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Abstract

Authenticating a user’s identity lies at the heart of securing any information system.

A trade off exists currently between user experience and the level of security the system

abides by. Using Continuous and Implicit Authentication a user’s identity can be verified

without any active participation, hence increasing the level of security, given the continuous

verification aspect, as well as the user experience, given its implicit nature.

This thesis studies using mobile devices inertial sensors data to identify unique move-

ments and patterns that identify the owner of the device at all times. We implement,

and evaluate approaches proposed in related works as well as novel approaches based on a

variety of machine learning models, specifically a new kind of Auto Encoder (AE) named

Variational Auto Encoder (VAE), relating to the generative models family. We evaluate

numerous machine learning models for the anomaly detection or outlier detection case of

spotting a malicious user, or an unauthorised entity currently using the smartphone sys-

tem. We evaluate the results under conditions similar to other works as well as under

conditions typically observed in real-world applications. We find that the shallow VAE

is the best performer semi-supervised anomaly detector in our evaluations and hence the

most suitable for the design proposed.

The thesis concludes with recommendations for the enhancement of the system and

the research body dedicated to the domain of Continuous and Implicit Authentication for

mobile security.

Keywords: Machine Learning, Generative Models, Continuous Authentication, Implicit

Authentication, Artificial Intelligence
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Chapter 1

Introduction

It is forecasted that there will be 17.72 billion mobile devices worldwide by 2024, and with

5G and 6G technologies on top of their personal computer (PC)-like computing resources,

they will be more capable than ever [21]. As mobile devices are growing in numbers and

capabilities by the day, they will be the main way humans interact with information tech-

nologies, given their portability and similarity to PCs. Nowadays, in our hyper-connected

world, mobile devices are closer to the user, as well as their critical access and sensitive

data, than any other class of electronics. It is of pivotal importance to properly authenti-

cate (i.e., validate the legitimacy of) every passive or active session of the mobile device in

an e�ective manner to eliminate the risk of breaching the user's and the device's security.

This needs to be done within a high level of convenience to the human using the device to

mitigate workarounds (e.g., : passwords sticky notes).

A variety of risks arise due to that very portability that makes these devices extremely

convenient, and e�cient tools for human technology usage, to the extent of outselling PCs

for years [22]. These risks include the possibility of the devices getting stolen, lost, or

misplaced easily, which would allow unauthorized personnel to run various sophisticated

physical and cyber attacks on them, leading to an abundance of mobile security breaches.

The impact of a mobile security breach is in most times more severe than that of a PC

breach, as mobile devices hold just as many credentials, photos, and data as the PC, but

additionally contain calls data, locations information, a popular second factor of authenti-

1



cation, such as One Time Password (OTP) o�ine generators or text Short Message Service

(SMS) based OTP, used in many services nowadays and more [22].

1.1 Access Management

Authorization systems are mainly constructed around challenges of what the users are,

have, do, or know, and more recently something relating to their context or situation [23].

This allows the user to prove their identity to the system and their eligibility and enti-

tlements to certain actions and data. They have been evolving in implementations, but

generally, these are the �ve authentication factors used nowadays and examples of their

implementations:

ˆ something the user knows (e.g., password, pattern, PIN, secret question-answer)

ˆ something the user has (e.g., USB token, smart-card, software token, cookie)

ˆ something the user is (e.g., �ngerprint, DNA fragment, iris pattern, voice pattern,

hand geometry, heart rhythm)

ˆ something the user does (e.g., signature, gesture, handwriting, walk)

ˆ something about the user (e.g., current timezone, current location or position, current

date and time, spatio-temporal authentication, reputation or web of trust, Turing test

or Captcha to test whether the user is as capable or human as we assume, contextual

or situational awareness)

These are the authentication factors mainly utilized, and generally, authentication sys-

tems are considered more robust if they use more factors (i.e., Multi-Factor Authentication

(MFA)). For instance, most two-factor authentication systems utilize a password, some-

thing the user knows, as well as a one-time passphrase sent to the user's phone, something

the user has. A bene�t of the OTP mechanism is its resiliency to replay attacks, as the

2



code is regenerated for every use case [23]. The most common of these authentication fac-

tors is the user knows authentication factor, which is commonly implemented in a shared

secret ID and password fashion across our technological landscape today.

