correspond to the fit for sequence lengths of m=5 to
10. The choice V = U produces the evolution prescribed by proposition 1, which through
extrapolation has an intercept of 1.

of T ,

|λ− 0| ≤ ‖E[Gtr ⊗ δ(I)
G G]‖2 (Bauer-Fike)

≤ E‖[Gtr ⊗ δ(I)
G G]‖2 (triangle ineq.)

= E‖δ(I)
G ‖2 (Unitary invariance)

≤ O

(
E
√
r(I + δ

(I)
G )

)
([166])

≤ O

(√
r(I + Eδ(I)

G )

)
(concavity)

This spectral profile implies that (T /p)n converges quickly to a rank-1 operator since the
eigenvalues close to zero are exponentially suppressed.

Hence, we can approximate the asymptotic eigen-operators defined in eqs. (4.24a)
and (4.24b) as:

A∞ = A4 +O(r(I + Eδ(I)
G )2) , (4.37a)

B∞ = B4 +O(r(I + Eδ(I)
G )2) . (4.37b)
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Figure 4.3: 1 − F(G̃,VGV†,m = 1) as function of the angle θz in noise model generated
by G̃x = P (σz, θz)Gx and G̃y = P (σz, θz)Gy, G̃CZ = P (σ1

zσ
2
z − σ1

z − σ2
z , π/2 + 10−1) (see

eq. (2.30)), with V = I (green squares) and V = U (blue circles) where U is found through
eq. (4.17). The red crosses correspond to (1− p)/2 obtained through RB experiments.

In the simple noise model ELGER, A∞ ∝ ΠtrER and B∞ ∝ ELΠtr. To pursue the analogy,
we denote the mth order right and left errors as

E (m)
R = E

[
(Gm:1)†G̃m:1

]
, (4.38a)

E (m)
L = E

[
G̃m:1(Gm:1)†

]
. (4.38b)

Combining eq. (4.38) and eq. (4.37), we get

A∞ ∝ ΠtrE (4)
R +O(r(I + Eδ(I)

G )2) , (4.39a)

B∞ ∝ E (4)
L Πtr +O(r(I + Eδ(I)

G )2) . (4.39b)

The structure of single-qubit error channels allows us to pursue a deeper analysis. It
follows from the channel analysis provided in [145] that, for high-fidelity qubit-channels,
the 3× 3 submatrix acting on the traceless hyperplane can always be decomposed as

EΠtr = DVΠtr (4.40)

where V is a physical unitary, and D is an incoherent process. Here we label a channel D
incoherent if

〈Πtr,D〉
‖Πtr‖2

F

=
‖DΠtr‖F
‖Πtr‖F

+O(r(D)2) . (4.41)

61



Incoherent channels have the additional property that , given an error channel Λ [33]

〈Πtr,DΛ〉
‖Πtr‖2

F

=
〈Πtr,D〉
‖Πtr‖2

F

〈Πtr,Λ〉
‖Πtr‖2

F

+O(r(DΛ)2) . (4.42)

Expressing the 4th order right error E (4)
R as

E (4)
R Πtr = DVΠtr . (4.43)

allows us to maximally correct it through a physical unitary:

F (E (4)
R V

†, I) = max
U

F (E (4)
R U , I) ≥ F (E (4)

R , I) . (4.44)

Using the property expressed in eq. (4.42), we get:〈
Πtr,E (4)

R V
†VE(4)

L

〉
‖Πtr‖F

=

〈
Πtr,E (4)

R V
†
〉

‖Πtr‖F

〈
Πtr,VE(4)

L

〉
‖Πtr‖F

+O(r(I + Eδ(I)
G )2). (4.45)

Looking back at theorem 25 and using eqs. (4.39a), (4.39b) and (4.45) results in

C(V†) = 1 +O
(
r(I + Eδ(I)

G )2
)
. (4.46)

Since both V and E (4)
L have at most infidelity of order r(I + Eδ(I)

G ), it follows that the

composition VE (4)
L must also have an infidelity of order r(I + Eδ(I)

G ), which guarantees

√
1− b2(V†) = O

(√
r(I + Eδ(I)

G )

)
, (4.47)

while incoherence guarantees√
1− a2(V†) = O

(
r(I + Eδ(I)

G )
)
. (4.48)

Using

|w(V†)†∆v(V†)| ≤ E‖δ(I)
G ‖2 ≤ O

(√
r(I + Eδ(I)

G )

)
(4.49)
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in eq. (4.33b), we find

D(1,V†) = O
(
r(I + Eδ(I)

G )2
)
, (4.50)

which, together with eqs. (4.32) and (4.46) leads to

ftr(G̃,V†GV ,m) = pm +O
(
r(I + Eδ(I)

G )2
)
. (4.51)

This expression allows us to pick a better perturbative expansion than eq. (4.35). Indeed,
choosing

G̃ = V†GV + δ
(V †)
G V†GV , (4.52)

ensures that the noisy operations I+ δ
(V †)
G have an gate-set circuit infidelity which is more

in line with the RB data:

r(I + δ
(V †)
G ) =

d− 1

d
(1− p) +O(r(I + δ

(I)
G )2) . (4.53)

Iterating the analysis leads to

ftr(G̃,V†GV ,m) = pm +O
(
(1− p)2

)
. (4.54)

This completes the demonstration of proposition 1.

Our current proof technique relies on the structure of single-qubit channels. For higher
dimensions, we conjecture that an analog of proposition 1 holds, although the scaling with
the dimension is unclear.

Conjecture 26. If the fidelity of E (4)
R is high, then ∃ a physical unitary V† s.t. E (4)

R V† is
incoherent.

As we now show constructively, conjecture 26 holds for physically motivated noise
models composed of generalized dephasing, amplitude damping, and unitary processes.
Under such noise models,

E (4)
R = UTDT · · · U2D2U1D1 (4.55)

for some unitaries Ui and incoherent channels Di.
The channel UDU † is incoherent for any physical unitary U , and the composition of

incoherent channels is also incoherent, so eq. (4.55) can be rewritten as E (4)
R = DV , where

D and V are incoherent and unitary respectively:

D = (UTDTUT †) · · · (UT :1D1UT :1
†) (4.56)

V = UT :1 . (4.57)
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Chapter 5

Randomized benchmarking under
different gate sets

5.1 Overview

We provide a comprehensive analysis of the differences between two important standards
for randomized benchmarking (RB): the Clifford-group RB protocol proposed originally in
Emerson et al (2005) and Dankert et al (2006), and a variant of that RB protocol proposed
later by the NIST group in Knill et al, PRA (2008). While these two protocols are fre-
quently conflated or presumed equivalent, we prove that they produce distinct exponential
fidelity decays leading to differences of up to a factor of 3 in the estimated error rates under
experimentally realistic conditions. These differences arise because the NIST RB protocol
does not satisfy the unitary two-design condition for the twirl in the Clifford-group protocol
and thus the decay rate depends on non-invariant features of the error model. Our analysis
provides an important first step towards developing definitive standards for benchmarking
quantum gates and a more rigorous theoretical underpinning for the NIST protocol and
other RB protocols lacking a group-structure. We conclude by discussing the potential
impact of these differences for estimating fault-tolerant overheads.

5.2 Introduction

Clifford-group randomized benchmarking (RB) [49, 45] has become the de facto standard
tool for assessing and optimizing the quantum control required for quantum computing
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systems by estimating error rates associated with sets of elementary gates operations. It
has been known for some time that this protocol leads to an invariant exponential decay
[49, 45, 99] because it is equivalent to a sequence of twirls [99] with unitary-two designs
[45].

More recently, the robustness of the Clifford-group RB protocol has been supported by
a rigorous theoretical framework, including proofs that an exponential fidelity decay will
be observed under very broad experimental conditions. This includes essentially arbitrary
state preparation and measurement errors [106, 107] and gate-dependent errors [171], as
well as proofs that the observed error rate relates directly to a well-defined notion of gate-
fidelity [171, 131, 31], which has fully overcome recent concerns about relating measured
RB error rates to a meaningful concept of gate-fidelity under gate-dependent errors [131].

While a wide-variety of group-based generalizations of RB have been proposed in recent
years, e.g. [12, 32, 43, 173, 172, 171], in this chapter we focus on clarifying the physical
relevance of a standing conflation in the literature between the now standard Clifford-group
RB protocol proposed in [49, 45] and an alternate version of RB proposed later by NIST
[92]. As described below, these are distinct protocols that measure distinct properties
of the error model and thus can produce different error rate estimates under the same,
realistic experimental conditions. Moreover, because the NIST protocol does not admit a
closed-group or unitary two-design structure, the rigorous theoretical framework justifying
Clifford-group RB does not trivially extend to support the physical interpretation and
robustness of NIST RB.

In this Letter we identify the operationally-relevant differences between the Clifford-
group RB protocol and the NIST version of RB which clarifies how they can lead to
very different error rate estimates given the same error model (as defined in terms of the
elementary control pulses). We then provide the first rigorous proof that the NIST RB
protocol does indeed produce an exponential decay under gate-independent error models.
This is an important step toward developing a theoretical justification for the NIST protocol
and other RB protocols that do not admit a group-structure in the case of gate-dependent
errors and the ultimate goal of a theoretical framework within which error reconstruction
under RB protocols with different gate sets can be extracted in a unified and consistent
manner. Our analysis is thus also essential for comparing cross-platform benchmarking
methods and standards for quantum computing.

As a second contribution, we numerically explore the size and scope of the quantitive
differences in estimated error rates that arise under each of the protocols for a variety of
physically relevant error models and pulse-decompositions, and observe that experimentally
estimated error rates can differ by as much as a factor of 3 in typical cases. We conclude
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by discussing how these differences are relevant for detecting gate-dependent errors, and
estimating fault-tolerant overheads under quantum error correction.

5.3 Background and Motivation

Figure 5.1: This timeline gives a clear overview of papers exploring the advantages and
disadvantages of Randomized Benchmarking under different gate sets. From its develop-
ment in 2005 with the use of SU(d)[49], to the more recent works which utilize other gate
sets to probe various aspects of the error model[45, 92, 10, 32, 43, 77, 60, 27, 133, 74].

The original proposal for randomized benchmarking from Emerson et al. [49] considered
implementing long sequences of quantum gates drawn uniformly at random from the group
SU(d) to characterize quantum systems with Hilbert space dimension d.
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Protocol 5: Standard Clifford-group RB, as described in [49, 45].

1. Sample a set of m gates Gi picked independently and uniformly at random
from the Clifford group C defined in eq. (5.5);

2. Determine the recovery gate Gm+1 (see text below);

3. Prepare a state ρ ≈ |0〉〈0|;

4. Perform the sampled gates from step 1, followed by the recovery gate Gm+1

determined in step 2:
G̃m+1:1 = G̃m+1 ◦ . . . ◦ G̃1;

5. Measure a POVM {Q, I−Q}, where the first observable is Q ≈ Gm+1:1(|0〉〈0|),
and respective outcome labels are {“recovery”, “non-recovery”};

6. Repeat steps 3–5 a number times to estimate the probability of observing the
“recovery” event Pr(“recovery”|{Gi},m) = trQG̃m+1:1(ρ);

7. Repeat steps 1–6 for s different sets of m randomly sampled gates {Gi};

8. Repeat steps for 1–7 for different values of m of random gates.

9. Fit the estimated recovery probabilities to the decay model

AC p
m
C +BC ; (5.1)

10. Estimate the Clifford gate-set infidelity through

rC = (1− pC)/2 . (5.2)

That work proved that the measured fidelity would follow an exponential decay with a
decay rate that is fixed uniquely by the error model, that is, the measured decay rate would
not depend on the choice of initial state or the specific random quantum gate sequences.