Continuous authentication refers to a mechanism where the authentication factor is

being monitored continuously to assess the legitimacy of the user access repeatedly instead

of more common one-time authentication systems (e.g., phone only asks for a password

when unlocking the screen). The frequency of these challenges or checks is to be minimized

to shorten the period where an attacker can slip under the radar undetected, sometimes to

a few seconds. Implicit authentication refers to authentication that can occur without the

user of the system actively participating or even gaining knowledge of it, hence happening

passively under the hood. Implicit authentication is commonly deployed continuously, as

well, to check the security posture frequently since it does not have to undermine system

convenience in the pursuit of tighter security. Continuous and Implicit Authentication

(CIA) systems might be a great authentication factor, next to something the user knows

(e.g., PIN, password) for the mobile security use case. We evaluate that further in our

work later on in this thesis.

A few questions that arise in our work are: How can we enhance mobile device secu-

rity using breakthrough technologies like generative models that have appeared recently

in the machine learning research domain? Is it possible to �nd a good balance between

convenience and security and address both physical and cyber threats? How can a system

continuously and implicitly collect data passively and use unique patterns to identify au-

thorized users? Can we leverage the increasing computational power available to mobile

devices and cloud technologies to enable a powerful security system? We take on all of

these questions and delve deeper into this work to �nd a solution.

1.2 Continuous and Implicit Authentication

The basis of our solution, the Continuous and Implicit Authentication system, is the utiliza-

tion of data streams continuously available on the phone at all times, including nonactive

usage, and run it by an anomaly detection module for the sake of detecting an imposter,

3



conveniently without alerting the user to the process of validating their identity.

Imagine a phone theft occurs, and the phone can identify within seconds that the new

holder is an imposter, and encrypts all its data safely, and alert authorities. Alternatively,

the original user walks to their smart home or smart car, and everything unlocks automat-

ically because the phone in the user's pocket can identify and authorize the person. This

is the objective of this solution and its domain, and our contributions are a step in the

right direction, making this objective more feasible, e�cient, cheaper, and more probable

for the near future.

1.3 Contributions

Our contributions in this work can be summarized as:

ˆ Present a thorough review of motivations, threat models, and use cases in the con-

tinuous and implicit authentication domain

ˆ Present a thorough review of existing works

ˆ Present a thorough proposal and review of generative models capabilities for the

continuous and implicit authentication use case, especially when using human kine-

matics

ˆ Evaluate light machine learning models and compared them to the generative model

proposed and the state of the art deep learning-based solution

ˆ Find the proposed generative model to be lighter, faster, more accurate, and resilient

than all other solutions, including state of the art

ˆ Present a thorough mobile security collaborative architecture proposal for the solu-

tion around the proposed outlier detection generative model, in which edge and cloud

training, real-time responses, and third party integrations can take place
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ˆ Utilized high availability and low privacy and power inertial data available on most

smartphones for our work to allow for better convenience and eliminate the need

for active usage of the device to enable authentication (non-cooperative and non-

intrusive)

ˆ Propose a new experiment setting that mimics real-world scenarios often overlooked

by other researchers, which lowered performance metrics for all solutions but kept

the generative model at the top

ˆ Run extensive evaluations on the most popular public dataset in the domain with

multiple experiment settings and machine learning models

ˆ Implement the proposed solution core generative model and a data collection and

real-time streaming application for Android and IOS systems.

ˆ Open-source all processing modules, experiments, implementations, and mobile op-

erating systems to enhance reproducibility and shorten development cycles for other

researchers

The purpose of our work in this thesis is to assess the reliability and feasibility of a

CIA system that could potentially enhance mobile security while maintaining high levels

of privacy and convenience for the users. We aim to deliver maximum convenience hand in

hand with security instead of selecting a point on the trade-o�, using emerging technologies

and techniques. To deliver maximum convenience and privacy within the mobile CIA

system context, we limit our data to inertial sensors data (accelerometer, gyroscope, and

magnetometer), as they are also continuously available whether the device is being actively

used or not. We also limit our work to light machine learning models to perform anomaly

or outlier detection evaluations to be trained and deployed on the phone continuously. We

document threat models and use cases that have developed recently and a�ected all mobile

device users. We evaluate how a CIA system can work with and collaborate with other

third-party security products and processes in place to improve and simplify the overall

security posture of the users, more on that in Chapter 2.

A signi�cant component of our work is tailored towards utilizing generative models,

more on our approach in Chapter 4, and speci�cally the new Variational Auto Encoder, as
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a fast, reliable, convenient, and light anomaly detector to �t within our CIA system. We

evaluate it against other common algorithms in numerous hyperparameter settings combi-

nations across various experiment settings that covered optional deep feature extractions,

extra data features, data scalings, and more. We then demonstrate that generative models

also outperform other models in experiments that mimicked real-life scenarios instead of

lab setups.

We base some of our work and evaluations on the HMOG dataset [24] and the promising

results published by Centenoet al. [20] and re-implemented by Buech [13]. We elaborate

on our extensive evaluations in Chapter 5, where we run more than ten di�erent anomaly

and outlier detection algorithms. We propose an experiment setting uncommon in today's

literature that mimics real-life use cases and �nds that it deeply hinders reported state-of-

the-art metrics, commonly reported in the domain, including our generative models-based

results. We also document the implementations and engineering we put into the solution

for ease of reproducibility in Chapter 6.

We contribute to the relevant research domains, carefully reviewed in the Chapter 3,

extensive open-source evaluations, methods to annihilate the need for manual feature en-

gineering other than deep learning, a detailed methodology in architecting the solution,

implementation of data collection, and real-time streaming, mobile application, and im-

plementation of the proposed Variational Auto Encoder for the Android and IOS mobile

operating systems. To allow other researchers to understand our contributions, we make

our results comparable to most existing works by utilizing the most common performance

metrics, dataset, and data processing techniques.

Finally, in Chapter 7, we discuss �ndings, propose questions, and highlight future op-

portunities to enhance the overall continuous and implicit authentication research domain.
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Chapter 2

Background

This chapter explains the domain of our work and describes the concept, threat models

incorporated in our design, use cases, contextual awareness, threat response, performance

metrics, and data types.

2.1 Concept

Our work investigates the problem of outlier detection to spot unauthorized users of a

mobile device implicitly based on how they handle the device at any particular time. By

handling the device, the user leaves behind a trace of unique movements to them, based

on the idiosyncrasy of their habits, hand measurements, and natural range of motion while

typing or using the device. The movements are captured by the inertial phone sensors:

accelerometer, gyroscope, and magnetometer. Assuming that a limited number of users

use the smartphone, most commonly, the idea is to trigger when the activity in the session

(any particular minute in our case) seems to be o� the standard behavior. Standard

behavior in this context is de�ned by the owner or authorized user's behavior saved during

a pre-determined duration, where multiple scenarios are performed and measured.

Although the most commonly used biometrics arephysiological (like face, �ngerprint,

hand, iris, DNA), we believe those that arebehavioral(like keystroke, signature, and voice)
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Figure 2.1: Logical stages of the system in deployment.

are more �tting to Continuous and Implicit Authentication and hence are more resilient

to the owner being forced or tricked to hand over their authenticated device.

In a real-world deployment of this solution, the following three fundamental stages

need to be considered: (i) enrollment, (ii) authentication (iii) updating. These stages are

explained in more detail below and can be seen in Figure 2.1.

Enrollment is generally a very simple scenario involving inertial data collection where

the user is presented with certain activities to conduct (e.g., using the phone while sitting,

using the phone while walking, using the phone while standing, using the phone while

running, using the phone while biking, and using the phone while driving). As the user

acts out the activities, the data from the inertial sensors are ingested and streamed to the

AI module to be utilized as training data for this user's pro�le. The users can register

as many pro�les as they wish, although commonly smartphones have one legitimate user.
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Figure 2.2: System architecture, showing the training taking place on a cloud resource.

The model is internally evaluated against a pre-determined set of malicious data and a

threshold is set for acceptance in a functional testing sub-stage. If the model passes, the

model is ready to get out of enrollment and graduate to the next stage. If the model does

not pass, then the enrollment is determined not good enough and the user is asked to redo

the activities.