This protocol suffered from two limitations: the random gates were drawn from a
continuous set, which is impractical even for d = 2, and the protocol would not be efficient
for large systems because a typical random element of SU(d) requires exponentially long
gate sequences under increasing numbers of qubits. Additionally, in that limit the inversion
gate may not be computed efficiently.
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However, practical and efficient solutions to both of these problems were proposed in
Dankert et al. [45] in 2006, which proved and observed that drawing gates uniformly at
random from the Clifford group would lead to the same exponential decay rate as computed
in the protocol proposed earlier in Emerson et al. [49], which follows from the unitary 2-
design property of the Clifford group.

This connection is made more explicit through the observation that a random sequence
of gates drawn from any group is equivalent to an independent sequence of twirls under
that group, as shown explicitly in [99] and had been conjectured earlier in [49].

Collectively these papers define what is now known as Clifford-group RB, an efficient
and practical method for assessing error rates for quantum processors on arbitrarily large
numbers of qubits, summarized here as Protocol 5. This Clifford-group RB protocol has be-
come a de facto standard for benchmarking and optimizing gate performance and has been
implemented by a large number of groups across various hardware platforms to characterize
single- and multi-qubit gate operations, see, e.g., Refs [181, 119, 86, 10, 113, 152, 157].

The theoretical underpinnings of the standard protocol were clarified and further de-
veloped by Magesan et al. [106, 107], which showed that the exponential decay rate was
robust to state preparation and measurement errors (SPAM), and by Wallman [171] and
Dugas et al. [31], which showed that the exponential decay rate was meaningfully related
to a gate-fidelity in spite of the gauge freedom highlighted by Proctor et al. [131] that
occurs in the usual definition of the average gate-fidelity.

Additionally, the work of Wallman [171] established that the RB error rate is robust to
very large variations in the error model over the gate set (known as gate-dependent error
models) and thus established that RB can also be an effective tool for diagnosing non-
Markovian errors. This follows from the fact that only non-Markovian errors (including
what are sometimes called time-dependent Markovian errors) can produce a statistically
significant deviation from an exponential decay under a Clifford-group RB experiment.

A different version of the 2005 Emerson et al. [49] protocol was proposed by Knill et
al. [92] in 2008 and implemented in the NIST ion trap. This proposal involved the same kind
of motion reversal experiment proposed in Emerson et al [49] but selects random sequences
of gates drawn from a non-uniform sampling of the single-qubit Cliffords, defined as “Pauli-
randomized π/2 gates”. The precise recipe for this protocol is summarized as Protocol 6.
The NIST version of the randomized benchmarking protocol continues to be implemented
mainly in ion traps [26, 73]. We note that in contrast to the earlier Clifford-group RB
protocol which is defined for single- and multi-qubit gate operations, the NIST version of
RB is defined only for single-qubit gate operations.
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Protocol 6: NIST RB, as described in [92].

1. Sample a set of m gates Gi picked independently and uniformly at random
from the NIST gate-set N defined in eq. (5.8);

2–8. Idem as in protocol 5.

9. Fit the estimated recovery probabilities to the decay model

AN p
m
N +BN . (5.3)

10. Estimate the NIST gate-set infidelity through

rN = (1− pN)/2 . (5.4)

In this Letter, we prove that the measured fidelity under the NIST protocol will follow
an exponential decay, which has never been established for this protocol, and relate the
decay rate to the intrinsic properties of the error model, demonstrating how it differs from
the properties measured by Clifford-group RB. This analysis also provides the first step
towards developing a self-consistent theoretical framework for interpreting and relating the
results of the large and growing family of RB-style protocols, which all share the structure
of applying random sequences of gates and differ mainly through the choice of random
gate-set [32, 43, 173, 180, 37, 172, 64, 12, 133, 89, 50, 107, 152, 171].

Finally, an additional motivation for the present work comes from the recent conceptual
development [174] establishing how accurately RB error estimation methods can inform the
design and ‘in situ’ performance of large-scale quantum computations. This development
overcomes a standing criticism of RB protocols that the very nature of a randomization
protocol limits these protocols to detect only the stochastic component of coherent errors
- and hence that RB-type protocols are not able to capture the full impact of these er-
rors. Coherent errors are those that typically arise from imperfect quantum control due to
residual mis-calibrations 1 and pose a major challenge for reliable quantum computation.
However, this perceived limitation has become a strength of RB protocols thanks to the
concept of randomized compiling [174].

Randomized compiling is an important generalization and improvement to the concept
of Pauli-Frame Randomization (PFR) proposed earlier in [94] that does not require any

1Note that cross-talk is a non-trivial coherent error that results from control errors affecting distant
qubits.
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overhead for the randomization and works for universal gate sets 2. When implementing a
quantum algorithm via randomized compiling, the only performance limiting component
of a coherent error is precisely the stochastic component that is detected via RB protocols.
In summary, a precise and accurate understanding of RB error estimates is highly relevant
because RB detects precisely the component of the error that determines the ‘in vivo’
performance of the gate operations within a large-scale circuit performed via randomized
compiling.

5.4 Results

5.4.1 Standard RB vs NIST RB

The standard RB protocol (SRB) [49, 45] is summarized in protocol 5. The recovery
operations mentioned in step 2 is usually an inversion gate, Gm+1 = G−1

m:1, in which case
the recovery observable simply corresponds to the initial state: Q ≈ |0〉〈0|. However,
performing the inverse only up to a random bit flip (i.e Gm+1 = Xb

πG−1
m:1) leads to a simpler

decay model with fewer free parameters because then B = 1/2. Of course in this case
one has to keep track of the bit flip, that is Q ≈ Xb

π(|0〉〈0|). Such a randomized recovery
operation was proposed in [92].

SRB is typically implemented using the Clifford group C as a randomizing gate-set, as
specified in the first step of protocol 5, but the derivation of the decay model shown in
eq. (5.1) holds for any unitary 2-design [45]. The Clifford group is defined as follows. First
consider pulses along any Cartesian axis system

Xθ := e−iθ/2 X , Yθ := e−iθ/2 Y , Zθ := e−iθ/2 Z ,

where σi denote the unitary Pauli matrices. The Pauli group P is defined in terms of the
identity operation and 3 elementary π pulses: P := {I, Xπ, Yπ, Zπ}.

The Clifford group C is the normalizer of the Pauli group and can be obtained from
the Pauli group composed with the coset S := {I, Xπ/2, Yπ/2, Zπ/2, Zπ/2Xπ/2, X−π/2Z−π/2}:

C := S · P = {S ◦ P | S ∈ S,P ∈ P} . (5.5)

2In particular, relative to PFR, randomized compiling (i) does not add additional overhead to each
clock cycle, which it achieves by ‘compiling in’ the randomizing gates, (ii) works for universal gate sets,
and (iii) rigorously characterizes how close the effective error model is to a purely stochastic error model
under errors gate-dependent errors
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Some other experimental groups performed RB using alternate 2-design gate-sets in step
1 of protocol 5[10]. Amongst the set of possible unitary 2-designs, it is worth mentioning
those following subsets of C. Consider the cyclic group T := {I, Zπ/2Xπ/2, X−π/2Z−π/2},
then the following sets both form 2-designs of order 12:

C12 := T · P = {T ◦ P | T ∈ T,P ∈ P} , (5.6)
√
ZC12 := Zπ/2 · C12 = {Zπ/2 ◦ C | C ∈ C12} , (5.7)

with C12 ∪
√
ZC12 = C. Obviously, the decay parameters as well as the infidelity depend

on the randomizing gate-set (hence the indices).

The validity of the decay model and the connection between the decay parameter and
the gate-set infidelity have been demonstrated in the case of gate-independent Markovian
noise scenarios in [49]. The proofs of eq. (5.1) and eq. (5.2) have been generalized to
encompass gate-dependent noise scenarios in [171, 116] and [31] respectively3.

Although the proof techniques can get mathematically heavy, their essence remains
simple: the algebraic richness of 2-designs prevents the unpredictable accumulation of
errors with increasing circuit length. As we show with more care in the next section,
random sampling over the gate-set tailors the effective errors at each cycle to a depolarizing
channel for which the evolution is parameterized by a single real number p. The errors are
stripped of all properties except one, which turns out to be in one-to-one correspondence
with their average infidelity. By modifying the sampled circuits lengths, we can estimate
the parameter p and retrieve the infidelity.

While unitary 2-designs are provably effective randomizing gate-sets, leading to the
model portrayed in eq. (5.1), some algebraically weaker gate-sets have indicated a similar
exponential decaying behaviour.

The gate-set N used in NIST RB [92] is a composition of a set Q := {X±π/2, Y±π/2},
consisting of π/2 pulses in the xy-plane, with the Pauli operators:

N := Q · P = {Q ◦ P | Q ∈ Q,P ∈ P} . (5.8)

N has order 8, and although it contains all its inverse elements (that is ∀N ∈ N, ∃M ∈ N
s.t. M · N = I), it is not closed under multiplication. It does not form a group, nor a
2-design; however, the closure 〈N〉 forms the Clifford group C.

3In gate-dependent noise scenarios, the connection between the RB decay parameter and the gate-set
infidelity remains a (strongly supported) conjecture for d > 2.
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RB sequences can be seen as Markov chains [114], where the elements of the chain are
the aggregate circuits, that is C1 = G1, C2 = G2G1, Cm = Gm:1. Indeed, the probability dis-
tribution on circuits Cm = Gm:1 simply depends on the circuit Cm−1 and on the probability
distribution of the random gate applied at step m. In standard RB, Ci is always uniformly
distributed over the Clifford group. In NIST RB, C2n (or C2n+1) converges to a uniform
distribution over C12 (or

√
ZC12), as shown in fig. 5.2.

Figure 5.2: Probability distribution over the Clifford gates C (labelled as in [10]) after m
gates (i.e clock cycles) of NIST RB drawn uniformly at random from N ⊂ C. This leads to
a non-uniform sampling over the Cliffords that varies as m increases. Asymptotically, for
a sequence of even (or odd) length (hollow (or solid) shapes), the probability distribution
tends toward a uniform distribution over C12 (or

√
ZC12). The grey line indicates an equal

probability over the full 24 Clifford group C.

While this approach to RB has been useful for estimating error rates [92, 26, 73], in
the absence of a unitary 2-design structure, it is not clear how to relate the measured
probabilities from protocol 6 to the usual decay predicted under SRB, or to any definition
of infidelity for that matter. In this paper we provide a concrete analysis of the outcome
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of protocol 6, which yields a justification and interpretation for the decay model eqs. (5.3)
and (5.4).

It is important to emphasize that NIST RB now falls into a family of RB protocols
defined as “direct RB” [133]. The analysis below gives a concrete instance of direct RB
that both justifies and interprets past experiments and gives an insightful example of the
main idea behind direct RB.