The next stage of the deployment is authentication. This is when the core activities of

the solution take place, which is detecting deviations from normal behavior and responding

according to a set policy that sets sensitivity thresholds. Responses might include notifying

local authorities or hiding sensitive apps and data from the current session's user until the

user performs a secret bypass pattern to restore the device to its normal state. This stage

is where the solution is designed to be most of the deployment life cycle. Suppose the user

is falsely classi�ed as malicious, and their sensitive data and apps are being hidden from

view. In this case, the user can either initiate an updating stage transition to enhance the

model's performance by proving they are legitimate users by entering a special secret bypass

pattern of movements or taps and then updating the pro�le by acting out new training
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scenarios, or the user can enter the secret bypass pattern to make an exception and cancel

responses for the current session. The bypass pattern can take the form of any set of

events. For instance, tapping the top right corner of the screen �ve times and then tapping

the bottom left corner two times or both corners simultaneously three times. The secret

bypass pattern allows the user to have a way to authenticate if the system has reasonable

suspicion against the current session as a fallback. We advise against utilizing the secret

bypass pattern frequently, and hence the system can enforce a series of authentication

challenges and an update stage transition if the secret bypass pattern is utilized with high

frequency and is abused.

Occasionally, the updating stage will be initiated as scheduled or in an active learn-

ing setting via immediate feedback. It is recommended to schedule monthly or quarterly

updating sessions for the system to learn new behaviors that the users have adopted, con-

sciously or subconsciously. The sessions are similar to enrollment from user experience,

but only the deviations are recorded and re
ect certain changes on the user pro�le normal

behavior model. As this stage might present an attack surface, this stage is only enabled

after other authentication factors are passed (e.g., password, PIN, face recognition, �nger-

print, keystroke dynamics). Immediate feedback can be set to achieve an active learning

setup where the model can get feedback on its detections in near real-time by the user just

performing a secret bypass pattern when falsely classi�ed as an anomaly.

Figure 2.3: System architecture, showing the training taking place on the smartphone.
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It is important to note that during our design, we consider two cases, as per Figure 2.2

and Figure 2.3, for model training (1) at edge training and (2) at cloud training, but we

always �xed inference at the edge since the threat models indicated the possibility of losing

connection to the internet at critical times, stressing the need for an always-on and always

alert continuous and implicit authentication system. The edge of the phone, in this case,

might or might not run training, depending on preference, compatibility, and capabilities.

The compatibility and capabilities explored by us are further detailed in the Chapter 6.
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2.2 Threat Models

In this section, we build on the concept put forward in the previous section, and quantify

the threat models endangering mobile users' security today.

The four threat models we are considering feature the device being used by someone

else other than the owner. The ability to detect an unauthorized user implicitly and

continuously allows us to o�er protection against the loss of sensitive and private data. The

owner or authorized users are the devices able to choose which data or device functionalities

are considered sensitive.

The scenario is de�ned as the threat actor gainingphysical access to the device, as

well as bypassing the initial authentication system (e.g., PIN, �ngerprint, Face ID) by

any means. This may include previous possession, negligence, software bugs, brute-force

attacks, dictionary attacks, or even acquiring the device and credentials by force.

The sensitive information and access available to the unauthorized user in this situation

includes but is not limited to:

ˆ Personally identi�able information (PII): e.g., address, date of birth, name, initials,

signature, pictures

ˆ Critical information: e.g., passwords in a password manager, intellectual property, trade

secrets, personal secrets, strategy, business plans

ˆ Critical access: e.g., valuable assets, digital currency, bank accounts, infrastructure,

email accounts, social media accounts, private keys

The threat model can take a few di�erent forms and variants. In Table 2.1, the follow-

ing speci�c threat models are described: threat model (A), Compromised authentication

factor, is where an unauthorized user is able to use the correct PIN, password, pattern,

or biometrics to log in due to prior knowledge (e.g., by-shoulder sur�ng the legitimate

user previously logging in). Threat model (B), Handover/Sharing, is when the authorized

user hands over their device, unlocked, to an authority �gure, friend, or spouse. Threat
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Threat Models

Label Name Description Example

A Compromised Compromised authentication factor

leading to successful bypass of other

authentication factors by a threat ac-

tor

Unauthorized user is able to

enter the correct PIN, pass-

word, or pattern to login

to the device and act mali-

ciously inheriting the priv-

ileges of the compromised

credential's user.

B Handover Authorized user handing over or shar-

ing their device with someone unau-

thorized

Owner giving their unlocked

device to an authority �g-

ure, attacker forcing login,

friend, or spouse. The

unauthorized actor is able

to act maliciously with the

same privileges the autho-

rized user has.

C Unattended Authorized user leaves phone un-

locked and unattended, resulting in

theft or unauthorized access

Owner forgets device on the

table, and leaves the room.

A threat actor picks it up

and is able to act mali-

ciously with the same priv-

ileges the authorized user

has.

D Locked device

loss

Locked device is lost Owner gets pick-pocketed

while walking. A threat ac-

tor has access to the device

in its locked state.

Table 2.1: Threat models considered
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model (C) is when an authorized user forgets their device, is unlocked, on a table, and

leaves the room. A threat actor then picks it up and is able to act maliciously with the

same privileges the authorized user has. Lastly, a fourth and important threat model is

(D), and it does not depend on the active usage of the phone at all. Instead, it focuses on

the passive phone authentication state, meaning that the device loss can be detected when

the phone is unlocked by capturing moves the phone registers while locked in the hands,

pockets, or bag of someone else.

2.2.1 Use Cases Scenarios

Compromised Authentication System

Threat model (A) (cf., Table 2.1) is when a phone is physically with someone else that has

compromised the authentication procedure. In this case, they do not need you to leave the

phone unlocked behind or give it to them unlocked, as they can unlock it as many times as

they want by knowing how to bypass the primary authentication. That is, by obtaining the

means of submitting the correct answer to the authentication system (e.g., �ngerprint,

password, PIN, pattern, biometrics) or being able to exploit a software vulnerability to

bypass the authentication system used to protect the phone.

In the case described above, the only security system left to protect the phone is one

that can detect deviating behavior from the normal (associated with the real owner) and

be discrete, implicit, and continuous in its detecting fashion, as well as being subtle in

its response to that detection. We do not tackle the response procedure in this work

very deeply, but we are very interested in detecting the threat models as accurately as

possible and minimizing the false positives to ensure convenience is not heavily sacri�ced

for security. Cases where we can see threat model (A) play are when a colleague shoulder

surfs you entering the PIN and using that later when you are not around to access sensitive

information. Within a minute, the system can pick up the new behavior solely based on

inertial sensors data and the way the co-worker handles the phone and subtly disable access

to important data.
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Handing over an Authenticated Device

There are many examples around the second threat model (B), speci�cally by handovers

to government o�cials, which has spiked in the past few years. In some of these cases,

customs and border o�cers would ask for the smartphone of the people going through

the border or checkpoints to view their receipts, purchases, contacts, text messages, social

media, or emails. The digital search is conducted without a need for a warrant, much like

the physical luggage search, during a border crossing.

The Canadian Border Services Agency (CBSA) says it is allowed to search cell phones,

smartphones, computers, tablets, removable media, drives, cameras, smartwatches, and

any other digital device. The search is said to be to address concerns for reasons as broad

as the admissibility of goods, identity con�rmation, breaking laws or regulations, among

others. The CBSA says that the o�cer will ask the person to write their password on a

piece of paper and that they are obligated to provide the password when asked. The CBSA

goes on and indicates that failure to grant access to the device will result in detention of

the device under section 101 of the Customs Act or seizure of the digital device under

subsection 140(1) of the Immigration and Refugee Protection Act. The use case is further

documented and reads that the o�ce will put the phone on airplane mode, hence disabling

any internet-based security systems, meaning that a security system to detect this action

needs to be able to process the data locally at all times. [25]

The United States Department of Homeland Security (DHS) Customs and Border Pro-

tection (CBP) also has customs and procedures involving the search of all electronic devices

at any border crossing. CBP has published a directive [26] on electronic devices border

searches in which it is indicated that the authorities are allowed to search devices such as

portable computers, tablets, disks, drives, tapes, mobile phones, and other communication

devices, cameras, music players, and other media players. The directive says the o�cers

will disable the network connectivity and will conduct a search, with or without suspicion

of their contents. This behavior can be detected if a security system that performs im-

plicit and continuous authentication is running locally without the need for an internet

connection.

In this use case, once the behavior is detected by handling the phone di�erently for one
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minute, after which the operating system can hide certain data and applications automat-

ically until a speci�c secret authorization step is performed, for example, tapping the top

right corner of the screen �ve times.