5.4.2 Theoretical Analysis of NIST RB

The goal of this section is to provide the key insight behind the mechanics of NIST RB.
To lighten up the mathematical machinery, we assume a gate-independent error model4,
where the noisy gates are followed by an error E :

G̃ = EG . (5.9)

In such a model, the gate-set infidelities rC and rN are de facto equal to the infidelity of
the error r(E , I). We show that r(E , I) can be estimated by both protocols 5 and 6.

The recovery probabilities look like

TrQE Xb
πG−1

m:1︸ ︷︷ ︸
Gm+1

EGm · · · EG2EG1(ρ) . (5.10)

Compiling the last error E as well as the random bit flip Xb
π into the measurement procedure

(that is, letting Q→ Xb
πE†(Q)), leaves us with the random sequence which is at the heart

of both NIST RB and SRB protocols:

S({Gi}) = G−1
m:1EGm · · · EG2EG1 . (5.11)

In SRB, the next step in the analysis is to redefine the gates as Gi = G ′iG ′−1
i−1 (with

G1 = G ′1), where both Gi and G ′i are picked uniformly at random from the randomizing
set. Such a relabeling is possible because the randomizing gate-set is usually a group.
Averaging over all sequences yields

E{Gi}S({Gi}) = E{G′i}G
′−1
m EG ′m · · · G ′−1

2 EG ′2G ′−1
1 EG ′1

=
(
EC
)m

, (5.12)

4The formal analysis of direct RB under more general gate-dependent noise scenarios will be considered
in subsequent work. However, in section 5.6.1 we elucidate the broad reasoning required for a gate-
dependent analysis.
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where

EC :=
1

|C|
∑
G∈C

G−1EG (5.13)

is referred to as the twirl of the error E over the gate-set C. If C is a 2-design, then the
twirled channel EC is reduced to a depolarizing channel. To mathematically concretize the
description of a channel E , we resort to the 4 × 4 Pauli-Liouville representation, which is
defined as

Eij :=
1

2
trB†jE(Bi) (5.14)

where B1 = I, B2 = X, B3 = Y , B4 = Z. In this representation, the depolarizing channel
EC is expressed as a diagonal matrix diag(1, pC, pC, pC), where pC is a real number close to
1:

pC =
E22 + E33 + E44

3
. (5.15)

The averaged core sequence hence evolves as

E{Gi}S({Gi}) =
(
EC
)m

= diag(1, pmC , p
m
C , p

m
C ) . (5.16)

Deriving eq. (5.1) is then simply a matter of incorporating SPAM procedures in the eval-
uation of the recovery probabilities. Straightforward algebra links the infidelity of E with
its diagonal Liouville matrix elements through

r(E , I) =
1

2
− E22 + E33 + E44

6
. (5.17)

The relation between the decay constant pC and the gate-set infidelity rC = r(E , I) results
from combining eq. (5.15) and eq. (5.17).

The relabeling trick resulting in a m-composite depolarizing channel is not possible in
NIST RB: N is neither a group nor a 2-design. However, although N has a weaker algebraic
structure, it is not completely devoid of interesting properties. Indeed, every element of N
can be written as Pleft · Q · Pright, where Pleft, Pright ∈ P and Q ∈ Q := {X±π/2, Y±π/2}.
Using this, we can relabel every gate Gi as

G1 = C1Q1 , (5.18a)

Gi = CiQiC−1
i−1 (i = 2, · · · ,m) , (5.18b)

G−1
m:1 = Q−1

m:1C−1
m (5.18c)
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where Ci is chosen UAR from the Pauli group P, and Qi are chosen UAR from Q. Using
such a manipulation and randomizing over the Paulis transform the core sequence into

E{Ci}S({Gi}) = Q−1
m:1EPQm · · · EPQ2EPQ1 , (5.19)

where EP is the error channel twirled over the Pauli group. In the Pauli-Liouville picture,
the Pauli group has 4 inequivalent irreps; the twirled channel is diagonal:

EP = diag(1, x, y, z) , (5.20)

where x = E22, y = E33, z = E44. The relabeling method still can’t be used with the Qi’s,
but the simplification of the noise channel E through the Pauli twirl unveils a recursive
approach. Consider the m = 1 case:

E{G1}S({G1}) = E{Q1}Q−1
1 EPQ1 = EN , (5.21)

where the twirl over the NIST gate-set results in

EN = diag

(
1,
x+ z

2
,
y + z

2
,
x+ y

2

)
. (5.22)

The m = 2 case suggests a recursion relation:

E{Gi}S({Gi}) =
(
ENEP

)N
, (5.23a)(

ENEP
)N

= diag(1, x2, y2, z2) , (5.23b)

where

x2 =
x (x+z)

2
+ z (x+y)

2

2
, (5.24a)

y2 =
y (y+z)

2
+ z (x+y)

2

2
, (5.24b)

z2 =
x (x+z)

2
+ y (y+z)

2

2
. (5.24c)

Indeed, the general case can be expressed as

E{Gi}S({Gi}) =

(((
ENEP

)N EP)N EP · · ·)N

, (5.25a)(((
ENEP

)N EP)N EP · · ·)N

= diag(1, xm, ym, zm) , (5.25b)
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where the recursion relation can be stated as

xm =
x · xm−1 + z · zm−1

2
, (5.26a)

ym =
y · ym−1 + z · zm−1

2
, (5.26b)

zm =
x · xm−1 + y · ym−1

2
. (5.26c)

Using basic linear algebra, this system of recursive equations can be expressed as
xm

ym

zm

 = M


xm−1

ym−1

zm−1

 = Mm


1

1

1

 , (5.27)

where

M =
1

2


x 0 z

0 y z

x y 0

 . (5.28)

x, y, and z differ from 1 by at most order r(E , I). Hence, up to the second order in the
infidelity, M has the following spectrum:

E1 ≈
x+ y + z

3
= pC , (5.29a)

E2 ≈
x+ y

4
, (5.29b)

E3 ≈ −
x+ y + 4z

12
. (5.29c)

Since E1 ≈ 1, E2 ≈ 1/2 and E3 ≈ −1/2, Mm converges very quickly to a rank-1 operator
as m increases. This means that for m large enough so that 1/2m becomes negligible, xm,
ym, zm are proportional to Em1 :

E{Gi}S({Gi}) ≈ diag(1, C1Em1 , C2Em1 , C3Em1 ) , (5.30)

where Ci are proportionality constants. Equation (5.3) is obtained by incorporating the
SPAM procedures in evaluating the recovery probabilities, and by relabeling E1 as pN.
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Finally, the relation between the decay pN and the gate-set infidelity rN = r(E , I) is retrieved
via eq. (5.29a):

rN = (1− pN)/2 +O(r2
N) , (5.31)

which essentially states that the NIST RB decay parameter pN provides a very good esti-
mates of the gate-set infidelity rN through eq. (5.4).

With this analysis behind us, let’s compare the internal mechanics of protocols 5 and 6.
First of all, both protocols make use of randomizing gate-sets, C and N respectively. In both
cases, the randomization tailors the error dynamics such that the average core sequence
E{Gi}S({Gi}) evolves with respect to a single decay parameter, as show in eqs. (5.16)
and (5.30).

An interesting difference here is that the Clifford randomization simplifies the error
into a 1-parameter depolarizing channel at each time step, while the NIST randomiza-
tion doesn’t, as shown in eq. (5.22). In the latter case, certain error components remain
“imperfectly shuffled” after a few random gates, leaving space for a multi-parameterized
noise evolution portrayed by eqs. (5.27) and (5.28). However, as the random sequence gets
longer, the evolution quickly converges to a 1-parameter decay. The fact that this decay
relates to the infidelity shouldn’t be surprising, since diag(0, 1, 1, 1) is a channel compo-
nent that commutes with every unitary (so is immune to twirling). Given an error E , its
corresponding coefficient is (E22 +E33 +E44)/3, which has a one-to-one correspondence with
the infidelity r(E , I) via eq. (5.17).

5.4.3 Measured Error Rates under NIST RB vs SRB

In the previous section, we showed that under the assumption of gate-independent errors,
the gate-set infidelities rC and rN could be estimated via SRB and NIST RB respectively,
and that these estimates did both coincide with r(E , I). In reality, one might find through
experiment that rC and rN differ quite substantially. This, of course, is explained by gate-
dependent effects: certain gates have higher infidelities than others, and since rC and rN
each describe the expected gate infidelity over their respective gate-set (see section 5.6.1
for further justification), they will yield different values.

To demonstrate this, we numerically simulated both SRB and NIST RB experiments
implemented in different fashions, using a plethora of primitive pulse sets (see table 5.1)
each undergoing various physically realistic gate-dependent noise scenarios. The infidelities
retrieved from each protocol rC and rN are juxtaposed in fig. 5.3, and differ by up to a factor
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Figure 5.3: (Color online) A comparison between the gate-set infidelities rN (blue triangles)
and rC (red points) for pulse sets from table 5.1 with gate-dependent (a) coherent over-
rotation error Ĩ = I, X̃±θ = X±(θ+0.1), Ỹ±θ = Y±(θ+0.1), Z̃±θ = Z±(θ+0.1) (b) coherent

Z-rotation error Ĩ = Z0.1, X̃θ = Z0.1Xθ, Ỹθ = Z0.1Yθ, Z̃θ = Zθ+0.1, and (c) incoherent
dephasing error Ĩ = D0.99, X̃θ = D0.99Xθ, Ỹθ = D0.99Yθ, Z̃θ = D0.99Zθ, where Dα =
diag(1, α, α, 1). Under these error models and pulse sets, rN and rC differ by up to a factor
of 3, which could significantly affect the expected overhead under quantum error correction.

Figure 5.4: (Color online) A comparison between the scaled infidelities rN/nN (blue tri-
angles) and rC/nC (red points) using pulse sets from table 5.1 with gate-dependent (a)
coherent over-rotation error Ĩ = I, X̃±θ = X±(θ+0.1), Ỹ±θ = Y±(θ+0.1), Z̃±θ = Z±(θ+0.1) (b)

coherent Z-rotation error Ĩ = Z0.1, X̃θ = Z0.1Xθ, Ỹθ = Z0.1Yθ, Z̃θ = Zθ+0.1, and (c) in-
coherent dephasing error Ĩ = D0.99, X̃θ = D0.99Xθ, Ỹθ = D0.99Yθ, Z̃θ = D0.99Zθ, where
Dα = diag(1, α, α, 1). Clearly, even after accounting for the discrepancy between the av-
erage number of pulses per gate of these two RB protocols (nN & nC), the measured error
rates still differ due to their differing sampling over the gate sets.
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Index Pulse Set nC nN

1 {I, X̃+π/2, Ỹ+π/2} 3.08333 4.0

2 {X̃±π/2, Ỹ±π/2} 2.25 3.5

3 {I, X̃±π/2, Ỹ±π/2} 2.16667 3.0

4 {X̃π, Ỹπ, X̃±π/2, Ỹ±π/2} 1.91667 2.5

5 {Ĩ, Z̃π, X̃±π/2, Ỹ±π/2} 1.91667 2.5

6 {Ĩ, X̃π, Ỹπ, X̃±π/2, Ỹ±π/2} 1.875 2.25

7 {Ĩ, X̃π, Ỹπ, Z̃π, X̃±π/2, Ỹ±π/2} 1.8333 2.0

8 {I, Zπ, X̃±π/2, Ỹ±π/2} 1.66667 2.0

9 {I, X̃π, Ỹπ, Zπ, X̃±π/2, Ỹ±π/2} 1.58333 1.5

Table 5.1: Each of the 24 Cs and 8 Ns were constructed by a sequence of noisy (Ĩ, X̃θ, Ỹθ, Z̃θ)
and virtually (ideal) implemented (I, Xθ, Yθ, Zθ) pulses. Note that when implementing the
π pulses, the direction of rotation (sign of π) is selected uniformly at random as described
in [92]. nC and nN are the average number of noisy pulses per gate from C and N, and is
used for calculating the scaled infidelity (rC/nC and rN/nN).
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of ∼ 3. This might not strike as a major difference in a day and age where the infidelity is
typically filtered through its order of magnitude. That being said, for both surface codes
and concatenated quantum error correcting codes, the overhead becomes more sensitive to
the error rate as it approaches the fault-tolerant threshold. Therefore, a factor of 3 could
dramatically increase the overhead (by more than an order of magnitude) if the error rate
is close to the threshold. In the extreme case, the factor of 3 could cause the error rate to
surpass the threshold and fault tolerance would become impossible.