Threat model (B) can also take the form of a forced login by a criminal motivated to

access and transfer �nancial assets such as digital currencies or valuable business or political

information they can sell to news media, competitors, and traders. Figure 2.4 shows how

this system will be able to hide data and apps, which might even save human lives in

certain circumstances. Even if the phone was unlocked and authenticated, anomalous user

behavior before and during the primary authentication is noticed by the device. As we

mention later in this chapter, context can be very useful, as it gives our module information

about location or time. For instance, the system can be set to hide access to your Bitcoin

wallet when the user is passing a small isolated street during a vacation abroad. Moreover,

the system can hide access to the user's con�dential emails, �les, and apps when passing

through border control.

Threat model (B) also happens in many social scenarios when you would like a friend,

spouse, or colleague to view your screen momentarily, and they decide to take the liberty

and use your phone in their possession for something else.

Misplacing an Authenticated Device

Threat model (C) has a variety of use cases, most popular of which is when a user leaves the

phone for a nearby opportunistic threat actor. The phone can be left behind intentionally

or unintentionally, but it is exposed to theft or unauthorized access from nearby individuals.

In this use case, for instance, a spouse or friend can take control of the phone when it is

left unlocked on a co�ee table and explore the contents, either maliciously or not. Within

a minute, the phone detects the new user and triggers an action plan like hiding data or

applications or simply forcing a reboot or lockout.

In case of theft, the use case would be easily detected and di�erentiated from the spouse

use case by context, and using heuristics or rules sets of common post-theft patterns (e.g.,

throwing SIM card away, logging out of accounts), which is something our solution can be

expanded to detect. One example of a rule that can be used is that if the user is logged
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Figure 2.4: An example forced login scenario, showing how the proposed system can hide data, and apps on the phone to
prevent losses and damages.
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out of their Google or Apple account and the SIM card is removed, trigger theft procedure,

assuming di�erent inertial behavior is detected as well.

Locked Device Loss

Threat model (D) focuses on the passive use of the phone to alert the owner and their

enterprise of a lost or stolen device. This can work hand-in-hand with the "�nd my device\

capability that most modern smartphones today have. Notice that by having the system

running while the phone is not used actively, the system can act as an authenticator itself.

For instance, it can go as far as sending an authentication token for integrated systems

like smart cars, smart gates, or smart homes.

We consider all four threat models de�ned and aim to design a solution to protect the

user in all of these use cases.

2.3 Contextual Awareness

In this section, we build on the concept and threat models put forward in the previous

sections, and propose the utilization of contextual awareness to better the understanding

and sense of the environment and the situation at any given moment before taking action

against a detected threat.

The Continuous and Implicit Authentication System, also referred to as the solution can

interact with other modules that can provide further contextual and situational awareness

to the model. We have not been able to test that in our evaluations for the lack of an

appropriate dataset. However, there are strong reasons to believe that situational awareness

can play a signi�cant role in most use cases.

For instance, we can simply de�ne context as the location of the device. If the device is

at a border or a police station, the system can be set to go in high alert mode and disable

the pro�le updating stage functionality or disable high-pro�le functionalities temporarily.

The system can only allow low-pro�le data and applications or display customized mock

interfaces and pages to unauthorized users. This is useful for preventing suspicion by the
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threat actor, who can accuse the legitimate user of non-compliance in the scenario where

they are law enforcement authorities.

Context can also be set not only by geographical location but also by neighboring de-

vices or beacons that give our solution a feeling of trust and security when the device is at a

virtual home, that can be pre-set as a safe zone [27]. The safe zone can be identi�ed based

on certain smart home or Internet of Things enabled electronics such as TVs, displays,

speakers, virtual assistants, power outlets, cameras, doorbells, baby monitors, home secu-

rity systems, thermostats, lighting systems, kitchen appliances, home cleaning electronics,

�tness devices, lawnmowers, sprinkling systems, smart luggage, or smart car. Alterna-

tively, detection of the safe zone can be based on the electronics on the user at most times

like personal electronics such as tablets or laptops or smart gadgets such as smartwatch

watches, �tness tracker, or headphones. Devices such as telehealth and telemedicine smart

wearables, pacemakers, insulin pumps, blood sugar monitors, shoe inserts, necklaces, ECG

and EEG monitors, RFID implants, or smart tattoos are also good indicators of a safe

environment.

Many mobile and WiFi sensing works have been able to show successful results in indoor

localization, people counting [28], activity classi�cation, health monitoring, humidity esti-

mation, sign language recognition, metal detection, smoking detection, tra�c monitoring,

sleep detection, gesture recognition, emotion recognition, attention monitoring, keystrokes

recognition, drawing in the air, and more [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 32].

We envision integrations that enable the detection of a forced login by also checking

for rising skin temperature, rising heartbeat rate, or negative emotions. The integrations

open up a wide range of possibilities for the use cases in Table 2.1. These indicators can

be leveraged via the use of other features, gadgets, and models.

An integration with an Enterprise Mobile Management (EMM) system will also prove

pivotal, as notable alerts can be forwarded to the EMM and hence can reach the corporate

Security Operations Center (SOC), correlated and analyzed by security analysts and via

a Security Information and Event Management (SIEM) as well as responded to in the

appropriate manner. EMM systems are able to integrate with a Virtual Private Network
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(VPN) and mobile threat defense systems, to name a few, and are commonly tasked with

managing and protecting mobile devices in an increasingly mobile enterprise setting [44].

This means that an EMM can block a device from accessing the corporate VPN if not

compliant with certain risk scores, for instance. Our system can send a token over the

network con�rming behavioral authorization to other devices (such as a smart, safe box,

for instance), not just other software that exists on the same device.

2.4 Threat Response

In this section, we build on the concept, threat models, and contextual awareness put

forward in the previous sections, and materialize what the response could be, the vehicle

it would use to deliver its impact, and how it would take place in our solution.

NIST has recommended many responses to di�erent threat models, as well as other re-

searchers in the �eld [44]. We will assume the response can be easily con�gured by the user,

or Mobile Device Management (MDM), EMM, or an organization SOC, to either restrict

access to certain functions and data or to completely lock the device until further notice

by secure explicit authentication. The latter can take the forms of unlocking from a cloud

account, an email, OTP, a wired enabled hardware authentication factor, a wireless hard-

ware authentication factor using technologies like Bluetooth, NFC, RFID, WiFi, a secret

master key, or even secret sharing like the one proposed by Atwater and Goldberg [45].
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Figure 2.5: The information and actions 
ow between the continuous and implicit authentication system, the operating
system, third party applications, and the response system.

Varying possible responses to a \not owner" signal from the Continuous and Implicit

Authentication system are presented below.

ˆ Lock and encrypt the device and immediately, require two authenticators (e.g., pass-

word, PIN, pattern, face, �ngerprint, token-based, network-based, domain-based, digital

certi�cate) to unlock and decrypt the device.
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ˆ Wipe the device after a certain amount of time or failed trials to authenticate, suspecting

the device being lost, stolen, or accessed by unauthorized actors to mitigate the risk of

con�dential data recovery

ˆ Revocation of enterprise access

ˆ Removal of certain apps, �les, or data (e.g., emails, SMS text messages, private keys)

We believe a policy or a playbook can be leveraged here to con�gure automated re-

sponses per user requirement to a wide range of threat models. In Security Orchestration,

Automation, and Response (SOAR) products, playbooks are commonly used to respond

to threats in the security monitoring and response industry. For instance, the network

administrators are able to de�ne a playbook that is triggered by a certain anti-virus alert,

to block the IP addresses involved or disable certain machines temporarily. As previously

mentioned, it is highly advised to integrate this system with detection tools for valida-

tion and to maximize bene�t across di�erent apps, platforms, and security frameworks. A

multi-layered approach is critical to a successful security program [46]. Occasional testing

is recommended for these policies, and if it is found that there is a breach due to a cer-

tain policy, it is safe to assume it is weak or outdated and hence should be reviewed and

updated.

Sample playbook for response to detected threats could be de�ned be as follows:

ˆ Our solution could act as a layer in an MFA mechanism to thwart against threat model

(A). In this case, it can trigger an extra authentication step, such as OTP, secret question,

or biometrics

ˆ It would also be able to detect a handover threat model (B), in which case it would

trigger a pre-set con�guration such as restrict access to certain applications, settings,

installs, or sensitive data

ˆ In threat model (C), the phone can beep or send an alert to the smartwatch or wearable

gadget assumed to be with the owner. The phone can also be set to reboot or restrict

access to certain information and applications, as well.
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ˆ In threat model (D), the phone can decide to wipe its backed up sensitive contents

completely upon veri�cation that this is a phone theft situation.