One might be tempted to reconcile those different infidelities by accounting for the
number of primitive pulses that form each gate-set element. That is, if the Clifford gates
C ∈ C necessitate the average application of nC = 1.875 pulses and that the NIST gates
N ∈ N require an average of nN = 2.25 pulses, it might seem natural to scale the infidelities
as rC/nC and rN/nN. This is a common misconception because scaling the infidelity is
only meaningful if it grows linearly with the number of pulses, as for a purely stochastic
error. For example, in gate-dependent dephasing scenarios, the scaled infidelities (rC/nC
and rN/nN) only differ by O(r2

N) because the error is purely stochastic (incoherent) and
pulse-independent (see fig. 5.4c).

Contrarily, it has been shown that under coherent error scenarios, the composite errors
can vary non-linearly [33], as they can positively and negatively interfere. Therefore, when
the error is coherent, NIST RB and SRB obtain different scaled infidelities, despite the
infidelity per pulse remaining fixed (see figs. 5.4a and 5.4b) because they are sampling
differently from the pulse sets, which causes them to probe different coherent error models.
As such, it is bad practice to measure the scaled infidelity which is not equivalent to, and
should not be confused with, the error per pulse.

5.5 Conclusion

Randomized benchmarking (RB) is an important tool for estimating error rates associated
with sets of elementary gate operations. SRB and NIST RB are two distinct RB protocols
that have been confused in the literature and can lead to distinct outcomes. In this work
we developed a rigorous theoretical framework proving that NIST RB, like SRB, leads to
an exponential decay which depends only on the underlying gate-independent error model.
We showed SRB, which samples from a uniform 2-design, and NIST RB, which samples
from a subset of it, lead to significantly different observed error rates for a variety of
physically realistic gate-dependent error models and pulse sets (see fig. 5.3). The common
experimental error models that we use throughout this study, we obtain error rates which

81



differ by up to a factor of 3, which could have a significant impact on the overhead when
implementing fault-tolerant quantum error correction.

A next step is to develop a rigorous theoretical framework under which the experimental
results from NIST RB and other RB methods using arbitrary gate sets can be analyzed
in a unified and related to infer properties of the underlying error model in a consistent
manner.

5.6 Supplementary Material

5.6.1 NIST RB analysis under gate-dependent noise

In this section, we broadly justify the validity of NIST RB in the case of gate-dependent
error models. Since a complete analysis would necessitate pages of mathematical develop-
ments, we first direct the reader to [171, 31, 116, 133].

The essence of the proof of the decay model eq. (5.3) resides in realizing that the RB
recovery probabilities evolve as a combination of decays

∑
i p

m
i , where pi are the eigenvalues

of ENG ⊗ G̃ . Those eigenvalues are slightly perturbed from those of ENG ⊗ G . In the case
of the NIST gate-set N, the non-zero eigenvalues are 1, 1, 1/2 and −1/2. In the perturbed
case (ENG ⊗ G̃), the first eigenvalue remains 1, as the trace-preservation property causes
it to remain invariant, and the second one becomes pN ≈ 1. The two eigenvalues which
are close to ±1/2 decay very fast as the circuit grows, and don’t contribute to the decay
model for large m.

The relationship between the decay constant pN and the infidelity rN (eq. (5.4)) can
be derived as a straightforward generalization of the analysis derived in [31]. Let the
eigenvector corresponding to the decay pN be

ENG ⊗ G̃vec(L) = pNvec(L) , (5.32)

where vec(·) is the column vectorization. In a nutshell, eq. (5.4) holds as long as the
singular values of L are close to each other, which is shown to be the case in 1-qubit SRB
[31]. The reasoning, as it pertains to the NIST gate-set, goes as follows: Let Πtr be the 3×3
projector on the traceless hyperplane (the Bloch space). Given the spectrum of ENG ⊗ G̃,
we have:

L ≈ E

(
G̃mG̃m−1 · · · G̃1G−1

m:1

pmN

)
Πtr , (5.33)
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for m large enough so the r.h.s converges. Indeed, performing p−1
N ENΠtrG ⊗ G̃ multiple

times converges very quickly to a rank-1 projector onto the desired eigenspace. Since L is
the result of a reasonably short sequence of noisy operations ( say m = −2 log(r)/ log(2) ),
it is proportional to a high-fidelity channel, for which the singular values are close to each
other (at least in the single-qubit case).
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Chapter 6

Gold standard for cross-platform
comparisons of basic gate-sets

6.1 Overview

Quantum computers will have the potential to solve some of humanity’s greatest problems.
One of the main barriers to the development of quantum computers is that quantum errors
are ubiquitously present in quantum systems. We propose a set of optimal protocols to
assess the performance of single- and two-qubit gates, both for internal use to optimize
device performance as well as to make cross-platform comparisons. The former use case
provides insight into device performance for specific applications, allowing a device to be
tuned effectively for a given use-case by focusing on the relevant gate-set. This enables
targeted tune-up of control pulses, optimization of pulse-design, and automation of cali-
bration, which will reduce error and thus will allow hardware developers to increase the
complexity of their quantum computations. The cross-platform comparisons of different
primitive universal gate-sets includes an even-handed assessment of any two-qubit entan-
gling gate, and rigorous systematic error bounds to estimate the worst case error. We
report results from implementing these protocols across a variety of leading platforms,
including both superconducting qubits and trapped ions.

84



6.2 Introduction

To develop quantum devices capable of solving real world problems, the system size and
sequence length of operations must continue to grow. Unfortunately, due to the cross-talk
between qubits, the amount of error grows exponentially with the system size, and grows
non-linearly with sequence length as coherent errors generally positively interfere with each
other. In other words, quantum errors are the Achilles heel to the development of a univer-
sal quantum computer. Error characterization schemes will play an important role in both
the NISQ era and in the long run because they help guide the improvement of devices by
aiding in calibration, and making various assessments (FTQC or NISQ) to test the reliabil-
ity of computations. There are various schemes for analyzing the performance of quantum
devices [101, 83] ranging from tomographic approaches [41, 129] to more “streamlined”
protocols such as Randomized Benchmarking[49, 95, 106]. The abundance of possible di-
agnostic tools leads us to several important questions: Which protocols should be used to
evaluate the noise in a quantum device, and in which context? How do we combine them?
What kind of diagnoses can we make from the data?

In this chapter, we propose the basic gate-set assessment (BGSA), a well-rounded
standard for characterizing single- and 2-qubit errors which can be used for any gate-based
quantum device and entangling gate. We argue that the BGSA can be used to make an
even-handed, cross-platform comparison of universal gate-sets. Since each platform uses
unique techniques to implement quantum gates, a cross-platform comparison must focus
on assessing gates rather than evaluating the hardware-level pulses directly. The BGSA
can also be used for local tune-up, and if the amount of cross-talk is low, then it is enough
to tune up large quantum devices each pair at a time.

Prior to this work, an even-handed cross-platform comparison had not been proposed
due to the many device-specific restrictions, the many degrees of freedoms when running
benchmarking protocols, and the uncertainty about how to compare results from such
different implementations. It was previously unclear how to interpret Randomized Bench-
marking data when gate depths varied significantly within a gate-set. Since benchmarking
protocols usually provide fidelity metrics for entire gate-sets, the gate-set would need to
be chosen such that it could be unbiasedly implemented by any device. Since different
platforms use different elementary gates, they each have very different gate-set implemen-
tations, and even more alarming, the fidelity may vary greatly from one gate-set element
to the other on the same device. Additionally, different gate-sets may be used for different
purposes by the same device, and so it is important to choose a gate-set which will provide
an unbiased comparison. For example the use of the SU(4) group is great for comparing
how well a device can implement a universal gate-set, while the Clifford group is better
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when trying to recalibrate the system due to its more standard gates.

Many 2-qubit gates which are seen in literature fall within the 2-qubit Clifford group
(examples include CNOT, CZ, iSWAP, and SWAP). All 2-qubit Cliffords can be subdivided
into 4 distinct sets: 1) tensor-like (i.e. the tensor product of 2 single-qubit Cliffords),
2) CNOT-like, 3) iSWAP-like, and 4) SWAP-like[11]. These 4 sets can be thought of
as equivalence classes up to single-qubit Cliffords, meaning that any gate inside a set
is equivalent to all other gates inside that set up to conjugation by single-qubit Clifford
operations. Most physical implementations of 2-qubit gates typically attempt to implement
either a CNOT-like or iSWAP-like operation. Since some devices implement a 2-qubit gate
with a single 2-qubit pulse and others with a 2-qubit pulse and multiple single-qubit pulses,
the depth of the implementation can vary between devices even when applying the same
gate. Sampling a gate at random from the 2-qubit Cliffords can therefore lead to variations
in total pulse count depending on what physical gates are available on hardware.1 This
problem is exacerbated when hardware does not use Clifford-like operations [7] in their
elementary gate-set. In those situations, the composition of physical gates may be close to
Clifford gates, but the imperfections mean the decomposition into several pulses may lead
to large variations in gate depths.

Sampling from SU(4), however, almost uniformly leads to the same total gate depth
no matter which element of SU(4) is chosen. A randomly chosen element of SU(4) has a
vanishingly small probability of being in C2, and as a result any CNOT-like or iSWAP-
like gates will require exactly 3 entangling gates plus single-qubit operations to decompose
precisely. Numerically, we demonstrate that this property of entangling gate depth extends
beyond those two Clifford groups to gates which are “close” to being Clifford as well, so
that any gate which is sufficiently “close” to a Clifford gates can be decomposed into a form
requiring exactly 3 entangling gates. The gates in ref [7] satisfy this condition. There are a
number of applications where it is necessary to perform operations which are non-Clifford.
VQE (Variational-Quantum-Eigensolver) is one example of such an application, which is a
hybrid classical and quantum algorithm to find the eigenvalues of a large matrix. In such
a situation, hardware which is unable to perform a native Clifford gate can still perform
as well as hardware which has native Clifford operations.

To ensure that gate depth does not impact performance metrics, when the BGSA is used
to make an unbiased, cross-platform comparison of the error acting on a universal gate-set,
the gates are sampled from SU(4). Conversely, when the BGSA is used internally for local
performance optimization, we recommend sampling from the 2-qubit Clifford group. While

1Note that this fluctuation in the number of gates can be reduced for 2-qubit Clifford RB by compiling
into a fixed depth.
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the Clifford group is not a universal gate-set, we recommend using C2 as its elements can
be implemented with circuits of lower depth than those of SU(4). For very high error
rates, the fidelity will decay less quickly for C2 than when using SU(4), and therefore the
estimate of the single gate process infidelity of the entangling gate will be more stable.

Process infidelity (eF ) is the figure of merit used in this chapter to characterize various
aspects of the error model. For any channel A and B

1− eF (A⊗B) = (1− eF (A))(1− eF (B)), (6.1)

or
eF (A⊗B) = eF (A) + eF (B)− eF (A)eF (B) ≈ eF (A) + eF (B), (6.2)

This relationship does not hold for the more commonly used average gate infidelity, (r).
The conversion between the process infidelity and average gate infidelity is:

eF =
d+ 1

d
r. (6.3)

The process infidelity is related to the depolarizing parameter by:

p = 1− d2eF
d2 − 1

. (6.4)

The stochastic process infidelity (eS) from XRB can be written in terms of the unitarity
(u) as:

eS = 1−
√

(d2 − 1)u+ 1

d2
(6.5)

Section 6.3 is a summary of the BGSA. This includes an overview of how each protocol
is implemented, the physical interpretation of the returned figures of merit, how these
figures of merit can be used together to give a well-rounded picture of the error profile,
the twirling set used for each protocol, the number of circuits needed to implement each
protocol, and a summary of our recommendations for the various user freedoms.

Section 6.4 discusses the experimental results obtained by implementing the BGSA
on two superconducting devices (Yorktown5

2 a 5 qubit device from IBM and AQT 4 an 8
qubit device with 4 operational qubits at the time of implementation from LBNL), and
one ion-trap device (H06 a 6 qubit device from Honeywell), making it the first even-handed

2The notation here is DevNamenqubits where Devname is the name of the device, and nqubits is the
total number of operational qubits the device had at the time of implementation.

87



cross-platform comparison of quantum devices. Note that the results obtained from the
Yorktown device were from late 2019 on one of IBM’s open devices, and therefore do not
showcase how well their premium devices currently operate.

We begin by first examining the single-qubit gates of these devices and the amount
of single-qubit cross-talk there is between the target pair of qubits. Then we discuss the
various error estimates associated with the two-qubit gates. This includes the amount of
coherent and stochastic error effecting each device, how the dressed gate process infidelity
from IRB compares to the bare gate process infidelity from SRB, how well those values
are used together to estimate the single gate process infidelity of the entangling gate, how
the systematic upper bound can be tightened significantly by accounting for the amount
of stochastic error, how the coherent upper bound from IRB compares to the systematic
upper bound from CB, and when using CB, how well the dressed gate process infidelity
approximates the single gate estimate when the P2 error is insignificant.

6.3 Basic Gate-Set Assessment

In this section, we propose a simple, fast, and non-controversial suite of benchmarking pro-
tocols that assesses the performance of single- and 2-qubit gates. The suite, referred to as
the Basic Gate-Set Assessment (BGSA), includes four types of experiments, namely Stan-
dard Randomized Benchmarking (SRB), Interleaved Randomized Benchmarking (IRB),
Extended Randomized Benchmarking (XRB), and Cycle Benchmarking (CB). For histor-
ical continuity, the single-qubit assessment is done with a Clifford-based SRB.

The choice of gate set used in the assessment depends on the underlying goal. When
the objective is to participate in an unbiased cross-platform comparison, we recommend
running the BGSA on many – if not all – connected qubit pairs in order to find the best
pair because the same gate performed on different qubits will have a different noise profile.
We therefore benchmark the best pair of qubits for each device to obtain a fair comparison.
The twirling group used for the 2-qubit assessment must be SU(4). The use of SU(4) allows
the BGSA to benchmark a universal gate set (universal gatesets are primitives for quantum
volume [44]), and make an unbiased comparison between arbitrary native entangling gates
(G) with different entangling power which enables a comparison of platforms with and
without native Clifford gates.

It is common to compare platforms by comparing the fidelities of the respective entan-
gling operations[83]. Some devices may have a high-fidelity entangling gate, but require
many gates to generate an element of SU(4), while a different device may have a lower-
fidelity entangling gate, but require fewer of those gates on average to generate an element
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of SU(4). This is a motivation behind defining the quantum volume as a cross-platform
metric[44]. Hence, for the sake of a cross-platform comparison, it is best to compare SU(4)
fidelities rather than the fidelities of entangling gates, which may not be operationally
equivalent.

Calibration rounds mostly target individual gates of interest, in which case IRB-like
experiments become central. There is no particular need to reduce the variation of gate
depths within the randomizing set. Rather, it is beneficial to choose a randomizing set
that has the highest fidelity. Higher fidelity randomizing sets provide higher resolution
estimates for single gate fidelity[85]. Compared to C2, SU(4) exhibits less variation in the
gate depth required to implement a given element, but generally has a lower fidelity. SU(4)
has greater circuit depth and complexity for each of the RB operations, so for very high
error rates, the fidelity decays too fast which causes the IRB estimate to be subject to high
precision loss.

In this section we will describe the protocols using SU(4) instead of C2, for simplicity.
In practice, users can choose to use either SU(4) or C2 to implement BGSA, depending
on their use-case. When the purpose of implementing the BGSA is for local tune-up, use
the suite of protocols from table 6.1, and when used to participate in a cross-platform
comparison, use the protocols from table 6.2. Note that the 2-qubit Paulis (P2) are used
in the Cycle Benchmarking experiments. Three sequence lengths are taken for all SRB
protocols to test the Markovianity of the error.

In the following two subsections, we list all of the protocols contained in BGSA and
what information they retrieve about the noise profile. We argue that in combination, this
set of protocols provides a well-rounded understanding of the error profile, while keeping
the number of circuits needed to a reasonably low count.

6.3.1 Single-qubit gates benchmarking experiments

Isolated SRB

Using the single-qubit Clifford group (C1) as the twirling group, we calculate the isolated
single-qubit process infidelities eF (Cq1|Cq1 ⊗ Iq2) and eF (Cq2|Iq1 ⊗ Cq2) of each of the two
qubits of interest via SRB (from protocol 1). This figure of merit is the average error
induced by single-qubit operations, when they are applied in isolation.
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Protocol Estimate Twirling Group
Interleaved/
Hard Gate

# Circuits

Isolated SRB eF (Cq1|Cq1 ⊗ Iq2) (C1,q1) 90

eF (Cq2|Iq1 ⊗ Cq2) (C1,q2) 90

Simultaneous SRB eF (Cq1|Cq1 ⊗ Cq2) ((C1,q1),(C1,q2)) 90

eF (Cq2|Cq1 ⊗ Cq2) ((C1,q1),(C1,q2)) 90

SRB eF (C2) (C2,q1,q2) 90

XRB eS(C2) (C2,q1,q2) 540

IRB eF (C2G) (C2,q1,q2) G 60

CB eF (P2) (P2,q1,q2) I ⊗ I 540

eF (P2G) (P2,q1,q2) G 540

Table 6.1: The protocols which make up the BGSA when used for calibration, along with
their corresponding estimated figures of merit, twirling group, interleaved gate (where
G is the entangling gate of the device), and number of different circuits used for the
implementation of the protocols. The notation for a group acting on an n-qubit system
Cn, should not be confused for the notation for a single-qubit group acting on qubit a, Cqa .
The process infidelity of Cq1 (Cq2) is given by eF (Cq1|Cq1 ⊗ Iq2) (eF (Cq2 |Iq1 ⊗ Cq2))

3when
single-qubit gates are run in isolation, and eF (Cq1|Cq1⊗Cq2) (eF (Cq2|Cq1⊗Cq2)) when they
are run simultaneously. The process infidelity of C2 (P2) is given by eF (C2) (eF (P2G)),
and its stochastic process infidelity is given by eS(C2), while the process infidelity of the
dressed cycle is given by eF (GG) (eF (P2)). See table 6.4 for experimental results.

|0〉 C1 C2 · · · Cm+1

|0〉 . . .

For Ci ∈ C1 and Cm+1 = C−1
{1:m} = (Cm ◦ · · · ◦ C1)−1

Simultaneous SRB

Twirling with the single-qubit Clifford group, we calculate the simultaneous single-qubit
process infidelities eF (Cq1 |Cq1 ⊗ Cq2) and eF (Cq2|Cq1 ⊗ Cq2) on each of the two qubits of

3The notation eF (A|A⊗B), is the process infidelity of TrB(A⊗B), to obtain the process infidelity of
just A (see eq. (2.21)).
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Protocol Estimate Twirling Group
Interleaved/
Hard Gate

# Circuits

Isolated SRB eF (Cq1 |Cq1 ⊗ Iq2) (C1,q1) 90

eF (Cq2 |Iq1 ⊗ Cq2) (C1,q2) 90

Simultaneous SRB eF (Cq1|Cq1 ⊗ Cq2) ((C1,q1),(C1,q2)) 90

eF (Cq2|Cq1 ⊗ Cq2) ((C1,q1),(C1,q2)) 90

SRB eF (SU(4)) (SU(4),q1,q2) 90

XRB eS(SU(4)) (SU(4),q1,q2) 540

IRB eF (SU(4)G) (SU(4),q1,q2) G 60

CB eF (P2) (P2,q1,q2) I ⊗ I 540

eF (P2G) (P2,q1,q2) G 540

Table 6.2: The protocols which make up the BGSA cross-platform comparison, along with
their corresponding estimated figures of merit, twirling group, interleaved gate (where
G is the entangling gate of the device), and number of different circuits used for the
implementation of the protocols. The process infidelity of Cq1 (Cq2) is given by eF (Cq1|Cq1⊗
Iq2) (eF (Cq2|Iq1 ⊗Cq2)) when single-qubit gates are run in isolation, and eF (Cq1|Cq1 ⊗Cq2)
(eF (Cq2|Cq1⊗Cq2)) when they are run simultaneously. The process infidelity of SU(4) (P2) is
given by eF (SU(4)) (eF (P2G)), and its stochastic process infidelity is given by eS(SU(4)),
while the process infidelity of the dressed cycle is given by eF (SU(4)G) (eF (P2)). See
table 6.4 for experimental results.

interest by running single-qubit SRB (protocol 1) simultaneously on each qubit.

|0〉 Ci1 Ci2 · · · Cim+1

|0〉 Cj1 Cj2 · · · Cjm+1

For Cik , Cjk ∈ C1 and Cim+1 ⊗ Cjm+1 = C−1
{1:m} = (Cim ◦ · · · ◦ Ci1)−1 ⊗ (Cjm ◦ · · · ◦ Cj1)−1

The difference between the simultaneous single-qubit process infidelity and the isolated
single-qubit process infidelity is the process infidelity of a type of cross-talk between the
two qubits.
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6.3.2 2-qubit gates benchmarking experiments

SRB

Isolated 2-qubit SRB (from protocol 1) tests the quality of the 2-qubit registers by calcu-
lating the bare gate process infidelity, eF (SU(4)), of the SU(4) group.

|0〉
U1 U2

· · ·
Um+1

|0〉 · · ·

For Ui ∈ SU(4) and Um+1 = U−1
{1:m} = (Um ◦ · · · ◦ U1)−1.