We envision the Continuous and Implicit Authentication (CIA) trigger system, seen in

Figure 2.5 to be able to share its detections with other security systems that can bene�t

from the threat scoring of particular activity time stretches. The 3rd party apps would

be able to use the data to correlate it with suspicious activities and compound the threat

scoring to come up with a decision about the transactions or access approved or utilized

during the time period. For instance, a banking app can utilize the scoring from the CIA

module based on the inertial sensors in the smartphone and the internal model of the user

of the phone. The authentication state can change and result in further authentication

factors for the user, such as email OTP. Standards like FIDO2 [47] and PIV [48] can

guide the interactions between the module and web applications and other devices. The

integrations will allow it to expand the possible responses beyond the phone itself.
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2.5 Data Types

In this section, we build on the concept, threat models, contextual awareness, and threat

response put forward in the previous sections, and discuss what data types we aim to utilize

in our solution and why.

O�-the-shelf smartphones in the market today come packed with sensors that acquire a

variety of data points around the device at any given point. Below is a list of a few sensors

that are typically available:

ˆ accelerometer

ˆ gyroscope

ˆ magnetometer / compass

ˆ barometer

ˆ ambient light sensor / photometer

ˆ proximity sensor

ˆ battery temperature sensor / thermometer

ˆ touchscreen sensors

ˆ biometric (facial, iris/retina and �ngerprint recognition)

ˆ heart rate sensor

ˆ air humidity sensor

ˆ camera

ˆ microphone

ˆ GPS
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Figure 2.6: Some of the sensors present on many phones. Source: [1]

An accelerometer measures the device's acceleration. A gyroscope measures the device's

angular velocity. A magnetometer measures the e�ect of the magnetic �eld to cope with

the device's orientation. A barometer measures changes in the atmospheric pressure to

identify elevation. The ambient light sensor detects the surrounding light, allowing for re-

con�guring the screen brightness automatically. Proximity sensors measure the distance of

surrounding objects. The battery temperature sensor generates data that can be harvested

to identify the temperature of the phone as well as the surroundings.

Touchscreen sensors measure touches and taps to identify gestures, swipes, multi-touch,

and clicking. The biometric recognition sensors allow for identity authorization using

something the users are, as opposed to know or have, as we discussed in the previous

section [4].

Sensors like heart rate and air humidity help better �tness applications. The camera

allows for visible light collection in the photo or video formats, the microphone allows for

registering and collecting all sounds in the surroundings, and GPS allows the device to

utilize a network of satellites to triangulate the location on earth, where it currently exists.

Each of these sensors can help us identify an environment, user, pattern, or activity

if we analyze the data and utilize data science technologies like data mining or outlier

detection.

Not all sensors were created equal, however, and they incur di�erent power costs, oper-

ating system permissions, as well as data relevancy, noise to signal ratio, and quality. For
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(a) (b)

Figure 2.7: (a) The Wii —remote with the MotionPlus —attachment (b) The Apple IPhone —6.

instance, the most expensive three sensors from a power and permissions point of view are

camera, microphone, and GPS [4].

Camera, microphone, bio-metrics, ambient light sensor, barometer, temperature, and

proximity, are all examples of multimedia sensors. Accelerometer, magnetometer, and gy-

roscope are considered motion or inertial sensors as they give us the best data on rotational

and accelerations forces across all axes. They have been used in devices ranging from the

WII controller Figure 2.7 to capture movements of players, to the Apple iPhone 6 Fig-

ure 2.7 to capture orientation, movement, and more. Any device that is equipped with

these inertial sensors probably is �tted with an electronic component commonly referred

to as an Inertial Measurement Unit or IMU, more on which at the end of this chapter.

These analog inertial sensors do not depend on active usage of the smartphone, have

a low power �ngerprint, and are not protected behind permission walls like other sensors

such as camera or microphone, and they might have a huge potential in �ngerprinting how

a user moves the device while using it, if we harvest and analyze their data properly [4].
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