XRB

XRB (protocol 3) produces an exponential fidelity decay which is used to calculate the the
stochastic process infidelity of the error, eS(SU(4)), which is related to the unitarity via
eq. (6.5).

|0〉
Uj1 Uj2

· · ·
Ujm

|0〉 · · ·

eS can be used to calculate the coherent process infidelity eU [30]:

eU(SU(4)) = eF (SU(4))− eS(SU(4)). (6.6)

eU indicates the maximum amount of error that could be caused by correctable miscal-
ibrations of the system. If this value is large, than it suggests that some improvement can
be made via re-calibration.

The stochastic process infidelity can also be used to tighten the systematic error bound
of the single gate process infidelity, eF (G) [34].

IRB

Isolated 2 qubit IRB (protocol 2) is used to calculate the dressed gate process infidelity,
eF (SU(4)G), of SU(4) composed with the chosen entangling gate G,
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|0〉
U1 G U2 G

· · ·
G Um+1

|0〉 · · ·

where Um+1 is the inverse of the total sequence.

The single gate process infidelity eF (G) of the entangling gate G can be approximated
by combining the data retrieved by isolated 2-qubit IRB with the previously generated
SU(4) SRB data via

eF (G)SU(4) ≈ eF (SU(4)G)− eF (SU(4)), (6.7)

which is bounded by the systematic bound from [34]∣∣1− eF (G)SU(4) − eF (SU(4)G)eF (SU(4))− (1− eF (SU(4)G))(1− eF (SU(4)))
∣∣

≤ 2
√
eF (SU(4)G)eF (SU(4))(1− eF (SU(4)G))(1− eF (SU(4))).

(6.8)

These systematic bounds can be tightened by taking into consideration the unitarity of
the error profile [34]. For clarity, we refer to this tighter bound as the coherent bound.

∣∣∣∣p(G)SU(4) −
p(SU(4)G)p(SU(4))

u(SU(4))

∣∣∣∣ ≤
√

1− p(SU(4))2

u(SU(4))

√
1− p(SU(4)G)2

u(SU(4))
, (6.9)

where p(SU(4)) is the average gate depolarizing parameter of SU(4) obtained via SRB
(see eq. (6.4)), p(SU(4)G) is the average gate depolarizing parameter of the composition
of the error from the entangling gate G with SU(4) obtained via IRB, and u(SU(4)) is the
unitarity (see eq. (2.58)) of SU(4). This coherent bound is tighter for smaller unitarity.
Therefore the closer the error is to stochastic, the tighter the coherent bound.

Bare gate CB

Similar to SRB, the bare gate process infidelity of the Pauli group, eF (P2), is calculated
using Cycle Benchmarking (protocol 4) with P2 as the twirling group.
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|0〉
Bi Pj1

I
Pj2

I · · · I
Pjm B†j(i)

|0〉 I I · · · I

for P ∈ P2. Note that here the hard/interleaved gate is the single-qubit I, which can
be removed when the circuits are compiled, and should not be physically implemented in
practice.

Dressed gate CB

Similar to IRB, dressed gate CB (protocol 4) is used to calculate the average dressed gate
process infidelity of the entangling gate (G) composed with P2, eF (P2G).

|0〉
Bi Pj1 G

· · ·
G Pjm B†jG(i)

|0〉 · · ·

These circuits are generated such that the m’s differ by k such that Gk is factorizable.

The single gate process infidelity eF (G)P2 of the entangling gate can be calculated using
the results from dressed gate CB and bare gate CB via:

eF (G)P2 = eF (P2G)− eF (P2) ≈ eF (P2G). (6.10)

As we will see in the next section, CB gives an estimate of the single gate process
infidelity with significantly smaller statistical and systematic uncertainty calculated via
[34]

|1− eF (G)P2 − eF (P2G)eF (P2)− (1− eF (P2G))(1− eF (P2))|
≤ 2
√
eF (P2G)eF (P2)(1− eF (P2G))(1− eF (P2)),

(6.11)

due to the low Pauli gate error.

6.3.3 BGSA user freedoms

The final choice is how to calculate the single gate process infidelity of the entangling gate.
As has been presented above, the options are between running IRB and/or CB. If CB is
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Freedom Recommendation

Single-qubit Gate-set Best

Entangling Gate Best

Synthesize Operations Best

Pair of Qubits Best

Sequence Lengths [4, (1− p)−1]

Circuits/ Sequence Length 30

# of Shots 100

Order Protocols Run See table 6.1 and 6.2

How to estimate eF (G) See Below

Table 6.3: User Freedoms and Recommendations. For the purpose of making a cross-
platform comparison, we recommend running the BGSA on all possible pairs of qubits,
entangling gates, single-qubit gate-sets, and ways to synthesize operations, such that the
optimal construction can be used in order to showcase the full ability of the device. The
other freedoms, the user should follow our recommendations, but in practise these freedoms
can be adjusted such that the best fit can be made of the data (see section 6.6.1).

run then the remaining option is between running only dressed gate CB or running both
dressed and bare gate CB. Here we recommend using the dressed gate process infidelity
if the pauli error is insignificant in comparison. If IRB is run, and the user is running
BGSA for internal tuning and calibration, then we recommend running IRB, XRB, and
SRB using C2 instead of SU(4), as has been described above. If the user can implement
the circuits sufficiently fast, then CB is recommended as it obtains the estimate with the
smallest systematic and statistical uncertainty. In addition, if the error rate of the Pauli
gates is insignificant relative to the entangling gate, then it is not necessary to run the bare
gate CB as the single gate process infidelity of the entangling gate will be approximately
equal to the process infidelity of the dressed gate found via CB. As will be described in
the following section, in general the dressed gate infidelity via CB is a more meaningful
estimate in practise anyways.
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6.4 Interpreting the results

6.4.1 Single-qubit results

The infidelity of operations on a single-qubit generally depends on what happens in its
surroundings. If two qubits are near each other, then it is hard to act on one without
affecting the other. This contingent event is categorized as a type of cross-talk (see sec-
tion 2.9.2). To quantify its significance, we recommend benchmarking single-qubit gates
in two different contexts: first, when no operations are applied to nearby qubits, which
corresponds to what we refer to as “isolated SRB”, and second, when single-qubit gates are
applied to neighbouring qubits, which corresponds to what we refer to as “simultaneous
SRB”. The difference between the fidelity estimates from isolated SRB and simultaneous
SRB quantifies the aforementioned cross-talk effect. For example, in fig. 6.1, qubit 5 on
the AQT4 device has a smaller cross-talk error from qubit 6 than from qubit 4. Note that
all of the estimates for the studied devices are given in table 6.4.
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Figure 6.1: Single- qubit process infidelity of 2 Superconducting devices from AQT 4 @
LBNL, and IBM (Yorktown5), as well as an ion-trap device from Honeywell (H06), obtained
by Simultaneous SRB (blue points) and Isolated SRB (orange points), including the posted
estimates from IBM the morning that this data was collected (blue diamonds). Note that
the x-axis is given by the qubit labels for the corresponding devices. The difference between
the simultaneous and isolated SRB estimates is largely caused by the amount of error
induced by the other qubit in the pair via cross-talk. As we see here, performing single-
qubit gates simultaneously often reduces gate quality. Since Honeywell uses a different
method to address their qubits, this analysis does not apply to their device as can be seen
by the isolated values being larger than the simultaneous values. The error bars indicate
a 95% confidence interval.
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6.4.2 2-qubit results

SRB, XRB, IRB, and CB are used in conjunction to diagnose the key properties of the
2 qubit error profile, which include the bare gate (eF (C2), eF (SU(4)), eF (P2)), stochastic
(eS(C2), eS(SU(4))), and dressed gate (eF (C2G), eF (SU(4)G), eF (P2G)) process infidelities,
which can be used together to estimate and bound the process infidelity of the entangling
gate (eF (G)C2 , eF (G)SU(4), eF (G)P2).

Estimating the stochasticity of errors by combining XRB and SRB results

As seen in fig. 6.2, the error profiles vary across platforms and even between different pairs
in the same platform. For example, qubits 5 and 6 in the AQT4 device (AQT4(5,6)), has
very low error, while the AQT4(4,5) pair has approximately the same stochastic process
infidelity, which quantifies the amount of stochastic error, as AQT4(5,6) but is dominated
by coherent error.

AQT4(4,5) is therefore a great candidate for using Stochastic Calibration[16] to iden-
tify which unitary correction can reduce the coherent error. Stochasitc Calibration will
ultimately decrease the bare gate process infidelity towards its stochastic process infidelity
limit. Since AQT4(5,6) already has a small coherent error, as quantified by the difference
between the bare gate process infidelity and the stochastic process infidelity in fig. 6.2,
Stochastic Calibration would not significantly improve performance for these qubits.
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(a) Clifford Twirl (b) SU(4) Twirl

Figure 6.2: A comparison of the bare gate process infidelity (eF (C2), eF (SU(4))) measured
via SRB (blue cross), and the stochastic process infidelity (eS(C2), eS(SU(4))) measured
via XRB (green X) twirling with the Clifford group (6.2a) and SU(4) group (6.2b). The
difference between eF and eS in these figures indicates the amount of coherent error in the
system(eU). If there is a large coherent error, a significant improvement in performance
can be achieved via either user-supplied correction gates (as determined via Stochastic
Calibration[16]) or run-time coherent error suppression (under randomized compiling[174])
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Estimating single gate infidelities by combining IRB and SRB results

(a) Clifford Twirl (b) SU(4) Twirl

Figure 6.3: This plot demonstrates the difficulty in estimating the single gate process in-
fidelity via SRB and IRB. The dressed gate process infidelity (eF (C2G) or eF (SU(4)G))
obtained via IRB (green dot), is the average error rate of the native entangling gate com-
posed with a random C2 gate (6.3a) or SU(4) (6.3b). The bare gate process infidelity
(eF (C2) or eF (SU(4))) from SRB (blue cross) is the average process infidelity of C2 (6.3a)
or SU(4)(6.3b). These values can be used together to calculate (via eq. (6.7)) the single
gate estimate of the native entangling gate eF (G)C2 (black dot) and eF (G)SU(4) (grey dot)
and its corresponding systematic upper bound (hollow triangle) calculated via eq. (6.8).
Note that the single gate estimate is the process infidelity of the entangling gate if the
coherent error of the entangling gate did not positively or negatively interfere with the co-
herent error of the twirling gates. The systematic bound is an estimate for if the coherent
errors of the entangling gate and the twirling gates only constructively interfered (under
the assumption that all of the error coherent). Here we clearly see the issue with trying to
estimate the entangling gate error rate via IRB, as its value could be anything below the
upper bound, which reaches as high as 0.4 for these devices.

In fig. 6.3, the single gate process infidelity estimate (shown as grey (black) points
for the Clifford (SU(4)) twirling group) is the process infidelity of the entangling gate
if the coherent error acting on the entangling gate did not constructively or destructively
interfere with the coherent errors affecting the twirling group. The systematic upper bound
in fig. 6.3 is the upper limit on the 95% confidence interval of the systematic upper bound
from eq. (6.8), and represents the worst case error where the coherent error of the single
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gate (G) only constructively interferes with the coherent error of the twirling gates (C2

and SU(4)). Therefore, this is an upper bound on the single gate process infidelity. As we
will see in fig. 6.4, the coherent upper bound is tighter than the systematic upper bound
because it takes into account the amount of stochastic error. This means that by not
assuming all of the error is coherent (as is the case for the systematic bound), there is
less coherent error that can constructively interfere, and thus the bound is tighter. It is
important to tighten the upper bound such that we can learn more about the error profile
of the entangling gate.

Due to the large statistical uncertainty in some implementations, such as AQT4(5,4),
the estimated bare gate process infidelity (SRB) can be larger than the dressed gate process
infidelity (IRB) (see fig. 6.3). This causes the single gate estimate to be negative, and
therefore the value itself is meaningless, it only indicates that the fitting or estimate of the
value is imperfect.

Each element of SU(4) (C2) is composed of 3 (1.5) entangling gates, and 24-40 (15-25)
single-qubit gates on average, depending on how the single-qubit gates are implemented.
Because there are significantly more pulses in the implementation of the SU(4) (Clifford)
gates than in the implementation of the entangling gate, the error arising from SU(4)
(Clifford) gates exceeds that from the entangling gates by a significant margin,

eF (SU(4))� eF (G)SU(4),

eF (C2)� eF (G)C2 ,

leaving a very small difference between the bare gate and dressed gate process infidelities.

From the systematic error bounds in fig. 6.3, we see that it is unreasonable to use
IRB and SRB to estimate the single gate process infidelity of the entangling gate via the
systematic upper bound. We propose two alternative methods for estimating eF (G). The
first method is to tighten the bounds by accounting for the amount of coherent error in
the system (fig. 6.4), and the second is to use a weaker twirling group whose error does
not drown out the error of the entangling gate(fig. 6.5).

Estimating single gate infidelities by combining IRB, XRB, and SRB results

In fig. 6.4, the systematic error bounds tighten to a large degree by accounting for the
amount of coherent error in the system. From eq. (6.9), for predominantly coherent error
(u ≈ 1), there is a negligible tightening of the bound. One concrete example where this
appears is in the AQT4(5,4) pair. We can see this by comparing the systematic and
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coherent upper bounds. Conversely, if the error profile is dominated by stochastic noise,
this bound tightens by a large amount. This happens in Yorktown5(3,4), where we see the
bound tightening by a factor of 3.3. This is the upper limit on improvement we’ve seen
thus far on studied processors.

Unfortunately, even when the bound is tightened, it is not enough to allow us to make
a clear estimate of the single gate process infidelity of the entangling gate due to the
dominating amount of error in the twirling gates. Therefore, we propose using the Pauli
group to estimate eF (G) to circumvent the depth issues that arise from using other twirling
groups. Our results using each of these twirling groups are presented in fig. 6.5.

Estimating single gate fidelities with CB

In fig. 6.5, the systematic error bounds can be tightened considerably by using weaker
randomizing sets which require fewer pulses and therefore have lower error rates. Here
we see that in the experimental regime of studied processors, as the group used for the
reference twirl gets weaker (SU(4)→ C2 → P2), the systematic error bounds tighten and
the single gate estimates have tighter statistical error bounds.

The fact that CB has tighter systematic error bounds than IRB does is even more
impressive since the bounds from CB have not been tightened by taking into account the
amount of coherent error in the error profile. Although not done here, it might be possible
to run an XRB style experiment where P2 is used instead of C2 for the twirl. In which case
the CB bounds could be tightened in the same way as the bounds from IRB have.

Even though they have been plotted together in fig. 6.5, the IRB and CB data from the
Honeywell device should not be compared directly to each other as the protocols were run
on different days. Specifically, they batched the set of protocols, and ran each batch on a
separate day. The first batch included only the single-qubit SRB protocols from fig. 6.1,
the second batch included 2 qubit SRB, XRB, and IRB, while the third batch was the two
CB protocols. Note that fig. 6.5 is the only figure in which data from the same device on
different days is plotted together.
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(a) Clifford Twirl (b) SU(4) Twirl

Figure 6.4: The experimental determination across various state of the art systems of the
tightening of the systematic error bounds by accounting for the amount of stochastic noise
in the error profile when twirling with C2 (6.4a) and SU(4) (6.4b) group. The upper bounds
in this figure are the upper limit on the 95% confidence interval of the systematic upper
bounds. The systematic upper bound calculated using IRB and SRB from eq. (6.8) (hollow
black or grey triangles) are compared with the coherent upper bounds, which also take into
account the unitarity from XRB from eq. (6.9) (solid black or grey triangles). This is one
such attempt to solving the problem posed in fig. 6.3 to tighten the upper bound of the
systematic error such that it becomes more meaningful. Here we see the bound tighten by
up to a factor of 3.3 relative to the single gate infidelity estimate. Specifically, we see that
when the error is mostly stochastic, the bounds tighten more than if the error is largely
coherent.
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Figure 6.5: Comparison of IRB style error estimation for a gate of interest using SU(4)
vs C2 vs P2, showing that the upper bound determined from combined SRB, XRB, and
IRB protocols becomes increasingly tight when using randomizing sets which require fewer
pulses. This implies that CB, which uses a Pauli twirl, gives the most reliable and accurate
error estimates. The inferred process infidelity of the entangling gate with statistical error
bounds calculated via IRB (eq. (6.7)) using SU(4) (C2) are shown as grey dots (black dots).
The coherent upper bounds, which also take into account the unitarity from XRB (see
eq. (6.9)) are depicted by the solid grey (SU(4)) triangles and solid black (C2) triangles. The
inferred process infidelity of the entangling gate calculated via dressed gate CB and bare
gate CB from eq. (6.10) are given by the blue squares, and their corresponding systematic
upper bounds from eq. (6.11) are the hollow blue triangles. Here we see a significant
improvement in the estimate and a dramatic tightening of the systematic upper bound
by using CB instead of IRB. Clearly, even when accounting for the amount of coherent
error when using IRB, CB gives a tighter bound for the estimate of eF (G). The error that
arises when applying Pauli gates is insignificant compared to that incurred by applying the
entangling gate for many of these devices, and therefore the error of the entangling gate is
not washed out by the error of the Pauli twirling gates.

104



In fig. 6.6, we compare dressed gate process infidelity from CB to the estimate and
systematic upper bound of the single gate error. Clearly, in the experimental regime where
the Pauli error (bare gate CB) is insignificant compared to the error of the entangling
gate, we see that the dressed gate process infidelity is a good estimate for the single gate
process infidelity. Note that in the AQT4 implementation, they physically implemented the
Identity hard gates, which is why the bare gate CB values are so large. The experiments
in [75] also show this behaviour where a significant portion of the total error is caused by
the single qubit gates, which is not typical in other systems.

In practice the dressed entangling gate is the most relevant to accurately predicting
algorithm performance, especially under Randomized Compiling, as it includes the error
impact of both one round of single-qubit gates and one round of an entangling gate. We
see experimentally that dressed gate CB provides the more precise statistical estimate of
error, therefore dressed gate CB seems to be the best approach to a precise and accurate
gold standard for characterizing gate performance.

By combining the estimates of the single-qubit gate performance, 2-qubit estimates
from SRB, IRB, and XRB using a universal gate set, and the error estimate of the dressed
entangling gate from dressed gate CB, we have designed a suite of benchmarking protocols
that obtain the most relevant figures of merit to assess single- and 2-qubit gates.
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Figure 6.6: A comparison of the different approaches to estimating the inferred process
infidelity of the entangling gate when using Cycle Benchmarking on various hardware
platforms. The inferred process infidelity of the entangling gate calculated via dressed gate
CB (green stars) and bare gate CB (green circles) from eq. (6.10) are given by the blue
squares, and their corresponding systematic upper bounds from eq. (6.11) are the hollow
blue triangles. In practice the dressed entangling gate is the most relevant to accurately
predicting algorithm performance, especially under Randomized Compiling [174], as it
includes the error impact of both one round of single-qubit gates and one round of an
entangling gate and we see experimentally that dressed gate CB provides the more precise
statistical estimate of error, therefore dressed gate CB is the best approach to a precise
and accurate gold standard for characterizing gate performance.
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6.5 Conclusion

For the first time, we have experimentally performed an unbiased, cross-platform com-
parison of some of the world’s leading quantum computing devices. The basic gate-set
assessment proposed and implemented in this chapter is a well-rounded, non-controversial
standard for characterizing single- and 2-qubit gate errors. It can be used for either cross-
platform comparison or local tune-up. The only difference between implementations for
these two applications is which randomizing group is used. When doing an unbiased com-
parison, gates are randomly selected from the SU(4) group, as it is a universal gate-set and
is equally difficult to implement across gate constructions. When doing local tuneup C2 is
used due to its more standard gates. If the cross-talk is low in the system, the BGSA can
be used to tune-up an entire large quantum device by testing each directly connected pair.

Although there are many user freedoms in the implementation, we gave various recom-
mendations on how to select parameters which will optimize the accuracy of the results.
The figures of merit obtained by the various protocols in the BGSA each give valuable
insight into different aspects of the single- and 2-qubit error profile.

We examined the single-qubit gates of these devices and the amount of single-qubit
cross-talk between the target pair of qubits. In our analysis, we observed that some devices
were more impacted by cross-talk than others, and specifically that the cross-talk errors
on a qubit arising from different qubits varied in magnitude even within the same device.

We also discussed the various error estimates associated with the two-qubit gates. Com-
paring the process infidelity of a gate-set with its stochastic error estimates, we were able
to estimate the amount of coherent error affecting the device. A large coherent error in-
dicates that it is possible to see a large improvement via user-supplied correction gates or
run-time coherent error suppression.

Next, we examined the effect of interleaving the entanglement gate between the ran-
domizing group (SU(4) or C2). We observed that this increases the process infidelity. The
difference between the process infidelity of the bare entanglement gate and the dressed
entangling gate can be used to give a rough estimate of the single gate process infidelity of
the entangling gate with its corresponding systematic error bounds. In the experimental
regime of studied processors, this upper bound was so large (0.1-0.4), that little could be
said about the single gate process infidelity, because the error of the randomizing group
(SU(4) or C2) drowned out the error of the entangling gate.

In the hopes of obtaining useful information about the error of the entangling gate, we
tightened the bound by accounting for the amount of stochastic error in the device. We
saw a noticeable improvement of the bounds for all device pairs (up to a factor of 3.3),
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with a larger improvement for pairs dominated by stochastic noise. If the user intends
on using Randomized Compiling (RC) [174] when implementing circuits, this large upper
bound would not give the most meaningful estimate of the single gate infidelity. In practise
each clock cycle will be individually twirled with a Pauli gate which will cause the coherent
error of the entangling gate and the twirling gates to no longer interfere.

The systematic upper bound of the entangling gate was so large because the error of the
randomizing group was so large and thus had more coherent error to positively interfere
with that of the entangling gate. We therefore looked at a weaker twirling group which
would have significantly less error, the two qubit Pauli group, which is the basis for Cycle
Benchmarking. In this regime we were able to see a significant tightening of the systematic
error bound. Ultimately, the dressed gate process infidelity from Cycle Benchmarking was
able to give a much more accurate estimation of the entangling gate error rate when the
user intends on using RC, given that the Pauli error is insignificant in comparison to the
entangling gate.

In practice, the dressed entangling gate process infidelity is the most relevant to accu-
rately predicting algorithm performance, especially under Randomized Compiling [174, 75],
as it includes the error impact of both one round of single-qubit gates and one round of
an entangling gate. However, the information retrieved by the other protocols included
in BGSA is also vitally important because they estimate the amount of error of universal
gate-sets, the amount of stochastic error, and single-qubit gate error.

By using some of the worlds most advanced quantum computing software (TrueQ[17],
Qiskit[9], and Cirq[160]), we were able to run experiments on AQT @ LBNL[121] and
Honeywell [158] devices, and numerous IBM devices using IBM’s remote access[159].
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6.6 Supplementary Material

This section gives an overview of how to calculate the optimal number of shots that should
be used for the various protocols in the BGSA, the total time (wall-clock) it takes a device
to run the circuits of the BGSA, and a table which gives all of the figures of merit (and
95% confidence intervals) obtained for the 3 platforms studied in this chapter.

6.6.1 Number of shots and wall-clock time

Given the user selected parameters and the various times associated with running circuits
on the specific device,

User selected parameters:

• nrc: number of random circuits

• nshots: number of shots per circuit

• mj:j’th sequence length

• fi: some decomposition/protocol-dependent fraction (average number of generators
per gate usually 3 (ie 3 CNOTs to make a SWAP))

Device timing:

• tgi: The average time of an i-qubit native building-block gate, including any delays
between consecutive gates in a circuits (eg. x90 or CNOT or MS90)

• tspam: The time (per-shot) that it takes to prepare and measure the state (and any
other per-shot overhead)

• tload: (tpick)The time it takes to load a fixed random circuits in the hardware (and
any other per-fixed-circuit pulse-synthesis overhead)

we can extract the ideal number of shots needed vs the number of different circuits for
a given circuit length by looking at figure 1.c. from [79]. Where:

tflip = tspam +mj · (f1 · tg1 + f2 · tg2) (6.12)

and tload = tpick.
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Estimate H06(0,1) AQT4(4,5) AQT4(5,6) Yorktown5(0,2) Yorktown5(3,4)

eF (Cq1|Cq1 ⊗ Iq2) 5.5(1.6)e-04 7.48(0.79)e-04 8.04(0.89)e-04 6.64(0.68)e-04 5.63(0.79)e-04

eF (Cq2|Iq1 ⊗ Cq2) 5.0(1.5)e-04 7.70(0.77)e-04 1.08(0.13)e-03 6.25(0.77)e-04 7.73(0.82)e-04

eF (Cq1|Cq1 ⊗ Cq2) 4.3(1.4)e-04 2.22(0.41)e-03 1.31(0.18)e-03 8.8(1.2)e-04 7.8(1.3)e-04

eF (Cq2|Cq1 ⊗ Cq2) 4.1(1.7)e-04 3.81(0.71)e-03 1.46(0.18)e-03 9.8(1.4)e-04 1.15(0.15)e-03

eF (SU(4)) 2.43(0.27)e-02 1.04(0.29)e-01 3.83(0.38)e-02 5.68(0.63)e-02 6.35(0.69)e-02

eF (C2) 4.71(0.98)e-02 2.01(0.23)e-02

eS(SU(4)) 1.83(0.26)e-02 2.91(0.25)e-02 3.00(0.24)e-02 4.04(0.24)e-02 5.50(0.3)e-02

eS(C2) 1.25(0.2)e-02 1.60(0.16)e-02

eF (SU(4)G) 3.66(0.81)e-02 9.3(3.6)e-02 5.68(0.75)e-02 6.96(0.98)e-02 8.5(1.7)e-02

eF (C2G) 6.5(2.1)e-02 3.48(0.48)e-02

eF (G)SU(4) 1.2(1.1)e-02 1.8(1.1)e-02 1.3(1.4)e-02 2.2(2.4)e-02

eF (G)C2 1.8(2.9)e-02 1.47(0.68)e-02

Sys Bound SU(4) 1.19(0.15)e-01 3.72(0.83)e-01 1.84(0.15)e-01 2.44(0.21)e-01 2.84(0.32)e-01

Coh Bound SU(4) 4.6(1.9)e-02 2.73(0.9)e-01 6.6(1.9)e-02 9.2(2.5)e-02 7.4(3.7)e-02

Sys Bound C2 2.17(0.42)e-01 1.06(0.1)e-01

Coh Bound C2 1.71(0.43)e-01 4.1(1.3)e-02

eF (P2G) 8.30(0.53)e-03 3.16(0.28)e-02 1.156(0.06)e-02 1.615(0.064)e-02 2.377(0.092)e-02

eF (P2) 9.8(2.0)e-04 1.22(0.1)e-02 4.86(0.25)e-03 2.05(0.4)e-03 3.13(0.43)e-03

eF (G)P2 7.32(0.56)e-03 1.95(0.29)e-02 6.69(0.65)e-03 1.410(0.076)e-02 2.06(0.1)e-02

Sys Bound P2 1.49(0.1)e-02 8.15(0.5)e-02 3.12(0.12)e-02 2.95(0.17)e-02 4.38(0.2)e-02

Table 6.4: All of the estimates and 95% confidence intervals from the BGSA protocols.
Note that ”Sys Bound” stands for systematic upper bound from eq. (6.8), while ”Coh
Bound” stand for Coherent upper bound from eq. (6.9). Note notation eF (G)G, where this
is the estimate of eF (G), given that the randomizing set G was used.
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Once the optimal number of shots has been estimated (Noptimal from [79]), we can then
approximate the wall-clock time of performing an RB+ experiment as:

T =
∑
j

nrc · (tload + nshots · (tspam +mj · (f1 · tg1 + f2 · tg2))) (6.13)
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Chapter 7

Conclusion

In this thesis, we began in chapter 3 by looking at the physical interpretation of the
unitarity from XRB under physically realistic gate-dependent errors. We showed both
analytically and numerically that the unitarity obtained by running XRB on a gate-set
with gate-dependent noise was the average unitarity of each gate and not the unitarity
of the average gate. This is significant because the average unitarity of each gate is able
to differentiate between gate-dependent coherent errors (e.g., due to miscalibration) and
incoherent errors (e.g., intrinsic noise processes). Since the unitarity was first proposed as
an estimate for the proportion of noise which is coherent, this work verifies that when the
gate-independent error assumption is lifted, this figure of merit retains its value.

In chapter 4, we turned our sights to the physical interpretation of the decay constant
(p) from SRB. We showed that in a physically relevant limit, p can be used to calculate a
novel figure of merit, the gate-set circuit fidelity. As defined in eq. (4.4), p represents the
relative change in the gate-set circuit fidelity when an additional random noisy operation
from G̃ is introduced to a random circuit constructed from elements in G̃ eq. (4.12). We
demonstrated analytically that p is – up to the second order in the infidelity – in one-
to-one correspondence with a physical gate-set fidelity. We further showed constructively
which physical basis change on a given reference gate-set would be needed to obtain the
reconciliation between p and the average gate-set fidelity as in eq. (4.13). Finally, we
provided numerical evidence and physically motivated arguments to support the conjecture
that our results extend to multiple qubits.

The importance of randomized benchmarking (RB) as a tool for estimating error rates
in elementary gate operations is devalued by the conflation of SRB and NIST RB protocols
in the literature, which can cause problems due to the distinct outcomes generated by the
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respective protocols. The rigorous theoretical framework developed in chapter 5 proves that
NIST RB, like SRB, leads to an exponential decay which depends only on the underlying
gate-independent error model. We have also demonstrated that SRB and NIST RB, which
sample from a uniform 2-design and a subset respectively, lead to significantly different
observed error rates in many physically realistic gate-dependent error models and pulse
sets. This is because the figures of merit that these protocols evaluate have physically
different meanings; for SRB, its the infidelity of C and for NIST RB it is the infidelity
of a π/2 pulse followed by a P. These rates can differ threefold, and can therefore yield
significantly different recommendations regarding the amount of overhead burden in the
implementation of fault-tolerant quantum error correction. From this project it became
clear that the only way to compare different devices was to set a standard for how to
diagnose errors in basic gate-sets, by clearly defining input parameters, gate-sets, and
protocols. This led us to develop the basic gate-set assessment, covered in chapter 6.

In chapter 6, we propose a characterization routine which we refer to as the basic gate-
set assessment (BGSA). The BGSA consists of a suite of benchmarking protocols together
with data interpretation guidelines for which the goal is to give a thorough assessment of
the single- and two-qubit error profile of a universal gate-set. Using the BGSA, we im-
plemented the first even-handed, cross-platform comparison of some of the world’s leading
quantum computing devices. Using some of the world’s most advanced quantum com-
puting software (TrueQ, qiskit, and Cirq), we ran this suite of protocols on devices from
several leading developers of quantum computing hardware, including the AQT@LBNL
and Honeywell devices, and numerous IBM devices using IBM’s remote access. In addition
to the cross-platform comparison application, the BGSA can also be used for local tune-up
by using a randomizing group which is not a universal gate-set and whose elements can be
implemented using fewer control pulses. If the cross-talk error rate is sufficiently low, the
BGSA can be used to optimize performance even in large devices. In order to avoid confu-
sion about the implementation details of the BGSA, as we saw with RB in chapter 5, we
discuss in detail the many user freedoms in the implementation of the BGSA and provide
recommendations for each parameter under each use-case.

In our analysis of the single-qubit gate error, we quantified the severity of single-qubit
cross-talk between different target pairs of qubits. We observed that the significance of
cross-talk errors varied for different devices and qubit pairs. We compared the various error
estimates associated with the two-qubit gate error. This analysis includes a comparison
of the process infidelity of the SU(4) and C2 gate-sets with the corresponding stochastic
error estimates, in order to estimate the amount of coherent error affecting each device.
From these estimates, we could quantify the extent to which a device could benefit from
user-supplied correction gates or run-time coherent error suppression.
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We compared bare and dressed gate process infidelities from SRB and IRB to upper
bound the entangling gate process infidelity. In the experimental regime of studied pro-
cessors, the error of SU(4) and C2 gates far outweighed that of the entangling gate, and
so the infidelity upper bound was consistently too large for anything to be said about the
error of the entangling gate. We therefore experimentally implemented for the first time
the method first proposed in [34] to tighten the infidelity upper bound by accounting for
the amount of systematic error. Despite a significant decrease of the upper bound, our im-
proved figure was still not sufficiently low to provide meaningful information about single
gate process infidelity. Ultimately, we were able to use a randomizing set requiring fewer
pulses (P2) to obtain meaningful upper bound on the entangling gate process infidelity. We
then compared these estimates to the dressed gate process infidelity from CB and noted
that if the error of the P2 gates is sufficiently low, this should be used as an estimate of
the process infidelity of the entangling gate.
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